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Abstract. Consider the Oldroyd-B system on exterior domains with
nonzero external forces f . It is shown that this system admits under
smallness assumptions on f a bounded, global solution (u, τ), which is
stable in the sense that any other global solution to this system start-
ing in a sufficiently small neighborhood of (u(0), τ(0)) is tending to
(u, τ). In addition, if the outer force is T -periodic and small enough,
the Oldroyd-B system admits a T -periodic solution. Note that no small-
ness condition on the coupling coefficient is assumed.
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1. Introduction

In this note we consider stability and periodicity questions related to viscoelas-
tic fluids of Oldroyd-B type with non vanishing external forces on exterior
domains. This type of fluids are described by the following set of equations

Re(ut+(u · ∇)u)− (1−α)∆u+∇p = div τ+f in Ω× (0,∞),
∇ · u = 0 in Ω× (0,∞),

We(τt + (u · ∇)τ + ga(τ,∇u)) + τ = 2αD(u) in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω,
τ(0) = τ0 in Ω.

(1)

Here Ω ⊂ R3 denotes a domain with smooth boundary ∂Ω, u the velocity
of the fluid, and the tensor τ represents the elastic part of the stress tensor.
Furthermore, Re and We denote the Reynolds and Weissenberg number of the
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fluid, respectively. The term ga is given by

ga(τ,∇u) := τW (u)−W (u)τ − a(D(u)τ + τD(u)) (2)

for some a ∈ [−1, 1] and D(u) = 1
2 (∇u+ (∇u)T ) and W (u) = 1

2 (∇u− (∇u)T )
denote the deformation and vorticity tensors, respectively. The constant α ∈
(0, 1) is the coupling coefficient between the two equations and represents in
particular the strengthness of the coupling between the parabolic fluid type
equation for u and the hyperbolic transport type equation for τ .

This set of equations has been introduced first by J.G. Oldroyd [24] and the
analysis of this set of equations for viscoelastic fluids gained a lot of attention
since then.

If Ω ⊂ R3 is a bounded domain with smooth boundary, Guillopé and
Saut [13] proved the existence and uniqueness and exponential stability of small
solutions to (1) in the case of small coupling parameters α. They further proved
the existence of periodic and stationary solutions to (1) by adapting Serrin’s
method to this situation. For extensions of this results to the Lp-setting we
refer to the work of Fernandez-Cara et al [9]. Molinet and Talhouk [23] ex-
tended the result of Guillopé and Saut [13] to the case of non small coupling
parameters α ∈ (0, 1). For results concerning the critical Lp-framework, we
refer to the work of Zi, Fang, and Zhang [25].

For the case Ω = R3, Lions and Masmoudi [21] proved the existence of
global weak solutions provided a = 0. For further results in this direction
we refer to the works [4] and [19]. Blow-up criteria for Oldroyd-B type fluids
were developed by Kupfermann, Mangoubi and Titi [18] in the case where the
Navier-Stokes equation is replaced by the stationary Stokes system and in the
general case by Lei, Masmoudi and Zhou [20] as well as by Feng, Zhu and
Zi [8]. For global regularity results in the two dimensional setting, we refer to
the work of Constantin and Kriegl [5].

If Ω ⊂ R3 is an exterior domain, existence and uniqueness of solutions
to (1) for small data were proved by Hieber, Naito and Shibata in [14] for small
coupling parameter α and by Fang, Hieber and Zi in [7] for any α ∈ (0, 1). For
optimal decay rates for the case Ω = R3, see [16].

For recent results on ill-posedness of these equations within the L∞-setting
we refer to the work of Elgindi and Masmoudi [6].

In this article we are interested in the global existence, stability and pe-
riodicity of solutions to the Oldroyd-B equations in exterior domains in the
presence of external forces f of the form f = divF for certain F . One might
think of applying the method developed in [11] to the given situation, how-
ever, it is unclear whether the Oldroyd semigroup constructed in [10] satisfies
suitable decay estimates.

Note that the methods for obtaining results on stability, bifurcation and
periodicity of solutions for viscoelastic fluids are quite different from the ones
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often used in the theory of second order parabolic equations, where comparison
principles allow to develop a very rich and powerful theory. For beautiful results
in this direction, we refer to the work of Julian Lopez-Gomez and mention here
only his book [22] as well as the recent articles [2] and [1].

2. Existence of Bounded Solutions

We consider the Oldroyd-B equation with an external force f of the form f =
divF

ut+(u · ∇)u− (1−α)∆u+∇p = div τ + divF in Ω× (0,∞),
∇ · u = 0 in Ω× (0,∞),

τt + (u · ∇)τ + ga(τ,∇u) + τ = 2αD(u) in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω,
τ(0) = τ0 in Ω,

(3)

where Ω ⊂ R3 is an exterior domain with boundary of class C3. Let A := −P∆
be the Stokes operator in the solenoidal space L2

σ(Ω) with domain D(A) =
H2(Ω)∩H1

0 (Ω)∩L2
σ(Ω) and set V := H1

0 (Ω)∩L2
σ(Ω). For fixed T > 0 we put

E1(T ) := L2(0, T ;H3(Ω)) ∩ L∞(0, T ;D(A)),

E2(T ) := L2(0, T ;V ) ∩ L∞(0, T ;L2
σ(Ω)),

G1(T ) := L∞(0, T ;H2(Ω)),

G2(T ) := L∞(0, T ;H1(Ω)).

Our first result concerns the local existence of a unique, strong solution
to (3) under certain conditions on F .

Proposition 2.1 (Local Existence). Let Ω be an exterior domain with C3-
boundary and let u0 ∈ D(A) and τ0 ∈ H2(Ω). Then there exist T∗ > 0
and M > 0 such that for F ∈ G1(T∗) and F ′ ∈ G2(T∗) with ‖F‖G1(T∗) +
‖F ′‖G2(T∗) < M , equation (3) has a unique solutions (u, p, τ) on (0, T∗) with

u ∈ E1(T∗) ∩ C([0, T∗], D(A)),

u′ ∈ E2 ∩ C([0, T∗], D(A))),

p ∈ L2(0, T∗;H
2
loc(Ω)) with ∇p ∈ L2(0, T∗;H

1(Ω)),

τ ∈ C([0, T∗];H
2(Ω)) with τ ′ ∈ C([0, T∗];H

1(Ω)).

In order to prove Proposition 2.1 we make use of the following version of
Banach’s fixed point theorem, see [17].
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Lemma 2.2 ([17]). Let X be either reflexive Banach space or have a separable
pre-dual. Let K be a convex, closed and bounded subset of X and assume that
X is continuously embedded into a Banach space Y . Let Φ : X → X maps K
into K and assume there is 0 < q < 1 such that

‖Φ(x)− Φ(y)‖Y 6 q‖x− y‖Y for all x, y ∈ K.

Then there exists a unique fixed point of Φ in K.

Proof of Proposition 2.1. The proof follows the strategy described in [7, Prop.
3.1], however with a forcing term of the form f = divF . For the reader’s
convenience we give here a short outline of the proof. For real numbersB1, B2 >
0 we set

K(T ) :={(v, θ) ∈ E1(T )×G1(T ) : v′ ∈ E2(T ), θ′ ∈ G2(T ), v(0) = u0, θ(0) = τ0

and ‖v‖2E1(T ) + ‖v′‖2E2(T ) 6 B1, ‖θ‖G1(T ) 6 B1, ‖θ′‖G2(T ) 6 B2}

Then, for (v, θ) ∈ K(T ) we define the mapping

Φ(v, θ) := (u, τ),

where (u, τ) is the unique solution of the linearized problem of (3), i.e.,
ut + (1−α)Au = −Pdiv (v ⊗ v) + Pdiv θ + PdivF in Ω× (0,∞),
τt+(u · ∇)τ+τ = 2αD(v)− ga(τ,∇v)) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω,
τ(0) = τ0 in Ω.

(4)

Regularity results for the Stokes and the transport equation imply the existence
of a constant C > 0 such that

‖u‖2L2(H3)∩L∞(D(A)) + ‖u′‖2L2(V )∩L∞(L∞σ )

6 C
[
‖u0‖2H2 + ‖v(0)‖2H2 + ‖v‖2L2(H3) + ‖v′‖L∞(H1)‖v‖L2(H3)

+ ‖θ + F‖L∞(H2) + ‖θ′ + F ′‖L∞(H1)

]
and

‖τ‖L∞(H2) + ‖τ ′‖L∞(H1) 6 [2 + C‖v‖L∞(H2)]
(
‖τH2 +

2α

C

)
expC‖v‖L1(H3).

Hence, choosing B1, B2 and T1 appropriately, we see that Φ maps K(T1) into
K(T1).
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Next, similarly as in [7], for two solutions (ui, τi) corresponding to given
(vi, θi) for i = 1, 2 we verify that

‖u1 − u2‖2L∞(L2) + ‖τ1 − τ2‖2L∞(L2) +

∫ T

0

(‖∇u1 −∇u2‖2L2 + ‖τ1 − τ2‖2L2)dt

6
1

4

(
‖v1 − v2‖2L∞(L2) + ‖θ1 − θ2‖2L∞(L2)

+

∫ T

0

(‖∇v1 −∇v2‖2L2 + ‖θ1 − θ2‖2L2)dt
)

provided T 6 T∗ := min
{
T1,

δ
1+2B2

1
, 1
B1
, 1−α

4C(1+2B1)(1+2C exp(2C))

}
with δ :=

1−α
4+8C exp(2C) . Therefore, the mapping Φ is a contraction from

Y (T∗) :=
{

(v, θ) ∈ L∞(0, T ;L2(Ω))2,∇v ∈ L∞(0, T ;L2(Ω))
}

into itself and the assertion of Proposition 2.1 follows from Lemma 2.2.

Our global existence result to (3) in the presence of outer forces f of the
form f = divF reads as follows.

Theorem 2.3 (Global Existence). Let F ∈ L∞(0,∞;H2(Ω)) such that F ′ ∈
L∞(0,∞;H1(Ω)). Then there exists ε0 > 0 such that if

‖u0‖D(A) + ‖τ0‖H2 < ε0 and

max{‖F‖L∞(H2), ‖F ′‖L∞(H1)} < min{ε0, 1− α},

then equation (3) admits a unique, global strong solution (u, p, τ) on (0,∞)
satisfying

u ∈ Cb([0,∞);D(A)) with ∇u ∈ L2([0,∞);H2(Ω)) and

u′ ∈ L2([0,∞);H1
0 (Ω) ∩ L2

σ(Ω)),

∇p ∈ L2([0,∞), H1(Ω)) ∩ L∞([0,∞), H1(Ω)),

τ ∈ Cb([0,∞);H2(Ω)) ∩ L2([0,∞);H2(Ω)) and τ ′ ∈ L2([0,∞);L2(Ω)).

Proof. The proof of Theorem 2.3 follows essentially the lines of the proof of
Theorem 1.1 in [7], but we need to take into account the contributins due to
the external force divF . For the convenience of the reader, we sketch the main
ideas of the proof here. Let (u, τ) be the local solution of (3) constructed in
Proposition 2.1. Our aim is to to derive a priori estimates for u, τ, u′ and τ ′.
Since the norms of F are assumed to be small, our strategy is to absorb these
terms into the left-hand sides of the equations thanks to energy-type estimates.
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Since the equation (3)2 for τ does not contain external forces, estimates
(4.1) and (4.2) of [7] yield

d

dt
‖τ‖2H2 + ‖τ‖2H2 6 Cα2‖∇u‖2H2 +

C

α2
‖τ‖4H2 .

Applying the Helmholtz projection P to the second line of (3) gives

ut + P(u · ∇)u+ (1− α)Au = Pdiv τ + PdivF. (5)

Similarly as in [7] we obtain

‖∇u‖2H2 6 C
(
‖Au‖2H2 + ‖∇u‖2L2 +

1

(1−α)2
‖∇ut‖2L2 +

1

(1−α)2
‖∇Pdiv τ‖2L2

+
1

(1−α)2
‖∇PdivF‖2L2 +

1

(1−α)2
‖Au‖4L2 +

1

(1−α)2
‖∇u‖4L2

)
.

Next, taking the inner product of (5) with u yields

1

2

d

dt
‖u‖2L2 + (1− α)‖∇u‖2L2 = (div τ | u) + (divF | u).

Similarly as in [7] we arrive at

d

dt

(
‖u‖2L2 +

1

2
‖τ‖2L2

)
+ (1− α− ‖F‖L2)‖∇u‖2L2 +

1

2α
‖τ‖2L2

6
C

(1− α)α2
‖τ‖4H2 +

1

2α
‖F‖L2

and obtain the differential inequality

d

dt
U(t) + V (t) 6 CH(t)V (t),

where

U(t) :=(1− α)(κ4C0 + 1)(‖Pdiv τ‖2L2 + ‖ curl div τ‖2L2) +
κ6 + 1

1− α
‖u‖2L2

+
κ6 + 1

2α(1− α)
‖τ‖2L2 + ‖τ‖2H2 +

1

2
‖F‖L2

+
(κ1 + 1)(3− α− ‖F‖2L2)

1− α
‖∇u‖2L2

+
κ5 + 1

1− α
‖ut‖2L2 +

κ5 + 1

2α(1− α)
‖τt‖2L2 ,
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V (t) :=
κ1 + 1

1− α
‖ut‖2L2 + ‖Au‖2L2 + ‖τ‖2H2 + ‖∇u‖2H2 + ‖∇ut‖2L2

+
κ5 + 1

α(1− α)
‖τt‖2L2 + ‖∇u‖2L2 + ‖τ‖2L2 + ‖Pdiv τ‖2L2

+ ‖ curl div τ‖2L2 + ‖F‖2L2 ,

H(t) :=‖ut‖2L2 + ‖Au‖2L2 + ‖τ‖2H2 + ‖τt‖2L2 + ‖∇u‖2L2 + ‖∇u‖4L2 .

Following (4.28) in [7], there is a constant M1 = M1(α) > 0 such that

H(t) 6M1

(
U(t) + U(t)2 + U(t)3

)
, t ≥ 0. (6)

Arguing as in (4.28) in [7] we see that for δ0 > 0 with δ + δ2 + δ3 < 1
2CM1

and

for ε0 > such that C(ε40 + ε40) < δ0 we have

sup
06t6T∗

U(t) +
1

2

∫ T∗

0

V (s)ds 6 δ0.

Hence,

sup
06t6T∗

(
‖u(t)‖2D(A) + ‖u′(t)‖2L2 + ‖τ(t)‖2H2 + ‖τ ′(t)‖2L2

)
+

1

2

∫ T∗

0

(
‖∇u(t)‖2H2 + ‖∇u′(t)‖2L2 + ‖τ(t)‖2H2 + ‖τ ′(t)‖2L2

)
dt 6 C,

and the local solution (u, p, τ) can be extended to all t > 0.

3. Stability of the Oldroyd-B Equations with Small
External Forces

In this section we consider the stability of bounded solutions to the system (3).
Applying the Helmholtz projection to (3) we obtain

ut + (u · ∇)u+ (1− α)Au = Pdiv τ + PdivF,
τt + (u · ∇)τ + ga(τ,∇u) + τ = 2αD(u),

u(0) = u0,
τ(0) = τ0,

(7)

In the following we will prove that the bounded global solution (u, τ) to (7)
obtained in Theorem 2.3 is stable in the sense that any other global solution
to (3) starting in a sufficiently small neighborhood of (u(0), τ(0)) is tending to
(u, τ). To this end, we introduce the spaces

W1 := H3(Ω) ∩H1
0 (Ω) ∩ L2

σ(Ω), W2 := H2(Ω)
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and set W := W1 ×W2. Moreover, for r > 0 and (x1, x2) ∈W we set

B(x1, x2, r) := {(y1, y2) ∈W : ‖(y1, y2)− (x1, x2)‖W 6 r}.

The following stability result is the first main result of this article.

Theorem 3.1. There exist constants δ0, A,R > 0 such that for a solution (u, τ)
to equation (7) with ‖(u(0), τ(0))‖W 6 δ0 and any solution (v, µ) to equation
(7) with α 6 A and initial data (v(0), µ(0)) ∈ B(u(0), τ(0), r) for r 6 R, the
equality

lim
t→∞

‖v(t)− u(t)‖L2 = lim
t→∞

‖µ(t)− τ(t)‖L2 = 0

holds.

In order to prove Theorem 3.1 we make use of Hölder’s and Young’s inequal-
ity in weak Lp-spaces. For proofs, see e.g., Section 1 of [12]. More specifically,
for 1 < p <∞ we denote by Lpw := Lpw(R) the space of all measurable functions
f on R with norm

‖f‖p,w = sup
0<|E|<∞

|E|−1+ 1
p

∫
E

|f |ds <∞, (8)

where |E| denotes the Lebesgue measure of a measurable set E ⊂ R.

Lemma 3.2 ([12], Section 1). Let p ∈ [1,∞), q, r ∈ (1,∞). Then the following
assertins hold.

a) If f ∈ Lpw, g ∈ Lqw and 1
p + 1

q = 1
r , then fg ∈ Lrw and

‖fg‖r,w 6 C‖f‖p,w‖g‖q,w

for some constant C depending only on p and q.

b) If f ∈ Lpw, g ∈ Lqw and 1
p + 1

q = 1 + 1
r , then f ∗ g ∈ Lrw and there is a

constant C, depending only on p and q, such that

‖f ∗ g‖r,w 6 C‖f‖p,w‖g‖q,w.

c) If f ∈ Lpw, g ∈ L1, then f ∗ g ∈ Lpw and there is a constant C, depending
only on p, such that

‖f ∗ g‖p,w 6 C‖f‖p,w‖g‖L1 .
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Proof of Theorem 3.1. The strategy of our proof follows to a certain extent the
one of Theorem 3.2 in [10]. In the present case, we need to deal, however, with
two non trivial solutions to (7).

Let (u, τ) and (v, µ) be two solutions to (7) as in Theorem 3.1. Setting
ũ := v − u and τ̃ := µ− τ , we obtain from (7)

ũt + (ũ · ∇)ũ+ (u · ∇)ũ+ (ũ · ∇)u+ (1− α)Aũ = Pdivτ̃ ,
τ̃t + (ũ · ∇)τ̃ + (ũ · ∇)τ + (u · ∇)τ̃ + ga(τ̃ ,∇ũ)

+ga(τ̃ ,∇u) + ga(τ,∇ũ) + τ̃ = 2αD(ũ),
ũ(0) = v(0)− u(0),
τ̃(0) = µ(0)− τ(0).

(9)

We first estimate τ̃ by the second equation of system (9). Denote by ‖ · ‖ the
norm of L2(Ω). Taking the scalar product in the second equation of (9) with
τ̃ we obtain

d

dt
‖τ̃‖2 + 2 〈(ũ · ∇)τ, τ̃〉+ 2 〈ga(τ̃ ,∇ũ), τ̃〉+ 2 〈ga(τ̃ ,∇u), τ̃〉

+2 〈ga(τ,∇ũ), τ̃〉+ 2‖τ̃‖2 = 4α 〈D(ũ), τ̃〉 , t ≥ 0.

Integrating we obtain by Gronwall’s lemma

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 + 2

∫ t

0

e−2(t−s)
(
|〈ga(τ̃(s),∇ũ), τ̃(s)〉|

+ |〈ga(τ̃(s),∇u(s)), τ̃(s)〉|+ |〈ga(τ(s),∇ũ(s)), τ̃(s)〉|

+ |〈(ũ · ∇)τ, τ̃(s)〉|+ 2α |〈D(ũ(s)), τ̃(s)〉|
)
ds, t ≥ 0.

For ‖u‖W1 6 r we thus obtain

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 + 8rC(|a|+ 1)

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+ Cr(4|a|+ 5)

∫ t

0

e−2(t−s)‖τ̃(s)‖‖τ(s)‖ds

+ 4α

∫ t

0

e−2(t−s)‖D(u(s))‖‖τ̃(s)‖ds

6 e−2t‖τ̃(0)‖2 + 8rC(|a|+ 1)

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+ Cr(4|a|+ 5)

∫ t

0

e−2(t−s)( 1
2‖τ̃(s)‖2 + 1

2‖τ(s)‖2
)
ds

+ 2α

∫ t

0

e−2(t−s)(‖D(u(s))‖2 + ‖τ̃(s)‖2)ds, t ≥ 0,
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where C denotes the constant in Sobolev’s embedding. Therefore,

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 +
4α+ 8rC(6|a|+ 7)

2

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+

∫ t

0

e−2(t−s)
(

2α‖D(u(s))‖2 +
Cr(4|a|+ 5)

2
‖τ(s)‖2

)
ds, t ≥ 0.

Choosing r so small that K := 4−4α−8rC(6|a|+7)
2 > 0, Gronwall’s inequality

yields for t ≥ 0

‖τ̃(t)‖2 6 e−Kt‖τ̃(0)‖2

+

∫ t

0

e−K(t−ξ)
(

2α‖D(u(ξ))‖2 +
Cr(4|a|+ 5)

2
‖τ(s)‖2

)
dξ. (10)

In a second step we take the inner product of the first equation in (9) with
ũ and obtain

1

2

d

dt
‖ũ(t)‖2 + (1− α)‖∇ũ(t)‖2 = 〈Pdiv τ(t), u(t)〉 − 〈(ũ · ∇)u, ũ〉

= 〈Pdiv τ(t), u(t)〉+ 〈(ũ · ∇)ũ, u〉 .

Integrating from s to t yields

‖ũ(t)‖2 + 2(1− α)

∫ t

s

‖∇ũ(t)‖2dt

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ +

∫ t

s

‖(ũ(ξ) · ∇)ũ(ξ)‖‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ

+ 2C̃

∫ t

s

‖ũ(ξ)‖L6‖∇ũ(ξ)‖L3‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ

+ 2C

∫ t

s

‖∇ũ(ξ)‖‖∇ũ(ξ)‖1/2‖∇2ũ‖1/2‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ + 2C‖u‖Cb
∫ t

s

‖∇ũ(ξ)‖2H1dξ

6 ‖ũ(s)‖2 +

∫ t

s

‖τ̃(t)‖2dτ + (1 + 2C‖u‖Cb)
∫ t

s

‖∇ũ(ξ)‖2H1dξ
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where C̃ and C are the constants arising in Gagliardo-Nirenberg and Sobolev
inequalities and ‖u‖Cb := ‖u‖Cb([0,∞),L2). Summing up, we obtain

‖ũ(t)‖ 6 ‖ũ(s)‖+
(∫ t

s

‖τ̃(ξ)‖2dξ
)1/2

+(1+2C‖u‖Cb)1/2
(∫ t

s

∇ũ(ξ)‖2H1dξ
)1/2

,

and integrating with respect to s ∈ (0, t) yields

‖ũ(t)‖ 6 1

t

∫ t

0

‖ũ(s)‖ds+
(2

t

)1/2

‖τ̃‖L2(0,∞;H2)

+
(1 + 2C‖u‖Cb

t

)1/2

‖∇ũ‖L2(0,∞;H2). (11)

Theorem 2.3 yields ‖τ̃‖L2(0,∞;H2) <∞ as well as ‖∇ũ‖L2(0,∞;H2) <∞. Hence,
the second and third term on the right-hand side of (11) tend to 0 as t→∞.

We now turn our attention to the first term on the right hand side of (11)
and aim to show that

lim
t→∞

1

t

∫ t

0

‖ũ(s)‖ds = 0. (12)

To this end, we multiply the first line of equation (9) with φ ∈ C(R+, H
1
0 (Ω)∩

L2
σ(Ω)) ∩ C1(R+, L

2
σ(Ω)) and integrate from s to t to obtain

〈ũ(t), φ(t)〉+

∫ t

s

[(1− α) 〈∇ũ,∇φ〉+ 〈(ũ · ∇)ũ, φ〉+ 〈(ũ · ∇)u, φ〉

+ 〈(u · ∇)ũ, φ〉]dξ

= 〈ũ(s), φ(s)〉+

∫ t

s

[〈ũ, φ′〉+ 〈Pdiv τ̃ , φ〉]dξ. (13)

Substituting φ(ξ) = e−(t−ξ)Aψ with ψ ∈ C∞0,σ(Ω) into (13) and setting s = 0
we arrive at

〈ũ(t), ψ〉 =
〈
e−tAũ(0), ψ

〉
−
∫ t

0

[
< (ũ · ∇)ũ(ξ), e−(t−ξ)Aψ >

+ < (ũ · ∇)u(ξ), e−(t−ξ)Aψ >
]
dξ

+

∫ t

0

< (u · ∇)ũ(ξ), e−(t−ξ)Aψ > dξ

+ α

∫ t

0

< ∇ũ(ξ),∇e−(t−ξ)Aψ > dξ

+

∫ t

0

< τ̃(ξ),∇e−(t−ξ)Aψ > dξ.
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We next note the following estimates for the Stokes semigroup on exterior
domains (see e.g. [3], [15])

‖e−tA(w · ∇)v‖ 6 Ct−1/2(‖w‖‖v‖)1/4(‖∇w‖‖∇v‖)3/4,

t > 0, w, v ∈ H1(Ω) ∩ L2
σ(Ω),

‖∇e−tAψ‖ 6 Ct−1/2‖ψ‖ and ‖∇e−tAψ‖L3 6 Ct−3/4‖ψ‖,
t > 0, ψ ∈ C∞0,σ,

(14)

as well as the Gagliardo-Nirenberg inequality

‖∇ũ(s)‖
L

3
2
6 C‖∇ũ(s)‖ 1

2 ‖∇2ũ(s)‖ 1
2 6 C‖∇ũ(s)‖H1 .

Taking the supremum over all ψ ∈ C∞0,σ with ‖ψ‖ 6 1 yields

‖ũ(t)‖ 6 ‖e−tAũ(0)‖+ C

∫ t

0

(t− s)− 1
2

(
‖ũ(s)‖ 1

2 ‖∇ũ(s)‖ 3
2

+ 2(‖ũ(s)‖‖u(s)‖) 1
4 (‖∇ũ(s)‖‖∇u(s)‖) 3

4

)
ds

+ C

∫ t

0

(t− s)− 3
4 ‖∇ũ(s)‖H1ds+ C

∫ t

0

(t− s)− 3
4 ‖τ(s)‖H1ds

6 ‖e−tAũ(0)‖+ Cr
1
2

∫ t

0

(t− s)− 1
2 ‖∇ũ(s)‖ 3

2 ds

+ 2(r‖u‖Cb)
1
4

∫ t

0

(t− s)− 1
2 (‖∇ũ(s)‖‖∇u(s)‖) 3

4 ds

+ C

∫ t

0

(t− s)− 3
4 ‖∇ũ(s)‖H1ds+ C

∫ t

0

(t− s)− 3
4 ‖τ(s)‖H1ds

=: ‖e−tAũ(0)‖+ I(t) + II(t) + III(t) + IV (t).

(15)

By Theorem 2.3, ∇ũ ∈ L2(R+, H
2(Ω)) and hence ‖∇ũ(·)‖3/2 ∈ L4/3(R+). Set-

ting h(t) := t−1/2 and g1(t) :=
∫ t

0
h(t−s)‖∇ũ(s)‖3/2ds, we see by Lemma 3.2b)

that
‖g1‖L4

w(R+) 6 C‖h‖L2
w(R+)‖∇ũ‖L2(R+;L2(Ω)).

Therefore, by (8)

1

t

∫ t

0

g1(s)ds 6
Ct3/4

t
‖g1‖L4

w(R+) =
C1

t1/4
, t > 0.

for suitable constants C,C1 > 0. Next, since ‖∇u(·)‖ and ‖ũ(·)‖ belong
to L2(R+), Hölder’s inequality implies ‖∇u(·)‖‖ũ(·)‖ ∈ L1(R+) and hence

(‖∇ũ(·)‖‖∇u(·)‖) 3
4 ∈ L4/3(R+). Setting h(t) := t−1/2 and g2(t) :=

∫ t
0
h(t −

s)(‖∇ũ(s)‖‖∇u(s)‖) 3
4 ds we see that g2 ∈ L4

w(R+) and satisfies

‖g2‖L4
w(R+) 6 C‖h‖L2

w(R+)‖∇ũ‖L2(R+;L2(Ω))‖∇u‖L2(R+;L2(Ω)).
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Thus, again by (8)

1

t

∫ t

0

g2(s)ds 6
Ct3/4

t
‖g2‖L4

w(R+) =
C2

t1/4
, t > 0.

Theorem 2.3 implies ‖∇ũ(·)‖H1 ∈ L2(R+) and hence for h3 and g3 given by

h3(t) := t−3/4 and g3(t) :=
∫ t

0
h3(t− s)‖∇ũ(s)‖H1ds we obtain

‖g3‖L4
w(R+) 6 C‖h3‖L4/3

w (R+)
‖∇ũ‖L2(R+;H1(Ω)).

This yields

1

t

∫ t

0

g3(s)ds 6
Ct3/4

t
‖g3‖L4

w(R+) =
C3

t1/4
, t > 0.

Similarly, for IV (t) in (15), we have ‖τ̃(·)‖H1 ∈ L2(R+). Therefore the function

g4 given by g4(t) :=
∫ t

0
(t−s)−3/4‖∇ũ(s)‖H1ds belongs to L4

w(R+) and satisfies

‖g4‖L4
w(R+) 6 C‖h3‖L4/3

w (R+)
‖τ̃‖L2(R+;H1(Ω)).

As above
1

t

∫ t

0

g4(s)ds 6
Ct3/4

t
‖g4‖L4

w(R+) =
C4

t1/4
, t > 0.

Summing up we see that

1

t

∫ t

0

‖ũ(s)‖ds 6 1

t

∫ t

0

‖e−sAũ(0)‖ds+
C̃

t1/4
, t > 0. (16)

Since the Stokes semigroup on exterior domain is strongly stable in the sense
that

lim
t→∞

‖e−tAũ(0)‖ = 0,

it follows that limt→∞
1
t

∫ t
0
‖ũ(s)‖ds = 0. Combining this with estimate (11)

we finally obtain
lim
t→∞

‖ũ(t)‖ = 0.

Finally, we prove that limt→∞ ‖τ̃(t)‖ = 0. To this end, assume that f, f ′ ∈
L2(0,∞);L2(Ω)). Then the inequality

‖f(t)‖22 6 ‖f(tn)‖22 + 2
(∫ t

tn

‖f(s)‖22
)1/2(∫ t

tn

‖f ′(s)‖22
)1/2

(17)

yields that ‖f(t)‖2 → 0 as t → ∞ provided (tn) ⊂ (0,∞) is an unbounded
sequence satisfying ‖f(tn)‖2 → 0 as (tn)→∞. By Theorem 2.3, the function τ̃
satisfies (17) and we thus obtain ‖τ̃(t)‖2 → 0 as t→∞. The proof is complete.
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Remark 3.3: Taking into account that ũ(0) ∈ D(A) ⊂ H1
0 (Ω) ⊂ Rg(A

1
2 ) we

see that 1
t

∫ t
0
‖e−sAũ(0)‖ds satisfies a decay rate of the form

1

t

∫ t

0

‖e−sAũ(0)‖ds =
1

t

∫ t

0

‖A 1
2 e−sA(v0−u0)‖ds 6 1

t

∫ t

0

1

s
1
2

‖v0−u0‖ds =
C

t
1
2

for t > 0. In a similar way we obtain a decay rate for τ̃ of the form

‖τ̃(t)‖ 6
( C1

t1/2
+

C2

t1/4

)
‖τ(0)− µ(0)‖, t > 0.

Let us also note that combining Theorem 3.1 on the stability of (u, τ) with
respect to the ‖ · ‖2-norm with Theorem 2.3 and with the estimate (17) yields
a stability result for equation (7) with respect to the ‖ · ‖q-norm for q ∈ (2, 6].
More precisely, the following holds true.

Corollary 3.4. Let q ∈ (2, 6]. Then there exist constants A,R > 0 such that
any solution (u, τ) to equation (7) with α 6 A and with initial data (u0, τ0) ∈
B(0, 0, r) with r 6 R satisfies

lim
t→∞

‖u(t)‖Lq = lim
t→∞

‖τ(t)‖Lq = 0.

Proof. Due to Gagliardo-Nirenberg inequality we have

‖u‖q 6 c‖∇u‖3( 1
2−

1
q )

2 ‖u‖
3
q−

1
2

2 for 2 < q 6 6.

By Theorem 2.3, ∇u,∇ut ∈ L2((0,∞);L2(Ω)) and hence ‖∇u(t)‖2 → 0 as t→
∞ by estimate (17). Since u ∈ L∞((0,∞);L2(Ω)), the assertion for u follows.
The assertion for τ̃ follows similarly by noting that τ̃ ′ ∈ L∞((0,∞);H1(Ω)).

4. Periodic Solutions

In this section we show that the above stability result, Theorem 3.1, implies
also the existence of periodic solutions to (3). More precisely, the following
assertion holds.

Theorem 4.1. Assume in addition to the assumptions in Theorem 2.3 and 3.1
the function F is time T -periodic for some T > 0. Then, if ‖F‖L∞(H2) and
‖F ′‖L∞(H1) are small enough, there exists a T -periodic solution to (3) and this
T -periodic solution is stable in the sense of Theorem 3.1.

Proof. Due to Theorem 2.3, we consider a bounded and small solution

(u, τ) ∈ Cb([0,∞);D(A))× Cb([0,∞);H2(Ω))
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of equation (3). In the following, we prove that
(
u(nT ), τ(nT )

)
n∈N is a Cauchy

sequence in the space X := Cb([0,∞);L2(Ω))× Cb([0,∞);L2(Ω)).
To this end, for m,n ∈ N with m > n we set

(w(t), µ(t)) := (u(t+ (m− n)T ), τ(t+ (m− n)T ).

The periodicity of F implies that (w(t), µ(t)) is again a solution to (3) with
the initial data (w(0), µ(0)) = (u((m − n)T ), τ((m − n)T ). Theorem 3.1 and
Remark 3.3 imply

‖w(t)− u(t)‖+ ‖µ(t)− τ(t)]‖ 6 C̃1

t1/2
+

C̃2

t1/4
, t > 0.

Hence, by taking t := nT in the above inequality we obtain

‖u(mT )− u(nT )‖+ ‖µ(mT )− τ(nT )]‖ 6 C̃1

(nT )1/2
+

C̃2

(nT )1/4
.

Therefore,
(
u(nT ), τ(nT ))

)
n∈N is a Cauchy sequence in X with limit

(u∗, τ∗) := lim
n→∞

(u(nT ), τ(nT )) in X.

Choosing (u∗, τ∗) as initial data, we claim that the solution (û(t), τ̂(t)) of equa-
tion (3) with (û(0), τ̂(0)) = (u∗, τ∗) is T -periodic. To this end, for (u, τ) as
above and n ∈ N we set

(v(t), η(t)) := (u(t+ nT ), τ(t+ nT ))

The periodicity of F implies that (v(t), η(t)) is a solution of (3) with
(v(0), η(0)) = (u(nT ), τ(nT )). We further see that

‖û(t)− v(t)‖+ ‖τ̂(t)− η(t)‖

6
(C1

t
1
2

+
C2

t
3
4

)
‖û(0)− v(0))‖+

(C3

t
1
2

+
C4

t
1
4

)
‖τ̂(0)− η(0)‖.

for t > 0. Taking t = T in the above inequality yields

‖û(T )− u((n+ 1)T )‖+ ‖τ̂(T )− τ((n+ 1)T )‖

6
( C1

T
1
2

+
C2

T
3
4

)
‖û(0)− u(nT ))‖+

( C3

T
1
2

+
C4

T
1
4

)
‖τ̂(0)− τ(nT )‖

for all n ∈ N. Letting n→∞ and using the fact that limn→∞(u(nT ), τ(nT )) =
(u∗, τ∗) = (û(0), τ̂(0)) in X, we obtain

(û(T ), τ̂(T )) = (û(0), τ̂(0)).

Hence, (û(t), τ̂(t)) is T−periodic and the proof is complete.
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