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A Note on Smooth Matrices of

Constant Rank

Maurizio Ciampa and Aldo Volpi (∗)

Summary. - We show that, given a C
h time–varying matrix A(t) of

constant rank, there exists a Ch matrix H(t) such that the rows
of H(t)A(t) are an orthonormal basis of the space spanned by the
rows of A(t). We present some consequences of this result and,
in particular, we prove a version for m×n matrices of Doležal’s
Theorem.

These results are not new, and references are given. All the proofs
of the results stated in these references, with the exception of those
based on the use of differential equations — which holds only
for h ≥ 1 —, find suitable Ch matrices defined on overlapping
subsets of the domain and then patch them together without losing
regularity and the other required properties. In our approach the
patching needs to be done only for matrices consisting of one row
and all the remaining results are obtained by usual algebraic tools.

1. Introduction

For every pair m,n of positive integers, C
m×n denotes the space of

the m × n matrices whose entries are elements of C. If A ∈ C
m×n,
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cata “U. Dini,” Università di Pisa, via Bonanno 25 bis, 56126 Pisa, Italy, email:

mciampa@dma.unipi.it

Aldo Volpi, Accademia Navale, Viale Italia 72, 57127 Livorno, Italy.
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the symbol 〈A〉 will denote the subspace of C
1×n spanned by the

rows of A.

Let J ⊂ R be an open interval, and let h be a non negative
integer. A map

A ∈ C
h(J,Cm×n)

will be said a Ch matrix on J or a Ch m × n matrix on J .

Let A be a Ch m × n matrix on J. If there exists an integer k
such that for every t ∈ J it is rankA(t) = k, we will say that A is a
Ch m × n matrix of constant rank k on J.

In Section 2 of this paper, we prove (see Theorem 2.4) that if
A is a Ch m × n matrix of constant rank k ≥ 1 on J, then there
exists a Ch k × m matrix H on J such that for every t ∈ J the
rows of H(t)A(t) are an orthonormal basis of 〈A(t)〉. The main tool
in the proof is a Lemma (see Lemma 2.2) which establishes that,
given elements a1, . . . , am in Ch(J,C1×n) spanning, for every t ∈ J, a
subspace of dimension at least one, there exists a linear combination
ω1a1 + · · · + ωmam never vanishing on J with every ωj ∈ C∞(J,R).

Using Theorem 2.4, in Section 3 we prove various Corollaries. In
particular we prove Corollary 3.1 — the existence of a Ch matrix of
constant rank on J whose rows, for every t ∈ J, are an orthonormal
basis of the orthogonal complement 〈A(t)〉⊥ of 〈A(t)〉 in C

1×n — and
Corollary 3.2 — a version for m × n matrices of Doležal’s Theorem.

These results are not new. The existence of Ch matrices of con-
stant rank on J whose rows, for every t ∈ J, are bases of 〈A(t)〉 or
of 〈A(t)〉⊥ has been proved by Sibuya (Theorem 6 and Remark 3 of
[13]), Kato (Chapter 2, Section 4, Paragraph 2 of [10]) and Gohberg
et al. (Corollary 13.6.5 of [7]) — see also Rheinboldt (Section 3 of
[11]), Evard (Theorem 8.2 of [4])and Evard and Jafari (Theorem 5 of
[5]) for generalizations to matrices depending on more than a single
real variable. Doležal’s Theorem has been proved first in Doležal [3]
and Weiss and Falb [15]; — for generalizations see Silverman and
Bucy [14], Sen and Chidambara [12] and Grasse [8].

All the proofs of the cited results, with the exception of Kato
(which finds these bases as the solution of a suitable differential equa-
tion), find suitable Ch matrices defined on overlapping subset of the
domain and then patch them together without losing regularity and
the other required properties. In our approach the patching needs to
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be done only for matrices consisting of one row — see Lemma 2.2 —
and all the remaining results are obtained by usual algebraic tools.

Our approach allow us to prove that, given a Ch matrix A such
that rankA(t) is at least k for every t ∈ J, there exists a Ch k × m
matrix H such that, for every t ∈ J, the rows of H(t)A(t) are an
orthonormal set in 〈A(t)〉 — see Theorem 2.3. This result is somehow
complementary to those of Silverman and Bucy [14], where a n × n
matrix A such that rankA(t) is at most k for every t is considered.

Other factorizations of a Ch matrix have been considered (see
Gingold and Hsieh [6], Dieci and Eirola [2] and Chern and Dieci [1]).
Even if these results have been obtained without using Doležal’s
Theorem, such theorem may play a role in them. As an example,
in the Appendix we show how the use of Doležal’s Theorem may
simplify the (nontrivial) proof of the existence of smooth SVD and
complete QR factorizations given by Chern and Dieci (Theorem 2.4
and Corollary 2.5 in [1]).

The authors wish to express their gratitude to M. Poletti for his
encouragements and suggestions.

2. Main theorems and their proofs

If A ∈ C
m×n, the symbol A∗ denotes the matrix Ā T ∈ C

n×m. In
C

m×n we will consider the canonical hermitian product defined by
A •B = tr(AB∗). If W is a subspace of C

m×n, then W⊥ denotes the
orthogonal complement of W in C

m×n.

Lemma 2.1. Let a1, . . . , am ∈ C0(J,C1×n) be such that for every
t ∈ J there exists i ∈ { 1, . . . ,m } such that ai(t) 6= 0.

Then, for every t0 ∈ J there exist two sequences

· · · < t−2 < t−1 < t0 and t0 < t1 < t2 < · · ·

(each of them may be finite and has at least two terms) such that

(a.1) sup{ t0, t1, t2, . . . } = sup J

(a.2) inf{ . . . , t−2, t−1, t0 } = inf J
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(b.1) for every ℓ ≥ 0 such that there exists tℓ+1, there exists iℓ ∈
{ 1, . . . ,m } such that

aiℓ(t) 6= 0 for every t ∈ [tℓ, tℓ+1)

(b.2) for every ℓ ≤ 0 such that there exists tℓ−1, there exists iℓ−1 ∈
{ 1, . . . ,m } such that

aiℓ−1
(t) 6= 0 for every t ∈ (tℓ−1, tℓ]

Proof. For every τ ∈ J, define the real numbers θ+(τ) and θ−(τ) as
follows: for every i ∈ { 1, . . . ,m }, let

θ(i,+)(τ)=

{

τ if ai(τ) = 0
sup{σ∈J : ai(t) 6= 0 for every t∈ [τ, σ) } if ai(τ) 6= 0

and

θ(i,−)(τ)=

{

τ if ai(τ) = 0
inf{σ∈J : ai(t) 6= 0 for every t ∈ (σ, τ ] } if ai(τ) 6= 0

then

θ+(τ) = max
1≤i≤m

θ(i,+)(τ) , θ−(τ) = min
1≤i≤m

θ(i,−)(τ).

By the assumptions it is: inf J ≤ θ−(τ) < τ < θ+(τ) ≤ supJ.
Consider the following two procedures.

P+ : let tℓ ∈ J where ℓ is a non-negative integer; define tℓ+1 :=
θ+(tℓ); if tℓ+1 = supJ then stop; if tℓ+1 < supJ then define
ℓ := ℓ + 1 and apply P+ to tℓ.

P− : let tℓ ∈ J where ℓ is a non-positive integer; define tℓ−1 :=
θ−(tℓ); if tℓ−1 = inf J then stop; if tℓ−1 > inf J then define
ℓ := ℓ − 1 and apply P− to tℓ.

Let t0 ∈ J, and consider the two sequences t0, t1, t2, . . . and
t0, t−1, t−2, . . . obtained by applying to t0 the procedures P+ and
P− respectively. Observe that both sequences may be finite; how-
ever, at least t1 and t−1 exist.
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Obviously, properties (b.1) and (b.2) hold.

To prove (a.1), assume that there exists tℓ for every integer ℓ ≥ 0,
otherwise the statement is obvious.

Let τ = supℓ≥0 tℓ and assume, by contradiction, τ < supJ, so

that τ ∈ J. Let i ∈ { 1, . . . ,m }; for every ℓ ≥ 0 let ηiℓ = θ(i,+)(tℓ) ∈
[tℓ, tℓ+1], then ai(ηiℓ) = 0, hence limℓ→∞ ai(ηiℓ) = 0; moreover, since
limℓ→∞ ηiℓ = τ and ai is continuous, it is also limℓ→∞ ai(ηiℓ) = ai(τ);
then ai(τ) = 0. As a consequence, ai(τ) = 0 for i = 1, . . . ,m. This is
a contradiction.

Analogously we prove statement (a.2).

Lemma 2.2. Let a1, . . . , am ∈ Ch(J,C1×n) be such that

dim〈a1(t), . . . , am(t)〉 6= 0 for every t ∈ J.

There exist

ω1, . . . , ωm ∈ C
∞(J,R)

such that
m

∑

i=1

ωi(t)ai(t) 6= 0 for every t ∈ J.

Proof. Let t0 ∈ J, and let . . . , t−2, t−1, t0 and t0, t1, t2, . . . be the
sequences obtained applying Lemma 2.1 to a1, . . . , am and to t0. In
what follows we prove the statement assuming that there exists tℓ
for every ℓ ∈ Z. The other cases have similar proof.

For every ℓ ∈ Z, let aiℓ be as in (b.1) and (b.2) of Lemma 2.1,
and choose ǫℓ > 0 such that, defined

Uℓ = (tℓ − ǫℓ, tℓ+1) for ℓ ≥ 0 , Uℓ = (tℓ, tℓ+1 + ǫℓ) for ℓ < 0

it is

inf Uℓ < supUℓ−1 < inf Uℓ+1 < supUℓ

and

aiℓ(t) 6= 0 for every t ∈ Uℓ.

For every ℓ ∈ Z, choose

ζℓ ∈ C
∞(J,R)
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such that

ζℓ(t) 6= 0 for every t ∈ Uℓ , ζℓ(t) = 0 for every t ∈ J \ Uℓ

and let

uℓ = ζℓaiℓ ∈ C
h(J,C1×n).

Let α0 = 1 ∈ C∞(J,R); we prove by induction on ℓ that for every
integer ℓ ≥ 1 there exist α−ℓ, αℓ ∈ C∞(J,R) such that, defined

wℓ =
ℓ

∑

λ=−ℓ

αλuλ

it is

wℓ(t) 6= 0 for every t ∈ ∪ℓ
λ=−ℓUλ.

For ℓ = 1 : if for every t ∈ U0 ∩ U1 there exists β(t) ∈ R such
that u0(t) + β(t)u1(t) = 0, then the function β : U0 ∩ U1 → R is a
uniquely determined never vanishing Ch function, so that the sign of
β(t) is constant on U0 ∩U1; if β > 0, choose α1 = −1 ∈ C∞(J,R), if
β < 0 choose α1 = 1 ∈ C∞(J,R).

If there exists τ ∈ U0 ∩ U1 such that for every β ∈ R it is
u0(τ) + βu1(τ) 6= 0, let

ρ(t) =

{

||u0(t)||/||u1(t)|| t ∈ U1

0 t ≥ supU1
.

It is ρ ∈ Ch((inf U1,+∞),R) and

ρ(t) > 0 t ∈ U0 ∩ U1,

ρ(t) = 0 t ∈ [supU0,+∞),

limt→inf U1 ρ(t) = +∞.

Let b : U0 ∩ U1 → R such that for every t ∈ U0 ∩ U1, u0(t) +
b(t)u1(t) is the vector of minimum norm in the set of the vectors of
the form u0(t) + βu1(t), β ∈ R. Since for every t ∈ U0 ∩ U1 we have:

b(t) = −u0(t) • u1(t) + u1(t) • u0(t)

2 ||u1(t)||2
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then it is b ∈ Ch(U0 ∩ U1,R).
There exists a neighborhood (c, d) of τ where the function f ∈

Ch(U0 ∩ U1,R) defined by

f(t) = ||u0(t) + b(t)u1(t)||

is a not vanishing function. Therefore:

for every t ∈ (c, d) and every β ∈ R it is u0(t) + βu1(t) 6= 0.

Now we consider

m = min(inf U1,τ ] ρ(t) , M = max[τ,supU0] ρ(t)

µ = 2M − m
2 , λ = m

2 + µ
2

and the sequence (φν)ν∈N, φν ∈ C∞(R, (m
2 , 2M)) defined by

φν(t) = λ +
µ

π
arctan [ν(t − τ)] .

It is
limν→∞ φν(d) = λ + µ

2 = 2M

limν→∞ φν(c) = λ − µ
2 = m

2

as a consequence, there exists ν0 ∈ N such that

φν0(t) < ρ(t) for inf U1 < t ≤ c , φν0(t) > ρ(t) for t ≥ d.

Assuming α1 = φν0 ∈ C∞(J,R) we have

α1(t) > 0 for t ∈ J,
α1(t) < ρ(t) for t ∈ (inf U1, c],
α1(t) > ρ(t) for t ∈ [d, sup J).

The same argument allows us to choose α−1.
Once obtained α−ℓ, . . . , αℓ for a ℓ ≥ 1, α−(ℓ+1), αℓ+1 may be

obtained from

∪ℓ
λ=−ℓUλ, U−(ℓ+1), Uℓ+1, wℓ, u−(ℓ+1), uℓ+1

in the same way α−1, α1 have been obtained from

U0, U−1, U1, u0, u−1, u1.
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For i = 1, . . . ,m, let

ωi =
∑

ℓ s.t. iℓ = i

ζℓαℓ

and observe that the sum is well defined since for every t ∈ J at
most two terms are not zero. It is immediately seen that ω1, . . . , ωm

verify the statement.

Theorem 2.3. Let A be a Ch m × n matrix on J, and let k ≥ 1 be
an integer.

If rankA(t) ≥ k for every t ∈ J, then there exists H∈Ch(J,Ck×m)
such that for every t ∈ J the rows of H(t)A(t) are an orthonormal
set in 〈A(t)〉.

Proof. By induction on k.
If k = 1, by Lemma 2.2 there exist ω1, . . . , ωm ∈ C∞(J,R) such

that
(ω1(t), . . . , ωm(t))A(t) 6= 0 for every t ∈ J.

Let
ω = ||(ω1, . . . , ωm)A||−1(ω1, . . . , ωm) ∈ C

h(J,C1×m).

Then H = ω verifies the statement.
Assume the statement proved for an integer k ≥ 1, and let

rankA(t) ≥ k + 1 for every t ∈ J.
Let ω be as above and let b1 = ωA ∈ Ch(J,C1×n) so that

||b1(t)|| = 1 for every t ∈ J. Observe that for every t ∈ J it is

〈A(t)〉 = 〈b1(t)〉 ⊕ {a ∈ 〈A(t)〉 : b1(t) • a = 0}

and

{a ∈ 〈A(t)〉 : b1(t) • a = 0} = 〈A(t) − A(t)b∗1(t)b1(t)〉 =

= 〈(I − A(t)b∗1(t)ω(t))A(t)〉.

Moreover (I − Ab∗1ω)A is a Ch matrix on J and for every t ∈ J
its rank is at least k. The statement for k + 1 is then obtained by
applying the induction to the matrix (I − Ab∗1ω)A.

The following statement is an immediate consequence of Theo-
rem 2.3.
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Theorem 2.4. Let A be a Ch m×n matrix of constant rank k on J,
and let k ≥ 1.

There exists H ∈ Ch(J,Ck×m) such that for every t ∈ J the rows
of H(t)A(t) are an orthonormal basis of 〈A(t)〉.

Obviously, rankH(t) = k for every t ∈ J.

3. Some Corollaries and Doležal’s Theorem

In this Section we use Theorem 2.4 to prove some Corollaries. In par-
ticular, we give a new proof of Doležal’s Theorem (see Corollary 3.2).

Corollary 3.1. Let A be a Ch m×n matrix of constant rank k < n
on J. There exists a Ch (n− k)× n matrix Ω of constant rank n− k
on J such that for every t ∈ J the rows of Ω(t) are an orthonormal
basis of 〈A(t)〉⊥.

In particular, for every t ∈ J it is 〈A(t)〉⊥ = 〈Ω(t)〉.

Proof. If k = 0, Ω = I ∈ Ch(J,Cn×n) verifies the statement.

Otherwise, by Theorem 2.4 there exists B ∈ Ch(J,Ck×n) such
that for every t ∈ J the rows of B(t) are an orthonormal basis of
〈A(t)〉.

It is easily seen that for every t ∈ J and for every x ∈ C
1×n it is

“orthogonal projection of x on 〈A(t)〉” = xB∗(t)B(t)

hence

“normal component of x with respect to 〈A(t)〉”= x(I−B∗(t)B(t)).

As a consequence, for every t ∈ J, it is

〈A(t)〉⊥ = 〈I − B∗(t)B(t)〉.

Since I − B∗B is a Ch matrix of constant rank n − k on J, by
Theorem 2.4 there exists H ∈ Ch(J,C(n−k)×n) such that for every
t ∈ J the rows of H(t)(I − B∗(t)B(t)) are an orthonormal basis of
〈I − B∗(t)B(t)〉.

Then Ω = H(I − B∗B) verifies the statement.
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Corollary 3.2 (Doležal’s Theorem). Let A be a Ch m×n ma-
trix of constant rank k on J and let 1 ≤ k < m.

There exist a Ch m × m matrix H and a Ch k × n matrix A1 of
constant rank k on J such that for every t ∈ J it is

H(t) non singular , A(t) = H(t)

[

A1(t)
0

]

k
m − k

.

Proof. By Theorem 2.4 there exists H1 ∈ Ch(J,Ck×m) of constant
rank k on J such that for every t ∈ J the rows of H1(t)A(t) are a
basis of 〈A(t)〉. Let A1 = H1A ∈ Ch(J,Ck×n); A1 is obviously a Ch

k × n matrix of constant rank k on J.
Since A∗ ∈ Ch(J,Cn×m) and for every t ∈ J it is rankA∗(t) = k,

by Corollary 3.1 there exists H2 ∈ Ch(J,C(m−k)×m) of constant rank
m − k on J such that for every t ∈ J it is 〈A∗(t)〉⊥ = 〈H2(t)〉.

Obviously
[

H1

H2

]

∈ C
h(J,Cm×m) ,

[

H1

H2

]

A =

[

A1

0

]

k
m − k

.

Moreover
[

H1(t)
H2(t)

]

is non singular for every t ∈ J.

Indeed: let t ∈ J, x1 ∈ C
1×k and x2 ∈ C

1×(m−k) be such that
(x1, x2)H(t) = 0; then

x1H1(t) = −x2H2(t), x1H1(t)A(t) = −x2H2(t)A(t), x1A1(t) = 0.

Since rankA1(t) = k, it is x1 = 0; since rankH2(t) = m − k, it is
x2 = 0.

The matrices

H =

[

H1

H2

]−1

and A1

verify the statement.

Corollary 3.3. Let A be a Ch m× n matrix of constant rank k on
J and let 1 ≤ k < m. Then
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(a) there exist U ∈ Ch(J,Cm×m) and a Ch k × n matrix M of
constant rank k on J such that for every t ∈ J the matrix U(t)
is unitary and

U(t)A(t) =

[

M(t)
0

]

.

Moreover

(b) if k < n there exist also V ∈ Ch(J,Cn×n) and B ∈ Ch(J,Ck×k)
such that for every t ∈ J the matrix V (t) is unitary, the matrix
B(t) is non singular and

U(t)A(t)V (t) =

[

B(t) 0
0 0

]

.

Proof. By Doležal’s Theorem applied to A, there exist a Ch m × m
matrix W on J and a Ch k × n matrix N of constant rank k on J
such that for every t ∈ J it is

W (t) non singular , W (t)A(t) =

[

N(t)
0

]

.

Let w1, . . . , wm ∈ Ch(J,C1×m) be the rows of W ; the usual Gram-
Schmidt procedure applied to the family wm, . . . , w1 allows us to find
matrices T,U ∈ Ch(J,Cm×m) such that for every t ∈ J the matrix
T (t) is upper triangular and non singular, the matrix U(t) is unitary,
and T (t)W (t) = U(t). Hence for every t ∈ J it is

U(t)A(t) = T (t)

[

N(t)
0

]

=

[

M(t)
0

]

.

Obviously M is a Ch k × n matrix of constant rank k on J. This
proves statement (a).

Let k < n. Statement (a) applied to M∗ gives a Ch n× n matrix
V ∗ and a Ch k × k matrix B∗ such that for every t ∈ J the matrix
V ∗(t) is unitary, the matrix B∗(t) is non singular and

V ∗(t)M∗(t) =

[

B∗(t)
0

]

.
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Hence for every t ∈ J it is

U(t)A(t)V (t) =

[

M(t)
0

]

V (t) =

[

B(t) 0
0 0

]

.

This proves statement (b).

Corollary 3.4. Let A be a Ch m×n matrix of constant rank on J.
Let a ∈ Ch(J,C1×n) be such that a(t) ∈ 〈A(t)〉 for every t ∈ J.

Then there exists ω ∈ Ch(J,C1×m) such that a = ωA.

Proof. If for every t ∈ J it is rankA(t) = 0, then a = 0 and hence
ω = 0 verifies the statement. If for every t ∈ J it is rankA(t) = k ≥
1, by Theorem 2.4 there exists H ∈ Ch(J,Ck×m) such that for every
t ∈ J the rows of H(t)A(t) are an orthonormal basis of 〈A(t)〉.

Obviously, for every t ∈ J there exists a unique α(t) ∈ C
1×k such

that a(t) = α(t)H(t)A(t). A straightforward argument proves that
α ∈ Ch(J,C1×k). Hence it is sufficient to choose ω = αH.

Corollary 3.5. Let A,A1 be Ch matrices of dimension m×n,m1×n
and of constant rank k, k1 on J such that

〈A1(t)〉 ⊂ 〈A(t)〉 for every t ∈ J,

0 < k1 < k.

There exist Ch matrices Λ1,Λ2 of dimension k1 ×m, (k−k1)×m
of constant rank k1, k − k1 on J such that for every t ∈ J the rows
of Λ1(t)A(t) are an orthonormal basis of 〈A1(t)〉 and the rows of

[

Λ1(t)
Λ2(t)

]

A(t)

are an orthonormal basis of 〈A(t)〉.
In particular, for every t ∈ J it is

rankΛ1(t)A(t) = k1, rankΛ2(t)A(t) = k−k1, rank

[

Λ1(t)
Λ2(t)

]

= k

and
〈A1(t)〉 = 〈Λ1(t)A(t)〉,

〈A(t)〉 = 〈A1(t)〉 ⊕ 〈Λ2(t)A(t)〉.
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Proof. By Theorem 2.4 (respectively: by Theorem 2.4 and Corol-
lary 3.4) there exists a Ch matrix H (respectively: H1) such that for
every t ∈ J the rows of the matrix H(t)A(t) (respectively: H1(t)A(t))
are an othonormal basis of 〈A(t)〉 (respectively: of 〈A1(t)〉). Let
B = HA ∈ Ch(J,Ck×n) and B1 = H1A ∈ Ch(J,Ck1×n).

Let Λ1 = H1.

Let B2 = A(I −B∗
1B1). It is easily seen that for every t ∈ J it is

{a ∈ 〈A(t)〉 : a ⊥ 〈A1(t)〉} = {a ∈ 〈A(t)〉 : a ⊥ 〈B1(t)〉} = 〈B2(t)〉

and

〈A(t)〉 = 〈A1(t)〉 ⊕ 〈B2(t)〉.

Since B2 is a Ch m × n matrix of constant rank k − k1 on J, by
Theorem 2.4 and Corollary 3.4 there exists a unique Ch matrix Λ′

such that for every t ∈ J the rows of the Ch matrix B′
2 = Λ′B =

Λ′HA are an orthonormal basis of 〈B2(t)〉; let Λ2 = Λ′H.

It is easily seen that Λ1,Λ2 verify the statement.

Corollary 3.6. Let A1, A2 be Ch matrices of dimension m1 × n,
m2 × n and of constant rank k1, k2 on J.

Let

dim〈A1(t)〉 ∩ 〈A2(t)〉 = k ≥ 1 for every t ∈ J.

Then there exist Ch matrices Λ1,Λ2 of dimension k × m1 and
k × m2 respectively such that Λ1A1 = Λ2A2 and for every t ∈ J
the rows of Λ1(t)A1(t) = Λ2(t)A2(t) are an orthonormal basis of
〈A1(t)〉 ∩ 〈A2(t)〉.

In particular, for every t ∈ J it is

〈A1(t)〉 ∩ 〈A2(t)〉 = 〈Λ1(t)A1(t)〉

and

〈A1(t)〉 ∩ 〈A2(t)〉 = 〈Λ2(t)A2(t)〉.

Proof. Since for every t ∈ J it is

〈A1(t)〉 ∩ 〈A2(t)〉 = (〈A1(t)〉⊥ + 〈A2(t)〉⊥)⊥,



168 M. CIAMPA AND A. VOLPI

by the assumptions, Corollary 3.1 and Theorem 2.4, there is a Ch

k × n matrix Ω of constant rank on J such that for every t ∈ J the
rows of Ω(t) are an orthonormal basis of 〈A1(t)〉 ∩ 〈A2(t)〉.

By Corollary 3.4 applied first to A1 and each row of Ω, and then to
A2 and each row of Ω, there exist Ch matrices Λ1 and Λ2 of dimension
k × m1 and k × m2 respectively such that Ω(t) = Λ1(t)A1(t) =
Λ2(t)A2(t).

4. Appendix

In this Appendix we consider the following statement proved in [1]
and used to show the existence of smooth SVD and complete QR
factorizations of a Ch matrix (Theorem 2.4 and Corollary 2.5 of [1]).

Theorem 4.1 (See [1], Theorem 2.4). Let A be a Ch m×n matrix
of constant rank k on R and let m ≥ n and 1 ≤ k ≤ n.

Then there exist U ∈ Ch(R,Cm×m), V ∈ Ch(R,Cn×n) and S+ ∈
Ch(R,Ck×k) such that for every t ∈ J the matrices U(t) and V (t)
are unitary, the matrix S+(t) is hermitian positive definite and

U(t)∗A(t)V (t) =

[

S+(t) 0
0 0

]

.

This statement has been proved in [1] as a nontrivial consequence
of a result by Sibuya on a block diagonalization of Ch matrices. To
show that Doležal’s Theorem may play a role in smooth SVD and
complete QR factorizations, we prove that Theorem 4.1 may be easily
obtained (through Corollary 3.3) by Doležal’s Theorem as follows.

Lemma 4.2. Let B be a Ch k × k matrix on R such that for every
t ∈ R the matrix B(t) is non singular.

Then there exist matrices Q,S ∈ Ch(R,Ck×k), such that for ev-
ery t ∈ R the matrix Q(t) is unitary, the matrix S(t) is hermitian
positive definite and

B(t) = Q(t)S(t).

Proof. Let H be the set of all hermitian k×k matrices, and consider
it (in the obvious way) as a normed vector space of dimension k2 on
R. Let P be the open subset of H of all hermitian positive definite
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k×k matrices. For every M ∈ P, let
√

M be the unique element of P

such that (
√

M)∗
√

M = M. The argument of the proof of Theorem
“Derivative of the square root” on page 23 of [9] proves that the map

√
• : P → P

is a C∞-map.

For every t ∈ R let S(t) =
√

B(t)∗B(t) and Q(t) = B(t)S(t)−1.
The above argument proves that S ∈ Ch(R,Ck×k), hence also Q ∈
Ch(R,Ck×k); moreover, for every t ∈ R it is B(t) = Q(t)S(t), and
the matrix Q(t) is unitary.

We can now give the proof of Theorem 4.1.

Proof. There exist matrices U1 ∈ Ch(R,Cm×m), V ∈ Ch(R,Cn×n)
and B ∈ Ch(R,Ck×k) such that for every t ∈ R the matrices U1(t)
and V (t) are unitary, the matrix B(t) is non singular and

(i) whenever k < n ≤ m it is

U1(t)A(t)V (t) =

[

B(t) 0
0 0

]

,

(ii) whenever k = n < m it is

U1(t)A(t)V (t) =

[

B(t)
0

]

,

(iii) whenever k = n = m it is

U1(t)A(t)V (t) = B(t).

The existence of matrices verifying (i) follows by Corollary 3.3, (ii)
follows by (a) of Corollary 3.3 and assuming V = I, and (iii) is
obvious assuming U1 = V = I.

Then, the statement follows applying Lemma 4.2 to B.
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