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Complex Hamiltonian Equations and

Hamiltonian Energy

M. Tekkoyun and G. Cabar (∗)

Summary. - In the framework of Kaehlerian manifolds, we obtain
complex Hamiltonian equations on momentum phase space T ∗M .
Also we conclude complex Hamiltonian equations via the Legen-
dre transformation. Then, definiting complex Routhian function
similar to real analogue, we calculate Hamiltonian energy func-
tion of the system associated to complex Routhian function.

1. Introduction

The modern development of analytical mechanics in terms of intrinsi-
cal geometrical properties of differentiable manifolds shows that the
dynamics of Lagrangian and Hamiltonian systems is characterized
by a suitable vector field X defined on the tangent and cotangent
bundles (phase-spaces of velocities and momentum) of a given config-
uration manifold. If M is an m-dimensional configuration manifold
and L : TM → R a regular Lagrangian function then there is a
unique vector field X on TM , called tangent bundle of M , such that
iXL

ωL = dEL, where ωL is the symplectic form and EL is energy
associated to Lagrangian function L. The vector field X is a semis-
pray (a class of vector fields on the tangent bundle TM which in-

(∗) Authors’ addresses:

Mehmet Tekkoyun and Gamze Cabar, Department of Mathematics, Faculty

of Sciences and Arts, Pamukkale University, 20070 Denizli, Turkey; E-mail:

tekkoyun@pamukkale.edu.tr, gamzecabar@mynet.com

Keywords: complex and Kaehlerian Manifold, Lagrangian and Hamiltonian Equa-

tions, Legendre Transformation, Routhian Function.

AMS Subject Classification: 32Q15, 70H03, 70H05, 44A15, 70G, 37F.



54 M. TEKKOYUN AND G. CABAR

terprets geometrically a system of second order differential equations
or shortly second order differential equation) since its integral curves
are the solutions of the Euler-Lagrange equations ( X is called Euler-
Lagrange vector field) and If H : T ∗M → R is a regular Hamiltonian
energy then there is a unique vector field XH on T ∗M,called cotan-
gent bundle of M, such that iXH

ω = dH, where ω is the symplectic
form and H energy (Hamiltonian energy or Hamiltonian function).

The vector field XH is a semispray since its integral curves are the
solutions of the Hamiltonian equations ( XH is called Hamiltonian
vector field) [1, 2].

The paper is structured as follows. In second 2, we recall com-
plex and Kaehlerian manifolds. Besides, we remind complex Euler-
Lagrange and Hamiltonian equations [3, 4].

In second 3 we set complex Hamiltonian equations on momen-
tum phase space T ∗M . In second 4 we obtain complex Hamiltonian
equations via the Legendre transformation on Kaehlerian manifold.
In second 5, on the tangent bundle of Kaehlerian manifold TM ,
definiting Routhian function [5], we find Hamiltonian energy of a
complex system. In second 6 we calculate complex coordinate of
the system by means of Routhian function if complex coordinate is
periodic. Hereafter, all mappings and manifolds are assumed to be
differentiable of class C∞ and the sum is taken over repeated indices.
Also, we denote by F(TM) the set of complex functions on TM, by
χ(TM) the set of complex vector fields on TM and by Λ1(TM) the
set of complex 1-forms on TM.

2. Preliminaries

2.1. Complex and Kaehlerian manifolds

Let M be m-real dimensional configuration manifold. A tensor field
J on TM is called an almost complex structure on TM if at every
point p of TM, J is endomorphism of the tangent space Tp(TM)
such that J2 = −I. A manifold TM with fixed almost complex
structure J is called almost complex manifold. Let (xi) and (xi, yi)
be a real coordinate system of M and TM, and {( ∂

∂xi )p, (
∂

∂yi )p} and

{(dxi)p, (dyi)p} natural bases over R of tangent space and cotangent
space of TM, respectively. Let TM be an almost complex manifold
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with fixed almost complex structure J. TM is called complex man-
ifold if there exists an open covering {U} of TM such that there
exists a local coordinate system {(xi, yi) : 1 ≤ i ≤ m} on each U, we
have

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) = − ∂

∂xi
. (1)

Let zi = xi+i yi, i=
√
−1, 1 ≤ i ≤ m, be a complex local coordinate

system on a neighborhood U of any point p of TM. we define the
vector fields and the dual covector fields

(

∂

∂zi

)

p

=
1

2

{(

∂

∂xi

)

p

− i

(

∂

∂yi

)

p

}

(

∂

∂zi

)

p

=
1

2

{(

∂

∂xi

)

p

+ i

(

∂

∂yi

)

p

}

, (2)

(

dzi
)

p
=

(

dxi
)

p
+ i(dyi)p,

(

dzi
)

p
=

(

dxi
)

p
− i(dyi)p. (3)

which represent bases of the tangent space Tp(TM) and cotangent
space T ∗

p (TM) of TM , respectively. Then the endomorphism J acts
on base (2) via

(

∂

∂zi

)

= i
∂

∂zi
, J

(

∂

∂zi

)

= −i
∂

∂zi
, (4)

The dual endomorphism J∗ of the cotangent space T ∗

p (TM) at any
point p of manifold TM satisfies J∗2 = −I and is defined by

J∗(dzi) = idzi, J∗(dzi) = −idzi. (5)

Hermitian metric on an almost complex manifold with almost com-
plex structure J is a Riemannian metric g on TM such that

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ χ(TM). (6)

An almost complex manifold TM with a Hermitian metric is called
an almost Hermitian manifold. If TM is a complex manifold, then
TM is called a Hermitian manifold. Let further TM be a 2m-
dimensional almost Hermitian manifold with almost complex struc-
ture J and Hermitian metric g. The triple (TM,J, g) is called an
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almost Hermitian structure. Let (TM,J, g) be an almost Hermitian
structure. The 2-form defined by

Φ(X,Y ) = g(X,JY ), ∀X,Y ∈ χ(TM) (7)

is called the Kaehlerian form of (TM,J, g). An almost Hermitian
manifold is called almost Kaehlerian if its Kaehlerian form Φ is
closed. If, moreover, TM is Hermitian, then TM is called a Kaehle-
rian manifold. Taking into consideration the above definitions , also
we may say to be a Kaehlerian manifold of cotangent bundle T ∗M.

2.2. Complex Euler-Lagrange and Hamiltonian

equations

In this section, we remind complex Euler-Lagrange and complex
Hamiltonian equations for classical mechanics structured on Kaehle-
rian manifold TM and T ∗M given in [3, 4]. Let J be an almost
complex structure on the Kaehlerian manifold and (zi, zi) its com-
plex structures. We call to be the semispray the vector field ξ given
by

ξ = ξi ∂

∂zi
+ ξ

i ∂

∂zi
, ξi =

.
z

i
= zi, ξ

i
=

.

ξ
i
=

..
z

i
=

.
z

i
1 ≤ i ≤ m. (8)

The vector field denoted by V = Jξ and given by

Jξ = iξi ∂

∂zi
− iξ

i ∂

∂zi
, (9)

is called Liouville vector field on the Kaehlerian manifold. We call the
kinetic energy and the potential energy of system the maps given by
T, P : TM → C such that T = 1

2mi(z
i)2 = 1

2mi(
.
z

i
)2, P = migh, re-

spectively, where mi is mass of a mechanic system having m particles,
g is the gravity acceleration and h is the origin distance of the a me-
chanic system on the Kaehlerian manifold. Then we call Lagrangian
function the map L : TM → C such that L = T − P and also the
energy function associated L the function given by EL = V (L) − L.

The exterior product(or vertical contraction) induced by J operator
iJ defined by

iJω(Z1, Z2, . . . , Zr) =
r
∑

i=1

ω(Z1, . . . , JZi, . . . , Zr), (10)
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where ω ∈ ∧rTM, Zi ∈ χ(TM). The exterior vertical derivation dJ

is defined by

dJ = [iJ , d] = iJd − diJ , (11)

where d is the usual exterior derivation. For almost complex struc-
ture J determined by (4), the closed Kaehlerian form is the closed
2-form given by ΦL = −ddJL such that

dJ = i
∂

∂zi
dzi− = i

∂

∂zi
dzi : F(TM) → ∧1TM (12)

and where F(TM) the set of complex functions on TM and Λ1(TM)
the set of complex 1-forms on TM. Let TM be Kaehlerian manifold
with closed Kaehlerian form ΦL, and the vector field V is Liouville
vector field and the function L : TM → C is a Lagrangian on TM.

Since the map TMΦL
: χ(TM) → ∧1(TM) such that TMΦL

(ξ) =
iξΦL is an isomorphism, there exists a unique vector ξ on TM such
that iξΦL = dEL. We call ξ on TM as a Lagrangian vector field
associated energy (or Lagrangian function) L on Kaehlerian manifold
TM with closed Kaehlerian form ΦL. (TM,ΦL, ξ) ( or TM,ΦL, L)
is called a Lagrangian system on Kaehlerian manifold TM. Let the
curve α : C → TM be integral curve of ξ. we may give complex
Euler-Lagrange equations on Kaehlerian manifold TM :

i
∂

∂t

(

∂L

∂zi

)

− ∂L

∂zi
= 0 i

∂

∂t

(

∂L

∂zi

)

+
∂L

∂zi
= 0, (13)

whose solutions are the paths of the semispray ξ,where zi =
.
z

i
. Let

T ∗M be the Kaehlerian manifold and (zi, zi), 1 ≤ i ≤ m its complex
coordinates. Let almost complex structure J∗ and Liouville form
λ given by J∗(dzi) =idzi, J∗(dzi) = −idzi and by λ = (J∗(ω)) =
1
2 i(−zidzi + zidzi) such that ω = 1

2(zidzi + zidzi) complex 1-form on
T ∗M. If Φ = −dλ is closed Kaehlerian form, then Φ is also a symplec-
tic structure on T ∗M. Let T ∗M be Kaehlerian manifold with closed
Kaehlerian form and the function H : T ∗M → C a Hamiltonian
on T ∗M. Since the map T ∗MΦ : χ(T ∗M) → ∧1(T ∗M) such that
χ(T ∗M) is sets of complex vector fields on T ∗M and ∧1(T ∗M) is
sets of anti-symmetric complex 1-forms on T ∗M is an isomorphism,
there exists a unique vector ZH on T ∗M such that iZH

Φ = dH. We
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call ZH on T ∗M as a Hamiltonian vector field associated Hamil-
tonian energy H on Kaehlerian manifold with closed Kaehlerian
form. (T ∗M,Φ, ZH) ( or T ∗M,Φ,H) is called a Hamiltonian sys-
tem on Kaehlerian manifold with closed Kaehlerian form. Let T ∗M

be Kaehlerian manifold with closed Kaehlerian form Φ. Hamiltonian
vector field ZH on Kaehlerian manifold with closed Kaehlerian form
Φ is given by

ZH =
1

i

∂H

∂zi

∂

∂zi
− 1

i

∂H

∂zi

∂

∂zi
, 1 ≤ i ≤ m (14)

on T ∗M. Let {zi, zi : 1 ≤ i ≤ m} be the complex coordinates in the
Kaehlerian manifold. Suppose that the curve

α : I ⊂ C → T ∗M (15)

Now, from ZH(α(t)) =
.
α, then we infer the following equations

dzi

dt
=

1

i

∂H

∂zi
,

dzi

dt
= −1

i

∂H

∂zi
. (16)

which are called complex Hamiltonian equations on Kaehlerian man-
ifold T ∗M .

3. Complex Hamiltonian equations on momentum

phase space

In this section, we obtain complex Hamiltonian equations for classical
mechanics structured on momentum space T ∗M that is 2m- dimen-
sional cotangent bundle of an m-dimensional configuration manifold
M. Let T ∗M be the momentum space and (zi, zi = ∂L

∂zi ), 1 ≤ i ≤ m

its complex coordinates, where L is Lagrangian function. Let almost
complex structure J∗ and Liouville form λ give by J∗(dzi) = idzi,
J∗(dzi) = −idzi and by λ = (J∗(ω)) = 1

2 i(−zidzi + zidzi) such that
ω = 1

2(zidzi + zidzi) complex 1-form on T ∗M. If Φ = −dλ is closed
Kaehlerian form, then Φ is also a symplectic structure on T ∗M.

Definition 3.1. Let T ∗M be momentum space with closed Kaehle-
rian form Φ and the function H : T ∗M → C a Hamiltonian on T ∗M.

Since the map T ∗MΦ : χ(T ∗M) → ∧1(T ∗M) such that χ(T ∗M) is
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sets of complex vector fields on T ∗M and ∧1(T ∗M) is sets of anti-
symmetric complex 1-forms on T ∗M is an isomorphism, there exists
a unique vector ZH on T ∗M such that iZH

Φ = dH. We call ZH on
T ∗M as a Hamiltonian vector field associated energy (or Hamilto-
nian function) H on momentum space T ∗M with closed Kaehlerian
form Φ. (T ∗M,Φ, ZH) ( or T ∗M,Φ,H) is called a Hamiltonian sys-
tem on momentum space T ∗M with closed Kaehlerian form Φ.

Proposition 3.2. Let T ∗M be momentum space with closed Kaehle-
rian form Φ. Hamiltonian vector field ZH onmomentum space T ∗M

with closed Kaehlerian form Φ is given by

ZH =
1

i

∂H

∂zi

∂

∂zi
− 1

i

∂H

∂zi

∂

∂zi

, 1 ≤ i ≤ m (17)

on T ∗M.

Proof. Let T ∗M be momentum space with closed Kaehlerian form Φ.

Consider that Hamiltonian vector field ZH associated Hamiltonian
energy H is given by

ZH = Zi ∂

∂zi
+ Zi

.

∂
∂zi, 1 ≤ i ≤ m. (18)

Let
{

zi, zi : 1 ≤ i ≤ m
}

be the complex coordinates in the momen-
tum space. Suppose that the curve

α : I ⊂ C → TM (19)

be an integral curve of Hamiltonian vector field ZH , i.e.,

ZH(α(t)) =
.
α, t ∈ I. (20)

In the local coordinates we have

α(t) = (zi(t), zi(t)), (21)

.
α (t) =

dzi

dt

∂

∂zi
+

dzi

dt

∂

∂zi
. (22)

For the closed Kaehlerian form Φ on TM, we have

Φ = −dλ = −d(
1

2
i(−zidzi + zidzi)) = −idzi ∧ dzi. (23)
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From the isomorphism given in 3.1, we calculate by

ιZH
Φ = iZH

(−dλ) = −iZidzi + iZidzi. (24)

On the other hand, we obtain as

dH =
∂H

∂zi
dzi +

∂H

∂zi
dzi (25)

the differential of Hamiltonian energy. From iZH
Φ = dH, we find as

ZH =
1

i

∂H

∂zi

∂

∂zi
− 1

i

∂H

∂zi

∂

∂zi
, 1 ≤ i ≤ m,

the Hamiltonian vector field on momentum space T ∗M with closed
Kaehlerian form Φ.

Now, from ZH(α(t)) =
.
α, then we infer the following equations

dzi

dt
=

1

i

∂H

∂zi
,

dzi

dt
= −1

i

∂H

∂zi
(26)

which are called complex Hamiltonian equations on momentum space
T ∗M . Also, if we set complex coordinates (zi, zi = ∂L

∂zi ), 1 ≤ i ≤ m,

on momentum space T ∗M , where L is Lagrangian function, and zi

is conjugate of zi, we have the complex Hamiltonian equations given
by

dzi

dt
=

1

i

∂H

∂zi

,
dzi

dt
= −1

i

∂H

∂zi
. (27)

4. Complex Hamiltonian equations via Legendre

transformation

We may say that the complex Legendre transformation is the map-
ping Leg determined by L given by

Leg : TM → T ∗M

(zi, zi) → (zi, zi),

∂L

∂zi
= zi.
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Given by (13) complex Euler-Lagrange equations on Kaehlerian man-
ifold TM. Suppose the following as Hamiltonian energies associated
to Lagrangian function

H(zi, z
i, t) = zi

.
z

i −L(zi, zi, t),
∂L

∂zi
= zi,

dzi

dt
=

.
z

i

H(zi, z
i, t) = zi

.
z

i −L(zi, zi, t),
∂L

∂zi
= zi,

dzi

dt
=

.
z

i

(28)
Taking differential of functions the above, we have

dH =
.
z

i
dzi −

∂L

∂zi
dzi − ∂L

∂t
dt, (29)

dH =
.
z

i
dzi −

∂L

∂zi
dzi − ∂L

∂t
dt.

Besides, complete differential Hamiltonian energies given by vari-
ables (zi, z

i, t) and (zi, z
i, t) are

dH =
∂H

∂zi
dzi +

∂H

∂zi
dzi +

∂H

∂t
dt, (30)

dH =
∂H

∂zi
dzi +

∂H

∂zi
dzi +

∂H

∂t
dt.

From (29) and (30), we calculate

.
z

i
=

∂H

∂zi
,

∂L

∂zi
= −∂H

∂zi
,
∂L

∂t
= −∂H

∂t
, (31)

.
z

i
=

∂H

∂zi
,

∂L

∂zi
= −∂H

∂zi
,
∂L

∂t
= −∂H

∂t
.

Consequently, by means of (13) and (31), we conclude complex
Hamiltonian equations on Kaehlerian manifold T ∗M :

dzi

dt
= −1

i

∂H

∂zi

dzi

dt
=

1

i

∂H

∂zi
. (32)



62 M. TEKKOYUN AND G. CABAR

5. Hamiltonian energy of system by means of

Routhian function

Let T (TM) and T ∗(TM) be tangent and cotangent bundle of Kaehle-
rian manifold TM. Then we define a mapping as follows:

T (TM) → T ∗(TM) (33)

(zi, ωi, zi, ωi) → (zi, ωi, zi =
∂L

∂zi
, ωi)

The differential of Lagrangian function L(zi, ωi, zi, ωi) on T (TM) is

dL =
∂L

∂zi
dzi +

∂L

∂zi
dzi +

∂L

∂ωi
dωi +

∂L

∂ωi
dωi (34)

= zidzi + zidzi +
∂L

∂ωi
dωi +

∂L

∂ωi
dωi.

Then we have

d(L − ziz
i) = zidzi − zidzi +

∂L

∂ωi
dωi +

∂L

∂ωi
dωi. (35)

We may definite Routhian function as follows:

R(zi, zi, ω
i, ωi) = ziz

i − L. (36)

where are velocity zi =
.
z

i
and momentum zi = ∂L

∂zi . Taking the differ-
ential of (36), one may calculate

dR = −zidzi + zidzi −
∂L

∂ωi
dωi − ∂L

∂ωi
dωi. (37)

Otherwise we write

dR =
∂R

∂zi
dzi +

∂R

∂zi

dzi +
∂R

∂ωi
dωi +

∂R

∂ωi
dωi. (38)

From (37) and (38), one may find the equalities

zi =
∂R

∂zi

, zi = −∂R

∂zi
, (39)

and
∂L

∂ωi
= − ∂R

∂ωi
,

∂L

∂ωi
= − ∂R

∂ωi
. (40)
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Keeping in mind complex Euler-Lagrange equations given by (13),
we obtain

i
∂

∂t

(

∂R

∂ωi

)

− ∂R

∂ωi
= 0, i

∂

∂t

(

∂R

∂ωi

)

+
∂R

∂ωi
= 0. (41)

Thus, Routhian function is respectively Hamiltonian energy and La-
grangian function with respect to coordinates zi and (ωi, ωi). Being
Hamiltonian energy of system, it may write

H = zi ∂L

∂zi
+ ωi ∂L

∂ωi
− L = zizi + ωi ∂L

∂ωi
− L. (42)

By means of (36) and (40), Hamiltonian energy of system using
Routhian function we calculate

H = R − ωi ∂R

∂ωi
. (43)

6. Corollary

If some coordinates are periodic, it is benefit to use Routhian func-
tion. Because, both Lagrangian function and Routhian function are
not dependent zi, then zi are periodic. Hence Routhian function is
only zi, ω

i, ωi. For zi are periodic, momentum zi are constant. If it
is written constant value instead of momentum, we have equations
being constant only coordinates ωi, ωi the following as:

i
∂

∂t

(

∂R(zi, ω
i, ωi)

∂ωi

)

− ∂R(zi, ω
i, ωi)

∂ωi
= 0,

i
∂

∂t

(

∂R(zi, ω
i, ωi)

∂ωi

)

+
∂R(zi, ω

i, ωi)

∂ωi
= 0. (44)

Thus, from the above equations, one may find ωi(t) and ωi(t). Con-
sequently, writing in (44) the values of ωi(t) and ωi(t) and finding

integral of zi = ∂R(zi,ω
i,ωi)

∂zi
we calculate zi(t).
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