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Chapter 1

Introduction

1.1 An overview on the problem of particle dis-

persion in the Gulf of Trieste

The analysis of the hydrodynamic characteristics of a dispersed phase in a
shallow water basin is a relevant task for the understanding of the processes
that typically occur in coastal applications, from pollutant dispersion to
biological feeding mechanisms.
In a coastal basin, the advective transport is mainly driven by the horizontal
components of the velocity field and depends upon the characteristics of the
coastline. In spite of it, vertical mixing is usually governed by the three
dimensional turbulent regime that develops in the water column. In par-
ticular, the following features rule the vertical mixing in coastal applications:
the shallowness of the water column, the turbulence generated at the bottom
boundary layer by a current that drives the flow, the turbulent mixing at
the free-surface region supplied by wind stress and wave breaking, the Earth
rotation and at last, also the presence of thermal and/or haline stratification
can play an important role. These features will be shortly discussed in the
next section.

The Gulf of Trieste, subset of our investigation, is a shallow water inlet
with a mean depth of 17 m (maximum 25 m) and an area of about 20 km
× 25 km. It is located in the north area of the Adriatic Sea. Fig.1.1 shows
the location of the Gulf of Trieste in the Mediterranean Sea.
The dynamics of the Gulf is characterized by seasonal variability of tem-

perature and density, and the mixing and dispersion processes are strongly
dependent to this context. This variability is due to the combined effects
of many factors such as the presence of a strong wind (Bora) whose action
is directly related to the water column instability, the input of fresh water
from the river Isonzo and the water exchange due to Adriatic sea currents.
For all this phenomena an extended quantity of measured data have been
collected from more than one hundred years: the interest in the knowledge
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Figure 1.1: In the Figure is represented the Mediterranean Sea and in the
small circle the Gulf of Trieste location.

of these processes is due to the deep impact in the local economy (from
fishing to tourism). This allows a correct formulation of the forcing acting
in the dispersion problem regarding the Gulf.

1.2 The relevant features concurring in the dis-

persion and the mixing processes in the Gulf

of Trieste

Here we analyze the most important effects governing the dispersion and
the mixing processes in a shallow water column located in the Trieste Gulf.

In the Gulf of Trieste, the horizontal fluid velocity field is subjected to
the combination of the tidal motion and inertial currents. Even if they have
small intensity, the inertial currents represent an efficient mechanism in the
water exchange between the Adriatic Sea and the Gulf. In general, the
horizontal component of sea currents velocity decreases in amplitude with
the depth of the basin and spans a range of values from 40 cm/s to 5 cm/s
usually present in the middle of the Gulf [1].
A typical scenario occurring in the Gulf includes sea breezes affecting the
top of the water column, while the bottom is subjected to anticlockwise
currents coming from the South.

Tidal upwards generate a boundary layer extending from the bottom
water column up and assume the typical character of an oscillating flow
with zero mean velocity along one complete period of oscillation. When the
same period of oscillation is considered and due to the combination between
tide and the Coriolis force, the trajectory of a drifter results elliptic. For this
reason, tides are not directly involved in the interchange of water between
the Gulf and the Adriatic Sea. The effect of tide is to produce an excursion
of free surface level. This happens almost simultaneously in all the Gulf
because of the relatively high propagation speed of tide, proportional to the
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depth of the basin, while it takes a delay of one hour to reach the Grado
Lagoon (located in the North-West with respect to the Gulf position), where
the basin depth is smaller.
The major constituent and measured tidal components acting in the basin
considered are seven: M2, S2,N2,K2,K1, O1 and P1. They are commonly
used in tidal prediction by means of the classical harmonic method [2] in
which tidal oscillation is considered as the sum of harmonic components.
One is the fundamental (the M2 semidiurnal component), responsible of
the maximum excursion of free surface level, and here considered as the
mainforcing of our numerical simulation.

component M2 S2 N2 K2 K1 O1 P1

period (hrs) 12.42 12.00 12.65 11.96 23.93 25.81 24.06

amplitude (cm) 26.7 16.0 4.5 4.3 18.2 5.4 6.0

Table 1.1: In the table are showed the tidal harmonic constant for the Gulf
of Trieste: the period of oscillation expressed in hours and the amplitude
expressed in cm.

The main direction of the tidal current can be considered perpendicular
to the Eastern coast if we are far from the coast, while very close to the
coast the current is directed along-shore.
In a shallow water environment the circulation near the coast can depend on
local features (bathymetry, temperature gradients and wind), and secondary
currents can be induced. Since we are interested in simulating an archetype
of a shallow water environment, we consider our numerical experiment as
located far from the coast. The frame of reference will be aligned with the
x− axis directed from SW to NE (as reported in Fig.1.2), rotated of an angle
γ = 45◦ with respect to the North.

Phenomena due to wind, such as the wavebreaking and (when induced)
the Langmuir circulation can play a relevant role in the dynamic of the air-
sea interface. In the first case, the turbulence at the air-sea interface results
increased and the energy profiles do not to follow precisely the log of the
wall [3]: the complete energy budget at sea surface has to include an extra
dissipation term due to the break of wave fronts [4]. Due to the combined
effects of the wind speed and the Stokes drift velocity, the importance of
the Langmuir circulation is related to the vertical fluid velocity induced in
the rotating characteristic structures: it is comparable to that of upwelling
and downwelling processes and therefore relevant in the surface mixing pro-
cesses. As an example, air bubbles are transported from the surface and
therefore oxygen mixing results enhanced; furthermore, Langmuir cells are
capable to break the surface stratification barrier ensuring vertical mixing
processes [5].
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Figure 1.2: A sketch of the domain location: in the x− direction it is aligned
with the driving tidal flow, the rotation angle with respect to North is γ =
45◦. The z− axis is normal to the paper pointing toward the reader.

In Fig.1.3 we show a representation of the annual distribution of wind pre-
ferential direction. The mean is taken in a range of 10 years (1991 − 2000)
and Bora (from NE) results as the most present on the Gulf [6].

In the Gulf of Trieste, the stratification of the fluid column shows a strong
seasonal variation: during the winter the water column has an homogeneous
vertical distribution of temperature and during the summer a stable stra-
tification profile is present, with water density increasing with depth. This
is showed in Fig.1.4, where are reported two vertical temperature profiles
measured in February and July (further details can be found on [7]). Under
the case of a strong stable stratification, as that in the July case, a potential
barrier tends to suppress the vertical mixing and the presence of internal
waves [8], [9].
In this case, another characteristic scenario involves the role of the wind:
the summer surface heating can create the strong stratification that inhibits
the vertical mixing of the fluid column, while the action of the Bora wind
has the effect of destabilize the column density profile by transferring energy
and cooling the sea surface directly, inducing indirectly also the upwelling
of deep water.
During the winter, this mechanism is reduced. In our numerical experiment,
we are interested in the winter case when a neutral stratification condition
is present.

The turbulence in the water column is originated by the presence of
the bottom boundary layer and propagates inducing 3-D mixing processes
that are crucial for life (for example in the transport of micro-organisms) as
much as determinant for the dispersion of pollutant agents. The presence of
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Figure 1.3: Annual distribution in percentage on wind preferential direction.

Figure 1.4: Typical vertical profiles of temperature measured in the Gulf of
Trieste in February (left) and July (right).
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a turbulent regime in the shallow water column will be considered in terms
of the Reynolds number of the flux and discussed in Sec.1.3.

The Coriolis parameter at mid-latitude is f = 2Ωsinφ ≃ 10−4 rad/s,
where Ω = 7.272 × 10−5 rad/s is the magnitude of the angular velocity of
Earth and φ = 45◦ is the latitude. This is also the case of the Gulf of
Trieste where this value corresponds to a period Tf = 2π/f ≃ 17.4 hours.
According to Fig.1.2 we properly decompose the angular velocity in the
following components:

Ωi = (Ωx,Ωy,Ωz) = Ω(1/2, 1/2, 1/
√

2) = f(1/2
√

2, 1/2
√

2, 1/2).

Such forcing gives rise to a bottom Ekman layer that interacts with the
oscillating boundary layer due to inertial currents and tides. In absence of
a wind stress at the free surface, the upper Ekman layer does not develop.

1.3 The governing parameters in the considered

case

We study the case of particle dispersion in an oscillating flow driven by
the main tidal component and subjected to the Coriolis force in neutral
stratification conditions.
In order to do that, we can derive the large scale Reynolds number, related
to the estimated maximum bulk velocity U0 (hereafter with the term bulk we
denote a quantity averaged in space along a cross-sectional area at a given
time instant, whereas the term maximum refers to the maximum value that
the bulk quantity gets along the period of oscillation), the height of the
water column h and the viscosity of the water ν = 1.15 × 10−6 m2/s.
A value of h = 16 m will be considered in our numerical experiment as
measured at 500 m from the coast where a buoy is placed: MAMBO buoy,
from Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS) is
precisely located at 45◦41.54′N, 13◦42.30′E. Consistently with Malačič [10],
we assume a value of U0 = 0.05 m/s for the maximum inertial velocity
induced by the pressure gradient driving the flow, and we obtain the outer
Reynolds number of Reh = 0.7 × 106. The harmonic pressure gradient is
assumed aligned in the x− direction:

dP (t)

dx
= −U0ωM2cos(ωM2t) (1.1)

with ωM2 = 2πfM2 = 1.4 × 10−4 rad/s the angular frequency of tidal oscil-
lation. The time dependent pressure gradient defined above results into the
following oscillating bulk velocity:

U(t) = U0sin(ωM2t) (1.2)
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with the estimated amplitude of motion a = U0/ωM2 = 357 m. It means
that in a period of oscillation, a drifter set in a rotating frame of reference
and driven by the M2 tide, follows an harmonic path whose amplitude is
about 700 m long.
We can also define the inertial Re number depending upon the amplitude of
the motion a and related to the oscillating flow as ReM2 = aU0/ν = 15×106.
In oscillating flows, a Reynolds number based on the thickness of the laminar
Stokes boundary layer is commonly defined. In our case, the laminar Stokes
BL is δS =

√
2ν/ωM2 ≃ 0.13m, that gives ReS = δSU0/ν ≃ 5600.

Another important parameter we refer to is the Keulegan-Carpenter
number KC, that is the ratio between the oscillation period TM2 = 1/fM2

and the inertial time scale h/U0; it reads as: KC = U0TM2/h = 2πa/h =
140.

In our case, it is convenient to define the Rossby number as the ratio
Ro = ωM2/f = O(1) showing that the Coriolis force in this numerical
experiment gives a contribute to the dynamic of the fluid of the same order
of the tidal oscillation frequency.
We can rearrange the ratio between Reynolds numbers

ReS

ReE
=

1√
Ro

(1.3)

defined with the thickness of the Stokes boundary layer and the thickness of
the boundary layer due to rotation of the frame of reference δE =

√
2ν/f .

Increasing the values of Ro, the penetrating length tends to increase with
respect to the Stokes length scale δS . In our case, a value of ReδE

= 2090
gives Ro = 1.36.
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Chapter 2

The problem formulation

2.1 The Eulerian-Lagrangian approach

The evaluation of the hydrodynamic characteristics of particle laden flows
is a relevant task especially in practical applications, ranging from pollutant
dispersion to biological feeding mechanisms. In general, the matter can be
described as the motion of very small particles (a definition will be further
provided) which can deform (as in the case of air bubbles in water) or not
under the action of a fluid dynamic field. The complexity of the physical
problem is generally due the characteristics of the particles (such as size,
shape and density) and of the moving fluid: the density of the particles
can be comparable to that of the fluid or several times larger, particles
with different size and shape are differently affected by the forces of the
surrounding fluid, the same fluid is usually in a turbulent regime and the
correct representation of the instantaneous motion is a relevant task in itself.

There are essentially two numerical approaches to deal with this pro-
blem: the Eulerian-Eulerian and the Eulerian-Lagrangian, where the first
term is referred to the continuous phase and the second to the dispersed
one.
In the Eulerian-Eulerian approach the concentration of the dispersed phase
is usually defined and treated in a stochastic way by a diffusion constant
that must be modeled. This decreases the computational cost of the simu-
lation but it is hard to find suited models to each problem.
In the Eulerian-Lagrangian approach each particle is followed in the flow
field. In this case three are the necessary elements: the fluid velocity field,
the particle velocity field and the interpolator connecting them. The fluid
is known just in the computational grid nodes and particles can step on
different positions, therefore an interpolation is needed to provide the con-
tinuous phase velocity field at particle position. These elements, concurring
on the solution of the Lagrangian tracking problem, are schematically re-
presented in Fig.2.1.
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In this approach, an accurate prediction of the flow field is requested as
much as a correct representation of the forces acting over the particles in
relative motion with the fluid. In comparison with the previous one, the
computational cost (expressed in terms of both memory storage and CPU
time) and the accuracy of the solution increase.

Figure 2.1: The three elements present in the Eulerian-Lagrangian frame for
a particle dispersion problem are showed: squares on the left are the grid
points and circles on the right represent particles; the connection is provided
by the interpolation.

Being interested in the second approach, the continuous phase can be
essentially resolved with three numerical techniques: the Direct Numerical
Simulation (DNS), the Large Eddy Simulation (LES) and the Reynolds-
Averaged Navier-Stokes (RANS).
In the DNS simulation, the Navier-Stokes equations of the fluid are comple-
tely resolved up to the dissipative scales and no modeling is developed. The
computational amount grows with the grid number of points and the number
of Reynolds [11].
In the RANS approach, the Navier-Stokes equations are averaged, usually
assuming that the flux is in a steady state. A turbulence model turns out
the scales of motion. In this case the computational grid can be coarser than
that used in DNS and LES for the simulation of the same flux.
A compromise between accuracy in the results and computational requests
is LES, where only the smallest scales are modeled. The choice of the eddy
size to be resolved is left to a opportune filter. In Sec.3.1 the fundamental
features of this technique are described.

The forces acting on particles are described by Maxey and Riley equa-
tions [12]. In this case a requested quantity is the fluid velocity field at
particle position, to be provided by the interpolation. The choice of the
interpolation scheme is done by a compromise between the accuracy and
the computational cost: in our simulations, an interpolator based on Taylor
series expansion, whose accuracy can be easily adapted to that of Navier-
Stokes solver for the Eulerian phase, will be used.
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2.2 The equations governing the continuous phase

We investigate the motion of fluid particles in a oscillating flow driven by the
harmonic pressure gradient aligned in the streamwise direction as defined in
Eq.1.1, and the same flow in a rotating frame of reference. In both cases,
we consider the conditions of neutral stratification (winter case).

In this section will be given the details on the equations governing the
continuous phase we intend to describe according the Eulerian-Lagrangian
frame.

The equations governing the oscillating boundary layer in a rotating
frame of reference in absence of vertical stratification are the incompressible
Navier-Stokes equations of transport, written here in a dimensional form
according Einstein notation:

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+

∂ujui

∂xj
= − 1

ρ0

∂p

∂xi
+ ν

∂

∂xj

∂ui

∂xj
+ F1 + F2 (2.2)

where the frame of reference is expressed with the coordinates xi; hereafter
x1, x2, x3 or x, y, z are used interchangeably for the the streamwise, the
spanwise and the and wall-normal direction respectively. The velocity field
is ui = (u, v,w), p the pressure and ρ0 the reference density. The forcing F1

and F2 are respectively:

• F1 = − 1
ρ0

dP (t)
dx

= dUi

dt
due to the tidal current;

• F2 = 2ǫijkΩj(Uk−uk) due to Earth rotation; ǫijk is Levi-Civita symbol.

The velocity Ui = (U(t), 0, 0) represents the tidal current of Eq.1.2.
When the boundary and initial conditions are fixed, the motion of a fluid
column is described by Eq.2.1 and Eq.2.2.

A non-dimensional form of the governing equations can be derived by
using the reference parameters of Sec.1.3: the amplitude of motion a =
U0/ωM2 as the length scale, U0 as the velocity scale and a/U0 = 1/ωM2 as
the time scale. Pressure is made non dimensional with ρ0U

2
0 . In this case,

Eq.2.1 and Eq.2.2 read:
∂ui

∂xi
= 0 (2.3)

∂ui

∂t
+

∂ujui

∂xj
= − ∂p

∂xi
+

1

Re

∂

∂xj

∂ui

∂xj
+

cos(t)δi1 +
1

Rosin(φ)
ǫijkǫj(sin(t)δk1 − uk) (2.4)
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2.3 The equations governing the Lagrangian phase

The Lagrangian approach of the dispersed phase provides to follow each
particle as accelerated by the flow forces acting in its position. We are
interested in the motion of fluid particles considered as a dispersed phase
moving in the flow field described by Eq.2.1 and Eq.2.2. As discussed in
Sec.2.1, we need a sufficiently accurate prediction of the Eulerian phase as
much as a correct representation of the forces acting over each particle in
relative motion with the fluid [13].

The general mathematical formulation of the forces acting on particles
moving in a fluid is due to Maxey and Riley and requests several hypotheses:

• particles has the shape of a rigid sphere whose dimension is smaller
than Kolmogorov scale

• particle Reynolds number is Rep = |u−v|a/ν << 1, with v the particle
velocity, u the fluid velocity, a the particle radius and ν the cinematic
viscosity

• the shear of the velocity field over the particle is very small, so there
is not a lift due to the same vertical fluid velocity variations

• no contribution on fluid motion is due to particle-fluid interaction or
particle-particle interaction. This is the one way coupling hypothesis,
acceptable especially when a non-dense solution is taken into account
and interactions among particles are extremely rare events.

The Maxey and Riley equations are provided here in the dimensional
form:

dxp,i

dt
= vi (2.5)

and

mp
dvi

dt
= (mp − mf )gi + mf

Dui

Dt
+ 2ǫijkmpupjΩk−

1

2
mf [

dvi

dt
− dui

dt
− 1

10
a2 d(∇2ui)

dt
] − 6πaµ(vi − ui −

1

6
a2∇2ui)−

6πa2µ

∫ t

0
dτ

dvi

dτ
− dui

dτ
− 1

10a2 d(∇2ui)
dτ√

πν(t − τ)
(2.6)

where xp,i is the i-coordinate of particle position, mp particle mass, vi La-
grangian particle velocity, ui Eulerian flow velocity, mf mass of the volume of
fluid occupied by the particle, d

dt
time derivative following a moving sphere,

D
Dt

time derivative following the fluid particle, µ dynamic viscosity of fluid,
gi body force acting over particles.
The RHS of Eq.2.6 contains six terms: the first one is the buoyancy term
due to the presence of gravity; the second represents the contribution to
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the total force given by pressure gradient and viscosity for the case of un-
disturbed flow on an equivalent sphere of fluid; the third is the Coriolis term;
the fourth is the added mass contribution, related to the time variation of
the velocity field; the other two are respectively the Stokes drag force due to
the disturbance produced by the presence of a particle in the flow and the
Basset force that accounts for the unsteadiness of the viscous Stokes flow
field.
Some terms are often small compared to the others, therefore not all the
terms of Eq.2.6 are usually considered in the applications [14]: as an ex-
ample, in aerosol applications, the density ratio could be

ρp

ρf
∼ 700, so that

only Stokes drag force and buoyancy contribution affect particles trajecto-
ries. The Basset term and the added mass term are comparable with others
in a fluid oscillating at a large frequency or in a starting from rest particle
motion.

In the investigated case, the Lagrangian phase consists of tracers, repre-
sentative of a particulate with inertia comparable with that of the carrying
fluid and we can assume ρf = ρp. The dispersed phase is therefore treated as
a swarm of fluid tracers, whose position is advanced in time just following:

dxp,i(t)

dt
= ui = vi (2.7)

In this case, the forces acting on a fluid particle are already accounted in
Eq.2.1 and Eq.2.2.
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Chapter 3

The numerical method

3.1 The fundamentals of Large Eddy Simulation

In a in turbulent flow, various size vortices or rotating structures (called
eddies) are present. The largest ones can be characterized by a length scale
comparable to the dimension of the domain. The smallest ones has a size
that is always larger than the molecular scales.

When the smallest scales present in the flow are sampled as in DNS
approach, the most accurate description of the turbulent fluctuations is
provided. Unfortunately, the computational cost (expressed both in terms
of CPU time and variable storage) grows with a power of the number of
Reynolds [11] and large or mid-scale problems (as for example the study
of a coastal basin) result impossible to solve. A less expensive technique is
Large Eddy Simulation. Larger scale structures of turbulence can be solved
directly as in DNS approach and isotropic small scales are modeled.
To separate the large from the small scales, LES is based on the definition of
a filtering operation: a filtered (or resolved, or large-scale) variable is here
denoted by an overbar:

f̄(x) =

∫

D
f(x′)G(x, x′; ∆̄)dx′

where D is the entire domain, G the filter function and ∆̄ the filter width
determining the size of small scales structures. The filtering operation is
applied to the governing equations to obtain the filtered equations of motion,
which are solved in Large Eddy Simulation. For an incompressible flow of a
Newtonian fluid, the filtered Eq.3.3 and Eq.3.4 take the form:

∂ūi

∂xi
= 0 (3.1)

∂ūi

∂t
+

∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
− ∂τij

∂xj
+ ν

∂2ūi

∂xj∂xj
(3.2)
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The effect of small scales appears through the subgrid scale term (SGS)
τij = uiuj − ūiūj that must be modeled.

Just because in Large-Eddy Simulations the dissipative scales of motions
are resolved poorly or not at all, the main role of the subgrid scale model
is to remove energy from the resolved scales, mimicking the drain that is
usually associated with the energy cascade. It is important that the model
represents the exact account for the effect of the subgrid stress.

In the eddy viscosity approach described by Germano et al. [15], the
subgrid scale stress τij is related to the large scale strain rate tensor S̄ij =
1
2

∂ūi

∂xj

∂ūj

∂xi
according:

τij −
δij

3
τkk = −2νT S̄ij

with νT the eddy viscosity. In the Smagorinsky model the eddy viscosity is
simply:

νT = (Cs∆̄)2|S̄|
with Cs ≃ 0.18 the Smagorinsky constant.

An LES subgrid model is the Dynamic Eddy viscosity Model (DEM)
based on a dynamic subgrid scale approach [16]. In dynamic models the
coefficient Cs is not a constant and it is evaluated by using the identity that
in Cartesian coordinates reads as:

Lij = Tij − τij

where Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj are the resolved turbulent stress and Tij = ûiuj −
ˆ̄ui ˆ̄uj is the subtest scale stress that appears when the test filter .̂ with width
ˆ̄∆ > ∆̄, is applied to the filtered Navier-Stokes equations. The coefficient
Cs is now:

Cs = −1

2

< LijMij − NijMij >

< MmnMmn >

where Mij = ( ˆ̄∆)2| ˆ̄S| ˆ̄Sij − ̂∆̄2|S̄|S̄ij and Nij = (
̂̄̂
ui ˆ̄uj − ˆ̂̄

ūi
ˆ̂̄
ūj)− ( ̂̄uiūj − ̂̄̄ui ¯̄uj).

In Fig.3.1 a schematic representation of the energy spectrum is showed. The
filter cut off at k̄ defines the amount of energy that must be modeled in the
term τij ; the test filter cut off is at k̂.

Another LES subgrid model is the Dynamic Mixed Model (DMM) based
on the scale similar approach [17]: the most active subgrid scales are those
closer to the filter cutoff, and the scales with which they most interact are
those above the cutoff [18]. The largest subgrid scales can be obtained by
filtering the SGS velocity u′

i = ui − ūi to get:

ū′
i = ūi − ¯̄ui

If the SGS stress is decomposed in terms of ūi and u′
i, and a Smagorinsky

model is added to represent the dissipative effect of the small scales, the
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stress model can be written as:

τij −
δij

3
τkk = [ūiūj − ¯̄ui ¯̄uj −

δij

3
(ūkūk − ¯̄uk ¯̄uj)] − 2νT S̄ij

The first part of the model is the scale similar one. The Smagorinsky con-
tribution, computed dynamically, provides the dissipation that would have
been underestimated by the scale similar part alone.

ijL

ijT

ijt

k̂ k

( )kE

k

resolved scales scalesunresolved

Figure 3.1: The picture schematically represents the energy spectrum and
the relevant quantities in the LES approach.
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3.2 The fractional step method of Zang, Street

and Koseff.

In this section the most important features of the fractional step method
are reported [19]. It has been implemented to solve the Eulerian phase,
discretizing the three-dimensional, time-dependent incompressible Navier-
Stokes equations in curvilinear coordinates.
The fractional-step method splits the numerical operators and achieves the
coupling between pressure and velocity through solving a Poisson-like el-
liptic equation for pressure. Unlike other methods, the fractional step may
be generally coupled with different choices of grid layouts. For example,
either a staggered or non staggered grid may be used. Here the formulation
with staggered grid is used: pressure and velocity are defined in the center
of the computational cell, controvariant fluxes are on the faces center of
the corresponding volume in the computational space. Velocity values in
locations different from the center will be obtained via interpolation. In
Fig.3.2 a sketch of a two dimensional grid layout for the computational
variables is represented.

In this section a description of the numerical instrument core (the 3-D
Navier-Stokes solver) is given, modified in order to run with both completely
explicit or semi-implicit algorithms.
The computational grid can be defined in Cartesian and also curvilinear
coordinates, necessary to follow flows developing in more complex geome-
try [20].

Figure 3.2: A computational cell in 2-D. The controvariant flux is indicated
with U . Pressure and velocity are allocated in the center of the cell.

For sake of clarity, the Navier-Stokes equations are here rewritten in the
case of constant viscosity ν and density ρ, according to the Einstein notation
and omitting the terms that are relevant just in our particular applications
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(the Coriolis contribute and the tidal forcing):

∂uj

∂xj
= 0 (3.3)

∂ui

∂t
+

∂

∂xj
(ujui) = − ∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(3.4)

with i, j = 1, 2, 3; ui represents a velocity component, p pressure divided by
the fluid density. When the curvilinear coordinates ξi = ξi(x, y, z) are used,
these equations can be transformed in the form:

∂Um

∂ξm
= 0 (3.5)

∂(J−1ui)

∂t
+

∂Fm
i

∂ξm
= 0 (3.6)

with the quantity

Fm
i = Umui + J−1 ∂ξm

∂xj
p − νGmn ∂ui

∂ξn

where J−1 is the inverse of the Jacobian matrix determinant, representing
the cell volume; Um is the controvariant velocity multiplied by J−1 normal to
the surface of constant ξm; Gmn is the mesh skewness tensor. In curvilinear
coordinates, these quantities read:

Um = J−1 ∂ξm

∂xj
uj

J−1 = det(
∂xi

∂ξj
)

Gmn = J−1 ∂ξm

∂xj

∂ξn

∂xj

The fractional step method proposed by Zang et al. in [19] follows a semi-
implicit scheme for the time advancement, including the Adams-Bashforth
method for the convective terms and the diffusive out of the diagonal (i 6= j
in our notation) and Crank-Nicolson for the diagonal diffusive terms [11].
For sake of clarity, here we define the time advancement scheme as provided
by the two cited algorithms. When we consider a differential equation in
the form:

du

dt
= F (u, t)

with F (u, t) a continuous function, we look for a solution via numerical in-
tegration [21]. The Adams-Bashforth explicit method refers to the following
approximation: ∫ n+1

n
F (t, u)dt ≈ h(

3

2
Fn − 1

2
Fn−1)
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with h the time step.
Crank-Nicolson implicit method proposes:

∫ n+1

n
F (t, u)dt ≈ h(

1

2
Fn+1 +

1

2
Fn)

We can therefore rearrange the continuity equation and the Navier-
Stokes equation expressed in curvilinear coordinates in the form:

δUm

δξm
= 0 (3.7)

J−1 un+1
i − un

i

∆t
=

3

2
(Cn

i + DE(un
i )) − 1

2
(Cn−1

i + DE(un−1
i ))

+Ri(p
n+1) +

1

2
(DI(u

n+1
i + un

i )) (3.8)

with Ri the discrete operator for pressure, DE and DI the discrete operators
representing respectively the extra diagonal viscous terms treated in explicit
way and the viscous ones treated in implicit way:

Ci = − δ

δξm
(Umui)

Ri = − δ

δξm
(J−1 δξm

δxi
)

DI =
δ

δξm
(νGmn δ

δξn
) with m = n

DE =
δ

δξm
(νGmn δ

δξn
) with m 6= n

It is noteworth to say that the diagonal viscous terms (m 6= n) are
treated in implicit way for the stability reasons [22]. Sec.3.2.1 is dedicated
to the crucial problem of stability.

The fractional step procedure is also known as the predictor-corrector
method: once a trial (or intermediate) velocity field is found, it will be cor-
rected after the solution of the pressure.
The application of the fractional step method to Eq.3.8, leads to the follow-
ing predictor-corrector solution procedure:

1. Predictor

(1 − ∆t

2J−1
DI)(u

∗

i − un
i ) =

∆t

J−1
(
3

2
(Cn

i + DE(un
i )) − 1

2
(Cn−1

i + DE(un−1
i )) + DI(u

n
i )) (3.9)

2. Corrector
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un+1
i − u∗

i =
∆t

J−1
(Ri(φ

n+1)) (3.10)

where u∗ is called the intermediate velocity which is not constrained by
continuity. The quantity φn+1 is a computational pressure connected to the
same p and it is obtained by resolving the Poisson equation for pressure:

δ

δξm
(Gmn δφn+1

δξn
) =

1

∆t

δUm∗

δξm

Note that the controvariant fluxes are present in the RHS.
In order to use the method, it is necessary to evaluate the LHS matrix

in the predictor equation to obtain u∗. The scheme in use in the code can
be summed up as follows:

1. Obtain u∗
i at the cell center by using the predictor.

The inversion of the left term in the predictor equation is done via the
approximate factorization therein described; once the predictor Eq.3.9
is rewritten in the form:

(1 − ∆t

2J−1
DI)(u

∗

i − un
i ) = RHS (3.11)

then the factorization proceeds as:

(1 − ∆t

2J−1
DI) = (1 − ∆t

2J−1
(D1 + D2 + D3))

with Dk = δ
δξk

(νGkk δ
δξk

) for k = 1, 2, 3.

(1 − ∆t

2J−1
D1)(1 − ∆t

2J−1
D2)(1 − ∆t

2J−1
D3)(u

∗

i − un
i ) = RHS (3.12)

The inversion of the LHS term in Eq.3.12 asks for the resolution of
tridiagonal matrices. This is an expensive step in terms of the compu-
tational cost. It can be avoided by keeping the resolution scheme in a
completely explicit form.

2. Interpolate the values of u∗
i on the cells faces to obtain the controvari-

ant fluxes and compute the RHS in the Poisson expression for pressure.

3. Resolve the pressure equation now that the RHS is known, and obtain
a convergent value for φn+1.

4. Use the expression of the corrector to get un+1
i and the controvariant

flux.
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A consideration gets inside into the algebraic features of approximated
factorization of Eq.3.12; when we opportunely rearrange Eq.3.11 in the form:

(1 − A1)û = RHS

with u = (u∗
i − un

i ) and A1 = ∆tDI

2J−1 , we ask that

û = (1 − A2)u

with A2 and u opportune matrices, mimicking the factorization of Eq.3.12
we obtain:

(1 − A1)(1 − A2)u = RHS

This factorization is second order accurate since:

(1 − A1)(1 − A2) = (1 − A1 − A2 + A1A2) ≈ (1 − A1 − A2)

with A1A2 the second order term; this impose a limit to the accuracy ex-
pressed in the whole code: it is not possible to reach an order of accuracy
higher than the second in time. Usually this is an acceptable condition for
numerical simulations.

3.2.1 The stability problem.

The stability problem in a fluid dynamic code is determined by CFL condi-
tion (to be defined here and related to the convective term), by the viscous
condition (related to the diffusive term) and interests the marching in time
step ∆t.

In order to determine the stability of an algorithm, it is possible to refer
to Von Neumann method [21], whose essentials notes will be reported here
for major clarity.
The method guarantees the necessary and sufficient condition for the sta-
bility in linear problems with initial conditions and constant coefficient.
In practical applications, the coefficients are frequentely non constant, the
boundary conditions are usually complicated and the problems are non li-
near.
In this case the method can be applied locally (in our case in one cell), just
in the points of the internal domain and the condition results only necessary
and not sufficient.

The Von Neumann method provides the definition of the computational
errors and the distribution along the grid at a time instant. The stability or
the instability of an algorithm used for the computation is determined by
considering that the Fourier component of the error can decade or amplify
from a time step to the following one.

The error at the location xj with j the node index in a one dimension
grid is here defined as:

ξ0
j =

J−2∑

m=1

amexpiθmj (3.13)
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with j = 2, 3, .., J − 1, θm = mπ∆x.
We assume that the error is periodic in the interval of interest ∆x. Ac-

cording to the hypothesis of linearity it is possible to study the propagation
of the error due to a single term of expiθmj, therefore it is possible to omit
the sum on the index m.

We define the gain function G as follows:

G =
ξn+1
j

ξn
j

(3.14)

it represents the amplification factor of the error distribution. Von Neumann
obtain a general criterion for stability: |G| ≤ 1 for each θ.

In order to use this criterion and comprehend its role in our case, we can
figure out a situation in which the diffusion is so important to reduce the
unidimensional Navier-Stokes equation in the form:

∂T

∂t
= α

∂2T

∂x2

with T a passive scalar quantity as the temperature and α a diffusion coef-
ficient; it can be discretized as follows:

T n+1
j = sT n

j−1 + (1 − 2s)T n
j + sT n

j+1

with s = α∆t/∆x2 with ∆x and ∆t the discrete space interval and time
step. By substituting in this equation the error definition of Eq.3.13 and
using the gain criterion of Eq.3.14, it is possible to reach:

−1 ≤ 1 − 4sin2(
θ

2
) ≤ 1

and therefore s ≤ 1
2 .

Therefore we can define the stability condition for the diffusion as:

ν
∆t

∆x2
+ ν

∆t

∆y2
+ ν

∆t

∆z2
<

1

2
(3.15)

We consider now the transport equation written in the form:

∂T

∂t
+ u

∂T

∂x
− α

∂2T

∂x2
= 0

that can be discretized as follows:

T n+1
j = (s +

1

2
C)T n

j−1 + (1 − 2s)T n
j + (s − 1

2
C)T n

j+1

where s = α∆t/∆x2 and C = u∆t/∆x.
We can derive the condition for a steady solution in the form:

0 ≤ C2 ≤ 2s ≤ 1
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The local Courant number is defined as:

CFL = (
|u1|
∆x

+
|u2|
∆y

+
|u3|
∆z

)∆t

and in curvilinear coordinate it can be expressed as

CFL = (|U1| + |U2| + |U3|)
∆t

J−1

with ∆x,∆y,∆z the grid spacing and Uj the controvariant velocity. The new
stability condition asks for:

max|CFL| ≤ 1 (3.16)

in all the computational domain. This guarantees that the displacement in
one time step of a fluid particle can not be larger than the dimension of the
cell containing it.

In conclusion, it is necessary to ensure that the choice of the time step
∆t always guarantees both the stability conditions expressed in Eq.3.15 and
Eq.3.16 in order to avoid a divergence in the computation.

3.2.2 A complete explicit form of the numerical code.

When we input the diagonal terms of Eq.3.8 resolved by the Crank-Nicolson
scheme in those computed according the Adams-Bashforth algorithm, we
obtain a simplification: it is no longer necessary to solve the factorized
approximation, including matrices inversion and we can reduce the com-
putational request in terms of CPU time. Referring to the RHS terms in
Eq.3.8:

3

2
(Cn

i + DEun
i ) − 1

2
(Cn−1

i + DEun−1
i ) + (DIu

n
i )

in the completely explicit form, they read:

3

2
(Cn

i + DEun
i + DIu

n
i ) − 1

2
(Cn−1

i + DEun−1
i + DIu

n−1
i )

It can happen that the time step ∆t in the explicit formulation and in
the semi-implicit one do not coincide because of the different algebra con-
sequences on the stability condition. When the explicit time step results
smaller, we need an higher number of iterations to get a desired conver-
gence or to cover a requested time interval for the simulation. Therefore the
reduced computational cost per time step can be vanished increasing the
necessary number of iterations.

Both the schemes lead to the same numerical solution of a problem
investigated. As a test, we report here the velocity profiles of two laminar
fluxes whose analytic solution is known: the Poiseuille and the Couette ones.
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The comparison is made with the numerical solution provided by the semi-
implicit (S-I) and the complete explicit (E) advancement scheme.
Poiseuille flow is purely diffusive and when a channel of height h is consi-
dered, the vertical velocity profile reads:

u(z) =
1

2ν
(
∂p

∂x
)(z2 − hz)

with ν the viscosity, p the pressure field, z and x the vertical and streamwise
coordinate respectively. We develop a flow with ν = 1/100 m2/s, h = 1 m
and a friction velocity uτ = 0.031 m/s. The domain is discretized with a
8× 8× 8 grid. In Fig.3.3(a) the laminar profile u(z) obtained analytically is
compared with that obtained by the semi-implicit and the complete explicit
scheme.
The Couette profile is determined by the relative motion of two parallel and
infinite plates. In this case is not present a pressure gradient driving the
flow in the streamwise direction ( ∂p

∂x
= 0), and also the gradient ∂u

∂x
vanishes.

The vertical velocity profile reads:

u(z) =
U0z

h

where U0 is the fluid velocity at the upper plate. In our case U0 = 1 m/s. It
is noteworth that the profile does not depend upon the kinematic viscosity
ν. The analytical Couette velocity profile is compared with that of S-I and
E case in Fig.3.3(b).
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Figure 3.3: Laminar velocity profiles of Poiseuille on (a) and Couette on (b).
Dashed lines is the analytic profile, circle is S-I case and plus is E case.

3.2.3 Scalability vs the numerical schemes

A parallel version of the numerical code above described exists. Written
according the standard MPI [23], it is suited for the most common super-
computer architecture as Linux Clusters or IBM-Sp series. An extended
description of the most important features characterizing the implementa-
tion is available on Cineca Science and Supercomputing reports [24]. Here,
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some details regarding the problem of scalability as a function of the two
numerical schemes described in Sec.3.2.2 will be given.

In principle, the possibility of using more than one CPU (parallel com-
puting) to resolve numerically a problem is finalized in saving time and ob-
taining the same results of the serial computation (with only one computer
devoted). An important parameter in this applications is the speed-up, that
reads as the ratio between the computational time requested by a serial
algorithm and that of the corresponding parallel one. Generally, the time
spent in the computation tends to decrease as the number of CPUs in use
increases. Correspondently, the speed-up tends to increase with the number
of processors. In the reality this process, called scalability, is not linear be-
cause of the necessary data communication among the CPUs. Nevertheless,
as the CPUs number grows, the time for the communication among them
can become the determining parameter in evaluating the time necessary for
the whole computation.
Therefore, in our case is crucial to evaluate a priori which is the most con-
venient scheme (E or S-I) to adopt before a new simulation starts and also
which is the most convenient number of processors to use. These two data
are dependent on the particular simulation and a generalization is not pos-
sible. In order to give a further intuition on this problem, in Tab.3.1 we
report the time spent for one iteration in both the numerical schemes in use
and the speed-up. These data are coming from a test simulation running
on Linux Cluster at Cineca [25], in which the domain has been discretized
with a 64 × 64 × 64 grid. According the results provided, the most conve-
nient number of CPUs to use is 16 coupled with the explicit scheme. No
indications are exhibited on the length of the time step ∆t.

tS−I tE sp-up S-I sp-up E

1 proc 9.80 9.40 *** ***

2 procs 8.43 7.83 1.16 1.20

4 procs 4.52 4.10 2.17 2.30

8 procs 4.80 3.70 2.04 2.54

16 procs 2.50 1.10 3.92 8.54

Table 3.1: The mean value of the time t (expressed in seconds) necessary for
a complete cycle (predictor and corrector) in one iteration and the speed-up
are reported.

3.3 The interpolation

To perform applications involving turbulent flows with dispersed particles in
the Eulerian-Lagrangian frame, a critical aspect is fluid velocity evaluation
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at the instantaneous particle position, which in general does not coincide
with one of the points of the grid containing the particle, so an interpolation
of the fluid velocity field is required.

Interpolation techniques have been applied on both Cartesian and curvi-
linear grids [26], [27]. While in literature, interpolation techniques (viz.
spectral, partial Hermite, Lagrangian, shape function methods, cubic splines
etc.) have been extensively studied and applied on Cartesian grids [28], less
effort has been devoted to the development of interpolation methods for non-
Cartesian grids with boundary fitted curvilinear coordinates. Typically, the
methods developed are linear and use different geometrical weighting proce-
dures and produce similar interpolation functions in terms of performance
and accuracy. Some of the procedures commonly in use are applicable only in
two-dimensional meshes or may become impractical in Eulerian-Lagrangian
simulations due to significant loss in accuracy when highly-distorted compu-
tational grids are used, others are based on iterative methods which require
properly defined residuals to check the convergence of the solution [29].

Two are the most important features of an interpolator: it has to be
accurate and fast. The level of accuracy can be determinate and increased
by the number of grid points involved in the interpolation scheme. The
swiftness of the interpolation procedure becomes relevant in terms of com-
putational cost especially because the Lagrangian approach asks for a huge
number of particles: normally an amount of 105 − 106 trajectories have to
be followed.

To overcome the restrictions connected to accuracy and swiftness, an
interpolation scheme based on Taylor series expansion of fluid velocity, suited
both for orthogonal and curvilinear grids has been implemented. Basically
we refer to the interpolation scheme proposed by Marchioli et al. in [30].
Smooth functions can be approximated in the form a Taylor series expansion
about a point where the exact value of it and its derivatives are known.
Following this approach, the interpolation problem can be addressed within
an Eulerian carrier scheme in which the fluid velocity components are avai-
lable at spatially discrete grid nodes. Therefore the algorithm asks for the
fluid velocity at the cell node N(x, y, z) closest to the particle to estimate
the local fluid velocity at instantaneous particle position P = (X,Y,Z).

For each particle, in the simple case of Cartesian coordinates, considering
only the terms up to the first order, the Taylor series approximating the fluid
velocity at particle postion reads:

ui|P = ui|N +
∂ui

∂x
|N (X − x) +

∂ui

∂y
|N (Y − y) +

∂ui

∂z
|N (Z − z) + O(Xi − xi)

2

(3.17)
with ui|P the fluid velocity at particle position and ui|N the fluid velocity
at the node closest to the particle.
The truncation error is O[(Xi − xi)

2] consistent with that of the numerical
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scheme in use for the resolution of the Eulerian velocity field.
In curvilinear structured grids, the Navier-Stokes equations are solved in
a computational space, whose coordinates are denoted with ξi = (ξ, η, ζ).
For sake of clarity we report here how the derivatives are consistently tran-
sformed:

∂ui

∂xj
=

∂ui

∂ξk

∂ξk

∂xj
=

∂ui

∂ξ

∂ξ

∂xj
+

∂ui

∂η

∂η

∂xj
+

∂ui

∂ζ

∂ζ

∂xj

with i, j, k = 1, 2, 3.
And therefore the implemented interpolation scheme reads:

ui|P ≃ ui|N+

[
ul+1

i − ul−1
i

2∆ξ

∂ξ

∂x
|N +

um+1
i − um−1

i

2∆η

∂η

∂x
|N +

un+1
i − un−1

i

2∆ζ

∂ζ

∂x
|N ](X − x)+

[
ul+1

i − ul−1
i

2∆ξ

∂ξ

∂y
|N +

um+1
i − um−1

i

2∆η

∂η

∂y
|N +

un+1
i − un−1

i

2∆ζ

∂ζ

∂y
|N ](Y − y)+

[
ul+1

i − ul−1
i

2∆ξ

∂ξ

∂z
|N +

um+1
i − um−1

i

2∆η

∂η

∂z
|N +

un+1
i − un−1

i

2∆ζ

∂ζ

∂z
|N ](Z−z) (3.18)

where index spaces L(l,m, n) identifies the cell node N(i, j, k) in the curvi-
linear coordinates system. As previously discussed, the choice of the com-
putational time step, due to the stability conditions [22], does not allow a
particle to pass more than one cell per iteration. Thus the node N(i, j, k)
at the following iteration can be the same or could be found just around the
surroundings N(i, j, k) at the present iteration. This reduces the variability
in the node research for the algorithm implemented.

In order to achieve particle position, Eq.2.7 is integrated by means of an
explicit, second order accurate Adams-Bashforth scheme:

xn+1
p,i = xn

p,i + ∆t(
3

2
vn
i − 1

2
vn−1
i )

where ∆t is the time step that guarantees the stability conditions of Sec.3.2.1.

3.3.1 The interpolator testing

Among the tests for the validation of our interpolation model, the most
meaningful is reported in this section. We consider a single fluid particle
and originally place it in a known position of the domain. We impose a free
vortex fluid velocity field in the domain discretized with a curvilinear and
Cartesian grid (Fig.3.4(a) and (b) respectively). The imposed velocity field
reads:

u(x, y, z, t) = u0

v(x, y, z, t) = −v0(z − C)
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w(x, y, z, t) = w0(y − C)

where C is a constant, (u, v,w) are the three velocity component along x, y, z
directions respectively, and u0 is the initial velocity values in the streamwise
direction, v0 and w0 are the two reference frequency of the free vortex.
The projection on the plane y − z of the velocity field is represented in
Fig.3.5(a) with vectors whose length indicates the amplitude of the velocity
field and where the arrows indicate the direction of motion. The trajectory
of a tracer subjected to the imposed velocity field is reported on Fig.3.5(b).
Because of the relatively simplicity of the imposed velocity field, we are able
to analytically predict the evolution of particle position by integrating its
equation of motion and therefore check if the particle is correctly accelerated
along its time evolution in the domain. As observed in Fig.3.6, where the
evolution in time of the three components of the particle position are shown,
no appreciable difference is present in the particle postion when both a
curvilinear and a Cartesian grid discretize the domain: this is guaranteed
by the formulation of the interpolation scheme in Eq.3.18, suited for both
cases.
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Figure 3.4: Example of a grid used for test simulations. Cartesian coordi-
nates grid on (a) and curvilinear on (b).
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Figure 3.5: In (a) the velocity field in a plane orthogonal to the stream-
wise direction is represented. The amplitude is proportional to the vector
length. In (b) the trajectory of a particle developing in time according to
the imposed velocity field is shown.
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Figure 3.6: The time evolution of the three coordinates of the particle po-
sitions subjected to the imposed free vortex velocity field is shown. Dashed
lines represent the analytic solution, circle represent the case in which a
Cartesian grid discretizes the domain and left triangle the case with a curvi-
linear grid.
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3.4 A subgrid model for the Lagrangian phase

In this section we enforce the importance of the evaluation of the velocity
field for the dispersed phase as depending on the carrying fluid velocity.
This is not a trivial point for the simple reason that a numerical approach
where all the scales are completely resolved is not always possible and the
consequent use of parameterization or modeling can lead to a lack of infor-
mation in the resulting Eulerian and Lagrangian velocity field. In the case
of LES, this problem gives rise to the born of subgrid models [31], that have
the role of recover the lack of information lost with the filtering approach
discussed in Sec.3.1: in an LES, the fluid field is filtered to split the motion
of larger eddies from the smaller ones; the larger scales of the turbulent flow
are explicitly simulated, while the effects of the smaller subfilter scales are
modeled.

Dealing with particle dispersion in LES simulation, different sources of
error can be distinguished with respect to DNS: a modeling error, because
an LES does not provide the exact fluid velocity but only an approximation
caused by the limitations of the subgrid model; a subgrid error, because
the particle equations are solved with the filtered velocity; an interpolation
error, because the particle location usually does not coincide with the grid
nodes and an interpolation scheme is needed.
The problem concerning the interpolation scheme has been already discussed
in Sec.3.3 and the approach we use, whose accuracy corresponds to that of
the Navier Stokes solver, has been properly refereed [30].
A recent approach to the problem of Lagrangian dispersion when LES tech-
niques are used for the continuous phase, lays in the defiltering of the filtered
variables, that will ensure the reconstruction of the filtered signal. This al-
lows to face the problem of the subgrid modeling. Among the others, the
defiltering based on deconvolution techniques has already been used directly
for the Eulerian phase by Stolz and al. [32], but any direct application on
the Lagrangian tracking was provided.
Dealing with the problem of subgrid error, here we consider the deconvo-
lution method proposed by Kuerten [33] and reproduce it in our numerical
model. In this case the model has the specific goal of ensuring the best
velocity field available for the Lagrangian tracking when LES techniques are
in use for the Eulerian phase.

For sake of clarity, some notes on the mathematical definition of decon-
volution are here reported. Being two signals as function of space f(x) and
G(x), the convolution h(x) between them is defined as [34]:

f(x) ∗ G(x) =

∫ +∞

−∞

f(x′ + x)G(x′)dx′ = h(x) + ε

with ε the noise. The inverse for f of the convolution equation is the decon-
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volution of the signal:

[h(x) + ε]G(x)−1 = f(x)

In our case the signal is the Eulerian velocity field, G is the LES filter and
the deconvolution model provides the reconstruction of the instantaneous
(unfiltered) velocity ui = ūi + u

′

i from the resolved one ūi.
If the filter function G used in the LES is invertible, deconvolution becomes
trivial, since it simply consists of the application of the inverse filter G−1 to
ūi.
The main difficult involved in deconvolution lays in the fact that filters with
the desired support in the Fourier space are non-invertible, or generally, with
not unique inverse, since their application results in loss of information. This
implies that the deconvolution can only be approximate, in the sense that
one can obtain an approximation u∗

i of the total velocity ui from the resolved
one ūi [35]. In principle, when the approximated u∗

i is given, the subgrid
stress could be modified directly in terms of the estimated total velocity as:

τij = u∗
i u

∗
j − u∗

i u
∗

j

and this was present in the numerical approach of Stoltz et al. [32].
As in the case of the interpolation scheme in Sec.3.3, a definition of

deconvolution comes from the Taylor series: an inverse filter operator QN is
defined as a truncated series of filtering operations:

QN =
N∑

n=1

(I − G)n ≃ G−1

with I the identity operator. Using this equation, the approximate decon-
volution velocities u∗

i can be obtained by applying the filter as:

u∗

i =
N∑

n=0

(I − G)nūi = ūi + (ūi − ¯̄ui) + (ūi − 2¯̄ui + ¯̄̄ui) + ... (3.19)

Following Kuerten approach, in our numerical model we reconstruct the
defiltered velocity field using the first two terms in the RHS of Eq.3.19 (being
consistent with the accuracy of the Navier Stokes solver in use), and we use
this new velocity field as an input for the interpolation scheme of Eq.3.18.

3.4.1 The subgrid model testing

As in the case of the interpolation scheme proposed by Marchioli et al. [30]
the Kuerten subgrid model for particles [33] has been already tested and op-
portunely refereed. Therefore the results we report here have to be intended
as related to our implementation of the numerical method [36].
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We face a problem of particulate dispersion in a channel flow. The case
investigated has been previously considered in a Benchmark simulation [37];
in that case, the Eulerian velocity field was resolved with the DNS approach.
This allows a comparison with our results obtained via LES.

The dimensions of the considered channel flow are Lx = 4πδ, Ly = 4/3πδ
and Lz = 2δ and with high dimension h = 2δ = 0.04 m. The mean flow is
in the x−axial direction, with mean velocity varying above all in the cross-
stream direction. Periodicity is considered in the streamwise and spanwise
directions; a particle that reaches the upper or the bottom planes will be
stopped. Gravity force is not considered, therefore a symmetry in the flow
statistics by y = δ plane is aspected. Fluid parameters are: Reτ = 150,
with the friction velocity uτ = 0.11775 m/s, density ρf = 1.3 kg/m3 and
kinematic viscosity ν = 1.57 10−5 m2/s. A number of 102, 400 particles
has been considered, initially divided in 16 wall normal planes of 80 × 80
particles each. Particles parameters are: density ρp = 1000 kg/m3, Stokes
number St = 1 defined as the ratio between the particle relaxation time
τp = ρp(2a)2/18µ and the time τf = ν/(uτ )2 characteristic of the continuous
phase, and µ the dynamic viscosity. We run a parallel computation with 16
CPUs and the S-I scheme.

The problem has been treated according the Eulerian-Lagrangian ap-
proach and, by considering the simulation parameters, it is possible a sim-
plification of Eq.2.6, neglecting the terms that have a small contribute [14].
As explicitely requested for the Benchmark simulation [37], Maxey and Ri-
ley equations have been rearranged in the form that accounts for the Stokes
term only:

dxp,i

dt
= vi (3.20)

dvi

dt
=

ui − vi

τp
(1 + 0.15Re0.687

p ) (3.21)

with xp,i and vi particle position and velocity, ui the fluid velocity and Rep

the particles number of Reynolds.
The Eulerian velocity field has been resolved using the different tech-

niques indicated on Tab.3.2. DNS data are provided by the Benchmark
simulation database. In our LES approaches we discretize the domain by
means of a stretched grid, ensuring that the smallest structures present near
the wall are resolved up to z∗ = ν/uτ . This quantity is used for the norma-
lization of the length of interest in the statistics, while the friction velocity
is used for the normalization of the velocity. LES-1 uses the dynamic eddy-
viscosity SGS model (DEM) of Sec.3.1. LES-2 uses the dynamic mixed
model (DMM) of Sec.3.1. LES-3 uses the previous dynamic mixed model
and the deconvolution modules (DMM-D) described in Sec.3.4.

We first analyze the Eulerian velocity field. In particular, first order (the
mean) and second order (the root mean square) statistics of the velocity are
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Numerical Technique Grid Time

DNS 128 × 128 × 128 n.a.

LES-1 DEM 64 × 96 × 64 1.2 sec

LES-2 DMM 64 × 96 × 64 1.3 sec

LES-3 DMM-D 64 × 96 × 64 1.5 sec

Table 3.2: Computational methods and the grids used for the problem of
particles dispersion. The time per iteration on parallel machine, when avai-
lable, is also reported.

here reported in the half channel. Fig.3.7(a) shows that the Eulerian mean
velocity component in the streamwise direction is correctly represented in
LES models when compared to DNS. The behavior of the root mean square
velocity components of the continuous phase are reported in (b),(c) and (d).
In the case of the spanwise and wall normal directions, that are non directly
interested by the bulk flow, the LES approaches are not able to reproduce
the whole energy amount because of the filter operation. This remains true
even when the subgrid terms are currently added to the statistics (the case
is indicated with DMM+sgs).
This suggests the importance of the subgrid model implemented for the La-
grangian phase. Our intent is to get round the subgrid error discussed in
Sec.3.4 and evidenced by the statistics here reproduced: once the Eulerian
phase is resolved by the Large Eddy approach, a deconvolution model can
recover the energy lost in the filtering and provide a correct velocity field
for the interpolation scheme described in Sec.3.3.
Fig.3.8 shows on (a) the mean velocity of particles in the streamwise di-
rection and the second order statistics in the three directions on (b),(c)
and (d) respectively. In the comparison, also the statistics obtained from a
dynamic-inverse model [38] present in the Benchmark database have been
added. As showed in Fig.3.8(a), this model overestimates the mean velocity
component as soon as the wall region is leaved. In comparison with DNS,
the best results in terms of error percentage are those in which the decon-
volution model of Sec.3.4, is added to the DMM approach of Sec.3.1 for the
continuous phase. A difference still exists and can be explained with this
argumentation: the deconvolution, as the inverse of the convolution opera-
tion, takes with itself an error [34] to be added to the others indicated (i.e.
the interpolation, the modeling of particles equations and the filtering of the
momentum equations). Even if the subgrid contributions are recovered just
in a statistics sense, our results guarantees that the largest part of the energy
amount lost in the filtering has been recovered and therefore the described
approach can be considered as an useful research instrument for dispersion
problems in the fluid dynamics.
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Figure 3.7: First and second order velocity statistics of the Eulerian field.
Left triangle is DEM + SGS; right triangle is DEM; star is DMM; circle is
DMM + SGS; straight line is DNS

0 50 100 150
0

5

10

15

20

<
u>

0 50 100 150
0

1

2

3

u rm
s

0 50 100 150
0

0,2

0,4

0,6

0,8

w
rm

s

0 50 100 150
0

0,5

1

v rm
s

z/z* z/z*

z/z*z/z*

(a)

(b)

(c) (d)
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Chapter 4

Results and discussion

4.1 The investigated case

In the present work we refer to parameters typical of a real mid-latitude
problem (i.e. data of the Gulf of Trieste, northern Adriatic Sea, see Fig.1.2).
Consistentely with the description provided in Sec.1.2, we assume that the
driving current is dominated by the M2 tidal component (TM2 = 12.42
hours) and our reference value for the free stream velocity is U0 = 0.05 m/s.
The mean water depth is 16 m, the viscosity of water is ν = 1.15 × 10−6

m2/s and the latitude is φ = 45o. We obtain the following parameters:

KC =
U0TM2

h
= 140 ReS = 5560 Ro = 1.36

.
As discussed by Salon [39], when the friction Reynolds number is eva-

luated from the case of ReM2 = 15 × 106, a value of Reτ = uτh/ν = 24600
is obtained. Due to the fact that the actual value of the friction Reynolds
number is well beyond the present ability of simulation techniques like direct
simulations (DNS) or resolved Large Eddy Simulation (LES), in the present
work we refer to the Reynolds number Re = 1.6 × 106 corresponding to
ReS = 1790 (i.e. Re = Re2

S/2), and guaranteeing that at this Reynolds
number the turbulent regime is present in the most part of the cycle [40].

In this work one period of the oscillating flow was reproduced via LES.
The simulations were carried out over a rectangular box, using periodic
conditions on the horizontal planes of homogeneity, a stress-free condition at
the top boundary and a no-slip condition at the bottom solid wall. The depth
of the domain and the amplitude of the free stream velocity were scaled
holding the full scale value of KC, whereas the horizontal dimensions of the
computational domain were chosen large enough to accurately reproduce
the largest scales of the motion. The computational parameters used for the
simulations of the Eulerian field are in Tab.4.1.
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Lx/δS , Ly/δS , Lz/δS nx, ny, nz ∆x+,∆y+,∆z+
min,∆z+

max

OF 50, 25, 40 64 × 64 × 256 62, 31, 2, 22
OFR 50, 50, 40 64 × 128 × 256 62, 31, 2, 22

Table 4.1: Computational parameters of the simulations at ReS = 1790.
The non-dimensional grid spacing is referred to the maximum wall shear
stress along the period and consequently to the minimum value of the wall
unit z∗ = ν/uτ . OF refers to the purely oscillating flow, OFR refers to the
oscillating flow in the case with rotation.

The simulations were executed in two distinct cases. First we considered
the dispersion of a swarm of particles in the case of a purely oscillating flow
(Stokes boundary layer) in the turbulent regime (OF in Tab.4.1), subse-
quently we moved particles in the oscillatory rotating flow (Stokes-Ekman
boundary layer; OFR in Tab.4.1), with the aim to quantify the effect of
rotation on the characteristics of particulate dispersion for a mid-latitude
shallow-water environment. In both cases 102, 400 tracers were released in
the flow field. Particles were initially placed over 16 longitudinal planes
x1 − x3, respectively using for each plane 80 × 80 particles. A DMM, S-I
scheme was adopted for the Eulerian phase coupled with the deconvolution
model of Sec.3.4 for the Lagrangian tracking. As regards the initial condi-
tions of the simulations, a statistically steady Eulerian field was considered
at the phase θ = 0◦ and particles were released in the Eulerian field with
velocity equal to that of the carrying fluid.

For sake of clarity, we give here some meaningful details on the Eu-
lerian phase, referred to a previous investigation of Salon et al. [41] where
five periods of oscillation have been simulated and a comparison with the
results of a work of Jensen et al. [42] was possible. In Fig.4.1(a) is shown
the evolution of the velocity streamwise component at the free surface in
both OF and OFR cases. This trend is consistent with that imposed by the
tidal forcing expressed in Eq.1.2 and no differences are appreciated when
the frame of reference changes. At the value of Ro herein considered, the
oscillating-rotating boundary layer presents notable differences with its non-
rotating counterpart: as known, the Coriolis force gives rise to a cross-stream
pressure gradient that develops a non-zero mean spanwise velocity which is
not observable in the non-rotating case of Fig.4.1(b).

As observed in Fig.4.2, where the streamwise and spanwise velocity pro-
files are reported, due to the combined effect of oscillation and rotation,
an oscillating spanwise velocity develops. During the steady oscillation, its
intensity is one order of magnitude smaller than that of the streamwise
component. In this case we are analyzing the whole fluid column, and not
only the free surface as in the data of Fig.4.1(a). We notice that rotation
also affects the streamwise velocity component. This clearly appears in the
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ensemble-averaged vertical profiles plotted in Fig.4.2, that shows how signi-
ficant differences in < u > between the OF and the OFR cases are present
along the whole water column. It is noteworthy that the bulge characterizing
the mean profile of < u > both in the laminar [43] and in the turbulent Ek-
man layer [44] and also in the OF case, is practically absent in the rotating
case. The streamwise velocity mean profiles of the central phases (between
60◦ and 150◦ and between 240◦ and 330◦ in Fig.4.2) are monotonic in z
and are associated to values of the Reynolds shear stresses < u′w′ > (see
Fig.4.3) nearly constant especially in the core fluid, signature of activity of
the mixing processes that is not limited to the wall region. As a result of
enhanced mixing, the gradient of the mean streamwise velocity profile does
not exhibit a change of sign and consequently the Reynolds shear stress
< u′w′ > maintains its own sign along the water column.
The presence of the horizontal components of the Coriolis force thus in-
creases turbulence in the flow field [44].

Figure 4.1: Temporal evolution along the first 5 periods of oscillation of the
horizontal components of the resolved velocity at the top of the domain:
a) streamwise velocity in OF (dashed line) and OFR (solid line) cases; b)
spanwise velocity in OFR case. Note that the last variable is zero in the OF
case.

Another important effect is the breaking of symmetry either in the ve-
locity profiles (Fig.4.2) and in the Reynolds stress (Fig.4.3) between the
two half cycles of oscillation. Specifically, this effect well explained in Sa-
lon et al. [41] and in the literature there reported, is due to the sign change
throughout the cycle of oscillation of the horizontal mean vorticity related to
the mean vertical shear stress, with respect to the background vorticity. In
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particular, during the decelerating phases of the second half cycle (between
300◦ and 345◦) the Reynolds stress are more intense that what measured
during the corresponding phases of the first half cycle. Consistently with
the literature [44], we observe in our simulations the East/West enhance-
ment/reduction trend that explains how, in the Northern hemisphere, for-
cing coming from East (associated with a mean shear vorticity anti-parallel
to the background vorticity) tends to destabilize the turbulent field, whereas
a forcing coming from West (with mean vorticity parallel to the background
one) tends to stabilize it.
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Figure 4.2: Evolution along the 24 phases of oscillation of the vertical profile
of the mean streamwise velocity < u > in the OF case between 0◦ and 180◦

(solid line with dots), of < u > in the OFR case between 0◦ and 180◦ (solid
line), of − < u > between 195◦ and 360◦ (dotted line, the sign is opposite
for sake of clarity) and of the mean spanwise velocity < v > for the OFR
case between 0◦ and 180◦ (dashed line) and between 195◦ and 360◦ (dashed-
dotted line). The values are made non-dimensional with U0.

In particular, we will evidence that, even if rotation does not vary the
amount of energy in the system, it can extract energy from the mean flow to
enhance turbulent activity in the fluid column: the Coriolis force originates
a spanwise pressure gradient that gives a non zero mean cross stream ve-
locity, smaller in magnitude than that in the streamwise direction due to the
presence of the oscillatory tide. As indicated in Sec.1.3, fluid particles tend
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to travel on elliptical trajectories and the ratio between their axes varies
with the distance from the wall.

Our numerical approach allows to recognize three distinct regions in the
water column: a near-bottom wall one characterized by small-scale turbulent
structures, a free surface region, where turbulent mixing is weaker and last, a
core intermediate region. The vertical mixing due to turbulence is enhanced
by the presence of rotation that enlarges the size of the first zone.

The approach in use allows to calculate explicitly the particle turbulent
diffusivity. As theorized by Taylor, it is observed to depend upon the time
according the two classical ballistic and Brownian regimes.

4.2 Particle dispersion in the turbulent oscillating

flow field

The Eulerian phase of the turbulent Stokes boundary layer at ReS = 1790
was also analyzed and discussed in [45] and in the literature therein reported.
We summarize some results relevant for the present discussion.

The oscillatory boundary layer is inherently unsteady, and presents a
symmetry between the first (0o÷180o) and the second (180o÷360o) half cycle
which, in a statistical sense, repeats identically to the first one, apart that
the sign of the streamwise velocity is inverted. The half cycle is characterized
by two main phases, namely the phase of acceleration from 0o to 90o and
a successive phase of deceleration, up to 180o. The study presented the
following scenario: during the late deceleration up to the early accelera-
tion phases, a thin laminar boundary layer develops. At ReS = 1790 this
boundary layer undergoes a transition due to shear instability between 30o

and 45o accompanied by a sharp increase of the turbulent kinetic energy K,
related to the rapid growth of the production rate of K. Fully developed,
equilibrium turbulence is observed between 60o and around 150o, when the
mean velocity profiles are characterized by the presence of a log-layer and the
flow dynamics evolves through a sequence of quasi-equilibrium states. In the
early to mid deceleration phases a strong turbulence dissipation is observed
related to the explosive, bursting production of small scale vorticity (see also
[46]). Around 160o the flow field starts to stop and invert its own direction,
first in the near-wall region and subsequently upward in the fluid column.
This inversion produces the splitting of the fluid column into two separate
regions, a near-wall one where a laminar boundary layer rapidly grows, and
an upward one where turbulence has strongly decayed owing to the absence
of production rate and, due to a history effect, few large-scale structures
coming from the previous phases populate the fluid column. The study has
also shown that, at ReS = 1790 significant turbulent activity is detectable
in the fluid column up to 25δS .

Fig.4.4 shows the 3D trajectories of selected particles released at two
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Figure 4.4: Trajectories of particles along an oscillatory cycle, released at a
fixed horizontal station (plotted as a thick segment) at two different heights
in the fluid columns: a) z = δS ; b) z = 30δS . For sake of clarity, the ratio
among axis is exaggerated and the ticks are in δS units.

different heights in the flow field; on (a) the trajectories of particles released
in the near-wall region show the presence of turbulent mixing during most
of the first half cycle of oscillation. The particles undergo a large scale
motion during the phases of inversion (around 180o) and again they are
subjected to a wide spectrum of turbulent scales during the second half
cycle. Conversely, on (b) particles released above the turbulent region have
trajectories that do not exhibit the presence of significant turbulent mixing.
In all cases, during the phases when inversion of the flow direction takes place
(160o-180o), particles are subjected to a very large scale displacement in the
cross-stream direction, which tends to transport them at a fast rate within
the fluid column. As shown in [45], this transport cannot be associated
to classical turbulent mixing, since at the inversion phases turbulence is
nearly suppressed in the near-wall region and only few large-scale structures
populate the flow field. However, these weak large-scale structures are able
to transport the dispersed phase over distances comparable with their length
scale in the flow field and consequently they still supply a source of mixing
for the particulate.

We split the computational box in 10 horizontal slabs (with thickness
equal to 4δS), catch the particles originally placed in each slab and follow
them along their evolution in the cycle simulated. In Fig.4.5 we observe
that the mean vertical displacement of the particulate rapidly increases for
particles released in the near-wall region, due to the large mixing. The
mean vertical displacement of the particles gradually reduces for particles
initially released in the core region of the turbulent layer, associated to
nearly symmetric vertical fluctuations, whereas particles released in the free
surface region on average tend to be transported toward the wall. This
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Figure 4.5: Mean non dimensional vertical displacement of tracers originally
released at different heights from the wall in the OF case: 0.0 − 0.1 (solid
line); 0.1−0.2 (diamond); 0.2−0.3 (cross); 0.3−0.4 (right triangle); 0.4−0.5
(square); 0.5 − 0.6 (star); 0.6 − 0.7 (up triangle); 0.7 − 0.8 (left triangle);
0.8− 0.9 (plus); 0.9− 1.0 (circle). For sake of clarity we plot values skipped
about every 900 time iterations, note that the computational time increment
is not constant.

has to be attributed to the low level of turbulence in the top region of the
domain; specifically a particle traveling in the top region of the domain
(say above 25δS) tends to remain at the same height or, if trapped in a
turbulent structure, it is transported within the near-wall turbulent region.
Finally, Fig.4.5 also shows that the slope of the mean vertical displacement
decreases in the second half cycle, as particles spread over a large distance
and experience the features of turbulence averaged on a larger slab of fluid.

The dispersion along the three directions of the slabs of particles above
discussed is shown in Fig.4.6(a). In this section, the dispersion along the
i-direction is defined as:

x2
i (t) =

1

Np

Np∑

j=1

[
xi,j(t) −

∫ t

0
ui(t)dt − xi,j(t = 0)

]2

(4.1)

where Np is the number of particles belonging to a slab in the fluid column
and xi,j(t) is the i-component of the position of the j-particle of the swarm
at time t. The dispersion is here related to the fluctuating field only, since
the mean displacement given by the averaged velocity field ui (

∫ t
0 ui(t)dt) has

been removed. The quantity ui is evaluated at each time step considering the
mean velocity of the Lagrangian particles at the position of the j-particle.

Consistently with the classical theory [47], the dispersion in the three
directions always increases in time and is characterized by an initial ballistic
regime (t → 0) where x2

i (t) ∼ t2 and a Brownian regime (t → ∞) where
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Figure 4.6: a) Dispersion along the three directions for particles released at
different heights for the OF (see caption of Fig.4.5 for details); b) diffusivity
along the three directions for particles released at different heights for the
OF case: 0.0 − 0.1 (solid line); 0.5 − 0.6 (star); 0.8 − 0.9 (plus).

the dispersion increases as t. Our simulations show that the results of the
theory hold also in case of wall bounded, inhomogeneous turbulence.

The dispersion along the streamwise direction is much larger than that
along the other two directions. Indeed, it is mainly driven by the streamwise
velocity fluctuations, whose rms value is about three times larger than that
relative to the remaining directions, at least in the near-wall region (see [45]).
This indicates that the cloud of particles tends to spread in the streamwise
direction at a much larger extent than in the other ones. Fig.4.6(a) also
shows that the dispersion decreases as the height of release increases.
Due to the low level of turbulence present in the free surface region, the
dispersion associated to particles initially released in this region is negligible.
Interestingly, we do not observe significant slope change of the dispersion
during the phases of velocity inversion, where the level of K is around its own
minimum. This is due to the above mentioned effect of large-scale residual
turbulence present in the fluid column at the phases of flow reversal.

As a final step, we calculated the diffusivity along each direction as
in [48]:

Di(t) =
1

2

d

dt
x2

i (t) (4.2)

where x2
i (t) is evaluated in Eq.4.1. In Fig. 4.6(b) we show for clarity the

diffusivity of three meaningful slabs of particles: near the wall, in the core
fluid column and near the free surface region. We observe that the diffu-
sivity obeys the Taylor’s two-regime rule (Di(t) ∼ t in the ballistic regime
and Di(t) ∼ const in the Brownian one) only for particles released in the
turbulent region of the fluid column. The diffusivity is larger for particles ini-
tially located in the near-wall region and exhibits anisotropic characteristics
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because the streamwise velocity component dominates over the cross-stream
ones. Finally, Fig.4.6(b) shows that, for particles initially released within
the turbulent layer, particle diffusivity tends to be less sensitive to the initial
location during the second half of oscillation owing to the homogenization
process above mentioned.

4.3 Particle dispersion in the rotating oscillating

flow field

Although rotation does not vary the amount of energy of a system, it can
redistribute energy from mean to turbulent flow and vice versa. If we con-
sider the viscous length scales δS and δE previously defined and respectively
associated to the oscillatory and the rotational components of the motion,
we obtain δE/δS =

√
Ro, in agreement with Eq.1.3 discussed in Sec.1.3.

Since our simulations are carried out at Ro = 1.36, we expect that rotation
increases the thickness of the layer in the water column where turbulent
activity is present.
The results of the simulations in the work of Salon et al. [41] show that the
specific volume-integrated turbulent kinetic energy increases with respect to
the OF case through the increase of the vertical and spanwise components
(w and v velocity rms) in the fluid column, especially in the half-column
near the surface. The presence of the Coriolis force gives rise to a spanwise
pressure gradient that oscillates accordingly with the tidal motion. As a
result, the mean trajectories of particles follow elliptic paths, and the ratio
between the axes varies with the distance from the wall.

Fig.4.7(a) shows the trajectory of four particles originally placed at δS .
In comparison with OF case of Fig.4.4(a), particles released at the distance
of δS from the wall are now more broadly dispersed in both vertical (for
the presence of a higher turbulence level during the cycle) and horizontal
direction (for the presence of the Coriolis term). In the case of particles
originally released at 30δS , far from the boundary layer, the larger turbulent
structures are still dominating as in the OF case and trajectories do not
exhibit the presence of meaningful vertical mixing except at the end of the
cycle.

Fig.4.8(a) shows the mean vertical displacement of the slabs of particles
in the OFR case. The rate of increase of the mean vertical displacement is
faster than that relative to the OF case in the first quarter of the oscillation
cycle, and the largest displacement is observed for the tracers released in
the top half column. As shown in [41], this is related to higher vertical
velocity fluctuations between 0o and 90o along the whole water column, and
to an increased level of turbulence in the region closer to the free surface.
In the OFR case, the vertical mixing is therefore able to move the tracers
released close to the free surface region downward to almost half channel,
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Figure 4.7: Trajectories of particles along an oscillatory cycle, released at a
fixed horizontal station (plotted as a thick segment) at two different heights
in the fluid columns: a) z = δS ; b) z = 30δS . For sake of clarity, the ratio
among axis is exaggerated and the ticks are in δS units.
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Figure 4.8: Mean non dimensional vertical (a) and spanwise (b) displacement
of tracers released at different heights from the wall for the OFR case (see
caption of Fig.4.5 for details).
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much more than in the OF case. As an example, in the OFR case the tracers
released in the slab between 0.9 and 1.0 of Fig.4.8(a) reach, after a complete
oscillation cycle, a mean distance that is more than twice that reached in the
OF case (Fig.4.5). Similarly to the OF case, the slopes of the mean vertical
displacement decrease in the second half cycle due to the homogenization
process above mentioned.
The presence of the cross-stream pressure gradient in the OFR case gives
rise to a large spread of tracers in the spanwise direction (Fig.4.8(b)). The
maximum mean spanwise displacement is observed in the near-wall region,
associated to the largest values of the spanwise velocity component. The
mean spanwise displacement decreases and eventually changes its sign going
up along the fluid column. This is associated to the shape of the mean profile
of the spanwise velocity [41] that, due to the coupling between oscillating
and rotating motions, in the first phases of oscillation has negative values
in the bottom region and gets positive in the free surface region.

In Fig.4.9 is reported the evolution in the vertical direction of the con-
centration for particles originally released up to 2δS from the bottom (a)
and up to 2δS from the free surface (b). The concentration is expressed as
a ratio with the particles considered N and all the particles Ntot = 102, 400
of the simulation. Particles initially released near the wall are more broadly
dispersed in the vertical direction than those released in the upper region.
This is due to the presence of an higher level of turbulence at the bottom
during the cycle when compared to the free surface [41].
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Figure 4.9: The evolution of particle concentration in logarithmic scale along
the period simulated in OFR case is showed: on (a) particles originally
placed close to the bottom, on (b) particles originally placed close to the
free surface. Straight line is the concentration at 1◦, dotted line at 15◦,
dashed line at 30◦, circle at 90◦, diamond at 180◦, plus at 270◦ and left
triangle at 360◦.

The dispersion x2
i (t) along the three directions of the tracers released in

the slabs is computed as in Eq.4.1, and shown in Fig.4.10(a).
The streamwise velocity rms is slightly affected by rotation in the near-
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Figure 4.10: a) Dispersion along the three directions for particles released
at different heights for the OFR case (see caption of Fig.4.5 for details); b)
diffusivity along the three directions for particles released at different heights
for the OFR case (see caption of Fig.4.6b for details).

wall region, whereas it increases in the free-surface region; as a result, the
streamwise dispersion related to particles released close to the free surface
is much more affected by rotation than the near-bottom ones. A similar
behavior is observed for the vertical dispersion, because the quantity wrms is
strongly enhanced by rotation in the core region as well as in the free-surface
region. Therefore, particles released in the upper part of the fluid column
show a vertical dispersion larger than that relative to the non-rotating case
(compare the third plot of Fig.4.10(a) with that of Fig.4.6(a).

The most relevant difference between OF and OFR is observed in the
dispersion along the spanwise direction: in the OFR case, after one cycle
of oscillation, due to the higher spanwise velocity rms and to the non-zero
Reynolds shear stresses τ12 and τ23, y2 has values comparable with x2, with
the tracers released in the core region characterized by the largest disper-
sion. The turbulent mixing is therefore more efficient in the OFR case: in
particular, rotation enhances the dispersion in the horizontal planes and,
at the same time, thickens the fluid layer where a large spreading of the
particulate is observed.

Fig.4.10(b) shows that the diffusivity along the streamwise direction be-
haves quite differently in the first and in the second half cycle of oscillation.
For particles released in the near-wall region, after a sudden increase similar
to the OF case, Dx reaches nearly constant values, comparable with those
of the OF case. Conversely, the streamwise diffusivity of tracers released in
the core and in particular in the near-surface regions is larger than in the
OF case, due to the already discussed increase of turbulence level in the free
surface region. As in the previous case, in the second half cycle Dx looses
the memory of the tracers initial location, consistently with the homoge-
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nization process. The second half cycle is also characterized by a strong
increase in streamwise diffusivity with respect to the OF case, especially for
tracers released in the core and the near-surface regions, coherently with the
increased slope of the dispersion and with the above mentioned asymmetry
in the turbulence dynamics.
In the first half cycle, the vertical diffusivity is larger than that of the OF
case, especially for tracers released in the core region. This is due to the
augmented level of turbulent mixing in such region, that is basically related
to the higher vertical velocity rms and to the non-zero correlation between
vertical and spanwise velocity fluctuations. In the second half cycle Dz

homogenizes and decreases to values comparable to those of the OF case.
As observed for dispersion, the amplitude of the diffusivity in the spanwise
component results comparable to the streamwise one. After 90o, Dy ap-
pears nearly constant along the whole column, justifying the efficiency of
the horizontal mixing.

A final comparison between case OF and OFR is showed in Fig.4.11. On
each panel (left side is OF case and right OFR) is sketched the instantaneous
position of particles originally contained in different slabs: in this case, we
divided in three equal parts the water column, from the bottom to 13δS , from
13 to 26δS and from 26δS up. Particles positions are showed during their
evolution at four instants along the cycle simulated. Axis are made non-
dimensional with the column depth h and furthermore the vertical dimension
is exaggerated to evidence the vertical mixing of particles. In OFR case (all
the right panels), due to the presence of an higher level of turbulence and
of the Coriolis force, particles are more broadly dispersed both in vertical
and in horizontal direction than in OF case (all the left panels); particles
originally released close to the bottom (both in OF and OFR case) are
subjected to an higher level of turbulence than those originally placed close
to the free surface and therefore can be involved in the turbulent mixing
and reach higher levels of the column.

In order to visualize the mixing properties of the Eulerian flows herein
discussed, we attach a CD with the animations of the dispersed phase in
both OF and OFR case.
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Figure 4.11: On (a) 15◦, on (b) 90◦, on (c) 270◦, on (d) 360◦. All the left
panels are relative to the OF case and all the right panels are relative to
OFR case. Red circles indicates particles released at the bottom of the fluid
column; green square at the core and blue triangles at the top.
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Chapter 5

Conclusion

5.1 Concluding remarks

The specific target of this work is the description of the mixing proper-
ties of a tidally driven water column. In particular, the dispersion of fluid
particles, representative of a shallow-water marine environment, has been
investigated. We performed a small-scale numerical experiment employ-
ing physical parameters relative to the Gulf of Trieste, thus considering a
tidally-driven, mid-latitude case. A large number of particles has been re-
leased in the flow field under two different conditions: first the dispersion of
the particulate in the purely oscillatory flow was studied; subsequently the
dispersion in the oscillating-rotating case was investigated.

As regards the response of particles in the turbulent Stokes boundary
layer (OF case), we observed the presence of two distinct regions in the wa-
ter column, namely a near-wall one characterized by small-scale turbulent
structures and a free surface region where turbulent mixing is very weak.
Moreover, we observed that dispersion and diffusivity obey the two classical
regimes as theorized by Taylor, respectively the ballistic and the Brown-
ian regimes. The streamwise component of the dispersion dominates over
the other two, and tracers result essentially dispersed along the mean flow
direction. In particular, particles released near the wall are more broadly
dispersed than those released in the upper region.
During the flow reversal, although the level of turbulent fluctuations rapidly
decays, particle dispersion is mainly governed by the presence of weak, large-
scale structures remaining in the fluid column as an history effect from the
previous phases of the cycle.

In the OFR case herein investigated, rotation has two main effects on
the flow field: 1) it causes an increase of the horizontal and the vertical
turbulent mixing; 2) it thickens the turbulent depth in the fluid column.
As a result, both in the core region and in the free surface region the par-
ticulate is dispersed at a much larger extent than in the OF case. The
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presence of a mean spanwise velocity raised by the Coriolis force severely
affects the dispersion in the spanwise direction within the whole fluid col-
umn. The tracers diffuse mainly on horizontal planes, with intensities that
are similar in both the streamwise and the spanwise components.
The results of the present work do interest a mid-latitude shallow-water
problem. Although it is possible to argue that rotation enhances spanwise
dispersion of the particulate, more research is eventually needed in order
to evaluate particle dynamics dependence on different values of the Rossby
number.
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