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ABSTRACT
This paper analyzes certain technical details of Floridi’s Theory of Strongly Semantic Infor-
mation. It provides a clarification regarding desirable properties of degrees of informative-
ness functions by rejecting three of Floridi’s original constraints and proposing a replace-
ment constraint. Finally, the paper briefly explores the notion of quantities of inaccuracy
and shows an analysis that mimics Floridi’s analysis of quantities of vacuity.
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1. Introduction

The Theory of Strongly Semantic Information (TSSI) is first developed in
(Floridi, 2004) and later presented in (Floridi, 2011). This paper provides
clarification on certain formal details of TSSI. I begin with an analysis of the
example Floridi uses to explain degrees of vacuity and inaccuracy and note
its shortcomings with respect to degrees of vacuity. I provide a second exam-
ple that is better suited to illuminate some of the technical details of TSSI.
With the new example in hand, I critique the constraints offered by Floridi
for degrees of informativeness functions. I reject three of the constraints and
propose a clarifying replacement constraint, along with justification for its
inclusion. Finally, I explore the notion of quantities of inaccuracy, an idea
suggested by Floridi, but not extensively developed. The clarifications in
this paper provide further evidence of the litheness and broad applicability
of the TSSI.

2. Background

In both of the aforementioned articles on TSSI, Floridi uses an example to
help explain and motivate TSSI. The example involves 𝐸, a microworld that
is described ontologically as the set of all possible states over the conjunction

246



MARTY J. WOLF

of six boolean variables, 𝑊 = {𝑤𝑖|1 ≤ 𝑖 ≤ 64}. Semantically, the set is
describe as the set of messages Σ = {𝜎𝑖|1 ≤ 𝑖 ≤ 64}. For ease of exposition,
I will relabel the boolean variables used by Floridi to 𝑥𝑖 for 1 ≤ 𝑖 ≤ 6, where
each 𝑥𝑖 corresponds to the boolean literal in position 𝑖 in Table 1 on p. 112 of
(Floridi, 2011). Also note that for all 𝑖, 𝜎𝑖 and 𝑤𝑖 are syntactically identical.

Floridi uses this example to describe and illuminate a number of impor-
tant concepts in TSSI. Fix 𝑤 ∈ 𝑊 as the ontological state. Let 𝜎 ∈ Σ be the
message that is under consideration. Let 𝜎𝑤 ∈ Σ be the message that is syn-
tactically identical to 𝑤. Floridi’s purpose is to devise and explain a system
for analyzing the amount of information in 𝜎, especially when 𝜎 ≠ 𝜎𝑤.

Floridi introduces the function 𝑓 , which measures the degree of discrep-
ancy between 𝑤 and 𝜎. 𝑓 maps elements of Σ to real numbers in the range
[−1, 1] and is constrained to map 𝜎 to [−1, 0) if 𝜎 is (estimated to be) false
and to [0, 1] if 𝜎 is (estimated to be) true. Furthermore, 𝑓(𝜎) = 0 if and only
if 𝜎 is true and completely and accurately describes 𝑤. For the example,
𝑓(𝜎𝑤) = 0. Note that 𝜗 = 𝑓(𝜎) is a measure of how closely and in which
alethic direction 𝜎 approximates 𝑤. “Intuitively, 𝜗 indicates the distance
of an infon 𝜎 from a selected situation 𝑤 and can be read as the degree of
support offered by 𝑤 to 𝜎” (Floridi, 2011, p. 119). Floridi gives formal de-
scriptions of five conditions that discrepancy functions must meet. The two
of interest here are M.4 and M.5. M.4 can be stated as: if 𝜎 is (estimated to
be) false and not a contradiction then −1 < 𝑓(𝜎) < 0. M.4 constrains the
value describing the amount of inaccuracy contained in a false message. M.5
similarly constrains the value describing the amount of vacuity contained in
a true message and can be stated as if 𝜎 is (estimated to be) true and not a
tautology then 0 < 𝑓(𝜎) < 1.

Presumably, 𝑓 can depend on 𝑤 as well, although Floridi does not make
this point clear. That is, each𝑤 ∈ 𝑊 may have its own discrepancy function,
𝑓𝑤, to evaluate the degree of discrepancy between 𝜎 and 𝑤. Each of these 𝑓𝑤
would be subject to the meeting the five conditions for discrepancy functions
given by Floridi.

Floridi, presumably as a matter of notational convenience, allows 𝜗 to
act as a function. That is 𝜗 = 𝜗(𝜎) = 𝑓(𝜎). I adopt this convention here as
well.

He goes on to describe how to partition the set Σ − {𝜎𝑤} into six equiv-
alence classes with respect to inaccuracy. Simply, the method counts the
number of literals in 𝜎𝑖 that differ from those in 𝑤. Those messages with the
same number of differences fall into the same inaccuracy equivalence class.
It is important to note that each 𝜎𝑖 is in one and only one of the six classes.
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3. Analysis of the Classes of Vacuity Example

Floridi’s method of determining which 𝜎𝑖 ∈ Σ are at the same level of vacuity
is not based directly on the messages themselves, but on properties held by
semiduals of the conjunction. In this approach, a fixed number, say 𝑚, of
conjunctions in 𝜎𝑖 are replacedwith disjunctions, and if the resultingmessage
is consistent with 𝑤, then 𝜎𝑖 is placed in the same vacuity class as all other
elements of Σ that are consistent with 𝑤 when 𝑚 conjunctions are replaced
with disjunctions.

This approach has a number of objectional features. The first has to do
with the arbitrariness of choice with respect to which conjunctions are re-
placed. Presumably, Floridi’s method replaces the first𝑚 conjunctions based
on the ordering of the boolean literals. Typically, any such ordering of the
literals is arbitrary. In fact, when all of the operators are conjunctions, it is
customary to consider a boolean expression as a set of literals. Thus, rather
than one fixed and immutable way to pick𝑚 conjunctions, there are ම5

𝑚ඹways
to choose, none of which have any sort of inherent priority over the others.
Further, the approach of privileging the initial conjunctions seems to contra-
dict Floridi’s later statement that “all atomic messages ought to be assigned
the same potential degree of informativeness” (Floridi, 2011, p. 124).

This objection can be overcome by a small modification of Floridi’s ap-
proach and adopting his call for equal treatment of the literals (atomic mes-
sages) in each message. For each 𝑚, apply the semidual construction to all
ම5

𝑚ඹ possibilities and then union the resulting messages into a single vacuity
class. This approach yields classes of vacuity with the following cardinalities:
|𝑉𝑎𝑐1| = 63, |𝑉𝑎𝑐2| = 62, |𝑉𝑎𝑐3| = 42, |𝑉𝑎𝑐4| = 22, |𝑉𝑎𝑐5| = 7.

While this approach does away with favoring any particular literal over
any other, it still suffers. Neither Floridi’s approach nor the proposed modi-
fication determine a unique 𝜗 for each 𝜎𝑖. The most straightforward way to
see this is by considering the cardinalities of the vacuity sets. In the exam-
ple above 𝑉𝑎𝑐1 has 63 elements out of a possible 63. 𝑉𝑎𝑐2 has 62 elements.
Clearly, at least 62 elements are contained in at least two 𝑉𝑎𝑐𝑖’s. In fact,
𝑉𝑎𝑐𝑖 ⊊ 𝑉𝑎𝑐𝑗 for 𝑖 > 𝑗 in this example. (It is unclear whether this property
holds for Floridi’s method.) This observation raises the question of just how
vacuous a given message is since it is contained in multiple sets.

A simple response to this concern is to modify the method slightly. Note
that as 𝑖 increases the cardinality of 𝑉𝑎𝑐𝑖 decreases. By determining 𝑉𝑎𝑐5
first, the other sets can easily be determined. Using the methodology above
determine 𝑉𝑎𝑐4, but exclude from 𝑉𝑎𝑐4 any 𝜎𝑖 already present in 𝑉𝑎𝑐5. Pro-
ceeding in this manner and never placing a 𝜎𝑖 in a vacuity class when it is
already contained in a (higher numbered) vacuity class results in true equiv-
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alence classes.
There is one more small problem with this method (and presumably with

Floridi’s method as well, but the details are unclear). To see this problem,
consider a specific 𝑤, say 𝑤45 = �̄�1 ∧ 𝑥2 ∧ �̄�3 ∧ 𝑥4 ∧ 𝑥5 ∧ 𝑥6.

Its literal-by-literal negation, 𝜎21 = 𝑥1 ∧ �̄�2 ∧ 𝑥3 ∧ �̄�4 ∧ �̄�5 ∧ �̄�6 is not
classified by the method. As with 𝜎𝑤, this message can be placed in its own
equivalence class, but doing so raises a deeper question. What does it mean
when the literal-by-literal negation a boolean expression is deemed to be true
and vacuous, regardless of the method used to determine this classification?

One might argue that TSSI itself is weakened by its inability to account
for something as simple as boolean logic. However, this example is not strong
enough to support such a statement. The difficulty of this example is the
example itself. It has been asked to undertake a task it does not, nor should
not, have the strength to perform. At the very least, it is counter-intuitive
to ascribe a positive alethic value to elements of Σ − {𝜎𝑤} when they all are
false. It is better to recognize that they all are false and of varying degrees
of inaccuracy. They should not be judged to be true and ascribed varying
degrees of vacuity. There is no vacuity carried by such a message from Σ.
The vacuity is carried by some other expression, one obtained by starting
with 𝜎 and applying some set of operations to it. The result is an entirely
different boolean expression. It may make sense to add these expressions
to the model, but the result of that action is a different model requiring a
separate and different analysis.

4. A Second Example

For this example, fix a microworld where at any one time there are between
one and fifty people at the pub. The lower limit of one is there to simplify
the exposition of the example and the upper limit may be there for reasons
having to do with the amount of space in the pub or safety regulations. Thus
there are 50 possible ontological states, 𝑊 = {𝑤1, 𝑤2, … 𝑤50}. Consider 50
possible semantic messages Σ = {𝜎1, 𝜎2, … 𝜎50}. Each of these messages is to
be interpreted as 𝜎𝑖 means there are 𝑖 people in the pub. Note that none of
the statements are either tautologies or contradictions.

Let us assume that there are exactly ten people at the pub. Thus, our on-
tological state is 𝑤10. This provides an initial partition of Σ into three sets:
the (presumably true) and vacuous statementsΣ𝑉 = {𝜎𝑖|1 ≤ 𝑖 ≤ 9}, the (pre-
sumably false) and inaccurate statements Σ𝐼 = {𝜎𝑖|11 ≤ 𝑖 ≤ 50}, and {𝜎10}.

Next we construct our degree of discrepancy function.
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𝑓(𝜎𝑖) = ฼
1 − 𝑖/10 for 1 ≤ 𝑖 ≤ 10
10/𝑖 − 1 for 𝑖 > 10

This function trivially satisfies M.1. M.2 and M.3 of Floridi’s require-
ments for discrepancy functions. M.4 is satisfied since false statements, state-
ments that there aremore people at the pub than there really are, are all given
negative values. Furthermore, the larger 𝑖 is, the closer 𝑓(𝜎𝑖) is to -1. M.5 is
satisfied since true, but vacuous statements, are given positive discrepancy
values. This makes sense because, for example, 𝜎4 is true when 𝑤10 is the on-
tological state. Note that when there are ten people in the pub, four people
are indeed there, but so are six additional people and this information is not
captured by 𝜎4.

In this example, with this degree of discrepancy function, each element
in Σ𝑉 is in a vacuity class by itself and each element in Σ𝐼 is in an inaccuracy
class by itself. One might consider alternate discrepancy functions which
would give different discrepancy classes if there was a need or motivation to
have vacuity or inaccuracy classes that are not singleton sets.

5. Clarification of Degrees of Informativeness

Floridi introduces a degree of informativeness function 𝚤(𝜎) = 1 − 𝜗2(𝜎) to
capture an essential property of statements. While it is clear that the choice
of this function is arbitrary, it is then used to justify six constraints (E.1-E.6)
for 𝚤 identified by Floridi as desirable for degree of informativeness functions.
E.1 normalizes informativeness by specifying that the maximum informa-
tiveness of any message is 1. E.3 captures the intuitive notion that contra-
dictions and tautologies are not informative, i.e. their degree of informative-
ness is 0. This is not only desirable, but necessary for the theory. However,
E.3 only makes sense in the presence of E.4,1 which says that if 𝜎 is not a
contradiction or tautology, then its informativeness must be positive. Thus,
E.1, E.3, and E.4 taken together give upper and lower bounds on the how
informative a single message can be. Collectively they force any measure of
informativeness to be normalized to [0, 1] much like 𝜗 is normalized to the
range [−1, 1].

The remaining constraints, E.2, E.5 and E.6, are all questionable in their
desirability. In what follows, I will argue that E.2, E.5 and E.6 should be re-
jected and conclude that the degree of informativeness function should cap-

1 Note that there is a typographical error in the presentation of E.4 in both (Floridi, 2004) and (Floridi, 2011).
It should read ((0 < 𝜗(𝜎) < +1) ∨ (0 > 𝜗(𝜎) > −1)) → 0 < 𝚤(𝜎) < 1.
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ture the nuances of the informativeness of the messages that are contained
in the world that is being modeled.

E.2 calls for ∫𝑏
𝑎 𝚤(𝜎)𝑑𝑥 to be a proper integral. Floridi argues that this is

desirable to simplify calculations. While at first blush this seems to make
sense, there are other functions that are not integrable, such as step func-
tions, that are easy to calculate. Also, as we shall see below, it may be desir-
able to have 𝚤(𝜎) be discontinuous at 0, i.e., when 𝚤(𝜎) = 1. While this makes
the calculation more complex, it is not impossible.

E.5 calls for “a small variation in 𝜗(𝜎) to result in a substantial variation
in 𝚤(𝜎)” (Floridi, 2011, p. 124). This constraint does not take into account
the fact that the average slope from (0, 1) to (1, 0) on any curve is −1. The
impact of this constraint is that if E.5 is to hold on some part of 𝚤 then there
must be some other part of 𝚤 that does not have the property called for by
E.5. Thus, E.5 cannot be universally true for any degree of informativeness
function.

E.6 calls for “themarginal information function (MI) [to be] a linear func-
tion” (Floridi, 2011, p. 124). Floridi justifies this by appealing to the notion
that “all atomic messages ought to be assigned the same potential degree of
informativeness” (Floridi, 2011, p. 124). While this justification makes sense
for the example from propositional logic used tomotivate TSSI, it is not clear
that other information systems have the same sort of underlying uniformity.
Indeed, the pub example presented in section 4 does not carry this sort of
uniformity. Another concern is that if the atomic messages (literals) are uni-
formly informative, a MI function that is constant more accurately repre-
sents the model. Furthermore, this implies that an 𝚤 that is linear, rather
than quadratic, would be better support the underlying information system.

The pub example bolsters the case for non-quadratic degree of informa-
tiveness functions. Note that in the pub example the loss of informativeness
in going from 𝜎9 to 𝜎8 is no different than loss experienced in going from
𝜎7 to 𝜎6. In each case, the change is constant (much like atomic messages
in Floridi’s microworld 𝐸). In general for any two true semantic messages
reporting one less person in the pub the loss of informativeness is the same
constant. The responsibility of the MI function is to accurately capture this
notion. Given that the marginal information is a constant and the fact that
the MI function is the first derivative of the degree of informativeness func-
tion, 𝚤 ought to be linear in this case.

In information systems where “first steps can be expected to bring a com-
paratively greater loss of informativeness” (Floridi, 2011, p. 124), it is better
if 𝚤 is discontinuous at 0. For example the function

251



Analysis, Clarification and Extension of the Theory of Strongly Semantic Information

𝚤(𝑥) = ฼
(𝑥 + 1)3 for − 1 ≤ 𝑥 ≤ 0

−(𝑥 − 1)3 for 0 ≤ 𝑥 ≤ 1
has that first step away from 0 drop off rather sharply in each direction.

That first error is significant. It brings “a comparatively greater loss of in-
formativeness ... than following ones” (Floridi, 2011, p. 124). Note that with
this function, after significant errors have occurred, say in the range from
0.8 to 1 (also from -0.8 to -1), there is very little change in informativeness
from one error to the next. This compounding effect can be enhanced with
larger powers for 𝑥+1 and −(𝑥−1). These sorts of informativeness functions
effectively describe non-brittle information systems.

Note that the discontinuity at 0 is not damaging, other than it introduces
a slight complication in terms of computation. Around 𝜗 = 0, analysis must
be done carefully.

This example suggests another possibility for the degree of informative-
ness function–that it need not be the same function for both the inaccurate
statements and the vacuous statements. In Floridi’s example the curves are
mirror images of each other, suggesting that instances of inaccuratemessages
have the same degree of informativeness as vacuous messages. There is no a
priori reason to assume this to be the case for all, or even typical, information
systems.

The pub example makes the case for a linear degree of informativeness
function for the vacuous statements. Analyzing inaccurate statements and
their informativeness one sees a precipitous drop in informativeness as 𝑖 gets
larger. That is, 𝜎11 is a little informative, but 𝜎35 is hardly informative at
all. A strong case can be made for using 𝚤(𝜗) = (𝜗 + 1)3 for −1 ≤ 𝜗 < 0
for the degree of informativeness function for inaccurate statements in the
pub example. In fact, a polynomial of higher degree may be an even better
candidate. Regardless, the point is that the informativeness of true messages
can be (and often is) different than the informativeness of false messages in
an information system.

The primary observation of this section is that the six constraints on the
degree of informativeness function are largely conveniences, rather than con-
straints. E.1, E.3 and E.4 can be retained, although it is important to bear in
mind that they are mathematical and intuitive conveniences and should be
readily dismissed should they become cumbersome as TSSI does not require
them. E.2 can be done awaywith as it is overly restrictive in its intended pur-
pose. E.5 is impossible to achieve as stated and must be rejected. E.6 should
also be rejected since rather than being a desirable constraint, it describes a
property of some specific information systems, but not others. Given that
the theory of strongly semantic information supposes complete knowledge
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of the information system, these three constraints can be replaced with the
following constraint:

(E.7) The degree of informativeness function ought to accurately
reflect the nature of informativeness of the underlying messages
in the information system being modeled.

6. An Extension to Quantities of Inaccuracy

Floridi does not take up the notion of the quantity of inaccuracy, although he
does suggest its existence (Floridi, 2011, p. 124). It seems that addressing it
is less straightforward than addressing quantities of vacuity, since only true
messages carry semantic information. Here I briefly extend Floridi’s anal-
ysis of quantities of inaccuracy to describe the difference in the amount of
vacuous (mis)information between any two vacuousmessages. The structure
of the analysis parallels the structure of Floridi’s analysis of the quantities
of vacuity.

Note that Floridi defines the quantity of semantic information in a vac-
uous 𝜎 on a normalized basis. He defines the maximum amount of semantic
information as the area under the curve 𝚤 on the interval [0,1] and then di-
vides that total amount among the true, but vacuous messages.

The first difficulty is determining what the area under the curve 𝚤 on the
interval [−1, 0) represents, call it 𝜇. Because each of the messages under
consideration is false, 𝜇 cannot represent an amount of semantic information
as it did on the non-negative interval. One possibility is that 𝜇 represents the
maximum amount of misinformation. Having a maximum possible amount
ofmisinformation is reasonable for any closed information systemunder such
analysis. All of the false statements are classified. Each has been taggedwith
a fixed degree of inaccuracy. Since both are finite, it is not unreasonable to
expect that the amount of misinformation in the system is finite.

Continuing with the parallel analysis, the amount of misinformation in 𝜎
is the difference between 𝜇 and the amount of inaccuracy in 𝜎. For ease of ex-
position, let us assume that 𝚤 is integrable on [-1,0). Then let 𝜈 = ∫0

𝜗 𝚤(𝜎)𝑑𝑥.
Now 𝜈 is the amount of misinformation in 𝜎. If 𝜎 has a low degree of dis-
crepancy from𝑤, then the amount of misinformation is small. As 𝜗(𝜎)moves
closer to -1, the discrepancy increases, as does the amount ofmisinformation.
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7. Conclusions

In this paper I analyzed some of the technical details of Floridi’s Theory of
Strongly Semantic Information. This analysis yields insight into some of the
nuances of the theory, as well as a rejection of what Floridi identifies as three
desirable constraints on degree of informativeness functions. The analysis
suggests another constraint that closely ties the informativeness function to
the properties of the information system under study. This new constraint
increases the robustness of TSSI.

The analysis also provides a minor extension of TSSI into misinforma-
tion. Given the pervasiveness of misinformation and its interplay with in-
formation in the world in which we live, a real test of the strength of TSSI
would be the development of a complete extension that thoroughly accounts
formisinformation and its interplay with information. For example, it ought
to make sense to compare the total amount of misinformation 𝜇 in a system
to the total amount of information 𝛼 (Floridi, 2011, p. 126) in a system. As
just a minor illustration using the pub example, it seems that there is poten-
tial for a lot more misinformation than information–at least for 𝑤10. Maybe
the relative values of 𝜇 and 𝛼 ought to reflect this. Perhaps the two ought
not be comparable. As TSSI is refined to take into account experiences with
information and misinformation, its value as an analytical tool will increase.
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