A Note on Quasi-k-Spaces

Manuel Sanchis (*)

SUMMARY. - We prove that for a regular Hausdorff space X the following conditions are equivalent: (1) X is locally compact, (2) for each quasi-k-space Y, the product space $X \times Y$ is also a quasik-space.

1. Introduction

Unless the contrary is explicitly stated, all topological spaces are assumed to be regular Hausdorff. Let Σ be a cover for a topological space X with topology τ . The family $\Sigma(\tau)$ of those subsets of X which intersect each $S \in \Sigma$ in an S-open set (i.e., open in S with the relative topology from τ) is a topology for X finer than τ . Now to each space X and to each cover Σ for X we may associate the space $\sigma(X)$, the same set of points topologized by $\Sigma(\tau)$. Let us call a space a Σ -space whenever $\sigma(X) = X$. If Σ is the cover of all countably compact (respectively, compact) subsets, Σ -spaces are called quasi-k-spaces (respectively, k-spaces).

The quasi-k-spaces and the k-spaces appear in several fields in General Topology and Functional Analysis. For instead, when studying compactness of function spaces in the topology of pointwise convergence [1] and in the theory of M-spaces introduced by K. Morita

^(*) Author's address: Departament de Matemàtiques, Universitat Jaume I, Campus de Penyeta Roja s/n, 12071, Castelló, Spain, e-mail: sanchis@mat.uji.es 1991 Mathematics Subject Classification: 54D50, 54D99, 54B10, 54B15.

Key words and phrases: quotient map, k-space, quasi-k-space, (locally) countably compact space.

The author was supported by DGES, under grant PB95-0737.

M. SANCHIS

[4]. As it was showed by J. Nagata [6] a space X is a quasi-k-space (respectively, a k-space) if and only if X is a quotient space of a regular (respectively, paracompact) M-space.

In this note we are concerned with characterizing when a quasik-space satisfies that its product with every quasi-k-space is also a quasi-k-space. The similar question for k-spaces was solved by E. Michael [3]. He showed that $X \times Y$ is a k-space for every k-space Y if and only if X is locally compact. Our main result is to prove a similar one in the realm of quasi-k-spaces.

The terminology and notation are standard. If X is a topological space, Y is a set and $q: X \longrightarrow Y$ is an onto mapping, the strongest topology on Y making g continuous is called the *quotient topology* on Y. When Y is equipped with such a quotient topology, it is called a *quotient space* of X, and the inducing map g is called a quotient map. We denote by $\bigoplus_{\alpha \in A} X_{\alpha}$ the disjoint topological sum of a family $\{X_{\alpha}\}_{\alpha \in A}$ of topological spaces. A subset M of X is said to be quasi-k-closed (in X) provided that $M \cap K$ is closed in K for every countably compact subset K of X. Obviously, the definition of quasi-k-space can be reformulated in the following way: A space Xis a quasi-k-space if every quasi-k-closed subset is closed. We remind the reader that a space X is locally countably compact if each point has a countably compact neighborhood. In the category of regular spaces each such space X has a base composed of countably compact neighborhoods at x for every $x \in X$. For terminology and notation not defined here and for general background see [2].

2. The results

First we shall prove a characterization of quasi-k-spaces that it will be used in the sequel (compare with [5], Theorem 1.2).

THEOREM 2.1. Let X be a Hausdorff space. The following conditions are equivalent:

1. X is a quasi-k-space;

- 2. X is a quotient space of a disjoint topological sum of countably compact spaces;
- 3. X is a quotient space of a locally countably compact space.

Proof. (1) \Longrightarrow (2) Let \mathcal{K} be the family defined as

 $\mathcal{K} = \{ K \subset X \mid K \text{ is countably compact } \}$

and consider the space $Y = \bigoplus_{K \in \mathcal{K}} K$. We shall prove that X is a quotient space of Y.

To see this, define the function φ from Y onto X by the requirement that $\varphi(x)$ be x whenever $x \in Y$. Beginning from the fact that X is a quasi-k-space, it is a routine matter to check that φ is a quotient map.

 $(2) \Longrightarrow (3)$ It is clear.

(3) \Longrightarrow (1) Let φ be a quotient map from a locally countably compact space Y onto X. Since φ is a quotient map, we need only show that $\varphi^{-1}(F)$ is closed in Y whenever F is quasi-k-closed in X. Suppose that there exists a quasi-k-closed subset (in X) F such that $\varphi^{-1}(F)$ is not closed in Y. We shall see that this leads us to a contradiction. Choose $y \in cl_Y \varphi^{-1}(F) \setminus \varphi^{-1}(F)$ and let V be a countably compact neighborhood of y in Y. φ being continuous, $\varphi(V)$ is countably compact and, consequently, $\varphi(V) \cap F$ is closed in $\varphi(V)$. On the other hand, as $\varphi(y) \notin F$, we can find an open set T such that $\varphi(y) \in T$ and

$$T \cap (\varphi(V) \cap F) = \emptyset.$$

Thus,

$$\varphi^{-1}(T) \cap \varphi^{-1}\left(\varphi(V) \cap F\right) = \emptyset. \tag{(\star)}$$

But, as $y \in cl_Y \varphi^{-1}(F)$, there is $z \in Y$ satisfying

$$z \in (\varphi^{-1}(T) \cap V) \cap \varphi^{-1}(F).$$

So, $\varphi(z) \in \varphi(V) \cap F$. Therefore,

176

$$z \in \varphi^{-1}(T) \cap \varphi^{-1} \left(\varphi(V) \cap F \right).$$

This is contrary to condition (\star) and the proof is complete.

Given an ordinal number α , the symbol $W(\alpha)$ stands for the set of all ordinal numbers less than α . When viewed as a topological space this has the usual order topology. As usual, ω denotes the first infinite ordinal number. If X is a non locally compact space at a point x_0 , E. Michael constructed in [3] a space $\mathcal{K}(X)$ associated with X in the following way: let $\{U_i\}_{i\in I}$ be a base of non-compact closed neighborhoods of the point x_0 . For each $i \in I$, since U_i is not compact, there are a limit ordinal number $\eta(i)$ and a well-ordered (by inclusion) family $\{F_j^i\}_{j < \eta(i)}$ of closed subsets of U_i such that

$$\bigcap \left\{ F_j^i \mid j < \eta(i) \right\} = \emptyset.$$

Consider now the k-space $Z = \bigoplus_{i \in I} W(\eta(i) + 1)$. The Michael

space $\mathcal{K}(X)$ is defined as the quotient space of Z obtained by identifying all points $\{\eta(i)\}_{i\in I}$ with a point y_0 . Since a quotient space of a k-space is also a k-space ([2], Theorem 3.3.23), $\mathcal{K}(X)$ is a k-space (and, a fortiori, a quasi-k-space). We need the following important property of $\mathcal{K}(X)$.

THEOREM 2.2. Let X be a non locally compact space at a point x_0 . If K is a countably compact subset of $\mathcal{K}(X)$, then K meets at most finitely many elements of the family $\{W(\eta(i))\}_{i \in I}$.

Proof. Let K be a subset of $\mathcal{K}(X)$ such that there exists a sequence $\{i_n\}_{n < \omega}$ in I such that K meets $W(\eta(i_n))$ for all $n < \omega$. We shall show that K is not countably compact.

Choose, for each $n < \omega$, an $\alpha_n \in K \cap W(\eta(i_n))$. We shall prove that the sequence $\{\alpha_n\}_{n < \omega}$ does not admit any cluster point in Y. For this in turn, it suffices to check that the point y_0 is not a cluster point of $\{\alpha_n\}_{n < \omega}$. As $\eta(i_n)$ is a limit ordinal, there exists an open set V_n for each $n < \omega$ such that

$$\alpha_n \notin V_n$$
, $\eta(i_n) \in V_n$.

Let D_n be the set defined as follows:

$$D_n = \{\lambda \in W(\eta(i_n)) \mid \lambda \in V_n\} \cup \{y_0\}$$

and consider the open neighborhood D of $\{y_0\}$,

$$D = \left(\bigcup_{n < \omega} D_n\right) \cup E$$

where $E = \bigcup \{W(\eta(i)) : i \neq i_n \text{ for every } n < \omega\}$. It is clear that D does not meet $\{\alpha_n\}_{n < \omega}$ as was to be proved.

We determine next when a space X satisfies that $X \times Y$ is a quasi-k-space for each quasi-k-space Y. The following lemma is well-known; a proof can be extracted from [2], Corollary 3.10.14.

LEMMA 2.3. The product space $X \times Y$ of a locally compact space X and a locally countably compact space Y is locally countably compact.

THEOREM 2.4. Let X be a regular Hausdorff space. The following assertions are equivalent:

- 1. X is locally compact;
- 2. If Y is a quasi-k-space, then so is $X \times Y$.

Proof. (1) \implies (2) Let Y be a quasi-k-space. According to Theorem 2.1, we can find a locally countably compact space Z such that Y is a quotient space of Z. Let φ be a quotient map from Z onto Y. By [7], Lemma 4 the function f from $X \times Z$ onto $X \times Y$ defined as

$$f = id_X \times \varphi$$

(where id_X stands for the identity map on X) is a quotient map. As, by Lemma 2.3, the space $X \times Z$ is locally countably compact, the result holds by condition (3) in Theorem 2.1.

 $(2) \Longrightarrow (1) \text{ Let } X \text{ be a non locally compact space at } x_0. \text{ We shall construct a quasi-}k-\text{space } Y \text{ such that } X \times Y \text{ is not a quasi-}k-\text{space} . To see this, let <math>\{U_i\}_{i \in I}$ be a base for closed neighborhoods of the point x_0 and consider, for each $U_i, i \in I$, a family $\{F_{\alpha}^i\}_{\alpha < \eta(i)}$ of nonempty closed sets of U_i satisfying the same conditions as in Michael's construction. Let $Y = \mathcal{K}(X)$ be the Michael space associated with this family. We shall prove that $X \times Y$ is not a quasi-k-space. For this end, given $i \in I$ and $\mu \in W(\eta(i))$, let M_{μ}^i be the closed set defined as $M_{\mu}^i = \bigcap_{\lambda < \mu} F_{\mu}^i$. Since the family $\{F_{\alpha}^i\}_{\alpha < \eta(i)}$ is well-ordered by inclusion, the set M_{μ}^i is nonempty. Now, for each

 $i \in I$, let $H_i = \bigcup_{\lambda < \eta(i)} \{M_{\lambda}^i \times \{\lambda\}\}$. Because $\bigcap_{\mu < \eta(i)} M_{\mu}^i = \emptyset$, it is

easy to check that each H_i is a closed set. We shall complete the proof by showing that $H = \bigcup_{i \in I} H_i$ is a quasi-k-closed, non closed set in $X \times Y$. In fact, for each $i \in I$,

$$H \cap \{X \times (W(\eta(i)) \cup \{y_0\})\} = H_i,$$

and, by Theorem 2.2, H is quasi-k-closed. On the other hand, for each neighborhood $U \times V$ of (x_0, y_0) , we can find $i \in I$ such that $U_i \subset U$ and, consequently, if $\mu \in V \cap W(\eta(i))$,

$$(U \times V) \cap H_i \neq \emptyset.$$

Thus, $(x_0, y_0) \in cl_{X \times Y} H \setminus H$ as was to be proved.

References

 A.V. ARKHANGEL'SKII, Function spaces in the topology of pointwise convergence, Russian Math. Surveys 39 (1984), 9–56.

- [2] R. ENGELKING, General topology, Warszawa, 1977.
- [3] E. MICHAEL, Local compactness and cartesian products of quotient maps and k-spaces, Ann. Inst. Fourier 18 (1968), 281–286.
- [4] K. MORITA, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382.
- [5] S. MRÓWKA, *M-spaces*, Acta Math. Scien. Hung. (1970), 261–266.
- [6] J. NAGATA, Quotient and Bi-Quotient Spaces of M-spaces, Proc. Japan Acad. 45 (1969), 25-29.
- [7] J.H.C. WHITEHEAD, A note on a theorem of Borsuk, Bull. Amer. Math. Soc. 54 (1958), 1125–1132.

Received November 3, 1997.