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A Note on Quasi-k-Spaces

Manuel Sanchis (�)

Summary. - We prove that for a regular Hausdor� space X the

following conditions are equivalent: (1) X is locally compact, (2)

for each quasi-k-space Y, the product space X�Y is also a quasi-

k-space.

1. Introduction

Unless the contrary is explicitly stated, all topological spaces are

assumed to be regular Hausdor�. Let � be a cover for a topological

space X with topology � . The family �(�) of those subsets of X

which intersect each S 2 � in an S-open set (i.e., open in S with

the relative topology from �) is a topology for X �ner than � . Now

to each space X and to each cover � for X we may associate the

space �(X), the same set of points topologized by �(�). Let us

call a space a �-space whenever �(X) = X. If � is the cover of

all countably compact (respectively, compact) subsets, �-spaces are

called quasi-k-spaces (respectively, k-spaces).

The quasi-k-spaces and the k-spaces appear in several �elds in

General Topology and Functional Analysis. For instead, when study-

ing compactness of function spaces in the topology of pointwise con-

vergence [1] and in the theory of M -spaces introduced by K. Morita

(�) Author's address: Departament de Matem�atiques, Universitat Jaume I, Cam-

pus de Penyeta Roja s/n, 12071, Castell�o, Spain, e-mail: sanchis@mat.uji.es

1991 Mathematics Subject Classi�cation: 54D50, 54D99, 54B10, 54B15.

Key words and phrases: quotient map, k-space, quasi-k-space, (locally) countably

compact space.

The author was supported by DGES, under grant PB95-0737.



174 M. SANCHIS

[4]. As it was showed by J. Nagata [6] a space X is a quasi-k-space

(respectively, a k-space) if and only if X is a quotient space of a

regular (respectively, paracompact) M -space.

In this note we are concerned with characterizing when a quasi-

k-space satis�es that its product with every quasi-k-space is also

a quasi-k-space. The similar question for k-spaces was solved by

E. Michael [3]. He showed that X �Y is a k-space for every k-space

Y if and only if X is locally compact. Our main result is to prove a

similar one in the realm of quasi-k-spaces.

The terminology and notation are standard. If X is a topological

space, Y is a set and g : X �! Y is an onto mapping, the strongest

topology on Y making g continuous is called the quotient topology

on Y . When Y is equipped with such a quotient topology, it is

called a quotient space of X, and the inducing map g is called a

quotient map. We denote by
L

�2AX� the disjoint topological sum

of a family fX�g�2A of topological spaces. A subset M of X is said

to be quasi-k-closed (in X) provided that M \K is closed in K for

every countably compact subset K of X. Obviously, the de�nition of

quasi-k-space can be reformulated in the following way: A space X

is a quasi-k-space if every quasi-k-closed subset is closed. We remind

the reader that a space X is locally countably compact if each point

has a countably compact neighborhood. In the category of regular

spaces each such space X has a base composed of countably compact

neighborhoods at x for every x 2 X. For terminology and notation

not de�ned here and for general background see [2].

2. The results

First we shall prove a characterization of quasi-k-spaces that it will

be used in the sequel (compare with [5], Theorem 1.2).

Theorem 2.1. Let X be a Hausdor� space. The following condi-

tions are equivalent:

1. X is a quasi-k-space;
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2. X is a quotient space of a disjoint topological sum of countably

compact spaces;

3. X is a quotient space of a locally countably compact space.

Proof. (1) =) (2) Let K be the family de�ned as

K = fK � X j K is countably compact g

and consider the space Y =
M
K2K

K. We shall prove that X is a

quotient space of Y .

To see this, de�ne the function ' from Y onto X by the require-

ment that '(x) be x whenever x 2 Y . Beginning from the fact that

X is a quasi-k-space , it is a routine matter to check that ' is a

quotient map.

(2) =) (3) It is clear.

(3) =) (1) Let ' be a quotient map from a locally countably

compact space Y onto X. Since ' is a quotient map, we need only

show that '�1(F ) is closed in Y whenever F is quasi-k-closed in

X. Suppose that there exists a quasi-k-closed subset (in X) F such

that '�1(F ) is not closed in Y . We shall see that this leads us to

a contradiction. Choose y 2 clY '
�1(F ) n '�1(F ) and let V be a

countably compact neighborhood of y in Y . ' being continuous,

'(V ) is countably compact and, consequently, '(V )\ F is closed in

'(V ). On the other hand, as '(y) =2 F , we can �nd an open set T

such that '(y) 2 T and

T \ ('(V ) \ F ) = ;:

Thus,

'�1(T ) \ '�1 ('(V ) \ F ) = ;: (?)

But, as y 2 clY '
�1(F ), there is z 2 Y satisfying

z 2
�
'�1(T ) \ V

�
\ '�1(F ):
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So, '(z) 2 '(V ) \ F . Therefore,

z 2 '�1(T ) \ '�1 ('(V ) \ F ) :

This is contrary to condition (?) and the proof is complete.

Given an ordinal number �, the symbol W (�) stands for the set

of all ordinal numbers less than �. When viewed as a topological

space this has the usual order topology. As usual, ! denotes the

�rst in�nite ordinal number. If X is a non locally compact space at

a point x0, E. Michael constructed in [3] a space K(X) associated

with X in the following way: let fUigi2I be a base of non-compact

closed neighborhoods of the point x0. For each i 2 I, since Ui is not

compact, there are a limit ordinal number �(i) and a well-ordered

(by inclusion) family
n
F i
j

o
j<�(i)

of closed subsets of Ui such that

\�
F i
j j j < �(i)

	
= ;:

Consider now the k-space Z =
M
i2I

W (�(i) + 1). The Michael

space K(X) is de�ned as the quotient space of Z obtained by identi-

fying all points f�(i)gi2I with a point y0. Since a quotient space of

a k-space is also a k-space ([2], Theorem 3.3.23), K(X) is a k-space

(and, a fortiori, a quasi-k-space). We need the following important

property of K(X).

Theorem 2.2. Let X be a non locally compact space at a point x0.

If K is a countably compact subset of K(X), then K meets at most

�nitely many elements of the family fW (�(i))gi2I .

Proof. Let K be a subset of K(X) such that there exists a sequence

fingn<! in I such that K meets W (�(in)) for all n < !. We shall

show that K is not countably compact.

Choose, for each n < !, an �n 2 K \W (�(in)). We shall prove

that the sequence f�ngn<! does not admit any cluster point in Y .

For this in turn, it su�ces to check that the point y0 is not a cluster
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point of f�ngn<!. As �(in) is a limit ordinal, there exists an open

set Vn for each n < ! such that

�n =2 Vn ; �(in) 2 Vn:

Let Dn be the set de�ned as follows:

Dn = f� 2W (�(in)) j � 2 Vng [ fy0g

and consider the open neighborhood D of fy0g,

D =

 [
n<!

Dn

!
[E

where E =
S
fW (�(i)) : i 6= in for every n < !g. It is clear that D

does not meet f�ngn<! as was to be proved.

We determine next when a space X satis�es that X � Y is a

quasi-k-space for each quasi-k-space Y . The following lemma is well-

known; a proof can be extracted from [2], Corollary 3.10.14.

Lemma 2.3. The product space X � Y of a locally compact space X

and a locally countably compact space Y is locally countably compact.

Theorem 2.4. Let X be a regular Hausdor� space. The following

assertions are equivalent:

1. X is locally compact;

2. If Y is a quasi-k-space , then so is X � Y .

Proof. (1) =) (2) Let Y be a quasi-k-space . According to Theorem

2.1, we can �nd a locally countably compact space Z such that Y is

a quotient space of Z. Let ' be a quotient map from Z onto Y . By

[7], Lemma 4 the function f from X � Z onto X � Y de�ned as

f = idX � '
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(where idX stands for the identity map on X) is a quotient map. As,

by Lemma 2.3, the space X � Z is locally countably compact, the

result holds by condition (3) in Theorem 2.1.

(2) =) (1) Let X be a non locally compact space at x0. We

shall construct a quasi-k-space Y such that X � Y is not a quasi-k-

space . To see this, let fUigi2I be a base for closed neighborhoods

of the point x0 and consider, for each Ui, i 2 I, a family fF i
�g�<�(i)

of nonempty closed sets of Ui satisfying the same conditions as in

Michael's construction. Let Y = K(X) be the Michael space asso-

ciated with this family. We shall prove that X � Y is not a quasi-

k-space. For this end, given i 2 I and � 2 W (�(i)), let M i
� be the

closed set de�ned as M i
� =

\
�<�

F i
�. Since the family fF i

�g�<�(i) is

well-ordered by inclusion, the set M i
� is nonempty. Now, for each

i 2 I, let Hi =
[

�<�(i)

�
M i

� � f�g
	
. Because

T
�<�(i) M

i
� = ;, it is

easy to check that each Hi is a closed set. We shall complete the

proof by showing that H =
[
i2I

Hi is a quasi-k-closed, non closed set

in X � Y . In fact, for each i 2 I,

H \ fX � (W (�(i)) [ fy0g)g = Hi;

and, by Theorem 2.2, H is quasi-k-closed. On the other hand, for

each neighborhood U � V of (x0; y0), we can �nd i 2 I such that

Ui � U and, consequently, if � 2 V \W (�(i)),

(U � V ) \Hi 6= ;:

Thus, (x0; y0) 2 clX�YH nH as was to be proved.
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