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A Note on Quasi-k-Spaces
MANUEL SANCHIS )

SUMMARY. - We prove that for a regular Hausdorff space X the
following conditions are equivalent: (1) X is locally compact, (2)
for each quasi-k-space Y, the product space X XY is also a quasi-

k-space.

1. Introduction

Unless the contrary is explicitly stated, all topological spaces are
assumed to be regular Hausdorff. Let X be a cover for a topological
space X with topology 7. The family 3(7) of those subsets of X
which intersect each S € ¥ in an S-open set (i.e., open in S with
the relative topology from 7) is a topology for X finer than 7. Now
to each space X and to each cover ¥ for X we may associate the
space o(X), the same set of points topologized by (7). Let us
call a space a X-space whenever o(X) = X. If ¥ is the cover of
all countably compact (respectively, compact) subsets, X-spaces are
called quasi-k-spaces (respectively, k-spaces).

The quasi-k-spaces and the k-spaces appear in several fields in
General Topology and Functional Analysis. For instead, when study-
ing compactness of function spaces in the topology of pointwise con-
vergence [1] and in the theory of M-spaces introduced by K. Morita
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[4]. As it was showed by J. Nagata [6] a space X is a quasi-k-space
(respectively, a k-space) if and only if X is a quotient space of a
regular (respectively, paracompact) M-space.

In this note we are concerned with characterizing when a quasi-
k-space satisfies that its product with every quasi-k-space is also
a quasi-k-space. The similar question for k-spaces was solved by
E. Michael [3]. He showed that X x Y is a k-space for every k-space
Y if and only if X is locally compact. Our main result is to prove a
similar one in the realm of quasi-k-spaces.

The terminology and notation are standard. If X is a topological
space, Y is a set and g : X — Y is an onto mapping, the strongest
topology on Y making g continuous is called the quotient topology
on Y. When Y is equipped with such a quotient topology, it is
called a quotient space of X, and the inducing map ¢ is called a
quotient map. We denote by @, .4 Xo the disjoint topological sum
of a family {X, }aca of topological spaces. A subset M of X is said
to be quasi-k-closed (in X) provided that M N K is closed in K for
every countably compact subset K of X. Obviously, the definition of
quasi-k-space can be reformulated in the following way: A space X
is a quasi-k-space if every quasi-k-closed subset is closed. We remind
the reader that a space X is locally countably compact if each point
has a countably compact neighborhood. In the category of regular
spaces each such space X has a base composed of countably compact
neighborhoods at x for every x € X. For terminology and notation
not defined here and for general background see [2].

2. The results

First we shall prove a characterization of quasi-k-spaces that it will
be used in the sequel (compare with [5], Theorem 1.2).

THEOREM 2.1. Let X be a Hausdorff space. The following condi-

tions are equivalent:

1. X is a quasi-k-space;
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2. X is a quotient space of a disjoint topological sum of countably
compact spaces;

3. X is a quotient space of a locally countably compact space.

Proof. (1) = (2) Let K be the family defined as

K={K C X | K is countably compact }

and consider the space ¥ = ED K. We shall prove that X is a

Kek
quotient space of Y.

To see this, define the function ¢ from Y onto X by the require-
ment that p(z) be £ whenever z € Y. Beginning from the fact that
X is a quasi-k-space , it is a routine matter to check that ¢ is a
quotient map.

(2) = (3) It is clear.

(3) = (1) Let ¢ be a quotient map from a locally countably
compact space Y onto X. Since @ is a quotient map, we need only
show that ¢ !(F) is closed in Y whenever F is quasi-k-closed in
X. Suppose that there exists a quasi-k-closed subset (in X) F such
that ¢~1(F) is not closed in Y. We shall see that this leads us to
a contradiction. Choose y € cly¢™'(F) \ ¢~ '(F) and let V be a
countably compact neighborhood of y in Y. ¢ being continuous,
(V) is countably compact and, consequently, ¢(V') N F' is closed in
©(V). On the other hand, as ¢(y) ¢ F, we can find an open set T’
such that ¢(y) € T and

TN (p(V)NF)=0.
Thus,

e (T)Ne™ (p(V)NF) = 0. (%)

But, as y € clyp~!(F), there is z € Y satisfying

z€ (M T)NV) N HF).
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So, ¢(z) € (V)N F. Therefore,

zep HT) Nt (e(V)NF).

This is contrary to condition (x) and the proof is complete. O

Given an ordinal number «, the symbol W («) stands for the set
of all ordinal numbers less than «. When viewed as a topological
space this has the usual order topology. As usual, w denotes the
first infinite ordinal number. If X is a non locally compact space at
a point zp, E. Michael constructed in [3] a space (X)) associated
with X in the following way: let {U;};c; be a base of non-compact
closed neighborhoods of the point xy. For each i € I, since U; is not
compact, there are a limit ordinal number 7(i) and a well-ordered
(by inclusion) family {F ;}j<77(i) of closed subsets of U; such that

N{F 1 <n@} =0,

Consider now the k-space Z = @W(n(z) + 1). The Michael
space K(X) is defined as the quotientlesi)ace of Z obtained by identi-
fying all points {n(7)}ic; with a point yo. Since a quotient space of
a k-space is also a k-space ([2], Theorem 3.3.23), K(X) is a k-space
(and, a fortiori, a quasi-k-space). We need the following important
property of K(X).

THEOREM 2.2. Let X be a non locally compact space at a point xg.
If K is a countably compact subset of K(X), then K meets at most
finitely many elements of the family {W (n(7)) }ier.

Proof. Let K be a subset of (X) such that there exists a sequence
{in}n<w in I such that K meets W (n(i,)) for all n < w. We shall
show that K is not countably compact.

Choose, for each n < w, an ay, € K N W (n(iy)). We shall prove
that the sequence {ay}n<w does not admit any cluster point in Y.
For this in turn, it suffices to check that the point yq is not a cluster
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point of {ay tn<w. As n(iy) is a limit ordinal, there exists an open
set V}, for each n < w such that

an € Vu, nlin) € V.
Let D,, be the set defined as follows:

D, ={XeW(n(in) | Xe Vo U{yo}

and consider the open neighborhood D of {y},

D= (U Dn>UE

n<w

where = |J{W (n(7)) : i # iy, for every n < w}. It is clear that D
does not meet {ay, }n<, as was to be proved. O

We determine next when a space X satisfies that X x Y is a
quasi-k-space for each quasi-k-space Y. The following lemma, is well-
known; a proof can be extracted from [2], Corollary 3.10.14.

LEMMA 2.3. The product space X XY of a locally compact space X
and a locally countably compact spaceY 1is locally countably compact.

THEOREM 2.4. Let X be a reqular Hausdorff space. The following
assertions are equivalent:

1. X is locally compact;

2. If 'Y is a quasi-k-space , then so is X X Y.

Proof. (1) = (2) Let Y be a quasi-k-space . According to Theorem
2.1, we can find a locally countably compact space Z such that Y is
a quotient space of Z. Let ¢ be a quotient map from Z onto Y. By
[7], Lemma 4 the function f from X x Z onto X x Y defined as

[=idx x¢
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(where idx stands for the identity map on X) is a quotient map. As,
by Lemma 2.3, the space X x Z is locally countably compact, the
result holds by condition (3) in Theorem 2.1.

(2) = (1) Let X be a non locally compact space at xg. We
shall construct a quasi-k-space Y such that X x Y is not a quasi-k-
space . To see this, let {U;}icr be a base for closed neighborhoods
of the point zy and consider, for each U;, i € I, a family {Fé}a<n(i)
of nonempty closed sets of U; satisfying the same conditions as in
Michael’s construction. Let Y = IC(X) be the Michael space asso-
ciated with this family. We shall prove that X x Y is not a quasi-
k-space. For this end, given ¢ € I and p € W(n(i)), let Mfl be the
closed set defined as MIZ = ﬂ F/i Since the family {F.}q<n) is

A<p
well-ordered by inclusion, the set M, is nonempty. Now, for each

i €1, let H = U {M} x {\}}. Because Ny<n(i) Mﬁ =0, it is

A<n(4)
easy to check that each H; is a closed set. We shall complete the

proof by showing that H = U H; is a quasi-k-closed, non closed set
el
in X x Y. In fact, for each 7 € I,

HO{X x (W(n(i) U{yo})} = Hi,

and, by Theorem 2.2, H is quasi-k-closed. On the other hand, for
each neighborhood U x V of (z¢,), we can find 7 € I such that
U; C U and, consequently, if p € V-N W (n(i)),

(U x V)N H; # 0.

Thus, (z0,Y0) € clxxyH \ H as was to be proved. O
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