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0.1 Introduction

Computational Fluid Dynamics (CFD) is an established tool for consulting
and for basic research in fluid mechanics. CFD is required to provide informa-
tion where analytical approaches or experiments would be impossible or too
expensive. Most of the flows of engineering interest are turbulent.

Turbulence is an unresolved problem of classical physics. Because of the
non linearity of the fluid motion equations, except for simple cases where
simplifications can be made, there are no analytical solutions. The Navier-
Stokes equations are one of the seven millennium problems, a list of problem
for the mathematic community proposed in the 2000 by the Clay institute,
analogous to that of Hilbert at the beginning of 1900. It is acknowledged that
a more deep comprehension of Navier-Stokes equations or some analytical tool
would have a great impact on the study of fluid motion. At the moment
the only way to face them is numerically. In particular in the last years the
increasing computer capabilities gave great possibility to study fluid motion
with this approach.

Turbulence is composed of eddies in a broad range of size. These vortices
are formed and are broken down continuously in a cascade from the largest to
the smallest ones. Larger eddies break into smaller eddies and so on till their
dimension is so small that they simply dissipate into heat because of viscosity.

To solve numerically the Navier-Stokes equations a very fine grid is neces-
sary in order to catch also the smallest eddies. The consequent computational
cost is enormous. From analytical reasoning the ratio between the largest to
the smallest eddies can be computed, in one dimension it increases as Re/*
(Re = ul/v is the Reynolds number with w and [ a characteristic inertial
velocity and length scale respectively and v the kinematic viscosity). This
means that in three dimensions and also considering time the computational
cost increases as Re®. Real flows are characterized by very large values of
the inertial scales, i.e. very large Reynolds numbers. So the direct solution of
Navier-Stokes equations (DNS) is not feasible for most of the practical flows.
On the other hand DNS is a formidable tool to understand physics since it
provides information (like two point spatial correlation, space-time evolution
of coherent structures etc.) not obtainable in physical experiments.

With DNS all the scales of motion are directly solved, but in this way these
simulations are confined just to low Reynolds number. In many applications it
is not necessary to solve all the eddies, it can be sufficient to supply the effects
of the turbulent motion to the mean flow. The feedback of the unresolved
scales of motion is given through model. This operation brings to equations for
averaged flow that are smoother, consequently the grid requirement becomes
smaller making feasible also large Reynolds number flow simulations.

These models start from physical assumptions and are often calibrated
through experiments. Reynolds Averaged Navier-Stokes equations (RANS) is



one of these approaches, the flow is resolved for the mean flow and all the scales
of motion are parametrized. It is an extremely cost saving procedure with
respect to DNS. From the averaging procedure an additional stress appears
due to the non linearity of the advective term of the momentum equations.
Because of this additional stress the number of unknowns is larger than the
number of equations and a closure is needed to obtain a solution. The fore
mentioned model for the unresolved scales of motion has exactly the role to
close the equations. However it is difficult to formulate a general model for this
procedure. The smallest scales, far from the boundary, can be approximatively
considered as isotropic and so they can be easily modeled in a general way.
On the other hand the large scales are strongly influenced by the boundary
conditions and it is impossible to derive a general model for them. However
RANS can be very useful to obtain rough results on macroscopic quantities in
reasonable time, also if it cannot give accurate details of the flow behavior.

As computers become powerful the range of turbulent scales that can be
directly solved increases. In the past meteorologists started to solve only the
large-scales of turbulent motion because they are fundamental for weather
forecasting, while the smallest ones were modeled. These scales are important
only in the way they affect the largest ones. This idea can be now applied
also to complex environmental and industrial flows. This numerical approach
is the Large Eddy Simulation (LES) and it can be located in between DNS
and RANS.

In LES most of the scales of motion are directly solved, in particular all the
large energy carrying scales, the ones that extract energy from the mean flow.
These scales are influenced by the boundaries and they are strongly anisotropic.
The smaller and dissipative scales must be modeled, but these scales loosing
memory of the boundary conditions are more isotropic and hence formulating
a general model that accounts for their effect is relatively easier. The scale
separation is formally carried out by the application of a low-pass filter to
the Navier-Stokes equations. The filter width is proportional to the grid reso-
lution. The turbulent structures with dimension lower than this length scale
represent the subgrid level whose effect must be supplied to the flow field. This
means that asymptotically LES tends to DNS. There is a substantial concep-
tual difference between RANS and LES. At a certain level of grid refinement
the results obtained through RANS become insensitive to other refinements,
instead LES results become closer and closer to DNS results. This is because
the dimension of the resolved size depends on the filter width, and all the
scales of motion can be directly solved with a sufficient small filter. In this
way LES provides good accuracy and its computational cost is reasonable in
comparison to DNS.

Nowadays the use of parallel-architecture supercomputers makes Large
Eddy Simulation a tool for investigation in real life problems, in particular
when high detailed analysis is required. This is the case for many industrial



and environmental processes. In general these flows are characterized by very
complex physical phenomena that often cannot be caught in a proper way with
simplified models, like the ones used in RANS.

Sea coastal flows are a clear example of this. These regions are in gen-
eral shallow and characterized by complex geometry. The shallowness makes
the bottom surface layer to encroache upon the Ocean Mixed Layer (OML,
a review is in Phillips (1977), [53] ), hence producing a single turbulent layer
extending along the whole water column. The shallowness produces also wave
breaking and generation of along-shore currents. The presence of the coast-
line, rapid varying bathymetry and anthropic structures introduces complexity
in the flow field, making it essentially three-dimensional. In semi-closed basins
(i.e. bays) the interaction between the wind-driven surface current and the
coast-line develops a mean circulation in the vertical planes, essentially char-
acterized by the inversion of the mean velocity field in the bottom layers of
the water column with respect to the upper layer field. This creates additional
vertical shear resulting in enhanced turbulent production. Finally, buoyancy
effects interacting with bathymetric gradients may favor additional circula-
tion associated, for instance, to the downwelling of cold/salt water along the
inclined bottom surface.

Traditionally, two-dimensional shallow-water approximation has been used
in coastal problems, through the use of numerical models where three-dimensional
effects are parameterized by means of calibration of empirical coefficients. Such
approach has been shown to be effective in reproducing hydrodynamics char-
acteristics of large scale shallow basins, where circulation in the vertical planes
and buoyancy effects are negligible compared to mean horizontal transport (see
[70]). In all other cases three-dimensional models must be used. Apart the
numerical methods (time integration, space discretization, type of grid) these
models mainly differ for the turbulence closure employed. This is a particularly
suited configuration to take advantage of LES closure.

As highlighted before the main advantage of LES compared with classi-
cal RANS approach consists in the fact that the largest scales of the motion,
which in a shallow-water three-dimensional basin are strongly anisotropic, are
directly resolved in a three-dimensional time-dependent simulation, whereas
the subgrid scales are parametrized through a closure model. Due to the geo-
metric and physical complexities arising in coastal processes, a LES simulation
is expected to give more accurate results compared to a RANS-like numerical
model which generally uses turbulence models derived from industrial applica-
tions (mostly from the aerodynamic field) and calibrated on archetypal cases
typically far from being representative of coastal applications.

The same reasoning applies to many industrial processes. RANS model can
give reasonable values for the macroscopic variables, for example the pressure
gradient in a pipe with a valve inside. On the other hand LES can furnish
details on the characteristics of the flow, it can highlight if the flow goes under



cavitation somewhere close to the valve.

For example, acoustic problems due to hydrodynamic noise are governed
over a range of large scales which are easily reproduced by LES solution.

However in these types of flows many difficulties arise also for LES. In gen-
eral these flows are characterized by high inertial scales values. These charac-
teristic scales bring to high Reynolds number simulations. Wall-bounded flow
at high Re requires high computational cost, in fact near solid boundaries also
the small scales are anisotropic and energetic and in the end LES is constrained
to be DNS-like. Besides complex geometries are often involved. Structured or
Unstructured body-fitted grid can be very hard to made, moreover unstruc-
tured grid can be expensive and not suited for LES.

Scope of this thesis is to develop tools to apply LES to such configurations
in order to make numerical simulation more adaptable to real life problems.

The work is structured in the following way: chapter 1 gives an introduction
to the equation set; chapter 2 deals with complex geometry, here the well
established Immersed Boundary Methodology is extended from Cartesian to
curvilinear coordinates. Chapter 3 considers the Immersed Boundary in the
contest of high Reynolds number flows, so the chapter is mainly focused on
wall modeling. In chapter 4 a modified Smagorisky model for anisotropic
grid is proposed. In chapter 5 particle dispersion is considered in stratified
environmental flow. Finally in chapter 6 the developed tools are applied to an
industrial and to an environmental problem.



Chapter 1

The governing equations

1.1 The governing equations

The Navier-Stokes equations govern the fluid motion. For many applications in
industrial and environmental processes they can be written under the Boussi-
nesq approximations considering the fluid as incompressible. In this way in the
continuity equation the density variations are considered negligible compared
to the magnitude of the velocity gradient. Also in momentum equations these
variations are ignored except in the vertical momentum equation, where they
affect the motion through the buoyancy term. This assumption is correct only
if the density anomaly inside the fluid is just a fraction of the state of reference
po- In a Cartesian frame of reference the equations read as:

ng =0 (1.1)
. 7. 2,
aa?ffl * 85;? B _%gfi V@fjg;j - %95@2 + Bi (1.2)
. 2
aa_’f+agg B kajjng (1.3)
. 2
% * ag;;g = ks ajjng (1.4)

In equations (1.1) and (1.2) u; is the velocity component in direction 4, x; is
the spatial coordinate in direction 7, ¢ is time, P is pressure, v is the kinematic
viscosity characteristic of the fluid, ¢ is the gravitational acceleration, Ap is
the density anomaly and py the bulk density, while the term B represents the
body forces (other than gravity) acting over the fluid element as the Coriolis
force. The effect of density variations is retained in the vertical momentum
equation (here direction 2) through the buoyancy term Ap/pogd; ».

Equations (1.3) and (1.4) represent the advection-diffusion of temperature



and salinity respectively, k and kg are the coefficients of thermal and salinity
diffusion.

On the right hand side of eq. (1.2) the term p can be expressed in terms
of temperature and salinity through the state equation:

p=poll —a(T' = 1) + (S — S)] (1.5)

where a and [ are the expansion coefficients for temperature and salinity
respectively.

1.2 The equations set in curvilinear form

Equations (1.1) - (1.4) are written in a Cartesian frame of reference. In case
of domain with complex geometry it is better to transform the equations in
curvilinear coordinates &;. Figure 1.1 shows an example of coordinates trans-
formation between the physical and the computational space. The advantage
of this transformation is that the new frame is able to follow physical shape if
not too sharp. The coast line in the study of a sea coastal flow is an example.
In this way the boundary conditions can be easily imposed on the geometrical
contour.
Considering the relation:

8;1:J- N (%k Ga:j

the equations of section 1.1 become:

£ congtant

1=by

T—~ 3 AE=1

Figure 1.1: Coordinates transformation from the physical to the computational
space.
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where the gravitational term has been included in B and Fj,, is:
0& ou;
Fip = Upu; + J ' 22p — vGM 1.
; u; +J o, p—vG o, (1.8)

&m (m = 1,3) are the coordinates in the transformed (rectangular and regular)
computational space, with .J~! the inverse of the Jacobian or the cell volume;
U,, is the product between the contravariant velocity and the inverse of the
Jacobian and represents the volumetric flux normal to the surface &,, = cost.
The transformed pressure term represents the flux of the pressure gradient
through the faces of the cell in the physical domain, while the third term on
the right hand side of (1.8) is the transformed diffusive term, which represents
the fluxes of the viscous stresses through the faces of the cell. The term G™"
is the “mesh skewness tensor”.

The governing equations can be solved using a finite difference or a finite
volume approach; in the latter case the metric terms appearing in egs. (1.6)
and (1.7) assume the meaning of distances, surfaces and volumes in the phys-
ical, curvilinear, space.

The terms in egs. (1.6) - (1.8) are:

m

_ g-1x5m

Un=1J o, u; (1.9)

oz,
Jt = det(== 1.10
e (1.10)
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Finally the equation for the advection and diffusion of a scalar can be
written as:

—1
oJ-'C  U,C D ( 8(]) 112

o e, oe 9o

n
where C' can be the temperature or the salinity.

1.3 The equations set in discretized form

The equations are integrated in space and time using the fractional step as in
[75]. If a non-staggered grid is used the pressure and the Cartesian velocity
components are defined at the centroid of the cell while the contravariant fluxes
are defined at the cell boundaries as in Fig. 1.2.
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Figure 1.2: Distribution of velocities (Cartesian and contravariant) for a two
dimensional case in a computational cell.

The equations can be integrated in time with an explicit or a semi-implicit
scheme. In the latter case an Adam-Bashfort scheme can be used for the ad-
vective term, the forcing and the off diagonal diffusive term, while the diagonal
diffusive term can be advanced in time with a Crank-Nicolson scheme. In this
way the diffusive stability limit is overcome. Further discussion concerning
the time advancement scheme will be presented in chapter 2 concerning the
Immersed Boundary Method.

Once discretized, the momentum equation will read:

n+1 n
1 U U
At

| W

(C(up) + D (uf) + BY)—5 (Cui™) + Dp (™) + B)

PR () + 5 (D (uf ™) + D () (1.13)

where C is the advective term and D; and Dg are the diffusive terms treated in
an implicit or explicit way respectively. Finally R; is the gradient operator in
curvilinear coordinates. Here a symbolic form is used to express the discretized
terms, which is general for any mathematical formulation of the conservation
laws.

Introducing an intermediate velocity u} between u}"™' and u} the mo-
mentum equation can be split into two steps, usually called predictor and
corrector.

The predictor step is concerned with the time advancement of the advective
and diffusive transport of momentum

At * n
(I - 2J1D1) =) =
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(1.14)
while the corrector step adjusts the flow field through pressure.
At
uptt —uf = 1 [Ri (v")] (1.15)

where 1) is a projector operator equal to the kinematic pressure in explicit
scheme, see [1]. The procedure requires the solution of a Poisson equation
for ¢, that enforces the continuity equation. The Poisson equation in the
curvilinear coordinates form is:

O (@0 10U
i (6 5) = miae (119

where the term Uy, = J~'0&,,/0x; u} is the intermediate contravariant flux,
built with the intermediate velocity field w!. The Poisson equation for the
pressure field is solved using a SOR iterative technique in conjunction with a
V-cycle multigrid method.

The curvilinear coordinate fractional step method of [75] also requires the
evaluation of the contravariant fluxes at the new time level:

urtt = U — N (1.17)

n
After this procedure the time step n+ 1 is obtained and the next temporal
step is advanced.
The equation for advection and diffusion of a scalar is treated as the pre-
dictor step.

1.4 The equations for LES

As introduced at the beginning of this thesis the LES is based on the direct
solution of the energy carrying scales of motion, while the smaller scales are
modeled. The scales separation is mathematically performed by the applica-
tion of a low-pass filter to the variable:

7 = / Gz, o)da’ (1.18)

where G(z,2’) is the filter function. Every filter has an associated length scale
A, for this reason the turbulent structures with a scale lower than A must be
modeled.

After the filtering operation the equations set becomes:

12
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The effect of the unresolved scales of motion appears through the tensor
o

Further details on how to model this stress will be presented in chapter 3
and 4.

Finally the equation for the advection diffusion of a scalar can be written
as:

oJj-t¢ ou,C 0 ( 80)_8&”8)\1 (1.22)

= kGmn — —
o 06, 06 96, ) ~ Bu, 06,
with \; the subgrid density fluxes.
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Chapter 2

An improved Immersed
Boundary Method for
Curvilinear Grids

This chapter has been developed in a scientific cooperation with Prof. E.
Napoli and Ph.D. B. Milici of the DITAA of the University of Palermo. The
work has been published in the journal: Computer & Fluid, [57].

Most engineering flows develop in complex geometrical domains. Numerical
simulations of complex geometry flows require boundary-fitted unstructured
grids or multiblock/multidomain curvilinear structured grids, which often have
to move or to deform according to the velocity field. The use of unstructured
grids, nevertheless, results in the increase of computational costs with respect
to structured formulations, since a larger number of operations per grid point
is required (see [6] for a discussion). On the other hand, curvilinear structured
grids are suited for weak-to-moderate geometric complexity, whereas high level
of geometric complexity (practical industrial and/or environmental flows) often
requires computationally expensive multidomain approaches, and the use of
highly distorted cells.

An effective and comparatively less expensive approach for handling com-
plex geometry flows is the immersed boundary method (IBM), where the gov-
erning equations are discretized using a Cartesian grid system and the presence
of a boundary surface within the computational domain is represented through
a special treatment of the field equations. Specifically, the approach, which
was first introduced by Peskin [52], mimics a boundary surface using a field of
external forces applied in the interior of the computational domain.

After the seminal paper of Peskin [52], modifications and improvements
were proposed. Among them, Goldstein et al. [28] proposed to obtain the
external forces as a function of the difference between the calculated velocity
at the boundary surface internal to the domain and the velocity of the bound-
ary itself (feedback forcing). The main drawbacks of such approach are that
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it requires the tuning of two flow-dependent constants and that it has very
restrictive stability limits for the time step. A different technique was succes-
sively proposed in [47], which allows to directly impose the desired velocity at
the boundary (direct forcing), without introducing any additional parameter.
The direct forcing approach also allows to partially alleviate the problem re-
lated to the stability limits, as extensively shown by Verzicco and co-authors
in a series of papers ([22],[72],[17]). In both cases the use of interpolation pro-
cedures is required to enforce the desired solution at the immersed boundary,
since the position of the unknowns on the grid in general does not coincide
with that of the immersed boundary. Fadlun et al. [22] showed that the tech-
nique of Mohd-Yusof [47] allows obtaining very good results in the simulation
of complex geometry flows, but some ambiguities remained associated to the
suitable choice of the direction of interpolation. Interpolation procedures were
thus successively improved by Kim et al. [34], Gilmanov et al. [26] and Balaras
[6]. In particular, the latter proposed to interpolate the velocity along lines
normal to the body surface. This modification improved the quality of the
results in the near body region. Owing to the ability of the IBM in managing
flows in complex geometries, the methodology has been recently extended to
the relevant case of compressible flows (see for example [18] and [19]).

So far the IBM has been employed in conjunction with Cartesian-grid
Navier-Stokes solvers. This allows modeling complex boundaries using Carte-
sian grids and thus retaining the accuracy and efficiency of regular-grid com-
putations. However, there are a number of applications where the use of a
Cartesian grid solver may result in high computational inefficiency, and the
implementation of the IBM in curvilinear grid solvers may be beneficial. Fig-
ure 2.1 shows a typical example where a curvilinear structured grid used with
immersed boundaries may produce high quality grids at a reduced computa-
tional cost when compared to the Cartesian counterpart. In other cases special
constraints to the grid point distribution close to a solid surface have to be
imposed. An example is given by the direct numerical simulation or resolved
Large Eddy Simulation of turbulent fields, where at least 8 grid points should
be placed within 10 wall units of a solid wall (see [54] and the literature therein
cited). In these cases the use of Cartesian grids can result in a very high num-
ber of grid points near the boundaries, associated to a poor grid quality (see
for example Fig. 2.2a), whereas the opposite is true when curvilinear grids are
employed (Fig. 2.2b).

The importance of the extension of the immersed boundary technique to
curvilinear structured Navier-Stokes solvers has been already highlighted in
46].

Kim et al.,[34] applied IBM to cylindrical coordinates. Cylindrical grid
formulations, nevertheless, although not Cartesian, belong to the family of
orthogonal coordinates schemes. Their use, moreover, remains confined to
the study of a special class of problems, where a bulk cylindrical geometry
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Figure 2.1: Examples of computational grids for the simulation of the flow
around a valve placed within a S-shaped duct. a) Immersed boundary used
with a Cartesian grid; b) Immersed boundary used in conjunction with a curvi-
linear grid. In the present example the advantage of using a curvilinear struc-
tured solver comes from the overall geometric characteristics of the duct.
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is combined with obstacles to give an overall complex shape. The extension
of the immersed boundary technique to non-orthogonal curvilinear grids can
be thus considered as an alternative and more general approach which allows
discretization of flow domains of general shape.

Another issue worth discussing is that, so far, the implementation of IBM in
Navier-Stokes solvers has been mainly pursued using explicit schemes for the
time-advancement of the solution, with the notable exception of Fadlun et al.
[22]. Specifically the authors implemented an implicit direct forcing method in
conjunction with a Cartesian solver that used a semi-implicit time-integration
technique, with the aim to alleviate the limitation on the time step. The
implicit calculation of the forcing terms, which is straightforward when the
interpolation proposed in [22] is used, requires on the contrary the inversion of
large sparse matrices or iterative methods when more accurate interpolation
procedures, such as those proposed by Gilmanov et al. [26] and Balaras [6],
are used. The explicit calculation of the forcing terms in conjunction with a
semi-implicit solver was proposed in [34]. Nevertheless, the procedure requires
to solve the momentum equation twice (the first one to obtain the forcing field,
the second one to advance the solution in time).

The aim of the research presented in this chapter is to:

1. to extend the well established direct forcing, immersed boundary method
[26, 6] to the curvilinear form of the Navier-Stokes equations;

2. to extend the IBM of [26] and [6] to any-shaped immersed surfaces, also
including the case of sharp corners;

3. to propose and evaluate the accuracy of a simplified direct-forcing semi-
implicit technique, which does not require the double resolution of the
momentum equation at each time step.

This way it is possible to have a unique solver which can be efficiently used
without limitations in geometrical complexity. A Cartesian-like geometry be-
comes just a particular case which can be easily afforded using the proposed
technique.

Numerical tests are carried out to test the method, which is applied in
steady and unsteady flow conditions considering 2-D as well as 3-D flows.

2.1 The direct forcing Immersed Boundary tech-
nique

The Immersed boundary methodology is based on the identification in the
computational grid of a solid region delimited by an interface. When the
direct forcing approach is employed, a forcing term and a mass source/sink

17



Figure 2.2: Computational grids for the simulation of the flow around a groin
built on the side of an open-channel. a) Immersed boundary used with a
Cartesian grid; b) Immersed boundary used in conjunction with a curvilinear
grid. In the figures the distance between the internal boundary and the nearest
grid point is maintained below d /20, where d is the width of the groin. In this
example the choice of a curvilinear solver allows obtaining a high quality grid
near the obstacle with a reduced number of grid points.
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term are added on the right hand sides of the Navier-Stokes and continuity
equations, respectively, aimed at miming the correct boundary condition at
the interface. Working in the curvilinear-coordinate framework, the governing
equations of section 1.2 read as:

oU,,

m -1
9, J g (2.1)
L 0u;  OUu, 4 Op 0¢, 0 ou; _ _
1 1 mn 1p 1
St e = e e e VG ) H T B T (22)

where f;, g are the forcing and mass source/sink terms discussed above. The
additional terms g and f; are built in such a way to obtain the desired boundary
conditions at the interface. Apart the relevant paper [34], in the literature the
mass source/sink term in the continuity equation g has not been considered.
In the general cases, thus, the presence of an immersed boundary has been
accounted for by means of the forcing term f; in the momentum equation only.
This technique has proven to give satisfactory results (see among the other the
recent review of [45]). For this reason here the source/sink term g is neglected
and the immersed boundary is thus considered through the forcing term f;
in the momentum equation. The term f; is aimed at forcing velocities in the
points surrounding the interface ¥ (in the nodes that will be referred as IB
points) to assume values urp; compatible with the desired boundary condition
on ¥ (a formal definition of IB points will be given in Section 2.1.1). Since 1B
points generally do not lie on the surface ¥, velocities urp,; must be obtained
through suitable interpolation procedures among the surrounding nodes. As a
consequence, the forcing term will depend on the velocities in these nodes as
well.

Although in principle the IBM may be used in conjunction with any algo-
rithm which integrates the Navier-Stokes equations, as in [22] the implemen-
tation in the framework of fractional step methods is discussed, specifically
the curvilinear-coordinate, fractional step method described in [75], a brief in-
troduction is in section 1.3. This represents an extension of the semi-implicit
fractional step method of [35]. Although the algorithm of [75] is semi-implicit,
hereafter it is discussed the implementation of the IB methodology both for
explicit and semi-implicit versions of the solver.

Consider now the discretized equations first introduced in section 1.3 but
for an explicit time advancement:

———— + a[C(u}) - D(u}) — BY] +
BlCW ™) =D ) =B '] - f;=0 (2.3)

7

1 = —GRAD(p) (2.4)
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the term GRAD;(p) denotes the discretised form of the pressure gradient. The
parameters a and [ depend on the adopted numerical scheme (for instance,
a =3/2 and § = —1/2 when the Adams-Bashforth scheme is used as in 1.3).
Eq. (2.3) must be solved to obtain the predictor-step velocity u?.

The forcing field is required to give the desired boundary conditions on
U for the corrected velocity field u?™. Following a well-established procedure
(see, for example, [34] and [6]), it is possible to enforce the boundary conditions
on the intermediate time level u} instead that on u}*'. The forcing function

can be thus obtained as [6]

We —us .

fi = 2P T alCuy) = D(ul) = BY) +
B(Cui™") = D(u™") = Bf™")] on ¥

fi = 0 elsewhere (2.5)

where ujp ; is the intermediate velocity in IB points compatible with the bound-
ary conditions on W. When IB points lie on ¥ the velocity ujg; coincides with
the immersed body velocity, while in the general cases interpolation procedures
are required, as will described in section 2.1.2. It is simple to show that cal-
culating f; from eq. (2.5) and then resolving eq. (2.3) is equivalent to resolve
eq. (2.3) with f; = 0 and then directly impose u; = ujz; in IB points, without
recurring to the explicit calculation of f;.

Several Navier-Stokes solvers make use of semi-implicit approaches, where
the convective terms are calculated explicitly and the diffusive terms implicitly,
to remove the viscous stability limit for the time step. Specifically, the semi-
implicit time-advancement of the predictor step gives rise to the following
equation:

1 — JAtD](u)) = u] +
At [a[-C(u}) + B+ B[—C(uf™) + B '+ 6D(u})] + Atf{2.6)

where the weighting coefficients v = ¢ = 0.5 produce the 2nd-order accurate,
implicit Crank-Nicolson scheme.

Nevertheless, the use of the forcing procedure described above in conjunc-
tion with semi-implicit approaches is not straightforward. Even using the
approximation ujp; = uj}}, the forcing term in eq. (2.6) should be calculated

as:

fo= M DGy 0D +
[2[C(u}) — B+ B[C(u}") — B 1] (2.7)

where the calculation of the term D(ujp ;) would require the prior knowledge
of the velocities u} (that are still unknown) in the whole stencil of the operator
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D centered on IB. The main difference with the explicit approach thus is that
in the semi-implicit approach the velocities ;] in IB points depend on those
in non-IB points through the second-order derivatives of the diffusive terms.
Thus, the calculation of w} with f; = 0 in non-IB points and then the use
of these values to obtain through suitable interpolation velocities ujp; in IB
points - as it is done in the explicit approach - would introduce additional
errors. As a consequence, the calculation of the forcing field f; would require
the inversion of large sparse matrices, as also discussed in [6]. Note that this
is not the case in the explicit approach.

Kim et al. [34] overcame the mentioned problem using a mixed explicit-
implicit procedure. This procedure is based on: a) the resolution of the explicit
eq. (2.3) with f; = 0 to obtain a provisional velocity field @; b) the calculation
of velocities ujp; in every IB point through interpolation of the velocities

*

@} in the surrounding computational nodes; c¢) the calculation of the forcing
field using eq. (2.5); d) the solution of eq. (2.6) to obtain the predictor-step
velocities u;. The formulation of [34] does not introduce additional errors as
discussed above, although it requires the subsequent resolution of eqs. (2.3)
and (2.6).

Here a simplified and alternative procedure is proposed. First the implicit
equation is solved:

1 — AAD|(i) = uf -
At [a[C(u?) + BY] + BIC@! ™) + B = 6D()]  (28)

without introducing any forcing term and using boundary conditions calcu-
lated at the intermediate time level, to obtain a preliminary velocity field ;.
Velocities uig; in IB points are then obtained through suitable interpolation
of velocities @} and, finally:

u; = wurg,; in IB points
T = u; elsewhere (2.9)

u i

This procedure neglects the dependence of velocities @} in non-IB points on
the forcing term f; in IB points. It is worth noting, nevertheless, that the lack
of the forcing term in IB points when resolving eq. (2.8) influences the velocity
field @} everywhere through the implicit evaluation of diffusive terms. In order
to evaluate the error introduced by this procedure, subtracting eq. (2.8) from
eq. (2.6), we obtain:

[1 — yALD)(u} — @) = Atf; (2.10)

where u; — @ is the difference between the correct and the approzimated in-
termediate velocities. Since the forcing term f; is non-zero in IB points only,
the relation between u; and @ in non-IB points is easily obtained from eq.
(2.10) as:

u; = u; +yAtD(u; — ay) (2.11)
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Equation (2.11) clearly shows that although an error arises in calculating the
velocities @7, it is proportional to vAt (or to At/Re when equations are made
non-dimensional using suitable velocity and length scales 4 and [ and Re =
al /v). Considering that the error arising in the implicit procedure here pro-
posed decreases with the Reynolds number and that the time step is limited
by the CFL condition, as will be extensively shown later on through the paper,
the quality of the results is not appreciably affected by the time step of the
simulation.

Once the intermediate velocity field is evaluated in all the active grid points,
the velocities in the solid points are set equal to zero and the intermediate
contravariant fluxes U, are calculated. These fluxes are used for the solution
of the curvilinear form of the Poisson equation (eq. (1.16)). Finally, according
to the algorithm of [75], the new velocity field and the new contravariant
fluxes are independently calculated using respectively eqgs. (1.15) and (1.17).
Similarly to the Cartesian-coordinate version of the direct forcing IBM of [22],
in the numerical tests it has been observed that the results are insensitive to
the values of the intermediate velocities and contravariant fluxes at the solid
points.

2.1.1 Identification of fluid and solid points

Application of the Immersed boundary methodology preliminary requires the
identification in the computational grid of fluid nodes, lying in the fluid phase,
and solid nodes, which on the contrary are located in the solid phase. The
fluid nodes surrounded by at least one point in the solid phase (see Fig. 2.3)
are classified as immersed boundary nodes (IB).

Gilmanov et al. [26] proposed a procedure to identify fluid and solid nodes
which can be applied to one immersed body only, having convex shape. More
robust techniques are based on ray-tracing algorithms, similar to those used
in 3D computer graphics (see for example [67, 27]). In this paper it is used
a simple and robust ray-tracing procedure, which is able to address situations
involving multiple and/or concave immersed boundaries. The surface of the
immersed boundary ¥ bounding a closed body is discretised using an unstruc-
tured grid of plane triangular elements, as in [6]. The triangles are used since
they are the plane geometrical figures better suited to adapt themselves to
general shape surfaces and to univocally identify the normal direction. Then,
the ray starting from one grid node and passing through the centroid of one
arbitrary triangular element of the surface U is considered. The ray will cross
U a finite number of times: the initial grid node is then classified as a solid
node or a fluid node depending on whether the total number of these intersec-
tions is odd or even (see Fig. 2.4). The procedure is then repeated for each of
the grid nodes, considering every time a new ray starting from the pivot node.

A particular situation occurs when the selected ray is tangent to the surface
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Figure 2.3: Identification, for a two-dimensional grid, of solid nodes (small solid
squares), fluid nodes (small empty circles) and immersed boundary nodes, 1B
(small circles marked with a cross). For each IB node, identification of the
intersection point (IP) and the projection point (PP), located at distances d;
and dg, respectively, from (IB). Here we choose dy = d;. V is the pivot point
for the interpolation of the fluid velocity upon the PP point.
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¥, since the number of intersections of the ray with ¥ cannot be calculated
and the procedure to identify solid and fluid nodes fails. To overcome this
problem, whenever the ray intersects one of the triangles of the immersed
boundary forming an angle with the normal to the triangle equal (or very
close) to m/2 (see Fig. 2.5), the ray is replaced with a new ray obtained using
a new surface element and the calculation of the number of intersections is
restarted. This latter procedure is repeated if the new ray is again parallel
to the surface. Since the surface of the immersed boundary is closed, there
exist surface elements such that the ray joining its centroid with the grid point
intersects the surface with an angle smaller than 7/2. Finally, the grid nodes
surrounding each solid node are classified as IB points if lying in the fluid
phase.

// /3 LA
/
O O O O O O O O / M
v[ [T /
’h / [ ]

Figure 2.4: Identification of fluid and solid nodes, based on the ray-tracing
technique. a) 2D scheme, where a Cartesian grid is showed for the sake of
simplicity and the triangular surface elements collapse into segments. b) 3D
example, showing a torus and a cylinder, whose surfaces are discretised using
triangular elements.

Special situations may arise in presence of a moderate-to-strong concave
surface. Figure 2.6 illustrates a typical case, where a cloud of IB points is
located close to a concave surface. In these cases two strategies may be ac-
complished: 1) to increase the grid resolution in the concave region; 2) to
switch off the internal IB points (namely the points which do not confine with
fluid nodes) turning them into solid points. This operation corresponds to
move the actual body surface over the IB nodes switched off.

2.1.2 Calculation of velocities in IB points, using curvi-
linear coordinates

Here, some modifications to the state-of-art techniques are proposed to extend
the IBM to the curvilinear coordinate case. As discussed above, suitable in-
terpolations are required to calculate the velocities in IB points whenever they
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Y

Figure 2.5: Occurrence of orthogonality condition (o = 7/2) between the
current ray and the line normal to the immersed surface. A new ray must be
chosen to identify solid and fluid nodes

Figure 2.6: Concave surface where some IB points confine with IB and Solid
points only (bold line). Turning internal IB points into Solid nodes corresponds
to move outward the actual body surface (thin line).
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do not lie on the immersed surface W. Similarly to the proposal of [6], for
each of the IB nodes two points (the intersection point IP and the projection
point PP) are first identified. The point IP is placed at the intersection of the
immersed boundary with a line [ passing through the IB point and normal to
the immersed boundary itself (see Fig. 2.3). Since the surface WU is discretised
using triangular elements, the identification of lines normal to the immersed
boundary is straightforward. The projection point (PP) is instead identified
as a point belonging to the line [ and standing on the opposite side of IP
with respect to the current IB point. Specifically, PP is identified setting the
distance dy between PP and IB equal to the distance d; between IP and IB
(Fig. 2.3). After having identified the points IP and PP, the velocity in the
current IB point (which is placed in the line [ at the mid-point between IP
and PP) can be obtained through the linear interpolation of the velocities u;p
in IP and upp in PP. Since points IP lie on the immersed boundary, velocities
urp coincide with the immersed surface ¥ velocity and thus are known. The
PP velocities can be obtained instead through the interpolation of velocities
at the surrounding fluid nodes. This interpolation is straightforward when the
fluid nodes are equispaced or when they belong to a Cartesian mesh. Typ-
ically, interpolation methods on Cartesian grids are linear and use different
geometrical weighting procedures producing similar interpolation functions in
terms of performance and accuracy. Some of these procedures make use of
geometry-based algorithms which may be applicable only for regular meshes
or may result in significant loss in accuracy when non-regular computational
grids are used. Other procedures are based on iterative methods which re-
quire properly defined residuals to check the convergence of the solution (for a
discussion see [42]). In order to extend the applicability of the IBM to curvi-
linear grids, th velocity upp is calculated using a very simple and effective
interpolation technique suited for curvilinear meshes [42]. The technique is
based on the use of the Taylor expansion of the function w; about the fluid
node closest to the PP point (referred to as node V in Fig. 2.3) up to the
order of accuracy required by the NS solver. In order to deal with curvilinear
meshes, the derivatives of the Taylor expansions are re-written in the com-
putational space and calculated taking advantage of the metric terms already
computed and stored for the space discretization of the governing equations.
For second-order spatial accuracy we have:

Uppi = Uy, -+ (-TPP,i — xV,i) { :| + O(Al’Q) (2.12)
1%

Since the velocity derivatives in point V usually depend on velocities in 1B
points (see Fig. 2.3 for an example), we apply eq. (2.12) to all IB points
and then iterate the procedure up to convergence. In the tests described
in the next section, the iterative algorithm proved to converge to round-off
error in three or four cycles. Although the application of this technique may
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look more expensive than simple interpolation between surrounding nodes,
it requires a very small additional fraction of CPU time and is simpler and
more accurate than linear interpolation applied to curvilinear meshes. When
working with bodies with high curvatures or corners, the procedure described
in this subsection may fail. In these cases, in fact, it may happen that no
intersection point IP can be identified along the line normal to the surface ¥
(see for instance Fig. 2.7). In this case it is choosen as point IP the intersection
between the line normal to the closest edge of the triangles and the edge itself
(Fig. 2.7a). When even this intersection cannot be identified, as in Fig. 2.7b),
the closest vertex of the triangle is used as point IP. The procedure then can
be applied without any further change. In the next section the accuracy of

Figure 2.7: Examples of the proposed identification methodology of intersec-
tion (IP) and projection (PP) points for sharp or high curvature immersed
surfaces.

the proposed method on curvilinear grids will be evaluated and its advantages
with respect to applications on Cartesian grids will be shown.

2.2 Numerical tests

In the present section we show the results of three tests, aimed at the vali-
dation of the curvilinear coordinate, immersed boundary method (CC-IBM)
herein proposed. First, in order to evaluate the accuracy of the method the re-
sults of simulations of a three-dimensional steady Stokes flow around a sphere
are shown. The analytical solution is know in literature. Successively, in or-
der to prove the reliability of the technique at larger values of the Reynolds
number, the results of simulations of a two-dimensional, unsteady oscillatory
flow around a circular cylinder at a finite value of the Reynolds number are
reported. In particular it has been reproduced the test case used in the Pri-
ority Research Program 'Flow Simulation on High Performance Computers’
of the German Research Association (DFG), whose results are extensively re-
ported in Schéfer and Turek [62]. Finally it is quantified the superiority of the
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present approach with respect to a classical one which uses Cartesian grids in
the problem illustrated in Fig. 2.1, which is representative of a class of ap-
plications where the use of a Cartesian grid may result in high computational
inefficiency.

In the tests discussed in the present section the unsteady incompressible
Navier-Stokes equations in curvilinear coordinates are solved using the finite-
volume fractional-step method [75]. In the algorithm a collocated finite-volume
method is implemented on a non-orthogonal structured grid consisting of non-
overlapping hexahedral cells. Spatial derivatives are discretized using a second-
order accurate centered scheme, whereas time-integration is carried out using
an explicit second-order accurate Adams-Bashforth scheme.

The algorithm is described with details in [13] and [39] and is also used in
[31].

2.2.1 Stokes flow around a sphere

The Stokes flow around a sphere is used to verify the accuracy of the pro-
posed method in three-dimensional steady-flow under diffusion-dominated con-
ditions. The well known analytical solution for a Reynolds number Re =
uors/v < 1 (where wug is the free-stream velocity, 7 the radius of the sphere
and v the kinematic viscosity) is, among others, in [38].

12
1.1 7 = =~
l ' . f
SR )
IIllIIl\\\\ll'l.... lllﬂllllllllll E
SN 1 II// lll". C Y
VAR - B
0.9 8
0.8 Ll L T R T I Ll
0.3 0.9 1 1.1 1.2

Figure 2.8: Curvilinear (a) and Cartesian (b) computational grids used to
simulate the Stokes flow around a sphere. Detail of the xy symmetry plane.

The simulations are performed in a cubic domain extending from —10r;
to 10rg in all directions. The simulations are carried out using both Carte-
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Figure 2.9: Stokes flow around a sphere for Re = 0.02. Comparison of analyt-
ical (left) and numerical (right) nondimensional vorticity field in the vertical
streamwise midplane (zz). The quantity is made non dimensional with the
ratio ug/D. Positive values in black, negative values in gray. Steps = 0.05
(free-stream vorticity = 0). Numerical results obtained with the curvilinear
grid.

sian and curvilinear grids as shown in Fig. 2.8. In both cases grid points are
clustered in the sphere region to obtain a good near-body resolution. In the
curvilinear simulation, additional clustering and deformation of the coordinate
lines allows to better optimise the grid spacing when compared with the equiv-
alent Cartesian grid. In both cases two grids are employed, namely a fine grid
(80x80x80 cells) and a coarse grid (40x40x40 cells).

The inflow and lateral boundary conditions are assigned using the ana-
lytical solution, while stress-free conditions are imposed at the downstream
outflow.

To quantify the accuracy of the numerical model, the root mean square
error has been calculated as:

Z A V. 2
. 1 e,f.g e.f.9 (uzg,mf,g U?;;L’ﬁg)
E i —

Ug Ze,f,g AVe,f,g

where w is the free-stream velocity, AV s, is the volume of the (e,f,g) com-
putational cell, uiy" and u; ; ~are the numerical and analytical i-th com-
ponents of velocity in the (e,f,g) cell and the sum is made over the whole
domain. Application of eq. (2.13) to the numerical results gives the values 2.4,
1.35 and 1.36 x 1079 for the curvilinear grid in the streamwise, spanwise and
vertical directions, respectively, showing that a very good description of the
velocity field is obtained using the proposed method. The analytical and nu-

merical (curvilinear grid) vorticity fields in the horizontal midplane are shown

(2.13)
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Figure 2.10: Stokes flow around a sphere for Re = 0.02. Comparison of ana-
lytical and numerical (40 x 40 x 40 cells) streamwise velocities in the span-
wise axis of the horizontal midplane: curvilinear grid (top) and Cartesian grid
(down).
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Cases | N, | N, | Ny x N,
0 448 | 384 | 172032
1 224 1 192 43008
2 112 | 96 10752
3 56 | 48 2688

Table 2.1: Computational grids used for the simulation of the unsteady flow
around the cylinder.

in Fig. 2.9, which gives visual evidence of the good performance of the pro-
posed technique. The results obtained with the Cartesian grid are practically
undistinguishable from those obtained using the curvilinear grid.

The simulations have been then repeated using coarser grids, composed
of 40x40x40 cells. In this case the differences between the Cartesian and
the curvilinear grid are clearly visible. In Fig. 2.10, analytical and numeri-
cal (Cartesian and curvilinear) streamwise velocity components along the axis
r1 = x3 = 1 are compared, showing that the results obtained with the curvilin-
ear grid are in better agreement with the analytical results than those obtained
using the Cartesian grid. The rms of the numerical errors estimated using eq.
(2.13) confirms this result, since the values obtained for the streamwise, span-
wise and vertical velocity are, respectively, 0.75, 0.30 and 1.0 x 10~* for the
curvilinear grid and 1.6, 0.25 and 1.8(-107*) for the Cartesian grid. The better
performance of the curvilinear grid has to be attributed to the fact that it
allows to obtain a more suitable distribution of the cells near the immersed
surface, holding the level of accuracy of the IBM over Cartesian grids.

2.2.2 Unsteady flow around a cylinder

The unsteady two-dimensional flow around a cylinder with circular cross-
section located between two infinite parallel walls is considered in this sec-
tion. The aim of the test is to compare the performance of the algorithm in
unsteady, finite Reynolds number, flows. As mentioned above, the test case
herein considered was used in the Priority Research Program "Flow Simulation
on High Performance Computers’ of the German Research Association (DFG)
by 17 groups and the results collected in [62]. The results of the simulations
by the different Research Groups gave a range of values for the drag and lift
coefficients defined as:

2Fp 2F],

_ 4D — L 9.14
pUm2D CrL ,OUm2D ( )

Cp

where U, is the maximum value of the (time-dependent) cross-section averaged
streamwise inflow velocity, D is the diameter of the cylinder and Fp and F,
are the components, in the horizontal and vertical directions, respectively, of
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the forces acting on the cylinder. Based on the values given in the database,
results were considered to be accurate when lying within the following ranges:

2.93 < ¢p < 2.97 (2.15)

0.45 < ¢ < 0.49 (2.16)

The problem configuration is illustrated in Fig. 2.11a. The kinematic

viscosity and the density of the fluid are respectively v = 1072 m? s}, and

p=1kg m=3. Due to the two-dimensionality of the geometry and of the flow

field, the present case is studied using a two-dimensional version of the code.
The time-dependent inflow boundary conditions are:

yH —y) . (1
u(t,y) = 6UmT sin (’/Tg) ) v=0 (2.17)

where u and v are the horizontal (streamwise) and vertical velocity compo-
nents, t is time, y is the vertical direction, H = 0.41 m is the height of the
domain and U,, = 1ms~!. The inflow velocity corresponds to a Poiseuille
profile varying sinusoidally in time with a period T" = 16 s. The Reynolds
number of the flow, calculated using the velocity U, (t) and the cylinder diam-
eter D = 0.1 m, varies between 0 and 100.

At the lateral boundaries no-slip conditions are used, whereas stress-free
conditions are imposed at the outflow boundary. The initial condition corre-
sponds to fluid starting from rest. The simulated time interval corresponds to
half a period of the oscillatory flow given in eq. (2.17).

The simulations are performed using both Cartesian and curvilinear grids,
with four different refinement levels (see Table 1). In both cases, the grid
cells are clustered near the side walls and the cylinder surface. The differences
between Cartesian and curvilinear grids are more evident in the region near
the cylinder. Figs. 2.11b and 2.11c show a portion of the computational grids
near the cylinder for Case 2 (see Table 1).

In Fig. 2.12 the vorticity fields around the cylinder obtained in Case 1
(224 x 192 cells) with the curvilinear grid are plotted. The figures refer to
four phases along the oscillation, respectively /T = 1/8, 1/4, 3/8 and 1/2.
Note that ¢/T = 1/2 corresponds to the time of inversion of the externally
imposed motion. Fig. 2.12a shows that at ¢/7" = 1/8, during the first stage of
acceleration, a vorticity field develops at the solid walls and around the cylinder
and is advected downstream by the inertial field. At this stage the symmetry
of the flow is still retained and this has to be attributed to the choice of the
initial conditions (fluid at rest at t = 0). At ¢t/T = 1/4 (Fig. 2.12b) asymmetry
is well evident in the wake region and at ¢/7 = 3/8 (Fig. 2.12¢) the alternate
detachment of vortices downstream the cylinder is entirely developed. The
near wall vorticity as well as the vortex structures in the near-cylinder region
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Figure 2.11: Unsteady plane flow around the cylinder confined between two
parallel plane walls. a) Overall domain configuration; b) Near-cylinder curvi-
linear grid; ¢) Near cylinder Cartesian grid.
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Figure 2.12: Unsteady plane flow around a cylinder. Nondimensional vorticity
field (obtained using the curvilinear 224 x 192 grid (level 1)). The quantity
has been made non dimensional with the ratio wme./D where Uy, is the
maximum centerline velocity): (a) t/T = 1/8; (b) t/T = 1/4; (¢) t/T = 3/8;
(d) t/T = 1/2. Black and gray lines indicate positive and negative values,
respectively (step 0.5 for (a), (b) and (c), 0.1 for (d))

are well visible at ¢t/T = 1/2 (Fig. 2.12d) although the magnitude of vorticity
is much smaller than before. As well known in literature, the mentioned effects
typically occur in oscillatory flows. The presence of vorticity at the walls of
the channel at the phase of inversion of the outer flow is due to the phase delay
between the near wall velocity and the outer field occurring in an oscillatory
boundary layer (see Salon et al. [61] and the literature reported therein). The
presence of a wake around the cylinder during the inversion of the free-stream
velocity in an oscillatory flow is discussed, among others, in [49] and in the
literature reported therein. The numerical results show that the proposed
methodology is able to capture the development of the unsteady flow around
the cylinder. In particular the vorticity field, which often exhibits inaccuracies
in the near-body region appears smooth and very well shaped in the whole
fluid region. Note that similar results were also obtained with the Cartesian
grid, thus showing that the quality of the results is independent on the grid
distortion.

In order to quantify the differences in the results obtained with the Carte-
sian and the curvilinear grids, the drag and [lift coefficients defined in egs.
(2.14) are calcolated. First we evaluate the forces Fpp and F,, whose definition

1S:

3ut
Fp = —n, — P 2.1
D /S <p1/ 5 W nx> as (2.18)
Fr = / 2% 4 Py ds (2.19)
L — g p on Ny Ty .
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where n, and n, are the x- and y-component of the unit vector normal to
the cylinder surface dS and wu; is the velocity component tangential to the
cylinder. To improve accuracy in the calculation of the forces Fp and F}, we
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Figure 2.13: Unsteady plane flow around a cylinder. Time evolution of the
maximum values of the drag (left) and lift (right) coefficients.

have preferred to calculate them by using the integral form of the momentum
equation:
H1+H2+H3+H4+M1—M2+I:O (220)

where I1;, Ily, II3 are the surface forces exerted on the fluid by the inflow,
outflow and lateral boundaries, respectively, Il4 is the force exerted by the
cylinder surface on the fluid, M; and M, are the momentum fluxes across
the inflow and outflow boundaries and I is the local inertia term. Fp and F7,
are the components in the horizontal and vertical direction of the term —I1y,
which is easily obtained from eq. (2.20).

Figure 2.13 shows the evolution in time of the drag and lift coefficients.
The drag coefficient grows with the mean velocity, but reaches the maximum
value a few instants before the velocity; the lift coefficient is negligibly small
during the initial phases when vortex shedding is symmetric and later on it
oscillates (see [49] for a detailed discussion of the forces acting on a circular
cylinder in an oscillatory flow).

In Fig. 2.14 the maximum values of the drag and lift coefficients obtained
in the cases listed in Table 1 are plotted. Both Cartesian and curvilinear grids
were used for each level of grid refinement. In Fig. 2.14 the lower and upper
bounds of the coefficients are also plotted (see egs. (2.15),(2.16)) as obtained
using the data of the research groups involved in the aforementioned DFG
Priority Research Program. The coefficients obtained in our computations fall
within the prescribed range of values in cases C0 and C1, using both Cartesian
and curvilinear grids. Conversely, when the number of grid cells is reduced
(case C2), the results obtained with the curvilinear grid are still in the range of
reference values, whereas when the Cartesian grid is used, this is no longer true.
Again, this has to be attributed to the better grid quality obtainable with the
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Figure 2.14: Unsteady plane flow around a cylinder. Maximum values of
the drag (top) and lift (bottom) coefficients as a function of the number of
computational cells. Continuous lines with empty squares: curvilinear grids.
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give the range of values of eqgs. (2.15),(2.16).
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Figure 2.15: Relative error in the calculation of the coefficients C'p and C, as
a function of the number of computational cells, estimated using eq. (2.21).
Empty symbols, dotted lines: curvilinear grid. Solid symbols, full lines: Carte-
sian grid.

curvilinear coordinates in the near-body region. Finally, the coarsest grid case
(C3) gives the less accurate response in both cases (Cartesian and curvilinear
grid respectively). In particular both the lift and the drag coefficients fall out
of the range of values given in egs. (2.15),(2.16).

In order to further confirm that the use of curvilinear grids gives more
flexibility and consequently allows obtaining more accurate results with respect
to Cartesian ones, in Fig. 2.15 it is shown the relative error in the calculation
of the maximum values of the coefficients Cp and C', for the cases C1, C2 and
C3, taking as reference values those obtained on the finest grid CO:

cp — 5,
Ch

where C4%, is the drag coefficient obtained in case (Ci) (i = 1,2,3). The figure
shows that the use of curvilinear grids systematically gives better prediction
of the lift coefficient as well as of the drag coefficient, at least when a sufficient
number of grid cells is used.

The Cartesian grid version of the curvilinear solver used in the paper allows
to reduce the computational time by a factor of about 2.9, for a given number
of cells. Although this result cannot be generalized (since major reduction
can be achieved using different solvers, directly designed for Cartesian grids)
we can argue that using curvilinear grids is more convenient when they allow
reducing the number of computational cells more than three times (that is,
about 30% in each direction for a 3D grid) with respect to a Cartesian grid.

Err = (2.21)
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2.2.3 Flow in a S-shaped duct with an internal valve

As previously discussed, there are problems where the use of a Cartesian grid
may require an excessive number of solid nodes. A typical example is shown in
Fig. 2.1, where an S-shaped duct with an internal valve is reported. Fig. 2.1a
shows that the use of a Cartesian solver needs the treatment of most of the
solid boundaries by IBM and that a large percentage of grid cells falls within
the solid phase. On the other hand Fig. 2.1b clearly shows the advantage of
using a curvilinear mesh, such that the external boundaries are aligned with
the coordinate lines and the IBM is applied to account for the internal valve
only. In this section it is calculated the flow field in laminar conditions in
the duct of Fig. 2.1, and the results, obtained using the Cartesian and the
curvilinear grids, and the computational requests are compared in the two
cases.

The main dimensions of the duct are reported in Fig. 2.1b. The valve has
an elliptic shape and its center is located in the middle of the symmetry axis
of the vertical part of the duct. The major axis is inclined over the horizontal
plane by # = 45° and its length is equal to 0.75h; the minor axis is 0.25h long.
The problem is two-dimensional and the inflow velocity profile is a Poiseuille
flow with Reynolds number Re = U,,h/v = 130. The Cartesian grid has
256 x 256 grid cells respectively in the horizontal and vertical direction, whereas
the curvilinear grid has 400 x 32 grid cells respectively in the streamwise and
wall-normal direction. The choice of the number of grid cells in the curvilinear
case has been made in such a way to minimize the differences in the cell
dimensions between the two cases. Note that in the straight parts of the duct
the grid cells dimension does not change in the two cases analyzed. A shear
free boundary condition is employed at the outflow. It can be easily noticed
that the Cartesian grid solver requires a number of grid cells as large as 5.12
times those used by the curvilinear solver. Note that this ratio is obtained
with a uniform distribution of grid cells; clustering the grid cells near the walls
will increase the ratio between the number of cells to be used by the Cartesian
code when compared with that of an equivalent curvilinear code simulation.

Figure 2.16 shows the near-valve vorticity field obtained in the two simula-
tions. Differences appear in the near-valve region, namely a spot-like behavior
is observed in the Cartesian case, whereas smoother contours are obtained
in the curvilinear case. The comparison between the velocity profiles at four
meaningful sections is shown in Fig. 2.17. Some differences are observed be-
tween the two cases, the largest being present in the wake region (Fig. 2.17c).
In order to give a comparison between dynamical quantities obtained in the
two simulations, an overall drag coefficient has been calculated as:

Fpi1 — Fpo
pUZ,

where Fp; and Fps are respectively the pressure forces at the inflow and at

Cauet = (2.22)
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mean velocity. Positive values in black, negative values in gray. Steps=3.0.
Left, Cartesian simulation; Right, curvilinear simulation.
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sections shown in Fig. 1b. Thin lines, Cartesian grid solution; thick lines,
curvilinear grid solution.
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the outflow sections. Since the outflow velocity profile is equal to the inflow
one, due to the fact that a Poiseuille flow rapidly recovers after the upper
curved part of the duct, by application of the integral form of the momentum
equation it can be easily shown that the difference Fp; — Fps is equal to the
total drag force within the duct. Again, some differences are obtained in the
two cases: the Cartesian grid simulation gives Cyuet = 6.59 - 10~%, whereas the
curvilinear simulation gives a value Cgue = 6.81 - 1074,

The results obtained with more refined grids (512 x 512 cells for the Carte-
sian grid, 800 x 64 for the curvilinear one) are indistinguishable from those
shown above, demonstrating that the grid convergence has been reached in
both cases. The slight differences between the results on Cartesian and curvi-
linear grids are thus due to the increased number of IB points required when
working with the Cartesian grid with respect to the curvilinear case (where
IB points are located near the valve only, while the curved part of the duct is
discretised using boundary conforming cells).

The results of the present test show that more accurate results are obtained
using the curvilinear strategy. In this case the number of grid cells required is
less than 20% those needed by the Cartesian solver. If we consider that the
use of the curvilinear version of the solver requires a CPU time per iteration
as large as 2.9 times that required by the Cartesian version, we can be assert
that in the present case the computational cost of the Cartesian solution is
equal to 1.77 times that of the curvilinear solution. Note that the present test
is relative to a two-dimensional geometrical configuration. For instance, in a
case where the vertical part of the duct is inclined in the spanwise direction,
the computational cost of the Cartesian simulation will get much higher than
that of the curvilinear one.

2.3 Explicit forcing with Semi-implicit time-
advancement

As discussed in section 2.1, the proposed semi-implicit direct forcing IBM is
a compromise approach that may introduce some inaccuracies with respect to
the explicit formulation as well as to the implicit algorithm of [34]. The test
case reported below is thus used to compare the performance of the proposed
semi-implicit method with that of the explicit approach, whose accuracy was
checked in the previous section. It has to be pointed out that this section is
not devoted to discuss the formal accuracy of the semi-implicit IBM herein
proposed against that of explicit schemes. Rather, in this section we intend
to show that the simplifications introduced in our semi-implicit procedure do
not appreciably alter the quality of the results for moderately large values of
the time step. Specifically the main aims of these simulations are: a) to show
that the accuracy of the proposed semi-implicit method is identical to that of

40



the corresponding explicit one when the same time step is used; b) to prove
that the increase of the time step within a reasonable range does not produce
appreciable reduction of accuracy in our procedure; ¢) to show that the error
decreases increasing the Reynolds number.

To these aims, here a numerical simulations is performed of the 2D flow
around an infinite array of circular cylinders placed in a Poiseuille low. The
simulations are carried out at different values of the Reynolds number using
both an explicit solver and a semi-implicit one. The solver herein employed
is that described in [4] and it uses the curvilinear-coordinate fractional step
method of [75]. In particular the explicit version uses a second-order Adams-
Bashforth method, hence both the CFL and the diffusive conditions on the time
step must be satisfied. In the semi-implicit algorithm, the diffusive terms only
are advanced in time using the implicit Crank-Nicolson scheme, whereas the
other terms are treated explicitly by means of the Adams-Bashforth method.
This allows removing the diffusive restriction on the time step.

Note that the CFL and the diffusive conditions in curvilinear coordinates
read as:

At 1 1 1
0FL=<\U1\+\U21+1U31>—<1,DL:( P )JluAt<O.5

J—l Gll G22 G33

where U,, and G were defined in section 1.2.

The geometrical characteristics of the computational domain and the bound-
ary conditions are described below.

The channel height is L, = h, the longitudinal and the spanwise exten-
sions are respectively L, = 2.2h and L, = h, the cylinder has a diameter
equal to D = 0.2h and its center is located at the center of a longitudinal
vertical section. The domain is discretized using a Cartesian grid composed
of 144 x 8 x 128 cells in the streamwise, spanwise and wall-normal directions
respectively. The grid cells are clustered in the region where the circular cylin-
der is located. No slip boundary conditions are imposed at the bottom and
top solid walls, whereas periodicity is considered in the streamwise and in the
spanwise directions. Periodicity in the spanwise direction, at the values of Re
considered in our tests, ensures two-dimensionality of the flow field; as in [50]
periodicity in the streamwise direction mimics an infinite array of cylinders
with distance between the centers of two successive cylinders equal to L,.

The simulations are performed for three values of the Reynolds number
(Re = 0.2,20 and 40) in order to compare the performance of explicit and
implicit schemes in different flow conditions. For Re << 1 the flow field is
dominated by the diffusion of momentum (Stokes regime); at Re = 20 two
steady symmetric recirculation regions are present downstream the cylinder,
whereas at Re = 40 the flow is characterised by the presence of the unsteady
von Karman vortex street. Different values of the time step are considered to
evaluate its own effect on the quality of the results.
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Case | Re | Scheme | At-1073 CFL DL Cr
S1 102 Expl 0.0489 0.55 x 1072 | 0.089 | 108.483
S2 102 Impl 0.0489 0.55 x 1073 | 0.089 | 108.261
S3 102 Impl | 01954 | 22x10°3 |0.780 | 107.523
S4 102 Impl 0.4873 548 x 1073 | 1.950 | 105.881
S5 1 0.2 Impl 4.7369 | 53.34 x 1073 | 18.95 | 89.919

E1 | 20 | Expl 0.30 0.05 0.2 2.081
E2 | 20 | Impl 0.30 0.05 0.2 2.077
E3 | 20 | Impl 1.50 0.27 1.0 2.082
E4 | 20 | Impl 2.40 0.43 1.6 2.086
K1 | 40 | Expl 0.27 0.053 0.108 | 0.15343
K2 | 40 | Impl 0.27 0.053 0.108 | 0.15341
K3 | 40 | Impl 1.30 0.250 0.520 | 0.15485

Table 2.2: Computational parameters and drag coefficient for the periodic flow
around a cylinder at three values of the Reynolds number.

In all simulations the drag coefficient

2D
C — max
)

(2.23)

is calculated and reported in Table 2 together with the parameters of the
simulations. In eq. (2.23) the drag coefficient is calculated using the maximum
value D,,., of the drag recorded in the simulation and the mean velocity in
the channel, in a section which does not contain the cylinder.

As regards the low Reynolds number case Re = 0.2 five simulations are
carried out with values of the time step spanning one order of magnitude. The
cases with smallest value of the time step are run using both the explicit and
the semi-implicit algorithms (S1,52). The other values of the time step (S3-S5)
are run with the semi-implicit code only. At Re = 0.2 (Stokes regime) the flow
field around the cylinder is symmetric (see Fig. 2.18a). Table 2 shows that
the drag coefficient is nearly unaffected by the time-advancement scheme for
cases S1 and S2. This means that the explicit forcing method herein proposed
is very robust and can work indifferently with explicit and semi-implicit time
advancement schemes. Note that the drag coefficient Cr = 108.45 is larger
than the value found in the case of a cylinder in a unbounded flow field (in
this case at Re = 0.2, Cr ~ 35). The increase of the drag coefficient has
to be attributed to the presence of the two walls and consequently to the
appreciable increase of the mean velocity in the cylinder region due to the
blocking effect ([77]). The progressive increase of the time step (cases S3
to S5) tends to deteriorate the quality of the results, although a very good
evaluation of Cp (within 2.5%) is obtained with a time step as large as 10
times that of the reference simulations S1 and S2. The further increase of the
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time step (case S5, DL = 18.9) causes strong inaccuracies in the flow field, with
a drag coefficient under-predicted by about 20%. This has to be attributed to
the error introduced by the simplified semi-implicit procedure herein proposed
which, as discussed in section 2.1, is proportional to At/Re. This error is
likely to be non-negligible in low-Re calculations with high values of the time
step. To summarize, in diffusion-dominated flow fields, the explicit treatment
of the forcing term with semi-implicit time-advancement of the Navier-Stokes
equations produces inaccuracies only when very large values of the time step
are employed.

As discussed above, for Re = 20 the flow field exhibits two mirror-symmetrical
recirculation bubbles in the wake region (see Fig. 2.18b). Four simulations
(E1-E4) are performed. E1 and E2 respectively refer to the smallest time step,
using explicit and semi-implicit time advancement. E3 and E4 refer to semi-
implicit simulations with increasing values of the time step. The range of time
steps considered spans one order of magnitude. For the range of values of At
herein considered, we observe that the drag coefficient is nearly unaffected by
the time advancement scheme as well as by the value of the time step.

Finally, the case Re = 40 exhibits the presence of a von Karman vortex
street and the flow field is unsteady although it remains two-dimensional (Fig.
2.18c). Three simulations are carried out in this case: K1 and K2 using a small
value of At and, respectively, the explicit and the semi-implicit algorithm; K3
where a value of At as large as about five times that used in K1 and K2 is
considered. Similarly to the E-cases the increase of Reynolds number makes
the results less and less sensitive to the employed value of At.
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Chapter 3

Wall modeling with an
Immersed Boundary Method

The work presented in this chapter comes from a scientific collaboration with
Prof. J. Frolich of Technical University of Dresden, the collaboration was
partially supported by COST action P-20 [16].

In the present chapter the Immersed Boundary Methodology developed in
chapter 2 will be extended to high Reynolds number flows. In the case of high
Reynolds number flow high accuracy techniques as direct numerical simulation
and resolved LES simulation (LES that resolves the viscous sub-layer) cannot
be used, in particular when turbulence develops near solid walls.

As already discussed in chapter 1 in LES the large, energy-carrying, scales
of motion are directly resolved through numerical integration of the three-
dimensional, unsteady, filtered Navier-Stokes equations, while the small ones
(those smaller than the size of the computational cell) are modeled through a
subgrid-scale (SGS) model. The presence of solid walls makes the computa-
tional requests of LES more stringent with respect to the wall-free turbulent
case. Solid walls or interfaces induce the formation of small elongated vorti-
cal structures (streaks) in their vicinity. These quasi-streamwise vortices are
confined within the buffer layer and their dimensions scale with the Reynolds
number. Their dynamics affect the flow and hence they must be properly re-
solved, thus requiring a large amount of computational nodes placed in a very
narrow region of the domain. This makes the computational cost of resolved
LES to scale with Re?% where Re is a Reynolds number based on some inertial
length scale and velocity scale (see [54]). LES are then required to be DNS-
like near the wall. This implies that resolved LES is not feasible at very high
Reynolds number. The computational cost confines these simulations far from
typical real life problems.

The use of wall-layer models to skip the solution of the viscous layer is one
of the possible strategies to overcome this limit (for a detailed review see [54]).
Wall-layer models allow to place the first grid point at several wall units far
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from the wall, typically in the logarithmic region of the velocity profile.

The imposition of a wall-layer model is usually performed reconstructing
the local wall shear stress from the knowledge of the tangential velocity at
the first grid point. The imposition of the wall shear stress is straightforward
when using body-fitted meshes; in this case the wall shear stress can be directly
imposed as a flux at the wall and the boundary condition on the tangential
velocity field is not required. An alternative way is to impose the wall shear
stress by proper setting of the eddy viscosity at the first grid node.

The demand of numerical simulations of applicative high-Reynolds complex
geometry cases, requires a proper wall-layer modeling to be used in conjunc-
tion of IBM. Although attempts have been done toward the solution of such
a problem, it is still an open issue. The main problem with the immersed
boundaries is that it is not possible to apply directly the computed stress on
the boundary, because in the general cases the boundary does not coincide
with the boundary of a computational cell. Even using the eddy viscosity set-
ting at the cell neigbouring the immersed boundary surface, problems arise in
the flux reconstruction. Tessicini et al. [69] used a boundary layer equation
over a finer grid close to the immersed boundary; the same approach was used
by Cristallo et al. [17]. In these cases the procedure consists in resolving a
boundary layer equation along the wall-normal direction in an iterative way
with boundary conditions obtained from the interior flow resolved by LES and
the condition at the wall. An alternative approach was proposed by Choi et
al. [12] who used an exponential law to scale velocity at IB points.

In this chapter a strategy is proposed to model the wall shear stresses at
immersed boundary surfaces. The idea is to use a near wall equivalent eddy
viscosity, obtained in an analytical way assuming a log-layer profile at the first
grid point off the body and to scale the velocity at IB points with the loga-
rithmic law. This idea was used by Cabot for wall modeling in Cartesian mesh
without IBM. The model is tested in a variety of cases, employing different
grids and positions of the cells with respect to the immersed surface. The
model is implemented in the contest of the IBM developed in the previous
chapter.

3.1 Wall modeling

The aim of wall functions is to skip the direct resolution of the viscous sub-
layer near the wall through proper parameterization. In this way the grid size
can be related just to the large eddies developing in the fluid core and the
required grid spacing becomes less dependent on the Reynolds number. This
procedure however requires the parameterization of the effect of the wall-layer
on the resolved flow. In the inner layer a logarithmic profile for the velocity
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can be derived [55]:
1
V= Elog yt+ B (3.1)

where VT is the tangential velocity scaled with the friction velocity u, =
(Tw/p)Y? (7, is the shear stress at the wall and p is the density). The wall-
normal coordinate is y* = y/l. with [, = v/u,. The von Karman constant x
is 0.41, while the offset B depends on the roughness of the wall. A classical
approach is to place the first computational node within the logarithmic layer
and to calculate the wall shear stress 7, using eq. (3.1). In the seminal work
of Schuman [63] the shear stress components at the wall 7, ., 7., are related
to the velocity at the first grid point y; as:

(Tw)

Tyzw(T,2) = mﬂ(x, Z, Y1) (3.2)
B Vw(x, 2, Y1)
Tyew(T,2) = T (3.3)

In egs. (3.2) and (3.3) = y and z are the streamwise, the wall-normal and the
spanwise direction respectively, whereas y; is the distance of the first grid point
from the wall. The over-bar denotes resolved quantities and () a Reynolds-
average operation. The mean stress (7,,) is obtained from an imposed pressure
gradient, (u(z, z,y1)) is related to (7,) by the logarithmic law (3.1). The span-
wise component is calculated assuming a linear velocity profile and a constant
eddy viscosity in the grid cell nearest to the wall. This parameterization con-
siders a RANS-like model near the wall and a LES model in the core of the
fluid. This approach assumes that the wall shear stress is instantaneously in
phase with the local velocity. The drawbacks of this method are that mean
values are required. In channel flow case it requires knowledge of the pressure
gradient in order to deduce (7,), in complex geometry problems it is difficult
to obtain this mean value.

Based on [63] other approaches were proposed to treat the wall-layer, as-
suming the stress and the velocity being locally in phase and using logarithmic
or exponential profile. For a review see [54].

Both in the Cartesian and in the curvilinear coordinate framework the im-
position of the stress at the wall is easily accomplished replacing the discretized
viscous wall flux with the actual value of the stress. This can be easily per-
formed because the boundary of the computational domain coincides with a
physical boundary. When using immersed-boundary methodologies this is not
the case (for a general review on IBM see [45]).

Very few literature studies are available on wall modeling with immersed
boundary. Tessicini et al.,[69] and Cristallo and Verzicco, [17] proposed a wall
model in conjunction with the IBM. They used a boundary layer equation for
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the tangential velocity close to the Immersed Boundary:

0 Ou;\ , ~ Ou;  Oujuy;  Op
o ((1/+1/t) 877) = F; with F; = 5 + o, + o, (3.4)

being 1 the wall-normal direction. This equation is solved in a layer between
the external LES and the wall. Its solution provides the boundary condition
for LES. The simplest way to approach eq. (3.4) is to use F; = 0 obtaining the
equilibrium stress balance model. Then the eddy viscosity is computed by a
mixing length model, v, = vkn*(1 — e 7 /4)? with A = 19, 5t is the distance
from the wall in wall units. The computation of v; requires u, that comes from
the solution of eq. (3.4) so the system must be solved in an iterative way.

An other approach is that of Choi et al. [12]. In order to interpolate
velocity at the IB nodes they adopt a formula written in terms of a power law
n* with k = 1/7 or 1/9. In this way they approximate the logarithmic profile
in the near wall region.

The method here proposed is closer to that of Choi. However the interpo-
lation scheme at the Immersed Boundary interface is derived directly from the
logarithmic law. Moreover a different approach is used to compute the eddy
viscosity at this interface. The method is explained in the next section.

3.2 The proposed approach

In DNS or resolved LES the first off-the-wall computational node is placed at
y* =1 or even closer to the wall. At this location the velocity profile is linear.
Then a linear scheme can be used to interpolate the required velocity at the
Immersed Boundary interface from the interior resolved flow. Details are in
section 2.1.2. However a possible scheme is the following:

_VeptVip

Vis 5

(3.5)
where Vip is the velocity at the solid surface (intersection point) and Vpp is
the velocity at the projection point PP (see chapter 2 for the nomenclature).

The velocity at PP is derived by interpolation from the interior resolved
flow through a Taylor expansion (see Marchioli et al. [42]). If the body is at
rest ‘/[p =0 and ‘/IB = VPP/Z.

In high-Reynolds turbulent flows, as discussed above, the near-wall is not
resolved and a wall-layer model must be implemented. With a coarse grid I B
points can be far from the wall and a relation different from eq. (3.5) is needed
in order to provide a turbulent velocity profile close to the wall.

If the logarithmic law (3.1) is assumed to hold both at IB point and at
PP point:

1
Vi = log (di) + B (36)
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1
Vip = —log (d}y) + B (3.7)

where df and dfp are the distance from the wall of the points B and PP
scaled with the length scale [.. Subtracting eq. (3.7) from eq. (3.6) a simple
relation to derive velocity at I B point is obtained:

1 wa d
Vie =Vpp — — = lllOQ (—PP) (3-8)
Kk P drp

Then once the wall stress is known it is easy to compute the velocity at IB.
The stress can be computed iteratively from eq. (3.1) using the tangential
velocity at PP. After the velocity at IB is computed with eq. (3.8) the Carte-
sian velocity components at /B can be reconstructed assuming an alignment
between the velocity at PP and IB.

As we will show in section 3.3 this procedure is not sufficient to provide
good results even in simple case like a turbulent channel flow. If we adopt
a Smagorinsky model to reproduce the SGS a different procedure at the IB
points it is necessary.

The Reynolds stress can be reproduced through an eddy viscosity v; char-
acteristic of the flow:

Tij
P

In LES most of the Reynolds stress is directly resolved and only a small
part of it must be modeled, the part lost because of the grid resolution. The
use of a coarse grid close to the wall implies averaging over many turbulent
structures and in the end LES is more close to a RANS than to a DNS. Then
the eddy viscosity is required to be able to reproduce the entire Reynolds stress
close to the wall. The mixing length approach in the boundary layer equation
(3.4) uses such principle.

One of the common way to compute the eddy viscosity is to use a Smagorin-
sky model. In this model the eddy viscosity is expressed as the product of a
length scale [, and a velocity scale v, related to the unresolved scales of
motion. Using the turbulent kinetic energy equation and the equilibrium as-
sumption it can be expressed as:

== 2VtSij (39)

Vi = Loy * Upyr = *A%[ S5 (3.10)

where ¢ is a constant, A is a characteristic length scale related to the cell
dimension and |S;;| is the contraction of the resolved strain rate tensor. This
model has some drawbacks, the constant must be determined a priori, it is
purely dissipative, it considers the stress aligned with the strain rate tensor,
which in general is not true. On the other hand it is easy to implement and
efficient in conjunction with wall modeling.
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However its use just off the wall in a coarse grid is not correct and a different
approach must be used, as discussed before.

An other issue is that the Smagorinsky model close to the wall does not
work properly also because of the presence of the Immersed Boundary. If we
use a Smagorinsky model at the IB points incorrect length and velocity scales
are computed.

If one considers eq. (3.10), the stencil to compute S_Z] takes into account
also the computational nodes of the solid phase. It means that a non zero
velocity is imposed at the Immersed Boundary surface (refer to Fig. 3.1a).

Besides the length scale of the model is related to the cell dimension by A
but because of the presence of the immersed surface the real cell dimension
can be smaller or larger depending on the fraction occupied by the body, see
Fig. 3.1b.

* .
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Figure 3.1: Square: solid nodes; Diamond: fluid nodes; Empty diamond: IB
nodes; Continuous line: grid cell; line dot: immersed boundary surface. a)
The strain rate tensor is computed also considering the solid nodes. b) Real
cell dimension because of the presence of an Immersed Boundary.

To overcome these problems an alternative procedure is proposed to deter-
mine the eddy viscosity at the I B nodes.

Consider a shear flow of the type u(y) with y the wall-normal direction.
A Reynolds decomposition for the velocity is taken with u the mean velocity
and v’ the fluctuations. An instantaneous velocity field is of the type: u + u/,
v', w' respectively for the streamwise wall-normal and spanwise direction. The
quantity —p < u'v’ > represents the transfer rate of streamwise-momentum in
the wall-normal direction through the turbulent fluctuations. Now using eq.
(3.9) the shear stress can be expressed as:

—<udv'> 7, 1 (du dv) du (3.11)

y o, (22 7 2
p p b dy+dx thy
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The relation (3.11) is used to compute the eddy viscosity at IB points,
using the tangential velocity V:

Txy,IB

ViIB = —d‘ZB (3.12)
Tdy

The velocity derivative in the wall-normal direction is determined through
eq. (3.1):
v u,
dy — ky
Using 7, in eq. (3.12) instead of 7,5, an error is introduced, but the
procedure is simplified and the eddy viscosity can be computed as:

(3.13)

Ve iB = C]Cqu[B (314)

where c is a constant. Analytically this constant would be equal to 1. Different
values can be necessary depending where the diffusive term is computed in a
non staggered grid. Further investigations on it are ongoing. Equations (3.14)
was also used by Cabot [10] and [11] in the contest of wall modeling with the
boundary layer equation, here the constant ¢ becomes a damping coefficient.

Using eq. (3.14) the problem related to the characteristics scales due to
the Immersed Boundary presence is overcome. The eddy viscosity is strongly
related to a length scale and a velocity scale characteristic of the physics of
the problem close to the wall.

For clearness the overall procedure close to the wall is summarized:

e Compute the eddy viscosity at IB with eq. (3.14), using the wall stress
computed at the previous time step.

e Compute the tangential velocity at PP from instantaneous values of the
resolved flow.

e Compute the wall stress from the values at PP using eq. (3.1).
e Compute the tangential velocity at I B using eq. (3.8).
e Reconstruct the Cartesian velocity components for the points I 5.

To verify this procedure several tests are made on a turbulent channel flow
with an imposed pressure gradient. The configuration used and the results are
shown in the next section.
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3.3 Results

A test for the proposed wall model is performed on a plane channel flow. The
flow is driven by a constant pressure gradient on the streamwise direction
d(p/pu?)/dz, = 1, where z,, is the streamwise coordinate made non dimen-
sional with half channel height 0. Two different Reynolds numbers are used:
Re, = 1000 and Re, = 2000 based on half channel height and on the friction
velocity u,. The results are compared with data from Del Alamo et al., (2004)

and Hoyas and Jiménez, (2006).

|GRID | immersed
L, bodies

Figure 3.2: Plane channel flow configuration with immersed boundary.

The channel flow configuration is depicted in Fig. 3.2. The walls are
modeled using the immersed boundary method.

Different computational grids are used and they are summarized in table
3.1. In the table [, [, [, are the grid dimensions in streamwise, wall-normal
and spanwise directions respectively. These are discretized with n, n, and n,
computational nodes.

We work on a non staggered grid and the position of the Immersed Bound-
aries are chosen to be not coincident with the computational nodes. In par-
ticular two configurations, namely A and B, with different position of the
Immersed Boundary with respect to the grid are tested as in Figs. 3.3a and
3.3b. In configuration A the Immersed Boundary coincides with the grid cell
boundary, while in configuration B the Immersed Boundary is very close to
the solid nodes.

In both cases the distance L, between the upper and lower boundaries is
constant and equal to 2. This value is lower than the height of the computa-
tional domain [,, so some computational nodes will fall in the solid phase. In
table 3.1 nyq, represents the total grid nodes along the wall-normal direc-
tion in the fluid phase, so this is the actual discretization of the wall-normal
direction.

Two resolutions are chosen in the wall-normal direction to test the grid
independence of the proposed model. The fine grid uses 40 cells while the
coarse one uses 20 cells.
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The configuration A and B are chosen in order to test the eddy viscosity
computation at the IB nodes.

grid | configuration l. Iy l, |ng | Ny | N, | Nyuidy
A20 A 5/2m | 2.222 | w/2 | 64 | 20 | 32 18
A40 A 5/2m | 2.222 | w/2 | 64 | 40 | 32 36
B20 B 5/2m | 2.168 | w/2 | 64 | 20 | 32 18
B40 B 5/2m | 2.168 | w/2 | 64 | 40 | 32 36

Table 3.1: Discretization employed for the channel flow.

The simulations performed using these grids are shown in table 3.2. We
perform two classes of simulations, namely L and LE. Simulations of type L
use the logarithmic profile (see eq. (3.8)) between the PP and the IB nodes and
the eddy viscosity at the IB nodes is computed with the Smagorinsky model
as in the rest of the channel. In particular simulation L1 is performed on all
the grids at Re, = 1000. The LF simulations use the logarithmic profile as L
but the eddy viscosity at IB nodes is computed with eq. (3.14). For LE we
use all the grid types, in particular LE1 is simulated at Re, = 1000 while LE?2
is at Re, = 2000. The distance of the IB points from the wall in wall units is
reported as d. For all the possible configurations the IB points stay on the
logarithmic profile. For the grid A40 at Re, = 1000 we are on the lower limit
of the logarithmic profile. The Smagorinsky model has a constant ¢ = 0.065.

cases grid | Re, df wall model v model
L1 — A20 A20 | 1000 | 55 log SM

L1 — A40 A40 | 1000 | 28 log SM

L1 — B20 B20 | 1000 | 78 log SM

L1 — B40 B40 | 1000 | 51 log SM
LE1 — A20 | A20 | 1000 | 55 log SM+-eq.(3.14)
LE1 — A40 | A40 | 1000 | 28 log SM+-eq.(3.14)
LE1 — B20 | B20 | 1000 | 78 log SM+eq.(3.14)
LE1 — B40 | B40 | 1000 | 51 log SM+eq.(3.14)
LE2 — A20 | A20 | 2000 | 110 log SM+eq.(3.14)
LE2 — A40 | A40 | 2000 | 56 log SM+eq.(3.14)
LE2 — B20 | B20 | 2000 | 156 log SM+eq.(3.14)
LE2 — B40 | B40 | 2000 | 102 log SM+eq.(3.14)

Table 3.2: Simulations employed for the channel flow.

Figure 3.4 shows the velocity profile along the wall-normal direction for the
streamwise velocity component u. It can be seen that the velocity profile is
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Figure 3.3: a) Configuration A for the channel flow with IBM. b) Configuration
B for the channel flow with IBM. For both the figures square: solid nodes;
diamond: fluid nodes; empty diamond: IB nodes; circle: IP nodes; continuous
line: grid cell; line-dot: immersed boundary surface.

far from being logarithmic. The first two points outside the wall lie on the
log profile as expected because of the velocity scaling that is applied to the IB
points. The figure shows that this velocity scaling is not sufficient to obtain
good results.

In Figs. 3.5 and 3.6 the velocity profiles for simulations LE1 are reported
for grid type A and B respectively. In this case the eddy viscosity at the
IB points is corrected as proposed before, using the friction velocity and the
distance of the IB points from the Immersed Boundary as characteristic scales
of the model. It can be seen that due to the eddy viscosity correction the
results are in agreement with the reference data. All the profiles collapse on
the logarithmic one, also with very coarse grids like A20 and B20 with only 20
points in the wall-normal direction. In this way the results appear to be grid
independent.

Simulations LE2 are performed at Re, = 2000. The results are shown in
Figs. 3.7 and 3.8. Here the velocity profiles for simulations LE2 are reported
for grid type A and B respectively. In this case as well the results are in
agreement with the reference data.

For all the simulations shown, the shift of the third computational node
from the logarithmic profile corresponds to the transition zone between the
RANS — area solution and the LES — area solution.

The turbulent fluctuations and the Reynolds stress < /v’ > are shown in
Figs. 3.9 and 3.10. The figures refer to the grid A40 and B40 respectively, in
the figures the values of the IB points are not reported because meaningless,
in fact the velocities at these points are derived from the interior resolved flow
using eq. (3.8). So their values are always lower than the closest resolved
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Figure 3.4: Simulations L1: streamwise velocity for a turbulent channel flow
at Re, = 1000.
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Figure 3.5: Simulations LE1 grid A: streamwise velocity for a turbulent channel
flow at Re, = 1000 on grid type A with 20 and 40 points on the wall-normal
direction.
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Figure 3.6: Simulations LE1 grid B: streamwise velocity for a turbulent channel
flow at Re, = 1000 on grid type B with 20 and 40 points on the wall-normal
direction.
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Figure 3.7: Simulations LE2 grid A: streamwise velocity for a turbulent channel
flow at Re, = 2000 on grid type A with 20 and 40 points on the wall-normal
direction.
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Re,=2000
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Figure 3.8: Simulations LE2 grid B: streamwise velocity for a turbulent channel
flow at Re, = 2000 on grid type B with 20 and 40 points on the wall-normal
direction.

nodes. This is in contrast with the correct physical behavior, just out the
viscous sub-layer higher fluctuations are expected. On the other hand in the
wall modeling here proposed the boundary conditions are applied between the
IB points and the interior resolved flow and not between the solid phase and
the IB points.

In general because of the grid resolution the results are poor close to the
wall, while they are quite good far from it. Conversely the spanwise fluctuation
seems well reproduced everywhere. In particular the low fluctuations level for
the v,,,s determines a larger unphysical viscous layer, as it can be observed
from the Reynolds stress. Besides the peak for the wu,,,, is quite far from
the wall. In the end the streamwise and the wall-normal fluctuations near
the wall behave as a simulation at a lower Reynolds number. An oscillation
of the Reynolds stress can be observed at the first four points. The general
poor behavior of the second order statistics near the wall can be related to
the formation of unphysical structures and to a not correct resolution of the
horizontal scales near the wall.
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Figure 3.9: Simulations LE1 grid A40: rms quantities and Reynolds stress
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Figure 3.10: Simulations LE1
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Chapter 4

A SGS model for sea coastal
flow

In this chapter a SGS model for environmental hydrodynamics applications is
developed. One of the most important aspects, when facing with sea coastal
domains or lakes, is that there are typically two length scales, one for the
horizontal dimensions (x and z or 1 and 3) of order of kilometers and one
for the vertical direction (y or 2) of orders of ten meters. This difference
(about two order of magnitude) creates problems when a characteristic length
scale is required. In fact once the domain is discretized it is usual to have
pancake — type anisotropic cells, with an aspect ratio between the horizontal
and the vertical direction of 10 : 1. This can introduce inaccuracy when using
classical subgrid stresses. In LES it is common to take, for cells with unequal
sides, the Deardroff equivalent length scale A, = (A;AA3)Y3, where A3
represent the cell sides. This is a good choice for weakly anisotropic grids or
for grids where anisotropy is present close to solid boundaries, like in wall-
bounded turbulence, but in the case of cigar cells or sheet cells, as in coastal
flow, this determines anisotropic filtering on isotropic turbulence. This leads
to inaccuracy in the evaluation of the turbulence statistics, inaccuracy which
increases with anisotropy [32].

Scotti et al., (1993) investigated on the features of the Smagorinsky model
with anisotropic grid in the case of inhomogeneous flow. They defined a single
length scale obtaining a model close to that for isotropic case. Zahrai et
al. (1995) proposed a model with different length scales to face this type of
problem. To work on LES in sea coastal area with strong anisotropic grid,
a modification on the Smagorinsky model similar to Zahrai et al. (1995) is
proposed. These types of model are justified only for highly anisotropic filtering
cells where the use of an unique characteristic length is no longer pertinent [59].

29



4.1 The mathematical model

The equations set is that shown in chapter 1 for LES. To model the SGS
an eddy viscosity model is used, specifically as in chapter 3 a Smagorinsky
model is considered. Literature studies have shown that the well established
dynamic model is not suited for large-scale flows (see [9]). This is attributed to
lacking of scale invariance of the SGS and subtest stresses in applicative large
scale flows. Moreover, the explicit filtering operation required by the dynamic
evaluation of the constant can be problematic when working with Immersed
Boundaries. An alternative is to move back to the Smagorinsky model, which
works well in conjunction with wall-layer models and Immersed Boundaries as
shown before. Its formulation has been already introduced in chapter 3 in the
contest of wall modeling. In this type of model the SGS is expressed as:

Tij/p = —QVtSij (4-1)

The eddy viscosity is evaluated as the product of a length scale C'A, pro-
portional to the grid size, and a velocity scale CA|S;;|, with C' a constant (see
eq. (3.10)).

The requirement of a single length scale in strongly anisotropic grid con-
stitutes a problem, which can be overcome considering directional eddy vis-
cosities, for the vertical and for the horizontal direction respectively. This
approach is a standard technique used in large-scale ocean models. So far,
to the best of our knowledge application in the LES contest has never been
done. Two eddy viscosities 145 and 14, are commonly used in geophysical fluid
dynamic [51], h denotes the horizontal direction and v the vertical one. Then
the diffusive terms for the Navier-Stokes equations in a Cartesian framework
read as:

0 Ou; 0  0u; 0 Ou;
81'1 Vh@xl 81'2 Yo 3x2 + 8x3 Vhal'g
where v, = v 4+ 1, and v, = v + 1;,,. Although widely used, this formulation
is not mathematically consistent. It takes into account just deformation and
not rotation to represent the stress. This can be done only assuming a linear
proportionality with S*Z»j, that is not true if we introduce directional eddy vis-
cosities. A correct tensorial analysis brings to three coefficients for the eddy
ViSCOSity ([33], [44]) V11 = 13 = V33, V12 = Va3 and V929 with Vij = Vji. Then
using a Smagorinsky model they can be expressed as:

D, =

(4.2)

Vi1 = (CL}L)2|§}L| V1o = (OLv)2|§v‘ Voo — (CLU)2‘§T‘ (43)

with L, and L, proper length scales for the cell in horizontal and vertical
direction. The strain rate tensor is decomposed as follows:

- —2 —2 —2
|Sh| = \/2(511 + 533 + 2513) (4‘4)
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= —2
|Sr] =1/ 255 (4.6)

If we consider vy; = v, and v19 = 1, the diffusive terms for the horizontal
plane can be written as in eq. (4.2). For the vertical direction 2 it becomes:

0  Ouy 0  Ouy 0  Ouy

Uy + v, + Uy
81'1 3x12 81'2 U@xQQ 81'3 81'32

Dy = (4.7)
where v, = v 4+ 1, and v, = 111 — 2v192 + 2195 A dimensional analysis
shows that v, is of the same order of v, ;. The coefficients of the model need
calibration and this is still an open issue for lacking of proper test cases.

4.2 Adaptation to a curvilinear framework

In section 4.1 it has been shown that the introduction of directional eddy
viscosities requires three terms to close the equations. At the moment, also if
not properly correct, in the Navier-Stokes solver used to perform simulation
on sea coastal flow, we have used the model with two eddy viscosity as in eq.
(4.2). So:

v = (CLp)*|Sh Vio = (CL,)%S,| (4.8)

with |Sy| as in (4.4) and |S,|:

5| = /452, + 252, + 455, (4.9)

As discussed, this is a common practice in oceanography. The formulation
proposed in the previous section is for a Cartesian frame of reference, in a
curvilinear one it is necessary to see how directional viscosities combine with
the mesh skewness tensor G™". Besides some simplifications are proposed.

Considering for example the diffusive term in direction 1 in Cartesian form,
it can be written from eq. (4.2):

0 V81Il+ 0 V81I1+ 0 V@u}
83:1 h@xl 81'2 Ua.fEQ 83:3 hal'g

D, = (4.10)
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The above diffusive term in curvilinear form becomes:

I/Gll
o -~ ™ N
a—g(Vhfi + &l 4 V€l ue
Z/G22
0~ A2 2
—l—a—n(uh% + vy, + v uy
l/G33
-y A2 2
+8_C(thg” + oG, + vnC;)uc
Z/G13
a 7 "\ N\,
+a_£(yh§a:§r + vayCy + thzCz)uC
I/G12

a - N\
+a_€(’/h§x77x + v &yny + Vhfzﬁz)un

Z/G21
a p A
+a_n(yh§w77$ + vp&yny + thznbuf
Z/G23
0 - %
+a_7](yh77xCx + anycy + thzCDuC
VGSl
a 7 -\ N\
+a_C(Vh€x<x + vayCy + Vhszz)Ug
vG32

o . o .
+a_C(Vh77:BC;B + anyCy + Vhﬁz(z)”n

(4.11)

here to simplify the notation we write 0z/0§ = .

In the discretization of the physical domain in sea coastal flows, a common
choice is to use the coordinate y parallel to 7, since the slope of the bathymetry
is in general small. This is not true for the other directions. However in case of
very large local slope of the bathymetry, rather than excessively deformate the
grid cell, it is convenient to take advantage of the IBM previously discussed,
maintaining a constant grid and modeling part of the bottom through an
Immersed Boundary.

The parallelism between y and 7 brings to some simplifications for the
composition of the metric terms with the viscosities (see the term (4.11)).
Considering the plane zy and referring to Fig. 4.1:

since the derivatives &, and (, are written [23] as:
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Figure 4.1: Curvilinear grid with n aligned with the vertical coordinate y.
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the alignment between y and 7 leads to:

& =¢ =0. (4.15)

From eq. (4.15) the terms of the metric tensor G™" multiplied by the
vertical viscosities v, reduce to just the term G?*:

0
a—n(yhnfc + v 4 VR Uy (4.16)
Collecting v, the term becomes:
0 Vp o 2 Vp o 0 2
— Uy | — — ~ —, 4.17
any (Vv nx + ny + Ve nz uﬂ any nyun ( )

The expression (4.17) holds under the hypothesis:

2
Yn T
Vo Nz

%ni <np or <1 (4.18)
on the plane zy (the same arguments apply to the plane zy).

The correctness of eq. (4.18) must be proved. The left hand side term
is composed of two elements. The first term is the ratio between the eddy
viscosities. The second term is the ratio between two metric terms, namely a
term depending on the bottom slope.

The term 7?2 /7, is first considered (refer to Fig. 4.2a). For sake of simplicity
we consider a 2D case, although the discussion holds for general 3D case. The
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Figure 4.2: a) General curvilinear grid. b) Curvilinear grid in coastal flow.

angle 6 represents the local distortion of the grid. It can be computed, see
23], from the metric tensor:

G Eane + My
cost) = (GTIG2)1/2 - (&2 +§g)(77;+ 775)]1/2 (4.19)

Considering the case as in Fig. 4.2b and eq. (4.15), eq. (4.19) reduces to:

facnzr Nz
cost = = 4.20
EE PR - B (4.20)

and after some trigonometric manipulation it can been obtained:

77_% B cos*0 1

= = 4.21
ny  1—cos*0  tan?0 ( )

For weak bottom slope the ratio 72/7. is very small.

This comes also from a simple dimensional analysis. As mentioned before,
in a sea coastal domain the horizontal length scale Ly is of some order of
magnitude larger than the vertical length scale Ly .

Lu
Ly

This means that once the domain is discretized, sheet like cells are common
and the cell ratio between L; and L, has order:

~ O(10%) (4.22)

L
—h o 0(10) (4.23)
Ly
From a dimensional analysis and considering (4.23), it follows:
2 2 2

U (AU/Lh) (Lv) —9

L~ — =] ~0(10 4.24

2~ @ojLye " \z,) O 20
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Now, in order to prove the correctness of eq. (4.18), it is necessary to
show that the eddy viscosity ratio is of order O(10). Consider two velocity
scales U and V for the horizontal and the vertical direction. From continuity
consideration and from the knowledge of marine circulation:

U
7~ 0(10) (4.25)
A dimensional analysis of the strain rate tensor can be made. First consider
the term |S,|, looking at each element, neglecting the lower order terms and
considering eqs. (4.25) and (4.23) it can be written

1/U V 1V (U L, 1U
ST (ST R S (T R 4.2
Stz ~ S Z(LU+Lh) 2L, (V+Lh) 2L, (4.26)
1%

then:

U\ (VY vV /(U U
si=|(z) +(2) ] =vn|(v) ] -ven e
For the term |Sy|:

U
511 ~ 533 ~ 513 ~ L_ (429)

h

SO:
S| ~ 22 (4.30)
Ly,

Then the ratio between the viscosities is:

L3Sy L2U2V2 L, L
v LalSW LUV L _oLn o, (4.31)
vo LS| LY Ln UV2 L

and hence it follows that

2 2
Up 1 L, L L, _

e 9 v 9% L 0O(1071 1 4.32
Vy 775 L, L3 L, ( ) < ( )
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Chapter 5

Dispersion of a vertical jet of
buoyant particles in a stably
stratified wind-driven Ekman
layer

This chapter has been developed in a scientific cooperation with Ing. Valentina
Stocca and dot. Roberto Inghilesi. The work was supported by ISPRA (ex
APAT) and it has been published on the journal: Heat and Fluid Flow, [29)].

An environmental problem that is becoming increasingly relevant nowadays
is the prediction of dispersion of polluting particulate in a marine environment.
Particles of buoyant fluid in a marine environment may be released for example
when leakage occurs in submarine pipelines or other devices (oil spilling prob-
lems). In this kind of applications it is of significant interest the evaluation
of the concentration of the released substance as well as the evaluation of the
amount of particulate that reaches the free surface of the sea. In literature (see
for example [58] for a general discussion) Eulerian models are commonly used,
in which the plume of particles is described in an Eulerian way as a space-time
distribution of their concentration. Although this approach is computationally
inexpensive, it suffers from empiricism in particular when the concentration
of the dispersed phase is small and it is mainly composed of an ensemble of
separate particles traveling in the carrying fluid. Here it is studied the dis-
persion of a buoyant jet of particles released into a salty water basin. Note
that since the time scale of diffusion of salinity is usually much larger than
the buoyancy time scale, this analysis can also be applied to upwelling of fresh
water particles in a salty water ambient.

In particular an archetypal problem is considered, representative of the
upper part of the ocean forced by a constant wind stress and the release of the
buoyant particles in a region below the free surface where turbulent mixing is
negligible.
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From a fundamental point of view, the top region of the sea can be treated
as a wind driven Ekman layer, namely the boundary layer created by the
tangential stress supplied by the action of the wind in a rotating environment.
The Coriolis force causes a rotation of the velocity profiles and thus generates
a component in the spanwise direction. In laminar conditions the penetration
depth of the Ekman layer (the thickness on the boundary layer) is proportional
to v/2v/ f. (the z-direction is vertical upward) where v is the fluid viscosity and
f- is the Coriolis parameter. In the turbulent regime the penetration depth is
found to be proportional to u,/f, where u, = \/7,/po is the friction velocity
associated to the free surface wind stress 7, and pg is the reference density
of the water. A detailed discussion on the Ekman layer and its relevance in
environmental fluid mechanics is in [56]. The main scope the present work is
to understand how a cloud of buoyant particles released in the water column
is dispersed in the wind-driven Ekman layer subject to different conditions
of thermal stratification. To this aim an extension of the Maxey and Riley
equation [43] for the particle motion is proposed, which takes into account the
actual fluid density during the space-time evolution of the particle swarm. The
study is performed numerically using a Lagrangian-Eulerian approach, which
consists of moving Lagrangian particles in an Eulerian carrier phase.

The work is organized as follows: first a description of the problem inves-
tigated together with the mathematical formulation is done. Specifically the
new form of the particle-motion equation is presented and discussed. Then
the results of the simulations are discussed and concluding remarks are given
in section 5.2.4.

5.1 The Problem Formulation

A Lagrangian-Eulerian approach is used, in which the dispersed phase is
treated as an ensemble of Lagrangian particles moving in an Eulerian flow
field. In order to evaluate the force field acting over the Lagrangian particles
an interpolation of the Eulerian flow field onto the particle position is carried
out. A detailed description of the mathematical method is here supplied.

5.1.1 The Eulerian field

A mid-latitude wind driven Ekman layer is considered, thus including both the
vertical and the horizontal components of the rotation vector in the governing
equations (see [14] and [60]). The relevant scales of the problem are: the
already defined friction velocity u,, the time scale T = 1/f, associated to
the Coriolis parameter and the penetration length 6 = u,/f, which gives an
estimation of the depth of the turbulent boundary layer. The stratification
is considered as a variation of the density field with respect to a reference
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value py. Specifically the density field is piora(z,y,2,t) = po + pa(z,y, 2, 1)
with pg << po (hereafter the index d denotes dimensional quantities). In our
numerical experiment the stratification comes from the imposition of a heat
flux at the free surface, as in [68]; physically this corresponds to heating a fluid
column by an incoming heat flux. Here we discuss two cases, respectively the
case of neutral flow Ri — 0 and the case of strongly stratified flow Ri = 40
where the Richardson number is Ri = g/po |dp/dz|s| 6?/u?. In the present
case, the Richardson number is defined using a density scale |dp/dz|ss|6 which
is related to the free surface heat flux as follows dp/dz|ss = —podT’/dz|¢s,
with o the thermal expansion coefficient. The wind stress acts in the direction
south-north (z axis), the y-axis is directed from east to west and the z-axis
is vertical upward. A mid-latitude case (§ = 45° where # is the latitude)
is here considered: with the frame of reference herein used, the components
of the rotation vector are the vertical one f, = 2Q2ysinf and the horizontal
one f, = 2Qgcosh where Qg is the earth rotation frequency. A typical full-
scale value of Re = u,d0/v is of the order of 7 x 10° considering the data of
wind stress given in [56]. Although the approach we use, equivalent to that
employed in the Re — oo simulation of [76], can deal with applicative values of
the Reynolds number, here we consider a moderate value of Reynolds number
Re = 10000 (see Section 5.1.3). This value of Re is such to minimize Reynolds
number effects on the dynamics of the flow field.

The equations of the Eulerian flow here considered are that of section 1.1,
specifically the Cartesian form is taken, the equations are solved using LES.
The non-dimensional filtered equations are:

ou;
= 1
ou; — Ouj u; ap 1 Puy
- _ — 5.2
ot + Oz, ox; + Re 0x;0z; + (5:2)
j L o7
_eijk|j:—]‘uk — Rip o3 — 8—95]
j
o  Oup _ 1 Fp O\ (5.3)
ot Ox; Re Pr 0z;0x;  Oux; '

In egs. (5.1), (5.2) t is time made non dimensional with 1/f,, u; is the
velocity component in the i-direction made non dimensional with w., z; is the
1-coordinate made non dimensional with d, p is the pressure made non dimen-
sional with pou? = 7,, and p is the density made non-dimensional with the
density scale |0dp/dz|ss|. In this chapter directions 1,2,3 respectively corre-
spond to x,y,z. The non-dimensional groups Re and Ri have been already
defined, the Prandtl number is Pr = v/k with k the thermal diffusivity of the
medium. The quantities 7;; and A; are respectively the subgrid-scale stresses
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and the SGS buoyancy fluxes. They were already defined in section 1.4 for a
curvilinear framework, in the Cartesian form they read as 7,; = wu; — u,u;
and /\Z = U—Z,O — ﬂzﬁ

Here a dynamic-mixed model is used for the SGS momentum fluxes, com-
posed of a scale-similar part [8] and an eddy viscosity one:

In eq. (5.4) the first parenthesis on the right hand side is the scale similar part,
C' is the constant, A is the filter width, gij is the resolved strain rate tensor
and |S| is its contraction. The SGS density fluxes are parametrized using a
dynamic eddy diffusivity model:

A = —C,A°|S|

dp
. (5.5)

0
In eqgs. (5.4) and (5.5) the constants C' and C,, are calculated dynamically, as
described with details in [5]. Specifically the authors have extensively shown
that such a model is able to adjust automatically to the actual flow conditions
and to predict the superlinear behavior of the SGS Prandtl number (Prsgs =

Vsgs/ ksgs) Which, as well known in literature, occurs in strongly stably stratified
turbulence.

5.1.2 The Lagrangian phase

The dispersed phase is treated in a Lagrangian way using a simplified form
of the Maxey and Riley equation (see [43]). Following [2] the Stokes drag
is considered in the particle motion equation together with the gravity term.
In the present work we consider the effect of the variation of density of the
Eulerian field in the particle motion equation. A description of the proposed
modification is given here.

The dimensional equation of the particle motion is:

d‘/pz pp — Ptot,d
) — _ M it b 52
dtq ( Pp 9o ¥
3
4—DpOD ‘U g Vp,i| (Up,i - Vp,i) -
26180 Vi i (5.6)

In eq. (5.6) t4 is the dimensional time, V,; and U,; are respectively are
the i-component of the dimensional particle velocity and of the dimensional
fluid velocity at the particle location, p, and D, are respectively the density
and the diameter of the particle, Cp = 24/Re,(1 + 0.15Re) ") where Re, =
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\Upi — Vil D, /v is the particle Reynolds number. Replacing the total density
Prot.d With po + pg, and making eq. (5.6) non dimensional we obtain:

dv,; 1\ 1 Ri
2 pu 1 _—— —_— . —_— .
dt ( ) Frle T R0 T

—Cp |up; — vyl (Upi — Vpi) —
Eiij—]Up,k (5.7)
3

In eq. (5.7) Ap = pp/po, vpi = Vyiftr, up; = Upi/u,, d, = D,/6 and
the buoyancy contribution appears split into two terms: the first one is the
usual contribution proportional to the Froude number Fr = u,/(g 6)%°; the
second one takes into account the density variation in the Eulerian field, and
is proportional to the Richardson number. Note that Fr?Ri = p,/py where pq
is a typical density scale of the problem under investigation, i.e. d|dp/dz|ys]
in this case, thus Fr?Ri << 1 under the Boussinesq approximation. The
second term (II) on the RHS of eq. (5.7) gets important when it is com-
parable with the first term (/) on the RHS. It can be easily shown that
IT1/1 = (ps/po)/ ((pp — po)/po), thus II influences the particle motion when
the particle density is very similar to the reference density of the carrying
fluid. This is the case, for instance, of particles of fresh water released in a
salty water environment.

Finally the position of the particles is advanced in time as follows:

dx i
DL g
dt ’
with z, ; the i-component of the particle position made non dimensional with .

(5.8)

5.1.3 The numerical method

The Lagrangian-Eulerian model herein employed works as follows: The LES
field is first obtained through integration of the filtered equations (5.1)-(5.3).
Such integration is carried out using the fractional-step described in 1.3.
Since the LES field does not contain the energy and vorticity contribution
associated to the unresolved (small) scales of the motion, a SGS model for the
motion of the Lagrangian particles is required. Note that in resolved LES |, it
was shown that the contribution of the small unresolved scales of motion on
particle dispersion is small and the error in the dispersion coefficients is pro-
portional to the dissipation rate of the SGS turbulent scales [3]. On the other
hand, when dealing with large values of the Reynolds number (that require the
use of a wall-layer model for the evaluation of the Eulerian field) neglecting the
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contribution of the small scales to the Lagrangian motion can lead to severe
underestimation of the dispersion of the particle swarm. Since it is simulated
a large Reynolds number flow, in order to overcome this problem the LES
field is then reconstructed with the aim to recover the energy contribution as-
sociated to the unresolved scales. The approximate deconvolution technique,
recently applied by [36] and [65] to the problem of particle dispersion, is used.
Specifically, the following approximate deconvolution:

when used in conjunction with an equivalent model for the SGS turbulent
stresses was proven to be able to recover the SGS turbulent contribution to
the particle motion. In eq. (5.9) u,; is the re-constructed i-component of the
velocity field. Successive tests have shown that a first order re-construction
(first two terms on the right hand side, RHS, of eq. (5.9)) gives accurate
results when used in conjunction with a dynamic mixed model [41]. The
reconstructed field is later on interpolated onto the particle position using a
technique recently developed by [42]. This technique uses a Taylor expansion
around the grid point (N) closest to the particle, to interpolate the Eulerian
field onto the particle position (P):

Up; = Un,; + % (zpi — xNi) + O(Az?) (5.10)

This technique is very simple and inexpensive, and allows obtaining second-
order space-accuracy, as that achieved in the solution of the Eulerian field. The
interpolated velocity is finally considered in the particle motion equation (eq.
(5.7)) and the particle position is thus advanced in time using a second-order
accurate Adams-Bashforth technique.

As regards the Eulerian field, the mathematical model herein employed has
been validated in a number of flow conditions (see among the others [4], [5],
[61]). Results of validation tests for the wind-driven Ekman layer are discussed
in section 5.2.1.

5.1.4 Computational parameters

Following [76] the simulations are carried out over a rectangular box whose
non-dimensional extensions are L, = 1 and L, = 1 in the horizontal directions,
whereas L, = 1.5. The domain size is large enough to reproduce the largest
scales of motion both in the neutral case and in the stably stratified one. This
occurs because stable stratification inhibits and destroys the largest scales
of motion. The computational grid is uniform and has 64 x 64 x 200 cells
respectively in the z, y and z directions. The grid spacing in wall units (made
non dimensional with v/u,) is Azt = Ay* = 156 and Azt = 75. Such a
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grid size is typical of LES with wall-layer models (see [7]) and is also suited
for stably stratified flows when dynamic SGS models are employed, due to
the ability of the model constants to adapt to the actual flow conditions. The
molecular Prandt]l number is chosen equal to 5 which corresponds to thermally
stratified water. Periodic boundary conditions are imposed over the horizontal
directions, whereas at the bottom boundary of the computational domain we
set p = uz = Juy/0x3 = Jus/Ox3 = 0. This choice is justified by the fact that
the domain depth is much larger than the turbulent penetration length and
modifications of the flow variables are not expected at the bottom boundary.
The a posterior: analysis of the numerical results confirmed the effectiveness
of such a choice. Two cases are considered, a case of neutral flow (Ri — 0) and
a case of stable stratified flow (Ri = 40). The latter corresponds to a case of
strong stratification. In both cases, a statistically steady state is first obtained,
and later on the particles are released. In the two cases analyzed, 54000
buoyant particles have been released, with density ratio Ap = p,/po = 0.976,
corresponding to fresh water particles released in a salt water environment
and radius equal to 1073§. The vertical plume is released continuously in
time, up to t = 1.1, from a disc of radius 0.059, located at 0.5 below the free
surface and containing 900 particles. The particles have non zero initial vertical
velocity v, 3 = u,. As regards the choice of the parameters for the dispersed
phase, the vertical location of the ejection disc was chosen in a turbulence-
free region, close to the free surface in order to reduce the time needed to the
particles to rise up to the surface. The radius of the disc was such to spread
the particles over a number of grid cells and the choice of the initial velocity
was made for having a typical velocity scale of the flow field. However tests
have demonstrated that the memory effect of the initial velocity is lost after a
short time, and the physics ruling the rise of the particles is mainly associated
to buoyancy effects. Finally the number of the particles was such to ensure
that all the particles left the disc at the final time of the simulation.
A sketch of the problem herein discussed is in Fig. 5.1.

5.2 Results

First the results of the validation tests are discussed, successively we show the
statistics of the Eulerian field and finally we show the results of the Lagrangian
phase.

5.2.1 Validation tests

To the best of our knowledge data of the wind-driven Ekman layer at Re =
10000 are not available. The only results available for the problem under
investigation are those of the polar (f, = f, = 0) Re — oo simulation of [76].
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Figure 5.1: Schematic of the physical problem herein investigated. The quan-
tity QQ denotes the free surface heat flux.

A polar simulation at Re = 10000 has been run and first- and second-order
statistics were compared with the reference data. Although the difference in
the value of Re, the agreement between the results and the reference ones is
pretty good, due to the fact that the Re number is large enough to minimize its
own effect on the re-scaled velocity field. Figure 5.2a shows the comparison of
the vertical profile of the mean horizontal velocity components. The notation
< . > denotes Reynolds averaged quantities. Small differences are detectable
in the outer region, well below the free surface. Specifically, as expected, the
comparison shows a larger penetration depth in the Re — oo case with respect
to the moderate Reynolds number case. This difference has to be attributed
to the fact that a finite Re number implies a smaller penetration depth than
the one observable at Re = oco. In Fig. 5.2b the comparison of the rms of
the three velocity components is shown. As for the mean velocity components,
they are very close to each other at the upper surface while some differences are
observable in the outer region. This is a Reynolds number effect well known in
literature, namely the normal Reynolds stresses do not scale with the friction
velocity far from the wall and, when they are made non-dimensional with wall
variables they slightly increase with Re.

5.2.2 The Eulerian field

Here the results of the mid-latitude simulations are discussed in the two cases
of stratification. Figure 5.3a shows the vertical profiles of the horizontal com-
ponents of the mean velocity field in the two cases analyzed. In the neutral
case the penetration length of the turbulent field is of the order of 4 and, as
expected, large gradients are present in the free surface region. The transver-
sal velocity arising from the rotational motion is large and negative in the free
surface region, indicating a rotation of the velocity vector toward the right
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Figure 5.2: Comparison of a polar Re = 10000 simulation with the reference
data of [76] at Re — oo: a) vertical profiles of the mean horizontal velocity
components; b) vertical profile of the rms velocities.

direction as expected in the northern hemisphere. In the stratified case, the
velocity profiles are dramatically affected by the presence of large incoming
free surface heat flux. In the stratified case (Fig. 5.3a) it is observed a strong
reduction of the penetration length of the boundary layer, a small increase
of the streamwise velocity at the free surface and a noticeable increase of the
spanwise component. Moreover, large velocity gradients are observed beneath
the free surface. As a result, the angle between the wind stress and the veloc-
ity vector increases and, in agreement with relevant literature (see for instance
[56], and [15]) the Ekman spiral appears strongly modified (Fig. 5.3b).

Stratification also affects the elements of the Reynolds stress tensor. Fig-
ure 5.4a shows the rms of the velocity components, namely the square root
of the normal Reynolds stresses. As already observed by [5] in the analysis
of a strongly stratified turbulent channel flow, stratification affects the normal
Reynolds stresses in an anisotropic way. Specifically, the horizontal normal
Reynolds stresses are enhanced whereas the vertical Reynolds stress is strongly
inhibited. This is due to the fact that stratification suppresses directly verti-
cal Reynolds stresses as well as the pressure-strain correlation which transfers
turbulent kinetic energy (TKE) from the horizontal plane to the vertical direc-
tion. As a consequence the TKE produced in the horizontal directions tends
to remain confined in the horizontal plane.

The non-dimensional Reynolds shear stresses are shown in Fig. 5.4b for
the two cases studied. Stratification inhibits the amount of vertical mixing of
momentum and reduces the thickness of the water column where significant
mixing is present. In particular the spanwise-vertical Reynolds stress appears
dramatically affected by stratification and this explains the strong increase of
the mean spanwise velocity observed in Fig. 5.3a.
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Figure 5.3: a)Vertical profile of the non dimensional mean horizontal velocity
components. b) Hodograph of the horizontal components of the mean velocity.
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Figure 5.4: a) Vertical profile of the rms of the velocity components. b)Vertical
profile of the Reynolds shear stresses.

The vertical profiles of the mean density and of its rms are shown in Figs.
5.ba and 5.5b respectively. In case of neutral flow, the density has to be
considered as a passive scalar. From a physical point of view this represents
a case where stratification is weak enough that it does not affect the velocity
field (Ri — 0).

In the Ri — 0 case density slowly decreases going up toward the free surface
and it appears well mixed in the upper part of the domain. Conversely, in
case of strong stratification, the confinement of the mixed layer in the very
upper region of the domain causes a strong decrease of the fluid density in
the free surface region and the development of a picnocline (layer where the
largest density gradient takes place) in a thin region below the free surface.
A similar behavior is observed for the density fluctuations, quantified by g,
(Fig. 5.5b): specifically they are very intense and spread over the fluid column
in the neutral case, whereas they are confined within a thin region above the
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Figure 5.5: a) Vertical profiles of the mean density. b) Vertical profiles of the
density root mean square.

picnocline in the stratified case. The analysis of the vertical profile of the
gradient Richardson number Ri, = N?(z)/S5%(z), where N%(z) = —g/pod <
p > /dz and S =d < u > /dz, in the stratified case, shows that its value is
larger than 0.2 along the whole fluid column. According to [5] this indicates
that the fluid column is in a buoyancy dominated regime, where turbulence is
suppressed and internal waves are present in the picnocline region. In Fig. 5.6
it is shown the vertical buoyancy flux < p’w’ > which quantifies the attitude to
vertical mixing of mass in the fluid column. The Ri: — 0 case shows that large
vertical buoyancy fluxes are present in the free surface region where active
turbulence is present, however noticeable activity is observable along a depth
equal to 1.250, even larger than the vertical length scale §.

The presence of strong stratification reduces the vertical buoyancy flux. In
particular the maximum value is reduced by more than 20% and, more im-
portantly, the region where appreciable values are recognized remains limited
in the free surface region. Counter-gradient buoyancy fluxes are recorded in
the region where the picnocline intensifies, and this is a typical feature of the
buoyancy dominated regime described in [5].

Finally Fig. 5.7 illustrates two iso-density surfaces respectively in the neu-
tral case and in the Ri = 40 one. In the neutral case (Fig. 5.7a) the iso-surface
shows the presence of large mixing spread over a wide range of spatial scales
and extending along the upper part of the water column. Conversely, in Fig.
5.7b it is possible to see the dramatic inhibition of vertical mixing caused by
the stable stratification which is also associated with the presence of internal
waves. This destruction of the vertical turbulent structures greatly affects the
particle dispersion patterns as it will be shown in the next section.

76



<w'p>

Figure 5.6: Vertical profiles of the vertical buoyancy flux.

a)

Figure 5.7: Iso-density surfaces in the two cases investigated: a) Ri — 0; b)
Ri = 40. Note the presence of internal waves in the R: = 40 case.

5.2.3 Lagrangian particles

The dynamics above observed has a dramatic impact on the dispersion of the
buoyant jet. Figs. 5.8 and 5.9 offer a 3D view of the plume of particles at
t = 1.10. In case of neutral flow (Fig. 5.8) the particulate moves upward along
a cylindrical path up to z = 1.25, in a region where the level of turbulent
fluctuations is very small. Moving upward, the particulate enters a region
characterized by the presence of non-zero horizontal velocity components and
appreciable turbulent fluctuations, that cause the destruction of the cylindrical
structure of the jet and the horizontal spreading of the particulate. This effect
is enhanced when the particulate continues to move upward and once it reaches
the free surface it is spread horizontally in the flow field.

A very different scenario is observable in the stratified case (Fig. 5.9).
The suppression of turbulence in the region below the picnocline (discussed in
the previous section) makes the particulate to travel along a well structured
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cylindrical path up to the picnocline. Due to the presence of a weak horizontal
velocity field and of the Coriolis force, this path undergoes a weak distortion in
the region 1.2 < z < 1.35 still maintaining its own organized structure. How-
ever, once the plume reaches the picnocline, it remains confined in that region
and oscillates according to a wave-like behavior, due to the presence of internal
waves in the fluid column. The confinement of the buoyant jet in the picnocline
region has to be attributed to the fact that the particles reach a condition of
hydrostatic equilibrium below the free-surface, due to the strong reduction of
the ambient fluid density (see Fig. 5.5a). This effect is well known in practical
applications (see for example [58]) and is well captured by the mathemati-
cal model here proposed, which considers an extra-term proportional to the
Richardson number in the particle motion equation.

Figure 5.8: Three dimensional view of the plume of particles at the final time
of simulation t = 1.1. Case Ri — 0.

Figure 5.9: Three dimensional view of the plume of particles at the final time
of simulation t = 1.1. Case Ri = 40.

The horizontal displacement and diffusion of the cloud of particulate ap-
pear to be inhibited by stratification (see Fig. 5.10a) for two reasons. The
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horizontal displacement is strongly reduced because in the stratified case the
plume remains entrapped in the picnocline region, well below the free surface,
in a region where the horizontal components of the velocity field are small.

The horizontal diffusion of the plume is suppressed by stratification due to the
inhibition of the turbulent fluctuations in the velocity field.

a)

Figure 5.10: Two-dimensional views of the plume at t = 1.1. Grey particles,
Ri — 0; Black particles, Ri = 40. a) Top view; b) Side view.

A lateral view of the plume of particles (Fig. 5.10b) shows that in the
stratified case the jet of particles conserves its shape up to the picnocline;
in this region the plume moves horizontally according to the internal waves
generated in that region. Conversely, the particles moving in the neutral flow
experience a large horizontal spreading well before reaching the free surface.

1.2]
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Figure 5.11: Two-dimensional views of the plume at ¢ = 1.1 evaluated without
the Ri term in eq. (5.7). a) Top view; b) Side view.

With the aim to show the effect of the extra-term proportional to R: on
the dynamics of the plume, we have also run a simulation for the Ri = 40
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case, not considering the variation of the fluid density in the particle-motion
equation, thus omitting the second term of the right hand side of eq. (5.7).
Figure 5.11 shows the top and the lateral view of the plume at ¢ = 1.1, when
obtained omitting the variable-density term. We observe that if the variation
of density is not considered in the particle motion equation, the dynamics of the
plume is still affected by the stratification effect on the flow field, in that the
strong inhibition of turbulence makes the plume to hold its own cylindrical
structure up z = 1.45. A spreading occurs above z = 1.45 and finally the
particles reach the free surface and are spread horizontally according to the
velocity field. This happens because the particles are not sensible to the local
variation of the ambient density and therefore the entrapment effect below the
picnocline is not reproduced. As a consequence the vertical upwelling as well
as the horizontal transport are dramatically overpredicted (compare Fig. 5.11
to Fig. 5.10).

5.2.4 Concluding remarks

In this chapter the dispersion of a plume of buoyant particles in a stratified
wind-driven Ekman layer was investigated. The density ratio herein employed
is representative of particles with density comparable with that of the ambient
fluid (for example, fresh water particles released into a salty water environ-
ment). The analysis was carried out in two different conditions, namely a case
of neutral flow and a case of strongly stratified flow. Stable stratification was
supplied by incoming heat flux at the free surface of the domain. The study
was carried out using LES for the Eulerian phase, whereas the dynamics of
the plume of particles was simulated using a Lagrangian technique. In order
to make the particles sensitive to the actual fluid density, the particle mo-
tion equation was improved and an extra buoyancy term, proportional to the
Richardson number, was considered. Because of the Reynolds number con-
sidered in our numerical experiment, a wall model approach was employed,
directly imposing the wind stress and the heat flux at the free-surface of the
domain, not resolving the near-wall structures. The results of the numeri-
cal simulations have shown that under stable stratification, the penetration
depth of the boundary layer as well as the vertical mixing in the water column
decrease. In case of strong stratification, turbulence is almost completely sup-
pressed in the water column and internal waves are observed in the picnocline
region. The dispersion of the buoyant jet of particles is dramatically affected by
stratification. In the neutral case, once the plume reaches the turbulent region
while continuing to go up, it is spread in the horizontal direction by turbu-
lent mixing; afterward, when the particles approach the free surface they are
dispersed horizontally according with the local velocity field. In the stratified
case, the particles remain entrapped in the picnocline region and are not able
to reach the free surface region, characterized by large values of the horizontal
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velocity components. As a result, both the horizontal displacement and the
horizontal spreading of the plume appear strongly inhibited by stratification.
In order to check the importance of the extra-term proportional to Rz in the
particle-motion equation, it has been run a simulation considering constant
ambient density in the particle motion equation. The simulation has clearly
shown that neglecting the variation of density leads to a strong overestimation
of the vertical as well of the horizontal transport of the plume.
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Chapter 6

Applications

Here the tools developed in the previous chapters have been applied to two
practical studies, specifically an environmental flow and an industrial one. The
idea is to face real life problems with the methodology here proposed. The first
study regards an environmental flow, specifically the study of turbulent mixing
due to a river merging into the sea (estuarine flow). This case is suited to the
application of the IBM of chapter 2 and the SGS model developed in chapter 4.
The second study concerns an inertial filter to collect paint droplets. This is an
industrial application where the use of IBM with curvilinear grid is particularly
suited.

6.1 Simulation of an estuarine flow

In this section the mathematical model is applied to the study of an estuarine
flow. The study concerns the mixing effects due to the incoming flow of a river
in the sea, specifically the Tevere river that goes into the Tirreno sea. A sketch
of the area can be seen in Fig. 6.1. This type of simulation can be useful to
better understand the sea dynamics, in particular to study the effect of river
pollution on a touristic area.

The main forcing considered are a sea current coming from south and the
river inflow. These forcing terms come from an analysis of the characteristics
of the sea currents in this area. Since the domain in the horizontal plane is
large and the characteristic velocities, both for the river and for the sea current,
are small, the Coriolis effect cannot be neglected. Because of this sea current
and the Coriolis force the river stream is expected to deviate toward north
and so the area investigated is located at the north with respect to the river
mouth. The incoming flow from the river has the density of fresh water, this
light fluid goes into a salt environment, that is heavier. We consider a winter
condition, and consequently the stratification comes from the merging of the
two currents only. In other words density anomaly is just due to difference in
salt concentration. Under these conditions Reynolds analogy holds. So for a
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turbulent flow we can consider that the rate of transport of a scalar (i.e., a
concentration) is the same of that of momentum. In the advection-diffusion
equation (1.12) for salinity concentration we can consider a turbulent Schmidt
number S¢; = 0.5 (where S¢; = v;/ky, with k; the eddy diffusivity). Density
is treated as an active scalar in momentum equation, it affects the motion
through the buoyancy term as in eq. (1.20), then we expect that the incoming
jet will rise on the surface because of buoyancy effects, spreading over the
horizontal plane (in agreement with literature results).

The domain considered for the numerical simulation covers an area of 5km
x 6km in the horizontal plane and it is discretized with 385 grid points both for
x direction and z direction, while 33 points are taken in the vertical direction
y where the maximum depth is 50 meters. This determines cells of about ten
meters in the horizontal plane and of 0.4 meters in the vertical direction close
to the coastline. Because of the characteristic length scales in the horizontal
and vertical plane the grid is strongly anisotropic. This domain is particularly
suited for the use of the SGS model developed in the chapter 4 and so different
eddy viscosities are considered, namely one for the vertical direction and one
for the horizontal one.

A sketch of a horizontal plane of the grid can be seen in Fig. 6.2a, for
simplicity a coarser one is shown. The horizontal plane is a circular sector
with an angle of 20 degrees. The computational grid is constructed from the
bathymetry. In Fig. 6.2b the bottom of the grid can be seen, in the figure
the vertical direction is magnified with respect to the horizontal ones. The sea
depth reach a maximum of 50 meters at the corner denoted as SO (see Fig.
6.1). Then the bottom smoothly reaches the coast line with a depth of about
one meters.

As suggested in chapter 4 some simplifications are possible in the computa-
tion of the metric terms if the vertical curvilinear coordinate 7 is taken aligned
with the Cartesian vertical direction as it is done in the present case, see Fig.
6.3a. For these simplifications to hold, a weak slope of the grid bottom is
required. In order to satisfy this requirement part of the bottom and of the
coastline is modeled using the IBM as described in chapter 2. This avoids the
use of a grid with an excessive distortion. A sketch of the use of IBM is given
in Fig. 6.3b.

The boundary conditions are chosen in the following way. At the sea bot-
tom and at solid walls (i.e. the Immersed Boundaries) a wall function is used to
avoid the resolution of the near wall structures in order to maintain a coarser
grid near walls and to save cpu time, see chapter 3 for details. At the boundary
SE-SO a sea current parallel to the coast is taken, with a value typical for sea
environment of 0.02 m/s. Few real data are known for the region considered,
but the general dynamics of Tirreno sea exhibits a near coast current going
toward the north. At the boundary NE-SE corresponding to the mouth of
the Tevere river we consider an inflow condition. This inflow comes from a

83



Figure 6.1: Estuarine flow. Physical domain for Tevere river area. Bathymetric
lines and area analyzed.

pre-simulation of a turbulent channel flow with the characteristics river cross-
stream geometry and mass transport. The average velocity is about 0.3 m/s
while the inflow is of about 300 m?/s. This value is typical for Tevere in win-
ter time. The channel flow is simulated considering the Coriolis effect, so its
profile is not symmetric, and it provides the turbulent kinetic energy for the
simulation.

A free-slip condition is considered on the sea surface, while on the remaining
boundaries an Orlanski condition is taken. A simulations with density as a
passive scalar (SDP) is performed in order to highlight the difference with
respect to the use of density as an active scalar (simulation SDA).

Figures 6.4a and 6.4b show a contour for the horizontal velocities u and
w respectively for the simulation SDA. The plots refer to an horizontal plane
just below the free surface. It can be seen that the river flow once in the sea
tends to go toward the north direction due to the presence of the meridional
sea current and because of the Coriolis effect. It remains far from the coastline
and a large recirculation area is trapped between the main flow and the coast
line. In particular we can observe the asymmetric profile of the river inflow
due to the Coriolis effect, namely higher velocity is close to north bank. Many
small recirculation areas can be seen where the river flow meets the meridional
sea current. Figure 6.4c shows a plot for the vertical velocity component. As
can be seen from the contour legend, the vertical velocity is of one order of
magnitude smaller than the horizontal velocity components, this difference in
the magnitude is typical for sea flow.

The Figs. 6.4a, 6.4b, 6.4c show a contour for the velocity component u
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Figure 6.2: Estuarine flow. a) Sea bottom for Tirreno sea in front of Tevere
mouth interpolated from bathymetric data with a biharmonic spline. b) Hori-
zontal plane for a coarse computational grid in the case of Tirreno simulation.
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Figure 6.3: Estuarine flow. a) Lateral view for the computational grid.

Example of sea domain partially modeled with IBM.
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Figure 6.4: Estuarine flow simulation SDA. a) Contour for u velocity at one
meter below the surface. b) Contour for w velocity at one meter below the
surface. ¢) Contour for v velocity at one meter below the surface.
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w v respectively, for the simulation SDP. The general behavior is the same
of simulation SDA, because of the forcing considered in both the simulations,
but the velocity magnitude close to the surface is lower and the river stream is
more confined. This is due to the fact that in SDP momentum just transports
the salinity and the flow is not affected by buoyancy, on the other hand in SDA
the river flow, because of the gravitational term, tend to rise over the heavier
sea fluid and to spread on the horizontal plane. The vertical velocity activity
for simulation SDA is larger than simulation SDP. This can be explained with
the intrusion of salt water in the fresh water layer. This will be more clear
looking at density contour plots.

In Figs. 6.6a, 6.6b, 6.6¢c a contour plot of the density anomaly p’/py can
be seen. The figures show instantaneous values at different levels on vertical
direction for simulation SDA. The red color distinguishes the salt water while
fresh water is in blue. The light water coming from the river, because of
buoyancy tends to rise over the salt water and to spread in the horizontal
direction. This is due to the fact that density is treated as an active scalar
in momentum equations. Then the fresh water is transported by the mean
current and so go toward the north without reaching the coast far from the
river’s mouth. The fresh water concentration rapidly decreases far from the
river mouth. Figure 6.7 shows the formation of a salt edge inside the river
mouth. On the lower levels the heavier salt water tends to compensate the
rise of fresh water. The salt wedge can be much larger than the one observed
in the figure, but here cannot be simulated properly because of the boundary
conditions considered. Specifically the salt intrusion can move upward in the
river for hundred meters. The proper simulation would require a very long
river channel, or, better, the knowledge of the actual salinity profiles near the
mouth. In Figs. 6.8a, 6.8b, 6.8¢c a contour plot for the density anomaly p’/pg
can be seen. The figures show instantaneous values at different levels along the
vertical direction for simulation SDP. In this case the behavior is completely
different compared to the simulation SDA. Here density is just transported by
momentum equation and the fresh water remains confined far from the surface
with an unphysical behavior.

Figures 6.9a and 6.9b show a contour plot for the eddy viscosities, the
horizontal and the vertical component respectively, for the simulation SDA.
As expected the two values differ approximatively of one order of magnitude.
Larger values are observed where shear phenomena are present, so close to the
river banks and where the river low meets the sea water.

Finally Fig. 6.10 shows a velocity field, here represented through a coarse
vectors field, qualitatively compared to an image from a satellite. The sim-
ulation seems in agreement with real observation, considering that the sea
meridional current intensity is arbitrary and the river inflow considered was
for a winter time configuration.
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Figure 6.5: Estuarine flow simulation SDP. a) Contour for u velocity at one
meter below the surface. b) Contour for w velocity at one meter below the
surface. ¢) Contour for v velocity at one meter below the surface.
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c)

Figure 6.6: Estuarine flow simulation SDA. a) Contour plot for p'/py at the
bottom. b) Contour plot for p’/pg at 5 meters from the sea surface. c¢) Contour
plot for p'/po at the sea surface.
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Figure 6.7: Estuarine flow simulation SDA. Contour plot for p’/pg in the river
mouth.

6.2 Simulation of a practical industrial prob-
lem

Here we discuss the application of the numerical tools to an industrial problem,
related to the efficiency of an inertial filter. These filters are widely in use to
reduce the concentration of fine painting droplets in air, during a painting
process in industrial applications. This problem shows the advantage of using
an Immersed Boundary Methodology in conjunction with curvilinear grids.

A typical filter geometry is shown in Fig. 6.11a (see [78]). The filter is com-
posed of a sequence of identical elements (Fig. 6.11b). Air enters through a
hole (indicated with 1 in Fig. 6.11b), then air flows within the cavity and goes
out from an outflow hole (2 in Fig. 6.11b). The inflow and outflow holes are
staggered between each other to ensure air mixing within the chamber. The
filter is made of paper and the painting droplets tend to attach over the paper
surface during the air flow. This allows to filter out a large amount of particles
from air. The increase of turbulent mixing within the chamber enhances the
adherence of particles to the paper surface and consequently the efficiency of
the device. Due to the modularity of the filter, the computational domain here
is limited to a single element of the panels, as shown in Fig. 6.12, taking advan-
tages of the periodicity of the problem. In Fig. 6.12 the computational setup
together with a plane section are plotted. It is possible to observe that the use
of a non-orthogonal grid obtained using diamond-like cells allows modeling the
lateral sides of the filter (side AD of the actual chamber and side BC of the
successive one) as body fitted surfaces, whereas the other surfaces are modeled
using immersed boundaries. This combination reduces the number of surfaces
to be modeled with IBM and allows to optimize the number of grid cells needed
for the simulation. In practical applications the incoming air velocity . is
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Figure 6.8: Estuarine flow simulation SDP. a) Contour plot for p’'/py at the
bottom. b) Contour plot for p’/py at 5 meters from the sea surface. ¢) Contour
plot for p'/pg at the sea surface.
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Figure 6.9: Estuarine flow simulation SDA. a) Contour plot for the horizontal
eddy viscosity at one meter below the surface. b) Contour plot for the vertical
eddy viscosity at one meter below the surface.
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Figure 6.10: Estuarine flow SDA. Comparison of a coarse instantaneous vector
plot with an image from satellite

B

a)

Figure 6.11: Geometry of the filter (a) with identification of the modular
element (b)

b)
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of the order of 0.5m/s giving Re = ugirlap/v = 2000 where l45 = 0.04m
is the distance between the upstream edges of the filter (Fig. 6.12b) and
v =1.0x107°. At this Reynolds number a direct numerical simulation (DNS)
can be performed and we use 192 grid cells in the streamwise direction x, 160
cells in the y direction and 128 in the z direction. The inflow velocity at the
surface represented by the segment AB of Fig. 6.12 is a series of turbulent
planes generated with a pre-simulation of a turbulent plane channel flow. At
the outflow surface represented by the segment C'D of Fig. 6.12 a radiative
condition is imposed. No-slip conditions are imposed over the filter surfaces
represented by the segments BC and AD and over the immersed surfaces AF,
EB and BD. Finally, periodicity is imposed along the z-direction. Here some
details are shown of the velocity field. Figure 6.13a shows the instantaneous
horizontal vector field at a section intersecting the diameter of the inflow hole.
It can be observed that the level of turbulence is very low at the inflow due to
the relatively small value of the Reynolds number, and vortex structures are
generated beyond the inflow hole. Air is thus forced to move along the vertical
direction and flows out through the outflow section. Figure 6.13b shows that
air going out through the outflow hole splashes against the surface of the suc-
cessive chamber and moves downstream along the surface creating a number
of small scale structures with enhanced mixing. In this region a large accumu-
lation of painting droplets is expected. On the other hand other surfaces of
the chamber (see the surface represented by the segment AE of Fig. 6.12b at
the height of the outflow section) bounds a stagnation region where probably
particles are not accumulated.  Figure 6.14 shows a zoom of the near-surface
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Figure 6.12: a) Three-dimensional view of the computational domain; b) xy-
section of the computational domain.

instantaneous velocity field of Fig. 6.13b. It is possible to observe that the

curvilinear-grid IBM method, as discussed in chapter 2, correctly reproduces
the near-wall velocity which appears to be tangent to the body surface. Note
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Figure 6.15: Isosurface of instantaneous z-component of vorticity. The value
wolap/uq; = 144 is plotted.
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the absence of spurious velocity components crossing the immersed body sur-
face even in case of very thin bodies at large value of Re. Finally, Fig. 6.15
gives a three-dimensional illustration of the instantaneous vertical component
of vorticity. Small organized structures appear downstream the inflow hole,
representative of the vortices visualized in Fig. 6.13a. Conversely once air
goes out from the chamber through the outflow hole, due to the already dis-
cussed splashes, a large number of small scale structures are generated. A more
detailed analysis of the turbulent field together with the investigation of the
Lagrangian dispersion of particles is currently ongoing. However, the example
herein reported clearly shows the ability of the methodology here presented to
efficiently afford applicative complex geometry problems at practical values of
the Reynolds number.
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Chapter 7

Conclusions

In this thesis different tools were presented with the aim to develop a method-
ology for LES in real-life problems. In particular the work has focused on: com-
plex geometry, high Reynolds number flow, turbulence model for anisotropic
grid, particle dispersion. All these aspects can be fundamental to work in real
applications. Below the achievments of the present work are reported for each
argument investigated.

An improved Immersed Boundary Method for Curvilinear Grids

In chapter 2 the direct forcing, immersed boundary technique has been ex-
tended to the general case of curvilinear-coordinate, structured, Navier-Stokes
solvers. Modifications to the available techniques have been proposed with the
aim to extend the applicability of the techniques to any-shaped single/multi
body configurations also having local high curvatures or sharp corners. In this
way a general technique is available to deal with any-shaped multiple-body
complex geometry.

Four different numerical examples have proven that the technique is able to
accurately simulate a wide class of complex-geometry flow fields. Four main
conclusions can be drawn:

e when the geometry is well suited for both Cartesian and curvilinear mesh-
ing, the advantage of using curvilinear grids is that the cell distribution
in the body region may be better shaped to the body geometry and con-
sequently a smaller number of grid cells may be used when compared to
those needed with a Cartesian mesh.

e when the overall geometry of the problem to be studied is not suited for
Cartesian meshing, the use of a curvilinear solver allows obtaining more
accurate results with a considerable reduction of the computational cost
of the simulation. For the S-duct example treated in section 2.2.3, the
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Cartesian simulation gave less accurate results with a computational cost
equal to 1.77 times that of the curvilinear one; however the increase of
the computational cost of the Cartesian simulation can be even larger
for more complex situations;

e in a wide class of problems (see the S-shaped duct and the inertial filter
discussed in section 6.2) the use of body-fitted curvilinear (or in gen-
eral non-orthogonal) meshes allows to considerably reduce the amount
of body surface to be reproduced by means of immersed boundary, thus
improving accuracy;

e asimplified curvilinear-coordinate, direct-forcing, semi-implicit fractional
step algorithm has been proposed. Results clearly show that no addi-
tional complications are introduced and that the error related to the
use of this simplified technique is negligible in a wide range of computa-
tional time steps and rapidly decreases with the Reynolds number of the
simulation.

Wall modeling with an Immersed Boundary Method

In chapter 3 the Immersed Boundary Method developed in chapter 2 has
been extended to high Reynolds number flow introducing a wall model ap-
proach. It has been highlight that the usual way of implementing wall mod-
eling is not suited for the IBM and an alternative procedure is required. The
proposed method uses the logarithmic profile close to the wall in conjunction
with an eddy viscosity mixing length approach at the Immersed Boundary
interface.

The method has been proved in a turbulent plane channel flow, with dif-
ferent grid configurations and at different Reynolds number up to Re, = 2000.
The results obtained are satisfactory. Further investigations on the approach
are ongoing. In particular the extension of the method to curvilinear grid will
be the next achievment.

A SGS model for sea coastal flow / Simulation of an estuarine flow

In chapter 4 a SGS model for anisotropic grid has been proposed. The
model is suited for environmental flow, in particular for sea coastal flow or
lakes, where the discretized computational domain could present sheet — like
cells. The model has been used in a practical application, specifically it has
been applied in the simulation of turbulent mixing for an estuarine flow, see
section 6.1. Proper test cases are not available to prove the model, but the
results obtained in section 6.1 are in good agreement with real observations.
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Dispersion of a vertical jet of buoyant particles in a stably stratified wind-driven
Ekman layer

In chapter 5 the dispersion of a plume of buoyant particles in a strati-
fied wind-driven Ekman layer was investigated. The equation for the particle
motion was modified in order to make the particle sensitive to actual fluid
density. So an extra buoyancy term proportional to the Richardson number
was considered.

The results have shown that stratification inhibits the vertical mixing, un-
der strong stratification turbulence is almost suppressed in the water column
and internal waves are observed. Also the particles spreading strongly de-
creases in stratified flow. Besides without the extra term in the particle motion
the vertical and horizontal transport is overpredicted.
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