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On a coe�cient concerning an ill-posed

Cauchy problem and the singularity

detection with the wavelet transform
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Abstract. We study the Cauchy problem for 2nd order weakly hyper-

bolic equations. F. Colombini, E. Jannelli and S. Spagnolo showed a

coe�cient giving a blow-up solution in Gevrey classes. In this paper, we

get a simple representation of the coe�cient degenerating at an infinite

number of points, with which the Cauchy problem is ill-posed in Gevrey

classes. Moreover, we also report numerical results of the singularity

detection with wavelet transform for coe�cient functions.
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1. Introduction

We are concerned with the Cauchy problem on [0, T ]⇥R
x

(

@

2
t

u� a(t)@2
x

u = 0,

u(0, x) = u0(x), @

t

u(0, x) = u1(x).
(1)

Throughout this paper, we assume the weakly hyperbolic condition, i.e.,

a(t) � 0 for t 2 [0, T ].

We denote by G

s(R) the space of Gevrey functions satisfying

sup
x2K

|@

n

x

g(x)|  C

K

r

n

K

n!s for any compact set K ⇢ R, n 2 N.

From the finite propagation property of hyperbolic equations, it is su�cient to
consider compactly supported initial data u0, u1 and solution u (see [3], [6],
[7], etc). Thanks to this fact, we may use the following Gevrey norm for the
functions on the whole interval R:
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n2N
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n!s
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We say that the Cauchy problem (1) is well-posed in G

s, if for any u0, u1 2 G

s,
there is a unique solution u 2 C

2([0, T ];Gs) satisfying the energy estimate:

ku(t)k
s,R

+ k@

t

u(t)k
s,R

 C

T

⇣

ku0ks,r

+ ku1ks,r

⌘

for t 2 [0, T ], (2)

where R is a constant greater than r, which implies that the derivative loss
possibly occurs in a sense of the radius of the Gevrey class G

s. To know that the
derivative loss really occurs, we have a great interest for the counterexample.

There are many kinds of results on the well-posedness for 2nd order weakly
hyperbolic equations (see [2], [4], [5], [6], [9] etc). Let us denote by C

k,↵[0, T ]
(k 2 N, 0  ↵  1 ) the space of functions having k-derivatives continuous,
and the k-th derivative Hölder continuous with exponent ↵ on [0, T ]. Especially
for the coe�cient a 2 C

k,↵[0, T ], F. Colombini, E. Jannelli and S. Spagnolo [4]
proved the well-posedness in G

s for 1 < s < 1+(k +↵)/2. Moreover, they also
showed an example of a coe�cient a(t) giving a blow-up solution u as follows:

Theorem 1.1. ([4]) For every T > 0, k 2 N and 0  ↵  1, it is possible to

construct a function a(t), C

1
and strictly positive on [0, T ), zero at t = T ,

and solution u of (1) in a way that a(t) belongs to C

k,↵[0, T ] and u belongs to

C

1([0, T ), Gs) for s > 1 + (k + ↵)/2, whereas {u(t, ·)} is not bounded in D

0
, as

t " T .

Remark 1.2. a 2 C

k,↵[0, T ] means that the zero extension of a(t) belongs to
C

k,↵[0,1).

Their prior work [5] showed an example of a 2 C

1[0, T ] giving a blow-
up solution u 2 C

1([0, T ), C1). The main task of the proof of Theorem 1.1
is to construct the coe�cient a(t) defined piecewise on an infinite number of
intervals between [0, T ]. The piecewise functions are connected at the endpoints
of contiguous intervals with a smooth cut o↵ function. For this reason, it would
not be easy to represent such a function a(t). The behavior of a(t) is well
controlled with the parameters ⇢

j

, ⌫

j

and �

j

regarded as dilation, frequency

and degeneracy respectively.

Remark 1.3. As for the strictly hyperbolic case, F. Colombini, E. De Giorgi
and S. Spagnolo [3] showed an example of a 2 C

↵[0, T ] giving a blow-up solution
u 2 C

1([0, T ), Gs) for s > 1/(1 � ↵). In this case, the degeneracy parameter
�

j

is not necessary, and the piecewise functions in a(t) can be connected at the
endpoints of contiguous intervals without a cut o↵ function.

1.1. Main Results

We shall follow their brilliant method with the parameters, and change some
parts of their construction in order to represent the coe�cient in a simple form
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without a smooth cut o↵ function. We also say that the Cauchy problem (1)
is ill-posed in G

s if the Cauchy problem (1) is not wellposed in G

s, i.e., the
energy inequality (2) breaks. For the equations with lower order terms (having
an interaction between several coe�cients), the ill-posedness can be proved
with an energy based on the Lyapunov function (see [7], [8]).

We note that the coe�cient a(t) in Theorem 1.1 degenerates only at t = T

where its regularity becomes C

k,↵. For our purpose to represent the coe�cient
in a simple form, a(t) must be allowed to have oscillations touching the t axis.
In fact, the case degenerating at an infinite number of points is more di�cult
situation than the case degenerating only at one point in the construction of
a counterexample with an energy inequality. Assuming that k = 0, 1, we can
get the following representation of the coe�cient degenerating at an infinite
number of points:

Theorem 1.4. Let s0 = 1+(k+↵)/2, s > s0, T0 = 0, T

j

=
j

X

n=1

2(1�s/s0)(n�1)2/2

(j � 1), and T = lim
j!1

T

j

. Define

a(t) = 2(s/s0+1�2s)j2
⇥

⇣

2(s/s0+1)j2
/2(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0),

where

⇥(⌧) =
2� 2 cos 2⇡⌧

2 + 3�3 sin 2⇡⌧ + (�� 9�2) cos 2⇡⌧

and

� = (1 + 2
p

7)1/3
�

3
(1 + 2

p

7)1/3
.

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = T

j

(j � 0) and t = T .

2. a(t) belongs to C

k,↵[0, T ] for k = 0, 1 and 0  ↵  1.

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

.

Remark 1.5. Multiplying T

j

by a constant, we can take an arbitrary small
T > 0 as far as s > s0. It is interesting that the life span T tends to infinity as
s tends to s0.

In Theorem 1.4 and its proof, the following parts are di↵erent from [4]:

• In §2.1, ⇥(⌧) which is not same as the corresponding function in [4]. We
require ⇥(⌧) for which both minimum point and minimum value can be
calculated. Therefore, in §2.2 we can construct a(t) which has oscillations
touching the t axis in an infinite number of points accumulating at t = T .
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• In §2.4, the parameters ⇢

j

, ⌫

j

and �

j

are uniformly taken as some pow-
ers of 2(j�1)2 . This choice of the parameters enables us to simplify the
representation of the coe�cient.

It would seem strange that a(t) defined piecewise without a cut o↵ function, is
still smooth i.e., C

k,↵[0, T ]. This is true due to our construction of ⇥(⌧) and
the additional assumption k = 0, 1 in Theorem 1.4 (the piecewise functions
are connected at the minimum points). Therefore, we can remove a cut o↵
function to represent the coe�cient a(t). In order to remove the restriction
that k = 0, 1 form Theorem 1.4, we also need to modify the coe�cient with a
cut o↵ function (see Corollary 2.19 in §2.6).

In the particular case that a(t) does not belongs to C

0[0, T ], we can also
get the following corollary:

Corollary 1.6. Assume s > 1, T0 = 0, T

j

=
j

X

n=1

2(1�s)(n�1)2 (j � 1), and

T = lim
j!1

T

j

. Define

a(t) = ⇥
⇣

2sj

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0).

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = T

j

(j � 0) and t = T .

2. a(t) is not continuous at t = T and belongs to L

1(0, T ) \ C

2[0, T ).

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

.

Remark 1.7. Let s = q(q�1)�1 (q > 1) and T

j

=
P

j

n=1 2(1�q)�1(n�1)2 (j � 1).
Define

a(t) = ⇥
⇣

2q(q�1)�1
j

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0).

For t 2 [T
j

, T

j+1], we know that (T � t) ⇠
P1

n=j+1 2(1�q)�1(n�1)2
⇠ 2(1�q)�1

j

2
.

While, we have |a

0(t)|  C2q(q�1)�1
j

2
 C(T � t)�q. Thus, Corollary 1.6 is

also a simple counterexample of the ill-posedness in G

s for s � q(q� 1)�1 with
a(t) 2 L

1(0, T ) \ C

1[0, T ) satisfying |a

0(t)|  C(T � t)�q (see [1], [2]).

It is known that the Cauchy problem for weakly hyperbolic equations is
well-posed in the Analytic class (s = 1), even if a 2 L

1(0, T ). The simple
periodic function ⇥ proposed in this paper can be expected useful in study
of the ill-posedness. Indeed, we shall present numerical results with this ⇥ in
Appendix.
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2. Proof of Theorem 1.4

We shall put the parameters ⇢

j

, ⌫

j

and �

j

(j � 1) as follows:

⇢

j

= 2�X(j�1)2
, ⌫

j

= 2Y (j�1)2
, �

j

= 2�Z(j�1)2
,

where X, Y and Z are all positive and determined later. We suppose that ⌫

j

(j � 1) are integers, by taking a integer Y later. Moreover, we define

T0 = 0, T

j

=
j

X

n=1

⇢

n

(j � 1) and I

j

= [T
j�1, Tj

] (j � 1).

2.1. Construction of ⇥(⌧)

F. Colombini, E. Jannelli and S. Spagnolo [4] consider the following auxiliary
Cauchy problem for the ordinary equation:

(

W

00
�

(⌧) + ⇥
�

(⌧)W
�

(⌧) = 0,

W

�

(0) = 0, W

0
�

(0) = 1,

(3)

where ⇥
�

(⌧) is a non-negative periodic function.

Remark 2.1. The Cauchy problem (3) can be also regarded as a terminal value
problem. In §2.3 we use the negative part ⌧  0 for this problem.

By the Floquet theory, the solution has a form W

�

(⌧) = P

�

(⌧) exp{�⌧}

with � 2 R and a periodic function P

�

(⌧). Now we don’t solve (3), but we find
⇥

�

(⌧) form the solution W

�

(⌧) inversely. Thus, we get

⇥
�

(⌧) = �

W

00
�

(⌧)
W

�

(⌧)
= ��

2
�

P

00
�

(⌧) + 2�P

0
�

(⌧)
P

�

(⌧)
. (4)

Since P

�

(⌧) is periodic, ⇥
�

(⌧) is periodic too. But, we have to choose suitable
� 2 R and P

�

(⌧) such that ⇥(⌧) � 0.

Remark 2.2. In fact, most of choices with random � 2 R and P

�

(⌧) fail to
satisfy ⇥

�

(⌧) � 0. [4] succeeds to find a rare case:

� =
1
10

and P

�

(⌧) = sin ⌧ exp
n

�

�

2
sin 2⌧

o

. (5)

Furthermore, we shall change (5) by the following:

0 < �  � and P

�

(⌧) = sin ⌧

⇣

1�
�

2
sin 2⌧

⌘

, (6)
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where � > 0 is a su�ciently small constant such that ⇥
�

(⌧) � 0 for 0 < �  �.
(see Lemma 2.5). Then by (4) and (6) we have

⇥
�

(⌧) =
2 + (�3

� 9�) sin 2⌧ + 6�

2 cos 2⌧

2� � sin 2⌧

, (7)

here we remark that ⇥
�

(⌧) becomes only ⇡-periodic, since sin ⌧ has been can-
celed. ⇥

�

(⌧) given by (7) enables us to calculate the exact points of the mini-
mum and the maximum as follows:

Lemma 2.3. Let

p± = p±(�) =
3�

2(8� �

2)± 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

.

Then, ⇥
�

(⌧) (0  ⌧  ⇡) has the maximum value and the minimum value

⇥
�

(⌧±) =
2 + (�3

� 9�)
q

1� p

2
± + 6�

2
p±

2� �

q

1� p

2
±

(8)

at ⌧+ = 1
2Cos�1

p+ and ⌧� = 1
2Cos�1

p� respectively.

Proof. Di↵erentiating ⇥
�

(⌧), we get

⇥0
�

(⌧) =
4�

n

(�2
� 8) cos 2⌧ � 6� sin 2⌧ + 3�

2
o

(2� � sin 2⌧)2
.

To find the maximum and minimum values, we solve the equation

(�2
� 8) cos 2⌧ � 6� sin 2⌧ + 3�

2 = 0.

When 0  ⌧  ⇡/2, we put p = cos 2⌧ (�1  p  1) and get

(�2
� 8)p + 3�

2 = 6�

p

1� p

2
. (9)

For small � > 0, we see that p must be negative, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
following quadratic equation in p:

(�2 + 4)(�2 + 16)p2
� 6�

2(8� �

2)p + 9�

2(�2
� 4) = 0. (10)

Hence, we have a (unique) negative solution

p� = p�(�) =
3�

2(8� �

2)� 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

. (11)
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When ⇡/2  ⌧  ⇡, we put 0  ⌧̃ = ⇡ � ⌧  ⇡/2 and p = cos 2⌧̃ (�1  p  1)
and get

(�2
� 8)p + 3�

2 = �6�

p

1� p

2
.

For small � > 0, we see that p must be positive, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
same quadratic equation (10). Hence, we have a (unique) positive solution

p+ = p+(�) =
3�

2(8� �

2) + 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

.

We note that p� = cos 2⌧ in 0  ⌧  ⇡/2 and p+ = (cos 2⌧̃ =) cos 2⌧ in
⇡/2  ⌧  ⇡. Thus it follows that ⌧� := 1

2Cos�1
p� and ⌧+ := 1

2Cos�1
p+

satisfy 0 < ⌧� < ⌧+ < ⇡ and give the minimum value and the maximum value
respectively, since ⇥0

�

(0) = 8�(�2
� 2) < 0. Substituting ⌧± into ⇥(⌧) we also

have (8).

Remark 2.4. p± are the simple roots of the quadratic equation (10). Therefore,
⇥0

�

(⌧) changes the sign at ⌧ = ⌧±.

If � = 0, ⇥0(⌧) is a positive constant, i.e., the ratio ⇥0(⌧+)/⇥0(⌧�) ⌘ 1.
Obviously, it holds that ⇥

�

(⌧+)/⇥
�

(⌧�) > 1 for small � > 0. As � > 0 becomes
larger, ⇥

�

(⌧+)/⇥
�

(⌧�) tends to infinity as follows:

Lemma 2.5. For � = (1 + 2
p

7)1/3
� 3(1 + 2

p

7)�1/3(⇠ 0.221), we have

⇥
�

(⌧) > 0 if 0 < � < �, ⇥�(⌧�) = 0 and ⌧� =
1
2
Cos�1(�3�2). (12)

Remark 2.6. We remark that ⇡/4 < ⌧� < ⇡/2, since ⌧� = 1
2Cos�1(�3�2) ⇠

1
2Cos�1(�3 ⇥ 0.2212) ⇠ 0.858. By numerical computations we observe that
⇥�(⌧+) < 2.

Proof. By (8), ⇥�(⌧�) = 0 means that

2 + (�3
� 9�)

q

1� p

2
� + 6�2

p� = 0.

Hence, by (9) with p = p� we have

6�2
p� + 2

9�� �3
=

(�2
� 8)p� + 3�2

6�

✓

=
q

1� p

2
�

◆

.

Therefore, � satisfies the equation

p� =
�3�4 + 27�2

� 12
�4 + 19�2 + 72

. (13)
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On the other hand, p� = p�(�) is defined in (11). Therefore, � > 0 is a
solution to the equation

3�2(8� �2)� 12�
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

=
�3�4 + 27�2

� 12
�4 + 19�2 + 72

.

Adding 3 on both sides and dividing both sides by 12, we get

7�2 + 16� �
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

=
7�2 + 17

�4 + 19�2 + 72
.

Multiplying both sides by (�2 + 4)(�2 + 16)(�4 + 19�2 + 72), we also get

�8�4 + 20�2 + 64 = �
p

�2�4 + 5�2 + 16(�4 + 19�2 + 72).

Moreover, dividing both sides by
p

�2�4 + 5�2 + 16, we have

4
p

�2�4 + 5�2 + 16 = �(�4 + 19�2 + 72). (14)

(14) is reduced to the equation of degree 10

�10 + 38�8 + 505�6 + 2768�4 + 5104�2
� 256 = 0.

Fortunately, this can be divided by (�2+4)(�2+16). Then we have the equation
of degree 6

�6 + 18�4 + 81�2
� 4 = 0. (15)

Regarding this as a cubic equation with respect to �2, we can find the solution

� =
n

(29+4
p

7)1/3+(29�4
p

7)1/3
�6
o1/2

= (1+2
p

7)1/3
�

3
(1 + 2

p

7)1/3
⇠ 0.221.

Using (14) again, we can change p�(�) defined in (11) into

p�(�)

 

⌘

3�2(8� �2)� 12�
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

!

=
3�2(8� �2)� 3�2(�4 + 19�2 + 72)

(�2 + 4)(�2 + 16)
= �3�2

.

Hence, it holds that ⌧� = 1
2Cos�1

p�(�) = 1
2Cos�1(�3�2).

At last, we define
⇥(⌧) := ⇥�(⇡⌧ + ⌧�).

By (15) we see that 4(1� 9�4) = �6
� 18�4 + 81�2. Hence, we get

2
p

1� 9�4 = �(9� �2).
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By (12) and Remark 2.6 it holds that cos 2⌧� = �3�2 and sin 2⌧� = +
p

1� 9�4

= �(9� �2)/2. Therefore, by (7) we have the 1-periodic function

⇥(⌧) =
2 + (�3

� 9�) sin(2⇡⌧ + 2⌧�) + 6�2 cos(2⇡⌧ + 2⌧�)
2� � sin(2⇡⌧ + 2⌧�)

=
4� (�3 + 9)2 cos 2⇡⌧

4 + 6�3 sin 2⇡⌧ + �(�3
� 9�) cos 2⇡⌧

=
2� 2 cos 2⇡⌧

2 + 3�3 sin 2⇡⌧ + (�� 9�2) cos 2⇡⌧

,

here we used by (15) (�3 + 9�)2 = 4, i.e., �3 + 9� = 2 and �3
� 9� = 2� 18�.

2.2. Construction of a(t)

For the construction of the coe�cient, we shall use ⇥(⌧). At the 1st step, let
us consider

�1(t) = ⇥(t) for t 2 [0, 1].
There are only 1 maximum point and only 2 minimum points in the interval
[0, 1]. The graph of �1(t) starts from the minimum point (t = 0) and ends at
the minimum point (t = 1). Next, we consider

�

j

(t) = ⇥(⌫
j

t) for t 2 [0, 1].

By the 1-periodicity there are ⌫

j

maximum points and (⌫
j

+1) minimum points
in the interval [0, 1]. The graph of �

j

(t) starts from a minimum point (t = 0)
and ends at a minimum point (t = 1).

At the 2nd step, let us consider

'

j

(t) = ⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

There are ⌫

j

maximum points and (⌫
j

+ 1) minimum points in the interval
I

j

. The graph of '

j

(t) starts from a minimum point (t = T

j�1) and ends at a
minimum point (t = T

j

). Each '

j

(t) can be regarded as the piecewise definition
of the following function in the whole interval [0, T ]:

�(t) = ⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

We observe that �(t) is continuous at t = T

j

(j � 1), since �(T
j

) = 0.
At the 3rd step, we define that

a(t) = �

j

⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

]. (16)

We remark that a(t) is continuous at the whole interval [0, T ]. Furthermore,
we shall show the following lemma:
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Lemma 2.7. If k = 0, 1 and there exists "1 > 0 such that

�

j

✓

⌫

j

⇢

j

◆

k+↵

 2�"(j�1)2 for 0 < "  "1, (17)

a(t) belongs to C

k,↵[0, T ].

Remark 2.8. When we consider the proof of Corollary 1.6, the right hand side
2�"(j�1)2 is replaced by C.

Proof. We may check Hölder continuity in the right interval t 2 I

j+1 and the
left interval t 2 I

j

. Replacing j by j + 1 in (16) we obviously get

a(t) = �

j+1⇥
✓

⌫

j+1
t� T

j

⇢

j+1

◆

for t 2 I

j+1 = [T
j

, T

j+1]. (18)

By the 1-periodicity of ⇥, the definition (16) can be rewritten as

a(t) = �

j

⇥
✓

⌫

j

t�(T
j

�⇢

j

)
⇢

j

◆

= �

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

]. (19)

In the case of k = 0, noting that ⇥ belongs to at least C

↵[0, T ], by (18) and (19)
we get

|a(t)� a(T
j

)| 

8

>

>

<

>

>

:

�

�

�

�

�

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

� �

j

⇥(0)
�

�

�

�

if t 2 I

j

�

�

�

�

�

j+1⇥
✓

⌫

j+1
t� T

j

⇢

j+1

◆

� �

j+1⇥(0)
�

�

�

�

if t 2 I

j+1



8

>

>

<

>

>

:

M�

j

�

�

�

�

⌫

j

t� T

j

⇢

j

�

�

�

�

↵

 M�

j

✓

⌫

j

⇢

j

◆

↵

|t� T

j

|

↵ if t 2 I

j

M�

j+1

�

�

�

�

⌫

j+1
t� T

j

⇢

j+1

�

�

�

�

↵

M�

j+1

✓

⌫

j+1

⇢

j+1

◆

↵

|t� T

j

|

↵ if t2I

j+1



(

M2�"1(j�1)2
|t� T

j

|

↵ if t 2 I

j

M2�"1j

2
|t� T

j

|

↵ if t 2 I

j+1

 M2�"1(j�1)2
|t� T

j

|

↵

⇣

 M |t� T

j

|

↵

⌘

,

here we used (17), but we need not use the fact that a(T
j

) = 0. Hence we see
that a(t) is ↵-Hölder continuous at t = T

j

. As for t = T , since a(T ) = 0 we
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also have

|a(t)�a(T )| = |a(t)| 

8

>

>

>

>

<

>

>

>

>

:

�

�

a(t)� a(T
j

)
�

�+
1
X

n=j

�

�

a(T
n

)� a(T
n+1)

�

� if t 2 I

j

�

�

a(t)� a(T
j+1)

�

�+
1
X

n=j+1

�

�

a(T
n

)� a(T
n+1)

�

� if t 2 I

j+1



 1
X

n=1

M2�"1(n�1)2

!

|t� T |

↵

 M

"1 |t� T |

↵

.

This means that a(t) is ↵-Hölder continuous at t = T .
In the case of k = 1, by (18) and (19) we have

a

0(t) =
�

j+1⌫j+1

⇢

j+1
⇥0
✓

⌫

j+1
t� T

j

⇢

j+1

◆

for t 2 I

j+1 = [T
j

, T

j+1],

and
a

0(t) =
�

j

⌫

j

⇢

j

⇥0
✓

⌫

j

t� T

j

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

To get the di↵erentiability at t = T

j

, the right derivative and the left derivative
must coincide. The right derivative and the left derivative are respectively

a

0(T
j

) =
�

j+1⌫j+1

⇢

j+1
⇥0(0) and a

0(T
j

) =
�

j

⌫

j

⇢

j

⇥0(0),

that is, a

0(T
j

) = 0 (⇥0(0) = 0) since a(t) takes a minimum value in I

j+1 and
a minimum value in I

j

at t = T

j

from our construction. Therefore, a(t) is
di↵erentiable at t = T

j

. As for t = T , we see that lim
t"T |a

0(t)| = 0, since
by (17)

lim
j!1

�

j+1⌫j+1

⇢

j+1
= lim

j!1

�

j

⌫

j

⇢

j

= 0.

Hence the left derivative at T = t is zero. Then we have a

0(T ) = 0 since by the
zero extension the right derivative at T = t is also zero. Thus, a(t) belongs to
C

1[0, T ]. Similarly, noting that ⇥ belongs to at least C

1+↵[0, T ], we obtain the
estimates |a

0(t)�a

0(T
j

)|  M�

j

�

⌫

j

/⇢

j

�1+↵

|t�T

j

|

↵ = M2�"1(j�1)2
|t�T

j

|

↵

⇣



M |t� T

j

|

↵

�

and |a

0(t)� a

0(T )|  M

"1 |t� T

j

|

↵.

Remark 2.9. In order to justify a

0(T
j

) and a

0(T ) we first showed that a(t)
belongs to C

1[0, T ]. Then, we are allowed to consider |a

0(t) � a

0(T
j

)| and
|a

0(t)� a

0(T )|.

Remark 2.10. We can not deal with k = 2, because the right 2nd derivative
and the left 2nd derivative does not coincide at t = T

j

. So, we can not justify
a

00(T
j

). Thus a(t) does not belong to C

2[0, T ]. But, a(t) belongs to C

1,1[0, T ]
which implies a

0(t) 2 Lip[0, T ].
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2.3. Construction of Solutions

We consider a sequence of the solutions {u(J)(t, x)}
J�1 to the Cauchy problem

on [0, T ]⇥R
x

(

@

2
t

u

(J)
� a(t)@2

x

u

(J) = 0,

u(0, x) = u

(J)
0 (x), @

t

u(0, x) = u

(J)
1 (x).

(20)

Let us take the sequence {t

j

}

j�1 defined by

t

j

:= T

j

�

⇢

j

⌧�
⇡⌫

j

. (21)

We see that t

j

2 I

j

= [T
j�1, Tj

], since ⌧�
⇡⌫j

 1. Now we shall devote ourselves
to only the interval [0, t

j

] by separating into two parts [T
j�1, tj ] and [0, T

j�1],
where the Cauchy problems are solved in the inverse direction.

For the interval [T
j�1, tj ], we suppose that u

(J)(t, x) has a form of

u

(J)(t, x) =
1
X

j=J

v

j

(t) cos h

j

x, (22)

where
h

j

=
⇡⌫

j

⇢

j

p

�

j

, (23)

and v

j

solves the terminal value problem on [T
j�1, tj ] ⇢ I

j

(

v

00
j

+ h

2
j

a(t)v
j

= 0,
v

j

(t
j

) = 0, v

0
j

(t
j

) = 1.

(24)

Noting that by (19)

a(t) = �

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

= �

j

⇥�

✓

⇡⌫

j

t� T

j

⇢

j

+ ⌧�

◆

for t 2 [T
j�1, tj ] ⇢ I

j

,

and putting

v

j

(t) =
⇢

j

⇡⌫

j

W�

✓

⇡⌫

j

t� T

j

⇢

j

+ ⌧�

◆

,

by the change of variable ⌧ = ⇡⌫

j

t�Tj

⇢j
+ ⌧� we have just (3). Therefore, by (6)

it follows that

W�(⌧) = sin ⌧

✓

1�
�
2

sin 2⌧

◆

e

�⌧

.
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Hence, noting Remark 2.1 we have

V0 := v

j

(T
j�1) =

⇢

j

⇡⌫

j

W�(�⇡⌫

j

+ ⌧�)

=
⇢

j

⇡⌫

j

sin ⌧�

⇣

1�
�
2

sin 2⌧�

⌘

exp
�

� �⇡⌫

j

+ �⌧�
 

, (25)

V1 := v

0
j

(T
j�1) = W

0
�(�⇡⌫

j

+ ⌧�)

=
⇣

cos ⌧� + � sin ⌧� �
�
2

sin 2⌧� cos ⌧� � � cos 2⌧� sin ⌧�

�

�2

2
sin ⌧� sin 2⌧�

⌘

exp
�

� �⇡⌫

j

+ �⌧�
 

. (26)

By (25) and (26) it follows that

|V0|  C0
⇢

j

⌫

j

e

��⇡⌫j
, |V1|  C1e

��⇡⌫j
. (27)

This fact plays an important role in the construction of the counterexample.
For the interval [0, T

j�1] we suppose that u

(J)(t, x) also has a form of (22)
with v

j

solving the terminal value problem on [0, T

j�1] = [

j�1
n=1In

(j � 2)
(

v

00
j

+ h

2
j

a(t)v
j

= 0,

v

j

(T
j�1) = V0, v

0
j

(T
j�1) = V1.

(28)

We remark that the formula with W� can not be obtained in this interval.
Therefore, we shall use the energy method. Let us introduce the following
proposition concerned with the energy method:

Proposition 2.11. Let h > 0 and a(t) be a non-negative C

1
function. Then,

for the solution v satisfying v

00 + h

2
a(t)v = 0, it holds that

E(�1)  E(�2) exp


�

�

�

�

Z

�1

�2

max{a0(t), 0}
a(t) + �

2
h

2(1/s�1)
dt

�

�

�

�

+ |�1 � �2|�h

1/s

�

,

where E(t) = |v

0(t)|2 + (h2
a(t) + �

2
h

2/s)|v(t)|2.

Remark 2.12. We can apply the energy inequality also into the terminal value
problem. Because we may take �1 and �2 such that �1  �2.

Proof. Di↵erentiating E(t), we have

E

0(t) = 2<
⇣

v

0(t), v00(t)
⌘

+ 2(h2
a(t) + �

2
h

2/s)<
⇣

v

0(t), v(t)
⌘

+ h

2
a

0(t)|v(t)|2

 h

2
a

0(t)|v(t)|2 + 2�

2
h

2/s

|v

0(t)||v(t)|

 h

2 max{a0(t), 0}|v(t)|2 + �

2
h

2/s

⇣

�

�1
h

�1/s

|v

0(t)|2 + �h

1/s

|v(t)|2
⌘



⇢

max{a0(t), 0}
a(t) + �

2
h

2(1/s�1)
+ �h

1/s

�

E(t),



110 N. FUKUDA AND T. KINOSHITA

which proves the proposition.

From the construction of the coe�cient, we know that a(t) has ⌫

j�1 maxi-
mum points and (⌫

j�1 +1) minimum points in the interval I

j�1 = [T
j�2, Tj�1].

Using Proposition 2.11 with �1 = T

j�2 and �2 = T

j�1, by Remark 2.4 we get
the estimate in the interval I

j�1 = [T
j�2, Tj�1]

E

j

(T
j�2)E

j

(T
j�1) exp

"

�

�

�

�

�

Z

Tj�2

Tj�1

max{a0(t), 0}

a(t)+�

2
h

2(1/s�1)
j

dt

�

�

�

�

�

+|T

j�2 � T

j�1|�h

1/s

j

#

E

j

(T
j�1) exp

h

⌫

j�1 log
n

�

�2
h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+ (T
j�1 � T

j�2)�h

1/s

j

i

,

where E

j

(t) = |v

0
j

(t)|2 + (h2
j

a(t) + �

2
h

2/s

j

)|v
j

(t)|2. Combining all the energy
inequalities in I

n

(n = 1, 2, · · · , j � 1), we have

E

j

(0)  E

j

(T
j�1) exp

"

j�1
X

n=1

⌫

n

log
n

�

�2
h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+ T

j�1�h

1/s

j

#

.

Noting that by (27)

E

j

(T
j�1)  |V1|

2 + Ch

2
j

|V0|
2
 C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp{�2�⇡⌫

j

},

and taking � = 1
⇡Tj�1

, we obtain

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp

"

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j

�

. (29)

Moreover, we need the following lemma:

Lemma 2.13. If

⇢

j

⌫

s�1
j

p

�

j

= 1, (30)

and there exists "2 > 0 such that

j�1
X

n=1

⌫

n

(log j + log ⌫

j

+ 3) 
⇣

�⇡ �

1
2
� 2"

⌘

⌫

j

for 0 < "  "2, (31)

it holds that

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j

 �"2h
1/s

j

. (32)
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Proof. By (23) and (30) we get h

1/s

j

=
⇣

⇡⌫j

⇢j

p

�j

⌘1/s

= ⇡

1/s

⌫

j

(� 1). Hence,

noting that (1  )T
j�1 =

P

j�1
n=1 ⇢

n



P

j�1
n=1 1  j, by Remark 2.6 and (31) we

have

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

log
n

⇡

2
· T

2
j�1 · ⇡

2(1�1/s)
⌫

2(1�1/s)
j

· 1 · 2 + 1
o

+ ⇡

1/s�1
⌫

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

log
�

4⇡

4
T

2
j�1⌫

2
j

 

+ ⇡

1/s�1
⌫

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

(2 log j + 2 log ⌫

j

+ 6) + ⇡

1/s�1
⌫

j

� 2�⇡⌫

j

 2
j�1
X

n=1

⌫

n

(log j + log ⌫

j

+ 3) + ⌫

j

� 2�⇡⌫

j

 �4"2⌫j

= �
4"2

⇡

1/s

h

1/s

j

 �"2h
1/s

j

,

thus getting the conclusion.

Consequently, by (29) and (32) it follows that

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp
n

� "2h
1/s

j

o

. (33)

2.4. Choice of ⇢j, ⌫j and �j

For our purpose, ⇢

j

(= 2�X(j�1)2), ⌫

j

(= 2Y (j�1)2) and �

j

(= 2�Z(j�1)2) satisfy
(17), (30) and (31). Only the parameter Y must be an integer in order that ⌫

j

becomes an integer. So, the simplest choice is Y = 1. Then (31) means that
there exists "2 > 0 such that

j�1
X

n=1

2(n�1)2(log j +(j� 1)2 +3) 
⇣

�⇡�

1
2
� 2"

⌘

2(j�1)2 for 0 < "  "2. (34)
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We remark that j is greater than or equal to J which tends to infinity later in
§2.5. Thus, for large j � 1, the inequality (34) holds, since,

j�1
X

n=1

2(n�1)2(log j + (j � 1)2 + 3)  j

2
j�1
X

n=1

2(n�1)2
 j

32(j�2)2



1
10

e

(j�1)2
, (35)

and � ⇠ 0.221 and 1/10  �⇡ � 1/2� 2" for a su�ciently small " > 0.

Remark 2.14. More generally, if we consider the functions ⇢

j

(= 2�X(j�1)r

),
⌫

j

(= 2Y (j�1)r

) and �

j

(= 2�Z(j�1)r

) with the parameter r � 1, we can not
obtain the corresponding inequality of (35) just for r = 1.

Taking the binary logarithm and dividing by (j � 1)2 in (17) and (30), we
may take X and Z such that

8

<

:

(k + ↵)X � Z + k + ↵ + "1 = 0,

�X �

1
2
Z + s� 1 = 0.

Hence, we get

X =
s

s0
� 1�

"1

2s0
and Z = 2s

✓

1�
1
s0

◆

+
"1

s0
.

Since s0 � 1, we see that Z > 0 for "1 > 0. In order to have X > 0, we may
take "1 = s� s0. Then we obtain

X =
1
2

✓

s

s0
� 1

◆

and Z = 2s�

s

s0
� 1.

Summing up, we have

⇢

j

= 2�(s/s0�1)(j�1)2/2
, ⌫

j

= 2(j�1)2 and �

j

= 2�(2s�s/s0�1)(j�1)2
, (36)

and with (18) instead of (16)

a(t) = 2(s/s0+1�2s)j2
⇥

⇣

2(s/s0+1)j2
/2(t� T

j

)
⌘

for t 2 [T
j

, T

j+1].

Remark 2.15. If we consider a discontinuous coe�cient, we need not Lem-
ma 2.7 anymore. So, we can take "1 = 0 and Z = 0 (�

j

= 1) with s0 = 1.
Then, we also have X = s� 1 (⇢

j

= 2�(s�1)(j�1)2) and

a(t) = ⇥
⇣

2sj

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1],

which proves the proof of Corollary 1.6.
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We also note that h

j

= ⇡⌫

s

j

= ⇡2s(j�1)2
� 1 and ⇢

2
j

/⌫

2
j

= 2�(2+X)(j�1)2
 1.

By (33) it follows that

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp
n

� "2h
1/s

j

o

 C4h
2
j

exp
n

� "2h
1/s

j

o

.

Thus, we have

E

j

(0)  C5 exp
n

� "h

1/s

j

o

for 0 < " < "2. (37)

Remark 2.16. The Cauchy problem (28) is solved in the inverse direction.
Therefore, we can also see that for all 0  t  T

j�1

E

j

(t)  C5 exp
n

� "h

1/s

j

o

for 0 < " < "2.

In particular, if j1 < j2, it holds that for the point t = t

j1( T

j1  T

j�1)

E

j

(t
j1)  C5 exp

n

� "h

1/s

j

o

for 0 < " < "2. (38)

2.5. Ill-posedness of the Cauchy problem

We finally show the ill-posedness by the contradiction. We suppose that the
energy inequality for u

(J) holds, i.e.,

ku

(J)(t)k
s,R

+ k@
t

u

(J)(t)k
s,R

 C

T

⇣

ku

(J)
0 k

s,r

+ ku(J)
1 k

s,r

⌘

for t 2 [0, T ]. (39)

Let us note the point (t, x) = (t
J

, 0), where t

J

2 I

J

defined by (21) with
j = J . From the definition of the Gevrey norm, by (22) and (38) we have

k@

t

u

(J)(t
J

)k
s,R

� k@

t

u

(J)(t
J

)k
L

1
� |@

t

u

(J)(t
J

, 0)| =

�

�

�

�

�

�

1
X

j=J

v

0
j

(t
J

) cos(h
j

· 0)

�

�

�

�

�

�

=

�

�

�

�

�

�

1
X

j=J

v

0
j

(t
J

)

�

�

�

�

�

�

� |v

0
J

(t
J

)|�
1
X

j=J+1

|v

0
j

(t
J

)|

� |v

0
J

(t
J

)|�
1
X

j=J+1

E

j

(t
J

) � |v

0
J

(t
J

)|�
1
X

j=J+1

C5 exp
n

� "h

1/s

j

o

= 1� C5

1
X

j=J+1

exp
n

� "⇡

1/s2(j�1)2
o

, (40)
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here we used (24).
On the other hand, from the definition of the Gevrey norm, by (22), (37)

and Stirling’s formula we also have

ku

(J)
1 k

s,r



1
X

j=J

|v

0
j

(0)| sup
n2N

h

n

j

r

n

n!s


1
X

j=J

E

j

(0) sup
n2N

h

n

j

r

n

n!s



1
X

j=J

C5 exp
n

� "h

1/s

j

o

sup
n2N

h

n

j

r

n(2n⇡)s/2
n

sn

e

�sn

=
C5

(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

exp
n

� "⇡

1/s2(j�1)2
o

2(sn+1)(j�1)2

n

s/2
�

r

⇡e

s

�

n

n

sn



C5

(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

�

sn+1
"⇡

1/s

�

sn+1
e

�(sn+1)

n

s/2
�

r

⇡e

s

�

n

n

sn

=
C5

e"⇡

1/s(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

(sn + 1)sn+1

n

s/2(r"s)n

n

sn

.

here we used the inequality e

�⇠

⇠

�



⇣

�



⌘

�

e

�� with ⇠ = 2(j�1)2 ,  = "⇡

1/s

and � = sn + 1. We note that

(sn + 1)sn+1

n

s/2(r"s)n

n

sn

=
sn + 1

n

s/2(r"s)n

·

✓

s +
1
n

◆

sn



sn + n

1 · (r"s)n

· (s + 1)sn = n(s + 1)
✓

(s + 1)s

r"

s

◆

n

.

If we take r > 0 such that (s+1)s

r"

s < 1, we see that sup
n2N

(sn+1)sn+1

n

s/2(r"

s)n
n

sn  C

s

.

Thus, we get

ku

(J)
1 k

s,r

 C6

1
X

j=J

2�(j�1)2
, (41)

similarly,

ku

(J)
0 k

s,r

 C7

1
X

j=J

2�(j�1)2
. (42)

If the energy inequality (39) with t = t

J

holds, by (40), (41) and (42) we
have

ku

(J)(t
J

)k
s,R

+ 1� C5

1
X

j=J+1

exp
n

� "⇡

1
s 2(j�1)2

o

 (C6 + C7)
1
X

j=J

2�(j�1)2
.
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If J tends to infinity, t

J

tends to T and we get

ku

(J)(T )k
s,R

+ 1  0.

This implies that the energy inequality (39) breaks and that the derivative loss
really occurs in a sense of the radius of the Gevrey class G

s.

2.6. Concluding Remarks

Remark 2.17. For the well-posedness, the case degenerating only at one point
is a better situation than the case degenerating at an infinite number of points
in a sense of the derivative loss. While, for the ill-posedness one would think
that the latter case included more factors that a(t) causes a blow-up solution.
But in fact, we can not find out such a factor in this construction. The proof
of the ill-posedness also relays on the energy inequality in Proposition 2.11.
This means that the case degenerating at an infinite number of points is not a
better situation than the case degenerating only at one point.

Remark 2.18. Let

g

⌘

(t) =

(

e

� 1
(⌘2�4t2) for |t| < ⌘/2,

0 for |t| � ⌘/2,

and  

⌘

(t) =

R

t

�1 g

⌘

(�)d�
R1
�1 g

⌘

(�)d�
.

We define that
�

⌘

(t) = 1�  

⌘

⇣

t�

⌘

2

⌘

 

⌘

⇣

t +
⌘

2

⌘

.

We know that �
⌘

(t) ⌘ 1 for |t| � ⌘ and �

⌘

(t) touches the t axis at t = 0. We
pay attention to the degeneration of infinite order. Instead of (16) we define

a(t) = �

j

⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

�

⌘

(t� T

j�1)�⌘

(t� T

j

) for t 2 I

j

= [T
j�1, Tj

],

where ⌘ with a su�ciently small constant such that T

j�1 < T

j�1 + ⌘ < t

j

.
Thanks to degeneration of �

⌘

(t), we can remove the restriction that k = 0, 1
for the coe�cient a(t) (see Remark 2.10). Then, we may consider the terminal
value problem (24) on [T

j�1 + ⌘, t

j

] ⇢ I

j

. Moreover, we insert the terminal
value problem on [T

j�1, Tj�1 + ⌘] ⇢ I

j

(

v

00
j

+ h

2
j

a(t)v
j

= 0,

v

j

(T
j�1 + ⌘) = Ṽ0, v

0
j

(T
j�1 + ⌘) = Ṽ1,

where Ṽ0 and Ṽ1 satisfy the estimates as (27). Similarly as (28), we have
an energy inequality for this additional problem. Thus, we can also get the
following:
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Corollary 2.19. There exists a coe�cient a(t) such that

1. a(t) is non-negative and degenerates at an infinite number of points.

2. a(t) belongs to C

k,↵[0, T ] for all k 2 N and 0  ↵  1.

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

for s > 1+(k+↵)/2.

Appendix. Singularity Spectra of Coe�cients

Theorem 1.4 with s0 = 1 (k = ↵ = 0) suggests that there exists a continuous
coe�cient a(t) such that the Cauchy problem is ill-posed in the non-analytic
class, in other words, a solution may blow-up if we give the initial data which
can not be represented as a Taylor series (an infinite sum). It will be practically
useful to find a way to know such an unsuitable coe�cient a(t) in advance. The
Fourier transform is the complete absence of information regarding the time.
Meanwhile, the windowed Fourier transform:

(T
w� f)(b, ⇠) =

Z

R
e

�i⌧⇠

f(⌧)w
�

�

⌧ � b

�

d⌧ (43)

and the wavelet transform:

(W
 

f)(b, a) =
1
p

a

Z

R
f(⌧) 

✓

⌧ � b

a

◆

d⌧ (44)

can extract the local information in time. Here we remark that a function g(t) 2
L

2(R) such that tg(t) 2 L

2(R) is called window. In (43) and (44), w

�

, are
window functions. In this paper, we shall utilize w

�

(t) = �(��,�)(t) cos2 (10⇡t)
in case 1 and case 2, w

�

(t)=�(��,�)(t)e�9t

2
/5 in case 3, and  (t)= 2(1�t

2)p
3⇡1/4 e

�t

2
/2

for the windowed Fourier transform and the wavelet transform. The simplified
representations of the coe�cients in Theorem 1.4 and Corollary 1.6 make it
possible to analyze coe�cients with the windowed Fourier transform and the
wavelet transform. Only in this section we shall write the coe�cient function
by the letter f instead of a in order to avoid a confusion with the parameter a

in the wavelet transform.
Case 1: Let 0 < T < 1 and f(t) be a non-negative monotone function

defined by

f(t) =

8

<

:

1
� log(T � t)

for 0  t < T (< 1),

0 for t � T.

(45)

f(t) degenerates only at t = T . We find that f(t) belongs to C

0[0,1), but
does not belong to C

↵[0,1) for any ↵ > 0. Thanks to the monotonicity, we
see that the Cauchy problem with (45) is C

1 well-posed.
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Figure 1: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (45) with T = 1/2. Both figures show that the irregular point is
t(⌘ b) = T . In particular, the wavelet transform (right) indicates that the high
frequency (irregularity) increases toward the irregular point with a slope (the
function (45) becomes irregular not rapidly but gradually).

Case 2: Let 0 < T < 1 and f(t) be a non-negative oscillating function
defined by

f(t) =

8

>

<

>

:

1� cos
⇣

� log(T � t)
⌘

� log(T � t)
for 0  t < T (< 1),

0 for t � T.

(46)

f(t) degenerates at an infinite number of points. If we take t

j

= T � e

�2j⇡

and s

j

= T � e

�2j⇡�⇡/2, it holds that |t

j

� s

j

| = e

�2j⇡

|1 � e

�⇡/2
| ⇠ e

�2j⇡

and |f(t
j

)� f(s
j

)| = (2j⇡ + ⇡/2)�1
⇠

1
j

. Hence, we find that f(t) belongs to
C

0[0,1), but does not belong to C

↵[0,1) for any ↵ > 0. Noting that f(t)
satisfies |f

0(t)|  C(T � t)�1, by [2] we see that the Cauchy problem with (46)
is C

1 well-posed.

Remark 2.20. In general, given functions are not always represented by the
elementary periodic functions like sine and cosine. In this case,

1� cos
⇣

� log(T � t)
⌘

� log(T � t)
⌘

1
X

n=1

(�1)n

(2n)!

n

log(T � t)
o2n�1

.

If a function is given as the right hand side, it will be di�cult to know the
oscillations. The numerical analysis with the windowed Fourier transform and
the wavelet transform can be available even for the function approximated by
a finite sum

f̃(t) =

8

>

<

>

:

100
X

n=1

(�1)n

(2n)!

n

log(T � t)
o2n�1

for 0  t < T (< 1),

0 for t � T.

(47)
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Figure 2: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (46) with T = 1/2. Similarly as Figure 1, both figures show that the
blow-up point is t(⌘ b) = T and the wavelet transform (right) indicates that the
high frequency (irregularity) increases toward the irregular point with a slope.
Furthermore for the graph of the wavelet transform (right), we observe that
the part of the slope becomes wider and higher since the oscillation influences
on the irregularity in neighbourhood of t(⌘ b) = T .

Then, we observe that the figures for f and f̃ are almost same.

Figure 3: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (47) with T = 1/2.

Case 3: Let f(t) be a coe�cient function in Theorem 1.4 with s0 = 1 and

s = 11/10, i.e., T

j

=
j

X

n=1

2�(n�1)2/20 (j � 1) and

f(t) = 2�j

2
/10⇥

⇣

221j

2
/20(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0). (48)

By Theorem 1.4 and its proof, f(t) degenerates at an infinite number of points
and belongs to C

0[0,1). Then we see that the Cauchy problem with (48) is
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G

11/10 ill-posed. For the ill-posedness it is possible to replace the function (48)
by

f(t) = 2�j

r
/10⇥(211j

r
/20(t� T

j

)

with r > 1 (see Remark 2.14). It is not so di�cult to describe the figure of
the wavelet transform even for a large r. Meanwhile, as r is larger, it would be
more di�cult to describe the figure of the windowed Fourier transform. For the
simplicity, supposing that r = 1, we shall describe the figures of the following:

T

j

=
j

X

n=1

2�(n�1)/20 (j � 1)

and
f(t) = 2�j/10⇥

⇣

221j/20(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0). (49)

Figure 4: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (49). In this case, the windowed Fourier transforms require 7 graphs
to adjust the brightness of the spectrogram. On the other hand, such an
arrangement is not necessary for the wavelet transform. In this sense the
wavelet transform is convenient.

The degenerating and oscillating coe�cients often appear in weakly hyper-
bolic equations. The amplitudes of oscillating coe�cients are flattened by the
degeneracy. In all above figures, the brightness shows a large value of windowed
Fourier transform or wavelet transform, and the decay along the vertical axis
denotes the smoothness of analyzed functions. For cases 1 and 2, from figures
1-3 we see that both the windowed Fourier transform and the wavelet transform
detect the degenerations of analyzed functions at t = T . But, for case 3, to
detect the variation of frequency with the windowed Fourier transform, we are
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forced to prepare some graphs according to the value of the windowed Fourier
transform (its graph is obtained by pasting together). On the other hand, the
wavelet transform is able to catch more information of low amplitudes with
high-frequency oscillations in comparison with the windowed Fourier trans-
form. Moreover, the multiplication by 1/

p

a in the definition of wavelet (44)
makes the amplitudes more conspicuous. The slopes of figures in case 3 in-
dicate that a peak moves toward the blow-up point T > 0 as the frequency
increases, which possibly causes the ill-posedness. Thus, the wavelet transform
can be used as a good screening test for coe�cients giving the ill-posedness of
the Cauchy problem.

Remark 2.21. Generally for a function f(t) = F

⇣

t�b

0

a

0

⌘

, the wavelet transform

with  
�

t�b

a

�

detects a ⇠ a

0 and b ⇠ b

0. Figure 4 means that a ⇠ 2�21j/20 and
b = T

j

are conspicuous since f(t) = 20�j/10⇥
⇣

t�Tj

2�21j/20

⌘

.
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