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1 Introduction

Random partitions occur in a variety of probabilistic and statistical

problems. In applied probability, for example, they define models for

population genetics, species sampling and processes of coagulation and

fragmentation. See Pitman (2006) and references therein. They also rep-

resent a key ingredient for various inferential methods arising in Bayesian

nonparametric statistics, machine learning and for Markov Chain Monte

Carlo algorithms that are used for clustering and density estimation. See

the monograph edited by Hjort et al. (2010) for a comprehensive review.

Recently random partitions have been exploited also in macroeconomic

modelling as a tool for describing the clustering dynamics of economic

agents according to their decision strategies. This approach has been

introduced by M. Aoki in a series of papers and is effectively summa-

rized in Aoki and Yoshikawa (2007). The illustrations we focus on in the
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present review concern Bayesian nonparametric inference and macroe-

conomic modelling.

To sum up the main theoretical framework, supposeX(∞) = (Xn)n≥1

is a sequence of observations or types of economic agents, defined on

some probability space (Ω,F ,P) with each Xi taking values in a com-

plete and separable metric space X endowed with the Borel σ–algebra

X . It will be assumed that X(∞) is exchangeable which implies that for

any n ≥ 1 and any permutation π of the indices 1, . . . , n, the probability

distribution (p.d.) of the random vector (X1, . . . , Xn) coincides with the

p.d. of (Xπ(1), . . . , Xπ(n)). An important characterization is provided by

the celebrated de Finetti’s representation theorem: it states that a se-

quence X(∞) is exchangeable if and only if there exists a probability

measure Q on the space PX of all probability measures on X such that,

for any n ≥ 1 and A = A1 × · · · ×An × X∞, one has

P
[
X(∞) ∈ A

]
=

∫

PX

n∏

i=1

p(Ai)Q(dp) (1)

where Ai ∈ X for any i = 1, . . . , n and X∞ = X × X × · · · . The

probability Q is also termed the de Finetti measure of the sequence

X(∞). This particular form of the representation theorem can be found

in de Finetti (1937), an article that contains a series of lectures delivered

by de Finetti in Paris, at the Institut Henri Poincaré, in 1935.

The implication of (1) is apparent: conditional on a random probabil-

ity measure p̃ from Q, the first n elements of the exchangeable sequence

X(∞) are independent and identically distributed and their common p.d.

is p̃. When Q is concentrated on a set of elements in PX that are dis-

crete, one can show that there might be ties among X1, . . . , Xn, i.e.

P[Xi = Xj ] > 0 for i $= j. Correspondingly, define Ψn to be a random

partition of the integers {1, . . . , n} such that any two integers i and j be-

long to the same set in Ψn if and only if Xi = Xj . Let k ∈ {1, . . . , n} and

suppose {C1, . . . , Ck} is a partition of {1, . . . , n} into k sets Ci. Hence,

{C1, . . . , Ck} is a possible realization of Ψn. A common and sensible

specification for the probability distribution of Ψn consists in assum-

ing that it depends on the frequencies of each set in the partition. To

Convegno Economia e Incertezza 86



illustrate this point, introduce the set

∆n,k :=

{
(n1, . . . , nk) : ni ≥ 1,

k∑

i=1

ni = n

}
.

Set ni = card(Ci), then (n1, . . . , nk) ∈ ∆n,k and

P[Ψn = {C1, . . . , Ck}] = Π(n)
k (n1, . . . , nk) (2)

A useful and intuitive metaphor is that of species sampling: one is not

much interested into the realizations of the Xi’s, which stand as species

labels thus being arbitrary, but rather in the probability of observing

k distinct species with frequencies (n1, . . . , nk) in n ≥ k draws from a

population. This leads us to state the following

Definition 1. Let (Xn)n≥1 be an exchangeable sequence. Then, {Π(n)
k :

1 ≤ k ≤ n, n ≥ 1} with Π(n)
k defined in (2) is termed exchangeable

partition probability function (EPPF).

Indeed, the EPPF defines an important tool which has been intro-

duced in Pitman (1995) and it determines the distribution of a ran-

dom partition of N. From the above definition it follows that, for any

n ≥ k ≥ 1 and any (n1, . . . , nk) ∈ ∆n,k, Π
(n)
k is a symmetric function of

its arguments, namely

Π(n)
k (n1, . . . , nk) = Π(n)

k (nπ(1), . . . , nπ(k))

for any permutation π of (1, . . . , k), and it satisfies the consistency prop-

erty

Π(n)
k (n1, . . . , nk) = Π(n+1)

k+1 (n1, . . . , nk, 1)

+
k∑

j=1

Π(n+1)
k (n1, . . . , nj + 1, . . . , nk). (3)

corresponding to the fact that the partition of X1, . . . , Xn can be re-

covered from the partition of X1, . . . , Xn+1 by dropping Xn+1. On the

other hand, as shown in Pitman (1995), every non–negative symmetric

function satisfying (3) is the EPPF of some exchangeable sequence. See

Pitman (1995, 2006) for a thorough and useful analysis of EPPFs.

In the following sections we will emphasize the role played by EPPFs

in two different contexts: Bayesian nonparametric inference and eco-

nomic modelling.
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2 Bayesian nonparametric modelling

Bayesian nonparametric inference is a relatively young area of research

that has recently undergone a strong development. Most of its success

can be explained by the considerable degree of flexibility it ensures in

statistical modelling, if compared to parametric alternatives, and by the

emergence of new and efficient simulation techniques that make non-

parametric models amenable to concrete use in a number of applied

statistical problems.

2.1 The Dirichlet process

Even if the formal setting for Bayesian nonparametric inference had

been laid out by de Finetti during the 30’s, no tractable examples were

given on how to construct a prior Q on PX so to make the nonpara-

metric approach feasible in applied statistical problems. Such a task has

been completed only 40 years later by T.S. Ferguson who defined in his

1973 paper, on the Annals of Statistics, the Dirichlet process. Nowa-

days it represents one of the most commonly used priors in Bayesian

nonparametrics and its popularity can be explained by its mathemati-

cal tractability and by the recent development of Markov chain Monte

Carlo (MCMC) techniques whose implementation allows a full Bayesian

analysis of complex statistical models based on the Dirichlet process

prior.

As highlighted in Ferguson (1973), the Dirichlet process can be de-

fined in various ways. Here we will point out three different definitions

in terms of the family of its finite-dimensional distributions, by means

of a series representation and through its representation as a normalized

completely random measure.

Definition 2. (Ferguson, 1973). Let c > 0 be a constant and P0 some

probability measure on (X,X ). Moreover, to any measurable parti-

tion {A1, . . . , Ak+1} of X, associate the vector (p1, . . . , pk+1) with pi =

P0(Ai). Then, we say that p̃ is a Dirichlet process with parameter mea-

sure cP0 if the vector (p̃(A1), . . . , p̃(Ak)) has density

Γ(c)
∏k+1

i=1 Γ(cpi)

k∏

i=1

xcpi−1
i (1− x1 − · · ·− xk)

cpk+1−1 1Sk(x1, . . . , xk)
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where Sk := {(x1, . . . , xk) : xi ≥ 0,
∑k

i=1 xi ≤ 1} is the k–dimensional

simplex.

An alternative characterization of the Dirichlet process can be given

in terms of a normalized completely randommeasure µ̃. This is a random

element defined on (Ω,F ,P) and taking values in the space of boundedly

finite measures MX with the property that if A and B are two sets in

X such that A ∩ B = ∅, then the random variables µ̃(A) and µ̃(B)

are independent. See the Appendix for a short review on completely

random measures.

Theorem 1. (Ferguson, 1973). Suppose µ̃ is a gamma completely ran-

dom measure with parameter cP0, namely for any set A ∈ X

P[µ̃(A) ≤ x]

=

{
1(0,∞)(P0(A))

Γ(cP0(A))

∫ x

0
scP0(A)−1 e−s ds+ 1{0}(P0(A))

}
1[0,∞)(x).

If p̃ is a Dirichlet process with parameter measure cP0, then

µ̃

µ̃(X)
d
= p̃ (4)

It is worth noting that µ̃ is a jump process. If P0 is non–atomic, this

entails that µ̃ =
∑

i≥1 JiδXi where the Ji’s are independent and non–

negative random variables and the Xi’s are i.i.d from P0. This suggests

an important feature of the Dirichlet process that was first shown by

Blackwell (1973): the Dirichlet process selects, almost surely, discrete

probability distributions on (X,X ). This property becomes even more

apparent if one considers an alternative definition of the Dirichlet process

that can be given in terms of the so–called stick–breaking construction.

Theorem 2. (Sethuraman, 1994). Let (Vi)i≥1 be a sequence of i.i.d.

random variables with Vi ∼ Beta(1, c) and define

w1 = V1, wk = Vk

k−1∏

i=1

(1− Vi) k = 2, 3, . . . (5)

Then
∑

k≥1wk = 1, almost surely, and if (Xn)n≥1 is a sequence of i.i.d.

random variables whose common p.d. P0 is non–atomic, the random
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probability measure

p̃ =
∑

k≥1

wk δXk (6)

coincides, in distribution, with the Dirichlet process with parameter mea-

sure cP0.

The representation in (6) highlights an interpretation of the Dirichlet

process p̃ as a species sampling model. This entails that the population

can be thought of as split into an infinite number of species, wk be-

ing the unknown proportion of the k–th species. As pointed out in the

introduction, the discreteness of p̃ naturally leads one to analyze the

partition structure it induces on a set X1, . . . , Xn of the first n obser-

vations extracted from an infinite exchangeable sequence (Xn)n≥1. The

EPPF associated to the Dirichlet process is

Π(n)
k (n1, . . . , nk) =

ck

(c)n

k∏

i=1

(ni − 1)! (7)

where (c)n = Γ(c + n)/Γ(c) is the n–th ascending factorial of c. See

Antoniak (1974). It is worth noting that (7) is an equivalent form of the

well-known Ewens sampling formula widely used in population genetics.

Indeed, the formula introduced by Ewens (1972) represents the p.d. of

the vector (m1, . . . ,mn) of counts, where mi is the number of clusters

of size i, and it is given by

Π∗
k,n(m1, . . . ,mn) =

n!ck

(c)n

n∏

i=1

1

imimi!

for any vector of non–negative integers (m1, . . . ,mn) such that
∑n

i=1mi =

k and
∑k

i=1 imi = n. When the EPPF is known, the determination of

the corresponding predictive distribution is straightforward. Indeed, if

one adheres to the species sampling interpretation for p̃, the probability

of observing a new species, conditional on a sample X1, . . . , Xn featuring

k distinct species X∗
1 , . . . , X

∗
k with frequencies n1, . . . , nk, is

P[Xn+1 = new |X1, . . . , Xn] =
Π(n+1)

k+1 (n1, . . . , nk, 1)

Π(n)
k (n1, . . . , nk)

=
c

c+ n
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On the other hand, the probability that Xn+1 is from any of the species

observed in the conditioning sample is

P[Xn+1 = new |X1, . . . , Xn]

=

∑k
j=1Π

(n+1)
k (n1, . . . , nj + 1, . . . , nk)

Π(n)
k (n1, . . . , nk)

=
n

c+ n

for any j = 1, . . . , n. These can be summarized in the following expres-

sion, known as predictive distribution,

P[Xn+1 ∈ A |X1, . . . , Xn] =
c

c+ n
P0(A) +

n

c+ n
P̂n(A) ∀A ∈ X

(8)

where P̂n =
∑n

j=1 δXi/n is the empirical distribution.

Besides prediction, the EPPF is also a useful tool for studying dis-

tributional properties of the number Kn of clusters generated by an

exchangeable sample of size n. If one marignalizes with respect to the

frequencies (n1, . . . , nk) in (7), one obtains the p.d. of Kn

P[Kn = k] =
ck

(c)n
|s(n, k)| 1{1,...,n}(k) (9)

where |s(n, k)| is the signless Stirling number of the first kind. Moreover,

the asymptotic behaviour is readily available from results in Korwar and

Hollander (1973), which state that

Kn

log n
a.s−→ c (10)

as n ↑ ∞. The rate of increase of Kn, as n increases, is an important

quantity for assessing the implications of the use of the Dirichlet process

in macroeconomic modelling and it will be compared to the behaviour

associated to random probability measures that generalize the Dirichlet

process.

2.2 The two–parameter Poisson–Dirichlet process

Despite the Dirichlet process has been a cornerstone in Bayesian non-

parametrics, in some cases of interest for statistical applications it is not

an adequate prior choice and alternative nonparametric models need to
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be devised. An example is represented by survival analysis: if a Dirichlet

prior is used for the survival time distribution, then the posterior, con-

ditional on a sample containing censored observations, is not Dirichlet.

It is, then, of interest to find an appropriate class of random distri-

butions which contain, as a special case, the posterior distribution of

the Dirichlet process given censored observations. Moreover, in survival

problems one might be interested in modelling hazard rate functions or

cumulative hazards and the Dirichlet process cannot be used in these

situations. Also in clustering and prediction problems, which are of in-

terest to the present paper, the predictive structure (8) induced by the

Dirichlet process is sometimes not flexible enough to capture important

aspects featured by the data. Indeed, the probabilities of generating

a new observations and of re-observing one of the species that have

appeared in the conditioning sample, c/(c + n) and n/(c + n), respec-

tively, depend neither on the number k of clusters into which the data

are grouped nor on the individual frequencies n1, . . . , nk. An important

piece of information for prediction is, then, neglected. This, and allied

applied problems, have recently stimulated a number of contributions

aiming at the definition of generalizations of the Dirichlet process that

still preserve a reasonable amount of analytical tractability and that

overcome some of the drawbacks inherent to modelling real phenomena

with the Dirichlet process. Among these generalizations, a special role

is played by the two–parameter Poisson–Dirichlet process introduced by

Pitman (1995).

Definition 3. Let (α, θ) be parameters such that either α ∈ [0, 1] and

θ > −α or α = −x < 0 and θ = mx for some m = 1, 2, . . .. Moreover,

(Vi)i≥1 is a sequence of independent random variables with Vi ∼ Beta(1−
α, θ + iα) and (wi)i≥1 are random weights defined as

w1 = V1, wi = Vi

i−1∏

j=1

(1− Vj) i ≥ 2.

If (Xi)i≥1 is a sequence of i.i.d. random variables with non–atomic

p.d. P0, the random probability measure
∑

i≥1wi δXi is a two-parameter

Poisson–Dirichlet process.

This definition points out an analogy to the Dirichlet process, namely
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the realizations of a two–parameter Poisson–Dirichlet process are almost

surely discrete. Note also that the Dirichlet process stands as a partic-

ular case for which α = 0. Another useful definition can be given in

terms of completely random measures as pointed out in Pitman and Yor

(1997) for the case where α ∈ (0, 1). Let µ̃α be a α–stable completely

random measure with parameter measure P0. This means that

E
[
e−λµ̃α(A)

]
=

∫

MX
e−λµ(A) Pα(dµ) = e−P0(A)λα

Let µ̃α,θ be a random measure on MX with law Pα,θ such that Pα,θ is

absolutely continuous with respect to Pα and

dPα,θ

dPα
(µ) = {µ(X)}−θ.

Theorem 3. (Pitman and Yor, 1997). The normalized random measure

µ̃α,θ/µ̃α,θ(X) coincides in distribution with a two–parameter Poisson–

Dirichlet process.

Among all generalizations of the Dirichlet process, the PD(α, θ) pro-

cess stands out for its tractability. The EPPF, which characterizes the

induced random partition, of a PD(α, θ) process is

Π(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iα)

(θ + 1)n−1

k∏

j=1

(1− α)nj−1 (11)

Now, denote by mj ≥ 0, j = 1, . . . , n, the number of sets in the partition

which contain j objects or, using again the species metaphor, the number

of species appearing j–times in a sample of size n. Then, an alternative

equivalent formulation of (11), known as Pitman’s sampling formula, is

given by

Π∗
k,n(m1, . . . ,mn) = n!

∏k−1
i=1 (θ + iα)

(θ + 1)n−1
∏n

i=1mi!

n∏

i=1

[
(1− α)i−1

i!

]mi

for any n ≥ 1 and m1, . . . ,mn such that mi ≥ 0,
∑n

i=1 imi = n and∑n
i=1mi = k. The above expression represents a two parameter gen-

eralization of the Ewens’ sampling formula that can be recovered by
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letting α → 0. The availability of the EPPF in (11) allows one to deter-

mine the system of predictive distributions associated with the PD(α, θ)

process. Indeed, if X1, . . . , Xn is a sample consisting of k distinct values

X∗
1 , . . . , X

∗
k and nj of them are equal to X∗

j , then

P[Xn+1 ∈ dx |X1, . . . , Xn] =
θ + kα

θ + n
P0(dx)+

1

θ + n

k∑

j=1

(nj−α) δX∗
j
(dx)

It can be noted that, unlike the Dirichlet process, the probability of

observing a new species depends also on the number k of distinct ob-

servations. This is not the only remarkable difference from the Dirichlet

process. Another important distinctive feature concerns the asymptotic

behaviour of the number of distinct observations Kn detected in a sam-

ple of size n. For any n one has that

P[Kn = k] =

∏k−1
i=1 (θ + iα)

αk (θ + 1)n−1
C (n, k;α) k = 1, . . . , n,

where

C (n, k;α) =
1

k!

k∑

j=0

(−1)j
(
k

j

)
(−jα)n

is the generalized factorial coefficient. See Gnedin and Pitman (2005).

In order to derive the asymptotic behaviour of Kn as n diverges, it is

useful to first introduce a class of random variables, which will appear

throughout the following developments. This class of random variables,

which we term generalized Mittag–Leffler random variables, is defined

as follows. Let fα be the density function of a positive α–stable random

variable and define Zq to be, for any q ≥ 0, a positive random variable

with density function

fZq(z) =
Γ(qα+ 1)

αΓ (q + 1)
zq−1−1/α fα

(
z−1/α

)
. (12)

Then, by Theorem 3.8 in Pitman (2006), one has that

Kn

n
a.s.−→ Zθ/α. (13)

Therefore, in the two–parameter case, one has that Kn increases at a

rate of nα (rather than the logarithmic rate of the Dirichlet process) and,
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moreover, the normalized version of Kn converges to a strictly positive

random variable (in contrast to the convergence to a constant of the

Dirichlet case).

3 Uncertainty in macroeconomics models

3.1 Self–averaging phenomena

Aoki (2008) introduces the interesting concept of “ self-averaging ” in

Economics in relation to stochastic growth models.

Definition 4. A size–dependent random variable Xn is termed self–

averaging if

C.V.(Xn) =

√
Var(Xn)

E(Xn)
→ 0 as n → ∞, (14)

where C.V. clearly denotes the coefficient of variation.

Such a property typically holds for simple economic models, where

some assumption of symmetry or homogeneity of the individuals under-

lies the whole model. The concept is best clarified by looking at an exam-

ple: consider the popular Poisson model, in which for each “individual”

an event (e.g. technical progress) occurs according to a Poisson process

with parameter λ. Then, in the whole economy, which is based on n indi-

viduals, the number of events Xn follows a Poisson process with rate λn.

Consequently, in a one–time period, we have E(Xn) = Var(Xn) = λn

and it immediately follows that C.V.(Xn) = λn−1/2 → 0 as n → ∞.

Hence, the Poisson model is self–averaging. The same obviously holds

for the Gaussian case.

In fact, the self-averaging condition (14) can be equivalently ex-

pressed as

Var

(
Xn

E(Xn)

)
→ 0 n → ∞, (15)

from which it becomes evident that for self–averaging macroeconomic

phenomena, one can focus attention on the means of the involved vari-

ables since for sufficiently large n the residual variability of the normal-
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ized Xn becomes negligible. On the other hand, the model is non–self–

averaging if

Var

(
Xn

E(Xn)

)
$→ 0 n → ∞.

In such a case, even if the number of agents diverges, the uncertainty

about the “normalized” trajectories of Xn persists: clearly focusing

solely on the mean behaviour is not enough for describing the phe-

nomenon at issue. Some measure of the oscillations around the mean is

essential for providing a clear picture.

In the following we introduce a simple endogenous growth model and

show that it leads, under reasonable assumptions, to non–self–averaging

phenomena. The model represents a rigorous development of some ideas

presented in Aoki and Yoshikawa (2007). By deriving exact asymptotic

results we show how the mean can be combined with measures of un-

certainty represented by highest posterior density intervals.

3.2 A simple endogenous growth model

In this section we review the results of Lijoi, Muliere, Prünster and

Taddei (2010). In accordance with the literature on endogenous growth,

we assume that the economy grows by innovations, which are stochastic

events of two types: the first type is represented by a productivity rise in

an existing sector, whereas the second type is represented by the creation

of a new sector. By the time the n–th innovation occurs, the economy

will consist of a random number Kn of sectors, the i–th sector will have

experienced ni innovations and obviously
∑Kn

i=1 ni = n.

Furthermore, we assume that the output of sector i is of the form

Yi = η γ
ni

n1−σ (16)

where γ > 1, η > 0 and σ ∈ (0, 1). Without loss of generality we can

assume η = 1. Moreover, we will concentrate our attention on the case

of γ close to 1, which is realistic in many situations. Therefore we can

approximate (16) with

Yi = 1 + β
ni

n1−σ
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where β = log(γ) > 0. Hence, the aggregate output of the economy,

which is the sum of the outputs of the Kn sectors, is given by

Xn =
n∑

i=1

Yi = Kn + β nσ (17)

which shows that Kn is the contribution to the aggregate output of the

number of sectors and that nσ is the contribution of the innovations

within sectors.

Finally, the stochastic innovations are governed by a two–parameter

Poisson–Dirichlet model with parameters α ∈ (0, 1) and θ > 0. This

means that, given an economy with Kn sectors and the n innovations

distributed as (n1, . . . , nKn), the probability that innovation n + 1 will

create a new sector is
θ + αKn

θ + n
,

whereas the probability that the n + 1–th innovation will happen in

sector i is
ni − α

θ + n
i = 1, . . . ,Kn.

Before proceeding it is worth to outline the reinforcement mechanism

induced by the Poisson–Dirichlet process. The probability of having an

innovation in one of the already existing sectors is (n − αKn)/(θ + n),

but the mass is not allocated proportional to the number of innovations

already observed in each sector. The probability of observing an inno-

vation in sector i is determined by the size ni of the cluster and by α. In

fact, a reinforcement mechanism driven by α takes place. Indeed, one

can see that the ratio of the probabilities assigned to any pair of sectors

(i, j) is given by (ni − α)/(nj − α). As α → 0, the previous quantity

reduces to the ratio of the sizes of the two clusters, which characterizes

the Dirichlet case and represents exactly the case of homogeneity of the

sectors. If ni > nj , the ratio is an increasing function of α. Hence, as α

increases the mass is reallocated from sector j to i. This means that the

dynamics tends to reinforce, among the observed clusters, those having

higher frequencies. Table 1 provides an idea of the magnitude of the re-

inforcement. See Lijoi et al. (2005, 2007) for details and more discussion

on the reinforcement connected to such models.
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Table 1: Ratio of the probabilities allocated to sector i observed ni times

and sector j observed only once for different choices of α.
ni = 2 ni = 10 ni = 50 ni = 100

Dir 2 10 50 100

PD(θ,α = 0.25) 2.33 13 66.33 133

PD(θ,α = 0.50) 3 19 99 199

PD(θ,α = 0.75) 5 37 197 397

PD(θ,α → 1) → ∞ → ∞ → ∞ → ∞

The following result distinguishes various cases corresponding to dif-

ferent choices of the parameters of the model: it is worth noting that

α > σ (α < σ) means that the contribution to aggregate output from

innovations represented by introduction of new sectors are more (less)

relevant than those within an existing sector. Hence, our result es-

sentially states that, when contributions to the economy given by the

introduction of new sectors are at least as relevant as those given by the

existing sectors, the economy presents a non–self–averaging behaviour.

Proposition 1. Under the growth model (17) with innovations following

a two parameter Poisson Dirichlet process, we have

E[Xn] =
(θ + α)n

α (θ + 1)n−1
− θ

α
+ βnσ, (18)

where (a)n = a(a+1) . . . (a+n−1) is the ascending factorial. Moreover,

(i) If α = σ = υ,
Xn

nυ
→ Zθ/α + β a.s.

where Zq is a generalized Mittag–Leffler random variable defined

in (12), and Xn is non–self-averaging.

(ii) If α = υ > σ,
Xn

nυ
→ Zθ/α a.s.

where Zq is a generalized Mittag–Leffler random variable defined

in (12), and Xn is non–self-averaging.
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(iii) If σ = υ > α,
Xn

nυ
→ β a.s.

and Xn is self-averaging.

Proof. The proof follows by combining formula (3.13) in Pitman (2006),

the asymptotics of Kn as recalled in (13) and standard limiting argu-

ments.

From Proposition 1 it follows that the model can be described by

the mean E[Xn], given in (18), in self–averaging situations: this is in

agreement with the usual macroeconomic attitude to consider aggregate

average quantities. The question is, what one should do in non–self–

averaging cases, which as shown in Proposition 1 arise systematically

in presence in of highly dynamic economies. In such cases, it seems es-

sential to combine the study of the mean beahviour with a measure of

uncertainty and the natural tool in this framework is represented by the

asymptotic highest posterior density (HPD) intervals of the limiting ran-

dom variable, which represent the Bayesian counterpart to frequentist

confidence intervals.

As for the determination of the asymptotic HPD intervals, consider

case (ii), case (i) follows then immediately: one can take the 95% HPD

interval (z1, z2) of Zθ/α i.e. (z1, z2) such that z2 − z1 is minimal under

the condition P(z1 < Zθ/α < z2) ≥ 0.95. The asymptotic HPD interval

for Xn is then given by (z1nυ, z2nυ).

However, the determination of the quantiles of a generalized Mittag–

Leffler random variable Zq is cumbersome and, hence, we devise a sim-

ulation algorithm for generating values of Zq by adapting arguments in

Favaro et al. (2009) and one can then use the output to evaluate quan-

tiles. The basic idea consists in setting Wq = Z−1/α
q so that Wq has

density function given by

f(w) =
αΓ(qα)

Γ(q)
w−qα fα(w) =

α

Γ(q)
fα(w)

∫ ∞

0
uqα−1 e−uw du

Via augmentation, one then has

f(u,w) =
α

Γ(q)
fα(w) u

qα−1 e−uw = f(u)fα(w|u)
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where f(u) is the density function of a r.v. Uq such that Uα
q ∼Gamma(q, 1),

and

fα(w|u) = fα(w) e
−uw+uα

.

This means that, conditional on Uq, Wq is a positive tempered–stable

random variable, according to the terminology adopted in Rosiński (2007).

In order to draw samples from it, a convenient strategy is to resort to

the series representation derived in Rosiński (2007), which, in our case,

yields

Wq|Uq
d
=

∞∑

i=1

min
{
(aiΓ(1− α))−1/α , ei v

1/α
i

}
(19)

where ei
iid∼ Exp(Uq), vi

iid∼ U(0, 1) and a1 > a2 > · · · are the arrival times

of a Poisson process with unit intensity. Other possibilities for simulating

from a tempered stable random variable are the inverse Lévy measure

method as described in Ferguson and Klass (1972) and a compound

Poisson approximation scheme proposed in Cont and Tankov (2004).

Summarizing the above considerations, an algorithm for simulating from

the limiting random variable Zθ/α is as follows:

1. generate X ∼ Ga(θ/α, 1) and set U = X1/α;

2. for a given truncation N and U sampled in step 1., generate:

{ei}
iid∼ Exp(U), {vi}

iid∼ U(0, 1), ξj
iid∼ Exp(1) and take ai =∑i

j=1 ξj , for i = 1, . . . , N ;

3. compute W according to (19) and set Z = W−α.

Recently two alternative and more efficient algorithms for drawing sam-

ples from the limiting distribution of Kn/nα has been derived by Mon-

tagna (2009), who exploits results of Devroye (2009).

With such algorithm at hand, it is straightforward to describe the

growth model via E(Xn) combined with the corresponding HPD inter-

vals, which account for the persisting uncertainty due to the non–self–

averaging nature of the phenomenon at issue.

The previous model can be seen as an unconditional model, where

the economy starts from scratch. A more realistic model, would consider

the status quo of the economy and analyze the contribution to the ag-

gregate output of sectors which will emerge only in the future. From a
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mathematical point of view this means predicting the future behaviour

conditionally on a given state of the world. Therefore, we now assume

the status quo as given (i.e. there are at present Kn = k sectors where

n1, . . . , nk innovations occurred) and study the aggregate output of new

future sectors. By the time the m–th innovation occurs, there will be

a random number K(n)
m = Km − Kn of new sectors in the economy,

where the i–th will have experienced si innovations. In this model, not

all innovations will belong to the new sectors: in fact,
∑K

(n)
m

i=1 si = L(n)
m

represents the number of innovations concerning the new sectors and

m−L(n)
m innovations will concern the “old” sectors. Under the same as-

sumptions of the unconditional case, the output of the i–th new sector

is then of the form

(Yi|Kn = j, n1 . . . , nj) = 1 + β
si

m1−σ
i = 1, . . . ,K(n)

m

where β > 0 and σ ∈ (0, 1). The aggregate output of the K(n)
m new

sectors is then given by

(Xm|Kn = j, n1 . . . , nj) = K(n)
m + β

L(n)
m

m1−σ
(20)

Again, we model the stochastic innovations with a two–parameter Poisson–

Dirichlet model with parameters α ∈ (0, 1) and θ > 0. The following

result provides a complete description of the model showing that non–

self–averaging appears under any assumption on the innovation param-

eters α and σ highlighting how common such phenomena arise.

Proposition 2. Under the growth model (20) with innovations following

a two parameter Poisson Dirichlet process, we have

E[Xm|Kn = j, n1 . . . , nj ] =

(
j +

θ

α

){
(θ + n+ α)m
(θ + n)m

− 1

}
+β

θ + jα

θ + n
mσ.

(21)

Moreover:

(i) If α = σ = υ,

(Xm|Kn = k, n1 . . . , nk)

mυ
→ Un,j + βBθ+αj,n−αj a.s.
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where Un,j
d
= Bj+θ/α, n/α−j Z(θ+n)/α, Zq is a generalized Mittag–

Leffler random variable with density (12), Ba,b is a beta random

variable with parameters (a, b) and the random variables Bj+θ/α, n/α−j

and Z(θ+n)/α are independent. Hence, the model is non–self-averaging.

(ii) If α = υ > σ,

(Xm|Kn = k, n1 . . . , nk)

mυ
→ Un,j a.s.

and the model is non–self-averaging.

(iii) If σ = υ > α,

(Xm|Kn = k, n1 . . . , nk)

mυ
→ βBθ+αj,n−αj a.s..

Proof. We start by considering the limiting behaviour of K(n)
m ,

which is one of the two components the aggregate output (20) is made

of. The proof strategy is as follows: we first mimick the arguments of

Favaro et al. (2009) in order to establish that K(n)
m /mα converges a.s.

and in the p–th mean for any p > 0, determine the moments of the

limiting random variable and show that the limiting random variable is

characterized by its moments. Then, the asymptotic behaviour of the

second component of the aggregate output is studied and the two bits

combined to achieved the desired result.

Let us start by computing the likelihood ratio

M (n)
α,θ,m :=

dP (n)
α,θ

dP (n)
α,0

∣∣∣∣
F (n)

m

=
q(n)α,θ(K

(n)
m )

q(n)α,0(K
(n)
m )

where F (n)
m = σ(Xn+1, . . . , Xn+m), P (n)

α,θ is the conditional probability

distribution of a PD(α, θ) process given Kn and, by virtue Proposition 1

in Lijoi, Prünster and Walker (2008), q(n)α,θ(k) = αKn( θα +Kn)k/(θ+n)m

for any integer k ≥ 1 and q(n)α,θ(0) := 1/(θ+n)m. Hence (M (n)
α,θ,m,F (n)

m )m≥1

is a P (n)
α,0 –martingale. By a martingale convergence theorem, M (n)

α,θ,m has

a P (n)
α,0 almost sure limit, say M (n)

α,θ , as m → ∞. Convergence holds in the

p–th mean as well, for any p > 0. One clearly has that E(n)
α,0[M

(n)
α,θ ] = 1,
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where E(n)
α,0 denotes the expected value w.r.t. P (n)

α,0 . It can be easily seen

that

M (n)
α,θ,m ∼ Γ(θ + n)Γ(Kn)

Γ(n)Γ
(
θ
α +Kn

)
(
K(n)

m

mα

)θ/α

as m → ∞. Hence (K(n)
m /mα)θ/α converges P (n)

α,0 –a.s. to a random

variable, say Un,j such that

E(n)
α,0

[
U θ/α
n,j

]
=

Γ(n)Γ
(
θ
α +Kn

)

Γ(θ + n)Γ(Kn)
.

In order to identify the distribution of the limiting random variable Un,j

w.r.t. P (n)
α,θ , we consider the asymptotic behaviour of E[(K(n)

m )r |Kn] as

m → ∞, for any r ≥ 1. Hence, we first need to identify the moments

E[(K(n)
m )r |Kn]. Indeed, one has

E
[
(K(n)

m )r
∣∣Kn = j, w

]
=

m∑

i=0

(
m

i

)
wi(1− w)m−i E [Kr

i ]

where the unconditional moment E [Kr
i ] is evaluated w.r.t. P̃α,θ+jα prior.

Such an expression is already available from Yamato and Sibuya (2000)

and it is given by

E [Kr
i ]

=
r∑

ν=0

(−1)r−ν

(
1 +

θ + jα

α

)

ν

S

(
r, ν;

θ + jα

α

)
(θ + jα+ να+ 1)i−1

(θ + 1)i−1

where S is the non–central Stirling number of the second kind. Hence,

one has

E
[
(K(n)

m )r
∣∣Kn = j

]

=
Γ(θ + n)

∫ 1
0 w

θ+jα−1(1− w)n−jα−1 E
[
(K(n)

m )r
∣∣Kn = j, w

]
dw

Γ(θ + jα)Γ(n− jα)

=
Γ(θ + n)

∑r
ν=0(−1)r−ν

(
1 + θ+jα

α

)

ν
S
(
r, ν; θ+jα

α

)

Γ(θ + jα)Γ(n− jα)

×
m∑

i=0

(
m

i

)
(θ + jα+ να+ 1)i−1

∫ 1
0 wθ+jα+i−1(1− w)n−jα+m−i−1 dw

(θ + 1)i−1
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=
1

(θ + n)m

r∑

ν=0

(−1)r−ν

(
1 +

θ + jα

α

)

ν

S

(
r, ν;

θ + jα

α

)
θ + jα

θ + jα+ να

×
m∑

i=0

(
m

i

)
(θ + jα+ να)i(n− jα)m−i

=
1

(θ + n)m

r∑

ν=0

(−1)r−ν

(
θ

α
+ j

)

ν

S

(
r, ν;

θ + jα

α

)
(θ + n+ να)m,

(22)

where the last equality follows by an application of the Chu–Vandermonde

formula. See, e.g., Charalambides (2005). Note, that for r = 1, we have

E[K(n)
m |Kn = j] =

(
j +

θ

α

) {
(θ + n+ α)m
(θ + n)m

− 1

}
, (23)

Now we can obtain the asymptotic moments by letting m → ∞ in

(22): using the Stirling formula we have

1

mrα
E
[
(K(n)

m )r
∣∣Kn

]
→

(
Kn +

θ

α

)

r

Γ(θ + n)

Γ(θ + n+ rα)
=: µ(n)

r . (24)

Such a moment sequence arises by taking Un,j
d
= Bj+θ/α, n/α−j Z(θ+n)/α,

with the beta random variable Bj+θ/α, n/α−j independent from Z(θ+n)/α,

which has density (12). Hence, we are left with showing that the distri-

bution of Un,j is uniquely characterized by the moment sequence {µ(n)
r }r.

In order to establish this, one can evaluate the characteristic function of

Un,j which, at any t ∈ R, coincides with

Φ(t) =
Γ
(
θ+n
α

)

Γ
(
Kn + θ

α

)
Γ
(
n
α −Kn

) Γ(θ + n+ 1)

Γ
(
θ+n
α + 1

)

×
∫ ∞

0
eitz zKn+

θ
α−1

∫ ∞

z
w (w − z)

n
α−Kn−1 gα(w) dw dz

=
αΓ(θ + n)

Γ
(
Kn + θ

α

)
Γ
(
n
α −Kn

)
∫ ∞

0
w gα(w)

×
∫ w

0
eitz zKn+

θ
α−1 (w − z)

n
α−Kn−1 dz dw

=
Γ(θ + n+ 1)

Γ
(
θ+n
α + 1

)
∑

r≥0

(it)r

r!

(
Kn + θ

α

)
r(

θ+n
α

)
r

∫ ∞

0
w

θ+n
α +r gα(w) dw
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=
∑

r≥0

(it)r

r!

(
Kn + θ

α

)
r(

θ+n
α

)
r

Γ(θ + n+ 1)

Γ
(
θ+n
α + 1

)
Γ
(
θ+n
α + r + 1

)

Γ(θ + n+ 1 + rα)

=
∑

r≥0

(it)r

r!
µ(n)
r

Hence, we have established that (K(n)
m |Kn = j)/mα converges a.s. and

in p-th means to Un,j .

As for the second component of the aggregate output (20), namely

βL(n)
m /m1−σ, first note that by Proposition 2 in Lijoi, Prünster and

Walker (2008), we have

E[L(n)
m ] = m

θ + αj

θ + n
.

This, combined with (23), yields immediately (21). The law of L(n)
m is

given in Eq. (22) of Lijoi, Prünster and Walker (2008), which is easily

seen to coincide with a Pólya distribution

P(L(n)
m = s|Kn = j) =

(
m

s

)
Be(m− s+ n− jα, s+ θ + jα)

Be(n− jα, θ + jα)
, (25)

for s = 0, . . . ,m, where Be(a, b) denotes a beta function. Hence, the

number of innovations within the new sectors follows a Pólya distri-

bution. Therefore, by well–known martingale convergence arguments,

it follows that L(n)
m /m converges a.s. and in the p–th mean to a beta

random variable with parameters θ + jα and n− jα.

Now, combining this limit result with the previous concerning K(n)
m

the asymptotic statements in (i), (ii) and (iii) follow immediately.

In order to associate the HPD intervals, which provide a measure of

uncertainty of predictions based on the mean behaviour, to the limiting

quantities of the conditional case one can easily extend the algorithm

set forth for the unconditional case.

Some comments are in order at this point. The previous result shows

how by complicating models so to adhere more closely to realistic as-

sumptions non–self–averaging behaviours appear even more frequently.

This represents a clear indicator that one cannot confine himself to

studying mean behaviours but has to take the associated variability

into account. This can be achieved in a quite straightforward way by
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associating HPD intervals to the mean quantities. Therefore, the in-

dication which clearly emerges from our analysis is that the usual way

of proceeding in macroeconomics is legitimate as long as it is combined

with suitable measures of uncertainty.

A Appendix: Completely random measures

In this Appendix we provide a concise account on completely random

measures, a concept introduced by Kingman (1967), which has the ad-

vantage of allowing to unify in an elegant way most classes of random

probability measures dealt with in Bayesian Nonparametrics: indeed, all

of them can be derived as suitable transformations of completely random

measures. See Lijoi and Prünster (2010)

Let (X,X ) be a Polish space equipped with the corresponding Borel

σ–field and recall that a measure µ on X is said to be boundedly finite if

µ(A) < +∞ for every bounded measurable set A. Denote by (MX,MX)

the space of boundedly finite measures endowed with the corresponding

Borel σ–algebra. Let now µ̃ be a measurable mapping from (Ω,F ,P)
into (MX,MX) and such that for any A1, . . . , An in X , with Ai∩Aj = ∅
for i $= j, the random variables µ̃(A1), . . . , µ̃(An) are mutually indepen-

dent. Then µ̃ is termed completely random measure (CRM).

A CRM on X can always be represented as the sum of two compo-

nents: a proper CRM µ̃c =
∑∞

i=1 JiδYi , where both the positive jumps

Ji’s and the X–valued locations Yi’s are random, and a measure with

random masses at fixed locations in X. Accordingly

µ̃ = µ̃c +
M∑

i=1

Vi δzi (26)

where the fixed jump points z1, . . . , zM , with M ∈ {1, 2, . . . ,+∞}, are
in X, the (non–negative) random jumps V1, . . . , VM are mutually inde-

pendent and they are independent from µ̃c. Finally, µ̃c is characterized

by the Laplace functional

E
[
e−

∫
X f(x) µ̃c(dx)

]
= exp

{
−
∫

R+×X

[
1− e−sf(x)

]
ν(ds, dx)

}
(27)
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where f : X → R is a measurable function such that
∫
|f | dµ̃c < ∞

(almost surely) and ν is a measure on R+ × X such that
∫

B

∫

R+
min{s, 1} ν(ds, dx) < ∞ (28)

for any B in X . From (27), which provides a Lévy-Khintchine repre-

sentation of CRMs, it is apparent that they are closely connected to

Poisson processes. Indeed, µ̃c can be represented as a linear functional

of a Poisson process M̃ on R+ ×X with mean measure ν. To state this

precisely, M̃ is a random subset of R+ ×X and if Ñ(A) = card(M̃ ∩A)

for any A ⊂ B(R+)⊗ X such that ν(A) < ∞, then

P[Ñ(A) = k] =
(ν(A))k e−ν(A)

k!
k = 0, 1, 2, . . . .

It can then be shown that

µ̃c(A) =

∫

A

∫

R+
s Ñ(ds, dx) ∀A ∈ X . (29)

The measure ν characterizing µ̃c is referred to as the Lévy or Poisson

intensity of µ̃c: it contains all the information about the distributions

of the jumps and locations of µ̃c. It is often useful to separate the jump

and location part of ν by writing it as

ν(ds, dx) = ρx(ds) γ(dx) (30)

where γ is a measure on (X,X ) and ρ a transition kernel on X×B(R+),

i.e. x /→ ρx(A) is X –measurable for any A in B(R+) and ρx is a mea-

sure on (R+,B(R+)) for any x in X. If ρx = ρ for any x, then the

distribution of the jumps of µ̃c is independent of their location and both

ν and µ̃c are termed homogeneous. Otherwise, ν and µ̃c are termed

non–homogeneous.

Another important property of CRMs is their almost sure discrete-

ness (Kingman, 1993), which means that their realizations are discrete

measures with probability 1. This fact essentially entails discreteness of

random probability measures obtained as transformations of CRMs.

The reader is referred to Kingman (1993) for a detailed treatment of

the subject. Two important CRM to the present treatment are gamma

CRM and the α–stable CRM, which we briefly outline here.
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A homogeneous CRM µ̃ whose Lévy intensity is given by

ν(ds, dx) =
e−s

s
ds γ(dx) (31)

is a gamma process with parameter measure γ on X. It is characterized
by its Laplace functional which is given by

E
[
e−

∫
f dµ̃

]
= e−

∫
log(1+f) dγ (32)

for any measurable function f : X → R such that
∫
log(1+ |f |) dγ < ∞.

Now set f = λ1B with λ > 0, B ∈ X such that γ(B) < ∞ and 1B
denoting the indicator function of set B. In this case one obtains

E
[
e−λ µ̃(B)

]
= [1 + λ]−γ(B),

from which it is apparent that µ̃(B) has a gamma distribution with scale

and shape parameter equal to 1 and γ(B), respectively.

As for the α–stable CRM, let α ∈ (0, 1), and γ be a boundedly finite

measure on X and consider a CRM µ̃ with Lévy intensity defined by

ν(dv, dx) =
α

Γ(1− α) v1+α
dv γ(dx). (33)

The Laplace functional of such a CRM has the form

E
[
e−

∫
f dµ̃

]
= e−

∫
fαdγ (34)

for any measurable function f : X → R such that
∫
|f |αdγ < ∞. For

instance, if α = 1/2 and f = λ1B with λ > 0, B ∈ X such that

γ(B) < ∞ one obtains the well–known Laplace transform of a 1/2–

stable distribution

E
[
e−λ µ̃(B)

]
= e−γ(B)

√
λ.
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