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A Note on Fixed Fuzzy Points
for Fuzzy Mappings

Vicente D. Estruch and Anna Vidal (∗)

Summary. - We prove a fixed fuzzy point theorem for fuzzy contrac-
tion mappings (in the S. Heilpern’s sense) over a complete metric
space, and as a consequence we obtain a fixed point theorem in
the context of intuitionistic fuzzy sets.

1. Introduction

After the introduction of the concept of a fuzzy set by Zadeh, several
researches were conducted on the generalizations of the concept of a
fuzzy set. The idea of intuitionistic fuzzy set is due to Atanassov [1],
[2], [3] and recently Çoker [4] has defined the concept of intuition-
istic fuzzy topological space which generalizes the concept of fuzzy
topological space introduced by Chang [5]. Heilpern [6] introduced
the concept of a fuzzy mapping and proved a fixed point theorem
for fuzzy contraction mappings which is a generalization of the fixed
point theorem for multivalued mappings of Nadler [7]. In this paper
we give a fixed fuzzy point theorem for fuzzy contraction mappings
over a complete metric space, which is a generalization of the given
by S. Heilpern for fixed points. Then, we introduce the concept
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of intuitionistic fuzzy mapping and give an intuitionistic version of
Heilpern’s mentioned theorem.

2. Preliminaries

Let X be a nonempty set and I = [0, 1]. A fuzzy set of X is an
element of IX . For A,B ∈ IX we denote A ⊂ B iff A(x) ≤ B(x),
∀x ∈ X.

Definition 2.1. (Atanassov [3]) An intuitionistic fuzzy set (i-fuzzy
set, for short) A of X is an object having the form A =< A1, A2 >
where A1, A2 ∈ IX and A1(x) + A2(x) ≤ 1, ∀x ∈ X.

We denote IFS(X) the family of all i-fuzzy sets of X.

Remark 2.2. If A ∈ IX , then A is identified with the i-fuzzy set
< A, 1 − A > denoted by [A].

For x ∈ X we write {x} the characteristic function of the ordinary
subset {x} of X. For α ∈]0, 1] the fuzzy point [8] xα of X is the fuzzy
set of X given by xα(x) = α and xα(z) = 0 if z 6= x. Now we give
the following definition.

Definition 2.3. Let xα be a fuzzy point of X. We will say < xα, 1−
xα > is an i-fuzzy point of X and it will be denoted by [xα]. In
particular [x] =< {x}, 1 − {x} > will be called an i-point of X.

Definition 2.4. (Atanassov [3]) Let A,B ∈ IFS(X). Then A ⊂ B
iff A1 ⊂ B1 and B2 ⊂ A2.

Remark 2.5. Notice [xα] ⊂ A iff xα ⊂ A1.

Let (X, d) be a metric linear space. Recall the α − level Aα of
A ∈ IX is defined by Aα = {x ∈ X : A(x) ≥ α} for each α ∈]0, 1],
and A0 = cl({x ∈ X : A(x) > 0}) where cl(B) is the closure of B.
Heilpern [6] called fuzzy mapping a mapping from the set X into a
family W (X) ⊂ IX defined as follows: A ∈ W (X) iff Aα is compact
and convex in X for each α ∈ [0, 1] and sup{A(x) : x ∈ X} = 1. In
this context we give the following definitions.
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Definition 2.6. Let A,B ∈ W (X), α ∈ [0, 1]. Define

pα(A,B) = inf{d(x, y) : x ∈ Aα, y ∈ Bα},

Dα = H(Aα, Bα),

D(A,B) = supα Dα(A,B),where His the Hausdorff distance.

For x ∈ X we write pα(x,B) instead of pα({x}, B).

Definition 2.7. Let X be a metric space and α ∈ [0, 1]. Consider
the following family Wα(X):

Wα(X) = {A ∈ IX : Aα is nonempty and compact}.

Now, we define the family Φα(X) of i-fuzzy sets of X as follows:

Φα(X) = {A ∈ IFS(X) : A1 ∈ Wα(X)}

Clearly, for α ∈ I, W (X) ⊂ Φα(X) in the sense of Remark 2.2.

We will use the following lemmas which are adequate modifica-
tions of the ones given in [6] for the family W (X), when (X, d) is a
metric space.

Lemma 2.8. Let x∈X and A ∈ Wα(X). Then xα⊂A if pα(x,A)=
0.

Lemma 2.9. pα(x,A) ≤ d(x, y)+pα(y,A), for x, y ∈ X, A ∈ Wα(X).

Lemma 2.10. If xα ⊂ A, then pα(x,B) ≤ Dα(A,B), for each A,B ∈
Wα(X)

3. Fixed fuzzy point theorem

In mathematical programming, problems are expressed as optimizing
some goal function given certain constraints and there are real-life
problems that consider multiple objectives. Generally, it is very dif-
ficult to get a feasible solution that carries us to the optimum of all
the objective functions. A possible method of resolution that is quite
useful is one using Fuzzy Sets. The idea is to relax the pretenses of
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optimization by means of a subjective gradation which can be mod-
elled into fuzzy membership functions µi . If F = ∩µi the objective
will be to search x such that max F = F (x). If maxF = 1, then
there exists x such that F (x) = 1, but if maxF = α,α ∈]0, 1[ the
solution of the multiobjective optimization is a fuzzy point xα and
F (x) = α.

In a more general sense than the one given by Heilpern, a map-
ping F : X −→ IX is a fuzzy mapping over X ([9]) and (F (x))(x)
is the fixed degree of x for F . In this context we give the following
definition.

Definition 3.1. Let xα be a fuzzy point of X. We will say that xα

is a fixed fuzzy point of the fuzzy mapping F over X if xα ⊂ F (x)
(i.e., the fixed degree of x is at least α). In particular, and according
to [6] , if {x} ⊂ F (x) we say that x is a fixed point of F .

The next proposition is a generalization of [6] Theorem 3.1.

Theorem 3.2. Let α ∈ ]0, 1] and let (X, d) be a complete metric
space. Let F be a fuzzy mapping from X into Wα(X) satisfying the
following condition: there exists q ∈ ]0, 1[ such that

Dα(F (x), F (y)) ≤ qd(x, y), for each x, y ∈ X.

Then there exists x ∈ X such that xα is a fixed fuzzy point of F .
In particular if α = 1, then x is a fixed point of F .

Proof. Let x0 ∈ X. Since (F (x0))α 6= ∅, then there exists x1 ∈ X
such that x1 ∈ (F (x0))α. there exists x2 ∈ (F (x0))α. Since (F (x1))α
is a nonempty compact subset of X, then there exists x2 ∈ (F (x1))α
such that

d(x1, x2) = d(x1, (F (x1))α) ≤ Dα(F (x0), F (x1))

by Lemma 2.10. By induction we construct a sequence (xn) in X
such that xn ∈ (F (xn−1))α and d(xn, xn+1) ≤ Dα(F (xn−1), F (xn)).

In a similar way to the proof of [6] Theorem 3.1., it is proved
that (xn) is a Cauchy sequence. Suppose (xn) converges to x ∈ X.
Now, by Lemmas 2.9, 2.10 we have
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pα(x, F (x)) ≤ d(x, xn)+pα(xn, F (x))≤d(x, xn)+Dα(F (xn−1), F (x))

≤ d(x, xn)+qd(xn−1, x)

In consequence pα(x, F (x)) = 0 and by Lemma 2.8, xα ⊂ F (x).

Remark 3.3. Theorem 3.1 of [6] states the existence of a fixed point
of the fuzzy mapping F : X −→ W (X) whenever D(F (x), F (y)) ≤
qd(x, y) for each x, y ∈ X, being q ∈]0, 1[. Now, in the light of the
above theorem, it is clear that the condition D(F (x), F (y)) ≤ qd(x, y)
can be weakened to D1(F (x), F (y)) ≤ qd(x, y).

The next example illustrates when the above theorem has certain
advantages if compared with Heilpern’s (Theorem 3.1 of [6]).

Example 3.4. Take a, b, c ∈] − ∞,+∞[, such that a < b < c. Let
X = {a, b, c} and d : X × X −→ [0,+∞[ the Euclidean metric. Let
α ∈]0, 0.5[ and suppose F : X −→ IX defined by

F (a)(x) =























1 if x=a

2α if x=b

α/2 if x=c

F (b)(x) =























1 if x=a

α if x=b

α/2 if x=c

F (c)(x) =























1 if x=a

α if x=b

0 if x=c

Then

F (a)1 = F (b)1 = F (c)1 = {a}, F (a)α = F (b)α = F (c)α = {a, b},
F (a)α

2
= F (b)α

2
= {a, b, c} and F (c)α

2
= {a, b} .

Consequently

D1(F (x), F (y)) = H(F (x)1, F (y)1) = 0,
Dα(F (x), F (y)) = H(F (x)α, F (y)α) = 0, ∀x, y ∈ X .
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By Theorem 3.2 there exists a fixed fuzzy point x1 (a fixed point)
and a fixed fuzzy point xα of the fuzzy mapping F . We can see
by the definition of F that a is a fixed point and bα is a fuzzy
point. Nevertheless Heilpern’s theorem is not useful in this exam-
ple because Dα

2
(F (a), F (c)) = H({a, b, c} , {a, b}) ≥ d(a, c) and then

D(F (a), F (c)) = supr H(F (a)r, F (c)r) ≥ d(a, c).

4. Fixed i-fuzzy point

Definition 4.1. An i-fuzzy mapping over X is a mapping F from
X into IFS(X). We will say that [xα] is a fixed i-fuzzy point of F
if [xα] ⊂ F (x). In particular we will say that [x] is a fixed i-point of
F if [x] ⊂ F (x).

Definition 4.2. Let (X, d) be a metric space and 0 < α ≤ 1. For
A,B ∈ Φα(X) we define D∗

α(A,B) = max{Dα(A1, B1),Dα(1 −
A2, 1 − B2)}. Clearly, D∗

α is a pseudometric on Φα(X).

Remark 4.3. Let A,B ∈ Wα(X). If we consider [A], [B] ∈ Φα(X)
then

D∗

α([A], [B]) = max{Dα(A,B),Dα(1−(1−A), 1−(1−B)) = Dα(A,B)

Now, as a consequence of Theorem 3.2 we have the following
corollary.

Corollary 4.4. Let (X, d) be a complete metric space and let F
be an i-fuzzy mapping from X into Φα(X), α ∈]0, 1], satisfying the
following condition: There exists q ∈]0, 1[ such that

D∗

α(F (x), F (y)) ≤ qd(x, y), for each x, y ∈ X

Then there exists x ∈ X such that [xα] is a fixed i-fuzzy point of
F . In particular if α = 1, then [x] is a fixed i-point of F .

Acknowledgment

The authors are grateful to the referee for his valuable suggestions.



A NOTE ON FIXED FUZZY POINTS etc. 45

References

[1] K. Atanassov, Intuitionistic fuzzy sets, (Sofia) (V. Sgurev, ed.), 1984,
(June 1983 Central Sci. and techn. Library, Bulg. Academy of Sciences).

[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20

(1986), 87–96.
[3] K. Atanassov, Review and new results on intuitionistic fuzzy sets,

Preprint IM-MFAIS-1-88, 1988.
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