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Semi-free Circle Actions:

the Multiplicative Structure

J.C.S. Kiihl and C. Izepe Rodrigues (�)

Summary. - In this paper we study the bordism groups of mani-

folds with semi-free S1-actions, denoted by SFn(S
1). We study

the multiplicative structure by using a J-homomorphism map.

We also study the construction K, which gives a set of multi-

plicative generators, presenting an algebraic interpretation of this

geometric construction. As an application, we analyze the homo-
morphisms rp : SF�(S

1) ! SF�(ZZp) from the bordism group of

semi-free S1-actions on the bordism group of ZZp-actions induced

by the restriction functors.

1. Introduction

In the early seventies equivariant bordism was a very active �eld of
study. It has recently regained importance, mainly due to the latest
studies done by E. Witten in which to know well the bordism of
circle actions is very important.

The module structure of bordism of semi-free circle actions was
done by F. Uchida (see [7]). The bordism groups of manifolds with
semi-free S1-actions are denoted by SFn(S

1). In Section 2 we present
some known basic results about these groups and some important
properties of the Smith homomorphism.
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In Section 3 we introduce the products inN�(S
1) = �n�0Nn(S

1),
where Nn(S

1) is the bordism group of free S1-actions on n-dimen-
sional closed manifolds.

We study the multiplicative structure, in Section 5, by using a
J-homomorphism map (analogous to the one introduced by J.M.
Boardman in [2]), which is presented in Section 4.

We also study the construction K, which gives a set of multi-
plicative generators, and in the Section 6 we present an algebraic
interpretation of this geometric construction.

Finally, as an application, in the last section we analyze the ho-
momorphisms rp : SF�(S

1) ! SF�(ZZp) from the bordism group of
semi-free S1-actions on the bordism group of ZZp-actions induced by
the restriction functors.

2. Semi-free S1-actions

Let SFn(S
1) be the bordism group of semi-free S1-actions on the n-

dimensional closed manifolds, and let SF�(S
1) = �n�0 SFn(S

1) be
the N�-module obtained. Analogously, we have the bordism groups
Nn(S

1) of free S1-actions on n-dimensional closed manifolds and
N�(S

1) = �n�0Nn(S
1).

By f[S2n+1; S1]g we shall denote the sphere with the standard
circle action.

There is the Smith homomorphism

� : N�(S
1)! N�(S

1);

which is a N�-module homomorphism with degree �2, which asso-
ciates [S2n+1; S1] to [S2n�1; S1] (see [2]).

Proposition 2.1. If �[M2n+1; T ] = 0 for [M2n+1;T ] in N2n+1(S
1),

then there is an unique [X2n] in N2n such that

[M2n+1; T ] = [X2n] [S1; S1]:

Proposition 2.2. Let [M2n+1; T ] be a free S1-action on the closed

(2n + 1)-manifold M2n+1 and W 2n+1 � M2n+1 a regular compact

submanifold such that

W 2n+1 [ T (W 2n+1) =M2n+1 and @W 2n+1 =W 2n+1 \ T (W 2n+1);
then �[M2n+1; T ] = [@W 2n+1; T j@W 2n+1].
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Let SF�(S
1) 
N�

N�(S
1) ! N�(S

1) be the pairing given by: if
[V m; � ] 2 SFm(S

1) and [Mn; T ] 2 Nn(S
1), then we set

[V m; � ] [Mn; T ] = [V m �Mn; � � T ]

since [V m �Mn; � � T ] is a free S1-action.

Lemma 2.3. If 
 2 SF2m(S
1) and � 2 N2n+1(S

1) then �(
�) =

�(�).

Proof. Let [M2n+1; T ] be a semi-free S1-action on a closed (2n +
1)�manifold. By (2.2), if W 2n+1 � M2n+1 is a compact regular
submanifold such that W [ TW = M and W \ TW = @W then
�[M2n+1; T ] = [@W 2n+1; T j@W 2n+1 ].
Since V 2m �W 2n+1 � V 2m �M2n+1, we have

(V �W ) [ T 0(V �W ) = (V �W ) [ (�V � TW )
= (V �W ) [ (V � TW ) = V � (W [ TW ) = V �M;

where T 0 = (�; T ) and

@(V �W ) = (@V �W ) [ (V � @W ) = V � @W = V � (W \ TW )

= (V �W ) \ (V � TW ) = (V �W ) \ (�V � TW ):

Therefore, we have

�[V �M; � � T ] = [@(V �W ); � � T j@(V �W )]

= [V � @W; � � T jV�@W ] = [V; � ] [@W; T j@W ];

that is, �(��) = 
�(�):

Now let Bn(S
1) be the bordism group of semi-free S1-actions on

n-manifolds with boundary which are free on the boundary.
We have the N�-module homomorphisms j : SFn(S

1) ! Bn(S
1)

which assigns [Mn; T ] to [Mn; T ], since @Mn = ;; and @ : Bn(S
1)!

Nn(S
1) which associates [V n; T ] to [@V n; T j@V n ].

Theorem 2.4. The sequence

0! SFn(S
1)

j
! Bn(S

1)! Nn�1(S
1)! 0

is exact and it splits (see [5], 8.3).
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LetMn(S
1) = �

[n=2]
k�0 Nn�2k(BUk) be the classifying space for the

k-dimensional bundles, and M�(S
1) = �n�0Mn(S

1).

Theorem 2.5. There is the isomorphism

F : Bn(S
1)! �

[n=2]
k�0 Nn�2k(BUk)

given by: [Mn; T ] is associated to
P

k[�
k ! F n�2k] where F n�2k

is the �xed point set component and �k is the normal bundle corre-

sponding.

Theorem 2.6. M�(S
1) is a graded polynomial algebra on N� with

generators the classes [� ! CP (n)]; n � 0, i.e., the canonic line
bundles over CP (n).

Theorem 2.7. N�(S
1) is a N� module with base given by the ele-

ments f[S2n+1; S1]gn�0:

Remark. Any element in N2n+1(S
1) can be written in a unique way

as
nX

r=0

[X2r][S2(n�r)+1; S1];

and any element in N2n(S
1) can be written in a unique way as

n�1X
r=0

[X2r+1] [S2(n�r)�1; S1]:

Let i inM2(S
1) be a semi-free S1-action on the unitary disk given

by the scalar product, then @(i) = [S1; S1] and we have the following
lemma.

Lemma 2.8. The diagram

M2k+2(S
1)

@
! N2k+1(S

1)
i " "

M2k(S
1)

@
! N2k�1(S

1)

is commutative.
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3. Products in �n�0 N2n+1(S
1):

We de�ne a product in �n�0 N2n+1(S
1) the following way: suppose

that � 2 N2n+1(S
1) and � 2 N2m+1(S

1). Let �0 be in M2n+2(S
1)

and �0 2 M2m+2(S
1) such that @(�0) = � and @(�0) = �. Let be

K = max(m;n) and k = min(m;n). We de�ne

�� = �K+1(�0�0) 2 N2k+1(S
1):

In case n = m, this de�ne a ring structure with unity on N2n+1(S
1),

where the unity element is [S2n+1; S1].

Lemma 3.1. If n < m then ��� = �� and if n � m then �(��) =
���.

Proof. Let us consider n < m and �00 2 M2m(S
1) with @(�00) =

��. Then �(@(�00i) + �) = 0. By (2.1), there is a unique [V 2m]
in N2m such that @(�00i) + � = [V 2m] [S1; S1]. Then, @(�00i) +
[V 2m] [S1; S1] = �:
Since @(i) = [S1; S1], we have @(�00i+ [V 2m]i) = �: Thus,

�� = �m+1@(�0�00i+ [V 2m]�0i) = �m+1@(�0�00i)+

+�m+1@([V 2m]�0i)

= �m@(�0�00) + [V 2m]�m@(�0) = ��� + [V 2m]�m�:

Now, since n < m and � 2 N2n+1(S
1), we have that �m� = 0.

If n � m, we have @(�00) = ��. Then �(@(�00i + �)) = 0: So there
is [V 2m] 2 N2m such that @(�00i) + [V 2m] [S1; S1] = �:
Since @(i) = [S1; S1], we obtain @(�00i+ [V 2m]i) = �. Hence

�(��) = �n+2@(�0�00i+ [V 2m]�0i) = �n+1@(�0�00 + [V 2m]�0)
= �n+1@(�0�00) + [V 2m]�n+1@(�0)
= ��� + [V 2m]�n+1�:

Since n � m and � 2 N2n+1(S
1), we have that �n+1� = 0.

Therefore, �(��) = ���.

Lemma 3.2. For any pair �; � we have �(��) = ����.

Proof. Suppose that n < m. Then �� = ��� by (3.1). Thus,
m� 1 � n and �(���) = ����. Therefore, �(��) = ����.
Finally, if n = m; �(��) = ��� and ���� = ���. Hence,
�(��) = ����:
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Lemma 3.3. If �; � and � 2 N2n+1(S
1) then �(��) = (��)�.

Proof. Choose �0; �0 and �0 2M2n+2(S
1) such that @(�0) = �; @(�0)

= � and @(�0) = �. Then by (3.1)
�(��) = ��n+1@(�0�0) = ��(�n@(�0�0)) = ��n@(�0�0):

Thus, successively, we obtain �(��) = �@(�0�0). Hence, by de�ni-
tion,

�@(�0�0) = �2n+1+1@(�0(�0�0))=�2n+2�((�0�0)�0)

= @(�0�0)�=�n+1@(�0�0)�=(��)�:

Theorem 3.4. The product �� de�nes a ring structure on

�n�0N2n+1(S
1).

Proof. We must show that the associative law is true in general.
Let � 2 N2n+1(S

1); � 2 N2m+1(S
1) and � 2 N2p+1(S

1).
We can supposem � p, then, by (3.1), we have �(��) = �(��p�m�).
Since ��p�m� = ��(�p�m�1�) = ��p�m�1� = ��(�p�m�2�) =
��p�m�2� = : : : = ��, we have to consider:
Case I. If n � m, then

�(��) = ��m�n(��) = ��m�n(��p�m�)
= �(�m�n��m�n�p�m�)
= �(�m�n��p�n�) = (��m�n�)�p�n� = (��)�:

Case II. If n > m, then

�(��) = ��(��) = (�n�m�)(��) = (�n�m�)(��p�m�)
= (�n�m��)�p�n� = (��)�:

Remark. For � 2 N2n+1(S
1), since

@(im+1) = [S2m+1; S1] and �m+1@(�0im+1) = @(�0) = �;

we have that �[S2m+1; S1] = � for n � m.
If n > m, we have

�[S2m+1; S1] = �n+1@(�0im+1) = �n�m�:
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In particular, N2n+1(S
1) is a subring of �n�0N2n+1(S

1) with unity
[S2n+1; S1], and

� : N2n+1(S
1)! N2n�1(S

1)

is a ring homomorphism.

4. The stable bordism homomorphism

We are going to introduce the ring

R =
invlim
�! (N2n�1(S

1)
�
 N2n+1(S

1)):

An element inR is a sequence f�ng
1
0 such that �n 2 N2n+1(S

1) and
�(�n) = �n�1; 8n � 1.

We de�ne the homomorphism J :M�(S
1)! R, where

M�(S
1) = �k�0�

k
j=0 N2k�2j(BUj);

in the following way: let be A 2M2k(S
1), then

Jn(A) = �k@(Ain+1):

Observe that Jn(A) belongs to N2n+1(S
1), and that the sequence

fJn(A)g
1
0 belongs to R, for

�Jn(A) = �k+1@(Ain+1) = �k@(Ain) = Jn�1(A):

Finally, we de�ne J(A) = fJn(A)g
1
0 .

Note that Jn(A) = �k�n�1@(A), if k � n+ 1.

The homomorphism J is stable with respect to the multiplication
by i, that is, J(Ai) = J(A):

Theorem 4.1. The stable homomorphism

J : �k�0 �
k
j=0 N2k�2j(BUj)!R is multiplicative.

Proof. One needs to consider only pairs A; B in M2k(S
1) and com-

ponents 0 � n < k, since J is stable. In this case,

Jn(A)Jn(B) = �k�n�1@(A)�k�n�1@(B) = �k�n�1(@(A)@(B)):
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By de�nition,

@(A)@(B) = �k@(AB) = �2k@(ABik)
= �2k@(ABin�1+1) = Jk�1(AB):

Therefore,

Jn(A)Jn(B) = �k�n�1(@(A)@(B))
= �k�n�1(Jk�1(AB)) = Jn(AB):

Taking the ring

M�(S
1) = �k�0�

k
j=0 N2k�2j(BUj);

we are going to consider the quotient ring F obtained factoring by the
ideal of the elements of the form A+Ai; where A belongs toM�(S

1).
There is a natural induced ring homomorphism J : F !R.

5. The structure of R

Since N�(S
1) is a N�-module with base given by f[S2n+1; S1]gn�0,

we can describe the product in N2n+1(S
1) directly.

If � =
nX

r=0

[X2r] [S2(n�r)+1; S1] and � =
nX
r=0

[Y 2r] [S2(n�r)+1; S1],

consider �0 =
nX
r=0

[X2r] in�r+1, and �0 =
nX
r=0

[Y 2r] in�r+1; then

�0�0 =
nX

r=0

(
X
r+s=l

[X2r] [Y 2s])i2(n+1)�l;

and

�� = �n+1@(�0�0) =
nX
r=0

(
X
r+s=l

[X2r] [Y 2s])[S2n+1�l; S1]:

We can use this to identify R with the ring N
(2n)
� (�) of formal power

series on the graduated ring N
(2n)
� . We assign f�ng

1
0 to

1X
0

[X2r]�r,
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where

�n =
nX
0

[X2r] [S2(n�r)+1; S1]:

We have ��n+1 = �n, and the product �n�n is given by the formal
power series multiplication. Thus, we have J : F ! N(�).

Lemma 5.1. The image of

SF2m(S
1)!M2m(S

1)! F ! N(�)

is the ideal generated by �m, and

J([M2m; T ]) = [M2m]�m+ terms with power bigger than m.

Proof. Let [M2m; T ] be given, consider the normal bundle to the
�xed point set [� ! F ] in M2m(S

1). So, @([� ! F ]) = 0 in
N2m�1(S

1), and

Jn([� ! F ]) = �m�n�1@([� ! F ]) = 0 for 0 � n � m� 1:

Thus, Jm([� ! F ]) = �m@([� ! F ]im+1) in N2m+1(S
1). Conse-

quently, Jm([� ! F ]) = @([� ! F ]i) = [S(� � 1C); S
1].

Since �([S(�� 1C); S
1]) = 0, then, by (2.1), there is a unique [X2m]

such that [S(� � 1C); S
1] = [X2m] [S1; S1].

Next, since [CP (� � 1C)] = [M2m], we have that [S(� � 1C); S
1] =

[M2m] [S1; S1].
Thus J([� ! F ]) = [M2m]�m+ terms with power bigger than m.

Lemma 5.2. Let [� ! F ] be in M2m(S
1). If J([� ! F ]) = ��m+

terms with power bigger than m, then there is a manifold with semi-

free S1-action [M2m; T ] such that � is in the class of M2m and [� !
F ] is the normal bundle to the �xed point set of [M2m; T ].

Proof. We have 0 = Jm�1([� ! F ]) = �m�m+1�1@([� ! F ]) =
@([� ! F ]). On the other hand, @([� ! F ]) = [S(�); S1]: Therefore,
[S(�); S1] = 0.
Now, suppose that @[V 2m; � ] = [S(�); S1], where [V 2m; � ] is in N2m

(S1). And consider M2m = (D(�) [ V 2m)=S(�) � @V 2m and T =
S [ � .
The normal bundle to the �xed point set of [M2m; T ] is � ! F , hence
� = [M2m].



10 J.C.S. KIIHL and C. IZEPE RODRIGUES

Lemma 5.3. Let 1C be in M2(S
1). Then J(1C) = 1.

Proof. Since Jn(1C) = �@(1C i
n) = �@(in+2) = �[S2n+3; S1] =

[S2n+1; S1] 2 N2n+1(S
1); for all n � 0, we have that J(1C) = 1.

Lemma 5.4. Let [V 2s] be in N2s and A 2 M2k. Then J([V 2s]A) =
[V 2s]�sJ(A):

Proof. We have

Jn([V
2s]A) = �s+k@([V 2s])Ain+1)

= �s+k[V 2s]@(Ain+1) = [V 2s]�s+k@(Ain+1):

Since �s+k@(Ain+1) is in N2n+1�2s(S
1), and 2(n� s)+1 is odd, we

have

�s+k@(Ain+1) =
n�sX
r=0

[X2r][S2(n�s�r)+1; S1]:

Therefore,

Jn([V
2s]A) = [V 2s]

n�sX
r=0

[X2r] [S2(n�s�r)+1; S1]

=
n�sX
r=0

[X2r][V 2s][S2(n�s�r)+1; S1]:

Thus,

Jn([V
2s]A)=

1X
r=0

[X2r][V 2s]�s+r = [V 2s]�s
1X
r=0

[X2r]�r = [V 2s]�sJ(A):

Now, we are going to de�ne the operatorK : SF�(S
1)! SF�(S

1).

Let [Mn; T ] be a semi-free S1-action. Consider D2�Mn and the
actions T1 and T2 de�ned by:

T1 : (t; (z;m)) 7! (tz;m); and

T2 : (t; (z;m)) 7! (tz; T (t;m)):

Restricting T1 and T2 to S
1 �Mn, we get the induced actions [S1 �

Mn; T1] and [S1 �Mn; T2].
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There exists a di�eomorphism ' : [S1�Mn; T1]! [S1�Mn; T2]
given by (s; x) 7! (s; T (s; x)). Thus, the action [S1 � Mn; T1] is
equivariantly di�eomorphic to [S1 �Mn; T2].

Taking the disjoint union [D2 �Mn; T1][ [D
2 �Mn; T2], we can

get the closed manifold Mn+2 and the S1-action �1 on Mn+2, using
the identi�cation of [S1�Mn; T1] with [S1�Mn; T2] through '. We
de�ne

K[Mn; T ] = [Mn+2; �1]:

The �xed point set of �1 is F1 = Fix (T )[Mn, where Fix (T ) is the
�xed point set of T and the normal bundle to Fix (T ) is � � 1C !
Fix (T ), � being the normal bundle to the Fix (T ) onMn. Moreover,
the normal bundle to Mn is the trivial complex bundle 1C .

Using an inductive process, one can assign to [Mn; T ] a sequence
of semi-free S1-actions [V (n; k); �k]. To do this, consider [V (n; 0); �0]
= [Mn; T ] and [V (n; 1); �1] = K[Mn; T ]. Now, we get [V (n; 2); �2]
applying the above construction to [V (n; 1); �1]. Thus, applying this
construction, successively, k times, we get [V (n; k); �k], where the
�xed point set is

Fk = Fix(T ) [ ([k�10 V (n; j)):

Furthermore, the normal bundle �k to Fk is � � 1kC , where � is the

normal bundle to the Fix (T ) onMn, and 1kC = �k�10 1k�jC , with 1k�jC

the trivial complex bundle over V (n; j).

Lemma 5.5. If � is the normal bundle to the �xed point set of [Mn; T ]

then [V (n; k)] = [CP (� � 1k+1
C )] +

k�1X
j=0

[CP (k � j)][V (n; j)].

Lemma 5.6. Let �n be the canonical complex line bundle over CP (n).
Then

J(�n) = 1 +
1X
i=0

[V (n+ 1; i)]�n+i+1:

Proof. Let T0 be a semi free S1-action on CP (n+ 1) de�ned by T0:
[z0; z1; : : : ; zn] 7! [sz0; z1; : : : ; zn], where s belongs to S

1. The normal

bundle to the �xed point set is ��1
(n+1)
C , where � is the canonic com-

plex line bundle to CP (n) and 1
(n+1)
C is the trivial complex bundle

to CP (0).
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Now, we are going to consider the manifolds with semi free S1-action
[V (n+ 1; k); �k], where [V (n+ 1; 0); �0] = [CP (n+ 1); T0].

The �xed point set of [V (n+ 1; k); �k ] is

[� � 1kC ! F ] + [1kC ! V (n+ 1; 0)]+

+ [1k�1C ! V (n+ 1; 1)] + : : :+ [1C ! V (n+ 1; k � 1)];

where � ! F is the bundle

(1
(n+1)
C ! CP (0)) [ (�! CP (n)):

Taking k = 2, we see that the �xed point set of [V (n+ 1; 2); �2] is

[� � 12C ! F ] + [12C ! V (n+ 1; 0)] + [1C ! V (n+ 1; 1)]:

Since

J [V (n+ 1; 2); �2]

= [V (n+ 1; 2)]�n+3 + terms with power bigger than (n+ 3)

and

J [V (n+ 1; 2); �2]

= J [� � 12C ! F ] + J [12C ! V (n+ 1; 0)] + J [1C ! V (n+ 1; 1)];

we get

[V (n+ 1; 2)]�n+2 + terms with power bigger than n+ 2

= J [� ! F ] + [V (n+ 1; 0)]�n+1 + [V (n+ 1; 1)]�n+2:

Therefore,

J [� ! F ] = [V (n+ 1; 0)]�n+1 + [V (n+ 1; 1)]�n+

+ [V (n+ 1; 2)]�n+3+

+ terms with power bigger than n+ 3:

On the other hand,

J [� ! F ] = J [1n+1
C ! CP (0)] + J(�n):
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Hence,

J(�n) = 1 + [V (n+ 1; 0)]�n+1 + [V (n+ 1; 1)]�n+2+

+ [V (n+ 1; 2)]�n+3+

terms with power bigger than n+ 3:

Finally, in general we have the result, that is,

J(�n) = 1 +
1X
i=0

[V (n+ 1; i)]�n+i+1:

6. Algebraic interpretation of the geometric

construction K

As in [1], in this section we are going to express SF�(S
1) as a direct

sum of certain submodules.
Let [CP (n); T0] be in SF2n(S

1), where T0 : [z0; : : : ; zn] 7! [sz0; z1;
: : : ; zn]; s 2 S1. The �xed point set of this semi free S1-action
is (1nC ! CP (0)) [ (� ! CP (n � 1)). Therefore, one can write
[CP (n); T0] = �n + �n1 , where �n = [CP (n � 1); �]. Thus, �n =
[CP (n); T0] + �n1 . Since M�(S

1) is a polynomial algebra over N�
generated by the elements �n in M2n(S

1), for n � 1, we have that
the elements [CP (n); T0], for n � 2, together �1 = i in M2(S

1),
constitute another system of polynomial generators for M�(S

1). We
are going to denote by Q the polynomial subalgebra of SF�(S

1) gen-
erated by [CP (n); T0]; and by Q2m the intersection Q \ SF2m(S

1).
Thus, M�(S

1) = Q[i]. By (5.1), SF2m(S
1) consists of polynomials P

in i over Q for which J(P ) belongs to the ideal generated by �m.

Lemma 6.1. Given an element y in M2m(S
1), there is an unique

polynomial F in N�[i], with no constant terms, such that y + F be-
longs to SF2m(S

1).

Proof. Since M�(S
1) = Q[i], we have that y = q0+ q1i+ q2i

2+ : : :+
qm�1i

m�1 + qmi
m, where qj is in Q2(m�j).

Thus, since J(i) = 1 and J is stable, we have that

J(y) = J(q0) + J(q1i) + J(q2i
2) + : : :+ J(qm�1i

m�1) + J(qmi
m)

= J(q0) + J(q1) + : : :+ J(qm�1) + J(qm):
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Since qj belongs to Q2(m�j) = Q \ SF2m(S
1), then

J(qj) = [W
2(m�j)
2j ]�m�j+[W

2(m�j)+2
2j ]�m�j+1+: : :+[W

2(m�1)
2j ]�m�1+

[W 2m
2j ]�m+ terms with power bigger than m, where [W

2(m�j)
2j ] is in

N2(m�j). Thus,

J(y) = [W 0
2m] + ([W 2

2m] + [W 2
2(m�1)])� + : : : + (

Pj
k=0[W

2j
2(m�k)])�

j +

: : :+(
Pm�1

k=0 [W
2(m�1)
2(m�k) ])�

m�1+(
Pm

k=0[W
2m
2(m�k)])�

k+ terms with power
bigger than m.

Let

F = [W 0
2m]i

m + ([W 2
2m] + [W 2

2(m�1)])i
m�1 + : : :

: : :+ (
jX

k=0

[W 2j
2(m�k)])i

m�j + : : : + (
m�1X
k=0

[W
2(m�1)
2(m�k) ])i

be in N�[i]. Then, we have

J(y + F ) = (
Pm

k=0[W
2m
2(m�k)])�

m+ terms with power bigger than m,

that is, J(y+F ) is in the ideal generated by �m. Therefore, by (5.1),
y + F belongs to SF2m(S

1).

Let " : Q ! N� be the aumentation homomorphism. Thus, we
have the following lemma.

Lemma 6.2. Let qj be in SF2(m�j)(S
1), for 0 � j � m. Then Kqj

is in SF2(m�j+1)(S
1), where we denote by Kqj the element i(qj +

[W
2(m�j)
j ]), and [W

2(m�j)
j ] = "(qj).

Proof. Since iqj is in M2(m�j+1)(S
1), there is an unique element

F in N�[i], with no constant term, such that iqj + F belongs to
S2(m�j+1)(S

1).

Now, we are going to verify that F = [W
2(m�j)
2j ]�m�j+1+ terms with

power bigger than m� j + 1.

We know that J(qj) = [W
2(m�j)
2j ]�m�j+[W

2(m�j+1)
2j ]�m�j+1+ terms

with power bigger than m� j + 1.

Thus, J(iqj +[W
2(m�j)
2j ]i) = [W

2(m�j+1)
2j ]�m�j+1+ terms with power

bigger than m� j + 1.

Therefore, J(Kqj) is in the ideal generated by �m�j+1, and this fact
imply that Kqj belongs to SF2(m�j+1)(S

1).
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Remark 6.3. Denoting by K2qj the element iKqj , by (6.2), we have
that K2qj is in SF2(m�j+2)(S

1). Thus, successively, Knqj = iKn�1qj

belongs to SF2(m�j+n)(S
1), and Knqj = inqj + [W

2(m�j)
2j ]in.

Lemma 6.4. Let qj be in SF2(m�j)(S
1) \ Q; j = 0; : : : ;m. If y =

q0 + q1i + q2i
2 + : : : + qm�1i

m�1 + qmi
m belongs to SF2m(S

1), then
y = q0 +Kq1 +K

2q2 + : : : +Kmqm and "(qj) = 0.

Proof. We can write

y = q0 +Kq1 +K
2q2 + : : :+Km�1qm�1 +K

mqm + [W
2(m�1)
2 ]i+

+ [W
2(m�2)
4 ]i2 + : : :+ [W 2

2(m�1)]i
m�1 + [W 0

2m]i
m;

where [W
2(m�j)
2j ] = "(qj):

Since y is in SF2m(S
1), and q0; Kq1; K

2q2; : : : ;K
mqm belong to

SF2m(S
1), we must have (

Pm
j=1[W

2(m�j)
2j ]ij) in SF2m(S

1).

But we also have J([W
2(m�j)
2j ]ij) = [W

2(m�j)
2j ]�m�j and m � j <

m, then we conclude that W
2(m�j)
2j ; j = 1; : : : ;m, are boundary

manifolds.
Thus, (

Pm
j=1[W

2(m�j)
2j ]ij) = 0:

Therefore, y = q0 +Kq1 +K
2q2 + : : :+Kmqm:

Denoting by Q+
2(m�j) = ker(Q2(m�j) ! N2(m�j)); we have the

following theorems.

Theorem 6.5. SF2m(S
1) is the direct sum of Q2m and KmQ+

2(m�n),

for m � n > 0; and Kn embeds Q+
2(m�n) in SF2m(S

1).

Theorem 6.6. The N�- module SF�(S
1) is the direct sum of Q and

N�-submodules KnQ+, for n > 0; and Kn embeds Q+ in SF�(S
1),

where Q+ = ker(Q! N�).

7. ZZP -actions, p an odd prime

We denote by [Mn; T ] a closed manifold Mn together a p-periodic
di�eomorphism T; p an odd prime. We have the following bordism
groups: the bordism group of free ZZp-actions N�(ZZp), the bordism
group of semi free ZZp-actions SF�(ZZp), and the bordism group of
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semi free ZZp-actions on manifolds with boundary which is free on
the boundary M�(ZZp).

Theorem 7.1. We have the exact sequence

: : :! Nn(ZZp)! SFn(ZZp)
j�
!Mn(ZZp)! Nn�1(ZZp)! : : :

where Mn(ZZp) = �Nn�2k(BU(k1) � : : : � BU(k(p�1)=2)) (see [4],
38.3.)

Consider the homomorphism " : N�(ZZp)! N� de�ned by "[M
n; T ]

= [Mn=T ]. Let eN�(ZZp) be the reduced group, i.e., eN�(ZZp) = ker ".

Theorem 7.2. The sequence

0! Nn
i�! SFn(ZZp)

j�
!Mn(ZZp)

@
! eNn�1(ZZp)! 0

is exact. The homomorphism i� is de�ned by i�[M
n] = [Mn �

ZZp; 1 � �], where � is the p-periodic map which permutes the el-

ements of ZZp.

Theorem 7.3. eN�(ZZp) is an N�-module generated by the elements

f[S2k�1; �]g, where � = 2�i=p.

The N�-modules SF�(ZZp) andM�(ZZp) are graduated rings with
multiplication induced by the cartesian product

[M0; T0][M1; T1] = [M0 �M1; T0 � T1]:

Denoting by I the image of i�, then I is the ideal of SF�(ZZp)
generated by [ZZp; �], since j� is a ring homomorphism. Therefore
dSF �(ZZp) = SF�(ZZp)=I is a ring and we have the following theorem.

Theorem 7.4. The sequence

0!dSF �(ZZp)
j�
!M�(ZZp)

@
! eN�(ZZp)! 0

is exact.
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Consider the set f�2k�1 : k = 1; 2; : : :g of generators of eN�(ZZp),
where �2k�1 = [S2k�1; �] and � = exp(2�i=p). There are closed
manifolds M4k; k = 1; 2; : : :, where �2k�1 = p�2k�1 + [M4]�2k�5 +

[M8]�2k�9 + : : : = 0, for k = 1; 2; : : :, in eN�(ZZp). Thus, eN�(ZZp)
is isomorphic as a N�-module to the quotient of the N�-free mod-
ule generated by the elements �1; �3; �5; : : : ; by the submodule
generated by �1; �3; �5; : : :.

Now, we consider the following diagram

0 ! SF�(S
1)

j
! M�(S

1) ! N�(S
1) ! 0

# rp # r0p # r00p

0 ! dSF �(ZZp)
j�
! M�(ZZp) ! eN�(ZZp) ! 0

where rp is the homomorphism sending the S1-action [M;S] to the
restriction ZZp- action.

Since N�(S
1) is an N�-free module generated by �2k�1 = [S2k�1;

S], where S is the S1-action on S2k�1 given by s(t; (z0; : : : ; z2k�1)) =
(tz0; tz1; : : : ; tz2k�1); t 2 S1; and M�(S

1) is a polynomial algebra
generated by �i : [�! CP (i)], we are going to de�ne aN�-submodule
B of M�(S

1) in the following way: the kernel of r00p is the N�-free
module generated by �k = p�2k�1 + [M4]�2k�5 + [M8]�2k�9 + : : :,
where r00p(�k) = �2k�1 = 0 in eN�(ZZp). Let b�k be de�ned by: b�k =

p�k0+[M4]�k�20 +[M8]�k�40 + : : : inM�(S
1), and let B be the N�-free

module generated by b�1; b�3; b�5; : : :, which is a submodule ofM�(S
1).

Since J(b�k) = 1 + [M4]�2 + [M8]�4 + : : :, where J is the Boardman
homomorphism, and denoting by xn a basic n-dimensional element
of N�, we have that

J(x2k�2 b�1) = x2k�2�
k�1 + : : :

J(x2k�6 b�3) = x2k�6�
k�3 + x2k�6[M

4]�k�1 + : : :

J(x2k�10 b�5) = x2k�10�
k�5 + x2k�10[M

4]�k�3 + : : :

...

J(x4 b�k�2) = x4�
2 + x4[M

4]�4 + : : :

So, any combination of the elements above has power of � � k � 1.
Therefore, it follows that there isn't element in SF2k(S

1) with image
nozero in B. Hence, we have that j(SF�(S

1)) \B = (0).
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Theorem 7.5. The homomorphism rp : SF�(S
1)!dSF �ZZp) is 1-1.

Proof. we have the following commutative diagram

0 ! SF�(S
1)

j
! M�(S

1)
'
! �Nk(BU(r))

# rp # r0p # r

0 ! SF�(ZZp)
j�
! M�(ZZp)

'
! �N�(BU(r1)� : : : �BU(rk))

where r is given by inclusion on the �rst factor. Therefore, r is 1 - 1.
This imply that r0p is 1 - 1,and �nally rp is 1 - 1, since r

0
p � j = j� � rp

and j; j� are 1 - 1.

Remark 7.6. For p = 3, we have that r0p is an isomorphism because

M�(S
1) ' �N�(BU(r)); M�(ZZ3) ' �N�(BU(r))

and the map r is an isomorphism.

Thus, since B \ J(SF�(S
1)) = (0), we have that j�(dSF�(ZZ3)) '

j(SF�(S
1))�B, and dSF �(ZZ3) ' j(SF�(S

1))�B, since j� is 1 - 1.

Therefore

SF�(ZZ3) ' N� � j(SF�(S
1))�B:

We are going to denote by (ZZp)
k
n the set of classes in the bordism

group Nn which are represented by a n-manifold which is the �xed
point set of a closed (n + k)-manifold with a semi-free ZZp-action.
We have that (ZZp)

k
n is a subgroup of Nn, (ZZ0)

0
n ' Nn and (ZZp)

k
� =

�n�0(ZZp)
k
n is an ideal of N�.

Theorem 7.7. We have that (ZZp)
2
n ' Nn.

Proof. Let b�k = p�k0 + [M4]�k�20 + [M8]�k�40 + : : : be in M�(ZZp).

Since @(c�k) in eN�(ZZp) is a boundary, we have that b�k belongs to

the image of j�. In particular, b�1 = p�0 belongs to the image of j�.

Therefore [xn]p�0 belongs to the image of j�, where xn is a n-
dimensional generator, n 6= 2r � 1, of N�.

Thus, there is a semi free ZZp-action [Mn+2; T ] with �xed point set
[xn] + : : :+ [xn] (p-times), where p is an odd prime.

Since [xn] + : : :+ [xn] = [xn], we have that [xn] is in (ZZp)
2
n. Hence,

(ZZp)
2
n ' Nn.
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