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Loss is nothing else but change,  
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INTRODUCTION 

The human brain is a complex network. It consists of spatially distributed, but 

functionally linked regions that continuously share information with each 

other (van den Heuvel and Hulshoff Pol, 2010). It is generally accepted that to 

better understand the functioning of a network, one must know its elements 

and their interconnections (Sporns et al. 2005). Thus the characterization of 

brain connectivity is necessary to increase our understanding of how 

functional brain states emerge from their underlying structural substrate and 

how neurons and neural networks process information. Moreover, this 

approach can provide new mechanistic insights to understand the 

correspondence between structural disruption and the consequent changes in 

brain functioning (Sporns et al., 2005).  

When applied to the brain, the term connectivity refers to several different and 

interrelated aspects of brain organization (Horwitz, 2003).  It can be defined 

as a pattern of anatomical links ("anatomical connectivity"), of statistical 

dependencies ("functional connectivity") or of causal interactions ("effective 

connectivity") between distinct units within a nervous system. Depending on 

the context, the “units” correspond to individual neurons, neuronal 

populations, or anatomically segregated brain regions (Sporns et al., 2007). In 

fact, brain connectivity can be described at several levels of scale: the 

microscale, with individual neurons linked by individual synaptic 

connections; the mesoscale, with networks connecting neuronal populations, 

http://www.scholarpedia.org/article/Nervous_system
http://www.scholarpedia.org/article/Neuron
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and the macroscale level, characterized by fiber pathways connecting brain 

regions (Sporns et al., 2007).  

In this work, I focused on the macroscale properties of brain networks in 

which very large numbers of neurons and neuronal populations forming 

distinct brain regions are interconnected by inter-regional pathways, forming 

large-scale patterns of anatomical and functional connectivity. The 

characterization of cerebral connections at the macroscale attempts to identify 

anatomically distinct portions of the brain characterized by different pattern of 

connectivity that, together, shape large brain systems.   

To date, brain connections have been non invasively assessed in humans using 

techniques focused on three general network properties: anatomical, 

functional and effective connectivity (Fox et al., 2012). 

The first of these, anatomical connectivity, refers to a network of physical or 

structural connections linking sets of neurons or neuronal elements, as well as 

their associated structural biophysical attributes encapsulated in parameters 

such as synaptic strength or effectiveness. The physical pattern of anatomical 

connections can be considered relatively stable at shorter time scales, while  it 

is likely to change in morphology and plasticity at longer time scales (Sporns 

et al., 2007). 

It has been established that knowledge of anatomy is important to define the 

connectivity space thereby providing plausible biological constraints for 

theories and inferences about neuronal interactions when analyzing functional 

data (Lee et al., 2003a). Anatomical connectivity has relied predominantly on 

http://www.scholarpedia.org/article/Stability
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diffusion imaging techniques (Fox et al., 2012), such as Diffusion Tensor 

Imaging (DTI), which is able to characterize the main white matter tracts of 

the brain in vivo. 

The second network property, functional connectivity, is defined as a 

correlation between remote neurophysiological events in temporal domain 

(Friston et al., 1993a; Horwitz, 2003). It fundamentally represents a statistical 

concept. In fact, it investigates whether two regions share mutual information, 

that is to say the degree to which they have similar behaviour or statistical 

interdependence. In other words, the characterization of brain activity in terms 

of functional connectivity is ‘model free’ (Lee et al., 2003a): functional 

connectivity is often calculated between all elements of a system, regardless 

of whether these elements are connected by direct structural links. In that 

sense, it does not make any explicit reference to specific directional effects or 

to an underlying structural model (Sporns et al., 2007). In the last few years, 

functional connectivity has been assessed using a wide variety of technique, 

including neurophysiological methodologies such as electro- and 

magnetoencephalography (EEG/MEG), positron emission tomography (PET) 

and functional magnetic resonance imaging (fMRI) (Fox et al., 2012). 

A third network property that has served as the basis for non-invasive 

assessment of human brain connectivity is effective connectivity. It is defined 

as the influence that one neural system exerts over another either directly or 

indirectly (Friston et al., 1993b). It describes networks of directional effects of 

one neural element over another. For this reason effective connectivity may be 
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considered as the union of structural and functional connectivity.  In principle, 

the study of the brain’s response to a perturbation or stimulation or time series 

analysis represents the best approaches to infer causal effects (Sporns et al., 

2007). In that sense, while functional connectivity emphasizes pairwise 

interaction, often in terms of correlations or covariance, the effective 

connectivity approach incorporates additional information, such as anatomical 

connections and/or neurophysiological parameters, considering the interaction 

between several components to quantify the effect one element has on the 

another (McIntosh, 1999). This additional information, however, comes at the 

price of the need to identify regions of interest a-priori, thus limiting the 

detection of interactions to a pre-selected network. Moreover, the analysis can 

be conducted only to identify the relationships between a limited number of 

brain areas, compromising the study of complex brain networks. 

The availability of these non-invasive techniques has prompted 

neuroscientists to characterize the wiring diagram of the human brain (Sporns 

2005).  These efforts have led to a number of multi-centric projects aiming at 

depicting the “human connectome”. The main one is the Human Connectome 

Project (HCP) ( http://www.humanconnectomeproject.org/), (Van Essen et al., 

2013), led by Washington University, University of Minnesota, and Oxford 

University (the WU-Minn HCP consortium). The aim of this and other similar 

projects is to comprehensively map the human brain circuitry in a target 

number of 1200 healthy adults using resting-state fMRI, diffusion imaging,  

task-related fMRI, magnetoencephalography and electroencephalography 
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(MEG/EEG).  In addition, behavioral data will be related to brain circuits to 

characterize individual differences in cognition, perception, and personality. 

The size and the attention received by these initiatives result from the 

realization that examining the brain as an integrative network of anatomically 

and functionally interacting brain regions can provide new insights about 

large-scale neuronal communication. It provides a platform to examine how 

cerebral connectivity and information integration relates to human behavior 

and how this organization may be altered in several diseases (Bullmore and 

Sporns, 2009). 

Indeed, it is becoming increasingly recognized that many behavioral 

manifestations of neurological and psychiatric diseases are not solely the 

result of abnormality in one isolated region but represent alterations in brain 

networks and connectivity (Fox et al., 2012). Thus, the improved 

characterization of brain networks can have an enormous relevance in 

discovering the basis of common disorders of the brain, response to recovery 

from brain injury, individual differences, heritability, normal development 

and aging. 

While all relying primarily on DTI and fMRI, a broad range of neuroimaging 

network analysis approaches to study brain connectivity have been proposed. 

In the last few years, in fact, novel techniques and analysis methods have 

enabled the examination of whole brain connectivity patterns, enabling the in-

vivo examination of functional and anatomical connectivity on a whole-brain 

scale (van den Heuvel and Hulshoff Pol, 2010).  
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In this context, the aim of the present work is to examine different aspects of 

brain connectivity by using various approaches. Some of the experimental 

designs were carried out in order to examine the importance of traditional 

techniques in determining differences between healthy controls and patients 

affected by different pathologies (Chapter 1 and 2).  

In addition, two other studies have been performed to assess the validity of 

combining neuroimaging and neurophysiological techniques to explore brain 

networks in groups of healthy controls (Chapter 3 and 4).   

The work described in this thesis thus offers some contribution towards the 

comprehension of the organization of brain networks both in physiological 

and pathological conditions, and provides new evidence of the importance of 

neuroimaging techniques in the characterization of the human brain. 

 

 

 

 

 

 

 

 

 



CHAPTER 1: 

NEUROIMAGING AND NEUROPHISILOGICAL 

TECHNIQUES TO STUDY BRAIN CONNECTIVITY 

 

1.1 PRINCIPLES OF MAGNETIC RESONANCE IMAGING 

Magnetic resonance (MR) imaging is well established as both a diagnostic 

and research tool in many areas of medicine because of its ability to provide 

excellent contrast between soft tissue.  

To better understand Magnetic Resonance Imaging, it is worth describing the 

basic physical concepts and the mechanisms at the basis of image acquisition. 

Production of a magnetic field 

In MRI, the static magnetic field (conventionally called B0) is typically 

generated by superconducting magnets. The production of the B0 field comes 

from a large electric current that flows through a loop of wires immersed in 

liquid helium at superconductive temperature. In these conditions, the wires 

have no electrical resistance and therefore can carry large amounts of 

electrical current with no losses. 

Conventionally, in the MRI system frame of reference, the direction parallel 

to the main magnetic field is the longitudinal direction (also called the “z”) 

and it    corresponds to the head-to-foot orientation in the most common MRI 

systems. The plane perpendicular to this direction is called the transverse 

plane or the x-y plane.  

Hydrogen Protons 
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Nuclear magnetism is at the basis of the MRI signal. Nuclear magnetism is a 

form of paramagnetism that characterizes all nuclei with an odd number of 

protons and/or neutrons. Hydrogen is the most frequently imaged nucleus 

thanks to both its great abundance in biological tissues (in the form of water 

molecules) and its particular magnetic properties. In simple terms, the proton 

in the hydrogen nucleus is positively charged and spins about its axis, thus 

acting like a tiny rotating magnet that could be represented by a vector. The 

sum of all the tiny magnetic fields of each proton (called spins) is called net 

magnetization or macroscopic magnetization. 

Net magnetization 

In the absence of an external magnetic field, vectors are randomly oriented so 

that their magnetic fields do not add up but rather cancel out. Thus, the sum of 

all the spins gives a null net magnetization. When placed in a strong magnetic 

field (B0), however, 

approximately half of the 

spins will tend to align in the 

direction of the magnetic field 

(parallel - low energy state) 

and the remainder will align in 

the opposite direction (anti-

parallel - high energy state). 

The magnetic fields from 

many protons will cancel out, but a slight excess of the protons will be aligned 

Fig. 1: Reproduced from (Pooley, 2005). 

Alignment of protons with b0 field 
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with the main magnetic field, producing a “net magnetization” with a 

longitudinal component aligned with B0 (Fig.1).                                                                          

Precession 

Precession corresponds to the gyration of the rotating axis of a spinning body 

about an intersecting axis. If the hydrogen protons that are spinning and acting 

like tiny magnets are placed in a magnetic field, the force from the magnetic 

field interacts with the spinning protons and results in the precession of the 

protons.                                              

The proton precessional frequency is determined by the Larmor equation, in 

which the frequency of precession, f, is proportional to the main magnetic 

field strength  

(f = γB0) through a constant γ known as the gyromagnetic ratio. The 

gyromagnetic ratio is specific to a given nucleus. For hydrogen, γ is 42.6 MHz 

T
-1

. 

Resonance 

Resonance is the process that promotes the exchange of energy between two 

systems at a specific frequency. Magnetic resonance can be achieved through 

the energetic interaction between spins and electromagnetic 

radiofrequency (RF). 

Radiofrequency Energy 

In MRI, RF energy comes in the form of rapidly changing magnetic and 

electric fields. The magnetic component of the RF field is often referred to as 

B1. Typically the RF is transmitted for a short period of time and for this 

reason it is called “RF pulse”. If an RF pulse is generated by an RF transmit 
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coil at the precessional frequency of the protons (given by the Larmor 

equation) the resonance process will occur with a transfer of energy from the 

RF coil to the protons (excitation) with a consequent modification of spin 

equilibrium. According to the Larmor equation, the operating frequency of an 

MRI scanner depends on the static magnetic fields (γB0): 1.5T scanners 

operate at 64 MHz, while 3T scanners operate at 128 MHz. 

MRI signal: Action mechanisms 

When protons in our body are placed in a strong magnetic field, the excess of 

spins parallel to the main field form a net magnetization pointing in a 

direction parallel to B0 (longitudinal magnetization). At the quantum level, 

this results from the RF pulse providing enough energy to cause a single 

proton to jump to a higher energy state. At macroscopic level, this process is 

described as the spins beginning to precess around the RF magnetic field B1, 

as well as around B0. This results in the macroscopic net magnetization vector 

spiralling down (nutating) towards the XY plane. In a frame of reference 

rotating around z at the Larmor frequency, the net magnetization vector 

simply tips down during excitation, by an angle (flip angle) that depends on 

the strength and duration of the RF pulse. During excitation, the longitudinal 

component of magnetization decreases while a transverse component of 

magnetization is formed and gradually increases. At microscopic level, the 

decrease of longitudinal magnetization is due to an increase in the number of 

spins in anti-parallel state, while the generation of transverse magnetization is 

due to spins starting to precess in phase. Let us consider the case of 90° flip 
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angle for example:   when the RF pulse is turned off, no longitudinal 

magnetization can be detected (equal proportion of parallel and anti-parallel 

spins) and the transverse magnetization assumes its maximum value 

(complete phase coherence).   

Relaxation is the process that governs the return to equilibrium of the net 

magnetization combining two different mechanisms: the recovery of 

longitudinal magnetization (longitudinal relaxation) and the transverse 

magnetization decay (transverse relaxation). The rates at which these 

processes occur are governed primarily by three relaxation times - T1, T2, and 

T2*. Details of them are given in the next sections.  

MR signal detection is obtained using receiver coils, thanks to the property of 

a magnetic field near and perpendicular to a loop of wire of producing an 

electric current in the loop. In this case, the magnetic field is the transverse 

magnetization. When the transverse magnetization is completely in phase, the 

measured MR signal is at a maximum. After the RF pulse is turned off, the 

transverse magnetization begins to dephase and the measured MR signal 

begins to decrease until the magnetization is completely dephased, at which 

time the measured MR signal is zero.  

T1 relaxation and contrast  

The longitudinal relaxation is also known as T1 relaxation. By definition, T1 

is the time necessary for longitudinal magnetization to reach 63% of its 

maximal value and it depends on the molecular interaction at the level of 

different tissues (Fig.2). For this reason, the rate at which relaxation occurs is 
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different for protons associated with different tissues: this difference 

represents the fundamental source of contrast in T1-weighted images. In 

particular, White Matter (WM) has a very short T1 time (relaxes rapidly); 

cerebrospinal fluid (CSF) has a long T1 (relaxes slowly); Grey Matter (GM) 

has an intermediate T1. Thus, in the T1 weighted images WM, CSF and GM 

appear respectively with lighter, darker and intermediate intensity. It is 

important to note that the more the curves are separated at the time of 

acquisition, the higher is the T1 

weighted contrast 

.A) 

B)

 

Fig. 2  Reproduced from Pooley et al.,2005 (Pooley, 2005)  a) definition of t1.b) longitudinal t1 

relaxation. Application of a 90° rf pulse causes longitudinal magnetization to become zero. 

Over time, the longitudinal magnetization will grow back in a direction parallel to the main 

magnetic field. 
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T2 Relaxation and Contrast 

Transverse relaxation is also called T2 relaxation. During the RF pulse, the 

protons become “in phase” and the transverse magnetization increases. 

Immediately after the 90° RF pulse, the protons begin to dephase and the 

transverse magnetization starts to decay.  

By definition, T2 is the time that it takes for the transverse magnetization to 

decay to 37% of its original value. T2 is a parameter correlated to the different 

amount of water and the different rate of dephasing for the protons associated 

with different tissues: WM has a short T2 (dephases rapidly); CSF has a long 

T2 (dephases slowly); GM has an intermediate T2 (dephases at a slightly 

slower pace than WM). Thus, in the T2 weighted images CSF, WM and GM 

appear respectively with lighter, darker and intermediate intensity. It is 

possible to take advantage of these differences and produce images based on 

this contrast mechanism, called T2-weighted.  

The  dephasing of the protons is due to several effects: spin-spin interactions, 

magnetic field inhomogeneities, magnetic susceptibility, chemical shift 

effects. Dephasing normally occurs due to all four effects 

(phenomenologically described by T2* decay or T2* relaxation). The spin 

echo is a “trick” that can be used to recover dephasing due to all effects 

except spin-spin interactions. After a 90° RF pulse, protons that were in phase 

begin to dephase in the transverse plane. After a certain amount of time, if a 

180° RF pulse is applied, the spins are rotated over to the opposite axis, so 

that, after an interval equal to that between the 90
o
 and 180

o
 pulses, they are 
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rephased, creating what is called an “echo”. If several 180° RF pulse are 

applied, the curve formed by connecting the peaks of the echoes represents 

decay by T2 effects (spin-spin interaction) (Fig.3). 

  

Fig. 3 Reproduced from Pooley et al.,2005  (Pooley, 2005) formation of spin echoes. 

Application of a 90° rf pulse results in an immediate signal (called a free induction decay [fid]), 

which rapidly dephases due to t2* effects. Application of a 180° rf pulse will allow formation 

of an echo at a time te. Multiple 180° pulses will form multiple echoes. 

 

It’s important to note that the T1 and T2 relaxation processes occur 

simultaneously. After a 90° RF pulse, dephasing of the transverse 

magnetization (T2 decay) occurs while the longitudinal magnetization grows 

back parallel to the main magnetic field. In brain tissue, usually T1 is longer 

than T2 (by approximately a factor of 10). 

Image acquisition parameters: TE and TR 

TE (Echo Time) is the time between the peak of the 90° RF pulse and the 

centre of acquisition time. TR (Repetition Time) is the time between 2 

subsequent excitation pulses (i.e., the time it takes to run through the pulse 
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sequence one time). Both TE and TR can be used to control the contrast of the 

MRI images: varying their values, in fact it is possible to obtain T1, T2 or 

proton density weighted images. Beside the relaxation times, other 

biophysical processes can affect the MR signal and thus be used to vary the 

contrast on MR images. Some of these advanced techniques are particularly 

useful for characterizing brain connectivity and will be described in the next 

section. 

1.2 DIFFUSION-WEIGHTED AND DIFFUSION TENSOR 

IMAGING PRINCIPLES 

The most widely employed structural MRI technique to study anatomical 

connectivity is diffusion weighted imaging (DWI). It is sensitive to the micro-

movements of water molecules inside voxels and it can be considered as the 

only tool currently available to evaluate the degree of water diffusion 

noninvasively, offering the possibility to probe the microstructural properties 

of biologic tissues. In order to explain the principles of DWI, some basic 

concepts are reviewed in the following sections.  

Brownian motion  

The term “Brownian motion” refers to constant random microscopic 

molecular motion due to thermal agitation. At a fixed temperature, the rate of 

diffusion can be described by the Einstein equation: <r
2
> = 6Dt, where <r

2
> is 

the mean squared displacement of the molecules, t is the diffusion time, and D 

is the diffusion constant, a constant of proportionality for the particular 
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substance being measured (Mukherjee et al., 2008).Water molecules within 

tissue move according to this process. 

Diffusion coefficient  

The diffusion coefficient, typically expressed in units of square millimeters 

per second, relates the average displacement of a molecule over an area to the 

observation time, with higher values of this constant indicating more mobile 

water molecules.  

Apparent diffusion coefficient (ADC) 

Thanks to the high sensitivity of MRI to any kind of motion, it is possible to 

measure the water diffusion coefficient in-vivo using DWI. When the 

technique was first introduced, it was observed that this experimental 

measurement could not separate diffusion from other sources of water 

mobility, such as active transport, flow along pressure gradients, and changes 

in membrane permeability (Mukherjee et al., 2008), and the term “apparent” 

diffusion coefficient (ADC) was introduced. This also refers to the fact that 

the diffusion coefficient of water within tissue is always lower than the 

diffusion coefficient of free water at body temperature. 

Isotropic diffusion 

Diffusion  is isotropic when molecular motion is equally fast in all directions. 

The property of isotropy depends on the medium where diffusion takes place. 

In biological tissue, diffusion is isotropic in CSF and all homogeneous tissues. 

Anisotropic diffusion 

In anisotropic diffusion, molecular motion is not equally fast for all directions. 

The hidnrance can be due to the presence of obstacles that limit molecular 



____________________________________________________________Chapter 1 

25 

 

movement in some directions more than in others. WM tracts are a typical 

example of anisotropic diffusion: tightly packed coherently oriented fiber 

bundles hinder water displacement perpendicular to the direction of the fibers. 

Diffusion weighted imaging 

In order to obtain a diffusion weighted image, it is necessary to add a pair of 

diffusion-sensitizing gradients, also known as motion-probing gradients, to a 

T2-weighted spin-echo sequence. The diffusion gradients are applied along 

the same directional axis both before and after the 180° refocusing pulse (Fig. 

4).  

 

 

 

 

 

 

If spins were stationary, the amount of dephasing accumulated during the first 

gradient would be identical and opposite to that accumulated during the 

second one. However, since protons are transported by diffusion, there will be 

an incomplete rephasing of water proton spins, and a consequent attenuation 

of the spin echo. 

This diffusion-weighted contrast can be fit to an exponential model:  

Fig. 4 Reproduce from Mukherjee et al.,2008 (Mukherjee et al., 2008). Pulse 

sequence diagram for a diffusion-weighted acquisition.2 diffusion sensitizing 

gradients added to a spin-echo sequence. 
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Si = S0   exp (-b ADCi) 

where  Si is the diffusion-weighted signal intensity observed at a given voxel 

with the diffusion-sensitizing gradients applied along direction i, S0 is the 

signal intensity at the same voxel measured without diffusion-sensitizing 

gradients, and ADCi is the ADC in the i direction (Mukherjee et al., 2008). 

The combination of three images obtained with three gradients with three 

different direction gives rise to an ADC map, commonly used in clinical 

practice to identify cerebral ischemia. 

The diffusion-weighting factor, b, in the above equation depends on the 

amplitude of the diffusion gradient (G), the duration of each diffusion gradient 

(δ), and the interval between the onset of the diffusion gradient before the 

refocusing pulse and that following the refocusing pulse (Δ). Because of the 

presence of the motor-probing gradients, diffusion-weighted sequences are 

also very sensitive to bulk motion. For this reason, data are usually acquired 

using single-shot techniques, such echo-planar imaging (EPI). 

Diffusion tensor imaging 

When diffusion is isotropic, the choice of direction for the diffusion 

sensitizing gradient in not important because ADCi is identical for any 

direction i. Instead,  more than one diffusion-encoding direction is required to 

characterize regions of anisotropic diffusion. Acquiring DWI images with 

diffusion-sensitization in different directions allows the magnitude, the 

preferred orientation, and the degree of anisotropy to be determined at once. 
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To fully describe the degree and direction of anisotropy, diffusion is often 

modelled as a tensor.  

Diffusion tensor imaging (DTI) requires the combination of a series of DWI 

acquisitions, with encoding in different directions to allow the determination 

of the diffusion tensor. The most intuitive way to conceptualize the 

information provided by the diffusion tensor is to view it geometrically. The 

tensor effectively fits the angular variation of the ADC values to the shape of 

a 3D ellipsoid. 

The diffusion ellipsoid is a shape defined by 6 variables that describes the 

ADC of water molecules in each direction at a particular time (Mukherjee et 

al., 2008). The tensor is fully characterized by three orthogonal eigenvectors 

and their associated lengths, or eigenvalues (λ1, λ2, λ3). The shape of the 

ellipsoid contains information about the directional dependency of the 

diffusion signal (Fig. 5). 

Because of the symmetry of the tensor (the elements of the tensor above the 

diagonal are always equal to those below the diagonal), only six elements are 

independent. For this reason, the calculation of the tensor requires at least six 

different directions of diffusion-encoding.  
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Fig. 5 Reproduce from mukherjee et al. (Mukherjee et al., 2008). The diffusion ellipsoids and 

tensors for isotropic unrestricted diffusion, isotropic restricted diffusion, and anisotropic 

restricted diffusion are shown. 

 

Fractional anisotropy 

Within the tensor model, directional dependency is quantified by the 

parameter fractional anisotropy (FA) (Pierpaoli and Basser, 1996), which is 

calculated from the eigenvalues of the tensor and ranges from zero (fully 

isotropic) to one (fully anisotropic); typical values for WM of the corpus 

callosum are 0.6–08. 

 

1.2.1 DIFFUSION-WEIGHTED IMAGING PROCESSING 

Diffusion anisotropy describes how variable the diffusion is along different 

directions and is most commonly quantified via a fractional anisotropy (FA) 

(Pierpaoli et al., 1996). FA is a useful quantity to compare across subjects as it 

is computable voxelwise, and is a scalar value that is independent of the local 

fibre orientation (and therefore a relatively objective and straightforward 
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measure to compare across subjects). Other useful parameters are represented 

by the three eigenvalues, which express the magnitude of diffusion along the 

principal axes of diffusion, and their average, the mean diffusivity (MD). 

Moreover, Song et al. (Song et al., 2002) introduced the idea that the principal 

eigenvalue reflects “axial diffusivity” (Dax) and the average of the second and 

third eigenvalues the “radial diffusivity” (Drad). Animal studies suggest that 

these 2 indices can be used to characterize axonal and myelin damage, 

respectively. Thanks to this increased specificity, they have become very 

popular for the assessment of white matter alterations (Wheeler-Kingshott and 

Cercignani, 2009) .  

The steps involved in obtaining these parametric maps starting from a a series 

of diffusion-weighted EPI data are summarised below.  

The first step is represented by the correction for eddy-current induced 

distortions. When a magnetic field is time-varying (such as a ramping up/down 

diffusion-encoding gradient), electric currents (eddy currents) will be 

generated in nearby conductors, generating local magnetic field gradients that 

will either add to or subtract from the gradients that are used for spatial 

encoding. Eddy currents result in geometric distortions which can be 

represented by a shift, a shear and a stretch of the image, which vary with the 

diffusion gradients (Haselgrove and Moore, 1996). Thus, in order to 

compensate for both, involuntary motion and eddy current distortions, all the 

diffusion-weighted volumes are often co-registered onto the first b0 volume. 

Co-registration is an operation that attempts to match the shape of differing 
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images based on the maximisation (or minimisation) of a function that reflects 

the similarity between the two images.  

Once the raw data that have been corrected for eddy-current induced 

distortions and subject motion, the next stage is to estimate the tensor in each 

voxel. Estimation of the diffusion tensor within each voxel requires the 

acquisition of images with diffusion-encoding gradients applied along non-

collinear and non-coplanar directions (Jones and Cercignani, 2010). The 

diffusion-weighted signal intensity, DWIm, obtained with the diffusion-

encoding gradients applied along the m
th
 vector direction,  is given by 

DBmm IDWI exp0  

where I0 is the signal intensity in the absence of the diffusion gradients, Bm is 

the B matrix describing the direction and the amplitude of the diffusion 

gradients for the m
th
 measurement, and D is the diffusion tensor, i.e., the 

quantity we want to estimate.  

This equation can be fitted to the data using linear least squares, a method that 

minimizes the sum of squared distances between the observed responses in the 

dataset, and the responses predicted by the linear equation. There are three 

widely used approaches used for estimating the tensor in the literature. The 

first is nonlinear least squares (NLLS), second is weighted linear least squares 

(WLLS) and the most popular is ordinary least squares (OLS) (Jones and 

Cercignani, 2010). 
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Once the tensor is estimated, the usual practice is to derive the three 

eigenvalues (and associated eigenvectors) and use these to derive scalar 

indices, including the trace or mean diffusivity, and the anisotropy.  

For the purpose of the studies presented in this thesis, DWI data were 

processed according to a number of differing approaches, including tract-based 

spatial statistics, connectivity-based segmentation, and tractography. An 

overview of each of them is given below. 

1.2.2 TRACT BASED SPATIAL STATISTICS 

In the context of a group comparison study, there are many ways of obtaining 

relevant intensities from the maps of these parameters in a format suitable for 

a statistical comparison.  

One of the most popular approaches is voxel-wise comparison. This method 

relies on the accurate alignment of images from different subjects onto a 

common template, to achieve a correspondence between a particular voxel 

position in each image and the same anatomical structure across subjects. 

Voxel-wise statistics is then carried out across the whole brain, removing the 

need for making an a priori spatial selection.  

This method has some limitations: a successful alignment of topological 

characteristics can be achieved without an exact alignment of WM tracts;  the 

need for “smoothing” (a blurring of the image, achieved by spatial filtering 

with (usually) a 3D Gaussian kernel) to increase the signal-to-noise ratio, 

increases also the degree of partial volume and compromises the exact 

localization of between-group changes. 
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Tract Based Spatial Statistic (TBSS) was introduced in 2006 by Smith and 

collaborators (Smith et al., 2006): it provides an alternative method to voxel-

wise statistics addressing some of its limitations. In order to ensure that 

registration of every subject’s data to a common space has been totally 

successful and to solve the problems of arbitrary choice of smoothing extent, 

a carefully tuned nonlinear registration, followed by projection onto an 

alignment-invariant tract representation (FA skeleton) was introduced. This 

projection is achieved by searching perpendicular to the local skeleton 

structure for the maximum value in the subject's FA image. This maximum 

value is assumed to represent the nearest relevant tract centre. The 

introduction of this additional step makes the spatial smoothing not necessary 

in the images processing. Running TBSS first involves running a few simple 

steps, which are implemented in a series of scripts freely available with the 

FMRIB software library (FSL, www.fmrib.ox.ac.uk/fsl/): 

 apply nonlinear registration of all FA images into standard space  

 create the mean FA image and skeletonise it  

 project all subjects' FA data onto the mean FA skeleton  

 feed the 4D projected FA data into general linear model framework to 

perform voxel-wise statistics. 

 

TBSS steps are reported below. 
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1-Non linear registration 

The alignment of all FA images to a common target is obtain using nonlinear 

registration, necessary to avoid either extreme: it is important to align 

subjects’ data together to make local comparison possible, but with some 

restriction applied to the applied warp so that  the overall structure topology is 

preserved. The target image used in the registration can either be pre-defined 

or can be automatically chosen to be the most typical subject in the study. 

2 - Creation of mean FA and skeleton 

After  target selection, all subjects’ FA images are aligned to this, and then the 

entire aligned dataset is affine-transformed into 1x1x1mm
3
 MNI152 space; all 

subsequent processing is carried out using this space and resolution. The 

transformed FA are averaged to create a mean FA image that is then fed into 

the tract skeleton generation, which aims to represent all tracts which are 

“common” to all subjects.  

The skeleton represents each such tract as a single line (or surface) running 

down the centre of the tract. To search for the centre of each tract, at each 

voxel the FA value is compared with the two closest neighbours on each side, 

in the direction of the tract perpendicular. If the FA value is greater than the 

neighbouring values, then the voxel is marked as lying on the skeleton. If all 

the processing so far has worked well the skeleton should look like the 

examples shown in Fig. 6 

3 – FA Projection onto the skeleton 

The last TBSS script carries out the final steps necessary before voxelwise 

cross-subject stats. Each subject’s aligned FA image is projected onto the 
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mean FA skeleton (Fig 2.3). The aim is to account for residual misalignments 

between subjects after the initial nonlinear registrations. At each point in the 

skeleton, this script searches a given subject’s FA image in the (already-

computed) perpendicular tract direction to find the maximum FA value, and 

assigns this value to the skeleton voxel. This effectively achieves alignment 

between the skeleton and this subject’s FA image without needing perfect 

nonlinear pre-registration. Any systematic difference in exact tract location 

between groups of subjects will thus not bias the comparison of FA values 

between the groups (Smith et al.,2006).  

4 - voxelwise statistics on the skeletonised FA data 

Voxel-wise statistics is carried out across all voxels in the skeleton to identify 

areas of FA differences between two groups or to correlate FA values to 

specific parameters. If WM structure alignment is successful, the data should 

be normally distributed and there is no need for smoothing. In order to further 

remove the need for smoothing, very often the analysis is carried out using 

permutation tests. To achieve this object the FSL tool “randomize” can be 

used. It is a simple permutation program enabling modelling and inference 

using standard GLM design set. Two options for this type of correction are 

available: 
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Fig. 6 Reproduced from Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject 

Diffusion Data (Smith et al,2006). Different skeletonisation stages. A: original mean FA image 

with final skeleton and the ROI used for the remaining subimages. B: skeletonisation stage 1, 

using local FA centre-of-gravity to find tract perpendiculars. C: skeletonisation after stage 2, 

using FA image second-derivative to find remaining perpendiculars. D: result of smoothing the 

perpendicular direction vector image 

 

 Voxel-level correction, obtained by using the null distribution of the 

maximum (across the image) voxel-wise test statistic. 

 TFCE (Threshold-Free Cluster Enhancement) is a new method 

finding “clusters” in your data without having to define cluster in a 

binary way (Smith and Nichols, 2009). Cluster-like structures are 

enhanced but the image remains fundamentally voxel-wise. This 

option was used in the present study. 
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In the present work TBSS has been used to assess differences in diffusion 

indices (such as FA, MD, Dax, Drad) to indirectly  asses regional alterations 

of white matter fibers in the left (non-lesioned) hemisphere of patients with 

neglect. Moreover, the same approach has been performed to evaluate the 

presence of correlations between FA and clinical or neuropsychological 

variables in the same cohort. The aim of study was to indirectly assess the 

presence of disconnection between hemispheres in patients with right brain 

damage, and its contribution in determining the presence and severity of 

neglect (Chapter 2). 

1.2.3  TRACTOGRAPHY 

DTI essentially provides three types of information about the property of 

water diffusion: the magnitude of diffusion, the extent of diffusion anisotropy 

and its orientation. By assuming that the largest principal axis of the diffusion 

tensor aligns with the predominant fiber orientation in an MRI voxel, a 3D 

vector field representing the fiber orientation at each voxel can be obtained. 

The 3D reconstruction of tract trajectories, or tractography, is a natural 

extension of such vector field (Mori and van Zijl, 2002). Diffusion 

tractography is a general term indicating various methods of reconstructing 

WM pathways in vivo, based on the assumption that the principal direction of 

diffusion in WM is parallel to the main fibre direction in every voxel.  

In most cases, tractography is initiated from a number of voxels, which 

constitute the “seed-points”, and the main WM tract traversing these voxels is 

followed until some stopping criteria (e.g. an anisotropy or curvature 
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threshold) are reached. Tractography can also be initiated from all voxels in 

the brain (brute-force approach) (Huang et al., 2004) and then only the tracts 

passing through some a priori specified regions are retained. 

The most common application of tractography in clinical research is the 

extraction of a specific pathway and the calculation of diffusion parameters 

along it (Jones et al., 2006; Price et al., 2008; Yogarajah et al., 2008). In other 

words, these methods use tractography to identify voxels from which to take 

FA (or other parameters like MD) values for cross-subject comparison. Other 

types of application include the quantification of tract shape (Batchelor et al., 

2006), cortical parcellation based in diffusion strength of connection (Behrens 

et al., 2003), and the develoment of new models of brain anatomy (Jones et 

al., 2006; Parker et al., 2003). 

Two kinds of tractography can be performed. Deterministic tractgraphy 

follows directional estimates derived from a tensor model to reconstruct 

estimates of the path of fibre bundles. The basic assumption at the basis of 

deterministic algorithms is that the principal eigenvector is parallel to the 

main direction of fibres in every voxel, and therefore this type of algorithm 

produces a single trajectory (usually described as a streamline). The main 

shortcomings of such an approach are the inability to account for fibre 

branching, and to assess the level of confidence that can be assigned to a 

reconstructed trajectory (Jones and Pierpaoli, 2005).   

The probabilistic approach (Behrens et al., 2003; Parker et al., 2003) aims to 

address these issues by considering multiple pathways emanating from a 
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single seed-point, and assigning a probability of connection to the seed-point 

to every voxel in the brain. At the tractography stage, rather than drawing a 

single line through direction estimates, sampling techniques are used to draw 

thousands of streamlines through this probability field to build up a 

connectivity distribution, where the density of streamline samples reflects the 

probability of interconnection with the seed voxel. There are many benefits 

from operating within a probabilistic framework (Johansen-Berg and 

Rushworth, 2009). First, tracking can continue in the presence of uncertainty 

and thus paths can be traced to their gray-matter targets. Second, these 

techniques provide a quantitative measure of the probability of a pathway 

being traced between two points; such measures can be used to perform 

quantitative comparisons between groups of subjects, although we should be 

cautious about how to interpret such values in biological terms. Finally, 

probabilistic models can be extended to fit multiple fiber populations 

(Behrens et al., 2007; Parker and Alexander, 2005; Tuch et al., 2003), a 

critical feature if paths are to be traced through regions of fiber complexity. 

As mentioned above, one of the applications of DTI tractography is that it has 

enabled the parcellation of the cortex into functionally specialized subregions 

via their unique complement of connections in vivo. Connectivity based 

parcellation segregates a grey matter region on the basis of information about 

remote connectivity derived from tractography, effectively enabling a 

segmentation of the region based on its connectivity pattern (Behrens et al., 

2003). 
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Several different tractographic parcellation approaches have been developed 

but all share the same core processing stages. Connectivity profiles are first 

established for each subunit within the cortical region to be parcellated. These 

connectivity profiles are subsequently compared via various measures of 

similarity, and clustered into regions such that within-cluster subunits share 

highly similar patterns of connections, whilst between-cluster connectivity 

profiles are markedly distinct (Cloutman and Lambon Ralph, 2012). 

The determination of a connectivity profile for each subunit within the region 

under examination is possible by starting tractography from each seed within 

the brain area being parcellated and the target brain regions connected to each 

seed.  

Two different approaches have been mainly used so far. They vary in relation 

to whether the profiles encompass information regarding connectivity from 

the seed to the whole brain (Anwander et al., 2007; Johansen-Berg et al., 

2004; Mars et al., 2011; Tomassini et al., 2007) or a subset of key 

predetermined neuroanatomical regions (Beckmann et al., 2009; Behrens et 

al., 2003; Broser et al., 2011; Johansen-Berg et al., 2005; Leh et al., 2007).  

One of the main advantages of this latter method is represented by the ability 

to infer functional roles to the delineated subregions and assess explicit 

structure-function hypotheses. However the discrimination of functional 

subdivisions that may exist within the regions identified is less fine. In 

contrast, using whole-brain connectivity patterns it is possible to discern all 
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anatomical/functional subdivisions within a cortical region and no a priori 

hypotheses is required before performing the connectivity based parcellation.  

Several studies have been performed so far to parcellate different brain 

regions including the medial frontal cortex, inferior frontal cortex, precentral 

gyrus, postcentral gyrus, inferior parietal cortex, temporo-parietal junction, 

insula, and cingulated cortex, as well as a number of subcortical structures 

including the thalamus, sub thalamic nucleus, basal ganglia, amygdale and the 

substantia nigra. These studies pointed out the importance of tractography in 

the detection of distinct connectivity profiles to characterization the 

parcellation brain structures (Cloutman 2012). In the present thesis, the 

parcellation of the thalamus on the basis of its cortical connections has been 

carried out in order to evaluate the correspondence between anatomical and 

functional connectivity in a group of healthy participants  (Chapter 4). 

1.3 FUNCTIONAL IMAGING PRINCIPLES 

Functional MRI (fMRI) measures local changes in magnetic susceptibility 

caused by variations in the capillary concentration of deoxyhemoglobin due to 

blood flow and blood volume increases in response to neuronal activation.  

Most of the energy used for neuronal activity is expended as a result of the 

postsynaptic neuronal depolarisation and, to a lesser extent, the action 

potentials generated (Attwell and Laughlin, 2001). The energy cost therefore 

arises from information transfer and its integration postsynaptically. Substrate 

delivery for energy metabolism is increased with increased local blood flow.  
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The origin of the associated BOLD (blood-oxygenation level dependent) 

fMRI signal change lies in the different magnetic properties of haemoglobin 

carrying oxygen (oxyHb) and deoxygenated haemoglobin (deoxyHb). 

DeoxyHb is slightly paramagnetic relative to brain tissue, whereas oxyHb is 

diamagnetic (Pauling, 1977). Vessels containing oxygenated arterial blood 

thus cause little or no distortion to the magnetic field in the surrounding 

tissue, while capillaries and veins containing blood that is partially 

deoxygenated distort the magnetic field in their vicinity  (Ogawa et al., 1990). 

The microscopic field inhomogeneities associated with the presence of 

deoxyHb lead to destructive interference from signal within the tissue voxel, a 

process that tends to shorten the T2* relaxation time. Thus, as oxygen 

extraction falls with enhanced local blood flow in a region of greater neuronal 

activity, the T2* becomes longer and the MRI signal intensity increases 

relative to the baseline state. The precise amount by which the MRI signal 

intensity increases depends on several factors. There is a contribution from 

water molecules in blood (the intravascular compartment) and from water 

molecules in the tissue space around the vessels (the extravascular 

compartment). The observed signal (BOLD) is a volume weighted average of 

signal changes both from intravascular water in local capillaries and veins and 

water in the immediate extravascular compartment.  

BOLD signal change increases linearly with the static field strength of the 

MRI scanner for blood vessels that are of greater radius than approximately 8 
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mm and quadratically when considering blood vessels that are smaller than 

this value (Ogawa et al., 1993).  

Typical fMRI research focuses on the change in BOLD signal caused by the 

neural response to an externally controlled stimulus task. The fMRI signal 

during ‘‘on’’ periods is contrasted with recordings during a baseline or control 

condition, resulting in the relative signal change because of the specific 

process being studied. 

Recently, increased attention has been directed at investigating the features of 

the baseline state of the brain (Resting State fMRI). Even at rest, in fact, the 

spontaneous (intrinsic, not task evoked) BOLD signal is characterized by slow 

fluctuations (<0.1 Hz). It was noted more than a decade ago that spontaneous 

BOLD signal fluctuations are temporally correlated (or coherent) between 

brain regions of similar functionality (Biswal et al., 1995; Fox and Raichle, 

2007).  

RS-fMRI does not require any active cooperation from studied subjects, and 

allows to measure functional brain connectivity as expressed by 

synchronization of neural activity across different brain regions (Biswal et al., 

1995; Friston et al., 1993b; Lowe et al., 2000). Some studies (Biswal et al., 

1995; Damoiseaux et al., 2006; Lowe et al., 2000) investigating spontaneous 

neural activity within resting brains, identified synchronous fluctuations 

within anatomically separated regions by comparing the time courses (TC) of 

BOLD signal for each voxel in the brain.  
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There is an ongoing discussion as to whether these fluctuations in the BOLD 

signal predominantly reflect changes of the underlying brain physiology 

independent of neuronal function, or instead reflect the neuronal baseline 

activity of the brain when goal-directed neuronal action and external input are 

absent. The view that coherencies in resting fluctuations represent functional 

resting-state networks linked to underlying neuronal modulations is consistent 

with the appearance of these coherencies within cortical gray matter areas of 

known functional relevance (Damoiseaux et al., 2006). 

Moreover, support for a possible neuronal basis of resting-state fMRI signals 

comes from the observation that most of the resting-state patters tend to occur 

between brain regions that overlap in both function and neuroanatomy 

(Biswal et al., 1995; Damoiseaux et al., 2006; De Luca et al., 2006; Lowe et 

al., 2000; van den Heuvel et al., 2008).  Further support for this hypothesis 

comes from studies reporting that the observed spontaneous BOLD signals are 

mainly dominated by lower frequencies (< 0.1 Hz) with only a minimal 

contribution of higher frequent cardiac and respiratory oscillations (N 0.3 Hz) 

(Cordes et al., 2001).  

Taken together, more and more studies are in support of a neuronal basis of 

the resting-state fMRI signal (van den Heuvel and Hulshoff Pol, 2010). 

The most common task fMRI analysis techniques are model-based, using the 

onset and offset of an external stimulus to specify the model. In resting-state 

fMRI, by definition, no external stimulus is presented; therefore new analytic 

approaches had to be applied.  
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1.3.1 RESTING STATE DATA PREPROCESSING 

Data preprocessing is a necessary step, in fMRI analysis, to correct for the 

variability in the experimental data that is not related to neuronal activity. A 

good pre-processing is essential because the measured BOLD signal is very 

small compared to the total intensity of the MR signal. Moreover, the task 

related signal change is very small compared to the total spatial and temporal 

variability across scans.  

The preprocessing steps most commonly undertaken include: slice timing 

correction, head motion correction, co-registration with a high-resolution 

image, normalization and smoothing. Slice timing correction accounts for the 

fact that slices, which compose the total volume of the brain, are acquired at 

different times over TR. Most analysis techniques presume that every voxel is 

sampled exactly at the same time. Slice timing correction is particularly 

important when the TRs are long and the expected hemodynamic response 

may vary significantly between slices. The correction of head motion is 

needed because, despite the imposed physical restrictions to movement of the 

subject, involuntary motion and physiological motion are bound to occur and 

must be corrected for. This task is performed to ensure that each voxel 

represents a unique part of the brain (estimating the translations and rotations 

of motion). Additional physiological noise correction can also be performed. 

Co-registration is used to align the functional images with anatomical images 

that have better resolution, enabling the identification of the activations in the 

subject's individual brain. Normalization is the process of mapping the 
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obtained image into a standard anatomical space (usually in Montreal 

Neurorological Instute [MNI] coordinates) in order to allow a generalization 

of the results to a larger population. Doing this improves the comparison 

between other studies and subjects. Finally, the last step is the smoothing of 

the data, i.e., spatial filtering using achieved using 3D Gaussian kernels. 

Smoothing is used to improve both the signal noise ratio (SNR) (Lazar et al., 

2008). 

While these steps are sufficient for task fMRI, when dealing with RS-fMRI, 

data are often further filtered in the time domain to suppress high-frequency 

variations. This is typically achieved using low-pass filters with cut-off 

frequencies in the range of 0.08-0.12 Hz. 

After preprocessing, data are further analyzed. Data processing strategies used 

for fMRI studies can be characterized into two major schemes: model-

dependent and model-free methods. Multiple analysis techniques are used to 

look at the datasets. The most commonly employed ones are the seed based 

analysis (SBA) and the independent component analysis (ICA). 

1.3.2 INDEPENDENT COMPONENT ANALYSIS 

Model-free methods are designed to look for general patterns of (unique) 

connectivity across brain regions. Independent Component Analysis (ICA) 

represents one of the most widely used  methods for model-free analysis. It is 

a statistical technique that does not involve any a priori assumption and allows 

the exploration of multiple whole-brain networks. ICA uses a mathematical 

algorithm to decompose a set of signals into independent components also 
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known as source signals. In particular, on the basis of the measured signals, 

ICA can reveal the hidden sources which have generated them, under the 

assumptions that sources are statistically independent. Independency can be 

imposed either in the time domain (temporal ICA) or in the spatial domain 

(Spatial ICA). For the purpose of RS-fMRI analysis, usually spatial ICA is 

used, and will be described here. 

Introduced for the first time  by McKeown et al. (McKeown et al., 1998), 

when applied to RS-fMRI, ICA is able to extract from the BOLD time series a 

number of independent components which are spatial maps associated with 

the time courses of the signal sources. Each component can be interpreted as a 

network of similar BOLD activity. These decompositions can simultaneously 

extract a variety of different coherent resting state networks (RSNs) and 

separate such effect from other signal modulations such as those induced by 

head motion or physiological confounds, such as cardiac pulsation or 

respiratory cycle (Damoiseaux et al., 2006). 

The studies using ICA have shown a high level of consistency in the reported 

components suggesting that ICA is a powerful technique that can be applied 

to the study of multiple connectivity patterns (Calhoun et al., 2001; Esposito 

et al., 2008; van den Heuvel and Hulshoff Pol, 2010). 

Specific (RSNs) have been identified investigating spontaneous neural 

activity in resting brains.  The most widely studied RSNs include the so-called 

“default mode network” (DMN), connecting the precuneus and the posterior 

cingulate cortex to more frontal regions like the medial frontal cortices and 
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the inferior parietal regions (Damoiseaux et al., 2006; Fox and Raichle, 2007; 

Greicius et al., 2003). Another well-known network include the core, or 

salience, network, linking bilateral insular regions and anterior cingulate 

cortex (Dosenbach et al., 2007), which is important for monitoring the 

salience of external inputs and internal brain events. The sensory-motor 

component involves precentral gyrus,  postcentral gyrus and supplementary 

motor area. It has been demonstrated that the sensory-motor network is 

associated with functionally relevant neural activity, that is, the spontaneous 

fluctuations observed in this network are likely to reflect the neural activity 

which subserves active motor tasks (Damoiseaux et al., 2006; Rosazza and 

Minati, 2011). Throughout literature up to three distinct visual components 

have been reported, one corresponding to mesial visual areas, the other 

associated with lateral visual areas, the last one associated with activity in the 

striate cortex and in polar visual areas. The different number of visual 

components observed across studies may be related to the effects that the 

choice of decomposition parameters and the intensity of physiological and 

other artefactual signal components have on ICA decomposition. The 

Executive control component is identifiable in medial frontal gyrus, superior 

frontal gyrus and anterior cingulate cortex. These regions are generally 

involved in tasks relying on executive functions, such as control processes and 

working memory. Two lateralized fronto-parietal components are commonly 

found through literature, one predominantly in the right hemisphere and the 

other in the left hemisphere usually with a specular pattern. They involve the 
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inferior frontal gyrus, the medial frontal gyrus, the precuneus, the inferior 

parietal. Although they have been demonstrated to be associated with 

memory, language, attention and visual processes, the role of this networks 

remain unclear. The auditory component involves superior temporal gyrus, 

Heschl’s gyrus, insula and postcentral gyrus. This component show a good 

overlap with obtained using a text-listening task. The temporo-parietal 

component is characterized by the engagement of regions typically associated 

to language processing including inferior frontal gyrus, medial temporal 

gyrus, superior temporal gyrus, angular gyrus. Overall, these results support 

the view that patterns of resting-state functional connectivity reflect an 

intrinsic functional organization underlying cognitive processes (Damoiseaux 

et al., 2006; Rosazza and Minati, 2011). 

One of the main advantages of using ICA is its ability to generate a 

‘complete’ picture of the functional hierarchy of integrative and dissociative 

relationships making up the spontaneous and evoked activity of the human 

brain (Smith et al., 2009). RSNs identified by ICA can be less prone to 

artefactual effects from noise (including fluctuations in the mean global 

signal) than those of other techniques due to the ability of the method to 

account for the existence of such structured noise effects within additional 

(non- RSN) ICA components. 

Nevertheless, this approach also has limitations. First, it can be difficult to 

determine whether a component represents physiological noise or a cortical 

network. Second, the decomposition results can vary depending on the choice 
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of number of components, and the exact separation pattern may be  not 

repeatable from one subject to another (Rosazza et al., 2012). Next, the 

stochastic nature of ICA induces a degree of run-to-run variability, so results 

obtained from such an analysis can differ between analysis runs on even the 

same data. While approaches exist to optimally select the number of 

independent components for a given dataset according to statistical criteria, it 

must be recognised that there can be no single, ‘best’ dimensionality or model 

order for the underlying neurophysiology of multiple distributed systems. 

Further, one ICA decomposition of a given dataset may hide the fact that any 

given brain region may, over time, share varying connectivity patterns with 

multiple networks. This variability, or ambiguity, of regional co-activations 

between network nodes can be referred to as the ‘non-stationarity’ of a given 

area in terms of its connectivity with one or more RSNs (Cole et al., 2010). 

An example of ICA analysis is reported in chapter 3, in which this approach 

has been  compared with graph-based analysis in patients with amnestic Mild 

Cognitive Impairment patients (aMCI) at high risk of developing Alzheimer 

Disease.  

1.3.3 SEED-BASED ANALYSIS 

In the first resting-state fMRI study (Biswal et al., 1995), the time course of a 

seed region-of-interest (ROI) in the left motor cortex was correlated with the 

time course of all other brain voxels. The resulting map demonstrated 

functional connectivity between the left and right motor cortex even in the 
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absence of a task. Since its initial demonstration, this model-dependant 

approach has been widely applied.  

This method called seed-based analysis (SBA), requires the a priori selection 

of a voxel, cluster or atlas region from which to extract time series data. Next, 

time series of the selected region can be correlated with the time series of the 

other voxels, in order to calculate whole-brain, voxel-wise functional 

connectivity maps of covariance with the seed region. The SBA technique has 

proven useful in revealing the connectivity properties of many seed areas, and 

has been applied in the literature by many groups (Fox et al., 2005; Greicius et 

al., 2003; Margulies et al., 2007). 

The primary advantage of SBA over other methods is that the interpretation of 

the results is straightforward: it provides a direct answer to a direct question – 

it shows the network of regions most strongly functionally connected with the 

seed voxel. Recent assessment of the test-retest reliability of these methods 

has indicated that RSN connectivity relationships can be identified by SBA 

with moderate to high reliability (Shehzad et al., 2009). On the other hand, 

one potential weakness of SBA methods concerns the influence of structured 

spatial confounds, such as other RSNs (than the one under consideration) or 

structured noise, e.g., residual head motion effects or scanner-induced 

artefacts. Some of these effects may be partially removed by incorporating 

specific preprocessing such as temporal filtering , although the risk of residual 

confounding factors remains (Murphy et al., 2009). Moreover, there are as 

many possible ‘networks’ to be derived as there are possible seeds: 
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biologically, the choice of seed may bias connectivity findings towards 

specific, smaller or overlapping sub-systems, rather than larger, distinct 

networks (Buckner et al., 2008). Finally, an intrinsic limitation of this 

approach is that the seed ROI must be selected by the investigator, possibly 

inducing a selection bias.  

In this thesis I performed SBA to estimate thalamo-cortical functional 

connection in a group of healthy subjects. The study was conducted using the 

thalamus as a model  to assess the correspondence between functional and 

anatomical connections (Chapter 4). Moreover, the same approach was used 

to evaluate functional correlations to a region (the dorso-lateral prefrontal 

cortex) that was stimulated using transcranial magnetic stimulation (TMS). 

For details see chapter 5. 

1.3.3 NETWORK ANALYSIS 

Recently, new advances in RS analysis techniques have shown the possibility 

of examining the overall structure of the brain network still with high level of 

spatial detail, using graph analytical methods, thus providing new valuable 

insights in how the human brain operates.  

Graph theory provides a theoretical framework in which the topology of 

complex networks can be examined, and can reveal important information 

about both the local and global organization of functional brain networks 

(Bullmore and Sporns, 2009; Sporns et al., 2005). The graph model of the 

brain is an abstract structure used to represent pairwise relations between 

interregional ensembles of neuronal elements, referred to as nodes. These 
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pairwise relations, or links, can be either of functional origin and represent 

coherent physiological activity between neuronal ensembles, or they can be of 

a structural origin and represent anatomical connections formed by white-

matter fiber tracts (Zalesky et al., 2010). 

For RS data, within such a graph theoretical framework, the nodes of the brain 

network can be represented as cortical regions, which can be a small number 

of large-scale brain regions based on a predefined cortical template (like the 

Brodmaan Areas template) or MRI voxels. The level of functional 

connectivity between two regions is computed as the level of correlations 

between the time-series of two brain regions. Computing the level of 

functional connectivity between all possible node-pairs and determining the 

existence of a functional connection by using a predefined cut-off threshold or 

by using a weighted approach, results in a graph representation of functional 

brain network and allows for the examination of its organization using graph 

theory. The correlation between each node is reported in a square matrix with 

binary elements called connectivity  or adjacency matrices. The number of 

rows and columns in this matrix is the total number of nodes in the network, 

and the elements are defined as connectivity measure of choice of each pair of 

nodes. 

The connectivity matrix defines a graph, representing the network, for which 

several topographical parameters of interest can be extracted in order to 

characterize the network properties and eventually compare them between 

groups. The graph can be directed (if the direction of each connection is 
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defined) or undirected. When based on DTI or RS-fMRI, graphs are 

undirected. 

 In the present thesis four of them were analyzed: node degrees, network 

completeness, clustering coefficient and global network efficiency (see 

Chapter 3). 

The node degree describes the number of connections of a node to the rest of 

the network. This is the most fundamental network measure and most other 

measures are ultimately linked to the node degree. Completeness of a network 

is property of undirected graphs in which every pair of distinct vertices is 

connected by a unique edge. A complete graph has no sub-graph and all its 

nodes are interconnected. The clustering coefficient is calculated as the 

proportion of connections that exist between the nearest neighbours of a node 

over the maximum number of possible connections. Path length is the 

minimum number of edges that must be traversed to go from one node to 

another. Efficiency is inversely related to path length and describes topological 

distances between elements of disconnected graphs. 

Based on graph theory, several tools have been implemented to study brain 

networks. One of them is represented by the Network Based Statistic Toolbox 

(NBS) (Zalesky et al., 2010). It is a validated nonparametric statistical method 

for performing statistical analysis on large networks. The user provides a 

series of connectivity matrices from different cohorts, or from the same 

subject during different experimental conditions. Connectivity matrices are 

inferred from RS data and they reflect the pairwise interactions for each node.  
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The method is used to control the family-wise error rate (FWER), in the weak 

sense, when performing mass univariate hypothesis testing on all graph edges. 

Rather than clustering in physical space, the NBS clusters in topological 

space, where the most basic equivalent of a cluster is a graph component. 

FWER-corrected p-values are calculated for each component using 

permutation testing. 

In the present work, network analysis was performed to identify the effect of 

perturbation induced by transcranic magnetic stimulation on a group of 

healthy volunteers (Chapter 5). Also, network analysis was performed to 

assess if it can be considered relevant to the study of Alzheimer disease and 

may improve the differentiation between patients and controls by detecting 

disease-related changes and progression of pathology (Chapter 3).   

1.4 TRANSCRANIAL MAGNETIC STIMULATION  

Transcranial magnetic stimulation (TMS) is a technique that uses a magnetic 

field to produce indirect electrical stimulation of the brain (Barker et al., 

1985). Faraday’s law of induction states that when an electrical current is 

passed through a wire, it generates a time-varying magnetic field. If a second 

wire is placed nearby, the magnetic field induces electrical current flow in that 

second wire. In TMS, the ‘first wire’ is the stimulating coil and the ‘second 

wire’ is a targeted region of the brain. The most common coil in use in TMS 

is a figure-of-eight shape in which electrical current flows in opposite 

directions around each of the windings, converging at the centre-point where 
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the currents summate. This allows one to target focal regions of cortical 

tissue. The coil is placed on the scalp, and the resulting magnetic field passes 

through the skull and induces an electrical field in the underlying cortex 

(O'Shea and Walsh, 2007). This electromagnetic induction can be used to 

experimentally manipulate brain activity, and is capable of inducing long-term 

(ranging from minutes to days) changes in cortical excitability.  

TMS can be used following different protocols.  TMS pulses can be applied at 

varying intensities, and in single pulses or in repetitive trains (rTMS) of low 

or high frequency. The choice of stimulation parameters determines whether 

the effects of stimulation are excitatory or inhibitory. For example, two single 

pulses separated by less than 5 milliseconds can produce intra-cortical 

inhibition, while two single pulses separated by a gap greater than 10 and less 

than 30 milliseconds can produce intracortical facilitation. 

Repetitive TMS at a frequency of 1 Hz has the effect of depressing cortical 

excitability for a period of time after the train of pulses has finished, whereas 

repetitive stimulation at 10 Hz or more may increase excitability (O'Shea and 

Walsh, 2007).  

In the case of single pulses of TMS, the effect is not thought to last long 

beyond the time of stimulation (Pascual-Leone and Walsh, 2001). In contrast, 

when trains of multiple pulses of TMS are applied to the brain with a short 

inter-stimulus interval (1Hz or greater), the net effects are longer-lasting 

changes in cortical excitability, that can be sustained well beyond the time of 

stimulation (Pascual-Leone et al., 1994). 
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As explained above, rTMS is able to change and modulate activity beyond the 

stimulation period. An appealing hypothesis is that the effects of rTMS on the 

brain are long-term depression (LTD)-like or long-term potentiation (LTP)-

like, as the duration of the effects seems to implicate changes in synaptic 

plasticity (Hoogendam et al., 2011). 

LTP is an increase in the synaptic strength that could last for days or even 

weeks and months, which could be induced in experimental conditions as a 

result of brief high-frequency stimulation. LTD, on the contrary, encompasses 

long-lasting weakening of a neuronal synapse. The exact mechanisms 

underlying these plastic changes vary, depending on the synapses and the 

circuits in which they operate (Hoogendam et al., 2011). The fact that it may 

be possible to induce LTP/LTD-like changes in the human brain has 

important implications for therapeutic applications. In fact, the hope is that 

rTMS-induced changes of synaptic connections will promote recovery of 

function in parts of the brain damaged by an acute or a chronic lesion 

(Ridding and Rothwell, 2007). 

1.4.1 THETA BURST STIMULATION 

One approach for producing lasting effects in the brain is the recently 

introduced theta burst stimulation (TBS) protocol (Di Lazzaro et al., 2008). It 

refers to a rTMS protocol where pulses are applied in bursts of three, 

delivered at a frequency of 50 Hz and an inter-burst interval of 200 ms (5 Hz). 

These parameters were originally developed based on studies in both the 
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rodent and human brain indicating that theta rhythms are associated with LTP 

(Hill, 1978; Klimesch et al., 1996; Larson et al., 1986).  

TBS protocols appear to lead to sustained changes in cortical activity lasting 

well beyond the duration of the TMS application, providing a putative index 

of underlying LTP and LTD processes that can be recorded in vivo from the 

human brain. Additionally, these effects appear to be dependent on NMDA 

(N-methyl-D-aspartate) receptors suggesting that the after-effects might be 

mediated by LTP-like synaptic plasticity (Huang et al., 2007). It is important 

to note that different patterns of delivery of TBS have different, opposite 

effects on excitability (Hoogendam et al., 2011). There are two commonly 

used patterns of TBS, continuous (cTBS) and intermittent (iTBS). In cTBS, 

bursts of 3 pulses at 50 Hz are applied at a frequency of 5 Hz for either 20 

seconds (100 bursts) or 40 seconds (200 bursts). In iTBS, 20 2s periods (10 

bursts) of TBS are applied at a rate of 0.1 Hz. Note that in both protocols the 

total number of stimuli is equal (600 pulses). It has been suggested that TBS 

in humans produces a mixture of facilitatory (iTBS increases motor evoked 

potential (MEP) amplitude producing an LTP like phenomena) and inhibitory 

(cTBS reduces (MEP) amplitude LTDlike phenomena) effect (Di Lazzaro et 

al., 2008; Hoogendam et al., 2011; Oberman et al., 2011).  

Here, cTBS was performed to induce inhibitory effect over the right prefrontal 

area of healthy subject to identify its effect on functional connections at rest 

(Chapter 5). 
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1.5 COMBINATION OF NEUROIMAGING TECHNIQUES 

AND TMS 

In the last decade combined TMS-neuroimaging studies have greatly 

stimulated research to characterize brain connectivity. The combination of 

different methodologies is necessary to compensate for the limitations of each 

technique alone, providing insight into a variety of neuroscience questions.  

A first approach towards the combination of these techniques is to determine 

whether the “connectivity” assessed with RS-fMRI, DTI and TMS reflects the 

same pattern. 

The functional repertoire of any system is ultimately determined by its 

structural composition. Equally important in the brain, the underlying 

structure is continually reshaped by function in relation to experience (Zhang 

et al., 2010). For that reason, as one might expect, connectivity assessed using 

either RS-fMRI or TMS is related to and constrained by underlying 

anatomical connectivity. 

DTI has been shown to relate well with TMS (Voineskos et al., ; Wahl et al., 

2007)   and with RS-fMRI (De Luca et al., 2006; Greicius et al., 2009; Honey 

et al., 2009; Koch et al., 2002; Lowe et al., 2008; van den Heuvel et al., 2008; 

van den Heuvel et al., 2009; Zhang et al., 2010). 

Nevertheless, differences between each technique do exist, underlying that 

each of them measures different aspects of connectivity.  

It is important to note that connectivity assessed with either RS-fMRI or 

TMS, in fact, involves polysynaptic connections, while DTI is able to directly 



____________________________________________________________Chapter 1 

59 

 

detect only monosynaptic connections (Fox et al., 2012). In light of these 

differences, caution is warranted when inferring functional interactions 

strictly on the basis of DTI tractography, and vice versa. Each technique 

provides unique and complementary information that should be interpreted in 

their corresponding context (Zhang et al., 2010).  

For what concerns the correlation between connectivity assessed with RS-

fMRI and TMS, a study conducted by Koch and collaborators revealed a 

remarkable correlation between hemodynamic signals recorded by RS-fMRI 

and physiological interactions tested by TMS (Koch et al. 2012) when looking 

at parieto-frontal circuits. 

Overall, by comparing results across different studies some useful insights can 

be gained (Fox et al., 2012). Both techniques have revealed results potentially 

consistent with excitatory versus inhibitory connections, however 

interpretations of these results is likely to be complicated. An important issue 

is the context dependence of measures connectivity. In fact, while 

accumulating evidence support the idea that TMS depends on task context 

(Koch et al., 2009; Koch and Rothwell, 2009; Ruff et al., 2009), the context 

dependence of connectivity assessed with RS-fMRI remains less clear, due to 

its poorer temporal resolution and inability to exert casual perturbations (Fox 

et al., 2012). 

Finally, both methodologies have identified connectivity changes across a 

range of altered states including neurological and psychiatric disorders with 

both concordant and discordant results (Burt et al., 2002; Fox and Greicius, 
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2010; Greicius et al., 2007; Hallett, 2007; Zhang et al., 2010). Further studies 

should be performed in this direction to clarify the correspondence between 

these methodologies. 

A second way to combine these methodologies is using neuroimaging 

techniques to guide TMS. In fact, several studies conducted so far have 

focused on the stimulation site alone and have not taken into account the 

distributed network properties of the targeted region (Fox et al., 2012). 

Despite its potential, surprisingly few studies have used distributed network 

connectivity to guide TMS target selection. 

In an excellent example of how connectivity can guide TMS, DTI was used to 

identify subject-specific targets in the middle frontal gyrus that were 

connected to a particular portion of primary somatosensory cortex (Hannula et 

al., 2010). A few studies have used task-based fMRI measures (as opposed to 

RS-fMRI) to identify stimulation targets (Bien et al., 2009; de Graaf et al., 

2009; Zanto et al., 2011). Finally, a handful of studies have begun using 

resting state RS-fMRI to guide TMS target selection to modulate DMN 

(Eldaief et al., 2011) to guide therapeutic TMS in patients with schizophrenia 

(Hoffman et al., 2007) and to address the above referenced clinical problem of 

determining where to target rTMS in the dorso-lateral prefrontal cortex 

(DLPFC) to improve antidepressant response (Fox et al., 2012). Targeting 

TMS based on individualized connectivity with distributed brain networks 

could have a great value, although there are a number of challenges to 



____________________________________________________________Chapter 1 

61 

 

overcome in order to validate the clinical utility of such a targeting approach 

(Fox et al., 2012). 

Finally, a third modality to combine different techniques is to assess changing 

in structural and functional MRI by manipulating connectivity using TMS.  

A unique advantage of TMS compared to RS-fMRI, and every other 

noninvasive approach for assessing connectivity, is that TMS can also be used 

to manipulate connectivity. The ability to experimentally activate or 

deactivate an area of the brain is a powerful method for exploring functional 

connectivity.  

TMS can be applied while neuroimaging is being performed (referred to as 

on-line TMS-neuroimaging approach). In this case, neuroimaging provides a 

temporo-spatial assay of the immediate effects of TMS on neuronal activity. 

Concurrent TMS-neuroimaging can probe how the neuronal context at the 

time of stimulation determines the induced activity changes locally as well as 

in connected brain areas (Siebner et al., 2009). On-line neuroimaging 

experiments are technically demanding because TMS may adversely affect 

data acquisition during neuroimaging. This requires methodologic refinements 

to effectively avoid or control for TMS induced artifacts. Alternatively, TMS 

may be applied off-line before and/or after neuroimaging.  This approach is 

mainly used determine the after-effect of TMS by the examination of 

functional connections comparison between and after stimulation. Off-line 

designs are technically easier to establish because rTMS and neuroimaging 

are separated in time and they can also be separated in space: TMS can be 
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performed outside the scanner room, making the stimulation easier to deliver 

and reducing the possibility that it adversely affect data acquisition during 

neuroimaging (Siebner et al., 2009).  

The mechanisms that lead to functional connectivity changes induced by 

TMS, are still unclear: it is important to consider whether an observed change 

in connectivity actually reflects a change in connection strength between 

remote areas or whether it could be explained by local effects of the rTMS 

alone. While it can be argued that the local effects of TMS on cortical 

excitability are due to changes in connectivity within the stimulated region 

itself, it is becoming evident that TMS could induce changes in connectivity 

between brain regions (Fox et al., 2012). This have been studied using a wide 

variety of connectivity measurement techniques including task-based effective 

connectivity with PET (Lee et al., 2003b), task-based effective connectivity 

with fMRI (Grefkes et al., 2010; Pleger et al., 2006), and finally RS-fMRI 

(Eldaief et al., 2011; van der Werf et al., 2010; Vercammen et al., 2010b).  In 

this contest it is important to note that when connectivity is being assessed 

during a task, it could be difficult to determine if the measured change in 

connectivity is actually due to a change in behavior. For that reason, assessing 

TMS induced connectivity changes with RS-fMRI may help avoid some of 

the above interpretive difficulties. To conclude, the combinations of 

neuroimaging techniques and TMS is becoming increasingly important to 

better characterize brain connectivity. 
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In this thesis four different studies have been performed in order to i) evaluate 

the validity of neuroimaging techniques in the detection of abnormal changes 

of brain connectivity in different groups of patients (Chapter 2 and 3); ii) 

investigate the functional and anatomical connectivity in healthy volunteers in 

order to identify the correspondence between structural (DTI) and functional 

(RS-fMRI) neuroimaging techniques in the assessment of brain connections; 

iii) estimate the effect of perturbation induced by TMS on functional 

connections in a group of healthy subjects in order to provide new evidence of 

the important role of the combination of neuroimaging and 

neurophysiological techniques in the characterization of brain connectivity.
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CHAPTER 2 

MICROSTRUCTURAL DAMAGE OF THE POSTERIOR 

CORPUS CALLOSUM CONTRIBUTES TO THE CLINICAL 

SEVERITY OF NEGLECT. 

 

This chapter describes study aiming at assessing the anatomical connectivity 

changes occurring in the non-lesioned hemisphere of patients with neglect, 

with respect to a group of healthy subjects. This work was carried out in 

collaboration with other researchers.  

INTRODUCTION 

Neglect is clinically defined as the impaired ability to process or to react to 

sensory stimuli when presented in the hemispace contralateral to a brain 

lesion, in the absence of any remarkable sensory loss (Bisiach et al., 1986; 

Heilman et al., 2000; Vallar et al., 2003). This condition is frequently 

observed in the case of an acute/sub-acute damage affecting the right 

hemisphere (RH), while, in contrast, neglect symptoms are rarely observed 

after damage localized to the left hemisphere (LH) (Karnath et al., 2002). 

According to previous literature, neglect has an incidence of about 45% in 

acute strokes of the RH, and persistent deficits are observed in one third of 

cases (Cassidy et al., 1998). Despite its clinical relevance, the 

pathophysiology of neglect is still poorly understood. In the context of an 

intense debate within the scientific community, two major hypotheses have 
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been formulated so far. One is based on the assumption that the RH controls 

attention orienting in both left and right hemispace, while the LH controls the 

direction of attention in the right hemispace only (i.e., “hemispheric 

specialization” hypothesis) (Heilman and Van Den Abell, 1980; Mesulam, 

1981). This hypothesis is supported by the far greater prevalence of neglect 

following RH than LH damage, as well as by imaging studies demonstrating a 

greater extent of activations in the RH than in the LH during tasks involving 

shifts of visuo-spatial attention (Corbetta et al., 1993; Gitelman et al., 1999; 

Nobre et al., 1997). Alternatively, Kinsbourne’s theory has proposed a 

mechanism of hemispheric rivalry (Kinsbourne, 1977). This second 

hypothesis assumes that an asymmetric dynamic balance exists between 

parieto-frontal circuits in the two hemispheres, with the RH prevailing over 

the LH (i.e., hemispheric competition hypothesis) (Kinsbourne, 1977). Each 

hemisphere is thought to be responsible for orienting attention toward the 

contralateral hemi-space and to control the contralateral hemisphere trough 

mechanisms of reciprocal inhibition, with a right hemispheric prevalence in 

inhibiting the LH (Koch et al., 2012a). This theory is supported by clinical 

evidence that patients with extinction (the failure to 

acknowledge left-sided tactile hand stimuli upon double-simultaneous 

stimulation – (Hier et al., 1983) often manifest directional biases, favoring 

stimuli that are relatively ipsi-lesional over those which are relatively contra-

lesional within and between visual fields. In support to the hemispheric 

competition hypothesis, it has been recently demonstrated that the right, but 
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not the left human posterior parietal cortex (PPC) exerts a strong inhibitory 

activity over the contralateral homologous area by a short-latency connection, 

using a combined method of trifocal TMS and diffusion MRI (Koch et al., 

2011). Notably, it has been demonstrated that this interaction is mediated by 

direct transcallosal projections located in the posterior portion of the corpus 

callosum through callosal fibers crossing the regions IV and V (Koch et al., 

2011). These data suggest that this anatomo-functional network might 

represent a possible neurophysiological basis for interhemispheric functional 

asymmetry. In order to be confirmed, however, this interpretation requires a 

direct demonstration that, in patients with a right parietal lesion and neglect, 

the posterior part of the corpus callosum and its projections to the LH are 

microscopically damaged (anatomical disconnection) in the absence of 

macroscopic abnormalities. Further, this anatomical disconnection should be 

associated with the presence and severity of neglect. Pathological 

abnormalities that modify tissue integrity, including microscopic degeneration 

of white matter fibers, can result in an altered diffusion coefficients. As 

described in Chapter 1, Tract-Based Spatial Statistics (TBSS) (Smith and 

Nichols, 2009) allows testing for group comparisons of regional diffusion 

indices, such as FA, MD, Dax, Drad, to indirectly  asses regional alterations 

of white matter fibers as well as for correlations between these quantities and 

clinical or neuropsychological variables. The aim of the current study was to 

assess the presence of disconnection between hemispheres in patients with 
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right brain damage, and its contribution in determining the presence and 

severity of neglect. 

METHODS 

SUBJECTS 

Eleven consecutive patients [F/M=4/7; mean (SD) age: 59.7 (10.0) years] 

with clinical and radiological evidence of macroscopic damage to the right 

hemisphere, were recruited from the Specialist Rehabilitation Clinic of Santa 

Lucia Foundation (Rome, Italy). All patients had to be right-handed (as 

assessed by the Edinburg Handedness Inventory (Busch et al., 2010) and to 

have suffered from an acute ischemic stroke over an interval of 1-6 months 

before enrolment. Exclusion criteria were: a previous history of cognitive 

decline, the absence of sensory deficits, and current impairment in cognitive 

domains other than visuo-spatial attention (see below). Major systemic, 

psychiatric and other neurological illnesses were carefully investigated and 

excluded in all patients. Critical for this study, the presence and severity of 

left-side neglect was carefully quantified in each patient, as detailed below. 

Finally, all patients underwent MRI scanning at 3T, detailed below, and 

conventional MRI scans (i.e., dual echo and fluid attenuated inversion 

recovery [FLAIR]) were reviewed by an expert neuroradiologist. Patients 

were excluded in the presence of any macroscopic abnormality in addition to 

the right-hemispheric lesion. A group of 11 right-handed, age-and sex-

matched healthy volunteers [F/M=4/7; mean (SD) age: 59.3 (9.3) years] were 

also recruited for the study and served as controls. Major systemic, psychiatric 
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and neurological illnesses were carefully investigated and excluded in all of 

them. On the basis of conventional MRI, subjects were excluded in the 

presence of any macroscopic abnormality. The current study was conformed 

to the ethical principles of the Helsinki Declaration, and received approval by 

the Ethics Committee of Santa Lucia Foundation. Written informed consent 

was obtained from all participants before study initiation.  

 

ASSESSMENT OF VISUOSPATIAL NEGLECT 

The Behavioural Inattention Test (BIT) (Wilson et al., 1987) was used to 

determine the presence and severity of hemispatial neglect. This is a 

comprehensive battery of tests for the evaluation of visuo-spatial deficits, 

which includes both conventional (BIT-C) and behavioural scales (BIT-B). 

The conventional tests include: 1) line crossing, 2) letter cancellation, 3) star 

cancellation, 4) figure and shape copying, 5) line bisection, and 6) 

representational drawing. The behavioural tests assess specific aspects of 

daily life activities, and include: 1) picture scanning, 2) telephone dialling, 3) 

menu reading, 4) newspaper article reading, 5) telling and setting the time, 6) 

coin sorting, 7) address and sentence copying, 8) map navigation and card 

sorting. The cut-off scores of normality for the conventional and behavioural 

tests are 129 (0-146, maximum score 146) and 67 (0-81, maximum score 81), 

respectively. Patients are classified as suffering from neglect when their score 

is below the cut-off score in either or both the BIT-C and BIT-B.  

MRI ACQUISITION 
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Brain imaging was obtained in a single session using a head-only 3.0T MR 

scanner (Siemens Magnetom Allegra, Siemens Medical Solutions, Erlangen, 

Germany). The acquisition protocol included the following sequences: 1) 

dual-echo turbo spin echo [TSE] (TR=6190 ms, TE=12/109 ms); 2) FLAIR 

(TR=8170 ms, TE=96 ms); 3) 3D Modified Driven Equilibrium Fourier 

Transform (MDEFT) scan (TR=1338 ms, TE=2,4 ms, Matrix=256x224x176, 

in–plane FOV=250x250 mm
2
, slice thickness=1 mm); 4) Diffusion weighted 

twice-refocused SE EPI (TR=7000 ms, TE=85 ms, maximum b factor=1000 

smm
-2

, isotropic resolution 2.3mm
3
). This sequence collects 7 images with no 

diffusion weighting (b0) and 61 images with diffusion gradients applied in 61 

non-collinear directions.  

MRI  IMAGE ANALYSIS AND STATISTICS  

 

Lesion assessment 

For each patient, lesions were outlined on the MDEFT scans, using a semi-

automated local thresholding contouring software (Jim 4.0, Xinapse System, 

Leicester, UK, http://www.xinapse.com/). A binary lesion mask was obtained 

for every subject by setting all voxels within the lesion to 1 and the 

background to zero. The MDEFT scans were then normalised to standard 

space using tools from the FMRIB software library (FSL, 

www.fmrib.ox.ac.uk/fsl/). First, the brain extraction tool (bet) was used to 

strip off the skull from every subject’s MDEFT scan. Next, FLIRT (Jenkinson 

and Smith, 2001) was used to compute the affine transformation that matches 

this skull-stripped image to the MNI brain atlas provided with FSL. Then, 

http://www.xinapse.com/
http://www.fmrib.ox.ac.uk/fsl/
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FNIRT ( http://www.fmrib.ox.ac.uk/analysis/techrep/ ) was used to compute 

the deformation field that warps the original MDEFT to the atlas, setting as 

starting estimate the affine transformation computed by FLIRT. Finally, the 

non-linear transformation was applied to the lesion binary mask. The masks 

from all patients were added and translated into a percentage unit to obtain a 

visual representation of the anatomical location of the lesions in the patient 

cohort (Fig. 1). Lesion volumes were calculated from each patient’s scan and 

correlated with the corresponding scores obtained at BIT, using the 

Spearman’s Rank correlation test.  

DTI and TBSS image processing 

Diffusion data were processed using tools from FSL. After eddy current 

correction the diffusion tensor was estimated in a voxel-wise fashion (Basser 

et al., 1994), and FA maps were derived for every subject. Maps of FA, MD, 

Dax and Drad were obtained. FA maps were then fed into TBSS (Smith et al., 

2006) to obtain a projection of all subjects' FA data onto a mean FA tract 

skeleton. As reported in Chapter 1, usually the skeleton is obtained by 

aligning every subject’s FA image into a common space using non-linear 

registration, and then averaging the normalised images to create a mean FA 

map, which is finally thinned so that the FA skeleton represents the center of 

all tracts common to the group. Each subject’s FA data is then projected onto 

the skeleton and voxel-wise statistics is carried out within the skeleton. The 

projection is achieved by searching perpendicular to the local skeleton 

structure for the maximum value in the subject's FA image. This maximum 

http://www.fmrib.ox.ac.uk/analysis/techrep/
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value is assumed to represent the nearest relevant tract centre. To avoid that 

the presence of lesion of the right hemisphere could affect the correct 

reconstruction of the skeleton, the TBSS pipeline was modified as follows. 

First, all FA images were affine registered to the FA template provided with 

FSL, masking out the lesion, which was outlined on b=0 images. Once in 

standard space, the same portion of the right hemisphere (MNI coordinate 

x>18 mm) was removed from the images of all subjects. Note that in order to 

avoid edge effects along the midsagittal section of the corpus callosum, part 

of the right hemisphere (0<MNI coordinate x<18), unaffected by the lesions, 

was included in the analysis. The left hemisphere FA maps obtained through 

this procedure were transformed back into native space, and TBSS was 

performed as normal, but using a half-brain (including sagittal slices with 

x<18) template. The same transformation and projection were applied to MD, 

Dax and Drad maps. The healthy controls underwent an identical procedure in 

order to minimise any bias. 

Statistical analysis 

All TBSS voxel-wise statistics was carried out on the skeletonized images 

using the FSL tool “randomise”, which is based on permutation tests (500 

iterations). A between-group comparison was first performed to identify 

regional FA, MD, Dax, and Drad differences, between patients and healthy 

controls. According to the specific processing, the analysis included all voxels 

in the left hemisphere and in the medial part of the corpus callosum. Then, in 

these same brain voxels, voxel-wise associations were investigated between 
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patients’ regional diffusion indices and total neuropsychological scores 

reported at BIT-C and BIT-B. For both, between-group comparison and 

correlation analyses, statistical significance was computed using permutation 

tests. A correction for multiple comparisons was obtained using the threshold-

free cluster enhancement (TFCE) method (Smith and Nichols, 2009). P-values 

were accepted as significant if inferior to 0.05 after TFCE correction.  

RESULTS  

ASSESSMENT OF NEGLECT 

According to the criteria defined in the methods section, all patients were 

demonstrated to suffer from hemispatial neglect. As reported below, 3 patients 

were excluded from the analysis due to the poor quality of their MRI data 

(motion artifacts). From the remaining 8 patients, 1 reported scores above the 

cut-off normality in the BIT-B subtest only, 2 in the BIT-C subtest only, and 5 

in both subtests. A detailed description of patients’ performance at BIT is 

summarized in Table 1. 
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  Mean (SD) score   Mean (SD) score 

BIT-C total score 11.1 (26.5) BIT-B total score 56.4 (20.9) 

    

BIT-C subtests BIT-B subtests 

Line crossing 32.3 (5.9) Picture scanning 3.1 (2.6) 

Letter cancellation 32.0 (4.3) Telephone dialling 7.1 (2.7) 

Star cancellation 43.7 (15.3) Menu reading 6.4 (3.8) 

Figure and shape 

copying 

2.1 (1.3) Article reading 5.9 (4.3) 

Line bisection 5.7 (3.1) Telling and setting the 

time 

7.4 (1.7) 

Representational 

drawing 

2.3 (0.5) Coin sorting 6.3 (3.1) 

--  Address and sentence 

copying 

7.6 (2.4) 

--  Nap navigation 7.1 (3.1) 

--  Card sorting 5.4 (2.5) 

 

Table 1. Clinical assessment of visuospatial neglect. BIT-C = conventional scale of the 

Behavioural Inattention Test; BIT-B = behavioural scale of the Behavioural   Inattention Test. 

See text for further details. 

 

 

MRI ACQUISITION 

Three out of 11 patients were excluded from image analysis for the poor 

quality of their MR images due to motion artefacts. According to the 

exclusion criteria, none of the patients who entered the analysis had any 

detectable macroscopic abnormality in the left hemisphere. None of the 

healthy controls’ MRI scan revealed any macroscopic abnormality. 



___________________________________________________________Chapter 2 

74 

 

MRI IMAGE ANALYSIS AND STATISTICS 

Lesion assessment  

Figure 1 summarises the lesion data, which are presented here for 

completeness. Neglect patients typically had substantial lesions centred on 

right perisylvian structures, similar to many previous studies of neglect. 

Correlation analysis between patients’ lesion volumes and BIT scores did not 

return significant results (p=0.6). 

 

Fig. 1 Lesion distribution. The damage visible on mri images was outlined and warped to MNI 

sapce for each studied patient. The image was produced using MRIcro software. A T1-

weighted template comprising 12 axial slices was used to demarcate lesions for every patient. 

The colour scale indicates the percentage of patients presenting damaged tissue in any given 

image voxel. 

 

TBSS 

The patient group compared to controls revealed a widespread reduction of 

regional FA in most of the left hemisphere tracts, with a predominant 

involvement of the corpus callosum and its projections towards the parietal 

WM (Fig. 2A). Widespread increases in Drad and in MD were also found in 

patients, located in the same tracts where FA was reduced and beyond (Fig. 
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2B and 2C, respectively).Areas of increased Dax were also found in patients, 

mainly located within the corona radiata (Fig. 3). No significant increases in 

FA, nor decreases in any of the other indices were observed. 

 

Fig. 2 TBSS results: patients vs. Controls. (a) Red indicates the areas where fractional anisotropy (FA) 

values of patients are significantly reduced with respect to those of healthy controls, overlaid onto the 

group-averaged FA image. FA values are significantly reduced in the corpus callosum and its projections 

on the parietal white matter. (b) Blue indicates the areas of increased radial diffusivity in patients. The same 

sections as in panel A are shown to ease the comparison with FA results. (c) Green indicates tracts where 

MD was increased in patients. Again, the same sections as in panels a and b are shown. L=left; x,y,z, 

indicate the MNI coordinates. 

Voxel-wise correlation analysis revealed a direct association between the 

patients’ BIT scores and regional FA in a cluster located in the posterior 

portion of the corpus callosum, as shown in the top panel of Figure 4. 

Randomise provides the p-values but not the corresponding correlation 

coefficients.  
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Fig. 3 TBSS results: axial diffusivity. Red indicates tracts where axial diffusivity (Dax) increases in 

patients compared to healthy subjects. Changes were mainly located within the corona radiata, an area of 
crossing fibres. The interpretation of these changes can be challenging (Wheeler-Kingshott and Cercignani, 

2009) .  

 

Fig. 4 Correlation between patients’ FA and behavioural inattention test (BIT) total scores. The top panel 
shows in red the region of the posterior corpus callosum, whose fractional anisotropy (FA) value correlates 

with patients’ performance at BIT. In the bottom panel, the FA values extracted from that region are 

plotted, patient by patient, against their correspondent performance obtained at bit. The post-hoc R value 
(pearson correlation coefficient) was 0.91. 

In order to have an estimate of the latter, we extracted, subject by subject, the 

mean FA of the significant cluster and computed post-hoc the Pearson 

correlation coefficient between this mean value and the BIT score. The 

bottom panel of Figure 4 shows the corresponding scatter plot. The correlation 
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coefficient was 0.91. No associations were observed between the BIT scores 

and any of the other diffusion indices explored. 

DISCUSSION 

We recruited here a group of patients who suffered from an acute stroke of the 

RH and presented with symptoms of neglect. A detailed clinical assessment of 

neglect, based on the BIT, confirmed the presence of neglect in all recruited 

patients, with different degrees of severity. According to inclusion criteria, 

none of the patients had any macroscopic abnormality in the left hemisphere, 

as assessed on the T2 and FLAIR scans. Conversely, despite the absence of 

lesions, TBSS analysis was able to demonstrate subtle changes in the FA 

values along several WM tracts of the left hemisphere in patients. Wallerian 

degeneration is a well-described phenomenon, consisting of anterograde 

degeneration of axons and myelin sheaths after proximal axonal or cell body 

injury (Vargas and Barres, 2007). In our patients, this reduction of FA fits 

with the expected evolution of the stroke lesion, which affected a proportion 

of neurons projecting from the right to the left hemisphere through the corpus 

callosum. Further analyses of Drad showed that this parameter was increased 

within and beyond the tracts where FA was found to be reduced. Conversely, 

Dax was found to be increased only in the corona radiata, an area where the 

crossing of several white matter pathways (corpus callosum, cortico-spinal 

tract, superior longitudinal fasciculus) is known to occur. Although changes in 

Drad and Dax have been associated with myelin and axonal damage, 



___________________________________________________________Chapter 2 

78 

 

respectively (Song et al., 2003; Song et al., 2002), caution should be exercised 

when interpreting these indices in areas of crossing fibres (Wheeler-Kingshott 

and Cercignani, 2009). Given these observations, we can therefore conclude 

that our data support the hypothesis that the main damage occurring in the left 

hemisphere of these patients is dominated by demyelination in the context of 

Wallerian degeneration phenomena. While the occurrence of Wallerian 

degeneration in one hemisphere can be expected in cases of macroscopic 

damage in the other hemisphere, an intriguing result of this study is that FA 

changes in the ‘‘healthy’’ hemisphere also accounted for the severity of 

neglect symptoms observed in our patients. Moreover, no association could be 

found between patients’ severity of neglect symptoms and the volumetric 

assessment of the macroscopic lesions. When we performed the correlation 

analysis with the severity of neglect symptoms assessed by the BIT, TBSS 

analysis returned a well localized area of the posterior portion of the corpus 

callosum, which is known to transfer white matter fibers between the two 

homologues parietal cortices. The FA reduction is interpreted here as axonal 

demyelination/loss and, as a consequence, structural disconnection, 

correlated, without any a priori hypothesis on its anatomical location, with 

patients’ performance at the BIT. This finding is consistent with the 

hypothesis that neglect follows a disinhibition of parietal-frontal circuits of 

the left intact hemisphere (due to the release of right hemisphere control) in 

patients with neglect, as suggested by previous evidence based on TMS 

experiments (Koch et al., 2008). 
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We believe that the current finding provides novel anatomical evidence in 

support for a critical role of this inter-hemispheric networks in neglect. On the 

other hand, against the “hemispheric specialization” theory of neglect 

(Heilman and Van Den Abell, 1980; Mesulam, 1981), no association could be 

found between patients’ clinical severity and the volumetric assessment of 

their macroscopic lesions. Moreover, it should be noted that the data reported 

in the current study are not only interesting for clarifying the pathophysiology 

of neglect. There is a growing body of evidence that non-invasive brain 

stimulation techniques such as repetitive TMS or transcranial direct current 

stimulation (tDCS) may be used for therapeutic purposes (Ridding and 

Rothwell, 2007). For instance, relatively to neglect treatment, it was recently 

reported that theta-burst stimulation is able to accelerate recovery from 

neglect symptoms in stroke patients over a time window of few weeks (Koch 

et al., 2012b). In this context, but also in other clinical conditions of focal 

brain damage, the identification of the most critical networks producing 

specific symptoms may represent the target for neurophysiological treatments. 

This is particularly relevant in neurorehabilitation, for which non-invasive 

brain stimulation might contribute to improve the final outcome of the 

protocols currently in use.  

It has to be acknowledged that a main limitation of the current study, which 

has to be considered as explorative, is the small sample size. Future studies on 

larger populations of patients are needed to confirm and extend our 

preliminary findings. On the other hand, the results presented here were 
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obtained in a completely data-driven fashion, suggesting that the effect we 

observed in 8 patients only is likely to be rather strong.  

In conclusion, this study provides new anatomical evidence supporting the 

notion that changes in right-left balance between the posterior parietal cortices 

rather than an isolated involvement of the right hemisphere can be critical for 

the occurrence of neglect symptoms, such as those explored by the BIT.
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CHAPTER 3 

WIDESPREAD ALTERATIONS IN FUNCTIONAL 

BRAIN NETWORK ARCHITECTURE IN AMNESTIC 

MILD COGNITIVE IMPAIRMENT. 

 

This chapter presents a network analysis of RS-fMRI data aiming at the 

identification of  networks parameters able to predict the development of 

Alzheimer’s disease (AD) in patients with amnestic mild cognitive 

impairement (MCI). The performance of this technique was also compared 

with that of a more standard ICA to underline differences and similarities 

between different approaches. The study was carried out collaboration with 

other researchers. In particular Dr Ludovico Minati, form BSMS Brighton and 

Sussex Medical school, who developed the methodological approaches. I 

contributed to the study acquiring and processing of RS-fMRI data. 

INTRODUCTION 

MCI defines a transitional state along a continuous spectrum that goes from 

normal aging to fully developed dementia (Petersen, 2000). This clinical 

classification is critical to the identification of individuals at high risk for 

developing Alzheimer's disease (AD). From this perspective, MCI represents 

an interesting target for the investigation of AD patho-physiology, and also 

for the identification of patients at early clinical stages of AD, who might 

enter clinical trials at a time when their cognitive functions are still relatively 

preserved. 
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MCI patients typically complain of cognitive deficits that do not interfere, or 

interfere only mildly, with their everyday-life activities. Early cognitive 

dysfunctions in MCI patients can be multifaceted (Petersen, 2004), in most 

cases including memory deficits and leading to the classification of a-MCI 

(amnestic MCI) (Petersen, 2004). a-MCI is widely considered as the condition 

most commonly associated with a high risk of conversion to AD (10–15%; 

see (Petersen, 2000) , and is therefore regarded by most authors as a 

prodromal state of AD (Gauthier et al., 2006). However, a-MCI includes a 

heterogeneous population of subjects. While 10–15% of a-MCI patients 

convert to AD, a small proportion of a-MCI patients can remain stable with an 

isolated cognitive impairment (Perri et al., 2007), or even develop other forms 

of dementia (Perri et al., 2007; Petersen, 2000). 

The neuro-pathological bases underlying MCI and the conversion from MCI 

to AD have been investigated extensively (Price and Morris, 1999), and 

neuroimaging studies have consistently described in vivo a progressive 

atrophy starting in the medial temporal lobes, and gradually extending into the 

temporo-parietal cortex, the cingulum and the frontal cortex (Bozzali et al., 

2006).  

The evolution of neurodegenerative processes appears to parallel the 

progression of the cognitive decline, with an initial involvement of functions 

and brain structures associated with memory, which then extends to affect 

other higher level functions and related brain structures. 
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The progressive nature of the clinical modifications and the link between the 

onset of multiple cognitive dysfunctions and the conversion to AD suggest 

that a preclinical investigation of cognitive domains may permit a better 

identification of individuals at high risk of developing dementia. It has been 

demonstrated that fMRI is ideally suited to reveal any such selective change 

prior to overt neuropsychological or structural brain abnormality (Bookheimer 

et al., 2000). As such there is increasing interest in the use of this technique to 

detect alterations of brain function in prodromal AD. Studies of functional 

connectivity in MCI patients, investigated using ICA or SBA of RS-fMRI, 

have demonstrated disconnection across DMN, primarily in precuneus and 

posterior cingulate cortex. However, the low amplitude and limited 

topographical extent of these changes restricts the potential usage of these 

approaches in studies aimed at determining biomarkers of early AD (Gili et 

al., 2011; Rosazza and Minati, 2011). 

There is converging evidence that graph-based network analyses are highly 

relevant to the study of AD and may improve the differentiation between 

patients and controls with respect to ICA and SBA. Recent reports have 

suggested that measurement of network architecture parameters can 

substantially improve detection of disease-related changes, and progression of 

pathology may itself be determined by brain network architecture (Buckner et 

al., 2009; de Haan et al., 2012; Petrella and Doraiswamy, 2013; Tijms et al., 

2013). For this reason, in this study network analysis was performed in order 

to identify network parameters that can predict for the development of AD.  
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Moreover, an explicit comparison between ICA and graph-based has been 

conducted by undertaking a cross-sectional comparison of graph-based 

analysis and ICA of RS-fMRI in patients with amnestic MCI (aMCI) (Jack et 

al., 2011) at high risk of developing AD.  

METHODS 

STUDY POPULATION 

We recruited Forty-nine patients with a diagnosis of aMCI: 25 female, aged 

70.2±8.7 years, mean MMSE score 26.4±1.8, Clinical Dementia Rating 0.5, 

Rey auditory verbal learning test corrected scores 31±6 immediate, 4.6±2.4 

delayed, 26 single-domain and 23 multiple-domain. At one year follow-up 

13/34 aMCI patients had converted to AD. The control group comprised 32 

cognitively normal participants, 14 female, age 65.9±8.0 years, mean MMSE 

score 30±0. Approval from the ethics committee was obtained. All 

participants gave written informed consent and the study was conducted in 

accord with the ethical principles of the Helsinki Declaration. 

DATA ACQUISITION 

All imaging was obtained using a head-only 3.0T MR scanner (Siemens 

Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany). The 

acquisition protocol included the following sequences: 1) a magnetization-

prepared rapid gradient echo (MPRAGE) sequence (TR = 2500ms; TE = 2.74 

ms; TI = 900 ms; Flip angle = 8°; matrix = 256×208×176; slab thickness = 

1mm; FOV = 256×208×176mm
3
). 2) a series of T2* weighted echo planar 

imaging (EPI) scans, sensitized to blood oxygenation level dependent contrast 
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(BOLD) (TR:2080 ms, TE:30 ms, 32 axial slices parallel to AC-PC line, 

matrix:64×64, pixel size:3×3 mm
2
, slice thickness:2.5 mm, flip angle:70°) for 

RS-fMRI. BOLD EPIs were collected during rest for a 7 min and 20 s period, 

resulting in a total of 220 volumes.  Dual-echo turbo spin echo, fast-FLAIR 

scans and structural scans were assessed by a neuroradiologist to exclude 

additional pathology. 

CONNECTIVITY ANALYSIS 

RS-fMRI data preprocessing was performed using SPM8 (Wellcome Trust 

Centre for NeuroImaging, London, UK), followed by graph analysis as 

previously described (Minati et al., 2013). As described in Chapter1, slice-

timing correction, realignment/unwarping and normalization were performed, 

then segmented grey matter maps were averaged across all participants. The 

brain with smallest squared difference from average was chosen and 

iteratively parcellated at high resolution, yielding 742 regions with volume 

1.55±0.33 ml. These were overlaid to each participant’s anatomy assigning 

each grey matter voxel to the nearest region, intrinsically removing potential 

atrophy-related confounds. The realignment parameters were temporally 

filtered with the same settings as the BOLD data prior to regression. Inter-

regional connectivity was determined through pair-wise linear regressions; 

resulting Pearson coefficients were thresholded for r>0.15, 0.2...0.75 and node 

degrees calculated. Network completeness, clustering coefficient and global 

network efficiency were also computed (Rubinov and Sporns, 2010). 

Additional equi-completeness analyses were performed, thresholding Pearson 
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coefficients with individually-determined values yielding fixed completeness 

across all participants; such analyses were conducted for 13 completeness 

levels, corresponding to the average completeness across all patients and 

controls observed at each r-level threshold in the fixed r-value analyses (Fig. 

1a). For comparison, we also performed group-level spatial ICA, using the 

Group ICA Toolbox v. 2.0e (University of New Mexico, USA) assuming 12 

components as given by the minimum description length criterion and using 

the same temporal filtering settings. Voxel-based morphometry was 

performed using the VBM8 toolkit of SPM8 (Gili et al., 2011). It is a 

neuroimaging technique that allows a voxel-wise comparison of the local 

concentration of gray matter between two groups of subjects.  

STATISTICAL ANALYSIS  

After co-varying for age and root-mean-square volume-to-volume head 

displacement, global network parameters were compared between aMCI 

patients and controls using two-tailed t-tests, with false-discovery rate (FDR) 

correction over the 13 correlation thresholds. Individual node degree maps 

were smoothed, averaging between each region and its neighbors with a factor 

of 0.75; subsequently, the number of regions for which node degree was 

significantly reduced in patients was calculated for all thresholds using two-

tailed t-tests, with FDR correction over the 742 regions. The threshold 

yielding the largest difference, r>0.60 (see results), was selected for 

generation of the presented maps, shown at pFDR<0.05. To facilitate 

comparison with previous studies using the more coarsely parcellated 
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Automated Anatomical Labeling (AAL) atlas, node degrees were also 

averaged over the 90 AAL regions and compared using analyses of variance. 

Statistical analysis of ICA and VBM maps was performed using SPM8, co-

varying for age and root-mean-square volume-to-volume head displacement. 

For each ICA component, an inclusive mask was determined by thresholding 

the main effect over all participants at pFWE<0.05; subsequently, patients and 

controls were compared applying a voxel-level threshold of p<0.005, followed 

by a corrected cluster level inference threshold of pFWE<0.05. The DMN 

component was identified by visual inspection of the main effect maps with 

reference to established topographical maps, upon agreement of 3 observers.  

To exclude potential confounding effects related to smoothing scale, ICA was 

repeated after smoothing the functional images with a Gaussian kernel having 

FWHM 20 mm, which corresponded to the FWHM of the distribution of 

voxel counts for a ROI with its neighbors, 20.3±5.3 mm. VBM results are 

presented for p<0.05; this extremely permissive voxel-level threshold was 

deliberately chosen to determine whether VBM would reveal any atrophy in 

areas of significant disconnection. As for ICA, the presence of significant 

difference was inferred at the cluster level, applying a corrected cluster 

threshold of pFWE<0.05. Receiver operating characteristic (ROC) curves for 

discrimination between aMCI patients and controls were calculated for 

regional and global parameters. Regional connectivity, intended as average 

node degree and ICA z-score, was measured over the precuneus and posterior 

cingulate region, which forms the core of the DMN (Rosazza and Minati, 
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2011); to avoid circularity, this region was identified on the AAL atlas, 

without any reference to the topographic maps of connectivity differences 

between patients and controls. Global DMN connectivity was measured by 

averaging the ICA z-score over the precuneus/posterior cingulate cortex, 

lateral parietal and medial prefrontal regions. For comparison, the Pearson 

correlation coefficient averaged over all combinations of the 742 regions used 

for network analysis was considered. The area under the resulting ROC 

curves, representing classification accuracy, was compared as described 

elsewhere (Hanley and McNeil, 1982). 

RESULTS  

For all thresholds r>0.35, aMCI patients were consistently characterized by 

decreased network completeness (k in Fig. 1a; for r>0.60: 0.0135±0.023 vs. 

0.0081±0.0051, t(77)=3.0, pFDR=0.01), decreased clustering coefficient (CP in 

Fig. 1a; for r>0.60: 0.292±0.092 vs. 0.233±0.087, t(77)=2.9, pFDR=0.02) and 

reduced global network efficiency (EGLOB in Fig.1a; for r>0.60: 

0.0681±0.0293 vs. 0.0486±0.0222, t(76)=3.3, pFDR=0.02). 

The number of regions for which node degree was lower in patients than 

controls gradually increased for r>0.25 and peaked at r=0.60. At this 

threshold, reduced node degree in aMCI was widespread and most 

pronounced in cuneus and pre-cuneus (extending to posterior cingulate 

cortex), supramarginal and angular gyri, inferior and superior parietal lobules, 

pre- and post-central gyri (Fig. 2). 
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Reduced connectivity was also detected in insula and inferior frontal 

operculum, predominantly on the right, and in posterior inferior temporal 

gyrus, thalamus and putamen. Average node degree was reduced in 29/45 

bilateral AAL regions (Fig. 1b), with the most significant differences in the 

precuneus, inferior and superior parietal lobules, supramarginal gyrus, post- 

and pre-central gyri, Rolandic operculum, superior occipital lobe, extending to 

the insula, cuneus, middle and inferior occipital, lingual and fusiform gyri; 

there were no lateralization effects. 

 

 

Fig. 1 Differences in global network parameters as a function of correlation threshold. Blue: controls, red: 

amnestic mci patients. K: network Completeness,cp: average clustering coefficient,eglob: global efficiency, 

%regions: proportion of regions for which significant disconnection Was observed. B) bar plots of node 

degrees calculated for |r|>0.6 for regions of the aal atlas. Error bars denote±1 standard deviation. *pfdr < 

0.05, **pfdr < 0.01, ***pfdr < 0.001. 
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Fig. 2 Topographical distribution of node degree reduction in amnestic mci patients compared 

to controls. 

The corresponding equi-completeness analysis (for k=0.01) revealed weaker 

effects, with decreased degree in the superior parietal lobule, superior occipital 

lobe and post-central gyrus and increased degree in the inferior, middle and 

medial frontal lobe, anterior cingulate and temporal pole; there were no 

lateralization effects and no differences in average clustering coefficient and 

global network efficiency. 
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ICA revealed decreased DMN connectivity in the medial parietal region, as 

well as in precuneus and posterior cingulate cortex, particularly on the right 

(Fig. 3, x=8, y=-44, z=26 mm, kE=447 voxels, cluster-level pFWE=0.01); 

increasing smoothing to 20 mm FWHM confirmed this effect (x=10, y=-44, 

z=26 mm, kE=424 voxels, cluster-level pFWE=0.02) without other areas of 

significant difference. The only additional effect observed in non-DMN 

components was a cluster of decreased connectivity in the cuneus (x=16, y=-

88, z=-14 mm, kE=439 voxels, cluster-level pFWE=0.01) for the visual 

component. VBM analyses showed cerebral grey matter atrophy primarily 

confined to medial temporal structures, and precuneus to a lesser extent; these 

effects were weak, and did not survive correction for multiple comparisons 

(Fig. 3). 

The best discrimination accuracy was provided by node degree measured in 

the posterior cingulate and precuneus region, with an area-under-curve (AUC) 

of 0.72. The AUC for average ICA z-score in this region, 0.49, was 

significantly lower (z=2.7, p=0.007; Fig. 4a) and did not change with 20 mm 

smoothing (p=0.5). By comparison to average ICA z-score calculated over the 

whole DMN (AUC 0.46), the average correlation coefficient (AUC 0.67), 

network completeness (AUC 0.66), average clustering (0.67) and global 

efficiency (AUC 0.68) calculated for r>0.6 all provided between 

discrimination accuracy (p≤0.02 for all comparisons; Fig. 4b).  
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Fig. 3  comparison of node degree changes, reduced connectivity in the default-mode network as 

determined by ica, and reduced grey matter volume as revealed by VBM. 

 

 

Fig. 4 ROC curves for discrimination of aMCI patients and controls. A) node degree and ica z-

score averaged over the precuneus and posterior Cingulate cortex. B) In order: average ica z-

score averaged over precuneus/posterior cingulate cortex, lateral parietal and medial frontal 

regions, Pearson correlation coefficient averaged over all combinations of 742 regions, network 

completeness (k), mean clustering (cp) and global Efficiency (eglob) at |r|>0.6 
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DISCUSSION 

Graph-based analyses have shown that in aMCI there is marked disconnection 

of the precuneus, parietal and temporal areas, regions representing densely 

interconnected cortical hubs within which early deposition of extracellular 

amyloid is observed (Buckner et al., 2009; Liu et al., 2013; Wang et al., 2013). 

However these analyses also demonstrate disruption of network connectivity 

in brain regions where AD pathology is not manifest until late disease stages, 

such as sensorimotor cortex and insula, thalamus and basal ganglia. These 

changes may represent the downstream consequences of disconnection of the 

hub regions which are also involved in the DMN. The importance of modeling 

network architecture was underlined by the observation that computation of 

global network parameters, which are agnostic to topographical localization of 

changes, demonstrated disruption of small-world architecture. The extent and 

magnitude of these changes contrasts with the results obtained using ICA, 

which revealed weaker and much more restricted connectivity changes in the 

precuneus-posterior cingulate region, consistent with several previous studies 

using ICA and SBA in aMCI (Gili et al., 2011; Petrella and Doraiswamy, 

2013; Rosazza and Minati, 2011; Tijms et al., 2013). 

The widespread changes in functional network architecture contrasted 

markedly with the relatively restricted topographical distribution of atrophy. 

Even at an extremely permissive uncorrected threshold, volume loss as 

determined by VBM was primarily limited to medial temporal lobe regions 

with relative sparing of parietal regions. This decoupling of changes in 
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network connectivity and brain volume supports the notion that altered brain 

function precedes atrophy in aMCI, and at the same time the areas where the 

earliest atrophy is observed are not those where disconnection is most 

pronounced. These data may support models of AD pathophysiology which 

propose that in early AD the accumulation of extracellular amyloid pathology 

in cortical hubs proceeds separately from tau pathology, which is more closely 

associated to medial temporal atrophy (Buckner et al., 2009; de Haan et al., 

2012; Tijms et al., 2013). The distribution of functional disconnection has a 

clear correspondence to the localization of gray matter atrophy in AD patients 

as reported in a previous study (Gili et al., 2011), involving the precuneus, 

inferior temporal gyrus, fusiform gyrus, orbitofrontal and medial frontal 

cortex, angular gyrus and insula. 

Receiver operating characteristic curves confirmed that node degree was 

superior to ICA DMN in discriminating aMCI patients and controls. While 

ICA revealed significant DMN connectivity differences in a localized cluster 

in the posterior cingulate cortex, the effect vanished when averaging over the 

whole anatomical region, and discrimination accuracy was at chance level; by 

contrast, discrimination based on node degree was clearly above chance level, 

though the accuracy was relatively modest.  

Decreased network completeness in patients and the fact that node degree 

differences were much weaker in the equi-completeness analysis indicate that 

the observed effects are primarily driven by diffuse reduction in connectivity 

strength, rather than by focal topological changes. While marked alterations in 
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network topology and connectivity of hub regions have been previously 

demonstrated in equi-completeness analyses, these are primarily found in 

moderate to severe AD; it appears plausible that in MCI, such architecture 

changes are not strong enough to survive normalization of the number of 

connections (Liu et al., 2013).  

Indeed, a recent study on aMCI found that the best discriminant between 

patients and controls was the mean functional connectivity strength (Wang et 

al., 2013). Even though compensatory changes cannot be ruled out, we ascribe 

the apparent increase in connectivity observed mainly in frontal regions to the 

effect of completeness normalization; in these areas, functional connectivity is 

better preserved in comparison to others, hence their degree increases when 

overall connectivity is normalized. In summary, aMCI is associated with 

disrupted functional connectivity not only involving the cortical hub regions 

constituting the DMN and known to be associated with early amyloid 

deposition but also extending to regions where AD pathology is not observed 

until late stages of disease. The amplitude and topographical extent of these 

changes significantly exceed both the connectivity changes identified using 

ICA and the atrophy as determined using VBM. These data highlight the 

potential value of graph-based analyses of functional networks in network 

connectivity in the determination of biomarkers of early AD.
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CHAPTER 4 

FUNCTIONAL ANATOMY OF THE THALAMUS AS A 

MODEL OF INTEGRATED STRUCTURAL AND 

FUNCTIONAL CONNECTIVITY OF THE HUMAN 

BRAIN IN VIVO. 

 

This chapter reports on a study where thalamo-cortical circuits were used as a 

model to infer the correspondence between anatomical (as measured by DTI) 

and functional (as measured by RS-fMRI) connectivity in a group of healthy 

subjects,  and to mutually validate these 2 methods. Other researchers 

collaborated to the present work. 

INTRODUCTION 

It is becoming increasingly clear that complex networks rather than isolated 

cortical areas sub-serve specific brain functions in the human brain, such as, 

for instance, movement, memory, or attention (Bressler and Menon, 2010; 

Bullmore and Sporns, 2009; Lang et al., 2012; Sporns et al., 2005; van den 

Heuvel and Hulshoff Pol). Against this background, RS-fMRI has emerged as 

a non-invasive tool able to measure the correlation between the spontaneous 

neural activity of different brain areas. In parallel, DTI and tractography 

(Basser and Pierpaoli, 1996; Parker et al., 2003; Pierpaoli et al., 1996) has 

allowed the identification of white matter connections that link these 

functional nodes. Based on this model of brain connectivity, it is conceivable 



_____________________________________________________________Chapter 4 

97 

 

that regions that appear to be functionally connected should be directly or 

indirectly structurally connected to each other. 

Therefore, the combination of connectivity measures obtained using RS-fMRI 

and DTI should provide a more complete picture of brain networks than one 

single connectivity analysis. To date, however, attempts to integrate the two 

techniques have produced only partially convincing results.  

One way of addressing this issue is to apply this model of connectivity to a 

brain structure with many, well characterized structural connections, such as 

the thalamus. The characterization of the thalamic structure has been 

performed across different species and through different methods. It was once 

thought that only the principal sensory nuclei of the thalamus received 

subcortical input and projected to the cerebral cortex, with the other nuclei not 

projecting to it. It is now known that every nucleus in the dorsal thalamus 

receives subcortical inputs and projects to the cerebral cortex (Jones, 2009). 

Post-mortem and lesion studies have also established that the thalamus is 

topographically organized into distinct nuclei from which parallel projections 

reach different regions of the cortex (Alexander et al., 1986; Haber, 2003). 

Electrophysiological and connectivity studies, conducted mainly in 

experimentally-accessible nuclei such as the somatic ventro-posterior nucleus 

or visual dorsal lateral geniculate nucleus, reinforced the notion of a rather 

strict point-by-point spatial correspondence between neuron soma location in 

the thalamus and axon distribution to the cortex. Overall, these observations 

led to the concept of thalamic nuclei being cytoarchitectonically-
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circumscribed regions receiving a specific set of afferent fibers and projecting 

topographically within the borders of a specific set of cortical fields (Clasca et 

al., 2012). 

The structural features of the thalamus make it possible to identify the 

thalamic nuclei based on the use of DTI. The first attempt in this direction 

exploited just the information derived from the local orientational features of 

the diffusion tensor in every voxel (Wiegell et al., 2002).  An alternative 

method was introduced by Behrens and collaborators (Behrens et al., 2003): 

instead of relying only on the local information about diffusion, connectivity-

based parcellation was used to segregate a grey matter region on the basis of 

information about remote connectivity derived from tractography, effectively 

enabling a segmentation of the thalamus based on this connectivity pattern 

(Behrens et al., 2003). A study conducted by the same group revealed that 

thalamic functional activations during motor and executive tasks co-localize 

with the thalamic regions with the highest probability of connectivity with 

motor and prefrontal cortical areas, respectively (Johansen-Berg et al., 2005). 

Using RS-fMRI, Zhang and collaborators (Zhang et al., 2008) parcellated the 

thalamus into nuclear groups, examining  patterns of functional connectivity 

within the thalamocortical system derived. In 2010 they then compared these 

results with those obtained by tractography parcellation, finding a general 

good overall concordance among structural and functional and histological 

results, thus suggesting that a simple model of direct anatomical connectivity 

between the cerebral cortex and the thalamus is capable of explaining much of 
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the observed correlations in neuronal activity (Zhang et al., 2010). A 

limitation of this study was that structural and functional connectivity were 

assessed in 2 separate groups of healthy participants. 

The aim of the present study is to compare structural (as measured by DTI) 

and functional (as measured by RS-fMRI) connectivity between the thalamus 

and the cerebral cortex in the same cohort of healthy participants, and to 

mutually validate these 2 methods. We used DTI tractography to define 

distinct thalamic regions structurally connected to different cortical areas. 

This parcellation was then compared with information derived from RS-fMRI. 

Seed-based analysis (SBA) was performed, using the thalamic regions 

(formerly classified by DTI connectivity) as seeds, to identify the cortical 

areas more strongly connected, from a functional point of view, to each 

specific thalamic region.  

METHODS 

We recruited a group of 38 right-handed healthy volunteers [M/F =18/20; 

mean (SD) age=50.36 (13.74) years] with no history of medical or psychiatric 

disorders, autonomic dysfunction, or other major clinical conditions. The 

study was approved by the ethical committee of Santa Lucia Foundation, and 

written informed consent was obtained from all subjects before study 

initiation. 

All imaging was obtained using a head-only 3.0T MRI scanner (Siemens 

Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany), 
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equipped with a circularly polarized transmit-receive coil. The acquisition 

protocol included the following sequences: 1) 3D Modified Driven 

Equilibrium Fourier Transform (MDEFT) scan (TR=1338 ms, TE=2.4ms, 

Matrix=256x224x176, in–plane FOV=250x250 mm
2
, slice thickness=1 mm); 

2) Diffusion tensor images (DTI) twice-refocused SE EPI (TR=7000 ms, 

TE=85 ms, maximum b factor=1000 smm
-2

, isotropic resolution 2.3 mm
3
). 

This sequence collects 7 images with no diffusion weighting (b0) and 61 

images with diffusion gradients applied in 61 non-collinear directions. 3) T2-

weighted EPI sensitized to BOLD contrast (TR=2080 ms, TE=30 ms, 32 axial 

slices parallel to AC-PC line). BOLD EPIs were collected during rest for 

7’and 20”, resulting in a total of 220 volumes. During this acquisition, 

subjects were instructed to keep their eyes closed, not to think of anything in 

particular, and not to fall asleep.  

DTI MRI ANALYSIS 

After correction for eddy current distortions as described in (Cercignani et al. 

2012), DTI images were processed using the Camino toolkit 

(www.camino.org.uk). The diffusion tensor was estimated in every voxel, and 

maps of fractional anisotropy (FA) were obtained for each subject. 

Following the procedure described by (Behrens et al. 2003), thalamic 

parcellation was obtained by defining the seed region (thalamus) and the 

target regions (cortex areas labelled as explained below). Then, probabilistic 

tractography was used to assign to each voxel in the seed some probability of 

being connected to each of the targets. The seed voxels were thus classified as 

http://www.camino/
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connecting to the target with maximum probability (winner-takes-all 

strategy), and each cluster of voxels connecting to the same target was 

labelled as belonging to the same substructure.  

A mask of the thalamus (seed region) in MNI coordinates was obtained by 

binarizing the Oxford Thalamic Connectivity Atlas 

(http://www.fmrib.ox.ac.uk/connect/), thresholded at 25% probability, while 

the target areas were defined on the MNI T1-weighted template provided with 

FSL as in (Behrens et al., 2003), identifying 7 exclusive cortical regions: 

prefrontal (PFC), primary motor (M1), premotor (lateral and medial) (PMC), 

primary and secondary somatosensory (S1/S2), posterior parietal (PPC), 

occipital and temporal cortices (Fig. 1).  

The transformation matching the seed and target masks to every subject’s 

DTII data was obtained by first co-registering the template with each 

participant’s T1-weighted volume, and then registering the T1-weighted 

volume with their FA map. The transformation matrices were combined. All 

registrations were performed using FLIRT (http://fsl.fmrib.ox.ac.uk/fsl/ ).  

Thalamic parcellation was obtained by running the probabilistic index of 

connectivity (PICo) algorithm (Parker et al., 2003) from each voxel in the 

thalamic mask, and labeling each voxel based on the most likely cortical 

region it was connected to. We will refer hereafter to the clusters identified by 

this segmentation as ‘DTI thalamic segments’. The parcellated thalamic 

masks were transformed into standard space and averaged across subjects 

(Fig. 1-2). 

http://www.fmrib.ox.ac.uk/connect/
http://fsl.fmrib.ox.ac.uk/fsl/
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FMRI PREPROCESSING 

The RS-fMRI data were processed using MATLAB R2007B (Math-Work, 

Natick, MA) and SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The first 4 

volumes of the functional images were discarded for signal equilibrium and 

adaptation of participant to scanning noise. Next, slice timing and head 

motion correction were performed, and the mean functional image was 

obtained for each participant. No participant exhibited head motion of >2 mm 

maximum translation or 2° rotation throughout the course of scan. The images 

were then normalized using the EPI template provided with SPM8. 

In-house software was used to remove, using a 3
rd

 order polynomial fit, the 

global temporal drift, the realignment parameters, and the signal averaged 

over whole brain voxels. Data were band-pass filtered (0.01-0.08 Hz) to 

remove high frequency variations.  

SEED BASED FUNCTIONAL CONNECTIVITY ANALYSIS 

Using seed based analysis, the mean time series from each DTI thalamic 

segment were extracted for every subject. They were then used as regressors 

in a first-level analysis in SPM8, in order to identify the degree of correlation, 

for every voxel in the brain, with each specific thalamic cluster, adding the 

motion parameters as nuisance variables. Contrast images for positive 

correlation were fed into a 2
nd

 level analysis in SPM8, using a one-sample T-

Test model. Results were considered significant for p<0.05 FWE corrected at 

voxel level, and masked to retain only cortical results. 

QUANTITATIVE COMPARISON 

http://www.fil.ion.ucl.ac.uk/spm/
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 In order to estimate the amount of overlap between structural and functional 

thalamo-cortical connections, we computed the number of cortical voxels 

resulting functionally connected to the thalamic clusters using SBA that 

overlapped with the cortical labels used for tractographic parcellation. We 

then computed: 1) the ratio between the overlapping voxels and the total 

number of voxels in each cortical label; and 2) the ratio between the 

overlapping voxels and the total number of voxels showing functional 

connectivity with the corresponding thalamic cluster. Both quantities were 

expressed as a percentage. 

RESULTS  

DTI THALAMIC PARCELLATION 

The thalamic parcellation yielded results comparable with those reported by 

Behrens et al. (Behrens et al., 2003). As shown in Figures 1 and 2, each 

cortical region was specifically connected with distinct, spatially restricted 

zones within the thalamus. Each DTI thalamic segment obtained by this 

parcellation is color-coded as the corresponding connected cortex (Fig. 1-2). 

Moreover, we visually compared our parcellation with the one obtained by 

Wiegell and collegues (Wiegell et al., 2003). We found a consistent 

correspondence between the DTI thalamic segments that we obtained, the 

automatic segmentation that they performed using an anatomic clustering 

algorithm, and the thalamo-cortical pathways known from previous 

histological studies (Niemann et al., 2000). 
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According to our segmentation, the area of the thalamus preferentially 

connected with the prefrontal cortex (in green in Fig. 1-2) includes a large 

portion of the anterior complex, with part of the anterior ventral (AV), the 

ventral anterior (VA) and the ventro lateral (VL) nuclei, the medial-dorsal 

(MD) nucleus and the parafascicular (PF) and centromedian (CM) nuclei. 

Moreover, prefrontal connections were also found in a more posterior area 

corresponding with a portion of the pulvinar (Pu). Both MD and PF nuclei are 

known to project to the prefrontal association cortex, while the ventrolateral 

nucleus is known to be connected to the premotor cortex (Wiegell et al., 

2003). 
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Fig. 1 DTI mri parcellation of the thalamus. A) for the DTI mri parcellation of the thalamus 7 

exclusive cortical regions defined on the MNI t1-weighted template were used:  prefrontal 

(PFC), primary motor (m1), lateral and medial premotor (PMC), temporal (TC), posterior 

parietal (PPC), primary and secondary somatosensory (s1/s2) and occipital cortex (OC). B) the 

resulting DTI thalamic segments obtained by DTI mri parcellation are overlaid onto a t1-

weighted template provided with fsl. Each segment is color-coded as the corresponding 

connected cortex. See text for further details. 

 

Posterior to this cluster, the segmentation identified a region connected to the 

temporal lobe (in red in Fig. 1-2), overlapping with the medial geniculate 

nucleus (MGN), the lateral geniculate nucleus (LGN) (bottom right in coronal 

slice section, Fig. 2), part of medial and inferior Pu and the supero-medial 

parts of the anterior complex that projects to limbic areas in the medial 

temporal regions (Behrens et al., 2003). Interestingly, from the existing 

literature, we know the MGN is involved in hearing function and its main 
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cerebral outputs are the primary auditory cortex and the superior temporal 

gyrus, while Pu projects mainly to parietal, temporal and occipital association 

cortices. The thalamic region connected to the premotor cortex is coloured in 

pink in Figures 1-2, and it shows a strong correspondence with the posterior 

part of VL nucleus (which is known to project to premotor and primary motor 

cortices). A correspondence with the lateral portion of CM (connected to 

motor cortex) and the anterior part of ventral posterolateral (VPL) nucleus 

(connected with primary somatosensory cortex) is also detectable.  

 

Fig. 2 Enlarged view of the DTI thalamic segments. A) sagittal, coronal and axial views of the 

segmented thalamus. Coordinates are in MNI space. B) zoomed axial views of the DTI 

thalamic segments. Colours correspond to the cortical labels listed in the legend, and shown in 

fig. 1. The thalamic parcellation yielded results comparable with those reported in (behrens et 

al., 2003). Abbreviations: PFC=prefrontal, M1=primary motor, PMC=Premotor, TC=temporal 

cortex, PPC=posterior parietal, S1/S2=primary and secondary somatosensory, OC=occipital 

cortices. 
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Because of the small size of motor and somatosensory cortex masks, voxels 

that show structural connections with these regions are not well delimited 

after thalamic parcellation. However, the voxels connected to the motor cortex 

(in brown in Fig. 1-2) are placed anteriorly with respect to those connected to 

somatosensory cortex (purple). Despite the small size, we identify a 

correspondence between these 2 thalamic regions and the posterior part of 

VPL and with a little portion of ventral posteromedial (VPM) nucleus. Both 

of them are known to act as relay stations for proprioceptive, vibration and 

touch information pathways, the former from the medial lemniscus, the latter 

from the trigeminal nerve. Moreover, VPL and VPM are known to be 

involved in movement through projections to somatosensory cortex and 

primary motor cortex. 

The remaining 2 clusters are connected, respectively, with the posterior 

parietal cortex (darker blue), and with the occipital cortices (lighter blue). 

These regions are mainly distributed in the posterior and inferior parts of the 

thalamus including the lateral and medial part of Pu and the lateral posterior 

(LP) nucleus. A correspondence between a portion of the thalamus connected 

with parietal cortex and VPL is also noticeable. As reported above, Pu is well 

known to be involved in associative functions and it is mainly connected with 

parietal, temporal and occipital cortices. Also the LP nucleus plays a role in 

the associative functions and projects to posterior parietal cortex.  

Overall, there is consistency between the results of our segmentation and the 

existing literature on thalamic nuclei. Table 1 summarizes the correlations 
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between our results, the corresponding thalamic nuclei and their known 

connections with the cortex. 

SEED BASED FMRI CONNECTIVITY ANALYSIS 

The RS-fMRI data showed significant (p<0.05 FWE corrected) patterns of 

connectivity in the cortex for all the DTI thalamic segments, with the 

exception of the thalamic region structurally connected to M1, whose fMRI 

connectivity pattern did not survive FWE correction. In order to assess the 

consistency between structural and functional connections, we compared the 

cortical areas functionally connected to each DTI thalamic region with the 

cortical mask originally used as targets to drive the DTI segmentation. As 

reported in Figures 3-7 (panel A), the thalamic portion structurally connected 

to PFC, S1-S2, PMC, TC and PPC, showed a partial overlap (in yellow) 

between functional connectivity and original masks used to assess structural 

thalamo-cortical connections. Not overlapping regions were found between 

functional connection with PFC-structurally-connected  thalamic portion and 

original OC mask used to assess structural thalamo-cortical connections. 

Every DTI thalamic region also showed functional connectivity to regions of 

the cortex outside the target mask used for tractography (in blue in Fig. 3-7, 

panel B). Table 2 lists all the functional connections found for each DTI 

thalamic segment. 

QUANTITATIVE COMPARISON 

Figure 8 shows the results of the quantitative comparison, confirming that the 

overlap between functional and structural connectivity to the thalamus is 

modest. 



_____________________________________________________________Chapter 4 

109 

 

DTI thalamic segment 
connected to 

Thalamic nuclei included in 
DTI segment   KNOWN CONNECTIONS 

PREFRONTAL 
CORTEX AV  anterior ventral                                   X cinglate gyrus, limbic association cortex 

  VA Ventral anterior                                    X prefrontal association cortex 

  VL ventro lateral   premotor and primary motor cortex 

  MD media dorsal                                     X prefrontal association cortex 

  PF parafascicular                                     X prefrontal cortex, caudate nucleus 

  CM centromedian   motor cortex and putamen 

  Pu pulvinar   
parietal, temporal, occipital association 
cortex 

PREMOTOR CORTEX VL ventral lateral                                        X premotor and primary motor cortex 

  VPL ventral postero lateral   primary somatosensory 

MOTOR CORTEX VPL ventral postero lateral   primary somatosensory 

  VPM ventral postero medial   primary somatosensory, insula 

  CM centromedian                                     X motor cortex and putamen 

SOMATOSENSORY 
CORTEX VPL ventral postero lateral   primary somatosensory 

  PM ventral postero media                  X primary somatosensory, insula 

  CM centromedian   motor cortex and putamen 

PARIETAL POSTERIOR 
CORTEX 

Pu pulvinar                                                   
X   

parietal, temporal, occipital association 
cortex 

  LP Lateral posterior nucleus                X posterior parietal association 

  VPL ventral postero lateral                  X primary somatosensory 

OCCIPITAL CORTEX Pu pulvinar                                                   X 
parietal, temporal, occipital association 
cortex 

  LP Lateral posterior nucleus                X posterior parietal association 

TEMPORAL CORTEX MGN medial geniculate                         X 
primary auditory cortex, superior 
temporal gyrus 

  LGN lateral geniculate nucleus   primary visual cortex, calcarine gyrus 

  VA Ventral anterior   prefrontal association cortex 

  VL ventral lateral   premotor and primary motor cortex 

  MD media dorsal   prefrontal association cortex 

 

Table 1. Comparison of DTI segmentation and anatomical properties of the thalamus. The first 

column lists the cortical regions each DTI thalamic segment was mostly connected to. The 

middle column lists the thalamic nuclei identified within each DTI Thalamic segment. The 

right column lists the connections that have been documented for the nuclei listed in the central 

column. A cross indicates a matching between tractographic and known connections. To ease 

the comprehension, each segment is coloured with the same shade as in Figures 1-2. 
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            DTI thalamic segment 

connected to 

Functional connections 

overlapping with cortical masks* 

Functional connections not 

overlapping with cortical masks* 

PREFRONTAL CORTEX  Superior frontal gyrus L  Precentral gyrus R L               

 Middle frontal gyrus R  Temporal pole R L  

 Frontal pole R L  Cyngulate gyrus  

  Supramarginal Gyrus R L  

  Planum polare R  

PREMOTOR CORTEX  Precentral gyrus R L  Post central gyrus L  

  Lingual gyrus R  

  Planum polare R L  

  Insular cortex R L  

MOTOR CORTEX  None  None  

SOMATOSENSORY CORTEX  Superior lateral lobe L  Precuneus cortex L  

 Posterior central gyrus R  Precentral gyrus R  

  Parietal operculum cortex R L  

PARIETAL POSTERIOR 

CORTEX  Precuneus cortex R L  Temporal pole R  

 Central operculum cortex R  Temporal fusiform cortex R L  

 Cingulate gyrus R L  Lyngual gyrus R L  

OCCIPITAL CORTEX  None  Cyngulate gyrus R L  

TEMPORAL CORTEX  Temporal fusiform cortex R L  Lyngual gyrus R L  

 Temporal pole R L  Intracalcarin cortex R L  

 Inferior temporal gyrus R L  Precuneus Cortex R L  

 

* By “cortical masks” here we refer to the cortical labels used to segment the thalamus in the DTI analysis.  

Table 2. Functional connections to every DTI thalamic segment The first column lists the 

cortical regions each DTI thalamic segment was mostly connected to. The middle and right 

column lists the cortical areas found to be functionally connected to each of them, based on RS-

fMRI analysis, classified as being overlapping or non-overlapping with  structural connections. 

To ease the comprehension, each segment is coloured with the same shade as in Figures 1-2. 
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Fig. 3 Prefrontal cortex (PFC) connections: overlap and mismatch between functional and structural 

thalamic connections. A) overlapping regions (yellow) between functional connection with pfc-structurally-

connected  thalamic portion and original PFC mask (green) used to assess structural thalamo-cortical 
connections. B) functional connections (blue) to pfc structurally connected thalamic portion that fall outside 

the target pfc mask used for tractography. 

 

Fig. 4 Premotor cortex (PMC) connections.h between functional and structural thalamic connections. A) 
overlapping regions (yellow) between functional connection with PMC-structurally-connected  thalamic 

portion and original PMC mask (pink) used to assess structural thalamo-cortical connections. B) functional 

connections (blue) to pmc structurally connected  thalamic portion that fall outside the target pmc mask 
used for tractography 
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Fig. 5 Parietal cortex (PC) connections: overlap and mismatch between functional and structural thalamic 

connections. A) overlapping regions (yellow) between functional connection with pc-structurally-connected  

thalamic portion and original PC mask (medium blue) used to assess structural thalamo-cortical 
connections. B) functional connections (dark blue) to PC structurally connected thalamic portion that fall 

outside the target pc mask used for tractography. 

 

Fig. 6 Somatosensory cortex (s1/s2) connections: overlap and mismatch between functional and structural 

thalamic connections. A) overlapping regions (yellow) between functional connection with s1/s2-
structurally-connected  thalamic portion and original s1/s2 mask (brown) used to assess structural thalamo-

cortical connections. (yellow voxels). B) regions functional connections to s1/s2 structurally connected  

thalamic portion that fall outside the target s1/s2 mask used for tractography. 
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Fig. 7 Temporal Cortex (TC) Connections: overlap and mismatch between functional and structural 
thalamic connections. A) Overlapping regions (yellow) between functional connection with TC-

structurally-connected  thalamic portion and original TC mask used to assess structural thalamo-cortical 

connections (red). B) Functional connections (dark blue) to TC structurally connected thalamic portion that 
fall outside the target TC mask used for tractography. 

 

 

Fig.8 percentage overlap between structural and functional connections, obtained with probabilistic 
tractography and seed-based analysis, respectively.  Percentage are computed a) over the total number of 

voxels in the corresponding corticallabel, and b) over the total number of voxels found to be connected to 

each thalamic cluster by sba. Abbreviations: PFC=prefrontal, M1=primary motor, PMC=premotor, 
TC=temporal cortex, PPC=posterior parietal, s1/s2=primary and secondary somatosensory, OC=occipital 

cortices. 
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DISCUSSION 

This work attempts for the first time to characterize and compare structural 

and functional thalamo-cortical connections in the same group of individuals. 

The purpose was to use the thalamus as a model for integrating structural 

connectivity measures derived from DTI and functional connectivity measures 

derived from RS-fMRI. This fits with the concept that the anatomical 

specialization of a brain region determines its functional specialization 

(Passingham et al., 2002). Therefore, mapping the anatomical connections of 

a region should allow us to define functional-anatomical boundaries 

(Beherens et al., 2011). Despite functionally connected regions are expected 

to be also connected in structure, the extent to which functional and 

anatomical MRI-derived connectivities express each other is still largely 

unknown. 

Several interesting observations can be drawn from our results. First, this 

study confirms the reproducibility of thalamic parcellation using probabilistic 

tractography: our results are consistent with those obtained by previous work 

by other groups (Behrens et al., 2003; Johansen-Berg et al., 2005; Zhang et 

al., 2010). Taken together, all these studies suggest that there is a good 

correspondence between the segmentation based on cortical connectivity and 

predictions based on invasive tract tracing studies on thalamo-cortical and 

cortico-thalamic connectivity in non-human animals (Darian-Smith et al., 

1990; Darian-Smith et al., 1996; Goldman-Rakic and Porrino, 1985; Yeterian 
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and Pandya, 1985; Yeterian and Pandya, 1988; Yeterian and Pandya, 1989; 

Yeterian and Pandya, 1991; Yeterian and Pandya, 1997).  

To provide a better understanding of the relationship between functional and 

anatomical connectivity, we used SBA of RS-fMRI data. The results showed 

only a partial overall correspondence between structural and functional 

connections, thus suggesting that the two approaches are likely to provide 

complementary information. Indeed, structural connectivity as measured by 

tractography can only detect mono-synaptic connections, while functional 

connectivity is likely to rely on poly-synaptic pathways too. For example, a 

number of thalamo-cortical connections are known to be non-direct, but 

mediated by the basal ganglia (Haber et al., 2009). This finding of non 

overlapping functional and anatomical connections is consistent with the 

results of a study conducted by Honey and collaborators demonstrating that 

robust functional connectivity can be found between regions not structurally 

linked by direct pathways, and that functional networks continuously 

reconfigure around the underlying anatomical skeleton. Moreover, although 

the presence of strong anatomical connections is predictive of strong RS 

functional connections, the reverse inference is less reliable (Honey et al., 

2009). Another important observation is that we are only considering 

functional connectivity at rest.  As it is conceivable that some level of 

modulation is introduced by task performance (Albert et al., 2009; Hasson et 

al., 2009), functional connectivity at rest may differ from functional 

connectivity during the performance of an active task.  
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Finally, some other methodological issues should be considered.  As many 

authors before us, we have used a winner-takes-all strategy to define the DTI 

thalamic segments. This approach increases specificity to selected pathways, 

but reduces sensitivity, as some nuclei show connections to multiple cortical 

sites. For example the thalamic portion found to be connected with PFC by 

DTI (green in Fig. 1-2) includes part of Pu, which is known to be 

anatomically connected to the temporal pole (Chabardes et al., 2002; Niemann 

et al., 2000). Consistently, the seed-based functional connectivity analysis 

highlighted a correlation between the BOLD time series extracted from this 

segment and the insular cortex and planum polare (Table 2).  

The between-region distance could also play an important role in the 

localization of functional correlation (Honey et al., 2009): those regions that 

are closer to the thalamic nucleus used as seed are more likely to show a 

correlation with it because of the proximity influence. Finally, the variable 

size of each DTI thalamic segment could influence the detection of functional 

connections through RS seed based analysis.  

Additional factors might be responsible, at least partially, for our results. First, 

different spatial sensitivity of the two techniques could arise from different 

image resolutions, different preprocessing steps (e.g fMRI data were 

smoothed while DTI data were not), and different kind of artifacts (e.g. 

susceptibility). Second, specific limitations of each approach could also play a 

role, such as the inability of the tensor model used to analyze DTI to account 
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for multiple directions within a voxel. Future studies should thus be designed 

to address at least some of these limitations. 

In conclusion, this is the first study that attempts to cross validate two 

different methodologies for the investigation of thalamo-cortical correlations 

in the same group of subjects, showing only a partial correspondence. While 

some methodological aspects might account for this mismatch, we propose 

that these two approaches offer complementary information on brain 

connectivity. Future studies are warranted to extend the results we obtained in 

the thalamus to other structures, and to confirm that the mechanisms behind 

functional connectivity are more complex than just expressing structural 

connectivity.



 

 

CHAPTER 5 

NETWORK BASED STATISTICAL ANALYSIS 

DETECTS CHANGES INDUCED BY CONTINUOUS 

THETA BURST STIMULATION ON BRAIN ACTIVITY 

AT REST 

 

In this study I combined RS-fMRI with TMS to evaluate the influence of 

inhibitory effect of cTBS on the functional connectivity in a group of healthy 

controls. The study was performed in collaboration with other reasearechers. 

INTRODUCTION 

As already mentioned in Chapter 1, as RS-fMRI is becoming one of the most 

popular techniques for assessing functional connectivity and non invasive 

brain stimulation methods such as TMS can be used to probe response to 

perturbation/stimulation, the combination of these techniques holds great 

promise for the characterization of brain networks and for addressing several 

important clinical issues (Deco et al., 2011; Fox and Raichle, 2007; van den 

Heuvel and Hulshoff Pol, 2010).  

To date, different approaches have been used to investigate the effect of a 

perturbation on fMRI functional connectivity: some studies have been 

performed to assess the influence of tDCS on RS-fMRI data (Keeser et al., 

2011; Meinzer et al., 2012; Pena-Gomez et al., 2011; Polania et al., 2011). 

Other work focused on the influence of TMS on task-based effective 

connectivity (Grefkes et al., 2008; Lee et al., 2003b; O'Shea et al., 2007; 
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Pleger et al., 2006). Just few studies investigated so far the effects of 

repetitive TMS (rTMS) on RS-fMRI (Eldaief et al., 2011; van der Werf et al., 

2010; Vercammen et al., 2010b). In one study rTMS was applied over the left 

dorsolateral prefrontal cortex (DLPFC) resulting in distal changes of neural 

activity within the DMN (van der Werf et al., 2010). Similarly Eldaief and 

collaborators tested two different frequencies of rTMS applied over the left 

posterior inferior parietal lobule (IPL) to evaluate the effect on the DMN: 

high-frequency rTMS decreased functional correlations between cortical 

DMN nodes, but not between these nodes and the hippocampal formation. In 

contrast, low frequency rTMS increased functional correlations between IPL 

and the hippocampal formation (Eldaief et al., 2011). Another study tested the 

effects of 5 Hz rTMS on prefrontal-hippocampal coupling during both a 

working memory task and at rest. Finally, seeded functional connectivity 

analyses demonstrated significant effects of rTMS on the prefrontal network 

dynamics in the n-back task that were not evident during rest (Bilek et al., 

2013). All these studies were performed with a strong working hypothesis, 

either testing only one Resting State Network (RSN) (Eldaief et al., 2011; van 

der Werf et al., 2010) or using coupling analyses within a specified 

connection (Bilek et al., 2013). Moreover all of them compared the effects of 

rTMS in two separate sessions performed on different days, which could have 

increased the intrinsic variability of the functional connectivity measured by 

fMRI. 
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Here, for the first time we compared RS-fMRI data recorded before and after 

real continuous theta-burst repetitive stimulation (cTBS), a powerful protocol 

resulting in long-lasting decreases of cortical excitability (Huang et al., 2005), 

which I have described in detail in Chapter 1. An additional element of 

novelty is that we used a network analysis based on network based statistics 

(NBS) (Zalesky et al., 2010) (see Chapter1) to include all the most relevant 

nodes of the areas interconnected with the stimulated site (the right DLPFC). 

We chose to stimulate the right DLPFC, since TMS of this area is known to 

modulate several cognitive functions and has a potential role in treating 

various clinical conditions such as depression and Parkinson’s disease (Chen 

et al., 2013; George et al., 2013). 

METHODS 

The study was approved by the ethics committee of Santa Lucia Foundation, 

and written informed consent was obtained from all subjects before study 

initiation.  

We recruited 36 healthy volunteers [m/f =18/18; mean (SD) age=26.88 (3.5) 

years] with no history of medical or psychiatric disorders, autonomic 

dysfunction, or other major clinical conditions. The experimental session 

included an MRI scan, followed by either cTBS or sham stimulation, and a 

post-intervention MRI scan (Fig. 1). Each participant was randomly assigned 

to either group, resulting in 18 participants receiving cTBS, and 18 receiving 

the sham. 
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Fig. 1 Experimental set up. RS-fMRI was acquired before and after cTBS stimulation in half of 

the participants. The remaining 18 participants received sham stimulation instead.  

 

MRI ACQUISITION PROTOCOL 

All imaging was obtained using a head-only 3.0T MR scanner (Siemens 

Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany). The 

acquisition protocol included the following sequences: 1) a magnetization-

prepared rapid gradient echo (MPRAGE) sequence (TR = 2500ms; TE = 2.74 

ms; TI = 900 ms; Flip angle = 8°; matrix = 256×208×176; slab thickness = 

1mm; FOV = 256×208×176mm
3
). 2) a series of T2* weighted echo planar 

imaging (EPI) scans, sensitized to blood oxygenation level dependent contrast 

(BOLD) (TR:2080 ms, TE:30 ms, 32 axial slices parallel to AC-PC line, 

matrix:64×64, pixel size:3×3 mm
2
, slice thickness:2.5 mm, flip angle:70°) for 

resting state fMRI. BOLD EPIs were collected during rest for a 7 min and 20 

s period, resulting in a total of 220 volumes.  

CTBS PROTOCOL 

A MagStim Super Rapid magnetic stimulator (Magstim Company, Whitland, 

Wales, UK), connected with a figure-of-eight coil with a diameter of 90 mm 

was used to deliver cTBS over the scalp site corresponding to the right 
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prefrontal cortex (F4 electrode International 10-20 system). The magnetic 

stimulus had a biphasic waveform with a pulse width of about 300 µs. Three-

pulse bursts at 50 Hz repeated every 200 ms for 40 s were delivered at 80% of 

the Active Motor Threshold (AMT) over right prefrontal cortex (600 pulses). 

AMT was tested over the motor cortex of the right hemisphere. AMT was 

defined as the lowest intensity that produced MEPs of >200 µV in at least five 

out of 10 trials when the subject made a 10% of maximum contraction using 

visual feedback (Rothwell, 1997). The coil was positioned tangentially to the 

scalp, with the handle pointing superiorly. For sham cTBS the coil was 

positioned over the same scalp site, but angled away so that no current was 

induced in the brain. 

DLPFC was targeted using a neuronavigation system (Softaxic) to precisely 

position the coil over the cortical site, using individual T1-weighted magnetic 

resonance imaging volumes as anatomical reference; this technique has been 

previously described in detail (Koch et al., 2009; Koch et al., 2007). The 

stimulation points were determined before the experiment and were marked 

on the adherent plastic cap worn by the subject. To target DLPFC, the coil 

was positioned over the middle of the line separating the anterior and middle 

thirds of this gyrus, following the algorithm proposed by Mylius and 

collaborators (Mylius et al., 2013). According to the anatomical data reported 

by Rajkowska and Goldman-Rakic (Rajkowska and Goldman-Rakic, 1995), 

this target is localized at the junction between BA9 and BA46. This location is 

in agreement with meta-analyses of neuroimaging studies on working 
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memory (Fitzgerald et al., 2006; Glahn et al., 2005). The center of the coils 

was positioned tangentially to the skull with the handle pointing backward 

angled at 45° (Fig. 1). 

RS-FMRI PREPROCESSING 

The RS-fMRI data were processed using MATLAB R2007B (Math-Work, 

Natick, MA) and SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) . 

 The first 4 volumes of the functional images were discarded for signal 

equilibrium and adaptation of participant to scanning noise. Next, slice timing 

and head motion correction were performed. Participants exhibiting head 

motion of >2 mm maximum translation of 2° rotation throughout the course 

of scan were excluded. The images were then normalized using the EPI 

template provided with SPM8. 

In-house software was used to remove the global temporal drift using a 3
rd

 

order polynomial fit, the realignment parameters, and the signal averaged over 

whole brain voxels. Data were band-pass filtered (between 0.01 and 0.08 Hz) 

SEED BASED CONNECTIVITY ANALYSIS (SBA) 

SBA was performed to identify the cortical areas functionally connected with 

the stimulated region. For each subject the mean time course (TC) of the right 

DLPFC was extracted for each subject using the prefrontal cortex region 

defined in Harvard Oxford atlas ( http://www.cma.mgh.harvard.edu/ ), 

available with FSL. 

Each participant’s TC was then used as regressor in a first-level analysis in 

SPM8, in order to identify the degree of correlation, for every voxel in the 

brain, with the prefrontal region, adjusting for the motion parameters. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.cma.mgh.harvard.edu/
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Contrast images for positive correlation were fed into a 2
nd

 level analysis 

using a one-sample T-Test. Results were considered significant for p<0.05 

FWE corrected at voxel level.  

NETWORK BASED STATISTIC (NBS)  

The clusters that resulted to be significantly connected to the right prefrontal 

cortex (Fig.2) were then defined as the nodes of the network of interest. Using 

marsbar (http://marsbar.sourceforge.net/), we created 29 spheres, with a 

diameter of 8 mm each (see Table I, Fig.3), centered at the centre of gravity of 

each of the nodes, from which mean TCs were extracted to estimate a 

connectivity matrix for each subject. The number of rows and columns in this 

matrix is the total number of nodes in the network, and the elements are 

defined as the correlation coefficient between the TC of each pair of nodes.  

Once each participant connectivity matrix was obtained, we used the NBS 

toolbox (Zalesky et al., 2010) 

(http://www.cmtk.org/viewer/documentation/users/tutorials/tut_nbs.html) to 

compare the correlation between each node of the network before and after 

cTBS, using a paired T-test design. The false discovery rate (FDR) was used 

to adjust for multiple comparisons, with 25000 permutations. Results were 

considered significant for p<0.05. The same analysis was performed on the 

data acquired before and after sham stimulation. 

RESULTS 

Four participants who received sham stimulation were excluded due to 

excessive motion during fMRI, thus resulting in the following 2 groups: 18 

http://marsbar.sourceforge.net/
http://www.cmtk.org/viewer/documentation/users/tutorials/tut_nbs.html
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subjects receiving cTBS [m/f =9/9; mean (SD) age=26.72 (3.8) years], and 14 

receiving sham stimulation [m/f =6/8; mean (SD) age=27.07(3.6) years]. 

SBA revealed a specific pattern of correlation between right DLPFC and 

several brain regions, including the right and left prefrontal, parietal, temporal 

cortex, precuneus, posterior cingulated cortex, thalamus, caudate nucleus and 

cerebellum (Fig. 2). The corresponding network nodes are shown in Table I 

and Fig.3.  

 

Fig. 2 Brain regions functionally correlated to the right prefrontal cortex used as seed in seed-

based analysis.    

 

Fig. 3 Spherical rois (radius=8mm) defining the nodes of the network investigated before and 

after cTBS. 
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We detected a striking decreased correlation between the right DLPFC and 

the right posterior parietal cortex (Brodmann areas 10 and 40 respectively) 

after stimulation (p<0.05) (Fig. 4). The same analysis performed on the data 

acquired before and after sham stimulation did not show any difference 

among the tested connectivity matrices. 

 

Fig. 4 3d graph representing the investigated network. The green nodes indicate the rois whose 

connectivity (represented by the red edge) was decreased after stimulation. The radius of each 

of the red nodes reflects the node strength (i.e., the sum of the weights of each edge connected 

to the node). The thickness of the edges reflect the strength of correlation between each node. 

Only connections with correlation coefficient > 0.3 are displayed. 

DISCUSSION 

In this study we provide new evidence for the role of RS-fMRI in detecting 

changes in brain activity associated with TMS. Through RS-fMRI it is 

possible to identify functional connections that reflect temporal coupling 
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between distant regions. Thus, characterizing the covariance of the BOLD 

signal in anatomically distant areas of the brain can be useful to measure the 

degree to which the network properties are affected by TMS. Here, RS-fMRI 

was carried out before and immediately after TMS to provide direct measures 

of the functional organization of the DLPFC-correlated network and its plastic 

reorganization induced by stimulation.  

To assess the influence of the perturbation induced by TMS on FC, we used 

NBS. It is a novel network based approach to identify functional correlations 

between different brain regions known to be part of a specific pattern of co-

activation. This methodology is based on graph theory that provides a 

theoretical framework to examine complex networks, thus revealing important 

information about their local and global organization (Eldaief et al., 2011; van 

den Heuvel and Hulshoff Pol, 2010). NBS was used after the identification of 

a specific network of right DLPFC correlated regions, in order to restrict the 

analysis to the nodes showing functional connections to the stimulation site. 

Such network was identified using SBA, and it strictly resembles a network 

previously described as the right fronto-parietal network (FPN) by several 

groups (Beckmann CF, 2005; Calhoun et al., 2008; Damoiseaux et al., 2006; 

Jeong et al., 2012; van den Heuvel and Hulshoff Pol, 2010). Accordingly, we 

found that DLPFC cTBS induced a selective modulation of the ipsilateral 

posterior parietal cortex. This finding could be interpreted on the basis of the 

well known functional interactions strongly linking the activity of the DLPFC 

with that of the PPC (Koch et al. 2012a). These two areas are jointly 
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implicated in a variety of cognitive functions and are thereby considered two 

main nodes of the FPN. Indeed, throughout the literature, two strongly 

lateralized RSNs have consistently been reported, one predominantly in the 

right hemisphere and the other in the left hemisphere usually with a specular 

pattern involving the middle frontal and orbital cortex (BA 6/9/10), the 

superior parietal cortex (BA 7/40), the middle temporal gyrus (BA 21), and 

the posterior cingulate cortex (BA 23/31) (Damoiseaux et al., 2006). These 

two networks are known to be closely coupled in a wide range of cognitive 

processes, such as working memory, both in adults (D'Esposito et al., 1998; 

Damoiseaux et al., 2006; van Asselen et al., 2006; Wager and Smith, 2003) 

and in children and adolescents (Finn et al., 2010; Kwon et al., 2002; 

Thomason et al., 2009), language (Smith et al., 2009), attention (Corbetta et 

al., 1998; Dosenbach et al., 2007; Fink et al., 2001; Vannini et al., 2007) and 

visual processes (De Luca et al., 2006).  

Consistently, recent tDCS literature suggests that low-intensity electrical 

stimulation over the DLPFC can result in transient improvements in a variety 

of cognitive functions including declarative (Floel et al., 2008) and working 

memory (Fregni et al., 2005; Zaehle et al., 2011), planning (Dockery et al., 

2009), language learning (Floel et al., 2008), attention  (Boggio et al., 2007) 

and decision making (Boggio et al., 2010). 

To better understand the substrate of these changes, the interaction between 

the nodes of the FPNs has been investigated using tDCS. A previous study 

(Pena-Gomez et al., 2011) examined how active tDCS over the left or right 
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DLPFC in comparison with sham tDCS modulates time course fluctuations 

within and across the DMN and the anti-correlated network (AN) on RS-

fMRI. One of the main results emerging from this work is that active anodal 

tDCS over the DLPFC results in a stronger temporal functional connectivity 

between prefrontal and parietal regions, supporting our current findings. 

Similar results were obtained by Keeser et al. (Keeser et al., 2011), who 

measured significant changes in regional brain connectivity for nodes of the 

DMN and the right and left FPNs. Such changes were detected after DLPFC-

tDCS both, close to the primary stimulation site, and in connected brain 

regions.  

On the other hand, the effects of TMS (as opposed to tDCS) have been mainly 

evaluated in combination with task-active fMRI, instead of RS-fMRI. Only 

recently, a number of studies attempted to assess the effect of TMS on 

functional connectivity at rest (Eldaief et al., 2011; Grefkes et al., 2008; Lee 

et al., 2003b; O'Shea et al., 2007; Padberg and George, 2009; van der Werf et 

al., 2010; Vercammen et al., 2010b). Most of these works were performed 

with a strong working hypothesis, either testing only one RSN (Eldaief et al., 

2011; van der Werf et al., 2010) or using coupling analyses within a specified 

connection (Bilek et al., 2013). Crucially, all of them evaluated the effects of 

rTMS by comparing post-stimulation vs post-sham data recorded on separate 

days, introducing a bias due to the intrinsic variability of RS-fMRI. By 

contrast, in order to reduce the effect of intrinsic individual variability, we 
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compared for the first time RS-fMRI data recorded within the same session 

before and after TMS, with a short interval between MRI sessions. 

Our data indicate a selective influence of right DLPFC-cTBS on the ipsilateral 

posterior parietal cortex, while no connectivity change was detected after 

sham stimulation. As it is known that cTBS is able to induce prolonged 

cortical inhibition (Huang et al., 2005),  the decreased correlation between 

BA10 and BA40 we observed after stimulation could be explained by two 

alternative hypotheses: i) cTBS is able to induce cortical inhibition just in the 

stimulated site with a consequent disruption of the co-activation of the two 

areas; ii) the inhibition of cortical activity occurs immediately in the 

stimulation site, subsequently spreading to distant connected area. The 

propagation of inhibitory signal at microscopic level induces a de-

synchronization of normal coupling activity of the areas involved. So the de-

coupling of neuronal activity we observed through the BOLD signal could 

reflect an undergoing mechanism of signal propagation. Thus, we hypothesize 

that cTBS does not solely produce focal effects by selectively affecting an 

isolated patch of cortex. Rather, target sites should be considered as nodes 

within a widespread network of interacting brain regions, where perturbing or 

boosting processing of one element can also influence several others. We can 

only speculate on why we found a selective modulation of the DLPFC-PPC 

connection. The DLPFC and PPC neuronal assemblies have a strong 

functional coupling that could be more sensitive to an external perturbation 

such as that induced by the low intensity cTBS protocol applied in the current 
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study (Koch et al. 2012a). However, it is likely that by simply increasing the 

intensity of the magnetic field or changing the frequency of stimulation it 

could be possible to affect the coupling among other interconnected nodes. 

Notably, recent evidence suggests that an individual approach based on 

functional connectivity MRI could provide the most reliable approach to 

detect the effects of DLPFC TMS (Fox et al. 2012a, Fox et al. 2012b).  

Our results could also have several implications for clinical applications, as it 

has been demonstrated by the role of rTMS of the DLPFC in the treatment of 

major depressive disorder (MDD). This therapeutic effect can be achieved by 

either excitatory stimulation of the left (George and Post, 1995; O'Reardon et 

al., 2007; Padberg and George, 2009; Pascual-Leone et al., 1996) or inhibitory 

stimulation of the right DLPFC (Isenberg et al., 2005; Pallanti et al., 2010; 

Rossini et al., 2010). A recent meta-analysis study conducted by Chen and 

collaborators (Chen et al., 2013), demonstrated that, despite the comparable 

efficacy of both methodology, the latter (inhibitory TMS) may be a more 

acceptable treatment for MDD than the former (excitatory TMS), based on 

patients reporting less headaches, and on the decrease risk of inducing adverse 

events such as seizures (Schutter, 2010). The present results could also be 

important for other conditions in which the non invasive modulation of the 

FPN can provide notable clinical improvements, such as the case of post-

stroke hemispatial neglect (Koch et al. 2012b). 

In conclusion, our findings provide new insights into the mechanisms of 

stimulation-induced brain plasticity by demonstrating that the network 
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communication at rest shapes the brain reorganization induced by cTBS. The 

use of TMS and RS-fMRI allows to characterize both local (i.e., in the cortical 

tissue directly under the TMS coil) and remote (i.e., distant from the original 

cortical target site) effects of TMS in more detail, leading to a better 

understanding of TMS-induced modulations in neural processing.
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CONCLUSIONS 

The experiments described in this thesis generated a number of results, as well 

as some ground for further investigations. Here the main findings are briefly 

summarized. 

ROLE OF DISCONNECTION IN NEUROLOGICAL 

DISORDERS 

In the first work DTI data were analyzed using TBSS. Comparing right-

hemisphere stroke patients with neglect and healthy subject, subtle abnormal 

changes in the FA values were found along several WM tracts of the left (non 

lesioned) hemisphere of neglect patients. Moreover, a correlation was 

demonstrated between these alterations and the severity of neglect observed in 

our patients. In the present work our data support the hypothesis that the main 

damage occurring in the left hemisphere of these patients is dominated by 

demyelination in the context of Wallerian degeneration phenomena. While the 

occurrence of Wallerian degeneration in one hemisphere can be expected in 

cases of macroscopic damage in the other hemisphere, an intriguing result of 

this study is that FA changes in the ‘‘healthy’’ hemisphere also accounted for 

the severity of neglect symptoms observed in our patients. These results 

provide new anatomical evidence supporting the idea that changes in right-left 

balance rather than an isolated involvement of the right hemisphere can be 

critical for the occurrence of neglect symptoms.  



 

134 

 

When looking at the general porpoise of the thesis, the present work yields 

two main conclusions. First, the characterization of anatomical connectivity is 

crucial to understand the pathological mechanisms at the basis of functional 

and behavioral changes that occur in several neurologic disorders. Second, 

diffusion weighted structural imaging has been demonstrated to be a powerful 

tool to assess the alteration in anatomical connectivity and its correlation with 

neuropsychological indices, thus providing new evidence of the importance of 

neuroimaging in the detection of abnormal brain structure and functioning.  

The second study was conducted in order to characterize functional 

connectivity in a group of aMCI using RS-fMRI analysis using network 

analysis. We have shown a marked disconnection of the precuneus, parietal 

and temporal areas, regions representing densely interconnected cortical hubs, 

within which early deposition of extracellular amyloid is observed (Buckner et 

al., 2009; Liu et al., 2013; Wang et al., 2013). However, our analyses also 

demonstrate disruption of network connectivity in brain regions where AD 

pathology is not manifest until late disease stages, such as the sensorimotor 

cortex and the insula, the thalamus and the basal ganglia. Comparing these 

results and those obtained by VBM to asses volume loss, it was hypothesized 

that changes in functional network architecture precedes the cortical atrophy 

that characterize AD patients.  

From a more general prospective, this work highlights the potential value of 

the detection of changes in functional connectivity in aMCI patients: the 

abnormal pattern of functional connections revealed in these subjects could 
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represent a biomarker of AD development, providing an important tool for an 

early diagnosis of the disease. In this context, network analysis appears 

particularly promising, as we have shown it can be more sensitive than more 

standard approaches such as ICA. Together, the results of these 2 chapters 

highlight the role of disconnection in the development of neurological 

symptoms. Future work in this area should include longitudinal designs able to 

clarify the prognostic value of  disconnection measures. 

STRUCTURAL VS FUNCTIONAL CONNECTIVITY 

The third analysis was carried out in a group of healthy subjects. We attempt 

for the first time to characterize the thalamo-cortical connections in the same 

group of individuals from both, a structural (derived from DTI) and a 

functional (derived from RS-fMRI) point of view. Despite functionally 

connected regions are expected to be also connected in structure, the extent to 

which functional and anatomical MRI-derived connectivities express each 

other is still largely unknown. Using parcellation based on tractography and 

SBA on RS-fMRI data, only a partial overall correspondence between 

structural and functional connections was found. Taking into account that 

some methodological issues should be considered (winner-takes-all strategy 

that reduces sensitivity; between-region distance; different spatial sensitivity; 

tensor model accounting only  for one direction), I speculate that the two 

approaches are likely to provide complementary information. In fact, it is 

likely that, while structural connectivity as measured by tractography can only 
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detect mono-synaptic connections, functional connectivity is likely to rely on 

poly-synaptic pathways too. 

The study highlights that the correspondence between anatomical and 

functional connectivity needs further investigation. In these prospective one of 

the main issue is to evaluate the impact of the methodological limitations that 

could affect the results. To do that several aspect can be modified: the analysis 

should be carried out in a bigger group of healthy subject; anatomical 

connectivity could be assess using diffusion models that account for multiple 

direction, increasing the possibility to detect more specific anatomical 

connections; other structures can be examined with the same approach (for 

example cerebello-thalamic or basal ganglia-cortical connections). 

In order to better understand this correspondence between functional and 

anatomical connectivity, I started to analyze data from the same group of 

subjects using a different approach: the idea is to segment the thalamus into 

functional components using ICA, that can be then used to parcellate the 

cortex on the base of functional (using SBA) and anatomical connection 

(using diffusion tractography) with each component. In that way a direct 

comparison of the two approaches can be carried out.  

COMBINING NEUROIMAGING AND NEUROPHYSIOLOGY 

The study described in chapter 5 provides new evidence for the role of RS-

fMRI in detecting changes in brain activity associated with TMS. Our findings 

support the idea that cTBS induce a functional discoupling between the 
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stimulated DLPFC (BA10) and a region (BA40) that is known to be connected 

to DLPFC.  

From these results we hypothesize that the effect of cTBS does not affect a 

selective part of the cortex, rather, target sites should be considered as nodes 

within a widespread network of interacting brain regions, where perturbing or 

boosting processing of one element can also influence several others. Thus, 

first, we provide new evidence of the possibility to induce cortical changes 

using TMS; second, we underline the crucial role that the combination of 

TMS and RS-fMRI has in the characterization of both local and remote effects 

of TMS, providing new insight into a better understanding of functional 

connectivity of the human brain.  

The mechanisms that it is important to consider is whether an observed change 

in connectivity actually reflects a change in connection strength between 

remote areas or whether it could be explained by local effects of the rTMS 

alone. 

However, because the mechanisms leading to functional connectivity changes 

induced by TMS remain unclear, further studies are necessary. Several issues 

have to be considered in the setup of future experiments. 

First of all, it should be useful to assess functional connectivity alteration at 

single subject level, further decreasing the influence of inter-subject 

variability. Another important aspect that should be considered is the duration 

of the effect of TMS:  increasing the number of RS-fMRI data acquisition 

sessions after the stimulation could be very important to clarify how for how 
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long the effect of the stimulation lasts and how it changes over time. Also, 

another interesting question is to understand how and how much the degree of 

functional connection detected with RS-fMRI varies in a short or long time. 

Follow-up experiments should be planned in order to clarify this aspect.  

A more precise localization of the stimulated site is another important 

challenge to ameliorate these kind of experiments. In order to address this 

issue, I am going to take part in a new project, aiming to clarify the role of the 

precuneus in AD patients. The experimental design includes a preliminary 

phase in which RS-fMRI data will be acquired in a group of healthy 

volunteers before and after precuneus stimulation with cTBS.  In order to 

stimulate the correct region, a RS-fMRI scan will be first performedto extract 

the DMN of each subject and identify the functional activation in the 

precuneus. The coordinates for each subject will be used to identify the right 

region to stimulate in the following scan sessions, thus improving the 

specificity of the target area. 

GENERAL CONCLUSIONS AND FUTURE WORK 

Finally, from a general prospective, an important issue that should be 

addresses in future studies is the combination of functional and structural MRI 

and TMS: for example, the characterization of subjective anatomical 

connection could be used as a reference to plan experiment designs for 

subjective investigation, further reducing the bias due to inter-subject 

variability. 
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To concluede, all these studies demonstrate the validity of neuroimaging 

techniques to characterize functional and anatomical connections and their 

changes in pathological conditions, and they confirm the importance of 

combining different techniques in order to improve the characterisation of 

brain networks.
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