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A Characterization of
Non-archimedeanly Quasimetrizable

Spaces

F. G. Arenas and M. A. S�anchez-Granero (�)

Summary. - In this paper we introduce a new structure on topo-

logical spaces which allows us to give a characterization of non-

archimedeanly quasipseudometrizable spaces.

1. Introduction

The concept of fractal (see [6]) is one of the most important in math-
ematics nowadays, due to the great number of applications it has in
economics, physics, mathematics, statistics and so on, as one can see
in [7] and [8]. One of the most important classes of fractal are the so
called (classical) "(strict) self-similar sets" (see [7, 9.2]). These set
are de�ned by means of a �nite set of (similarities) contractions in a
compact metric space.

Recently there has been many investigations on the topological
structures of (strict) self-similar sets (see [2], [3], [4], [13], [10], [11],
[12] and [14]) leading to the notion of symbolic self-similar set (as in
[11]), a topological characterization of the classical ones.

Looking for a generalization of symbolic self-similar sets outside
compact metric spaces, we develop the concept of GF-space (or gen-
eralized fractal space) and we �nd that it is a common framework
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for the study of self-similar sets and non-archimedeanly quasimetriz-
able spaces. In this paper we introduce GF-spaces and we use them
to characterize non-archimdeanly quasimetrizable spaces in several
ways (including some relations with inverse limits of partially or-
dered sets). The relation between GF-spaces and self-similar sets
and self-homeomorphic spaces in the sense of [5] can be found in [1].

Now, we recall some de�nitions and introduce some notations
that will be useful in this paper.

Let � = f�n : n 2 Ng be a countable family of coverings. Recall
that St(x;�n) =

S
x2An;An2�n

An; we also de�ne Uxn = St(x;�n) nS
x62An;An2�n

An. We also denote by St(x;�) = fSt(x;�n) : n 2 Ng
and Ux = fUxn : n 2 Ng.

A (base B of a) quasiuniformity U on a set X is a (base B of a)
�lter U of binary relations (called entourages) on X such that (a)
each element of U contains the diagonal �X of X � X and (b) for
any U 2 U there is V 2 U satisfying V � V � U . A base B of a
quasiuniformity is called transitive if B � B = B for all B 2 B. The
theory of quasiuniform spaces is covered in [9].

If U is a quasiuniformity on X, then so is U�1 = fU�1 : U 2 Ug,
where U�1 = f(y; x) : (x; y) 2 Ug. The generated uniformity on
X is denoted by U�. A base is given by the entourages U� = U \
U�1. The topology �(U) induced by the quasiuniformity U is that
in which the sets U(x) = fy 2 X : (x; y) 2 Ug, where U 2 U , form
a neighbourhood base for each x 2 X. There is also the topology
�(U�1) induced by the inverse quasiuniformity. In this paper, we
consider only spaces where �(U) is T0.

A quasipseudometric on a set X is a nonnegative real-valued
function d on X�X such that for all x; y; z 2 X:(i) d(x; x) = 0, and
(ii) d(x; y) � d(x; z) + d(z; y). If in addition d satis�es the condition
(iii) d(x; y) = 0 i� x = y, then d is called a quasi-metric. A non-
archimedean quasipseudometric is a quasipseudometric that veri�es
d(x; y) � maxfd(x; z); d(z; y)g for all x; y; z 2 X.

Each quasipseudometric d on X generates a quasiuniformity Ud
on X which has as a base the family of sets of the form f(x; y) 2
X � X : d(x; y) < 2�ng, n 2 N. Then the topology �(Ud) induced
by Ud, will be denoted simply by �(d).

A space (X; �) is said to be (non-archimedeanly) quasipseudome-
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trizable if there is a (non-archimedean) quasipseudometric d on X

such that � = �(d).

A relation � on a set G is called a partial order on G if it is
a transitive antisymmetric reexive relation on G. If � is a partial
order on a set G, then (G;�) is called a partially ordered set.

(G;�; �) will be called a poset (partially ordered set) or T0-
Alexandro� space if (G;�) is a partially ordered set and � is that in
which the sets [g;! [= fh 2 G : g � hg form a neighborhood base
for each g 2 G (we say that the topology � is induced by �). Note
that then fgg =] ; g] for all g 2 G.

Let us remark that a map f : G! H between two posets G and
H is continuous if and only if it is order preserving, i.e. g1 � g2
implies f(g1) � f(g2).

2. Non-archimedean quasipseudometrization and

inverse limits

To each countable transitive base of a quasiuniformity, one can as-
sociate a partition as follows.

Proposition 2.1. Let X be a countable transitive quasiuniform spa-

ce, that is, a topological space that has a countable transitive base B =
fUn : n 2 Ng of quasiuniformity over X. Suppose that Un+1 � Un
8n 2 N. Then for each natural number n, B� = fU�

n(x) : x 2 Xg is

a partition of X.

Proof. It is clear that the union of those subsets is X, so it is enough
to see that they are disjoint or they are the same.

In order to see that, suppose there is z in U�
n(x) \ U

�
n(y). Then

z 2 Un(x), x 2 Un(z), and z 2 Un(y), y 2 Un(z). The transitivity of
the quasiuniformity and x 2 Un(z), z 2 Un(y) implies that x 2 Un(y)
and y 2 Un(z), z 2 Un(x) implies y 2 Un(x), that is Un(x) =
Un(y). By transitivity again, U�1

n (x) = U�1
n (y). Therefore Un(x) \

Un(x)
�1 = Un(y) \ Un(y)

�1

In the condition of the Proposition 2.1, we call Gn the quotient
space induced by the partition, and we de�ne in Gn the following
order relation U�

n(x) �n U
�
n(y) if y 2 Un(x).
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It is easy to see that this is an order relation by de�nition of
the order and the transitivity of the quasiuniformity base. We will
consider Gn as the poset with the order relation �n, and the induced
topology.

Let �n be the quotient map from X onto Gn which carries x in
X to U�

n(x) in Gn. Let see that �n is continuous.

Let O be a basic open set in Gn, then there is x 2 X such that
O = fgn 2 Gn : �n(x) �n gng. Hence �

�1
n (O) = fy 2 X : �n(x) �n

�n(y)g = fy 2 X : y 2 Un(x)g = Un(x). Therefore �
�1
n (O) is open,

and so �n is continuous.

We also consider the map �n : Gn �! Gn�1 de�ned by �n(�n(x)) =
�n�1(x). If �n(x) �n �n(y) then y 2 Un(x) � Un�1(x), what means
�n�1(x) �n�1 �n�1(y) and by de�nition of �n, we have �n(�n(x)) �n
�n(�n(y)). Therefore �n is continuous.

Let � be the map from X to lim �Gn which carries x in X to
(�n(x))n in lim �Gn. Note that � is well de�ned and continuous (by
de�nition of �n and the continuity of �n and �n for all n). The inverse
limit lim �Gn will be noted hereafter as lim �(X;B) and will be called
the inverse limit associated to the countable transitive quasiuniform
space (X;B). Note that we do not claim that the inverse limit does
not depend of the selected base for a given quasiuniform space.

Note that in [15] it is developped a procedure to associate an
inverse system of quasi-ordered spaces to some kinds of families of
(locally �nite) closed coverings in a similar way.

Proposition 2.2. Let (X;B) be a countable transitive quasiuniform

space. Then � : X ! lim �(X;B) is an embedding.

Proof. Let see that � is injective.

Suppose there are x 6= y in X such that �(x) = �(y). Then
�n(x) = �n(y) for all n, that is, Un(x) = Un(y) for all n.

Since X is T0, there is a neighborhood U of (for instance) x, such
that y 62 U . But then there is a natural number n, with Un(x) � U ,
and then y 62 Un(x). The contradiction shows that � is injective.

Now, y 2 Un(x) if and only if �n(x) �n �n(y) if and only if
�(y) 2 fg 2 �(X) : �n(x) �n gng, then �(Un(x)) = fg 2 �(X) :
�n(x) �n gng and hence open in �(X).
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Now we have a characterization of non-archimedeanly quasipseu-
dometrizable spaces on terms of inverse limits of posets.

Theorem 2.3. Let X be a non-archimedeanly quasipseudometriz-

able space. Then X can be embedded into an inverse limit of a

sequence of posets.

Proof. If X is a non-archimedeanly quasimetrizable space, then the
quasiuniformity associated with the metric veri�es the conditions of
Proposition 2.1. Then by Proposition 2.2 we get that X can be
embedded into a inverse limit of a sequence of posets.

3. GF-spaces

Now, we introduce GF-spaces, the main concept of the paper.

Definition 3.1. Let X be a topological space. A pre-fractal struc-

ture over X is a family of coverings � = f�n : n 2 Ng such that Ux
is an open neighbourhood base of x for all x 2 X.

Furthermore, if �n is a closed covering and for all n, �n+1 is

a re�nement of �n, such that for all x 2 An, with An 2 �n, there

is An+1 2 �n+1 : x 2 An+1 � An, we will say that � is a fractal

structure over X.
If � is a (pre-) fractal structure over X, we will say that (X;�)

is a generalized (pre-) fractal space or simply a (pre-) GF-space. If

there is no doubt about �, then we will say that X is a (pre-) GF-

space.

Call Un = f(x; y) 2 X � X : y 2 Uxng, U
�1
xn = U�1

n (x) and
U�1x = fU�1

xn : n 2 Ng.

Proposition 3.2. Let X be a pre-GF-space. Then U�1
xn = \x2AnAn.

Proof. y 2 U�1
xn if and only if x 2 Uyn. Now, x 2 An if and only if

y 2 An (since x 2 Uyn = X n
S
y 62An

An)

Now we study how fractal structure is induced to subspaces and
products.

Proposition 3.3. Let (X;�) be a (pre-) GF-space and A a subspace

of X. Then (A;�A) is a (pre-)GF-space, with �A = f�0n : n 2 Ng
and �0n = fAn \A : An 2 �ng.
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Proof. For x 2 A we have that U 0
xn = A n

S
x 62An\A

(An \ A) =
A \ (X n (A \ (

S
x62An

An))) = A \ ((X n A) [ Uxn) = A \ Uxn
Hence U 0

xn is an open neighbourhood base of x for all x 2 A and
therefore �A is a prefractal structure on A.

Suppose that � is a fractal structure.

It is clear that �0n+1 is a re�nement of �0n and that �0n is a closed
covering for A.

If x 2 A \ An, then x 2 An, so there exists An+1 2 �n+1 such
that x 2 An+1 � An, and then x 2 An+1 \ A � An \ A. Therefore
�A is a fractal structure on A.

Proposition 3.4. Let (Xi;�
i) be a countable family of (pre-) GF-

spaces. Then (�i2NXi;�i2N�
i) is a (pre-) GF-space, with �i2N�

i =
f�n : n 2 Ng and �n = f\i�np

�1
i (Ai

n) : A
i
n 2 �ing (where pi is the

projection from the product space to Xi).

Proof. Let us see that Uxn = U1
x1n
� : : :� Un

xnn
�Xn+1 � : : : .

Let y 2 Uxn, then x 2 U�1
yn =

T
y2An

An. Let i � n and let Ai
n

be such that yi 2 A
i
n, if we see that xi 2 A

i
n then xi 2

T
yi2Ain

Ai
n =

(Uyin)
�1, and hence yi 2 U

i
xin

.

For i 6= j � n let Aj
n be such that yj 2 A

j
n. Let An =

T
k�n p

�1
k

(Ak
n). Then it is clear that y 2 An; hence x 2

T
y2Bn

Bn � An,

and then xi 2 Ai
n. Therefore xi 2

T
yi2Bin

Bi
n = (U i

yin
)�1 and then

yi 2 Uxin. This proves one of the inclusions, and the reverse one is
analogous. Therefore �i2N�

i is a pre-fractal structure over X.

Suppose, now, that each �i is a fractal structure over Xi. It is
clear that �n is a closed covering of �i2NXi

Let x 2 An with An =
T
i�n p

�1
i (Ai

n) and A
i
n 2 �in. Then xi 2 A

i
n

for all i � n, and since �in is a fractal structure then there exist A
i
n+1

such that xi 2 A
i
n+1 � Ai

n for i � n. Let An+1
n+1 2 �in+1 be such that

xn+1 2 An+1
n+1 and let An+1 =

T
i�n+1 p

�1
i (Ai

n+1). Then it is clear

that x 2 An+1 � An. Therefore �i2N�
i is a fractal structure over

X.

We associate a countable transitive quasiuniformity base to each
pre-fractal structure as follows.
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Proposition 3.5. Let X be a pre-GF-space. Then B(�) = fUn :
n 2 Ng is a transitive quasiuniformity base over X, and (X;B(�))
is called the countable transitive quasiuniform space associated to

(X;�).

Proof. We only have to prove that for x; y 2 X, y 2 Uxn implies
Uyn � Uxn. Since y belongs to Uxn if and only if x 2 U

�1
yn = \y2AnAn

(by proposition 3.2), then Uyn = St(y;�n) n
S
y 62An

An � Uxn

Proposition 3.6. Let (X;�) be a GF-space. Then there exists a

non-archimedean quasipseudometric d over X (noted by d� and called
the canonical quasipseudometric associated to �), such that Uxn =
fy 2 X : d(x; y) < 2�ng

Proof. Let d(x; y) be de�ned by 2�(n+1) if y 2 Uxn n Ux(n+1), by
1 if y 62 Ux1 and by 0 if y 2 Uxn for all n. Let see that d is a
non-archimedean quasipseudometric. Let x; y; z 2 X.

Case 1. d(x; y) = 1.
Suppose that d(x; z); d(z; y) � 2�2. Then by de�nition of d,

z 2 Ux1 and y 2 Uz1, but then by transitivity of the quasiuniformity
y 2 Ux1, which contradicts that d(x; y) = 1.

Case 2. d(x; y) = 2�(n+1) for some natural n.
Suppose that d(x; z); d(z; y) � 2�(n+2). Then by de�nition of d,

z 2 Ux(n+1) and y 2 Uz(n+1), but then by transitivity of the quasiu-

niformity y 2 Ux(n+1), which contradicts that d(x; y) = 2�(n+1).
Case 3. d(x; y) = 0. This is clear.
In either of the three cases we have that d(x; y) � maxfd(x; z);

d(z; y)g, and hence d is a non-archimedean quasimetric. By con-
struction of d it is clear that Uxn = fy 2 X : d(x; y) < 2�ng.

If we have a fractal structure instead of a pre-fractal one, the
neighbourhoods form a decreasing sequence.

Lemma 3.7. Let X be a GF-space, and let m � n be natural num-

bers, and x 2 X. Then Uxm � Uxn.

Proof. Let y 2 Uxm. If y 2 An, then by induction on the �rst
property on GF-spaces it is easy to prove that there exists Am 2 �m
such that y 2 Am � An. Since x 2 U�1

ym = \y2BmBm and y 2 Am,
then x 2 Am � An, that is, x 2 An. Then we have proved x 2
\y2AnAn = U�1

yn . Therefore y 2 Uxn.
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Proposition 3.8. Let G be a poset. Then there exists a fractal

structure over G.

Proof. Let �n = ffgg : g 2 Gg for all natural n.

1. �n+1 is a re�nement of �n and given g 2 An, with An 2 �n,
there exists An+1 2 �n+1 (An+1 = An) such that g 2 An+1 �
An.

This is clear since �n+1 = �n for all n.

2. Ugn is an open neighbourhood base of g for all g 2 G.

We only have to prove that Ugn = [g;! [, that is, h 2 Ugn if
and only if g � h for all n.

Let h 2 Ugn, that is g 2 U�1
hn =

T
h�k fkg. Then, since h � h

we have that g 2 fhg, and hence g � h.

On the other hand, let h 2 G be such that g � h. If k 2 G

is such that h � k, then g � h � k and g � k. Hence g 2T
h�k fkg = U�1

hn and then h 2 Ugn

Finally, we characterize GF-spaces as non-archimedeanly quasi-
metrizable spaces.

Theorem 3.9. Let X be a topological space. The following state-

ments are equivalent:

1. There is (at least) a fractal structure over X.

2. There is (at least) a pre-fractal structure over X.

3. X is non-archimedeanly quasipseudometrizable.

4. X can be embedded into the inverse limit of a sequence of

posets.

5. X can be embedded into a countable product of posets.
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Proof. (1) implies (2) and (4) implies (5) are obvious.

(2) implies (3) By Proposition 3.5, X admits a countable tran-
sitive quasiuniform base, and then by Theorem 7.1 of [9] it is a
non-arcchimedeanly quasiuniform space.

(3) implies (4) Theorem 2.3

(5) implies (1) By Proposition 3.8, X is homeomorphic to a sub-
space of a countable product of GF-spaces, and then by Propositions
3.3 and 3.4 it is a GF-space.
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