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ABSTRACT 

 

Introduction. The metabolic syndrome is a cluster of alterations, including insulin resistance, 

dyslipidaemia, hypertension, hyperglycaemia, abdominal obesity, hyperhomocysteinemia, 

inflammation and oxidative stress, leading to type II diabetes and cardiovascular disease. The 

metabolic syndrome is usually associated with sedentary lifestyle and overweight, while regular 

physical activity and weight loss can counteract these alterations and prevent type II diabetes and 

cardiovascular disease. 

Aim of the Thesis. In order to define the net role of inactivity as key factor inducing insulin 

resistance and metabolic syndrome independently from changes in body fat we have investigated 

the net impact of experimental bed rest on human metabolism. Experimental bed rest in healthy, 

young, lean subjects represents a suitable model to determine the effects of inactivity on 

physiology, avoiding potential interferences and confounding effects of diseases, ageing, energy 

unbalance and excess body fat. We have focused on inactivity-related development of insulin 

resistance, dyslipidaemia, hypertension as well as inflammation and oxidative stress. These aspects 

have been investigated during four different experimental bed rest protocols, lasting 2 months 

(WISE-Toulouse, France) and 5 weeks (Valdoltra, Slovenia 2006–2007–2008). Energy 

requirements and intakes were strictly controlled to avoid changes in fat mass. 

Results and discussion. Muscle atrophy. Muscle atrophy was evidenced after three weeks of bed 

rest and was worsened by prolonged exposure to inactivity (WISE, Valdoltra studies). However, 

muscle loss rate was higher in the first 5 weeks of bed rest while it decreased in the second month 

of inactivity (WISE). Time-course analysis of insulin resistance development. Insulin resistance, 

measured by an oral glucose tolerance test, rapidly developed in the first week of inactivity and was 

maintained after 5 weeks of bed rest, as assessed by the ISI-Belfiore index of insulin sensitivity 

(Valdoltra 2008). Cardiovascular regulation. In the first week of bed rest, baroreflex sensitivity 

decreased indicating that, in an early phase, alterations in the sympatovagal balance paralleled 

changes in insulin resistance development. At the end of 5 week-bed rest, heart rate and heart rate 

variability as well as systolic blood pressure variability, indexes of cardiovascular regulation, were 

also impaired (Valdoltra 2008). Plasma lipids and lipid metabolism. Five weeks of bed rest induced 

a decrease in high-density lipoprotein (HDL) cholesterol. During inactivity, cholesteryl ester 

transfer protein (CETP), a key enzyme involved in HDL metabolism, was up-regulated and changes 

in CETP inversely correlated with changes in HDL-to-non-HDL cholesterol ratio. Conversely, 

changes in CETP and HDL were not directly correlated to insulin resistance (Valdoltra studies). 

Cell membrane lipids. Bed rest reduced monounsaturated FAs, enhanced n-6 polyunsaturated FA 
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total contents and affected activities of both Δ-5 and Δ-9 desaturases, enzymes involved in FA 

metabolism. These data further support that membrane FA composition and activities of Δ-5 and Δ-

9 desaturases are predictive indicators of metabolic syndrome development. Moreover, arachidonic-

to-eicosapentaenoic acid ratio, reflecting the competitive role of these FAs in the modulation of 

inflammatory processes, was shifted towards pro-inflammatory state (Valdoltra studies). Oxidative 

stress and glutathione kinetics. Bed rest induced oxidative stress as showed by enhanced muscle 

protein carbonylation, a marker of tissue exposure to oxidative damage, and increased muscle 

glutathione absolute synthesis, as assessed by a new one-sample, double-isotope tracers infusion 

method (Valdoltra 2007). Homocysteinemia and homocysteine kinetics. Plasma homocysteine level 

was increased by bed rest, due to a decrease in homocysteine clearance related to remethylation 

(WISE). Hyperhomocysteinemia is a further evidence of inactivity-mediated oxidative stress and 

increased cardiovascular risk.  

Conclusions. Physical inactivity in healthy young subjects is a suitable model to define the net 

impact of physical inactivity on the development of metabolic alterations observed in patients with 

the metabolic syndrome. Our results indicate that inactivity is directly involved in insulin resistance 

development, low-grade systemic inflammation, dyslipidaemia, hyperhomocysteinemia, oxidative 

stress and autonomic-cardiovascular abnormalities. 
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INTRODUCTION 

 

THE METABOLIC SYNDROME 

 

The metabolic syndrome is a quite common pathological condition, defined as a cluster of 

metabolic alterations. 

A recent report (Tentolouris, Argyrakopoulou, and Katsilambros 2008) indicates that the metabolic 

syndrome interests the 25% of the general population and the 70% of subjects suffering type 2 

diabetes (Bianchi et al. 2008; Monami et al. 2007). Moreover, its frequency is increased with aging 

(Day 2007). Nevertheless, the absence of unified criteria for the metabolic syndrome diagnosis does 

not permit to precisely define its prevalence.  

The central points of the metabolic syndrome are insulin resistance and visceral obesity (Chew, 

Gan, and Watts 2006). Both conditions are, in fact, strictly related to the other components of the 

metabolic syndrome (Reaven 1993; Maison et al. 2001; Reaven 2006). Additionally to the high 

prevalence of metabolic syndrome development in type 2 diabetes, epidemiological data 

demonstrate that diabetes usually precedes by many years the diagnosis for the metabolic syndrome 

(Bianchi et al. 2008; Monami et al. 2007). 

The onset of the metabolic syndrome, in turn, significantly increases the risk of development of 

type 2 diabetes and of cardiovascular diseases. 

 

CRITERIA USED FOR THE DIAGNOSIS OF METABOLIC SYNDROME  

Unified criteria for metabolic syndrome diagnosis are still lacking. Presently, the most common and 

used definition of metabolic syndrome are four: the WHO (World Health Organization) criteria, 

defined in 1998; the EGIR (European Group for the Study of Insulin Resistance) definition, 

presented in 1999; the IDF (International Diabetes Federation) criteria presented in 2005 in parallel 

to the revised NCEP ATP III (National Cholesterol Education Program/Adult Treatment Panel III) 

definition. 

WHO definition 

The first definition of criteria for the metabolic syndrome diagnosis has been presented in 1998 by 

the World Health Organization (Alberti and Zimmet 1998). 

Criteria for the metabolic syndrome. 

1. Insulin resistance, is absolutely required for metabolic syndrome diagnosis and is defined as 

one of the following indexes: 

 fasting glucose exceeding 100 mg/dL; 
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 glucose level exceeding 140 mg/dL, 2 hours after glucose (75 g) load during an oral 

glucose tolerance test (OGTT); 

 elevated homeostatic model assessment of insulin resistance (HOMA index); 

 lowest quartile of insulin sensitivity as assessed during an euglycemic 

hyperinsulinemic clamp. 

2. Obesity, defined as one of the following indexes: 

 waist-to-hip ratio over 0.90 (males) or 0.85 (females); 

 body mass index (BMI) over 30 kg/m2. 

3. Dyslipidaemia, defined as one of the following indexes: 

 plasma triglycerides level major or equal to 150 mg/dL; 

 plasma HDL cholesterol less than 35 mg/dL (males) or 39 mg/dL (females). 

4. Hypertension, defined as systolic/diastolic pressure major or equal to140/90 mmHg. 

5. Microalbuminuria, defined as one of the following indexes: 

 urinary albumin excretion major or equal to 20 µg/min; 

 albumin-to-creatinine ratio major or equal to 30 mg/g. 

Metabolic syndrome definition. 

The metabolic syndrome is defined by the co-presence of insulin resistance and at least 2 over the 

other 4 listed additional criteria. 

Limitations. 

The mandatory presence of insulin resistance for the diagnosis of the metabolic syndrome excludes 

subjects with normal insulin sensitivity and, on the other hand, all the other criteria of disease. 

Some analyses required by the WHO definition are not routinely provided. For such reason, the 

application of these criteria for metabolic syndrome assessment is not easily applied in clinic or in 

large epidemiological studies. 

 

EGIR definition 

In 1999 the European Group for the Study of Insulin Resistance presented a revision of the WHO 

definition of the metabolic syndrome (Balkau and Charles 1999). 

Criteria for the metabolic syndrome. 

1. Insulin resistance is a fundamental criterion for the metabolic syndrome diagnosis but, 

differently from the WHO definition, it is defined as hyperinsulinemia, i.e., fasting plasma 

insulin greater than the 75th percentile. 

2. Obesity, defined as waist circumference major or equal to 94 cm (males) or 80 cm 

(females). 
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3. Dyslipidaemia, defined as one of the following indexes: 

 plasma triglycerides level major or equal to 177 mg/dL; 

 plasma HDL cholesterol less than 39 mg/dL. 

4. Hypertension, defined following one of the above reported criteria: 

 systolic/diastolic pressure major or equal to140/90 mmHg; 

 reported pharmacological treatment for hypertension. 

Metabolic syndrome definition. 

The metabolic syndrome is defined by the co-presence of insulin resistance and at least 2 over the 

other 3 listed additional criteria. 

Limitations. 

Hyperinsulinemia is a simplification for insulin resistance determination. This measure is not a gold 

standard and could be insufficient for insulin resistance determination in some patient categories, 

such as subjects suffering type 2 diabetes. For this reason, the use of the EGIR definition could 

exclude from the diagnosis of metabolic syndrome patients affected by type 2 diabetes. 

 

IDF definition 

A new definition of the metabolic syndrome has been proposed in 2005 by the International 

Diabetes Foundation (Zimmet et al. 2005). Insulin resistance is not a fixed requirement for 

metabolic syndrome diagnosis whereas a fundamental condition is obesity. 

Criteria for the metabolic syndrome. 

1. Insulin resistance is defined as fasting plasma glucose major or equal to 100 mg/dL. 

2. Obesity, is a fundamental criteria for the metabolic syndrome diagnosis and is determined 

using the waist circumference. Cut-points used to define obesity are specific for type of 

populations, since body weight and waist circumference display different distributions 

related to different populations, ethnicities and nationalities. 

3. Hypertriglyceridemia, defined using one of the following criteria: 

 plasma triglycerides level major or equal to 150 mg/dL; 

 reported pharmacological treatment for hypertriglyceridemia. 

4. Low HDL cholesterol level, defined using one of the following criteria: 

 values inferior to 40 mg/dL (males) or 50 mg/dL (females); 

 reported pharmacological treatment for dyslipidaemia. 

5. Hypertension, defined following one of the above reported criteria: 

 systolic pressure higher than 130 mmHg; 

 diastolic pressure major than 85 mmHg; 
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 reported pharmacological treatment for hypertension. 

Metabolic syndrome definition. 

The metabolic syndrome is defined by the co-presence of obesity and at least 2 over the other 4 

listed additional criteria. 

Limitations. 

The application of the IDF definition has been criticized for the central role attributed to obesity and 

the marginal role credited to insulin resistance in the development of the metabolic syndrome 

(Reaven 2006). 

 

NCEP-ATP III definition 

The NCEP-ATP III is the most widely used definition of metabolic syndrome. The first NCEP-ATP 

III definition has been presented by the National Cholesterol Education Program and Adult 

Treatment Panel III in 2001 (Third Report of the National Cholesterol Education Program (NCEP) 

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult 

Treatment Panel III) final report2002) and updated in 2005 by the American Heart Association and 

the National Heart Lung and Blood Institute (Grundy et al. 2005). 

Criteria for the metabolic syndrome. 

1. Insulin resistance is not absolutely required for metabolic syndrome diagnosis and it is 

defined using one of the following criteria: 

 fasting plasma glucose major or equal to 100 mg/dL; 

 reported pharmacological treatment for diabetes. 

2. Obesity is not a fundamental criteria for the metabolic syndrome diagnosis and is defined as 

a waist circumference over 40 inches (approximately 100 cm) for males or 35 inches 

(approximately 90 cm) for females.  

3. Hypertriglyceridemia, defined using one of the following criteria: 

 plasma triglycerides level major or equal to 150 mg/dL; 

 reported pharmacological treatment for hypertriglyceridemia. 

4. Low HDL cholesterol level, defined using one of the following criteria: 

 values inferior to 40 mg/dL (males) or 50 mg/dL (females); 

 reported pharmacological treatment for dyslipidaemia. 

5. Hypertension, defined following one of the above reported criteria: 

 systolic pressure higher than 130 mmHg; 

 diastolic pressure major than 85 mmHg; 

 reported pharmacological treatment for hypertension. 
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Metabolic syndrome definition. 

The metabolic syndrome is diagnosed when at least 3 over the 5 listed criteria are met. 

Advantages. 

The NCEP ATP III definition includes measurements as well as laboratory analyses that could be 

routinely provided and that can be easily used in clinical practice and in epidemiological studies. 

Additionally, no specific criterion needs to be met for metabolic syndrome diagnosis. 

 

Unified metabolic syndrome definition. 

The absence of unified criteria for metabolic syndrome diagnosis is a critical point for the proper 

identification of subjects at higher risk of development of type 2 diabetes and, primarily, 

cardiovascular diseases. Rationales for the development of a new world-wide definition of the 

metabolic syndrome include the problem that different formula usually employed display 

significant differences in the identification of the metabolic syndrome prevalence. In fact only the 

30% of subjects could be diagnosed by most criteria whereas it has been estimated that the 35-40% 

of subjects could be diagnosed for the metabolic syndrome only using one of reported definition 

(The Decode Study Group and Qiao 2005). 

For such reasons, literature data are often incomparable, leading to possible underestimation of the 

prevalence of this pathological condition. Moreover, these formula differ for the ability in 

predicting cardiovascular mortality or diabetes development, and these dissimilarities are also more 

marked considering distinct populations (Dunstan et al. 2002; Hu et al. 2004; Hunt et al. 2004; 

Lorenzo et al. 2003; Laaksonen et al. 2002). 
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CENTRAL FEATURES OF THE METABOLIC SYNDROME 

The WHO, EGIR, IDF as well as the NCEP ATP III definition of the metabolic syndrome evidence 

the four central features of this disorder: insulin resistance, visceral obesity, dyslipidaemia and 

endothelial dysfunction. Among these, insulin resistance and obesity seem to play a central role in 

the development of abnormalities typically associated to the metabolic syndrome, in particular 

dyslipidaemia and endothelial dysfunction. Nevertheless, several other metabolic abnormalities 

have been associated to this pathological condition and could be involved in the pathophysiology of 

the syndrome. Among them, oxidative stress, systemic inflammation, altered autonomic regulation 

and hyperhomocysteinemia are typically observed. 
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INSULIN RESISTANCE 

Insulin is a hormone primarily exhibiting anabolic properties at glucose but also protein and lipid 

levels. Nevertheless, insulin is also involved in endothelial function as well as in cellular growth 

and differentiation. Insulin resistance is defined as a reduction of responsiveness of peripheral 

tissues to physiological plasma insulin levels (Figure 1). 

Insulin resistance is a central feature of the metabolic syndrome even though mechanisms linking 

impaired insulin sensitivity and metabolic abnormalities evidenced in this pathological condition 

are not completely elucidated. Correlations between insulin resistance and some features of the 

metabolic syndrome, such as hypertension and prothrombotic condition, need to be further 

investigated (Grundy et al. 2004). Nevertheless, the number of metabolic alterations of the 

metabolic syndrome is directly related to the degree of insulin resistance (Nesto 2003; Alberti, 

Zimmet, and Shaw 2006); additionally, strong correlations between altered insulin sensitivity and 

dyslipidaemia, pro-inflammatory condition as well as increased cardiovascular risk have been 

evidenced (Grundy et al. 2004). 

 

 

 

Figure 1. Effects of normal (light grey) or impaired (dark grey) insulin signalling and 

activities at different tissue targets. Dashed lines indicate insulin inhibitory effects whereas 

continuous thick lines indicates insulin stimulatory effects (Huang 2009). eNOS, nitric oxide 

synthase; ET-1, endothelin; FFA, free fatty acid; NO, nitric oxide. 
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INSULIN SIGNALLING 

Insulin exerts its physiological activities through the bind with its specific cell-surface insulin 

receptor (IR). Insulin receptors are ligand-activated tyrosine kinases, composed by four subunits, 

the two extracellular α-subunits and the two cytoplasmic transmembrane β-subunits, linked together 

by disulphide bonds (Ullrich et al. 1985; Ebina et al. 1985). Insulin binds on α-subunit, inducing 

conformational changes that lead to the autophosphorylation of tyrosine residues in the β-subunit. 

Activated tyrosine kinase catalyses the phosphorylation of several intracellular substrates, including 

the Shc adaptor protein, as well as insulin receptor substrates (IRS) (Sun et al. 1995; Sesti et al. 

2001), responsible for insulin activities.  

The phosphorylation of IRSs and Shc adaptor protein represents the first step in the activation of the 

two main signalling pathways of insulin: the phosphatidylinositol-3’-kinase (PI3K) pathway and the 

mitogen-activated protein kinase (MAPK) pathway, respectively. The PI3K- and MAPK-dependent 

pathways are differently involved with insulin activities (Figure 2).  

The PI3K pathway plays a crucial role in the metabolic actions of insulin at skeletal muscle and 

adipose tissue levels, being involved in the upstream of glucose transporters (GLUT) 4 

translocation; moreover, the activation of the PI3K pathway is required also for glycogen and lipid 

metabolism, protein synthesis, vasodilatation processes as well as anti-inflammatory effects.  

 

 

  

Figure 2. Schematic description of the two insulin signalling transduction pathways 

(Muniyappa et al. 2007). 
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This signalling pathway starts with the phosphorylation of IRS by tyrosine kinase. Nowadays, four 

different IRS have been identified, characterised by tissue-specific differences in mediating insulin 

action. Among them, IRS-1 is mainly involved with insulin action in skeletal muscle whereas IRS-2 

is mainly associated to insulin activity in the liver. 

Phosphorylated IRSs bind and activate several Src homology 2 (SH2) domain proteins, such as the 

p85 regulatory subunit of PI3K and the growth factor receptor-binding protein 2 (Grb-2) (Saltiel 

and Kahn 2001). The phosphorylation of PI3K, leading to activation of the 3-phosphoinositide-

dependent protein kinase 1 (PDK1) that, subsequently, phosphorylates Akt (or protein kinase B) as 

well as atypical protein kinase C (PKC) isoforms. Akt mediates different metabolic effects of 

insulin, at different levels: in endothelium, Akt activates endothelial nitric oxide synthase; in the 

liver, Akt decreases gluconeogenesis and glucose output whereas in skeletal muscle and adipose 

tissue, Akt regulates GLUT 4 translocation on cell membrane, favouring glucose uptake. Finally, 

Akt enhances glycogen synthesis and than glucose storage in insulin target tissues (i.e., skeletal 

muscle, adipose tissue and liver) (Farese 2002). 

The other main insulin signalling cascade involved the MAPK pathway. Differently from the PI3K 

one, the activation of MAPK pathway is associated to the regulation of insulin non-metabolic 

actions related to growth, mitogenesis, differentiation as well as decrease in nitric oxide production 

and procoagulant effects (Wang, Goalstone, and Draznin 2004). This signalling pathway starts with 

the phosphorylation of Shc protein by tyrosine kinase. The subsequent activation of factor Sos 

induces the MAPK pathway that involved molecules as Ras, Raf, MAPK kinase (MEK) and 

extracellular regulated kinase (ERK). The MAPK pathway stimulates endothelin-1 synthesis, 

vascular cell adhesion molecules VCAM-1 and E-selectin expressions as well as vascular smooth 

muscle cells growth and mitogenesis. 

 

Alterations at different levels in insulin signalling pathways could cause insulin resistance. 

Insulin receptor is one of the potential site involved in insulin resistance, possibly to genetic 

alterations of its structure or down-regulation of its expression. Moreover, impaired insulin 

sensitivity could derive from an up-regulation of IR/IGF-IR hybrid receptor expression. IR/IGF-IR 

hybrid receptors display high affinity for IGF-1 and low affinity for insulin (Soos, Nave, and Siddle 

1993). An increase in IR/IGF-IR hybrids, as observed in skeletal muscle and adipose tissue of 

subjects affected by type 2 diabetes (Federici et al. 1997) and in skeletal muscle of obese subjects 

(Federici et al. 1998), could reduce insulin sensitivity. 
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Additionally, insulin resistance development could also be related to abnormalities in insulin 

signalling cascade, such as altered insulin-induced phosphorylation of IR or IRS-1 as well as 

reduced PI3K activity (Sesti 2006).  

Moreover, impaired GLUT4 translocation is an additional critical point potentially involved in 

whole-body glucose uptake (Zierath et al. 1996) and insulin resistance. 

Finally, defects in insulin sensitivity could be associated to the up-regulation of proteins with 

inhibitory effects on insulin signalling pathway, such as PTPase (protein-tyrosine phosphatases) or 

PC-1. Studies in humans, in fact, demonstrate that improvement in insulin sensitivity in obese 

subjects after body weight loss is inversely correlated to the decrease in PTPase activity as well as 

in other proteins suppressing insulin activity (Ahmad et al. 1997). Additionally, PC-1 content is 

augmented in adipose tissue and skeletal muscle in insulin resistant subjects (Youngren et al. 1996; 

Frittitta et al. 1997). 

 

TARGET TISSUES OF INSULIN 

The first and main activity of insulin is to guarantee a correct glucose utilization and storage, 

removing exceeding glucose from the blood stream. In this case, main target tissues for insulin 

action are skeletal muscle, liver and adipose tissue. Additionally, insulin displays important 

vascular effects that are coupled with glucose homeostasis. Nevertheless, other tissues, like the 

brain, are interested by insulin activity. 

 

Skeletal muscle. 

The skeletal muscle is the most important organ for glucose metabolism, since it accounts for 

approximately the 75% of glucose disposal. At this level, insulin promotes glucose uptake, inducing 

GLUT4 translocation from intracellular vesicles to cell membrane (DeFronzo 1988; Shulman 

2000), and stimulates glucose storage, promoting glycogenesis (Shulman 2000) and inhibiting 

glycogenolysis. Once entered cells, glucose could also be immediately oxidized to generate ATP 

(Shulman 2000). 

Moreover, skeletal muscle is the principal tissue involved in insulin resistance development, 

through the reduction of glucose uptake and the increase of glucose synthesis (Thorell et al. 1999; 

Langouche and Van den Berghe 2006). Glycogen storage in skeletal muscle is decreased when 

insulin sensitivity is impaired. Even though mechanisms are still debated, it is widely suggested that 

the principal alteration occurring in insulin resistant skeletal muscle concerns down-regulation of 

GLUT4 transporter (Thorell et al. 1999; Thorell et al. 1999; Langouche and Van den Berghe 2006). 

This is in agreement with the impairment of PI3K insulin signalling pathway that typically occurs in 
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insulin resistance. Moreover, insulin resistance increases the expression of insulin-independent 

glucose transporters, i.e., GLUT1, 2 and 3; localised in neurons, renal cells, erythrocytes, exposing 

these tissues to the toxicity of hyperglycaemia (Langouche and Van den Berghe 2006). 

Additionally, skeletal muscle presents a subpopulation of GLUT4 that are not responsive to insulin 

but to physical exercise. A reduction of physical activity could thus worsened insulin resistance due 

to a decreased expression of these transporters (Thorell et al. 1999). These data, associated to the 

increase in circulating levels of triglycerides and fatty acids typically observed in insulin resistance 

conditions (Straczkowski et al. 2007), suggest that glucose flux is redirected from skeletal muscle to 

adipose tissue. 

Moreover, also in skeletal muscle impaired insulin sensitivity has been associated to enhanced 

intracellular lipid content and metabolism (Jacob et al. 1999). Particularly, in insulin resistant states, 

contents of triglycerides, long-chain saturated fatty acids, diacylglycerols, ceramides and other lipid 

intermediates are increased in skeletal muscle (Straczkowski et al. 2007). In turn, intracellular 

accumulation of lipid intermediates could per se affects insulin transduction pathway (Bruce et al. 

2006), as demonstrated in skeletal muscle (Straczkowski et al. 2007; Chavez et al. 2003; Powell et 

al. 2004). Several mechanisms have been proposed for altered lipid metabolism in insulin resistant 

muscle, even though a complete description is still lacking. Insulin resistance increases muscular 

uptake of fatty acids that in turn is directly correlated to increased intracellular lipid intermediates 

(Bonen et al. 2004). It has been suggested that an increase in the expression of fatty acid 

transporters could be responsible for the augment in lipid influx in resistant muscle (Chabowski et 

al. 2006). On the contrary, intramuscular lipid accumulation could be associated to altered lipid 

degradation. In fact, abnormalities in mitochondrial content, function as well as oxidative activity 

have been reported in subjects with impaired insulin sensitivity (Schrauwen-Hinderling et al. 2007; 

Holloway et al. 2008), potentially contributing to further worsen insulin resistance, in a vicious 

cycle. Moreover, the reduction of muscular fatty acid oxidation, promoting the increase in 

circulating free fatty acids, could partly contribute to altered fatty acid metabolism in liver. 

Circulating ketone bodies, produced by the partial hepatic fatty acid oxidation, are elevated in 

obesity and type 2 diabetes (Turcotte, Hespel, and Richter 1995). 

Moreover, accumulation of fatty acids or their metabolites inhibits PI3K activity, further reducing 

glucose uptake and promoting insulin resistance development, in a vicious cycle (Avramoglu, 

Basciano, and Adeli 2006). 

 

Liver. 
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Insulin reduces hepatic glucose production, through the inhibition of genes encoding for enzymes 

involved in gluconeogenesis and glycogenolysis (Shulman 2000). Additionally, insulin stimulates 

hepatic glucose storage, promoting glycogenesis and hepatic lipid synthesis. These hepatic insulin 

actions prevent further increase in glucose into the blood stream (DeFronzo 1988; Shulman 2000). 

On the contrary, insulin resistance is associated to increased hepatic glucose production and 

enhanced hepatic glucose release. The liver then plays a key role in hyperglycaemia subsequent to 

insulin resistance development (Michael et al. 2000). Moreover, also in liver, altered insulin 

sensitivity is associated to altered fatty acid metabolism, characterised by intramyocytes lipid 

accumulation (Petersen et al. 1998) and enhanced ketone bodies production that could further 

worsen insulin resistance (Avramoglu, Basciano, and Adeli 2006). 

 

Adipose tissue. 

The effects of insulin are, also in adipose tissue, aimed to increase glucose uptake and storage (Kim 

et al., 2006). In fact, insulin stimulates GLUT4 translocation in adipocyte surface, promoting 

glucose uptake (DeFronzo 1988; Shulman 2000) and stimulates glucose storage as fat, enhancing 

fat synthesis (Shulman 2000). Additionally, in adipocytes, insulin inhibits lipolysis and fatty acid 

release in the blood stream (Shulman 2000). An important demonstration of the key role of adipose 

tissue in insulin sensitivity has been reported in transgenic mice, overexpressing lipoprotein lipase 

in adipose tissue. In this condition, the accumulation of triglycerides was associated to insulin 

resistance development (Ferreira et al. 2001; Kim et al. 2001). 

 

Vascular endothelium. 

Insulin displays different effects in the vascular endothelium, principally leading to vasodilation and 

increase in blood flow. In turn, insulin-induced hemodynamic changes further promote insulin as 

well as glucose delivery to skeletal muscle. The net effect is an increase in glucose disposal 

associated to insulin-induced increase in GLUT4 translocation at muscle level (Vincent et al. 2004). 

This underlines the couple between insulin-induced hemodynamic and metabolic effects. 

Insulin actions in vascular endothelium are exploited through both insulin main signalling cascades, 

the PI3K and the MAPK pathways, with different effects. 

The insulin-related activation of the PI3K cascade determines the stimulation of endothelial nitric 

oxide (NO) synthase (eNOS) activity, leading to enhanced NO production (Zeng and Quon 1996; 

Montagnani et al. 2002). eNOS, in fact, catalyses the conversion of L-arginine, whose endothelial 

uptake is stimulated by insulin (Sobrevia et al. 1996), to NO and L-citrulline. Classically, 

stimulators of eNOS activity activate eNOS through a calcium dependent pathway. On the contrary, 
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insulin induces eNOS activation through a distinct and independent mechanism, the PI3K pathway. 

Vasodilatory effect of insulin is a consequence also of insulin-induced production of prostacyclin 

(PGI2), an endothelium-derived vasodilatator synthesised from arachidonic acid. Interestingly, 

eNOS per se directly suppresses the activity of cyclooxygenase-1, enzyme that catalyses PGI2 

synthesis; however, insulin stimulates PGI2 synthesis through an NO-independent pathway. 

Enhanced NO synthesis determines vasodilation that occurs in two phases (Vincent et al. 2002; Kim 

et al. 2006). Within few minutes, insulin induces dilation of terminal arterioles (capillary 

recruitment), whereas the insulin-induced increase in blood flow, secondary to relaxation of larger 

resistance vessels, occurs within 30 minutes and reaches its maximum after 2 hours from 

physiological insulin stimulation (Baron et al. 1996). Capillary recruitment and augmented blood 

flow favour insulin and glucose availability at skeletal muscle level, stimulating insulin-induced 

GLUT4 translocation and glucose uptake in skeletal muscle. Interestingly, it has been estimated that 

insulin vasodilatory effect is responsible, per se, for the 40% of insulin-mediated glucose uptake in 

skeletal muscle (Mather et al. 2000). 

Nevertheless, insulin-related hemodynamic regulation depends also by the MAPK signalling 

pathway that leads to opposite effects to those induced by the activation of the PI3K cascade. In 

fact, insulin-induced activation of MAPK signalling pathway stimulates the secretion of endothelin-

1, a vasoconstrictor peptide (Potenza et al. 2005), as well as the endothelial expression of VCAM-1 

and E-selectin (Montagnani et al. 2002). Endothelial expression of VCAM-1 and E-selectin is a key 

point in modulating cell-cell interactions between circulating inflammatory cells and vascular 

endothelium. The complex hemodynamic regulation associated to insulin activity is further coupled 

to insulin-related activation of sympathetic nervous system. 

Insulin resistance is characterised by the disruption of PI3K signalling pathway and by the 

maintenance of MAPK signalling branch. As a consequence, the reduction of insulin-induced 

vasodilatation is not balanced by a decrease in insulin-induced vasoconstrictor production, via the 

MAPK pathway. 

Endothelial dysfunction in insulin resistance (Williams et al. 1996) is probably not only associated 

to impaired insulin sensitivity but could be the consequence of multiple abnormalities typically 

associated to this pathological condition, such as the development of a pro-atherogenic lipid pattern 

and of a low-grade systemic inflammation. Nevertheless, the role of insulin on the maintenance of 

endothelial function seems to be crucial. 
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DYSLIPIDAEMIA 

Dyslipidaemia is a common feature of the metabolic syndrome and of insulin resistant conditions, 

typically characterised by an increase in plasma triglycerides and low-density lipoprotein (LDL) as 

well as by a reduction in plasma high-density lipoprotein (HDL) content (Alberti, Zimmet, and 

Shaw 2006; Avramoglu, Basciano, and Adeli 2006).  

 

PLASMA LIPIDS: HIGH-DENSITY LIPOPROTEINS 

HDL are the smallest and densest cholesterol-rich particles. HDL are composed by a hydrophobic 

core, presenting neutral lipids, such as cholesteryl esters and triglycerides, and by a surface 

monolayer, containing phospholipids, free cholesterol and apolipoproteins. The peculiarity of HDL 

is apolipoprotein pattern. Apolipoproteins constitute the 50% of HDL molecule weight and 

comprise apolipoprotein A-I, that accounts for the 90% of HDL apolipoproteins, apolipoprotein A-

II and a little amount of exchangeable apolipoproteins (such as apolipoprotein C-1, C-II, C-III, E 

and A-IV). HDL are characterized by the absence of apolipoprotein B. 

Physiological activities of HDL are mainly associated to its protective cardiovascular effects. First, 

HDL displays anti-atherogenic properties (Kontush and Chapman 2006), principally associated to 

HDL role in the removal of peripheral excess cholesterol, through the reverse cholesterol transport 

(Lewis and Rader 2005). 

Moreover, HDL exhibits antioxidant property (Kontush and Chapman 2006; Navab et al. 2009); in 

fact, apolipoprotein A-1 stimulates lecithin:cholesterol acyltransferase (LCAT) activity, favouring 

the hydrolysis of LDL oxidized phospholipids (Navab et al. 2009). 

Third, HDL inhibits the expression of adhesion molecules (Nicholls et al. 2005), induced by 

vascular injury and inflammatory conditions (Ridker et al. 1998), with consequent endothelial 

protective effects. HDL also prevents monocyte chemotaxis and infiltration at vascular level 

(Lawrence and Springer 1991), through a direct inhibitory effect on monocyte migration (Ansell et 

al. 2003). Moreover, in endothelium, HDL stimulates eNOS activity, through a PI3K-dependent 

signalling mechanism (Mineo and Shaul 2003), similarly to insulin (Vecchione et al. 2002). 

HDL protective effects on endothelium depend also on HDL-induced inhibition of platelet 

activation (Mineo et al. 2006) and of coagulation cascade, though the inactivation of factors Va and 

VIIa (Mineo et al. 2006; Eitzman et al. 2005). 

 

REVERSE CHOLESTEROL TRANSPORT 

The reverse cholesterol transport (RCT) is the mechanism through with cholesterol excess is 

transported from peripheral tissues to the liver, to be removed (Figure 3). Extracellular acceptor of 
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free cholesterol is apolipoprotein A-I, that, as already mentioned, constitutes the 90% of 

apolipoproteins in HDL and its precursors (Lewis 2006). 

 

 

 

Figure 3. HDL metabolism and the reverse cholesterol transport (Kontush, Guerin, and 

Chapman 2008). ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding 

cassette transporter G1; apoAI, apolipoprotein AI; apoB, apolipoprotein B; apoE, 

apolipoprotein E; CE, cholesteryl ester; EL, endothelial lipase; FC, free cholesterol; HDL-R, 

HDL receptor; HL, hepatic lipase; IDL, intermediate-density lipoprotein; LCAT, 

lecithin:cholesterol acyltransferase; LDL-R, LDL receptor; PLTP, phospholipid transfer 

protein; SR-BI, scavenger receptor type BI; TG, triglyceride. 

 

The reverse cholesterol transport initiates with the cholesterol efflux, mediated by ATP binding 

cassette transporters (ABCs). In this phase, free cholesterol is transported from peripheral tissues to 

apolipoprotein A-I. ABCs transfer cholesterol in a unique direction and, in particular, ABCA1 

mediates the cholesterol efflux to lipid-free apolipoprotein A-I and pre-β HDL (Wang and Tall 

2003) whereas ABCG1 is responsible for cholesterol efflux to mature HDL (Kennedy et al. 2005). 

The pre-β HDL represents the nascent form of HDL, rich in apolipoprotein A-I and with a discoidal 

shape (Castro and Fielding 1988); pre-β HDL could be secreted de novo from the liver or intestines, 



Introduction 

20 

by lipoprotein lipase-induced dissociation of triglyceride-rich lipoproteins or could be produced as 

by-product of HDL interconversion (Tall 2008). 

To avoid the transfer of free cholesterol back to peripheral tissues, once uptaken by apolipoprotein 

A-I molecules, free cholesterol is esterified by the LCAT (Subbaiah et al. 1994). Cholesteryl esters 

migrate in the core of the particle, transforming pre-β HDL in the spherical mature HDL. 

Cholesteryl ester delivery can proceed through two different pathways. In liver, mature HDL 

selectively binds to scavenger receptor class B type 1 (SRB1) (Marguet and Chimini 2002), and 

cholesteryl esters are directly uptaken in hepatocytes through transcytosis (Silver et al. 2001), 

without HDL catabolism (Bultel-Brienne et al. 2002). In this case, cholesterol is transformed in bile 

acids and excreted in the biliary tract. Alternatively, the transfer of cholesteryl esters to the liver can 

proceed indirectly through a process of lipid exchange, mediated by the cholesteryl ester transfer 

protein (CETP). CETP exchanges cholesteryl esters with triglycerides from HDL to lipoproteins 

containing apolipoprotein B, principally LDL and very-low density lipoprotein (VLDL) (Tall 

1993). LDL and VLDL, enriched in cholesteryl esters, enter hepatocytes via the LDL receptor 

and/or LDL receptor-related protein. On the contrary, HDL particles are transformed in smaller 

HDL3 and in apolipoprotein A-I by the actions of phospholipids transfer protein (PLTP) and 

hepatic lipase (HL), respectively involved in phospholipids transport and triglyceride hydrolysis. 

After this remodelling, HDL3 and apolipoprotein A-I re-enter the reverse cholesterol transport (Jin, 

Marchadier, and Rader 2002). 

 

CHOLESTERYL ESTER TRANSFER PROTEIN 

The cholesteryl ester transfer protein (CETP) is a hydrophobic glycoprotein (Bruce, Chouinard, Jr., 

and Tall 1998), composed by 476 amino acid residues. Liver and adipose tissue represent the main 

sites of CETP production, even though CETP is also synthesised by skeletal muscles, spleen, small 

intestines, adrenal gland, kidney, heart and can be secreted by different cell types, such as 

macrophages and B-lymphocytes (Tall 1993). 

CETP displays structural similarities with other plasma proteins, as phospholipid transfer protein 

(PLTP) and C reactive protein (CRP) (Lepper et al. 2007; Masson et al. 2009). Interestingly, all 

these proteins are known to be involved, to various degrees, in atherosclerosis and inflammation 

(Lepper et al. 2007; Masson et al. 2009). 

CETP plays a key role in cholesterol metabolism (Figure 4) and, particularly, in the reverse 

cholesterol transport, since it is responsible for the transfer of cholesteryl esters from HDL, mainly 

HDL2, to LDL and VLDL, exchanging triglycerides (Tall 1993). This lipid exchange determines an 

increase in pro-atherogenic particles, i.e., small HDL as well as dense LDL and VLDL. However, 
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CETP secretion is directly related to intracellular cholesteryl ester content and CETP expression 

(Kinoshita et al. 1996) as well as mass (Gaynor et al. 1994) are increased in response to high dietary 

intake of triglycerides and cholesterol, suggesting that physiological increase in CETP activity 

could occur to counteract excess cholesterol accumulation. Moreover, through VLDL and LDL, 

cholesteryl esters are removed from tissues with an excess of cholesterol and redistributed to other 

tissues requiring cholesterol or removed by the liver (Tall 1993). These evidences suggest that 

CETP is deeply involved in the maintenance of intracellular cholesterol homeostasis. 

 

 

 

 

Figure 4. The role of CETP on the reverse cholesterol transport (Kronenberg and Williams 

2008). CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; FC, free cholesterol; 

HDL-E, HDL with apolipoprotein E; IDL, intermediate-density lipoprotein; LCAT, 

lecithin:cholesterol acyltransferase; LDLR, LDL receptor; PL, phospholipids; SR-B1, class 

B, type I scavenger receptor; Tg, triglyceride. 
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CETP in the metabolic syndrome. 

CETP activity is up-regulated in subjects suffering the metabolic syndrome, possibly leading to a 

decrease in HDL and an increase in dense LDL (Sandhofer et al. 2006). Interestingly, the degree of 

increase in CETP is directly related to increasing number of the metabolic syndrome components 

(Sandhofer et al. 2006). In this context, CETP displays pro-atherogenic effects, counteracting the 

anti-atherogenic effects of HDL, i.e., removal of excess cholesterol from peripheral tissues (Brewer, 

Jr. 2004), protection of LDL from oxidation (Barter et al. 2004), decrease of endothelial cell 

adhesion molecules expression (Barter, Baker, and Rye 2002). 

 

CETP in atherosclerosis. 

The role of CETP in atherosclerosis is still controversial since in literature CETP has been 

demonstrated to be both pro (Quinet et al. 1991; Marotti et al. 1993; Agellon et al. 1991; Bhatnagar 

et al. 1993; Mabuchi et al. 1995) and anti-atherogenic (Hayek et al. 1995; Nigon et al. 1991; Hirano 

et al. 1995; Stein et al. 1985; Zhong et al. 1996; Sakai et al. 1995). 

Overexpression of CETP in transgenic mice decreases HDL concentration (Agellon et al. 1991), 

even though the risk for atherosclerotic lesions is decreased (Hayek et al. 1995). Mutations in CETP 

gene, and consequent CETP deficiency, are associated to increased HDL and decreased 

atherosclerosis risk (Mabuchi et al. 1995); nevertheless the risk of coronary artery disease could be 

increased (Zhong et al. 1996). Additionally, in CETP deficiencies, the increase in HDL is mainly 

associated to the increase in large HDL2 particles (Hirano et al. 1995), characterised by a minor 

capability in cholesterol removal from peripheral cells, compared to the well-known anti-

atherogenic small HDL3 particles (Yamashita et al. 1995). Moreover, in CETP deficiencies, LDL 

affinity for its own receptor is impaired leading to LDL accumulation (Sakai et al. 1995), whereas 

in physiological condition, CETP induces cholesteryl esters transfer to LDL that display an optimal 

affinity for LDL receptor (Nigon et al. 1991). Moreover, it has been suggested that due to its small 

molecular dimension, CETP enters the capsular interstitium and directly removes cholesteryl esters 

from the atherosclerotic lesion (Stein et al. 1985; Hennessy, Kunitake, and Kane 1993). 

These apparent contradictory results concerning CETP role in atherosclerosis lead to hypothesis that 

CETP pro or anti-atherogenic effects are strictly related to the metabolic pattern considered 

(Stevenson 1998). For example, lipoprotein pattern influences CETP activity (Liinamaa et al. 1997; 

Tall 1995); particularly, an increase in plasma VLDL enhances cholesterol esters transfer from 

HDL to VLDL and LDL whereas an increase in HDL decreases this lipid exchange (Liinamaa et al. 

1997). Moreover a further increase in HDL reverts lipid shift, promoting the accumulation of 
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cholesteryl esters in HDL and inducing triglyceride transfer from HDL to VLDL and LDL 

(Liinamaa et al. 1997). Dietary fat content also affects CETP activity as demonstrated in rabbits fed 

with eicosapentaenoic acid (EPA) (Sugano, Makino, and Yanaga 1997); in this condition, HDL 

content increases, independently from changes in CETP or LCAT, both in plasma and in vessel 

interstitium suggesting a qualitative modulation of HDL induced by EPA and a consequent 

modulation of modified HDL on CETP activity (Sugano, Makino, and Yanaga 1997). Finally, 

insulin per se inhibits CETP activity even though an insulin resistant condition, as observed in type 

2 diabetes, could impair insulin-induced suppression in CETP (Stevenson 1998). 

 

LIPOPROTEIN METABOLISM IN INSULIN RESISTANCE AND METABOLIC SYNDROME 

As abovementioned, a common feature of insulin resistance and of the metabolic syndrome is the 

alteration of plasma lipid pattern, typically characterised by an increase in plasma triglycerides and 

LDL as well as by a reduction in plasma HDL content (Alberti, Zimmet, and Shaw 2006; 

Avramoglu, Basciano, and Adeli 2006) (Figure 5). These alterations in plasma lipid pattern 

represents also the key point in atherogenesis (Semenkovich 2006). 

Even though mechanisms relating insulin resistance development and dyslipidaemia are not fully 

elucidated, it is widely suggested that insulin resistance precedes altered lipid metabolism (Funada 

et al. 2004; Annuzzi et al. 2004). 

 

Insulin resistance and VLDL metabolism. 

In physiological condition, insulin effects on lipid metabolism is quite complex. Insulin displays 

lipogenic effects due to its regulatory action on enzymes involved in triglycerides synthesis 

(Foufelle and Ferre 2002). However, insulin inhibits VLDL synthesis (Lewis and Steiner 1996), 

partly stimulating apolipoprotein B degradation (Taghibiglou et al. 2002). The consequences of 

altered insulin sensitivity on these mechanisms have not been completely elucidated. However, in 

insulin resistance, an increase in VLDL synthesis and release in the blood stream typically occurs. 

Several explanations have been proposed and possibly concur to hypertriglyceridemia in insulin 

resistance. First, altered insulin sensitivity is associated to increased availability of free fatty acids. 

In liver, increased free fatty acid availability determines an increase in hepatocytes fatty acid 

uptake, that leads to enhanced apolipoprotein B production and then to enhanced VLDL synthesis 

(Lewis et al. 1995). Moreover, insulin resistance directly stimulates VLDL production due to 

impaired PI3K signalling pathway that normally promotes apolipoprotein B degradation. 

Interestingly, in insulin resistance, the level of free fatty acid is directly related to the degree of fat 

accumulation in liver (Holt et al. 2006). The increase of free fatty acid availability in insulin 
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resistance is, at least in part, due to enhanced fatty acid release from adipose tissue (Yu and 

Ginsberg 2005) that is associated to the defect in insulin-induced inhibition of lipolysis in 

adipocytes. 

 

 

Figure 5. Normal (light grey) lipid metabolism and metabolic abnormalities typically 

occurring in the metabolic syndrome (dark grey) (Huang 2009). apoB, apolipoprotein B; CE, 

cholesteryl esters; FFA, free fatty acid, TG, tryglicerides. 

 

Second, the augment of plasma VLDL is associated to decreased VLDL clearance, associated to 

altered activity of lipoprotein lipase, normally regulated by insulin (Eckel, Yost, and Jensen 1995). 

Third, in insulin resistance the shift from lipid oxidation to lipid storage could derive from altered 

activities of key enzymes involved in lipogenesis. In liver, in fact, insulin up-regulates the 

microsomal transfer proteins (MTP), that promote the formation of VLDL and chylomicron 

(Taskinen 2005); the sterol regulatory element-binding protein-1c (SREBP-1c), that activates 

enzymes involved in de novo lipogenesis, such as fatty acid synthase, acetyl-CoA carboxylase and 

stearoyl-CoA desaturase (Shimomura et al. 2000); as well as the xylulose 5-phosphate that 

promotes lipogenesis using as substrates the end products of glycolysis (Kathiresan et al. 2008). 

The increase in VLDL activates the MAPK/NFκB pathway, leading to a pro-inflammatory and a 

pro-thrombotic conditions (Norata et al. 2007) and contributing to endothelial dysfunction. The pro-

thrombotic state is characterised by the activation of plasminogen activator inhibitor-1 and the cell 
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adhesion molecule P-selectin (Tushuizen, Diamant, and Heine 2005). Moreover, VLDL-related pro-

inflammatory and pro-thrombotic states are associated to the increase in oxidative stress (Ceriello et 

al. 2002). 

 

Insulin resistance and HDL metabolism. 

Insulin resistance is associated to alteration in circulating HDL amount but also composition that 

determines, in a first phase, impairment in the reverse cholesterol transport. 

In type 2 diabetes, modifications in HDL could derive from altered activities of enzymes involved 

in lipid metabolism. It is in fact demonstrated that in insulin resistance, lipoprotein lipase activity is 

decreased (Taskinen 2003) whereas hepatic lipase (Taskinen 2003) and CETP activities are 

increased. The unbalance between lipoprotein lipase and hepatic lipase activities could stimulate 

HDL catabolism (Taskinen 2003). The increase in CETP activity in insulin resistant condition could 

be stimulated by the enhanced availability of lipoproteins exposing apolipoprotein B (Borggreve, 

de, and Dullaart 2003). Enhanced CETP activity determines an increase in HDL enriched in 

triglycerides (Khovidhunkit et al. 2004; Lamarche, Rashid, and Lewis 1999); triglyceride-rich HDL 

are more instable and are rapidly degraded or hydrolysed by hepatic lipase (Lamarche, Rashid, and 

Lewis 1999). Moreover, the uptake of triglyceride-rich HDL through the hepatic SRB1 is reduced, 

further contributing to the decrease in the reverse cholesterol transport (Lamarche, Rashid, and 

Lewis 1999). Moreover, the reduction in pre-β HDL particles is not only associated to increased 

CETP activity but also to the parallel decrease in phospholipid transfer protein (PLTP) activity 

(Borggreve, de, and Dullaart 2003; de et al. 2008). 

Additionally, in insulin resistance qualitative changes in HDL composition are evidenced. In fact, 

even though the main apolipoprotein constituting HDL is apolipoprotien A-I, HDL usually contains 

lower amounts of apolipoprotein A-II, A-V, C-II and C-III, that are typically recycled between 

HDL and the other triglyceride-rich lipoproteins. Alterations in HDL metabolism as well as in 

HDL-related cholesterol reverse transport determine modifications in HDL-containing 

apolipoproteins that could contribute in a vicious cycle to altered lipid metabolism. For example, in 

insulin resistant states, a decrease in apolipoprotein A-I is typically observed, mainly due to the 

increase in HDL catabolism (Duvillard et al. 2000). Furthermore, in type 2 diabetes, the increase in 

apolipoprotein C-III, that inhibits lipoprotein lipase activity, associated to a reduction in 

apolipoprotein C-II, that stimulates lipoprotein lipase activity, favours HDL hydrolysis (Taskinen 

2005). Moreover, the increase in apolipoprotein C-III per se reduces hepatic uptake and than the 

clearance of triglyceride-rich lipoproteins, in type 2 diabetes (Taskinen 2005). 
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Insulin resistance and LDL metabolism. 

In insulin resistance, plasma LDL concentration is usually unchanged whereas LDL composition is 

often altered (de Graaf et al. 1993), as a consequence of parallel changes in VLDL and HDL 

metabolism and composition (Sacks and Campos 2003). Possibly to increased depletion of 

cholesterol and phospholipids associated to increased or unchanged content of triglycerides, in the 

metabolic syndrome and in insulin resistance, circulating LDL particles are smaller, denser 

(Kwiterovich, Jr. 2002) and, consequently, more atherogenic (Krauss 1995) that the nascent LDL. 

Small and dense LDL in fact are unstable molecules and can be easily oxidized; moreover, small 

dense LDL display a lower affinity for LDL receptor and, consequently, exhibit a prolonged 

residence time in plasma and an high level of infiltration in endothelium. 
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VISCERAL ADIPOSITY 

Obesity is a key factor in the pathogenesis of the metabolic syndrome as well as in the development 

of insulin resistance (Figure 6). In addition to fat accumulation, fat distribution has to be considered 

since visceral adiposity displays different metabolic effects than subcutaneous adipose tissue.  

Particularly, free fatty acids, released by visceral adipose tissue, could directly enter the liver, 

through the splanchnic circulation, potentially affecting hepatic glucose and lipid metabolism; on 

the contrary, free fatty acids released by subcutaneous adiposity could be directly discharge in the 

systemic circulation with potentially minor hepatic effects. For such reasons, in the criteria of the 

metabolic syndrome waist circumference, more than body mass index, is usually considered 

(Alberti and Zimmet 1998). 

 

 

 

Figure 6. Normal (light grey) and impaired (dark grey) visceral adiposity metabolism 

occurring in the metabolic syndrome (Huang 2009). FFA, free fatty acid; PAI-1, 

plasminogen activator inhibitor 1. 

 

Several studies evidence the strong association between visceral fat accumulation and other 

components of the metabolic syndrome, including primarily insulin resistance (Poirier and Eckel 

2002) and pro-atherogenic dyslipidaemia (Despres et al. 1990; Avramoglu, Basciano, and Adeli 

2006; Pouliot et al. 1992). Mechanisms underlying these associations are not completely 
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understood, nevertheless adipose tissue-secreted adipocytokines play a central role. The five 

adipocytokines mainly involved in metabolic regulation are leptin, resistin and adiponectin as well 

as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) (Kershaw and Flier 2004). The latter two 

exert also important roles as inflammatory mediators and have been discussed later. 

 

Leptin. 

Leptin is a protein mainly synthesised by adipocytes and is encoded by the ob gene. Leptin 

production in subcutaneous adiposity is greater than in visceral adiposity (Van Harmelen et al. 

1998) and leptin secretion is strictly related to adipocyte lipid content (Zhang et al. 2002). This 

hormone is a modulator of energy status and metabolism and its expression as well as its level are 

increased in obesity, both in human and animal models (Girard 1997; Van Harmelen et al. 1998). 

Leptin exerts several effects on insulin activity. In adipocytes, prolonged leptin exposure impairs 

insulin-stimulated glucose uptake and glycogenesis, lipogenesis and inhibition of lipolysis as well 

as insulin effects on protein synthesis (Muller et al. 1997). In skeletal muscle (Muoio et al. 1997) as 

well as in hepatocytes (Nemecz et al. 1999), leptin inhibits insulin stimulatory action on 

glycogenesis. Finally, leptin stimulates insulin production and secretion in pancreatic β cells 

whereas it inhibits glucose-induced insulin secretion (Ceddia et al. 1999; Seufert, Kieffer, and 

Habener 1999). Mechanisms linking hyperleptinemia to impaired insulin sensitivity are unclear, 

even though it has been hypothesis that leptin indirectly interferes in insulin activities, possibly 

through changes in fat accumulation, rather than through direct effects on insulin signalling 

pathway. 

 

Resistin. 

Resistin is an adipocytokine characterised by an high cysteine content. Although further 

investigations are required to determine resistin physiological role, several evidences suggest the 

potential negative role of resistin in insulin sensitivity (Vidal-Puig and O'Rahilly 2001; Lee et al. 

2003). 

 

Adiponectin. 

Adiponectin is an adipocytokine related to the maintenance of insulin sensitivity (Tschritter et al. 

2003) and to the development of the metabolic syndrome (Medina et al. 2004). Adiponectin levels 

are reduced in obese (Milan et al. 2002) and type 2 diabetes subjects as well as in the metabolic 

syndrome (Facchini et al. 1991). Moreover, decreased adiponectin level has been related to 

increased cardiovascular risk (Pischon et al. 2004; Maahs et al. 2005). Adiponectin primarily acts in 
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skeletal muscle and in liver (Yamauchi et al. 2003), through the activation of AMP-activated 

protein kinase and peroxisome proliferator-activated receptor α (PPAR-α), leading to enhanced fatty 

acid and glucose metabolism. In fact, adiponectin reduces neoglucogenesis (Combs et al. 2001), 

increases glucose uptake in muscle (Fruebis et al. 2001) and favours insulin activity in liver (Berg et 

al. 2001). Moreover, through the activation of the AMP-activated protein kinase pathway, 

adiponectin ameliorates glucose utilization without inducing insulin secretion. Adiponectin also 

promotes fatty acid oxidation in both skeletal muscle (Fruebis et al. 2001) and liver (Xu et al. 2003), 

preventing fat mass deposition. Finally adiponectin decreases circulating free fatty acid level 

(Yamauchi et al. 2002). Adiponectin effects on glucose as well as lipid metabolism are responsible 

for adiponectin-induced reduction in fat mass and stimulation of insulin sensitivity. 
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OXIDATIVE STRESS 

Oxidative stress is define as an unbalance between reactive oxygen species (ROS) production and 

antioxidant systems activity. 

 

REACTIVE OXYGEN SPECIES 

ROS are derivatives of oxygen metabolism and are characterised by high reactivity and very short 

life. ROS are ubiquitously produced and are strictly involved in several biological and phsyological 

processes, including intracellular signalling, cellular differentiation, apoptosis (Ghosh and Myers 

1998), immunity (Tohyama, Takano, and Yamamura 2004), defense against microorganisms (Lee 

et al. 1998) as well as vascular tone maintenance. 

Some of radical species normally involved in physiological processes are superoxide radical (O2−), 

hydroxyl radical (•OH), hydrogen peroxide (H2O2) as well as reactive nitrogen species, including 

nitric oxide (NO) and the peroxynitrite radical (OONO−). 

 

ANTIOXIDANT DEFENCES 

Antioxidant systems are represented by several antioxidant enzymes, including glutathione 

peroxidase, superoxide dismutases and catalase, as well as several endogenous and exogenous 

molecules, such as glutathione, ascorbic acid, tocoferols, flavonoids, carotenoids and ubichinol 

(Beckman and Ames 1998), able to react and to neutralise ROS. The availability of non-enzymatic 

antioxidants is mainly related to adequate dietary intake of vitamins and microelements (Beckman 

and Ames 1998). 

 

Superoxide dismutase catalyzes the conversion of superoxide anion to hydrogen peroxide 

(Fridovich 1995), through the following reaction: 

 

2 O2 
· - + 2 H+  H2O2 + O2 

 

Catalase as well as the glutathione peroxidase catalyse the conversion of peroxides to water. 

Catalase catalyses the following reaction: 

 

2 H2O2  2 H2O + O2 

 

Glutathione peroxide, instead, is a selenium-containing tetrameric enzyme that neutralises peroxides 

using reduced glutathione as a hydrogen donor, as described by the following reaction:  
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H2O2 + 2 GSH  H2O + GSSG 

 

Glutathione peroxide reduces peroxides, lipoperoxides and other organic hydroperoxides, as well as 

peroxynitrite radicals (Sies et al. 1997). 

 

THE GLUTATHIONE SYSTEM 

Glutathione is the most important non-enzymic antioxidant and is synthesised in almost all human 

cells: intracellular concentrations normally range 0.5-10 mM, whereas plasma concentrations are 

extremely low (10 µM). Within the cell, the 90% of glutathione is present in cytoplasm (90%) and 

almost the remaining 10% is found in mitochondria, where it is transported from cytoplasm; a very 

small amount of glutathione can be detected in endoplasmic reticulum (Meredith and Reed 1982). 

In physiological condition, glutathione is mainly present in its active reduced form (GSH) 

characterised by reduced cysteine thiolic group; a smaller amount of glutathione is present in its 

oxidised form (GSSG), formed by two molecules of GSH, bonded by a disulphide link. GSH 

availability is maintained by the NADPH-dependent glutathione reductase that converts GSSG in 

two molecules of GSH, restoring the pool of glutathione in the active form. 

 

Glutathione metabolism. 

Glutathione is the most important non-enzymic antioxidant in humans. Glutathione is a tripeptide 

formed by glutammic acid, cysteine and glycine (Pastore et al. 2003), whose synthesis is mRNA-

independent (Figure 7). Glutathione de novo synthesis is catalysed by two enzymes: γ-glutamil 

cysteine synthetase and glutathione synthetase. The first forms the dipeptide γ-glutamil cysteine, 

whereas the glutathione synthetase catalyses the bond with glycine (Majerus et al. 1971). Cysteine 

is a limiting substrate and γ-glutamil cysteine is the rate limiting step in glutathione synthesis; γ-

glutamil cysteine is regulated by negative feed-back mechanism by glutathione itself (Lu 1999). 

Glutathione could then enter the γ-glutamate cycle leading to the production of γ-glutamil amino 

acid and cistein-glycine through γ-glutamyl transpeptidase activity (Pastore et al. 2003). γ-glutamil 

cyclotransferase and oxoprolinase transform γ-glutammil amino acid in 5-oxoprolin and glutamic 

acid. Glutamic acid as well as cysteine and glycine, obtained by the action of a dipeptidase on the 

cistein-glycine dipeptide, can then be utilized for glutathione synthesis (Pastore et al. 2003). 
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Figure 7. Glutathione synthesis and metabolism (continuous thick lines) and enzymatic 

regulation of glutathione synthesis (dashed lines). GCL, glutamate-cysteine ligase; GP, 

glutathione peroxidase; GR, glutathione reductase; GS, glutathione sinthetase, -GTP: -

glutammil transpeptidase; RM, remethylation pathway; TM, transmethylation pathway; TS, 

transulfuration pathway. 

 

Glutathione biological functions. 

Antioxidant activity. The most important glutathione function is its antioxidant activity, obtained 

through both enzymatic and non-enzymatic mechanisms. Enzymatic antioxidant activity is related 

to the activity of glutathione peroxidase. This enzyme, in fact, while converting hydrogen peroxide 

in water, utilises two molecules of GSH to form the glutathione dimer or GSSG (Pastore et al. 

2003). Glutathione non-enzymatic antioxidant defence is related to the ratio between GSH and 

GSSG; in physiological condition, the GSH/GSSG ratio is around 10 and this creates a reduced 

intracellular condition. Through these two mechansims, glutathione preserves protein sulphydril 

groups in a reduced state, preventing impairment in protein structure and function. 

Leukotriene synthesis. 

Glutatione is an important cofactor in leukotrienes synthesis. In particular, glutathione is involved 

in the synthesis of leucotriene C4, Dq and E4 (Anderson, Allison, and Meister 1982). 

Protein function modification. 
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In addition to its, abovementioned, effects on sulphydril groups in proteins, glutathione could 

modulate protein stability and function through the formation of chemical bonds with the thiolic 

groups. This reaction, known as glutathionilation, is implied in protein stability, in the prevention of 

protein cysteine oxidation as well as in the regulation of enzymes activity and transcription (Pastore 

et al. 2003). 

Cysteine pool maintenance. Glutathione represents a reserve of cysteine, that can be released 

through the γ-glutamate cycle. Cysteine is in fact highly unstable and undergoes auto-oxidation 

leading to cystine and ROS production. Cysteine availability is important for de novo protein 

synthesis and, mainly, for glutathione de novo production (Lu 1999). 

 

OXIDATIVE STRESS AND THE METABOLIC SYNDROME 

The increase in oxidative stress determines an excess in ROS that could react with cellular 

macromolecules leading to impaired protein structure and function, lipid peroxidation and DNA 

damage (Dean et al. 1997). Moreover, alterations in cellular signalling and metabolic regulation are 

also observed (Chopra and Wallace 1998), possibly contributing to the pathogenesis of several 

diseases (Halliwell 1997). 

Oxidative stress is recognised as a key factor in the development of inflammatory conditions, in the 

progression of insulin resistance (Stump et al. 2006), obesity (Ford et al. 2003), hypertension, 

atherosclerosis (Ceriello and Motz 2004), liver steatosis and cardiovascular diseases. Moreover, 

oxidative stress is considered a component of the metabolic syndrome (Van Guilder et al. 2006). 

Subjects suffering the metabolic syndrome typically evidence a decrease in antioxidant enzyme 

activities as well as in antioxidant molecules, as vitamin C and E (Demircan et al. 2008; Ford et al. 

2003). Interestingly, the degree of antioxidant status reduction is directly correlated to the number 

of clustered components of the syndrome (Demirbag et al. 2006). 

 

Oxidative Stress and Insulin Resistance 

Several studies evidence a strong association between insulin resistance and systemic oxidative 

stress (Meigs et al. 2007; Blendea et al. 2005; Ogihara et al. 2004), strongly suggesting a central 

role of oxidative stress in the pathogenesis of insulin resistance (Evans, Maddux, and Goldfine 

2005; Houstis, Rosen, and Lander 2006). 

Several interesting correlations have been demonstrated between levels of oxidative stress and the 

degree of glycemic control in type 2 diabetes (Davi, Falco, and Patrono 2005; Nourooz-Zadeh et al. 

1997). Moreover, insulin resistant conditions are characterised by altered redox status. ROS 

production is stimulated in insulin target organs, i.e., skeletal muscle, adipose tissue and liver, in 
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animal model of metabolic syndrome (Furukawa et al. 2004). In addition, the levels of protein, lipid 

and DNA oxidation are increased in type 2 diabetes (Davi, Falco, and Patrono 2005) as well as 

plasma and tissue contents of glycoxidation and lipoxidation products. Further evidences of the 

central role of oxidative stress in insulin sensitivity impairment derive from interventional studies. 

Supplementations with antioxidants (Blendea et al. 2005; Davi et al. 1999), including, as an 

example, α-lipoic acid (Henriksen 2006) and vitamin E (Henriksen 2006), reduce ROS contents 

(Davi et al. 1999) and restore antioxidant systems in diabetes (Chander et al. 2004; Namikoshi et al. 

2007). Antioxidant treatments ameliorate whole body glucose tolerance (Henriksen 2006; Blendea 

et al. 2005) as well as promote insulin sensitivity in metabolic syndrome models (Kunitomo et al. 

2008; Furukawa et al. 2004) and in type 2 diabetes (Bakris et al. 2004; Dandona, Ghanim, and 

Brooks 2007). 

Mechanisms through which oxidative stress could worsen insulin sensitivity are not completely 

elucidated. ROS interfere with several signalling pathways depending on type and amount of ROS 

as well as cell type and time of exposure. For example, ROS stimulate the expression of pro-

inflammatory genes, as TNF-α and CRP (Nathan 2003), known to be involved in the pathogenesis 

of inflammation and insulin resistance (Willerson and Ridker 2004). Additionally, ROS affect PI3K 

and JNK pathways possibly contributing to insulin resistance (Kamata et al. 2005). 

Moreover, ROS activate the NF-kB pathway, a stress-signalling pathway, possibly inducing  

endothelial dysfunction related to altered fatty acid flux, increased asymmetric dimethylarginine 

(ADMA) level and impaired NOS regulation (Davi et al. 1999). This effect on endothelium, 

associated to vasoconstriction induced by excess in ROS (Annuk, Zilmer, and Fellstrom 2003), 

could induce insulin resistance (Davi et al. 1999; Annuk, Zilmer, and Fellstrom 2003). 

 

Oxidative stress and obesity 

Obesity is associated to enhanced ROS content and weight reduction determines a decrease in ROS 

level (Vincent and Taylor 2006). Moreover, an observational study performed in approximately 

3000 subjects evidences that systemic oxidative stress is highly associated to diabetes as well as 

body mass index (Keaney, Jr. et al. 2003). Fat mass deposition leads to increase in adipocytokines 

production, as TNF-α, and in circulating free fatty acids that could contribute to enhanced oxidative 

stress (Fujita 2008). The augment in free fatty acids, typically observed in obesity, activates the 

NADPH oxidase, contributing to oxidative stress (Furukawa et al. 2004). An increase in oxidative 

stress, induced by both increase in ROS production and decrease in antioxidant system activity, is 

observed both in animals (Roberts et al. 2006; Galili et al. 2007) and humans (Devaraj et al. 2008; 

Cardona et al. 2008) after fat load. In addition, in animals, the early phases of obesity determine a 
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local vascular oxidative stress that could be responsible for the observed impairment of endothelial 

function in obesity (Galili et al. 2007). 

Oxidative stress occurring in visceral fat, more than in subcutaneous fat, is considered a precocious 

index of metabolic syndrome development. 

 

Oxidative stress and inflammation 

Oxidative stress per se stimulates inflammatory condition increasing the expression of plasminogen 

activator inhibitor-1, IL- 6 and monocyte chemoattractant protein-1 and decreasing adiponectin 

level (Furukawa et al. 2004). In contrast, treatments aimed to reduce ROS production restore 

physiological balance in the production of pro and anti-inflammatory cytokines; this effect then 

counteracts altered insulin sensitivity, altered plasma lipid and fat deposition in liver (Furukawa et 

al. 2004). The metabolic syndrome is characterised by increased indexes of oxidative stress, such as 

ROS and GSSG-to-GSH ratio, as well as increased markers of inflammatory condition, as CRP and 

fibrinogen (Skalicky et al. 2008). 

 

Oxidative stress and cardiovascular diseases. 

Oxidative stress has been suggested to be implied also in the development of cardiovascular 

diseases. Markers of oxidative stress as glutathione peroxidase (Blankenberg et al. 2003), 

myeloperoxidase (Brennan et al. 2003), oxidized LDL (Holvoet et al. 2001), isoprostanes (Patrono 

and FitzGerald 1997) and nitrotyrosine (Shishehbor et al. 2003) are also independent predictor of 

early risk for cardiovascular diseases and myocardial ischemia. 

Moreover, the increase in oxidative stress, promoting the oxidation of lipoproteins containing 

apolipoprotein B, could be directly involved in atherosclerosis (Lusis 2000). Additionally, the 

balance between oxidant production and antioxidant defences modulates vascular function and 

structure (Taddei et al. 1998) and then arterial pressure. As a consequence, oxidative stress could 

also be involved in hypertension development. In agreement with these considerations, antioxidant 

supplementations ameliorates hypertension, while reducing oxidative stress (Plantinga et al. 2007; 

Cangemi et al. 2007). 
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INFLAMMATION 

The activation of a low-grade systemic inflammation is a typical feature of the metabolic syndrome 

(Sutherland, McKinley, and Eckel 2004) as well as of insulin resistance development (Hotamisligil 

2006). Nevertheless, the cause-effect relationship between metabolic alterations, primarily insulin 

resistance, and increased pro-inflammatory cytokines level has not been fully elucidated (Stump, 

Hamilton, and Sowers 2006; Wellen and Hotamisligil 2005; Shoelson, Lee, and Goldfine 2006) 

Several evidences support a central role of chronic inflammation in insulin resistance in skeletal 

muscle and, then, at systemic level, especially through the interference with the IRS-PI3K-Akt 

signalling pathway of insulin (Wellen and Hotamisligil 2005; Perreault and Marette 2001; 

Bruunsgaard 2005). Moreover, increase in adipose tissue, leading to pro-inflammatory cytokines 

overproduction (Trayhurn and Wood 2004), contributes, at local as well as at systemic level (Xu et 

al. 2003), to impair insulin sensitivity, worsening altered metabolic condition (Fernandez-Real and 

Ricart 2003). 

Several cytokines have been recognised to be involved in insulin resistance development, such as 

tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), several interleukins (IL) and 

chemokines. Interestingly, in obese subjects suffering for the metabolic syndrome, the enhance in 

CRP, TNF-α, IL-6, IL-18 and oxidized LDL (Van Guilder et al. 2006) is proportional to the number 

of clustered components of the metabolic syndrome (Girona et al. 2008). 

Additionally, as already discussed, also adipocytokines such as leptin, resistin and adiponectin 

could interfere in insulin metabolism and signalling pathways. 

Moreover, in addition to direct modulators of inflammatory pathways, other factors are also 

involved in the control of inflammation. Among them, polyunsaturated n-6 and n-3 fatty acid have 

to be take into account. 

 

Polyunsaturated n-6 and n-3 fatty acids. 

Polyunsaturated n-6 and n-3 fatty acids are involved at several levels with inflammatory condition 

and inflammatory response. 

The arachidonic acid (a n-6 fatty acid) is the precursor of pro-inflammatory eicosanoids, 

synthesised by cyclooxygenase. Eicosanoids include prostaglandines, tromboxanes and 

leukotrienes, that are molecules involved in the activation and regulation of inflammation (Lewis, 

Austen, and Soberman 1990). Not only arachidonic acid, but n-6 fatty acid availability in general 

influences eicosanoid production. Increased membrane content of n-6 fatty acids has been 

associated to inflammatory diseases (Ueda et al. 2008) as well as to stimulated gene expression of 

pro-inflammatory cytokines and transcriptional activity of NF-kB (Weaver et al. 2009). The n-3 
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fatty acids, on the other side, are recognised to have anti-inflammatory properties. Eicosapentaenoic 

acid is a substrate for cyclooxygenase and is the precursor of prostaglandins, characterized by lower 

pro-inflammatory potential (Bagga et al. 2003). Moreover, docosahexaenoic (another n-3 fatty acid) 

as well as eicosapentaenoic acids are precursors of resolvins, subclasses of anti-inflammatory 

molecules (Hong et al. 2003). In vitro (Babcock et al. 2002) and in animal (Endres et al. 1989; Lee 

et al. 1985) studies evidence that eicosapentaenoic and docosahexaenoic acids down-regulate the 

expression and the production of IL-1 and of TNF-α. In general, n-3 fatty acids negatively modulate 

genetic regulation of pro-inflammatory factors, principally NF-kB (Ross, Moses, and Fearon 1999), 

that are involved also in the catabolism of n-3 anti-inflammatory fatty acids. Finally, the increase in 

eicosapentaenoic and docosahexaenoic acids intake is reflected in cell membrane fatty acid content 

(Lee et al. 1985), reducing, in turn, the fraction of the pro-inflammatory arachidonic acid. Finally, 

also the relative content of n-3 over n-6 fatty acids has to be considered. An high dietary n-6 to n-3 

fatty acid ratio intake stimulates the expression of CRP and other pro-inflammatory agents, such as 

TNF-α (Zhang et al. 2010). 

 

Polyunsaturated n-6 and n-3 fatty acids metabolism. 

Polyunsaturated n-6 and n-3 fatty acids metabolism is schematically reported in figure 8. 
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Figure 8. Synthetic pathways of saturated, monounsaturated and polyunsaturated 
(n-3 and n-6) fatty acids. 

n-6 fatty acids availability is principally related to precursor availability and endogenous synthesis 

(Wertz 2009). n-6 fatty acid precursor is linoleic acid, an essential fatty acid, typically found in 

vegetable oils (Bozan and Temelli 2008). Otherwise, the precursor of n-3 fatty acids is the essential 

α-linolenic acid, contained in high amount in vegetable oils (Wertz 2009). Moreover, n-3 fatty acids 

availability is also strictly related to fish oil intake, rich in eicosapentaenoic and docosahexaenoic 

acids (Pickova 2009). 

Interestingly, n-3 and n-6 fatty acids are metabolism by the same pattern of enzymes, composed by 

desaturases, like Δ-5 Δ-6 and Δ-9 desaturases, and elongases. 

Membrane fatty acid composition. 

A reliable marker of fatty acid availability in whole body and in tissues is fatty acid pattern in 

erythrocytes membrane phospholipids (Harris and Von 2004). Changes in membrane fatty acid 

composition are associated to several metabolic alterations; as an example, changes in relative fatty 

acid levels affect membrane fluidity and stability, altering signalling pathways and membrane 

permeability. It has been demonstrated that an high membrane content of n-3 fatty acids enhances 

GLUT-4 expression and signalling activity on muscle cell, possibly ameliorating insulin sensitivity 

(Taouis et al. 2002). In addition, membrane level of n-3 fatty acids is directly associated to reduced 

incidence of cardiovascular diseases (Harris and Von 2004). In human neutrophils, the increase in 

membrane ratio between n-6 and n-3 fatty acids is associated to enhanced pro-inflammatory 

molecule synthesis (Zhang et al. 2010). 

 

TNF-α 

TNF-α is a pleiotropic cytokine, that is mainly produced by macrophages; however, many other 

cells secret TNF-α including skeletal muscle of subjects suffering type 2 diabetes (Saghizadeh et al. 

1996) and adipose tissue, especially during fat mass accumulation (Saghizadeh et al. 1996) 

Several evidences indicate that TNF-α is a mediator of insulin resistance development in obesity 

(Hotamisligil, Shargill, and Spiegelman 1993), probably through the interaction with other 

cytokines (Bedard, Marcotte, and Marette 1997; Uysal et al. 1997). TNF-α has been demonstrated 

to affect the main tissue-targets of insulin action, i.e., skeletal muscle, adipose tissue and liver. In 

skeletal muscle of insulin resistant as well as type 2 diabetic subjects, TNF-α level is significantly 

increased (Hotamisligil et al. 1995; Lappas et al. 2005; Saghizadeh et al. 1996) and is inversely 

related to glucose availability (Saghizadeh et al. 1996). TNF-α impairs insulin-induced activation of 

insulin receptor and IRS-1 (Hotamisligil et al. 1994; del Aguila, Claffey, and Kirwan 
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1999(Bouzakri and Zierath 2007), in muscle (Li and Reid 2001), adipocytes (Hauner et al. 1995) as 

well as in liver (Hotamisligil et al. 1994). 

TNF-α is also involved in free fatty acid metabolism; in muscle and in adipose tissue; TNF-α down-

regulates lipoprotein lipase expression and suppresses fatty acid oxidation, leading to an increase in 

circulating free fatty acids and in intramuscular diacylglycerol content (Kroder et al. 1996). 

Finally, TNF-α modulates the expressions of other cytokines, stimulating IL-6 (Fasshauer et al. 

2003) and, possibly, leptin (Bullo et al. 2002) expressions and inhibiting adiponectin synthesis 

(Kern et al. 2003). 

 

IL-6 

IL-6 is a adipocytokine (Fried, Bunkin, and Greenberg 1998), exhibiting both pro- and anti-

inflammatory actions, that is secreted by several tissues, including skeletal muscle (Hacham et al. 

2004; Lopez-Soriano et al. 2006) and adipose tissue (Bastard et al. 2000). IL-6 concentration in fat 

mass increases in obese subjects, especially in visceral adiposity compared to subcutaneous fat 

deposition (Okuno et al. 1998). Several correlations have been reported between IL-6 content and 

risk or indexes of insulin resistance and type 2 diabetes (Bastard et al. 2000; Monzillo et al. 2003; 

Fernandez-Real et al. 2001). Nevertheless, it has been hypothesised that IL-6 role in insulin 

resistance development is mainly related to IL-6-mediated regulation of resistin and, possibly, other 

adipocytokines secretion (Kaser et al. 2003), rather than to a direct molecular interaction with 

insulin signalling pathway (Bastard et al. 2000; Kern et al. 2001). 

 

IL-10 

IL-10 is an anti-inflammatory cytokine, expressed both in skeletal muscle and adipose tissue. IL-10 

is reported to modulate glucose metabolism in skeletal muscle (Hacham et al. 2004) and to prevent 

detrimental effects of high-fat diet and of IL-6 on hepatic fat accumulation (den Boer et al. 2006) 

and insulin signalling defects (Kim et al. 2004), respectively. 

 

IL-1β 

IL-1β is a pro-inflammatory cytokine, involved in pancreatic β cell destruction in type 1 diabetes. 

its effects on insulin signalling pathway and metabolism are presently unknown; nonetheless, IL-1β 

concentration is increased in β cells of subjects suffering also type 2 diabetes and its level is strictly 

related to the progression in β cell dysfunction and apoptosis, induced by hyperglycaemia (Maedler 

et al. 2002; Maedler and Donath 2004). 
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IL-15 

IL-15, involved in weight regulation (Quinn et al. 2005), promotes insulin sensitivity. IL-15 in fact 

enhances glucose uptake, mainly through the stimulation of GLUT-4 expression (Busquets et al. 

2006). 

 

C-reactive protein 

Plasma levels of CRP have been related to the degree of visceral adiposity and insulin resistance; 

however, great differences in CRP levels have been reported among different populations and 

ethnic groups, masking the effective potential predictive and/or causative role of CRP on diabetes 

or metabolic syndrome development (Chambers et al. 2001). 

 

Chemokines 

Chemokines are chemotactic cytokines, characterised by small molecular weight, potentially 

involved in insulin signalling pathway as well as in glucose metabolism. Among them, monocyte 

chemotactic protein-1 (MCP-1) has been related to impaired insulin sensitivity in adipose (Kamei et 

al. 2006; Kanda et al. 2006) and skeletal muscle tissues (Boyd et al. 2006; Torres et al. 2004) in 

type 2 diabetes. 
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HYPERHOMOCYSTEINEMIA 

 

HOMOCYSTEINE METABOLISM 

Homocysteine is a non-proteinogenic amino acid, that is present in human plasma in two different 

forms, homocysteine and homocystine. Homocystine is the dimerized form of the reduced 

homocysteine and accounts for almost the 90% of total homocsyetine in blood (Jacobsen 1998). 

Homocysteine is involved in methionine metabolism (Figure 9). Methionine is converted to 

homocysteine through the transmethylation pathway in three steps. First, methionine 

adenosyltransferase catalyses the conversion of methionine to S-adenosylmethionine (SAM). S-

adenosylmethionine is the methyl donor virtually involved in all methylation reactions and is 

transformed in S-adenosylhomocysteine (SAH) by the action of several methyltransferase enzymes. 

Among these methyltransferases, glycine N-methyltransferase (GNMT) is responsible for the 

metabolism of excess methionine and, in fact, is only weakly inhibited by S-adenosylhomocysteine 

production. The third step is characterised by the hydrolysis of S-adenosylhomocysteine to 

homocysteine, by S-adenosylhomocysteine hydrolase (SAHH). Once synthesised, homocysteine 

can be converted back to methionine, through the remethylation pathway, or can be transformed to 

cysteine, through the transulfuration process. The remethylation of homocysteine to methionine is 

provided by two independent enzymes, methionine synthase and betaine:homocysteine 

methyltransferase (BHMT), using respectively N5-methyltetrahydrofolate and betaine as methyl 

donors (Torres et al. 2004). The transulfuration, instead, is an irreversible process transforming 

homocysteine to cysteine, in a two-step pathway. The cystathionine β-synthase (CBS) condensates 

homocysteine and serine in cystathionine and the cystathionine γ -lyase (CGL) hydrolyses 

cystathionine to cysteine, α-oxobutyrate and ammonium. The transulfuration pathway prevails over 

the remethylation when the requirement of methionine is decreased or the one of cysteine is 

increased (Wijekoon, Brosnan, and Brosnan 2007). 
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Figure 9. Homocysteine metabolic pathway (Refsum et al. 2004). Hcy, homocysteine; Met, 

methionine; Ado, adenosine; AdoHcy, S-adenosylhomocysteine; AdoMet, S-

adenosylmethionine; B12+1,+2, oxidation state of cobalt atom in B12; BHMT, betaine-

homocysteine S-methyltransferase; CH2THF, 5,10-methylenetetrahydrofolate;CH3THF, 5-

methyltetrahydrofolate; CL, cystathionine γ-lyase; Cysta, cystathionine; DHF, 

dihydrofolate; DHFR, dihydrofolate reductase; MAT, methionine adenosyltransferase; 

MTR, methionine synthase; MTRR, methionine synthase reductase; MTs, AdoMet-

dependent methyltransferases; R, methyl acceptor (e.g., phospholipids, proteins, DNA, 

RNA, amino acids, and neurotransmitters); SAHH, S-adenosylhomocysteine hydrolase; 

SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate; TS, thymidylate synthase. 

 

FACTORS INFLUENCING HOMOCYSTEINE METABOLISM 

 

Dietary factors. 

The methyl donor S-adenosylmethionine is a key regulator of homocysteine metabolism, promoting 

the transmethylation and the transulfuration (Finkelstein 2000) as well as decreasing the 

remethylation, through the inhibition of the methylentetrahydrofolate reductase (Finkelstein 2000). 

Proteins and amino acids are a source of S-adenosylmethionine; as a consequence, if in normal diet 

conditions (normal or low protein intakes) homocysteine is mainly catabolized through the 

remethylation, in an high protein diet homocysteine is mainly removed through the transulfuration 

pathway (Ueland and Refsum 1989). 
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Folates are also key regulators of homocysteine metabolism. Low plasma folate levels determine an 

increase in plasma homocysteine due to a reduction of remethylation and an increase in 

transmethylation and transulfuration pathways (Lee and Frenkel 2003). 

Moreover, nutritional deficiencies of cobalamin (Refsum et al. 2001) and pyridoxine (Slavik, Smith, 

and Blanc 1982) involved in the methionine synthesis and in the activity of 

methylenetetrahydrofolate reductase, respectively, are associated to hyperhomocysteinemia. 

 

Gender. 

Homocysteine concentration is related to age, race (Nygard et al. 1995) and gender (Fukagawa et al. 

2000). Homocysteine level is lower in female compared to male subjects, matched for age and 

healthy condition, probably due to a more efficient remethylation process (Fukagawa et al. 2000). 

 

Genetic factors. 

Hyperhomocysteinemia has been associated primarily to two main genetic mutations: one involving 

the cystathionine β-synthase with consequent reduction in transulfuration (Crowther and Kelton 

2003), and the second interesting the methylentetrahydrofolatereductase (MTHFR), inducing an 

impairment in remethylation (Deloughery et al. 1996). 

 

Level of physical activity. 

Homocysteine concentration is differently affected by physical activity level. Even though some 

discrepancies have been reported (Gelecek et al. 2007; Di et al. 2009; DiSantolo et al. 2009), acute 

exercise enhances homocysteine level (Herrmann et al. 2003; Duncan et al. 2004) whereas constant 

regular training decreases homocysteine concentration, compared to untrained subjects (Duncan et 

al. 2004). Moreover, low physical activity, as observed in sedentary lifestyle condition, is associated 

to increased plasma homocsyetine content (Metsios et al. 2009), independently from other 

confounding factors such as genetics, sex, age or folate dietary intake (Nygard et al. 1995). On the 

contrary, regular and constant physical activity decreases homocysteinemia in lean but also obese 

adults (Vincent, Bourguignon, and Vincent 2006). Nevertheless, mechanisms relating physical 

activity level and homocysteine metabolism are presently not elucidated. 

 

HOMOCYSTEINE AND CARDIOVASCULAR RISK 

Hyperhomocysteinemia is a marker of cardiovascular disease since elevated plasma levels of 

homocysteine are recognised to be involved in cardiovascular damages (Clarke et al. 1991; Graham 

et al. 1997; Boushey et al. 1995). Moreover, in recognised coronary heart disease patients 
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homocysteinemia is directly related to flogosis as well as oxidative stress (Jonasson et al. 2005) and 

can be considered a predictive index of mortality (Nygard et al. 1997). However, the molecular 

mechanism linking homocysteine and cardiovascular injury has not been completely elucidated. 

Nevertheless, several hypothesis have been proposed. 

Several evidences indicate that a negative correlation exists between homocysteinemia and HDL 

level in subjects differently affected by cardiovascular diseases (Qujeq, Omran, and Hosini 2001; 

Glueck et al. 1995). It has been suggested that hyperhomocysteinemia induces cardiovascular 

diseases at least in part through the impairment of HDL and apolipoprotein A-I metabolism (Liao, 

Yang, and Wang 2007). In mice, high homocysteine levels are associated to dyslipidaemia, 

characterised by increased total cholesterol, triglycerides, LDL and VLDL levels as well as by 

decreased HDL cholesterol (Qujeq, Omran, and Hosini 2001; Glueck et al. 1995; Wang et al. 2003). 

It has been proposed that dyslipidaemia associated to hyperhomocysteinimia could be induced by 

homocysteine effects at hepatocyte level. In fact in hepatocytes, homocysteine determines 

endoplasmic reticulum stress, activates protective mechanisms such as the unfolded protein 

response that promotes protein degradation by the endoplasmic reticulum and inhibits protein 

synthesis, and activates the sterol regulatory element-binding proteins. These events, in turn, impair 

the sterol response pathway and induce cholesterol and triglyceride accumulation (Holven et al. 

2003). Additionally, enhanced homocysteine levels have been associated to increase in extrahepatic 

scavenger receptors involved in the peripheral uptake of LDL and oxidised LDL (Wang et al. 2003; 

Holven et al. 2003). 

Another hypothesis is that enhanced plasma homocysteine could affect vascular functions, at 

several levels. Through autoxidation, homocysteine could transform in homocystine and other 

reactive oxygen species, respectively in plasma and in cells, (Welch and Loscalzo 1998); moreover 

homocysteine inhibits glutathione peroxidase activity (Nishio and Watanabe 1997) and expression 

(Upchurch, Jr. et al. 1997), potentially determining oxidative damage. Homocysteine reacts with 

nitric oxide to counteract its potential oxidative properties; however, this determines a reduction of 

nitric oxide availability. Additionally, homocysteine could react with several factors of the 

coagulation, promoting a prothrombotic condition (Nishinaga, Ozawa, and Shimada 1993). 

Furthermore, homocysteine is a potent mitogen for vascular smooth-muscle cells (Harker, Harlan, 

and Ross 1983; Tsai et al. 1994) and could impair intracellular protein folding as well as determine 

endoplasmic reticulum stress (Outinen et al. 1999). Moreover, homocysteine promotes a pro-

inflammatory condition through the stimulation of arachidonic acid metabolism and, consequently 

the increase in pro-inflammatory and procoagulant thromboxane A2 synthesis (Di Minno et al. 

1993). Interestingly, inflammation per se could stimulate homocysteine level since the increase of 
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DNA, RNA and protein remethylation during tissue repair in inflammatory states enhances S-

adenosylhomocysteine and than homocysteine synthesis (Dudman 1999). Finally, homocysteine can 

be transformed in cyclical products, such as homocysteine thiolactone that could be incorporated 

per se or in aggregate with LDL-cholesterol in vascular cells or atheromatous plaques, leading to 

protein dysfunction and contributing to the atherosclerosis process (Jakubowski 1997). 

Nevertheless, mechanisms linking hyperhomocysteinemia and cardiovascular alterations need 

further investigations. 

 

Insulin resistance and homocysteine metabolism. 

Type 2 diabetes is strongly associated to increased cardiovascular injuries and the 75% of deaths in 

subjects suffering for type 2 diabetes are due to cardiovascular diseases (Davies et al. 2001). 

Hyperhomocysteinemia and insulin resistance are considered two independent cardiovascular risk 

factors (Mayer, Jacobsen, and Robinson 1996), even though high homocysteine level is a stronger 

predictor for cardiovascular diseases (Hoogeveen et al. 1998) and death (Hoogeveen et al. 2000) in 

type 2 diabetic compared to non-diabetic subjects. However, biological mechanisms linking these 

metabolic alterations are still unknown. Nevertheless, homocysteine could contribute to the 

induction of some features typically observed in insulin resistant states such as increased oxidative 

stress and endothelial dysfunction (Bellamy et al. 1998; Chambers et al. 1999). 
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AUTONOMIC NERVOUS SYSTEM DYSREGULATION 

 

ASSESSMENT OF AUTONOMIC NERVOUS SYSTEM ACTIVITY 

In vivo, a non-invasive method used to estimate the role of autonomic nervous system control on 

cardiovascular system is the analysis of the heart rate or RR interval variability. 

The power spectral analysis is based on the determination of heart rate and systolic blood pressure 

variabilities and permits to assess cardiac autonomic regulation (Pagani et al. 1986). The α index is 

usually used to define such relationship. The power spectral analysis reflects the degree of 

autonomic nervous system modulation at cardiac level, more than sympathetic or parasympathetic 

tone levels (Lipsitz et al. 1990). 

Heart rate as well as its variability reflects chronotropic and inotropic actions of parasympathetic 

and sympathetic nervous system branches on the cardiac muscle and the sinus node (Malliani et al. 

1991; (Pagani et al. 1986). An increase in heart rate is usually the consequence of the increase in 

sympathetic and the decrease in parasympathetic tones. On the contrary, an enhance in 

parasympathetic activity is usually the responsible for the reduction on heart rate (Aubert, Seps, and 

Beckers 2003; Rajendra et al. 2006).  

Moreover, heart rate variability is an early index of health impairment. Heart rate variability in fact 

reflects the sensitivity to cardiac autonomic regulation. An appropriate adaptation to changes in 

environmental conditions is associated to an increase in heart rate variability whereas a low heart 

rate variability is often marker of impaired or inadequate autonomic response (Pumprla et al. 2002). 

A decreased heart rate variability has been observed in patients with heart failure and myocardial 

ischaemia (Dekker et al. 2000) as well as in young, middle-age and elderly subjects affected by the 

metabolic syndrome (Liao et al. 1998; Stein et al. 2007; Koskinen et al. 2009). Additionally, 

different metabolic alterations typically evidenced in the metabolic syndrome, such as 

hyperglycaemia (Singh et al. 2000), low physical activity level, high body mass index as well as 

increased plasma total cholesterol and blood pressure (Britton et al. 2007) have been associated to a 

reduction in heart rate variability. 

The heart rate power spectrum is usually divided into two components: low- and high-frequency 

oscillations. The investigation of these two components of heart rate variability, through the 

frequency domain analysis, permits to define the role of each branch of the autonomic nervous 

system. The high-frequency component (HF), ranging between 0.15 and 0.5 hertz of the HR 

variability spectrum, reflects vagal modulation of the sinus node whereas the low-frequency 

component (LF), ranging between 0.04 and 0.14 hertz of the heart rate variability spectrum, reflects 

both the sympathetic modulation of vasomotor tone and the combination of sympathetic and 
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parasympathetic systems on heart rate (Heart rate variability. Standards of measurement, 

physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology1996; Cottin, Papelier, and Escourrou 

1999). Low as well as high-frequencies may be expressed both in absolute values and in normalized 

units. If the evaluation of these components in absolute value provides measurements of the degree 

of autonomic nervous system modulations (Malik and Camm 1993), the expression of these 

components in normalised units stresses the balanced contribution and activity of both sympathetic 

and parasympathetic branches, minimizing the effect of overall total power changes. 

The ratio between LF and HF components (LF-to-HF ratio) is calculated as index of influence of 

sympathovagal balance on heart rate control (Pagani et al. 1986). When this ratio is minor than 1 a 

parasympathetic predominance is evidenced whereas values of LF-to-HF ratio major than 1 indicate 

an higher sympathetic activation (Malliani 1999; Heart rate variability. Standards of measurement, 

physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology1996). 

The assessment of systolic blood pressure variability furnishes other information useful to define 

autonomic nervous system regulation. Systolic blood pressure is reduced by parasympathetic 

whereas is enhanced by sympathetic nervous system activation. The LF component of the systolic 

blood pressure variability is an index of sympathetic-induced activation of α-adrenergic receptors at 

vascular level (Japundzic et al. 1990). The HF component, instead, is possibly associated to the 

mechanical effect of breathing (Cottin, Papelier, and Escourrou 1999). 

Finally, the cross spectral analysis and the spontaneous sequence technique are usually utilised to 

define baroreflex sensitivity. Particularly, the linear spontaneous sequence technique is based on the 

occurrence of spontaneous fluctuations in blood pressure associated to concordant RR interval 

changes. Spontaneous sequences of three or more cycles allows to calculate the linear regression 

slope between blood pressure and RR interval changes, that represents the spontaneous baroreflex 

sensitivity. A decrease in baroreflex sensitivity reflects a depression of reflex vagal activity. Arterial 

baroreceptors, located in the adventitia of the carotid sinuses and aortic arch, are highly sensitive 

and they respond to changes of arterial flow without inducing measurable changes in pressure. 

Baroreceptors sense distortions and changes of dimension, but not changes in pressure. However, 

the degrees of pressure and distortion usually are related closely. Changes in dimensions alter firing 

of stretch-sensitive neurons that are located in arteries walls and cardiac chambers; the consequent 

modifications in baroreceptor input to the brain induces are reflected by changes of neural output 

from sympathetic and parasympathetic motoneurons, leading to cardiovascular adjustments aimed 

to counteract initial dimensions changes detected by beroreceptors. Baroreflex mechanisms are 
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strictly related to regulation of heart rate, atrioventricular node conduction, myocardial contractility 

and electrophysiologic properties, as well as peripheral resistances. In this way, baroreflex 

regulation reduces the effects of everyday living environmental perturbations (Eckberg et al. 1992). 

 

AUTONOMIC NERVOUS SYSTEM AND THE METABOLIC SYNDROME 

The metabolic syndrome has been associated to alterations of the autonomic nervous system, 

mainly characterised by an over-activation of the sympathetic system associated to a withdrawal of 

parasympathetic activity (Licht et al. 2010). A decrease in heart rate variability as well as in 

baroreflex sensitivity have been reported in subjects suffering for the metabolic syndrome. 

Moreover, the degree of these alterations is strictly related to the number of component of metabolic 

syndrome observed (Stein et al. 2007; (Lindgren et al. 2006) and an alteration in sympathetic 

activity is per se involved in the pathogenesis of several distinct components of the metabolic 

syndrome. In fact, an excessive and/or prolonged stimulation of the autonomic nervous system has 

been associated to several metabolic alterations, such as altered blood pressure, altered plasma lipid 

pattern, as in particular increased triglycerides and decreased HDL (Anagnostis et al. 2009; 

Tentolouris, Argyrakopoulou, and Katsilambros 2008) as well as insulin resistant condition 

(Berntson et al. 2008). Heart rate variability is inversely associated to the number of the metabolic 

syndrome disorders (Liao et al. 1998). Moreover, the concomitant presence of different features of 

the metabolic syndrome has been demonstrated to differently affect components of heart rate 

variability (Liao et al. 1998). In particular, hypertension per se is associated to decreased heart rate 

variability, and this alteration is further increase by the parallel presence of diabetes. On the 

contrary, the combination of hypertension and dyslipidaemia does not show additional adverse 

effects on heart rate. Finally, dyslipidaemia development has inverse multiplicative effects on heart 

rate alteration, when associated to diabetes (Liao et al. 1998). Nevertheless, sympathovagal 

unbalance evidenced in the metabolic syndrome is reversible, since metabolic syndrome resolution 

as well as changes in lifestyle aimed to counteract observed metabolic disorders ameliorate 

autonomic regulation (Emdin et al. 2001; Brunner et al. 2002). 

 

Autonomic dysregulation and insulin resistance. 

Insulin centrally stimulates the sympathetic nervous system (Muntzel et al. 1994), as evidenced 

during physiological and pharmacological hyperinsulinemia (Scherrer et al. 1993; Vollenweider et 

al. 1993). Hyperinsulinemia-induced activation of sympathetic nervous system has been observed 

both in obese (Reaven, Lithell, and Landsberg 1996) and lean healthy subjects (Hausberg et al. 

1997; Paolisso et al. 2000). A decrease in parasympathetic nervous system activity occurs when 
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elevated but physiological plasma insulin levels are maintained at long time (36 hours), through 

glucose infusion. Moreover, exposure to insulin decreases mRNA expression of M2-muscarinic 

receptors in rat atrial cardiomyocytes, in a dose and time-dependent manner (Pathak et al. 2005). 

Interestingly, a decrease in baroreflex sensitivity has been previously reported in insulin resistant 

states (Kuusisto et al. 1994; Smith 1599-601;Pikkujamsa et al. 523-31). Additionally, altered insulin 

sensitivity is directly associated to the LF-to-HF ratio, index of sympathovagal balance, 

independently from body mass and, particularly, body fat (Emdin et al. 2001). Moreover, stimulated 

sympathetic activity directly inhibits insulin release, reducing thus glucose uptake in peripheral 

tissues and enhancing hepatic gluconeogenesis (Nonogaki 2000; Fehm, Kern, and Peters 2006). 

Through these mechanism, sympathetic activation could possibly favour insulin resistance 

development (Mancia et al. 2007).  

Moreover, enhanced sympathetic nervous system activity could per se determine an increase in 

plasma glucose level, through the stimulation of lipolysis, by the activation of β-3 adrenergic 

receptors in visceral adipose tissue. This leads to an increase in plasma free fatty acids as well as in 

hepatic glucose production and to a reduction of glucose uptake in muscle. Moreover, sympathetic 

activity increases glucagons secretion that also contributes to enhanced hepatic glucose production. 

As previously suggested, enhanced gluconeogenesis associated to sympathetic-induced decrease in 

glucose utilization by muscle, could be responsible, at least in part, for alterations in insulin and 

glucose metabolism typically observed in subjects suffering for metabolic syndrome (Tentolouris, 

Argyrakopoulou, and Katsilambros 2008). 

Nevertheless, mechanism relating insulin resistance and altered sympathetic nervous system 

activation has not been elucidated. 

 

Autonomic dysregulation and obesity. 

Obesity per se (Grassi 1998) is characterised by altered sympathetic activation that, in such 

condition, could also contribute to enhanced cardiovascular risk. In obesity, autonomic impairment 

depends on adiposity localization, and is more evidenced in subjects with greater visceral fat 

compared to subjects with lower visceral fat (Beske et al. 2002). It has been suggested that the 

increase in plasma free fatty acids, derived from stimulated lipolysis in visceral fat accumulation 

(Ostman et al. 1979), could be responsible for sympathetic nervous system activation in obese 

subjects (Paolisso et al. 2000; Gadegbeku et al. 2002). 
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Autonomic dysregulation and hypertension. 

An increase in sympathetic nervous system has been also associated to the development and the 

degree of hypertension. Altered sympathovagal balance affects heart rate and cardiac output (Grassi 

2006). Additionally, sympathetic nervous system activation stimulates smooth muscle cell 

proliferation, reducing peripheral vasculature compliance and increasing diastolic blood pressure. 

Finally, over-activated sympathetic nervous system contributes to hypertension development 

increasing sodium retention (Grassi 2006). 

The development of hypertension has been demonstrated to be preceded by high-fat diet induced 

insulin resistance (Hall et al. 1993). Interestingly, modification of lifestyle risk factors for insulin 

resistance (Krotkiewski et al. 1979; Stamler et al. 1987) ameliorates not only insulin sensitivity 

itself but also hypertension development and autonomic dysregulation (Tuck 1992). Even though 

mechanisms relating insulin resistance and hypertension development are not elucidated, it has been 

suggested that an altered activation of sympathetic tone, especially in subjects affected by metabolic 

disorders, could affect vasodilatation normally induced by insulin (Anderson et al. 1991). 

 

Autonomic dysregulation and dyslipidaemia. 

Subjects suffering the metabolic syndrome often display altered plasma lipid profile, mainly 

characterised by decreased HDL cholesterol as well as increased triglycerides and free fatty acids. It 

has been demonstrated that the increase in free fatty acids activates sympathetic nervous system 

(Paolisso et al. 2000) and impairs, in a dose-dependent manner, baroreflex sensitivity (Gadegbeku 

et al. 2002). 

 

PHYSICAL ACTIVITY AND AUTONOMIC REGULATION 

Physical activity is known to directly influence autonomic regulation, in particular inducing a 

decrease in sympathetic and an increase in parasympathetic activities (Furlan 1993) (Iellamo et al. 

2002). Regular physical activity, in fact, improves heart rate variability and reduces heart rate in 

healthy young and old subjects (Stein et al. 1999) as well as in patients suffering type 2 diabetes and 

hypertension (Sridhar et al. 2010). In type 2 diabetes, both systolic and diastolic blood pressures are 

reduced after one-year regular physical training (Sridhar et al. 2010). In healthy subjects, regular 

physical activity improves also the high and low-frequency components of heart rate variability 

(Achten and Jeukendrup 2003). Even though the mechanism underlining the relationship between 

physical activity and autonomic regulation needs to be fully elucidated, a physiological adaptation 

to the exercise-induced increase in myocardial work has been suggested. 
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CAUSES OF THE METABOLIC SYNDROME: THE ROLE OF PHYSICAL INACTIVITY 

 

Lifestyle and genetic factors are the major determinants for the development of insulin resistance 

and of the metabolic syndrome. Due to the impossibility to modify genetic background, great 

interest has been applied in the assessment of the influence of different lifestyles as well as of 

changes in lifestyle on the development of metabolic alterations. The metabolic syndrome, and in 

particular insulin resistance, has been associated to low levels of physical activity, unbalanced diet, 

stress and smoking (Despres 2006). The main conequences of the metabolic syndrome are the 

development of type 2 diabetes and of cardiovascular diseases (Lakka et al. 2002; Resnick et al. 

2003). 

 

Physical inactivity. 

Immobility, or low activity, are frequently observed in pathologic states, being associated to several 

illness conditions, such as serious trauma, neurological and cardiological diseases, as well as all 

surgical interventions. Inactivity also occurs during spaceflights, characterised by microgravity 

environments. Moreover, social changes occurring in the last years has led to the onset of the so 

called “sedentary lifestyle”, a severe reduction of average physical activity level (Chaput and 

Tremblay 2009). Low grade of physical activity negatively affects human health, contributing to 

deaths from chronic diseases, and increasing prevalence of physical disabilities, especially in 

elderly people (Fontana 2009). Moreover, physical inactivity leads to a low-grade systemic 

inflammation, as evidenced by the unbalance between pro and anti-inflammatory cytokines as well 

as the increase in acute-phase proteins such as C reactive protein and long pentraxin-3 (Bosutti et al. 

2008). 

On the contrary, regular physical activity has been demonstrated to reduce both the prevalence of 

the metabolic syndrome (Farrell, Cheng, and Blair 2004) and the mortality risk in such pathological 

condition (Katzmarzyk, Church, and Blair 2004). 

The importance of physical activity on human health is also stressed by the increasing interest of the 

World Health Organization (WHO). Current recommendations indicates as correct level of activity 

at least 30 minutes of moderate-intensity physical activity on most, and preferably all, days of the 

week (Pate et al. 1995). 

Nevertheless, the net impact of physical activity or inactivity on the development of the metabolic 

syndrome as well as related metabolic alterations has never been investigated. 
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The role of energy balance in physical inactivity conditions. 

In association to sedentary lifestyle, altered energy intake, and particularly excess weight and fat 

accumulation, is another important determinant of metabolic alterations (Resnick et al. 2003); in 

fact, several nutritional and dietary strategies have been proposed to counteract, at least in part, the 

constant increase in the incidence of the metabolic syndrome. Nevertheless, the role of an 

appropriate nutritional intervention is still more precious in condition of inactivity or sedentary 

lifestyle (Bosutti et al. 2008; Biolo et al. 2007; Biolo et al. 2008). 

Several pathological conditions as well as elderly are characterised by a decrease in lean body mass, 

due to both muscle atrophy or wasting and reduced physical activity level, that determine a 

reduction of energy requirement. However, in this condition, an inappropriate modulation of energy 

intake leads to a positive energy balance and fat accumulation (Honda et al. 2007). The increase in 

adipose tissue stimulates the production and the release of several pro-inflammatory adipocytokines 

that could worsen muscle atrophy development, as observed in the sarcopenic obesity. Moreover, 

positive energy balance in healthy subjects exposed to prolonged physical inactivity activates 

systemic inflammation and oxidative stress, further contributing to loss in muscle mass (Biolo et al. 

2008) and, possibly, to other metabolic abnormalities observed in inactive conditions. 

On the contrary, chronic pathologies are often characterised by reduced appetite and physical 

activity. In these subjects, that are frequently malnourished and underfed, muscle loss is paralleled 

by fat mass loss; however, in such conditions, muscle atrophy could develop in cachexia. As 

observed in healthy young subjects, the association between physical inactivity and calorie 

restriction prevents inactivity-induced increase in pro-inflammatory mediators (Bosutti et al. 2008); 

however physical inactivity combined to calorie restriction further worsen the degree of muscle 

atrophy, induced by inactivity (Biolo et al. 2007). 

These evidences suggest that dietary control and neutral energy balance maintenance are key tools 

in subjects with reduced physical activity level, as in subjects affected by insulin resistance and 

metabolic syndrome.
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AIMS 

 
The present thesis is principally aimed to define the net role of physical inactivity in the 

development of insulin resistance and metabolic syndrome, avoiding potential interferences and 

confounding factors effects of ageing, energy unbalance and diseases. Experimental bed rest in 

healthy, young, lean subjects represents a reliable approach to determine the net effects of physical 

inactivity on human metabolism (Biolo et al. 2005). 

Results discussed in the present thesis were collected during four different bed rest studies: 

 Women International Space Simulation for Exploration (WISE), performed at the MEDES 

Clinical Research Facility of the Rangueil University Hospital (Toulouse, France); 

 Valdoltra Bed Rest Study 2006;  

 Valdoltra Bed Rest Study 2007; 

 Valdoltra Bed Rest Study 2008, performed at the Valdoltra Orthopaedic Hospital, (Ankaran, 

Capodistria, Slovenia). 
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MATERIALS AND METHODS 

 

EXPERIMENTAL BED REST STUDIES 

 

Women International Space Simulation for Exploration (WISE) 

Sixteen healthy female subjects (mean ± S.E.M; age: 32.1 ± 4 years, BMI: 21 ± 2 kg × m-2) were 

recruited for the present study performed at MEDES Clinical Research Facility of the Rangueil 

University Hospital (Toulouse, France). A written informed consent was signed by each participant 

before the beginning of the study. The study was performed in accordance to the standards set by 

the Declaration of Helsinki (2002) and its amendments. All subjects were physically active before 

the admission to the institute and none of them was under medication. At admission, routine 

medical screening was performed. The study design consisted in 20 days of ambulatory adaptation 

to a standardized diet, during which diet and physical activity levels were strictly monitored; 60 

days of 6° head-down tilt bed rest, during which all activities were performed in head-down tilt 

position, except meals assumption that was performed in horizontal position; 20 days of recovery. 

Periodical medical control and constant nursing assistance were ensured through all the 

experimental period. 

Main examinations performed in the present study. 

Body composition was monitored every 15 days, through all the experimental bed rest. 

At the beginning as well as at the end of 60 days of the experimental bed rest, a metabolic test, 

aimed to assess homocysteine metabolism, was performed. 

 

Valdoltra Bed Rest Studies 2006 -2007 -2008 

Thirty healthy young male subjects (age 23.3 ± 0.4 years; BMI 23.6 ± 0.4 kg m -2) were selected to 

participate to three separated bed rest studies, performed at the Valdoltra Hospital, University of 

Primorska, Ankaran-Capodistria, Slovenia, in July–August 2006, 2007 and 2008. A written 

informed consent was signed by each participant before the beginning of the study. All studies were 

approved by the Ethical Committee of the University of Ljubljana and were performed in 

accordance to the standards set by the Declaration of Helsinki (2002) and its amendments. All 

subjects were physically active before the admission to the institute and none of them was under 

medication. At admission, routine medical screening was performed. The study design consisted in 

1 week of dietary and environmental adaptation in ambulatory condition; 35 days of bed rest; 1 

week of recovery. In 2006 and 2007, bed rest was performed in horizontal clinostatic conditions 
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whereas in 2008 bed rest was performed in a 6°-head-down-tilt condition. Periodical medical 

control and constant nursing assistance were ensured through all the experimental periods. 

Main examinations performed in the present studies. 

Body composition was monitored in all Valdoltra studies. 

In 2006 and 2007, a metabolic test with stable isotope tracers, aimed to assess glutathione 

metabolism in erythrocyte, was performed, before and at the end of the experimental bed rest (33-

day bed rest). 

Moreover, in 2007 glutathione metabolism was defined in muscle, through a new approach, based 

on double tracers infusion and single sample collection. This approach was validated in 

erythrocytes, using the traditional and new technique. This metabolic test was performed before, 

after 7 days as well as at the end of bed rest (33-day bed rest) . Muscle biopsies and muscle 

glutathione metabolism were obtained only at the beginning and at the end of bed rest. In addition, 

vastus lateralis thickness and architecture as well as muscle protein carbonylation were determined. 

Vastus lateralis thickness was also assessed in 2006 and 2008. 

In 2008, before, after 7 days and at the end (33-day bed rest) of the bed rest, insulin sensitivity and 

autonomic nervous system regulation were assessed. An oral glucose tolerance test was used to 

measure insulin sensitivity. 

Finally, in 2006-2007 and 2008 plasma insulin and glucose, plasma lipid pattern and cholesteryl 

ester transfer protein mass as well as erythrocyte membrane fatty acid composition were also 

determined before and after 33 days of bed rest. 

 

DIETARY INTAKE 

 

Women International Space Simulation for Exploration (WISE) 

Energy intake was tailored on each subject on the base of resting energy expenditure (REE), which 

was determined before bed rest by indirect calorimetry and body composition assessment and 

adjusted every 15 days. In all study phases (i.e., ambulatory, bed rest and recovery) energy 

requirements were calculated for each individual according to the FAO/WHO equations. Each 

subject received a specifically prepared diet containing 1.4 or 1.1 times her REE during the 

ambulatory and bed rest periods, respectively, to balance energy intake in accordance with the level 

of physical activity. Ten per cent of the total kilocalories was added to account for dietary-induced 

thermogenesis. All subjects received 1 g protein × kg-1 × d-1 . The fat content of the diet was 

planned to provide about 30% of energy and included both saturated and polyunsaturated fatty 

acids. The remaining energy was supplied as carbohydrates. Daily intake of water, sodium, calcium 
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and vitamin D was also defined and monitored during the two periods. No caffeine, methylxanthine, 

or alcohol were allowed. Every day three main meals (breakfast, lunch, dinner) and three snacks, 

exactly weighed for each participant, were prepared. Subjects were required to completely consume 

prepared meal. Dietary folate intake was kept constant at 400 µg × day-1. 

 

Valdoltra Bed Rest Study 2006 

Diet composition reflected subjects previous dietary habits, as assessed through appropriate 

questionnaires by an expert dietician. During the ambulatory period, energy intake was calculated 

for each subjects multiplying individual resting energy expenditure, determined by using the 

FAO/WHO equations, for a factor of 1.4 (Muller et al., 2004). The diet contained almost 60% of 

energy as carbohydrate, 25% as fat, and 15% as protein. Daily, subjects received 3 main meals 

(breakfast, lunch and dinner) and 3 snacks. The same diet was observed also during the 

experimental bed rest, with identical energy intake, frequency and food macronutrient composition 

than during the ambulatory period. Subjects were allowed to spontaneously adapt to decreased 

energy requirements during bed rest; for such reason, participants were not required to consume all 

served meal and leftover food was monitored semi-quantitatively by a dietitian to assess the relative 

macronutrient intake.  

 

Valdoltra Bed Rest Studies 2007 and 2008 

During the ambulatory period, diet control was identical to that followed in the Valdoltra Bed Rest 

Study 2006. On the contrary, energy intake during the experimental bed rest period was adjusted to 

consider the decreased level of physical activity. For this reason, during the bed rest period, each 

subjects received a diet containing 1.2 times his resting energy expenditure. Macronutrient relative 

content as well as food frequency were the same planned in Valdoltra Bed Rest Study 2006. In 

Valdoltra Bed Rest Studies 2007 and 2008 subjects were required to completely consume prepared 

meals. 
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BODY COMPOSITION 

 

In the WISE study body composition was assessed at the beginning, every 15 days as well as at the 

end of 60-day bed rest using DXA (Dual energy X-ray Absorptiometry) scans. During all remaining 

studies, body composition was assessed at the beginning and at the end of each experimental bed 

rest by multifrequency bioelectrical impedance (Human IM Plus; DS Dietosystem, Milan, Italy), in 

accordance with manufacturer’s instructions. 

During the WISE as well as Valdoltra 2007 and 2008 studies body composition was also monitored 

through all the experimental bed rest to monitor and eventually properly calibrate energy intake, in 

order to maintain subjects in a near neutral energy balance. 

 

Vastus lateralis thickness and architecture – Valdoltra Bed Rest Studies 

Ultrasound imaging was used at the beginning and at the end of the bed rest periods to measure the 

thickness of the vastus lateralis muscle (Valdoltra Bed Rest Studies 2006-2007-2008). 

Measurements were performed in supine position, employing a portable ultrasound device 

(MyLab25; ESAOTE, Genoa, Italy) fitted with a 10–15-MHz linear probe (Reeves, Maganaris, and 

Narici 2004). After the identification of the midsagittal axis, defined as the middle axis between 

proximal and medial muscle insertions on bone, sagittal ultrasound images were acquired at 50% of 

muscle length, measured along this axis. The ultrasound probe was placed in the midsagittal plane, 

orthogonal to the mediolateral axis and its positioning was marked on acetate paper using moles and 

small angiomas as reference points. Values were expressed in cm, as the vertical distance between 

muscle superficial and deep aponeuroses at an equidistant point from right and left borders of the 

image. For technical reasons, during the Valdoltra Bed Rest Study 2007 muscle thickness was 

measured in 8 subjects over 10. 

Vastus lateralis muscle architecture was assessed (Valdoltra Bed Rest Study 2007) with knee joint 

in anatomical position (passively fully extended) by a real-time B-mode ultrasonography (ATL-

HDI 3000, Bothell) with a 40 mm, 7.5 MHz linear-array probe. Analogously to ultrasound imaging, 

measurements were performed at 50% of muscle length, in the midsagittal plane, positioning the 

probe in the midsagittal plane, orthogonal to the mediolateral axis and marking its position on 

acetate paper. The fascicular path was defined as the interspaces between echoes deriving from the 

perimysial tissue surrounding the fascicle. The pennation angle of vastus lateralis was assessed by 

Matlab (Matlab, The MathWorks Inc., S. Natik, MA, USA) and was calculated as the angle 

between the fascicle and the deep aponeurosis of the muscle. For technical problems, these analyses 

were performed on 9 subjects over 10 during the Valdoltra Bed Rest Study 2007. 
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All these measures were performed in triplicate and the value considered for the analysis was the 

average of the three repetitions. 
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METABOLIC TESTS 

 

Homocysteine kinetics – WISE study 

Homocysteine metabolism was assessed using the approach of stable isotopes infusion. 

After 12 h overnight fast, a polyethylene catheter was inserted into an antecubital vein for isotope 

infusion. Arterialized venous blood was obtained by a second polyethylene catheter inserted in a 

wrist vein of the opposite hand, heated at +50°C. Basal blood draw was performed at baseline to 

measure natural enrichments in arterialized plasma of [ring-2H5]-phenylalanine, [ring-2H4]-tyrosine, 

[3,3-2H2]-tyrosine, [methyl-2H3,1-13C]-methionine and [1-13C]-methionine. Immediately after basal 

blood collection, 8-hours of primed continuous infusions of [ring-2H5]-phenylalanine (infusion rate 

4.8 µmol×kg-1×h-1, priming dose 4.8 µmol×kg-1), [3,3-2H2]-tyrosine (infusion rate 1.2 µmol×kg-1×h-

1, priming dose 1.2 µmol×kg-1), [methyl-2H3,1-13C]-methionine (infusion rate 4.4 µmol×kg-1×h-1, 

priming dose 4.4 µmol×kg-1) and a single bolus of [ring-2H4]-tyrosine (0.45 µmol×kg-1) were 

initiated. To measure isotopic enrichments through the infusion period, blood was collected 280, 

290, 300, 460, 470, 480 minutes after infusion protocol start. After collection, blood was 

immediately centrifuged; plasma was stored at -80 °C for analysis. 

 

Glutathione kinetics in erythrocytes- Valdoltra 2006 

Glutathione turnover was assessed using the approach of stable isotopes infusion. 

In the morning, after 12 h overnight fast, a polyethylene catheter was inserted into an antecubital 

vein for isotope infusion; a second polyethylene catheter was inserted in a wrist vein of the opposite 

hand that was heated at 50°C to obtain arterialized venous blood.  

At baseline, a blood draw was performed to determine natural enrichments of [3,3-2H2]cysteine and 

[2H2-cysteine]-glutathione. Immediately after blood collection, a primed continuous infusion of 

[3,3-2H2]cysteine (Cambridge Isotope Laboratories, Andover, MA) (priming dose: 150 µmol; 

infusion rate: 150 µmol×kg-1×h-1) was started and maintained for 5 hours. To measure changes in 

erythrocytes [2H2]-cysteine and [2H2-cysteine]-glutathione enrichments through the infusion period, 

blood was collected 180, 240 and 300 minutes after infusion protocol start. After collection, whole 

blood was centrifuged; erythrocytes were resuspended in an equal volume of milliQ water and 

stored for analysis. 
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Glutathione kinetics in erythrocytes and muscle: double tracer-single sample approach – 

Valdoltra 2007 

Muscle and erythrocytes glutathione turnover were assessed through stable isotope tracer infusions 

and a single vastus lateralis muscle biopsy. 

In the morning, after 12 h overnight fast, a polyethylene catheter was inserted into an antecubital 

vein for isotope infusion; a second polyethylene catheter was inserted in a wrist vein of the opposite 

hand that was heated at 50°C to obtain arterialized venous blood. 

At baseline, blood was collected to assess background enrichments of [2H2]-glycine, [15N]-glycine, 

[2H2]-glutathione and L-[15N]-glutathione. Immediately after blood draw, a primed constant 

infusion of [2H2]-glycine (priming dose 26.5 µmol×kg-1; infusion rate 26.5 µmol×kg-1×h-1) was 

initiated and maintained for 7 hours. After 4 hours from the beginning of [2H2]-glycine infusion, a 

primed constant infusion of [15N]-glycine (priming dose 26.5 µmol×kg-1; infusion rate 26.5 

µmol×kg-1×h-1) was started and continued for 3 hours. To measure enrichment changes, blood 

draws were performed 180 and 420 minutes after the beginning of [2H2]-glycine infusion. After 

collection, whole blood was centrifuged; erythrocytes were resuspended in an equal volume of 

milliQ water and stored for analysis. 

Muscle biopsy. 

At the end of [2H2]-glycine and [15N]-glycine infusions (7 hours after the beginning of the infusion 

protocol), a muscle biopsy (averaging in mass 120 mg) was taken under local anesthesia from the 

vastus lateralis, using a conchotome forceps according to standard techniques. Muscle fibres were 

immediately cleaned from visible fat or connective tissues and accurately dried to remove blood. A 

microdissection microscope was employed to verify procedure quality. Samples were immediately 

frozen in liquid nitrogen and stored at -80°C. The protocol infusion was stopped at the end of 

muscle biopsy. At the end of the experimental bed rest, muscle sampling was performed on 9 

subjects over 10 for technical reasons. 

 

Oral glucose tolerance test – Valdoltra Bed Rest Study 2008 

Insulin sensitivity was assessed through the oral glucose tolerance test (OGTT) method. 

The OGTT was performed in accordance with the standard American Diabetes Association (ADA) 

guidelines. In the morning, after 12 h overnight fast, a polyethylene catheter was inserted into an 

antecubital vein for blood draw. After baseline blood draws (performed 30, 15 minutes and 

immediately before the metabolic test start), each subject received 75 g of glucose in 300 mL water. 

Blood was collected after 30, 60, 90 and 120 minutes from glucose load, to measure changes in 
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plasma insulin and glucose. Whole blood was immediately centrifuged and plasma aliquots were 

stored at -80°C until analysis. 

 

Autonomic regulation assessment - Valdoltra Bed Rest Study 2008 

Autonomic function regulation was measured during the OGTT, to define the impact of glucose 

load as well as of inactivity-induced insulin resistance on autonomic cardiovascular regulation. 

All experiments were carried out in a thermostated room, at constant temperature of 24°C. 

Autonomic function was assess before glucose load as well as during OGTT (after 30, 60, 90 and 

120 minutes from glucose load), immediately after blood draw. Before and after each autonomic 

function test, systolic and diastolic pressures were measured by sphygmomanometer. During each 

autonomic function test, the following signals were recorded: (a) continuous arterial pressure at the 

finger level by a Portapres device (Finapres Medical System), (b) RR interval from ECG (1 channel 

from Portapres), and (c) a respiratory signal from an inductance plethysmograph. Recordings were 

obtained during 7 minutes of quiet rest, after instrumentation and after 5 min of adaptation to a quiet 

condition. 

In addition, after 14 days of bed rest, in order to define the impact of water load on autonomic 

response, an OGTT test was simulated (Blank test). After 12 h overnight fast, subjects received 300 

ml of aspartame sweetened water, to simulate the taste of glucose load. Autonomic function was 

measured before as well as after 30, 60, 90 and 120 minutes of aspartame-sweetened water load. 

Blood draws were not performed during the Blank test. 
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ANALYTICAL PROCEDURES 

 

Homocysteine kinetics – WISE study 

Sulfur amino acids analysis. 

Plasma samples (200 µL) were treated with 2-mercaptoethanol (3 µl), evaporated under N2 flux and 

added of SSA (200 µl, 15%). After centrifugation, amino acids were purified in a cationic resin 

(AG50W-X8; Bio-Rad, Hercules, CA) using as NH4OH (3M) eluent. Ammonia was eliminated 

under N2 flux; samples were lyophilized. Sulfur amino acids were derivatized by the addition of 50 

µl acetonitrile and 50 µl MTBSTFA and by heating at 90°C for 45 min. 

After derivatization, samples were injected into a gas chromatography-mass spectrometer (GC-MS) 

(HP 5890, Agilent Technologies, Santa Clara , CA, USA). 

To assess homocysteine, methionine and cysteine concentrations a known amount of [2H8]-

homocysteine, [1-13C, methyl-2H3]-methionine and [3,3-2H2]-cysteine (Cambridge Isotope 

Laboratories) were respectively added as internal standard to 200 µl of plasma before analysis. 

Gas chromatographic measurements were performed in single ion monitoring mode, using the 

following mass-to-charge ratio (m×z-1): phenylalanine m×z-1 336; [ring-2H5]-phenylalanine m×z-1 

341; tyrosine m×z-1 466; [3,3-2H2]-tyrosine m×z-1 468; [ring-2H4]-tyrosine m×z-1 470; homocysteine 

m×z-1 496; [13C]-homocysteine m×z-1 497; [2H8]-homocysteine m×z-1 500; methionine m×z-1 320; 

[1-13C, methyl-2H3]-methionine m×z-1 324; cysteine m×z-1 406; [3,3-2H2]-cysteine m×z-1 408. 

 

Glutathione kinetics in erythrocytes 

Glutathione and cysteine were assessed in erythrocytes using an adaptation of previously proposed 

protocol (Lyons et al. 2001). Briefly, 400 µL of erythrocyte suspension (i.e., erythrocytes 

resuspended in an equal volume of milliQ water) was placed into pre-chilled tubes with 1 mL ice-

cold dithiothreitol (DTT; 20 mmol×L in 1M acetic acid). SSA (400µL, 30%) was added to 

precipitate proteins. After centrifugation, the supernatant was transferred to a column with 2 mL of 

a cation-exchange resin (AG50W-X8; Bio-Rad, Hercules, CA). After washing twice with Milli-Q 

water (5mL; Millipore, Bedford, MA), glutathione was eluted with NH4OH (3 mol/L). Ammonia 

was eliminated under N2 flux and samples were lyophilized. Samples were added of 500 µL of DTT 

solution (20 mM in 0.5 M acetic acid) and heated at 100 °C for 1 h to reduce glutathione in oxidized 

form. Samples were dried again under N2 flux. Samples reacted with 300µL HCl/methanol solution 

(250 µL 36% HCl in 7.5 mL methanol) for 30 min at 80 °C, and dried in nitrogen flow at 65 °C. 

Afterward samples were derivatized with 50 µL MTBSTFA and 50 µL acetonitrile for 40 min at 90 
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°C, before injection into a gas chromatography-mass spectrometer (GC-MS) (HP 5890, Agilent 

Technologies, Santa Clara , CA, USA). 

To assess erythrocytes glutathione concentration a known amount of [13C2-
15N-glycine]-glutathione 

(Cambridge Isotope Laboratories, Andover, MA) was added as internal standard to 400 µl of 

erythrocyte suspension before analysis. 

Gas chromatographic measurements were performed in single ion monitoring mode, using the 

following mass-to-charge ratio (m×z-1): 

1. Valdoltra Bed Rest Study 2006: cysteine m×z-1 406; [2H2]cysteine m×z-1 408; glutathione 

m×z-1 363; [2H2-cysteine]-glutathione m×z-1 365; [13C2-
15N-glycine]-glutathione m×z-1 366. 

2. Valdoltra Bed Rest Study 2007: glycine m×z-1 218; [2H2]-glycine m×z-1 220; glutathione 

m×z-1 363; [2H2-glycine]-glutathione m×z-1 365; [13C2-
15N-glycine]-glutathione m×z-1 366. 

 

Glutathione kinetics in muscle – Valdoltra Bed Rest Study 2007 

Glutathione kinetics and concentration evaluations in muscle could be performed only on nine 

subjects. The procedure for gas chromatography and mass spectrometry (GC-MS) analysis of 

muscle glutathione and glycine isotopic enrichments was adapted from abovementioned protocol 

for the assessment of cysteine and glutathione enrichments in erythrocytes. 

Muscle biopsies were defrosted, weighted and homogenized in 500 µl SSA (6.5%). After 

centrifugation, 1 ml of ice-cold DTT (20 mM in 1 M acetic acid) and SSA (400 µl, 30%; to 

precipitate proteins) were added. After centrifugation, the supernatant was transferred to a column 

with 2 mL of a cation-exchange resin (AG50W-X8; Bio-Rad, Hercules, CA), washed twice with 

Milli-Q water (5mL; Millipore, Bedford, MA) and eluted with NH4OH (3 M, 4 ml). Samples were 

lyophilized and added of 500 µL of DTT solution (20 mM in 0.5 M acetic acid) at 100 °C for 1 h. 

Samples were dried again under N2 flux and reacted with 300µL HCl/methanol solution (250 µL 

36% HCl in 7.5 mL methanol) for 30 min at 80 °C, and dried in nitrogen flow at 65 °C. Afterward 

samples were derivatized with 50 µL MTBSTFA and 50 µL acetonitrile for 40 min at 90 °C, before 

injection into a gas chromatography-mass spectrometer (GC-MS) (HP 5890, Agilent Technologies, 

Santa Clara , CA, USA). 

Muscle glutathione concentrations were determined through a standard calibration curve. A known 

amount of [13C2-
15N-glycine]-glutathione (used as internal standard) was added to serial dilutions of 

unlabelled glutathione (Sigma-Aldrich, Inc, MO, US). Glutathione and [13C2-
15N-glycine]-

glutathione isotopic enrichments were measured monitoring appropriate mass-to-charge ratios, 

following the analysis procedure described for muscle biopsies. Standard calibration curve was 
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assessed using ratios between enrichments. By interpolation muscle unlabelled glutathione 

concentrations could be determined. 

Gas chromatographic measurements were performed in single ion monitoring mode, using the 

following mass-to-charge ratio (m×z-1): glycine m×z-1 218; [15N]-glycine m×z-1 219; [2H2]-glycine 

m×z-1 220; glutathione m×z-1 363; [15N-glycine]-glutathione m×z-1 364; [2H2-glycine]-glutathione 

m×z-1 365; [13C2-
15N-glycine]glutathione m×z-1 366. 

Due to study design, a background assessment of natural isotopic enrichments in muscle could not 

be performed. For this reason, basal isotopic enrichments in muscle biopsies were estimated in 

erythrocytes samples, collected in each subjects before protocol infusion start. As already 

demonstrated, in fact, background glycine isotopic enrichments in circulating erythrocytes were 

comparable to those observed in other tissues (Hibbert et al. 2001). Estimation was performed 

obtaining from erythrocytes chromatographs with glutathione peak areas comparable with those 

observed in muscle. Since repeated measurements were performed, mean values were used as 

representing natural isotopic enrichments in muscle. 

 

Protein carbonylation - Valdoltra Bed Rest Study 2007 

About 20 cryosections (12 μm) of each biopsy were solubilized at 4°C in 0.01% tetrafluoroacetic 

acid, added of protease inhibitors, 5 mM EDTA and 2% β-mercaptoethanol. The Oxyblot 

(Chemicon – Millipore; Billerica, MA 01821) was used to detect carbonyl groups formed in protein 

side chains as a consequence of oxidation. Proteins (6 μg) were derivatized with 2,4-

dinitrophenylhydrazine for 15 min following manufacturer’s instruction and separated by 

electrophoresis on 10% SDS polyacrylamide gel. On each gel one positive and one negative control 

standards were always loaded. Proteins transferred to nitrocellulose membranes were stained by 

Red Ponceau and scanned. Specific proteins were detected by blots incubation with anti-4-dinitro 

phenyl hydrazine antibody followed by chemiluminescent development. Densitometry was 

performed on scanned autoradiographic films using an NIH image system. To allow the comparison 

of oxidation level between different samples the oxidative index (Oxy RP-1) was defined as ratio 

between densitometric values of the Oxyblot bands (oxidation level) and Red Ponceau stained 

bands (protein content). This ratio is a direct index of myofibrillar protein oxidation level. 

 

Membrane fatty acid composition – Valdoltra Bed Rest Studies 2006-2007-2008 

Fatty acid membrane compositions of red blood cells were analyzed modifying a previously 

published method (Burdge, Jones, and Wootton 2002).  
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Erythrocytes (200 µL) were washed five times with decreasing concentrations (10 mmol/L, 2.5 

mmol/L; 1.25 mmol/L; 0.625 mmol/L; 0.312 mmol/L) of phosphate buffered saline (PBS). Total 

lipid extraction was performed in 5 mL of a chloroform–methanol (2:1) solution, containing 50 

mg/L of butylhydroxytoluene as antioxidant, and 1 mL of 1 M NaCl solution. After centrifugation, 

the lower lipid phase was collected and dried under nitrogen flux at 40 °C. Pellets were dissolved in 

toluene (500 µL), added of 1 mL of a methanol solution containing 2% of H2SO4, and heated at 50 

°C for 2 h. A neutralizing solution (1.0 ml, 0.25 M KHCO3 and 0.5 M K2CO3 in deionized H2O) 

and hexane (1 mL) were added. After centrifugation, the hexane layer, containing fatty acid methyl 

esters (FAMEs), was collected and organic solvents were removed by N2 flux. After the addition of 

hexane (150 µL), samples were analyzed by gas-chromatography–flame ionization detection (GC-

FID; GC 6850 Agilent Technologies, Santa Clara, CA, USA). Specific fatty acid standards were 

used to identify FAMEs by retention times in erythrocyte samples. A commercial mixture of 

purified fish oil fatty acids (Menhaden oil, Sigma–Aldrich, Inc, MO, US) was used to detect: oleic 

acid (18:1, n-9), elaidic acid (trans 18:1, n-9), eicosapentaenoic acid (20:5, n-3), docosapentaenoic 

acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). Retention times of myristic acid (14:00), 

palmitic acid (16:00), palmitoleic acid (16:1, n-7), stearic acid (18:00), linoleic acid (18:2, n-6), a-

linolenic acid (18:3, n-3), eicosaenoic acid (20:1, n-9), eicosadienoic acid (20:2, n-6), dihomo-γ-

linolenic acid (20:3, n-6) as well as arachidonic acid (20:4, n-6) were identified by commercial 

standards. Adrenic acid (22:4, n-6) and docosapentaenoic acid (22:5, n-6) were identified by 

commercial standards purchased from Nu-Check Prep, Inc, MN, US.  

Organic solvents and buffering salts were purchased from Sigma–Aldrich, Inc, MO, US, if not 

differently specified. 

GC-FID conditions. Helium was used as carrier gas. Detector temperature as well as injector 

temperature were set at 300 °C. Column oven temperature started at 115 °C (constant for 2 min) 

and increased afterwards by a gradient ramping of 10 °C/min until 200 °C. Temperature remained 

constant at 115 °C for 11.5 min and reached 245 °C by a gradient ramping of 60 °C/min. 

Temperature remained constant at 245 °C for 8 min. 

Chromatograms analysis. Area-under-the-curve of each selected peak was determined by highly 

standardized hand integration performed using commercial software (HP Chem station; Agilent 

Technologies, Santa Clara, CA, USA). 

 

Plasma markers 

Plasma insulin concentrations were measured by radioimmunoassay (Adaltis insulin kit; Adaltis 

Inc, Montreal, Canada). Plasma glucose, total cholesterol, HDL cholesterol, and triglyceride 
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concentrations were measured by commercially available kits (Olympus System Reagents; 

Olympus Diagnostica GmbH, Hamburg, Germany) using an auto-analyzer (Olympus AU400 

System; Olympus, Tokyo, Japan). 

 

Erythrocyte marker 

Concentrations of reduced and oxidized forms of glutathione in erythocytes were assessed by a 

commercially available kit (GT40, Oxford Biomedical Research; Oxford, MI). 
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CALCULATIONS 

 

Protein kinetics 

Whole body protein kinetics was assessed determining plasma phenylalanine (Phe) turnover. 

 

PheOxPheBPheS   

 

where PheS is Phe employment for protein synthesis; PheB is Phe appearance from protein 

breakdown; PheOx is the rate of Phe hydroxylation to tyrosine (Tyr). 

 

PheB can be calculated as: 

 

55 DD EPheIPhePheB   

 

where IPheD5 is the infusion rate of [ring-2H5]-Phe and EPheD5 is the enrichment of 

[ring-2H5]-Phe 

 

PheOx is the rate of Phe hydroxylation to Tyr and can be calculated as follows: 

 

   5242 DDDD EPheETyrETyrIRTyrPheOx   

 

where IRTyrD2 is the infusion rate of [3,3-2H2]-Tyr; ETyrD4 is the enrichment of  

[ring-2H4]-Tyr; ETyrD2 is the enrichment of [3,3-2H2]-Tyr and EPheD5 is the enrichment of 

[ring-2H5]-Phe. 

 

Homocysteine kinetics 

Homocysteine kinetics were assessed modifying a previous approach (Storch et al. 1988). 

The principle is that the [methyl-2H3,1-13C]-methionine, entering the methionine-homocysteine 

cycle, definitively loses its isotopic methyl during transmethylation reaction, whereas the isotopic 

carbon is maintained during remethylation reaction, leading to isotopic homocysteine production. 

 

Thus, the turnover rate of [methyl-2H3,1-13C]-methionine (Qm) is as follows: 
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where Imet is [methyl-2H3,1-13C]-methionine tracer infusion rate; Em+4 is  

[methyl-2H3,1-13C]-methionine enrichment. 

 

The turnover rate of carbon backbone of methionine ([1-13C]-methionine) (Qm) is as follows: 
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where Em+1 is [1-13C]-methionine enrichments. Em+4 is considered as this isotope includes 

an m+1 mass. 

 

In steady state, methionine input and out are equal. Thus: 

 

TMSQRMBN m   

 

and 

 

TSSQBN c   

 

where N is methionine derived from diet, B from protein breakdown, RM from 

remethylation, TM from transmethylation and TS from transulfuration.  

S is defined as: 

 

63.0 PheSS  

 

where PheS is phenylalanine utilization for protein synthesis (see above) and 0.63 is 

the molar ratio between methionine and phenylalanine.  

 

Qc is not influenced by RM since the isotopic carbon is maintained along with homocysteine 

metabolism. 
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In fasting state, diet contribution to methionine pool is absent (N=0), thus B can be calculated as: 

 

cQB   

 

Thus, remethylation rate is defined as: 

 

cm QQRM   

 

Methionine transmethylation is calculated as: 

 

TSRMTM   

 

TS can be calculated as: 

 

SQTS c   

 

Thus, TM can be calculated as: 

 

 

SQTM m    or  TSRMTM   

 

Homocysteine concentrations were calculated using the internal standard approach; thus: 

 

   

VolineEHomocyste

SI
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

4
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where [I.S.] is the concentration of the added internal standard (m+8); EHomocysteineD4 is 

the enrichment of homocysteineD4 and Vol is the volume of analyzed plasma. 

 

Glutathione kinetics in erythrocytes 

Enrichments of labeled precursor (*Pre) were calculated as tracer-to-tracee ratios (TTR), following 

the general equation (Eq. 1): 
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)t()t()t( 0ii
TTRTTRPre*E   

 

where ti indicates one of the sampling times after steady state achievement whereas t0 is the 

time of sampling before isotope infusion beginning (for natural enrichments). 

 

The glutathione fractional synthesis rate (FSR) was calculated as follows: 

 

10024

t

E
t

E

FSR

)it(Pre*

GSH*

)GSH(   

 

where *GSH is isotopic GSH, obtained by the incorporation over time of *Pre; (E *GSH/t) 

is the slope of the regression line describing the rise in sample *GSH enrichment as a 

function of time (hours) after isotopic precursor steady state achievement; E *Pre (ti) is the 

mean steady-state of *Pre enrichment in samples after steady state achievement. 

FSR was expressed as % × day-1. 

 

Glutathione absolute synthesis rate (ASR) is calculated as follows (Eq. 2): 

 

 GSHFSRASR   

 

where [GSH] indicate glutathione concentration. 

ASR was expressed as (µmol × L-1 × day-1). 

 

This approach permits to calculate glutathione turnover rate during the Valdoltra Bed Rest Study 

2006 (in which [2H2]-cysteine was employed as glutathione isotopic precursor). 

 

Glutathione kinetics in muscle 

Enrichments of [15N]-glycine ([15N]-Gly) can be calculated using the general equation (Eq. 1) 

reported above. 

Thus, in erythrocytes, [15N]-glycine enrichments were defined as: 
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where TTR([15N]-Gly) is peak areas ratio between areas measured for m×z-1 of 218 ([14N]-

Gly) and 219 ([15N]-Gly). 

 

To calculate [2H2]-glycine ([2H2]-Gly) enrichments in erythrocytes, the influence of [15N]-glycine 

infusion has to be considered, as follows: 

 

               )()()(2)(2)(2 0

1515

0
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ttttt GlyNTTRGlyNEGlyHTTRGlyHTTRGlyHE

iii
  

 

The calculation of [15N]-glycine enrichments in muscle biopsies (E [15N]-Gly muscle) was performed 

using the following equation: 

 

         )(
15

0

1515
tmusclemuscle GlyNTTRGlyNTTRGlyNE   

 

where TTR([15N]-Gly)(t0) refers to erythrocytes natural enrichments, assessed in the blood 

draw performed before isotope infusion start. 

 

In muscle biopsies [2H2]-glycine enrichments (E [2H2]-Gly muscle) were calculated, similarly to 

E[2H2]-Gly in red blood cells, as follows: 

 

               )t(muscle)t(2
2

muscle2
2

muscle2 0

1515

0

2 GlyNTTRGlyNEGlyHTTRGlyHTTRGlyHE 

 

 

where TTR([2H2]-Gly)(t0) and TTR([15N]-Gly)(t0) refer to erythrocytes natural enrichments, 

assessed in the blood draw performed before isotope infusion start. 

 

[15N]-glutathione ([15N]-GSH) enrichments were calculated as follows: 

 

         )t(
15
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Whereas, to calculate [2H2]-glutathione ([2H2]-GSH) enrichments, the influence of [15N]-glycine 

infusion has to be considered, as follows: 

 

               )t()t()t(2)t(2)t(2 0
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2 GSHNTTRGSHNEGSHHTTRGSHHTTRGSHHE 

 

 

To calculate glutathione FSR through enrichment data obtained in a single tissue sample, we 

developed the following equation (Eq. 2):  
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where (t7) indicates that enrichments are determined at the seventh hour of the metabolic 

study; [2H2]-Gly Inf and [15N]-Gly Inf indicate the duration of infusion of [2H2]-glycine and 

[15N]-glycine, respectively. 

 

This equation is based on two parallel and separate infusions of two isotopomers of the same 

precursor, glycine, started at the beginning and four hours later the metabolic study start (t0). 

Precursor enrichments at steady-state ([2H2]-glycine and [15N]-glycine) and product enrichments 

after 3 ([15N]-glutathione) and 7 hours ([2H2]-glutathione) of infusion were measured in a single 

biological sample taken at the end of the metabolic study period (7 hours). So, product enrichment 

changes over time, necessary for FSR assessment, can be evaluated as difference between two 

single differently labeled product enrichments measured within only one final biological sample. 

Thus, [15N]-glutathione enrichment reflects short term tracer incorporation, since [15N]-glycine 

infusion started three hours before the single final muscle biopsy, whereas [2H2]-glutathione 

enrichment reflects long term tracer incorporation, since [2H2]-glycine infusion started at the 

beginning of the metabolic test and finished after seven hours, when final biopsy was collected. 

Moreover, each product enrichment has been normalized by precursor isotopic tracer enrichment at 

steady state. 

This new equation was validated using the traditional approach, that has been applied to calculate 

glutathione FSR in erythrocytes within the same experimental condition.  
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Glutathione FSR in erythrocyte was calculated considering isotopic enrichments of [2H2]-

glutathione measured after achievement of the steady state condition for [2H2]-glycine precursor 

enrichment, as follows (Eq.3): 
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where slope E[2H2]-GSH(t3→7) is the slope of [2H2]-glutathione product enrichments measured at t3 

and t7; steady state E[2H2]-Gly(t3→7) is the enrichment of [2H2]-glycine precursor at steady state. 

 

In erythrocytes as well as in muscle biopsies, ASR was calculated as abovementioned (Eq.2). 

 

Membrane fatty acid composition 

Erythrocytes membrane level of measured fatty acids was expressed as percent ratio between area-

under-the-curve of each selected FAME peak and the sum of all measured FAME peaks.  

Total saturated fatty acids content was calculated as the sum of myristic acid (14:0), palmitic acid 

(16:0) and stearic acid (18:0) membrane levels. Results of elaidic acid are not reported because of 

uncompleted chromatographic separation from oleic acid. Results of elaidic acid were included in 

the monounsaturated FAs sum. Monounsaturated total content was calculated as the sum of 

palmitoleic acid (16:1, n-7), oleic acid (18:1, n-9), elaidic acid (trans 18:1, n-9) and eicosaenoic acid 

(20:1, n-9) membrane levels. n-6 polyunsaturated total content was defined as the sum of linoleic 

acid (18:2, n-6), eicosadienoic acid (20:2, n-6), dihomo-γ-linolenic acid (20:3, n-6), arachidonic 

acid (20:4, n-6), adrenic acid (22:4, n-6) and docosapentaenoic acid (22:5, n-6) membrane level. n-3 

polyunsaturated sum was calculated as the sum of a-linolenic acid (18:3, n-3), eicosapentaenoic 

acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3) membrane 

levels. Δ-9 desaturase index was calculated as ratio between oleic (18:1, n-9) and stearic (18:0) acid 

contents whereas Δ-5 desaturase index was calculated as ratio between arachidonic acid (20:4, n-6) 

and dihomo-γ-linolenic acid (20:3, n-6) membrane levels. Arachidonic-to-eicosapentaenoic acid 

ratio was calculated as ratio between arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, 

n-3) membrane levels. 
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Insulin sensitivity 

Homeostasis assessment model of insulin resistance 

In Valdoltra Bed Rest Studies 2006, 2007 and 2008, in the fasting state, insulin sensitivity was 

determined in according to the homeostasis assessment model of insulin resistance (HOMA), as 

follows: 

 

5.22

FPGFPI
HOMA


  

where FPI is fasting plasma insulin concentration (mU × L-1); FPG is fasting plasma glucose 

level (mmol × L-1). 

 

OGTT-related assessment of insulin sensitivity 

During OGTT, insulin sensitivity was measured by the composite insulin sensitivity index (ISI) as 

follows: 

 

IGFPGFPI

ISI




10000

 

 

where FPI is fasting plasma insulin concentration (mU × L-1); FPG is fasting plasma glucose  

(mmol × L-1) level; G is the mean plasma glucose concentration during OGTT; I is the mean 

plasma insulin concentration during OGTT. 

 

In addition, insulin resistance was defined, during OGTT, by the insulin area-under-the curve index 

(InsAUC). 

 

Autonomic regulation assessment 

To assess autonomic function, a software (Heartscope, ver.1.6, A.M.P.S. llc, New York, USA) was 

used to identify the peak of R wave on ECG and systolic arterial pressure (SAP). The software 

constructs automatically time series of RR intervals and SAP, with low operator–analysis 

interaction. Spontaneous variability of RR interval and SAP was evaluated by means of power 

spectral analysis using an autoregressive algorithm on all recorded parameters, as previously 

described (Pagani et al. 1986). Briefly, from beat-to-beat variability series of adequate length and 

stationarity (usually 250– 350 beats), the software calculated simple statistics and the best 

autoregressive estimate of the power spectral density. The total power of RR and SAP variabilities, 



Materials and methods 

75 

corresponding to variance, was initially obtained. Subsequently, powers and frequencies of the low 

(0.03–0.14 Hz) and the high (0.15–0.5 Hz) frequency spectral components (low frequency – LF –

and high frequency – HF, respectively), expressed in absolute and normalized units (nu), were 

computed as the ratio of the absolute power of either HF or LF to the total power, subtracting the 

very-low-frequency component, and multiplying this ratio by 100. 

Baroreflex sensitivity was dynamically assessed by the sequence technique (Di Rienzo, Mancia, and 

Pedotti 1985; Bertinieri et al. 1988). Briefly, this procedure is based on automatic scanning of SAP 

and RR interval series, searching for sequences of three or more consecutive beats in which SAP 

and RR interval changed in the same direction, either increasing or decreasing. For each sequence, 

the regression line is computed between SAP and RR interval values, and the mean slope of this 

relationship, obtained by averaging all slopes computed within a given test period, reflects the 

average spontaneous baroreflex sensitivity for the tested period. 

The α index is defined as the average of the square root of the ratio between cardiac period and 

systolic blood pressure spectral powers, both in its LF and HF components (Pagani et al. 1988). 

 

Plasma markers 

LDL cholesterol was calculated by using the Friedewald equation: 

 

5
.
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STATISICAL ANALYSIS 

 

Data are presented as mean±SEM. Data were log-transformed when appropriate. Wilcoxon test was 

applied to determine significant changes between the ambulatory and the experimental period. p-

values lower than 0.05 were chosen as threshold for statistical significance.  

 

Results obtained during the Valdoltra Bed Rest Studies, in ambulatory or bed rest conditions, were 

analyzed using an repeated-measures ANOVA with activity (ambulatory or bed rest) as within-

subject factor, experimental period (2006, 2007 and 2008) as between-subject factor and baseline 

ambulatory values as covariate. There was no significant experimental period  bed rest interaction 

for investigated variables. Thus, results obtained during the three experimental periods, in 

ambulatory or bed rest conditions, were pooled together and expressed as mean±SEM. 

 

To validate the new double tracers-single sample method used to assess glutathione FSR in muscle 

(Valdoltra Bed Rest Study 2007), glutathione FSR absolute values or pooled changes from baseline 

to day 33 measured in erythrocytes by traditional (multiple samples-one tracer) approach were 

correlated to the same measurements performed in erythrocytes by the double tracers-single sample 

method. Regression line analysis of such correlations was performed by the Passing–Bablok test. 

The Altman–Bland plot was applied to validate the two methods. These analyses were performed 

by MedCalc (version 11.2.1.0; MedCalc Software; Mariakerke, Belgium). 

 

To evaluate the effects of physical inactivity on insulin sensitivity, assessed during OGTT, and 

autonomic regulation before, after 7 days and at the end of the experimental bed rest, repeated 

measures ANOVA with interaction was used and the Bonferroni’s post-hoc analysis was employed. 

 

Relationships between variables were analyzed by bivariate correlation using the Spearman’s or 

Pearson’s test where appropriate. 

 

Statistical analysis was performed using SPSS statistical software (version 12; SPSS, Inc., Chicago, 

IL), if not differently specified. 
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RESULTS 
 

EFFECT OF BED REST ON BODY COMPOSITION 

Bioimpedance analysis evidenced a significant decrease in free-fat mass (-4.3±0.4 kg; n=30; 

p<0.01) and a significant, but slightly (from 11.7±1.0 kg to 12.3±1.0 kg; n=30; p=0.01), increase in 

fat mass after 33 days of bed rest, in pooled subjects participating to the Valdoltra Bed Rest Studies 

2006, 2007 and 2008. 

DXA analysis, performed in women involved in the WISE Study, demonstrated that lean mass was 

significantly decreased after 60 days of bed rest (-7.6±0.3%; n=8; p<0.01), whereas no significant 

changes in fat mass occurred (from 14.61.4 kg to 14.31.2 kg; n=8; p>0.05) (Figure 10). Lean 

mass significantly decreased during the first 31 days of bed rest, whereas lean mass did not change 

significantly during the following 29 days. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Absolute values of lean and fat mass measured before (Ambulatory), every 15 

days (15-day bed rest; 31-day bed rest; 43-day bed rest) and at the end (60-day bed rest) of 

the WISE bed rest study are reported. Body composition was assessed by DXA. *, p<0.01 vs 

Ambulatory; #, p<0.05 vs 15-day bed rest. Statistical analysis was performed by repeated 

measures ANOVA. 
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EFFECT OF BED REST ON VASTUS LATERALIS THICKNESS AND ARCHITECTURE 

Valdoltra Bed Rest Studies 2006, 2007 and 2008. 

Vastus lateralis thickness, as assessed by ultrasound imaging, significantly decreased in the three 

bed rest studies, from 2.27±0.08 cm to 1.99±0.08 cm (p<0.05; paired t test). Vastus lateralis 

thickness decreased by 19.1±7.6% (p<0.02; paired t test) in the Valdoltra Study 2006, by 

23.8±6.6% (p<0.01; paired t test) in the Valdoltra Study 2007. In the Valdoltra Study 2008, 

thickness of vastus lateralis was reduced from 2.31±0.16 cm to 1.93±0.13 cm (p<0.01; paired t test) 

after 33 days of bed rest. 

Fiber pennation angle, measured in Valdoltra 2007 by ultrasonography, was significantly reduced 

after 33 days of bed rest, from 18.6±1.2 to 15.3±1.0 degrees (p<0.05; Student’s t test). 
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EFFECT OF BED REST ON OXIDATIVE STRESS IN ERYTHROCYTES 

Valdoltra Bed Rest Study 2006. 

In the Valdoltra Bed Rest Study 2006, glutathione FSR increased after 33 days of bed rest, from 

73.3±14.8 %×day-1 to 124.5±16.4 %×day-1 (p<0.05). Glutathione concentration tended to increase 

(from 2156.0±106.4 µmol×L-1 to 2323.9±85.2 µmol×L-1) even though the statistical significance 

was not achieved. Glutathione ASR was increased from 157.5±33.3 mmol×L-1day-1 to 289.2±37.8 

mmol×L-1day-1 (p=0.01). Nevertheless, when we excluded by the analysis subjects that failed to 

adapt to inactivity-induced changes in energy requirement and that were in positive energy balance, 

glutathione concentration as well as glutathione FSR were unchanges following bed rest (Biolo et 

al. 2008). 

 

EFFECTS OF BED REST ON OXIDATIVE STRESS IN MUSCLE. 

Valdoltra Bed Rest Study 2007. 

 

Double tracer-single sample method validation: glutathione synthesis in erythrocytes 

[2H2]-glycine enrichment in erythrocytes reached the steady state after 3 hours from the infusion 

protocol start. [2H2]-glycine enrichment steady state was maintained up to the end of the protocol 

infusion (Figure 11). The achievement of [15N]-glycine enrichment steady state can only be 

assumed at the end of the infusion protocol (i.e., after 3 hours of [15N]-glycine infusion start). [2H2]-

glycine and [15N]-glycine steady state values were different due to intrinsic metabolic differences 

between precursors. Differences in product ([2H2]-glutathione and [15N]-glutathione) enrichments at 

the end of the metabolic test reflected the different tracer infusion and then incorporation times 

([2H2]-glycine primed continuous infusion started at time 0 and was maintained for 7 hours, 

whereas [15N]-glycine primed continuous infusion was started 4 hours later and maintained for 3 

hours). 
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Figure 11. Enrichments of [2H2]-glycine and [15N]-glycine as well as of [2H2]-

glutathione and [15N]-glutathione, during the 7-hour primed continuous isotope 

infusion. (A) Steady state for [2H2]-glycine (●) and [15N]-glycine (□) precursors. 

Steady state for [2H2]-glycine enrichment was assessed through the infusion protocol 

and determined using a mass-spectrometry gas-chromatographer. Steady state for 

[15N]-glycine (□) pool was assumed. (B) [2H2]-glutathione (●) and [15N]-glutathione 

(□) enrichment slopes, reflecting linear tracer incorporation ([2H2]-glycine and [15N]-

glycine, respectively) into glutathione products. 

 

[2H2]-glycine steady state mean value was significantly increased after 33 days of bed rest (p<0.05).  

[15N]-glycine enrichment mean values measured at the end of the infusion were greater (p<0.05) 

than the corresponding [2H2]-glycine enrichment values. 

The validation of the new double tracer-single sample approach versus the traditional single tracer- 

multiple sample method was performed in blood samples collected during the metabolic tests, 
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performed before, after 7 days and at the end of the experimental bed rest. Glutathione FSR was 

estimated using the equations Eq. 2 and Eq. 3, as reported in the section “Method”. Glutathione 

FSR values assessed by the two equations were not statistical different. Pooled absolute values of 

glutathione FSR measured in the three study phase by the double tracer-single sample approach 

highly correlated (r=0.84; n=28; p<0.001) with those assessed by the traditional single tracer-

multiple sample method (Figure 12). Moreover, pooled changes in glutathione FSR from baseline to 

day 7 as well as from day 7 to day 33 of bed rest measured by both approaches were highly 

correlated (r=0.91, n=18; p<0.001) (Figure 12). 

Glutathione FSR in erythrocytes was unchanged after 7 and 33 days of bed rest. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Linear correlations between glutathione fractional synthesis rate (FSR) 

measurements in erythrocytes by the traditional (single tracer-multiple sample) and by 

double tracer-single sample approaches. (A) Glutathione FSR absolute values 

(r=0.84; n=28; p<0.001). (B) Pooled changes of glutathione FSR from baseline to day 

7 and from day 7 to day 33 (r=0.91; n=18; p<0.001). 

 

Analysis of linear regression correlations between the double tracer-single sample approach and the 

traditional approach was performed by Passing–Bablok method (Figure 13). Glutathione FSR 

values measured in erythrocytes by the two methods were in positive linear correlation (R=0.90; 

n=29; p < 0.001) and line slope and intercept were contained in their relative confidence intervals 

(Table 1). A positive linear correlation (R=0.91; n=19; p < 0.001) was also evidence when pooled 

changes of glutathione FSR from baseline to day 7 and to day 33, assessed by the two methods, 
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were considered (Figure 13). Also in this case, line slope and intercept were contained in their 

relative confidence intervals (Table 1). 

The Altman–Bland method was finally applied to validate the double tracer-single sample approach 

against the traditional one for glutathione kinetics assessment (Figure 13). Altman–Bland test 

evidenced data distribution across the mean for both glutathione FSR absolute values and 

glutathione FSR changes. Moreover, only two measurements for glutathione FSR absolute values 

and one measurement for glutathione FSR changes were outside the confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Validation of the double tracer-single sample method versus the traditional 

approach by analysis of linear regression of correlations by Passing–Bablok approach and 

by Altman–Bland test, applied to measurements of glutathione fractional synthesis rate in 

erythrocytes, expressed as absolute values and as changes from baseline to  day 7 as well as 

from day 7 to day 33 of bed rest. In Passing–Bablok plots regression lines were drawn as 

continuous thick lines, identity lines (x=y) as continuous thin lines, limits of confidence 

intervals are dashed lines. In Altman–Bland plots the mean value line was represented by a 

continuous thick line and limits of confidence intervals were presented by dashed lines. 
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Table 1. Passing–Bablok regression analysis applied to compare the traditional and the 

double tracer-single sample approaches for glutathione FSR assessment in erythrocytes.  

REGRESSION ANALYSIS 1 

VARIABLE X 

Absolute glutathione FSR values 

(traditional equation) 

 VARIABLE Y 

Absolute glutathione FSR values 

(double tracer-single sample equation) 

 VALUE 95 % C.I. 

Intercept A −0.02 from −11.32 to 7.01 

Slope B 0.86 from 0.68 to 1.04 

Cusum test for linearity No significant deviation from linearity (P > 0.05) 

 

REGRESSION ANALYSIS 2 

VARIABLE X 

Glutathione FSR changes 

(traditional equation) 

 VARIABLE Y 

Absolute glutathione FSR values 

(double tracer-single sample equation) 

 VALUE 95 % C.I. 

Intercept A 0.95 from -9.10 to 1.47 

Slope B 0.91 from 0.75 to 1.20 

Cusum test for linearity No significant deviation from linearity (P > 0.05) 

Regression analysis 1 was performed to compare absolute glutathione FSR values measured 

by the traditional approach (X variable) with the same values measured by the double tracer-

single sample (Y variable) approach. Regression analysis 2 was performed to compare 

changes from baseline to day 7 and to day 33 of glutathione FSR measured by the traditional 

equation (Variable X), with the same values measured by the double tracer-single sample 

equation (Variable Y). 

 

Bed rest effect on muscle glutathione kinetics. 

Values of [15N] and [2H2] enrichments in glycine and glutathione pools in muscle, as assessed at the 

beginning as well as at the end of the experimental bed rest, were comparable (statistical 

significance, determined by Student’s t test, was not achieved). Similarly to data obtained in 

erythrocytes, muscle [15N]-glycine enrichments were significantly (p<0.05) higher than [2H2]-

glycine (Table 2). Muscle glutathione FSR tended to be increased during bed rest, even though 

statistical significance was not achieved (p=0.07). Muscle glutathione concentrations were 

unaffected by experimental physical inactivity. Nonetheless, glutathione ASR was significantly 

enhanced after 33 days of bed rest, compared to basal condition (Table 2). 
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Table 2. Effects of bed rest on muscle vastus lateralis [2H2] and [15N] precursors and 

products enrichments as well as in glutathione kinetics. 

 AMBULATORY 33-day BED REST p 

MUSCLE ENRICHMENTS 
 

[15N]-glycine 
0.057±0.004 0.058±0.006 

ns 

[15N]-glutathione 0.014±0.003 0.010±0.004 
ns 

[2H2]-glycine 0.042±0.003 0.041±0.003 
ns 

[2H2]-glutathione 0.027±0.002 0.032±0.005 
ns 

 

GLUTATHIONE KINETICS 

FSR (%×day-1) 268±61 408±47 ns 

Concentration (mmol×kg wet tissue-1) 2.3±0.2 2.7±0.1 ns 

ASR (mmol×kg wet tissue-1×day-1) 5.5±1.1 11.0±1.5 0.02 

Data are presented as mean±SEM. Statistical analysis was performed by Student’s t test. 

Muscle isotopic enrichments on [2H2] and [15N] precursors ([2H2]- and [15N]-glycine) and 

products ([2H2]- and [15N]-glutathione ) were assessed by GC-MS analysis, on vastus 

lateralis biopsies performed on 9 subjects at the end of the infusion protocol at baseline 

(Ambulatory) and at the end (33-day bed rest) of experimental bed rest. Glutathione 

fractional synthesis rate (FSR), concentration and absolute synthesis rate (ASR) were 

measured in the same vastus lateralis biopsy. Glutathione FSR was calculated by the double 

tracer-single sample approach; glutathione concentrations were measured by the internal 

standard technique; ASR was defined as the product between glutathione FSR and 

concentration. 

 

Bed rest effects on muscle atrophy and oxidative stress. 

Experimental bed rest significantly impaired vastus lateralis thickness and fiber pennation angle 

(Figure 14). Inactivity-induced changes in vastus lateralis thickness were directly related to 

inactivity-related changes in fat-free mass (R=0.63; n=10; p<0.05). On the contrary, bed rest-

induced changes in glutathione FSR inversely correlated to decreases in fiber pennation angle (R=-

0.67; n=9; p<0.05). 

Vastus lateralis protein carbonylation levels, assessed by Oxyblot analysis, were significantly 

increased after 33 days of bed rest (Dalla Libera et al. 2009) (Figure 14) and were inversely 
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correlated (R=-0.74; n=8; p<0.05) to changes in muscle thickness, observed in the same 

experimental period. 

 

 

 

 

 

 

 

 

 

 

Figure 14. Values of vastus lateralis thickness, fiber pennation angle and protein 

carbonylation measured at the beginning (Ambulatory) and at the end (33-day bed rest) of 

the experimental bed rest period. Muscle thickness and fiber pennation angle were 

determined by ultrasonography. Protein carbonylation was measured by Oxyblot analysis. 

Oxy×RP-1, ratio between quantified oxidized proteins and Red Ponceau stained total protein. 

**, p<0.001 vs Ambulatory; *, p<0.05 vs Ambulatory. Statistical analysis were performed by 

Student’s t test. 
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EFFECT OF BED REST ON SYSTEMIC INFLAMMATION 

Effect of bed rest on erythrocyte membrane composition. 

Valdoltra Bed Rest Studies 2006, 2007 and 2008. 

The impact of experimental bed rest on systemic inflammatory condition was investigated through 

the assessment of fatty acid composition in erythrocyte membranes. 

Total membrane content of saturated fatty acids did not significantly change after bed rest, whereas 

the total monounsaturated fatty acids content was significantly reduced. Particularly, oleic and 

eicosaenoic acid levels were significantly reduced after 33-day bed rest. Bed rest did not influence 

n-3 polyunsaturated fatty acid total content, even though inactivity displayed different effects on 

selected n-3 fatty acids, leading to a statistical significant decrease in α-linolenic and 

eicosapentaenoic acid levels and to a significant increase in docosahexaenoic acid content. On the 

contrary, all detected n-6 polyunsaturated fatty acids content, with the exception of linoleic and 

eicosadienoic acid, and, consequently, the total content of n-6 polyunsaturated fatty acids were 

significantly enhanced during 5 weeks of bed rest. Interestingly, linoleic acid levels were 

significantly decreased at the end of the experimental period (Table 3). The Δ-5 and Δ-9 desaturase 

activities, as estimated from product-to-precursor ratio, were significantly reduced following 33 

days of bed rest (Figure 15) whereas the arachidonic-to-eicosapentaenoic acid ratio was 

significantly increased after unloading (Figure 16). 
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Table 3. Effects of 5 weeks of bed rest on major fatty acids (%) in erythrocyte membranes. 

 AMBULATORY BED REST p 

SATURATED FATTY ACIDS 

Myristic 14:0 0.33 ± 0.02 0.33 ± 0.02 0.75 

Palmitic 16:0 22.32 ± 0.62 21.68 ± 0.67 0.06 

Stearic 18:0 19.46 ± 0.31 19.19 ± 0.33 0.14 

SUM 42.31 ± 0.92 41.48 ± 1.02 0.10 

MONOUNSATURATED FATTY ACIDS 

Palmitoleic 16:1 n-7 0.25 ± 0.02 0.24 ± 0.01 0.56 

Oleic 18:1 n-9 13.97 ± 0.36 13.31 ± 0.32 0.002 

Eicosaenoic 20:1n-9 0.24 ± 0.01 0.23 ± 0.01 0.04 

SUM 15.57 ± 0.40 14.87 ± 0.34 0.003 

n-3 POLYUNSATURATED FATTY ACIDS 

α-Linolenic acid 18:3 n-3  0.31 ± 0.04 0.29 ± 0.05 0.05 

Eicosapentaenoic acid 20:5n-3  0.39 ± 0.02 0.35 ± 0.01 0.05 

Docosapentaenoic acid 22:5n-3  2.35 ± 0.09 2.49 ± 0.05 0.13 

Docosahexaenoic acid 22:6n-3  3.91 ± 0.20 4.15 ± 0.15 0.01 

SUM 7.12 ± 0.19 7.34 ± 0.17 0.06 

n-6 POLYUNSATURATED FATTY ACIDS 

Linoleic acid 18:2 n-6  12.10 ± 0.24 11.60 ± 0.30 0.02 

Eicosadienoic acid 20:2n-6  0.39 ± 0.03 0.38 ± 0.02 0.36 

Dihomo-γ-linolenic 20:3n-6 1.72 ± 0.07 2.08 ± 0.08 <0.001 

Arachidonic acid 20:4n-6 16.20 ± 0.63 17.18 ± 0.59 0.01 

Adrenic 22:4n-6 4.20 ± 0.19 4.47 ± 0.19 0.01 

Docosapentaenoic 22:5n-6  0.80 ± 0.04 0.93 ± 0.09 0.003 

SUM 35.45 ± 0.90 37.16 ± 0.42 0.005 

Data are expressed as mean±SEM. n=30. Erythrocyte membrane fatty acid 

composition was assessed by gas-chromatographic analysis. Red blood cell 

membrane level of each enlisted fatty acid was expressed as percent ratio between 

area-under-the-curve of each selected fatty acid peak and the sum of all measured 

fatty acid peaks. Statistical analysis was performed by Wilcoxon statistical test. 
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Figure 15. Estimated activities of Δ-5 and Δ-9 desaturases before and following 5 weeks of 

bed rest. Δ-5 desaturase activity was estimated as arachidonic acid-to- dihomo-γ-linolenic 

acid ratio.Δ-9 desaturase activity was estimated as oleic acid-to-stearic acid ratio. n=30. 

**p<0.001, *p<0.05. Statistical analysis was performed by Wilcoxon statistical test. 

 

 

 

 

 

 

 

 

 

Figure 16. Arachidonic acid-to-eicosapentaenoic acid ratio before and at the end of 5 weeks 

of bed rest. n=28. *, p<0.01. Statistical analysis was performed by Wilcoxon statistical test. 
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EFFECT OF BED REST ON INSULIN SENSITIVITY 

 

HOMA index of insulin resistance 

Valdoltra Bed Rest Studies 2006, 2007 and 2008. 

Bed rest induced a significant increase in plasma insulin concentration (from 6.5±0.6 mU×L-1 to 

9.3±0.8 mU×L-1; n=30; p<0.001). On the contrary, plasma glucose concentrations were not 

significantly changed after 5 weeks of bed rest (from 4.90±0.06 mmol×L-1 to 4.88±0.05 mmol×L-1; 

n=30; p=0.8). Consequently, the HOMA index of insulin resistance significantly (p <0.01) 

increased from 1.4±0.1 at baseline to 2.0±0.2 after the experimental period. 

 

Oral Glucose Tolerance Test 

Valdoltra Bed Rest Study 2008. 

Plasma insulin and glucose concentrations during OGTT at baseline as well as after 5 and 33 days 

of bed rest were reported in Figure 17. 

 

 

 

 

 

 

 

 

Figure 17. Plasma insulin and glucose concentrations during OGTT, at baseline 

(Ambulatory), after 5 days (5-day bed rest) and at the end (33-day bed rest) of the 

experimental period. 

 

The composite ISI index of insulin sensitivity calculated during the OGTT significantly decreased 

after 5 days of bed rest (24±5 %; n=10; p=0.02) and after 33 days of bed rest (265 %; n=10; 

p=0.02; compared to ambulatory condition). Insulin sensitivity was similar following 5 and 33 days 

of bed rest and percent changes from the basal ambulatory condition were similar (p=ns; Wilcoxon 

test) at day 5 and at day 33 of bed rest (Figure 18). 

The area under the curve (AUC) of plasma insulin concentrations following OGTT exhibited 

similar changes of the ISI index. Moreover, percent changes from the basal ambulatory condition 
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were not significantly different after 5 days (489%) and after 33 days (4611%). On the contrary, 

the AUC of plasma glucose following OGTT did not change significantly during bed rest. 

 

 

 

 

 

 

 

 

Figure 18. Insulin sensitivity, as assessed by the composite ISI index of insulin sensitivity 

during the OGTT performed in the three designed metabolic test sections (Ambulatory, 5-

day bed rest and 33-day bed rest). 
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EFFECT OF BED REST AND GLUCOSE LOAD ON AUTONOMIC REGULATION 

 

Effects of bed rest on autonomic nervous system regulation. 

There was significant bed rest effect on brachial systolic, diastolic and mean arterial pressure. 

Diastolic arterial pressure significantly increased after 5 days of bed rest and further increased after 

33 days of bed rest. Percent changes from the basal ambulatory condition were greater (p=0.01, 

Wilcoxon test) after 33 days (153%) than after 5 days (82%) of bed rest. Similarly results were 

observed considering systolic arterial pressure (changes after 5 days 10±6%; changes after 33 days 

5±1%; p<0.01). 

Heart rate did not change significantly at after 5 days while it increased significantly after 33 days 

of bed rest in the fasting state. Percent changes from the basal ambulatory condition were greater 

(p<0.01, Wilcoxon test) after 33 days than after 5 days. 

RR interval did not change significantly after 1 week while it increased significantly at the end of 

the experimental period. Percent changes from baseline were not significantly different after one 

week (-349%) and at the end of bed rest (-496%).  

There was a significant bed rest effect on LF of RR interval (RR-LF) expressed in normalized units 

(RR-LF(nu)). In the fasting state RR-LF(nu) did not change significantly after 5 days while it 

significantly increased at the end of the experimental period. Percent changes from the basal 

ambulatory condition were greater (p=0.03, Wilcoxon test) after 33 days (210117%) than after 5 

days of bed rest. Bed rest significantly decreased HF component of RR interval (RR-HF) and 

tended to decrease RR-HF in normalized units (RR-HF(nu)). RR-HF at the end of the experimental 

period was significantly lower than that after one week of unloading and at basal ambulatory 

condition. Similar trend was observed for RR-HF(nu). Bed rest mediated changes of RR-HF in the 

fasting state were significantly greater (p=0.01, Wilcoxon test) after 33 days (747%) than those at 

day 5 of bed rest (+6017%).  

There was significant bed rest effect on the ratio between RR-LF and RR-HF (LF-to-HF ratio). LF-

to-HF ratio in the fasting state after 33 days of inactivity was significantly greater than that after 5 

days of bed rest. Bed rest mediated changes of LF-to-HF ratio in the fasting state were significantly 

greater (p=0.02, Wilcoxon test) at the end of bed rest (-0.50.5) than those measured after one week 

of inactivity (2.11.2). SAP, as determined at the finger level by a Portapres device, tended to 

increase following bed rest. SAP variability significantly increased following bed rest. Bed rest 

mediated changes of SAP variability in the fasting state were significantly greater (p=0.02, 

Wilcoxon test) after 5 days (1.7959%) than after 33 days (5532%) of unloading. 
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Bed rest did not influence SAP-LF and SAP-LF at short (following 5 days of bed rest) nor at long 

time (following 33 days of inactivity). 

Baroreflex sensitivity significantly decreased following bed rest. Fasting baroreflex sensitivity 

significantly decreased following 5 days of bed rest. Bed rest mediated decreases of fasting 

baroreflex sensitivity were significantly greater (p=0.01, Wilcoxon test) at day 5 (-4110) than at 

day 33 (-2316%) of inactivity. There was significant bed rest effect on α-index. α-index 

significantly decreased from the ambulatory condition after 5 days of unloading and remained 

significantly suppressed at the end of the experimental period. 

 

Effects of bed rest and glucose load on autonomic nervous system regulation. 

Effects of bed rest and glucose load on autonomic nervous system regulation were reported in Table 

4. 

During OGTT, heart rate did not change significantly after 5 days while it increased significantly 

after 33 days of bed rest. Percent changes from the basal ambulatory condition were greater 

(p<0.01, Wilcoxon test) after 33 days than after 5 days after OGTT. There was significant OGTT 

effect, but there was not significant bed rest  OGTT interaction on heart rate. 

RR interval did not change significantly after 1 week while it increased significantly at the end of 

the experimental period after glucose load. Bed rest induced changes (calculated between 

consecutive measurements, i.e., ambulatory to day 5 of bed rest and from day 5 of bed rest to day 

33 of bed rest) of insulin AUC and RR interval after OGTT were directly correlated (R=0.64; 

n=20;p<0.01; Spearman test) (Fig. 10). RR variability significantly decreased following bed rest but 

there was not significant OGTT effect nor bed rest  OGTT interaction. RR variability during 

OGTT was significantly decreased from the ambulatory condition at day 5 as well as at day 33 of 

bed rest. There was not significant OGTT effect or bed rest  OGTT interaction on RR-LF. The 

OGTT significantly increased RR-LF(nu). There was a significant bed rest  OGTT interaction for 

RR-LF(nu). OGTT mediated changes in RR-LF(nu) were greater (p<0.05, Wilcoxon test) after 33 

days (6827%) than after 5 days of inactivity (1211%). RR-HF, assessed during the OGTT, at the 

end of the experimental period was significantly lower than that after one week of unloading and at 

basal ambulatory condition. OGTT significantly decreased RR-HF and RR-HF(nu). There was not 

significant bed rest  OGTT interaction for RR-HF and RR-HF(nu). OGTT significantly increased 

LH/HF, while there was not significant bed rest  OGTT interaction. There was significant OGTT 

effect on SAP, without significant bed rest  OGTT interaction. Bed rest induced changes of insulin 

AUC and SAP after OGTT (calculated between consecutive measurements, i.e., ambulatory to bed 

rest +5 and from bed rest +5 to bed rest +33) were directly correlated (R=0.67; n=20; p=0.01; 
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Spearman test) (Fig. 10). OGTT significantly increased SAP variability. There was significant bed 

rest  OGTT interaction for SAP variability. OGTT significantly increased the low-frequency 

component of SAP variability (SAP-LF) in ambulatory conditions, while this effect was not 

significant following 5 nor following 33 days of bed rest. OGTT mediated changes in SAP-LF were 

greater (p=0.01, Wilcoxon test) in the ambulatory conditions (31473%) compared to OGTT 

performed on day 5 of bed rest (2531%). There were not OGTT effects on SAP-HF. OGTT 

significantly decreases baroreflex sensitivity in ambulatory conditions by -276%; moreover such 

change was significantly greater (p=0.03, Wilcoxon test) than that at day 5 of bed rest (212%). 

There was not significant OGTT effect nor bed rest  OGTT interaction on α-index. 

 

Table 4. Effects of short-term (5-day bed rest) and long-term (33-day bed rest) bed rest on 

autonomic system regulation in the fasting state and after oral glucose tolerance test 

(OGTT). 

 Ambulatory 5-day bed rest 33-day bed rest 
Bed rest 

effect 

OGTT 

effect 

Bed rest  OGTT 

interaction 

Heart rate (b/min)       

Fasting 602 582 652b 

OGTT 632 642c 732 abc 
0.01 0.01 0.19 

RR interval (ms)       

Fasting 100738 104844 92625b 

OGTT 97136 95640c 83729abc 
0.02 0.01 0.24 

RR variability (ms2)       

Fasting 54721798 33761019 3152841 

OGTT  46801067 2749483a 2385471a 
0.02 0.40 0.58 

RR variability LF (a)       

Fasting 610159 510126 656272 

OGTT  1390352 721220 778440 
0.43 0.17 0.10 

RR variability LF (n.u.)       

Fasting 39.59.6 36.97.3 59.37.6 b 

OGTT  54.96.5 55.38.8 c 63.77.6 
0.04 0.01 0.04 

RR variability HF (a)       

Fasting 21811044 1109339 35987ab 

OGTT  1616530 592189 c 328114a 
0.01 0.02 0.37 

RR variability HF (n.u.)       

Fasting 52.29.5 55.16.9 36.18.2 

OGTT  38.45.7 36.78.3 c 31.17.6 
0.07 0.01 0.28 

LF-to-HF ratio       

Fasting 1.60.5 1.10.4 3.61.1b 

OGTT  2.70.6 3.41.0c 7.12.9 
0.05 0.01 0.23 
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SAP (mmHg)       

Fasting 1203 1264 1262 

OGTT  1233 1333 1334 
0.07 0.04 0.81 

SAP variability (mmHg)       

Fasting 21.73.1 48.57.4a 30.36.8 

OGTT  73.825.6 63.010.4 78.717.4c 
0.02 <0.01 0.01 

SAP variability LF (a)       

Fasting 4.61.8 16.77.3  5.61.4 0.08 0.01 0.04 

OGTT  13.43.6 c 12.43.3 8.61.6    

SAP variability HF (a)        

Fasting 1.10.2 1.60.3 0.90.3 

OGTT  1.90.5 1.00.1 1.00.2 
0.22 0.50 0.14 

BRS (ms/mmHg)       

Fasting 25.83.4 12.71.0a 17.12.8 

OGTT  18.32.8 C 12.61.4 12.01.6a 
0.04 0.01 0.09 

α-index (ms/mmHg)       

Fasting 26.93.6 16.93.3a 18.13.1 

OGTT 23.74.9 15.21.8a 16.03.9a 
0.01 0.15 0.56 

Data are expressed as mean±SEM. n=10. Repeated measures ANOVA with interaction. a, 

p<0.05 versus Amb; b, p<0.05 versus BR+5; c, p<0.05 OGTT versus Fasting (Bonferroni’s 

post-hoc test). LF (a), low-frequency component as expressed in absolute values; LF (n.u.), 

low-frequency component as expressed in normalized units; HF (a), high-frequency 

component as expressed in absolute values; HF (n.u.), high-frequency component as 

expressed in normalized units; SAP, systolic arterial pressure; BRS, baroreflex sensitivity. 

 

In order to assess the net impact of glucose load on autonomic nervous system regulation, on day 14 

of bed rest a aspartame-sweetened water ingestion was performed. This blank test was used to 

investigate potential effects of 300 mL of water ingestion as well as of glucose taste on autonomic 

nervous system regulation. Effects of simulated glucose load on autonomic nervous system 

parameters were reported in Table 5. Aspartame-sweetened water ingestion induced a decrease in 

RR-HF expressed in absolute values whereas no effects on RR-HF expressed in normalized units 

were observed. In addition, SAP variability was significantly enhanced after aspartame-sweetened 

water ingestion. 
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Table 5. Effects of blank test (aspartame-sweetened water ingestion) on autonomic system 

regulation after 14-days of bed rest. 

 BASELINE BLANK TEST p 

Heart rate (b/min) 592 59±2 0,27 

RR interval (ms) 102640 1044±43 0,16 

RR variability (ms2) 3226±672 4034±622 0,05 

RR variability LF (a) 830±225 824±233 0,94 

RR variability LF (nu) 54,3±9,3 45,9±8,6 0,05 

RR variability HF (a) 752±268 1182±353 0,04 

RR variability HF (nu) 42,6±8,9 49,8±8,3 0,06 

LF-to-HF ratio 2,5±0,7 4,3±2,2 0,35 

SAP (mmHg) 128±8 128±3 0,96 

SAP variability (mmHg) 39,5±14,3 67,2±14,9 0,02 

SAP variability LF (a) 9,8±4,9 8,5±3,7 0,83 

SAP variability HF (a)  1,5±0,6 1,6±0,3 0,84 

BRS (ms/mmHg) 14,4±1,6 15,2±1,9 0,63 

α-index (ms/mmHg) 20,0±3,4 20,2±3,0 0,93 

 

Data are expressed as mean±SEM. n=10. Statistical analysis was performed by Wilcoxon 

statistical test. Subjects ingested 300 ml of aspartame-sweetened water at room temperature 

to mimic volume ingestion and taste of the oral glucose tolerance test. LF (a), low-frequency 

component as expressed in absolute values; LF (n.u.), low-frequency component as 

expressed in normalized units; HF (a), high-frequency component as expressed in absolute 

values; HF (n.u.), high-frequency component as expressed in normalized units; SAP, 

systolic arterial pressure; BRS, baroreflex sensitivity. 
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EFFECT OF BED REST ON PLASMA LIPID PATTERN AND CETP 

Valdoltra Bed Rest Studies 2006, 2007 and 2008. 

To avoid the potential interference of changes in adipose tissue on cholesteryl ester transfer protein 

(CETP) production, subjects who did not maintain energy balance throughout the experimental 

period (Biolo et al. 2008) were excluded from the present analysis. Particularly, five subjects who 

participated in the bed rest study 2006 failed to spontaneously adapt to decreased energy 

requirement (Biolo et al. 2008) and gained 2.6±0.3 kg fat mass; these subjects were excluded from 

the analysis. In addition, one subject who participated in the bed rest study 2007 and gained 2.0 kg 

fat mass despite a tailored diet was also excluded. In the 24 subjects selected for this statistical 

analysis, fat mass did not significantly change throughout the experimental period whereas fat-free 

mass significantly decreased by 3.9±0.4% (p<0.001). Bed rest significantly affected plasma 

triglycerides and HDL levels. HDL decreased by 12±3% (p<0.001), while triglycerides increased 

by 51±10% (p<0.001). Physical inactivity did not change plasma total cholesterol and LDL 

concentrations. The ratio between HDL and non-HDL cholesterol (i.e., the sum of VLDL and LDL) 

significantly (P<0.01) decreased following bed rest from 0.44±0.04 to 0.35±0.04. CETP 

concentrations significantly increased by 27±9%. Inactivity mediated changes in plasma CETP 

inversely correlated with changes in HDL to non-HDL cholesterol ratio (Fig. 10A). In these 

subjects, insulin concentration increased by 46±10% (p<0.001) following the experimental bed rest 

and, consequently, the HOMA index of insulin resistance significantly increased by 47±11%. 

Inactivity mediated changes in plasma fasting insulin inversely correlated with changes in CETP 

(Fig. 10B). 

Statistical analysis performed in all subjects (n=30), including those who gained fat mass at the end 

of the experimental period, indicated that CETP levels significantly increased (P<0.05) by 23±8% 

and that inactivity mediated changes in plasma CETP inversely correlated with changes in HDL to 

non-HDL cholesterol ratio (R=-0.51; n=30; p<0.01; Pearson test). Bed rest induced changes in fat 

mass did not significantly correlate with changes in CETP levels (R=0.34; n=30; p=0.07; Pearson 

test). In the 6 subjects who gained fat mass at the end of the bed rest period CETP levels did not 

change significantly (from 3.63±0.33 to 3.73±0.43 mg/L). 

As abovementioned, inactivity-mediated changes in insulin concentrations were inversely correlated 

with changes in CETP concentrations (Fig. 10B). Subjects (n=24) were then stratified according to 

the median value of bed rest mediated changes in fasting insulin levels; the group (n=12) with lower 

changes in plasma insulin (+4±2 pmol/L) exhibited the greatest increases in CETP concentrations 

(+53±12%), whereas in the group (n=12) displaying higher insulin changes (+30±6 pmol/L), CETP 

levels did not change significantly following bed rest (0±9%) (repeated measured ANOVA, bed rest 
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effects: P=0.015, bed rest  insulin change interactions: P=0.003). There were not significant bed 

rest  insulin change interactions for the effects of inactivity on triglycerides (P=0.68). Plasma 

triglicerides significantly increased by 49±14 and 56±16 % in the groups displaying lower or 

greater changes in insulin concentrations, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Correlation between percent changes from ambulatory to bed rest of CETP levels 

and HDL to non-HDL cholesterol ratio (A); correlation between percent changes from 

ambulatory to bed rest of insulin and CETP levels (B); (n=24; statistical analysis was 

performed using Pearson test). 

 

 

-0,5

-0,3

-0,1

-0,6 -0,2 0,2 0,6 1 1,4

Changes in CETP concentration (%)

C
h

a
n

g
es

 i
n

 
H

D
L

 t
o

 n
on

-H
D

L
 c

h
o

le
st

er
o

l 
ra

ti
o

 (
%

)

-1

-0,5

0

0,5

1

1,5

-0,5 0,5 1,5

C
h

a
n

g
es

 i
n

 C
E

T
P

 c
o

n
ce

n
tr

a
ti

o
n

 (
%

)

Changes in fasting insulin concentration (%)

A B

-0,5

-0,3

-0,1

-0,6 -0,2 0,2 0,6 1 1,4

Changes in CETP concentration (%)

C
h

a
n

g
es

 i
n

 
H

D
L

 t
o

 n
on

-H
D

L
 c

h
o

le
st

er
o

l 
ra

ti
o

 (
%

)

-0,5

-0,3

-0,1

-0,6 -0,2 0,2 0,6 1 1,4

Changes in CETP concentration (%)

C
h

a
n

g
es

 i
n

 
H

D
L

 t
o

 n
on

-H
D

L
 c

h
o

le
st

er
o

l 
ra

ti
o

 (
%

)

-1

-0,5

0

0,5

1

1,5

-0,5 0,5 1,5

C
h

a
n

g
es

 i
n

 C
E

T
P

 c
o

n
ce

n
tr

a
ti

o
n

 (
%

)

Changes in fasting insulin concentration (%)

-1

-0,5

0

0,5

1

1,5

-0,5 0,5 1,5

C
h

a
n

g
es

 i
n

 C
E

T
P

 c
o

n
ce

n
tr

a
ti

o
n

 (
%

)

Changes in fasting insulin concentration (%)

A B



Results 

98 

EFFECT OF BED REST ON HOMOCYSTEINE METABOLISM 

WISE Study. 

Plasma concentrations of amino acids involved in the homocysteine metabolic pathways were 

differently affected by 60 days of physical inactivity. Plasma methionine and cysteine levels were 

not significantly changed after prolonged bed rest, ranging, respectively, from 21±1 µmol×L-1 to 

24±1 µmol×L-1 (n=8; p=0.07) and from 215±5 µmol×L-1 to 208±4 µmol×L-1 (n=8; p=0.08). On the 

contrary, plasma homocysteine concentration was significantly up-regulated after 60 days of bed 

rest, from 8.61.3 µmol×L-1 to 10.31.0 µmol×L-1 (n=8; p=0.01). 

As reported in Table 6, bed rest significantly enhanced homocysteine transulfuration rate whereas 

reduced remethylation rate. No effects of prolonged inactivity were detected on transmethylation 

rate. 

The clearance of homocysteine through the remethylation was significantly reduced by prolonged 

bed rest whereas the homocysteine clearance by transulfuration pathway was not significantly 

different after 6 days of bed rest, as compared to ambulatory condition (Fig. 11). 

 

 

Table 6. Plasma homocysteine kinetics measured before (Ambulatory) and at the end 

(60-day bed rest) of the experimental period. 

 

 Ambulatory 60-day bed rest p 

Transmethylation rate (µmol×min-1) 4.10.2 4.30.3 0.34 

Remethylation rate (µmol×min-1) 2.50.1 2.30.2 0.03 

Transulfuration rate (µmol×min-1) 1.70.1 2.00.1 0.03 

 

Data are shown as mean±SEM. n=8. Statistical analysis was performed by paired 

Student's t test. Rates of metabolic pathways were assessed through the isotopic 

tracers infusion approach coupled with gas chromatography-mass spectrometry 

analyses. 
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Fig. 11. Bed rest induced changes in homocysteine clearance by remethylation and 

transulfuration pathways. n=8. Statistical analysis was performed by Student’t test.  *, 

p<0.02 vs clearance by remethylation; **, p<0.05 different from zero. 
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DISCUSSION 
 
In the present thesis, the net impact of physical inactivity on several features characterising insulin 

resistance and metabolic syndrome has been investigated. In detail, the role of inactivity on insulin 

sensitivity, inflammation, oxidative stress, homocysteinemia, lipidemia as well as on autonomic 

nervous system regulation was assessed. 

These parameters have been monitored during 4 different bed rest studies (Valdoltra Bed Rest 

Studies 2006, 2007 and 2008; WISE Study). 
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THE ROLE OF PHYSICAL INACTIVITY ON MUSCLE ATROPHY AND OXIDATIVE 

STRESS IN MUSCLE 

 

Muscle atrophy following long term and very-long term bed rest 

It is well known that exposure to inactivity leads to decreased postural muscle mass (Akima et al. 

2005), especially of lower limb (Alkner and Tesch 2004). Moreover, bed rest is a suitable model to 

study the net effect of inactivity on muscle mass (Stein and Wade 2005). In all analyzed bed rest 

studies, both in men and women, unloading determined decreased in muscle. These alterations were 

confirmed by data of fat free mass, assessed through bioimpedance, and of muscle mass, 

determined by DXA. Muscle mass reduction was observed following 33 (Valdoltra Bed Rest 

Studies) and 60 (Wise Study) days of bed rest. Moreover, other research groups, participating to the 

same experimental frame, confirmed that bed rest mediates atrophy in antigravity muscles as 

gastrocnemius medialis, whereas inactivity does not significantly affect non-antigravity muscles, as 

tibialis anterior and biceps brachii (de Boer et al. 2008). 

Alterations in body composition were observed after few days of unloading, however changes in 

whole body water distribution has to be considered and could account for the great loss in muscle 

mass detected by bioimpedance after few days of inactivity. Interestingly, data obtained in the long-

term WISE bed rest evidenced that complete reduction in muscle mass occurred in the first month 

of inactivity, whereas continued exposure to inactivity (i.e., one month more) did not display 

additional negative effects on muscle mass. These results suggest that muscle atrophy completely 

developed after 4 weeks of bed rest and that this alteration is then maintained at long term. 

In the Valdoltra Bed Rest Studies, muscle thickness and architecture were also measured. The 

decrease in muscle thickness is a direct index of muscle atrophy, validated also in other model of 

muscle wasting (Pinet et al. 2004). Moreover, pennation angle was previously demonstrated to be 

inversely correlated to muscle atrophy (de Boer et al. 2008; Morse et al. 2005). Aging (Morse et al. 

2005) and immobilization (Narici and Cerretelli 1998; Reeves et al. 2002), in fact, were shown to 

negatively affect muscle architecture leading to a deep reduction of fibre pennation angle and to a 

concomitantly enhanced muscle atrophy (de Boer et al. 2007). In agreement with these results, 33-

day bed rest enhanced vastus lateralis muscle atrophy, assessed as reduction in vastus lateralis 

thickness and fibers pennation angle. Since pennation angle was previously demonstrated to be 

correlated to muscle shape, the observed decrease in pennation angle, following prolonged bed rest, 

could be considered to occur in parallel with muscle atrophy. These data are confirmed also by 

results obtained in the same experimental design by other researchers, demonstrating that bed rest 

significantly reduced (-18%) cross sectional area of muscle fibres, another recognised index of 
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muscle atrophy (Pisot et al. 2008; Dalla Libera et al. 2009). In the same bed rest project, 

tensiomyographic analysis evidenced a significant reduction in contractile parameters of biceps 

brachii, vastus medialis, biceps femoris and gastrocnemius medialis following bed rest (Pisot et al. 

2008). 

 

Validation of the new single sample-multiple tracer method for the assessment of peptide synthesis. 

The traditional method used to determine peptide FSR is based on the assessment of product 

enrichment changes over time during continuous infusion of isotopic precursor tracer, when 

precursor enrichment reaches the steady state (Wolfe and Chinkes 2005). In fact, when precursor 

incorporation into product is linear, FSR can be determined evaluating at least two single product 

enrichments in two separate biological samples taken at different times. 

Muscle glutathione synthesis rate was measured applying a modified method, which allows 

measurement in a single sample, after a double tracer precursor infusion. Isotopic glycine was 

chosen as tracer (Jahoor et al. 1995) and this novel method was based on two parallel and separate 

infusions of different isotopes, [2H2]-glycine and [15N]-glycine, started at different times (four hours 

shift). In this way, the difference between [15N]-glutathione and [2H2]-glutathione enrichments 

measured in a single final biological sample, allowed FSR determination. Linearity of precursor 

incorporation into the final product was already demonstrated (Biolo et al. 2008). The new method 

was directly validated in human red blood cells through the comparison of results obtained through 

the traditional multiple samples-single tracer approach. During each metabolic test, several blood 

samples were drawn. Glutathione FSR in red blood cells was assessed using both the novel single 

sample-multiple tracers approach (Eq. 2) and the traditional multiple samples-single tracer method 

(Eq. 3). The novel approach has been specifically designed for muscle assay, and in erythrocytes 

has been applied considering both tracer infusions and only the final blood sample (see 

“Calculations”). Data obtained in red blood cells by both approaches yielded comparable results. 

Additionally, Passing–Bablok regression line analysis of correlations between absolute values of 

glutathione FSR obtained by traditional and novel methods, strengthens the validation of the new 

technical protocol. This statistical approach, in fact, quantitatively describes parameters validating a 

new method when matched to a standard one, with no assumptions regarding sample distribution 

(Passing and Bablok 1983). Inclusion of intercept A value in the confidence interval demonstrates 

that no constant difference between the two methods can be evidenced. Similarly, B slope value 

belonging to its relative confidence interval underlines that there are not significant proportional 

differences between the two methods. Data distribution fails to significantly deviate from linearity. 

Even though these results strongly suggest the reliability of the novel approach, also the Altman–
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Bland test was performed on the analysed data set. The Altman–Bland confidence interval ranges 

from –17.9 to 35.8% day−1 and data are well distributed suggesting no proportional errors. 

Moreover, the presence of only two measurements outside the confidence interval can be 

considered as a satisfactory condition. A constant bias seems to appear from localization of the 

mean value line, but this effect can derive from the fact that the dataset was constituted by repeated 

measures during the bed rest period. Moreover, the reliability of this new single sample-multiple 

tracers approach was further assessed comparing pooled FSR changes from baseline to day 7 and to 

day 33 measured by the traditional approach, with the same changes measured by the novel 

equation. Similarly to data analysis performed on absolute values of glutathione FSR, Passing–

Bablok and Altman–Bland tests were performed. The Passing–Bablok test confirms that the novel 

method applied to bed rest mediated changes is not plagued by a proportional or constant error. 

Additionally, no significant deviation from linearity of data distribution was observed. In parallel, 

the Altman–Bland plot shows only one measurement is outside a sufficiently narrow confidence 

interval including well distributed values. Thus, taken together, these statistical results suggest that 

the novel single sample-multiple tracers method can be reliably utilized in vivo to assess glutathione 

FSR.  

Absolute values of tracers steady-state enrichments were different: [15N]-glycine enrichment was 

displayed to be higher than [2H2]-glycine. Such a tendency for 15N isotopes to reach higher steady 

state enrichments in comparison to 2H isotopes was previously demonstrated for alanine tracer 

(Yang et al. 1984). Due to analogies between alanine and glycine metabolic pathways, it is possible 

to compare obtained differences in tracer steady state enrichments of glycine with those observed 

for alanine. Additionally, to exclude direct influences of precursor kinetics, ratios between isotopic 

product and related tracer enrichments were introduced, to prevent potential pitfall related to [15N]-

glycine peculiar feature. 

The novel equation used to FSR determination requires two assumptions. The first is that while 

steady-state condition for [2H2]-glycine enrichments was directly assessed three hours after infusion 

beginning, it was assumed for [15N]-glycine after the same time of an equal infusion. This seems to 

be acceptable by itself; however, in addition, [15N]-glycine was previously published to reach 

steady state in plasma within, or even before, the third hour of infusion in similar conditions (Cryer 

et al. 1986). The second assumption is that tracer incorporation into the final product can be 

considered as not affected by isotopic labelling as this chemical feature of precursors is known not 

to influence product tracer incorporation itself (Wolfe and Chinkes 2005). Principally for such 

reasons, differences in precursor isotopic labelling should not reasonably affect respective tracer 

uptake into the final product. 
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The utility to assess protein or peptide FSR in a single sample stems from drawbacks linked to 

multiple sample collection. During investigations on small animals, the first tissue biopsy can 

determine animal’s death, while in bigger animals or in humans multiple tissue sampling can lead to 

inflammatory process activation. For the same reasons and for clear ethical implications, complex 

metabolic studies requiring multiple tissue sampling are impossible to be performed during surgery 

in human subjects. Approaches aimed to measure peptide FSR in a single biological sample were 

previously published. Dudley et al. employed for the first time a multiple-tracer and single-sample 

method (Dudley et al. 1998). The protocol was based on six staggered and overlapping isotopomer 

infusions. FSR was obtained designing a posteriori an enrichment curve. Protocol validation was 

indirectly performed by comparing plasma free amino acid turnover rates. An analogous technique 

aimed to measure muscle protein fractional breakdown rate and FSR in a single muscle biopsy, has 

been also proposed by Zhang et al. (Zhang, Chinkes, and Wolfe 2002). In this method, three pulse 

tracer injections of three different isotopic amino acid precursors were staggered at different time 

points. Authors demonstrated that three different enrichment assessed in a unique final muscle 

biopsy allowed fractional breakdown rate evaluation. Presently, a new single sample method was 

directly validated in human subjects involving only two separate isotopic infusions to reliably 

assess a peptide FSR: this approach simplifies calculations and reduces technical workloads as well 

as economical expenses. 

 

Muscle oxidative stress and muscle atrophy following one month bed rest. 

Animal studies demonstrated that muscle unloading enhances reactive oxygen species production 

(Lawler, Song, and Demaree 2003). Additionally, during unloading the activation of antioxidant 

system (Kondo, Nishino, and Itokawa 1994; Lawler, Song, and Demaree 2003) aimed to scavenge 

oxidized substrates (Lawler, Song, and Demaree 2003) has also been detected. As a consequence of 

increased oxidative stress, proteolysis by the ubiquitin proteasome system is up-regulated (Bar-Shai 

et al. 2008; Powers and Lennon 1999). For such reasons, a link between physical inactivity, muscle 

oxidative stress induction and consequent atrophy has been strongly suggested (Powers, Kavazis, 

and DeRuisseau 2005; Bar-Shai et al. 2008). Moreover, oxidative stress is recognized as a 

pathogenic factor mediating muscle atrophy and wasting, in several pathological conditions 

(Moylan and Reid 2007). However, the role of oxidative stress in inactivity mediated induction of 

muscle atrophy in humans is poorly investigated. In the Valdoltra Bed Rest Study 2007, 

relationships between muscle atrophy and changes in oxidative status were investigated. Presented 

data demonstrate that in atrophied muscles, bed rest significantly enhanced glutathione availability 

as well as fiber oxidative damage, as assessed through muscle protein carbonylation determination. 
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After 33 days of inactivity, protein carbonylation in muscle was significantly increased and can be 

associated to enhanced muscle fiber damage secondary to oxidative stress induction in vastus 

lateralis. Protein carbonylation assessment has been demonstrated to be a marker of oxidative stress 

occurrence (Greilberger et al. 2008). In fact, protein carbonylation is a consequence of ROS action 

on protein carbon groups, determining alterations in enzyme structure and activity (Stadtman 2001). 

An increase in this index has been previously associated to disease progression in muscle wasting 

patients with leukemia (Ahmad et al. 2008). Carbonylation is an irreversible oxidative process 

(Dalle-Donne et al. 2003): to avoid accumulation of damaged peptides, carbonylated proteins are 

efficiently scavenged by proteolytic degradation (Dukan et al. 2000; Grune et al. 2003). 

Carbonylated proteins are selectively degraded by the 20S core proteasome without ubiquitination 

(Grune et al. 2003; Grune and Davies 2003) and there is evidence that carbonylated proteins are 

more efficiently and rapidly scavenged by proteolytic degradation than their non-oxidized 

counterparts (Dukan et al. 2000; Grune et al. 2003; Bota and Davies 2002). This suggests that 

carbonylation can trigger or sustain muscle atrophy. 

The inverse relationship between bed rest mediated changes in protein carbonylation and in vastus 

lateralis thickness further suggests that oxidative damage by carbonylation in human muscle 

proteins is one of pathways leading to muscle atrophy during physical inactivity. Other mechanisms 

triggering protein catabolism and then muscle atrophy involve caspases, calpain (Du et al. 2004; 

Goll et al. 2003) and ubiquitin proteasome system regulation (Ikemoto et al. 2001; Purintrapiban, 

Wang, and Forsberg 2003). Enhanced ROS production, in fact, modifying calcium availability, 

affects caspases and calpain activities (Siems et al. 2003). Moreover, oxidative stress, can up-

regulate E3 ubiquitin ligases as muscle atrophy F-box/atrogin1 and muscle ring finger-1 in 

myotubes (Li et al. 2003): these alterations could enhance skeletal muscle proteolysis and atrophy 

(Bodine et al. 2001). Inactivity can trigger oxidative stress in muscle by interaction of at least five 

different oxidant production pathways (Kondo et al. 1993) involving xanthine oxidase, NOS 

activity (Kondo et al. 1993), reactive iron (Kondo et al. 1992), NADPH oxidase (Javesghani et al. 

2002) and minor contribution of mitochondrial superoxide radicals (Muller et al. 2007). In the 

present experimental design, factors involved in all different pathways linking inactivity to muscle 

atrophy through oxidative damage could not be measured due to sampling limitations characterizing 

studies performed in human healthy volunteers. Nevertheless, data obtained from muscle biopsy 

showed that enhanced carbonylation, as peculiar oxidative damage leading to protein wasting, was 

increased in unloaded muscles. This event was directly related to muscle atrophy induction as 

measured by ultrasonography. Additionally, whole body oxidative stress was shown to be induced 
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by inactivity in terms of up-regulated homocysteine availability: even though this alteration failed 

to be related to worsened muscle atrophy, a possible contribution can not be rouled out. 

The relationship between physical activity level and oxidative stress is complex; strenuous exercise 

in fact induces fiber skeletal muscle damage (Close et al. 2004) by enhanced ROS production. On 

the contrary, long term moderate training up-regulated antioxidant systems leading to improved 

redox balance (Gomez-Cabrera, Domenech, and Vina 2008). However, further studies are required 

to understand pathways linking unloading and muscle architecture changes. In fact, carbonylation 

changes failed to be related to changes in fiber orientation, suggesting that other oxidative 

processes, as e.g. reactive nitrogen species (Bar-Shai and Reznick 2006), could be involved in 

regulation of this parameter. Moreover, different mechanisms affecting muscle protein turnover, as 

changes in insulin-like growth factor expression, could contribute to alterations of muscle 

morphology (Clemmons 2009). 

When excessive ROS production occurs, antioxidant system activation is stimulated (Pastore et al. 

2003) in order to limit the biological damage on substrates. There are several enzymatic and non-

enzymatic mechanisms, activated to reduce oxidative damage; among them, in muscle, the 

glutathione system is quantitatively the most important antioxidant (Dobrowolny et al. 2008). This 

tripeptide is synthesized in order to scavenge hydroperoxides by self-oxidation and dimerization. 

Physiological conditions associated to increased ROS production may lead to increased glutathione 

availability (Ji, Fu, and Mitchell 1992; Biolo et al. 2008). Thus, kinetic assessment of glutathione 

pools effectively monitors oxidative stress onset. By the novel and validated one-sample and double 

isotopic tracer infusion approach the impact of bed rest on muscle glutathione synthesis rate was 

assessed. After one month of bed rest, muscle glutathione synthesis is significantly increased. This 

underlines that in humans, physical inactivity enhances glutathione antioxidant activity in muscle: 

this effect can be strongly hypothesized to be a response to an increased reactive oxygen species 

production. Previous animal studies yielded conflicting results about physical inactivity effect on 

muscle glutathione regulation. Glutathione concentrations were, in fact, shown to be negatively 

affected in rat unloaded muscle (Ikemoto et al. 2002) and activities of key enzymes in glutathione 

system as glutathione reductase and glutathione peroxidase were demonstrated to be increased (Sen 

et al. 1992), unaltered or down-regulated (Tauler et al. 2006). Reasons leading to this wide range of 

results can be ascribed to model and experimental design differences. The presence of erythrocytes 

on explanted fibres could, theoretically, biases glutathione assays in muscle biopsies. This is an 

intrinsic limitation for muscle studies and its impact was strongly minimized by accurate cleaning 

of each biopsy. Glutathione synthesis was also assessed in erythrocytes and, in agreement with 

previous publication, erythrocyte glutathione synthesis failed to be affected by bed rest. Glutathione 
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FSR assessed in red blood cells and in muscles was strongly different. This is in accordance with 

previous studies demonstrating that even if glutathione turnover rates could be slightly different in 

erythrocytes and in muscles (Flaring et al. 2009), glutathione turnover rate in muscle can be three 

time higher than in erythrocytes (Malmezat et al. 2000). Moreover, additional publications showed 

that glutathione synthesis rate is markedly higher in muscles when compared to other tissues 

(Griffith and Meister 1979) and that glutathione turnover is particularly low in erythrocytes 

(Mortensen , HALEY, and ELDER 1956). Thus, present glutathione FSR measurements performed 

in muscle and in red blood cells are aligned with previous publications. Moreover, published values 

of glutathione concentrations in muscle are distributed over a quite wide range, starting from 0.5 

mmol×(kg wet tissue)-1 until 1.7-1.8 mmol×(kg wet tissue)-1 (Rutten et al. 2008; Medved et al. 

2004; Griffith and Meister 1979; Luo et al. 1998). In the Valdoltra Bed Rest 2007, muscle 

glutathione concentration ranged around 2 mmol×(kg wet tissue)-1: considering the range of 

published data, concentrations measured in these healthy young subjects can be considered as 

reliable. 

Up-regulation of glutathione synthesis in muscle could be considered a consequence of previously 

occurred oxidative protein carbonylation in atrophying muscle after bed rest. However, significant 

correlation between bed rest mediated changes of muscle protein oxidation and glutathione 

availability failed to be evidenced in this work. The reduced sample size could provide an 

explanation for the lacking direct correlation; however, the involvement of other antioxidant 

systems, e.g. heme oxygenase (Dalla Libera et al. 2009), in inactivity-induced muscle oxidative 

stress could also be proposed. 

Moreover, in the present work, also a reliable correlation between glutathione synthesis rate and 

muscle atrophy markers failed to be identified. Nevertheless, previous studies suggest that altered 

availability of glutathione could affect clinical conditions and muscle wasting in patients. 

In sarcopenic critically ill patients, glutathione levels are decreased, suggesting an impaired 

antioxidant response to oxidative stress (Biolo, Antonione, and De Cicco 2007). Moreover, 

glutathione depletion was demonstrated to influence the degree of symptoms and severity of 

selected pathologies (Najim, Sharquie, and Abu-Raghif 2007) as well as clinical outcome (Crimi et 

al. 2006). An impairment of muscle antioxidant systems has been associated to cachexia (Laviano et 

al. 2007). On the contrary, the increase in glutathione precursors, such as cysteine or N-acetyl-

cysteine, ameliorates glutathione availability and antioxidant activity (Badaloo et al. 2002) and 

reduces muscle protein ubiquitination in animals (Ikemoto et al. 2002). 

In addition to dietary glutathione precursor supplementation, other metabolic factors can affect 

body composition during immobility (Clemmons 2009). Particularly, energy intake level is a 
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critical factor for muscle mass maintenance control in bed resting patients. As previously 

demonstrated, both negative (Biolo et al. 2007) and positive (Biolo et al. 2008) energy balance 

worsen muscle atrophy during bed rest respectively affecting whole body protein turnover and 

systemic inflammation. Moreover, fat mass gain was shown to enhance in bed resting subjects 

erythrocyte glutathione synthesis while fat maintenance prevented this response (Biolo et al. 2008). 

In the present study, diet was strictly controlled to maintain a near neutral energy balance. 
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THE ROLE OF PHYSICAL INACTIVITY ON SYSTEMIC INFLAMMATORY STATUS: 

ERYTHROCYTE MEMBRANE FATTY ACID COMPOSITION 

Sedentary lifestyle is known to induce chronic low grade inflammation, characterised by a slight 

increase in pro-inflammatory cytokines, and oxidative stress, both in animals and humans 

(Ischander et al. 2007; Fischer et al. 2007). Inflammation and altered redox balance are recognised 

pathogenic mediators of cardiometabolic diseases (Hopps et al. 2010; Alberti, Zimmet, and Shaw 

2006). During experimental bed rest in healthy young subjects, the plasma ratio between IL-6 and 

IL-10 increased as well as C reactive protein and pentraxin-3 levels (Bosutti et al. 2008). Fatty acid 

composition in erythrocyte membranes represents a reliable marker of whole body inflammatory 

status and reflects cell membrane composition in different tissues (Harris and Von 2004). The n-6 

and n-3 fatty acids series in fact are involved in up-regulation and down-regulation of the 

inflammatory response, respectively. 

The assessment of erythrocyte membrane fatty acid pattern, performed in the Valdoltra Bed Rest 

Studies, evidenced that one month of bed rest promotes the development of a pro-inflammatory 

status at whole body level. Bed rest, in fact, led to a significant increase in pro-inflammatory n-6 

fatty acid, including arachidonic acid. Interestingly, n-6 precursor, i.e., linoleic acid, was 

significantly decreased, suggesting an active role of bed rest in enhancing n-6 fatty acid 

metabolism. These data are in agreement with previous evidences demonstrating that exercise 

reduces arachidonic acid content (Helge et al. 2001). Bed rest mediated increases in arachidonic 

acid can lead, in turn, to increased pro-inflammatory eicosanoid production. 

On the contrary, experimental bed rest reduced eicosapentaenoic acid, a member of n-3 fatty acid 

series, displaying anti-inflammatory properties (Babcock, Helton, and Espat 2000). Moreover, 

physical inactivity reduced the amount of the n-3 fatty acid precursor, the α-linolenic acid. 

Interestingly, docosahexaenoic acid levels were significantly up-regulated at the end of the 

experimental period.  

Interestingly, n-6 and n-3 fatty acids are competitively metabolized by the same enzymes 

(Arterburn, Hall, and Oken 2006); it is then possible hypotheses that the enhanced n-6 fatty acid 

availability could have reduced the metabolism of n-3 fatty acids, with consequent decrease in α-

linolenic and eicosapentaenoic fatty acids in cell membranes. Explanations for bed rest-induced 

increase in docosahexaenoic acid levels are lacking. However, the increase in docosahexaenoic acid 

could, at least in part, derives from eicosapentaenoic acid retrotransformation, a metabolic 

peculiarity of this n-3 fatty acid (Conquer and Holub 1997). 

The arachidonic-to-eicosapentaenoic acid ratio, that is calculated to monitor the competitive roles of 

arachidonic acid and eicosapentaenoic acid on inflammatory processes, significantly increased after 
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33 days of physical inactivity. As previously demonstrated, the balance between pro-inflammatory 

eicosanoids, mainly derived arachidonic acid metabolism, and anti-inflammatory molecules, mainly 

deriving from the metabolism of arachidonic and eicosapentaenoic acid respectively, is a critical 

point for the maintenance of cell membrane functions (Serhan, Haeggstrom, and Leslie 1996; 

Kelley 2001). 

The present data are in agreement with previous reports in exercised subjects. Muscle skeletal 

membrane fatty acids after regular exercise training display the opposite pattern as compared to that 

assessed after 33 days of unloading. Exercise training in fact leads to a reduction in saturated and n-

6 fatty acids whereas determines an increase in monounsaturated and n-3 fatty acids (Helge et al. 

2001; Andersson et al. 2000). 

The pro-inflammatory effect of bed rest is further confirmed by changes in the estimated activities 

of enzymes involved in n-3 and n-6 metabolism. 

Prolonged inactivity decreased Δ-9 desaturase activity, as estimated from product-to-precursor 

ratio. Δ-9 desaturase catalyses the conversion of stearic and palmitic acids to monounsaturated oleic 

and palmitoleic acid, respectively (Ntambi and Miyazaki 2004). The inactivity-mediated reduction 

in Δ-9 desaturase activity led to a significant reduction in monounsaturated fatty acids and a 

tendency towards increases in the saturated fatty acids. The reduction in monounsaturated fatty 

acid, not balanced by a reduction in unsaturated fatty acids, could contribute to a pro-inflammatory 

condition mediated by decreased clearance of pro-oxidant metabolites of saturated fatty acids, such 

as diacylglycerol and ceramides (Peter et al. 2009). 

Finally, alterations in membrane fatty acid composition have been associated to changes in insulin 

sensitivity. The activities of Δ-5, Δ-6 and Δ-9 desaturases are affected by insulin action (Brenner 

2003). Moreover, the reduction in Δ-5 desaturase activity, leading to a decrease in long-chain 

polyunsaturated fatty acid content could affect cell membrane physical properties, potentially 

leading to altered receptor binding capacities and further impairment of insulin sensitivity 

(Borkman et al. 1993). On the contrary, Δ-5 desaturase activity is improved by regular exercise 

training, in parallel with insulin sensitivity (Andersson et al. 2000; Helge et al. 1999). As reported 

below, bed rest significantly impairs insulin sensitivity and such metabolic alteration is paralleled, 

in erythrocyte membranes, by a decrease in Δ-5 desaturase activity. 

In conclusion, these abnormalities observed after 33 days of bed rest are consistent with results 

obtained in other insulin resistance conditions, as type 2 diabetes and metabolic syndrome 

(Borkman et al. 1993) and could contribute to the activation of a pro-inflammatory condition. 

Moreover, these alterations could, in turn, contribute to metabolic and cardiovascular alterations 

observed after exposure to unloading. 
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THE ROLE OF PHYSICAL INACTIVITY ON HYPERHOMOCYSTEINEMIA 

Homocysteine is a non-proteinogenic amino acid, involved in methionine metabolism. 

High plasma homocysteine levels have been associated to high cardiovascular risk and coronary 

diseases (Graham et al. 1997; Boushey et al. 1995). Hyperhomocysteinemia, in fact, induces 

endothelial damage and promotes the development of pro-atherogenic and pro-trombotic profiles 

(van den Berg et al. 1995). In diagnosed coronary heart disease patients, homocysteinemia is 

directly related to flogosis and oxidative stress (Jonasson et al. 2005). Oxidative stress could 

represent the major mechanism of homocysteine-induced cardiovascular alteration. The conversion 

of homocysteine in homocystine increases reactive oxygen species production (Welch and Loscalzo 

1998) and homocysteine per se inhibits glutathione peroxidase activity (Nishio and Watanabe 1997) 

and expression (Upchurch, Jr. et al. 1997). Nevertheless, the increase in homocysteine observed in 

inflammatory condition (Dudman 1999), associated to homocysteine-induced stimulation of pro-

inflammatory and procoagulant thromboxane A2 synthesis (Di Minno et al. 1993), leads to 

hypothesise that both oxidative stress and inflammation are the mediators of homocysteine 

deleterious effects on cardiovascular system. 

In the present thesis, the net impact of physical inactivity on homocysteine kinetics has been 

assessed in the frame of the WISE Study, through the approach of isotopic tracers infusions. Two 

month of bed rest significantly increased plasma homocysteine concentrations in women. 

Interestingly, in the same subjects, cardiac atrophy was evidenced at the end of the experimental 

bed rest (Dorfman et al. 2007), further supporting the role of hyperhomocysteinemia as marker of 

cardiovascular risk. Reported data are in agreement with literature. As previously reported, in fact, 

sedentary lifestyle is characterised by hyperhomocysteinemia, independently from genetic factors, 

age, gender or from dietary habits (Dankner et al. 2007); (Nygard et al. 1995). Moreover, regular 

physical training down-regulates homocysteine concentrations, reducing also cardiovascular risk 

(Duncan et al. 2004); the same results are also reported in both lean and obese adult subjects after 6 

months of regular resistance exercise (Vincent, Bourguignon, and Vincent 2006). 

The isotope tracer approach permitted to analyse homocysteine kinetics. Hyperhomocysteinemia, 

during bed rest, was induced by a decrease in remethylation paralleled by an increase in the 

transulfuration rate, whereas no significant changes in the transmethylation were detected. To 

complete understood metabolic abnormalities underlying homocysteine accumulation after 

prolonged physical inactivity, clearance changes by each disposal pathway were determined. 

Results evidenced that inactivity-induced hyperhomocysteinemia was the consequence of the 

reduction of homocysteine catabolism, coupled with unaltered homocysteine synthesis. In fact, 

homocysteine clearance by remethylation was significantly reduced whereas homocysteine 
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clearance by transulfuration was unchanged after 2 months of inactivity. Molecular mechanisms 

leading to hyperhomocysteinemia during inactivity are presently unknown. However, it is possible 

to hypothesise that bed rest down-regulates the activity or the availability of MTHFR 

(methylentetrahydrofolate reductase), a key enzyme in remethylation pathway of homocysteine, that 

is considered the preferential process of homocysteine catabolism (Ueland and Refsum 1989). 

Moreover, oxidative stress develops in parallel to hyperhomocysteinemia and is considered the 

mediator of negative effects of homocysteine accumulation on cardiovascular system, as evidenced 

in endothelial function (van den Berg et al. 1995), vasodilation (Tawakol et al. 1997) and 

atheromatose processes (Huang et al. 2001). The increase in oxidative stress could also explain the 

enhanced cardiovascular risk associated to hyperhomocysteinemia. Moreover, evidences in 

coronary heart disease patients demonstrate that homocysteine accumulation is directly related also 

to the activation of systemic inflammation (Jonasson et al. 2005). The activation of a low-grade 

systemic inflammation during bed rest was already demonstrated (Bosutti et al. 2008; Biolo et al. 

2008) and confirmed by results reported above, on inactivity-induced changes in membrane fatty 

acid composition. 

As previously reported, homocysteine availability could be influenced by gender and dietary habits. 

In males, homocysteine concentrations average 5-15 µmol×L-1 whereas this range is almost 20% 

lower in females (Fukagawa et al. 2000). The risk of coronary diseases is usually associated to 

plasma homocysteine levels greater than 10 µmol×L-1 (Aguilar, Rojas, and Collados 2004), 

stressing the relevance of homocysteine abnormalities observed in females after 2 months of 

inactivity. 

Another important factor influencing homocysteine kinetics is dietary intake of folate and protein 

(Lee and Frenkel 2003). In order to assess the net impact of physical inactivity on homocysteine, 

nutrition was strictly controlled during the experimental period. Particularly, levels of protein and 

folic acid were tailored and monitored to be maintained constant through 60-day bed rest, avoiding 

contribution of dietary folate and protein availability changes on observed altered homocysteine 

metabolism following prolonged physical inactivity. 
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THE ROLE OF PHYSICAL INACTIVITY ON DYSLIPIDAEMIA AND IN CETP 

AVAILABILITY 

Effects of bed rest on dyslipidaemia and CETP concentration were assessed in the Valdoltra Bed 

Rest Studies. 

Dyslipidaemia is known to develop in sedentary condition. As expected, 33 days of bed rest led to 

increase in triglycerides and decrease in HDL levels. Availability of CETP, a plasma protein 

transferring cholesteryl esters and triglycerides from HDL to VLDL and LDL, significantly 

increased following bed rest. Inactivity decreased the ratio between HDL and non-HDL cholesterol. 

Changes of this ratio inversely correlated with inactivity-mediated changes in CETP concentrations, 

suggesting that modifications in CETP availability contribute to inactivity-mediated alterations of 

plasma lipid pattern. 

It is well known that obesity and overfeeding are associated with increased CETP levels (Arai et al. 

1994) and that body fat mass directly correlates with plasma CETP levels (Arai et al. 1994). On the 

contrary, energy restriction and fat loss decrease CETP availability (Laimer et al. 2009). To avoid 

potential interferences of changes in fat mass as well as of over- or under-feeding on CETP 

synthesis, energy balance was maintained throughout the experimental bed rest and subjects who 

failed to adapt to decreased energy requirement and increased in fat mass, were excluded by the 

analysis (6 over 30 analyzed subjects). 

Moreover, as reported below, in parallel to altered lipid pattern and CETP availability, insulin 

sensitivity was impaired, independently from variations of fat mass, as consequence of increased 

plasma insulin levels. Hyperinsulinemia is known to have direct inhibitory action on CETP activity 

(Maclean et al. 2001; Arii et al. 1997) and synthesis (Berti et al. 2003). In transgenic mice, insulin 

availability directly down-regulates hepatic CETP expression (Berti et al. 2003). Moreover, 

hyperinsulinemia, achieved during hyperinsulinemic-euglycemic clamp studies, significantly 

suppresses plasma CETP activity in type 2 diabetic patients, in insulin-resistant obese subjects and 

in lean healthy subjects (Maclean et al. 2001; Arii et al. 1997). In agreement with these previous 

observations, results obtained in the Valdoltra Bed Rest campaigns evidence that inactivity-

mediated changes in insulin concentrations are inversely correlated with changes in CETP 

concentrations. The stratification of subjects according to the median value of bed rest mediated 

changes in fasting insulin levels evidences that the group with lower changes in plasma insulin 

exhibits the greatest increases in CETP concentrations. On the contrary, in the group displaying 

higher insulin changes, CETP levels did not change significantly following bed rest.  

All together, these data lead to conclude that insulin resistance was not responsible for the 

inactivity-mediated increases of CETP availability reported in our study, whereas, in those subjects 
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developing insulin resistance following bed rest, compensatory hyperinsulinemia prevented CETP 

levels to increase. These results may indicate dissociation between insulin actions on glucose and 

lipid metabolism following inactivity. Moreover, the present results indicate that changes in CETP 

mass, leading to decreased HDL levels, may proceed independently from insulin resistance 

development during unloading. This is further supported by the lack of statistical significance in the 

bed rest  insulin change interactions for the effects of inactivity on triglycerides. 

Even though a conclusive mechanistic insights into the effects of physical inactivity on CETP mass 

can not be provide, it is possible to speculate that muscle unloading have increased CETP 

expression in skeletal muscle (Tall 1993) through down-regulation of PPAR-α (Allen et al. 2009) 

and acceleration of intracellular cholesteryl ester flux (Izem and Morton 2001; Chinetti et al. 2003). 

Previous evidences in fact indicate that exercise training is associated with decreased CETP mass 

and activity (Maclean et al. 2001; Serrat-Serrat et al. 1993) as well as with increased PPAR-α 

expression in skeletal muscle (Horowitz et al. 2000). 
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THE ROLE OF PHYSICAL INACTIVITY AND INACTIVITY-INDUCED INSULIN 

RESISTANCE ON AUTONOMIC DYSREGULATION 

 

Altered insulin sensitivity after 33 days of bed rest. 

Insulin resistance is a metabolic alteration typically observed during physical inactivity as well as in 

sedentary condition (Alibegovic et al. 2009; Alibegovic et al. 2010; Brower 2009; Hamburg et al. 

2007; Biolo et al. 2005; Biolo, Antonione, and De Cicco 2007). Data obtained by reported bed rest 

studies confirm the development of insulin resistance in healthy young subjects after exposure to 

prolonged inactivity. Moreover, in the Valdoltra Bed Rest Study 2008, a time-course of insulin 

resistance development has been performed, using the oral glucose tolerance test procedures. 

Interestingly, obtained results demonstrated that insulin resistance rapidly and completely 

developed after 5 days of inactivity and that this metabolic abnormality is than maintained at long 

term. These results underline an early impairment in insulin activity that could reflect a direct role 

of insulin resistance on other metabolic alterations observed during unloading. 

 

Autonomic nervous system dysregulation following one month of bed rest: effects of fasting 

condition and glucose load. 

The autonomic nervous system regulation is impaired in subjects affected by the metabolic 

syndrome, as evidenced by an increase in the sympathetic tone associated to a reduction in the 

parasympathetic activity (Licht et al. 2010). Interestingly, the degree of autonomic dysregulation is 

directly related to the number of metabolic syndrome components (Stein et al. 2007; (Lindgren et 

al. 2006) and sympathetic over-activity per se is known to be directly involved in the pathogenesis 

of the syndrome (Brunner et al. 2002) as well as of several distinct metabolic alterations, including 

altered blood pressure and plasma lipid pattern (Anagnostis et al. 2009; Tentolouris, 

Argyrakopoulou, and Katsilambros 2008) as well as impaired insulin sensitivity (Berntson et al. 

2008). 

Moreover, the level of physical activity modulates autonomic nervous system response, inducing a 

reduction in sympathetic and an increase in parasympathetic activities (Furlan 1993) (Iellamo et al. 

2002), in healthy young (Achten and Jeukendrup 2003) and old subjects (Stein et al. 1999) as well 

as in patients suffering type 2 diabetes and hypertension (Sridhar et al. 2010). A physiological 

adaptation to enhanced cardiac work induced by physical exercise has been suggested as linking 

mechanism between improved autonomic regulation and increased level of physical activity. 

Regular physical activity reduces systolic and diastolic blood pressures (Sridhar et al. 2010) as well 

as heart rate whereas exercise improves heart rate variability (Stein et al. 1999; Sridhar et al. 2010) 
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as well as the high and low-frequency components of heart rate variability (Achten and Jeukendrup 

2003). 

Systolic and diastolic blood pressures 

In agreement with previous reports (Stein et al. 1999; Sridhar et al. 2010), data obtained in the 

Valdoltra Bed Rest Study 2008 evidenced that prolonged exposure to inactivity determines an 

increase in the systolic and diastolic blood pressures, as measured by sphygmomanometer, and 

enhance in heart rate. Alterations in blood pressure can be induced by impaired insulin sensitivity. 

The vasodilator response to insulin is impaired in insulin resistant states such as obesity and type 2 

diabetes, possibly contributing to the development of hypertension in these subjects (Laakso et al. 

1990). The strong correlations we observed between bed rest induced changes in indexes of insulin 

resistance (as insulin AUC index) and systolic blood pressure strongly support this hypothesis. 

Heart rate and heart rate variability 

One month of unloading leads to increase in heart rate. Such alteration occurs only at the end of the 

experimental period in the fasting state whereas is evidenced and completely developed after only 5 

days of inactivity, after glucose load. The increase in heart rate has been previously demonstrated to 

be the consequence of the increase in sympathetic and the decrease in parasympathetic tones 

(Aubert, Seps, and Beckers 2003; Rajendra et al. 2006). 

Heart rate variability is not affected by prolonged exposure to unloading. On the contrary, heart rate 

variability is affected by the association between glucose load and bed rest also after few days of 

unloading. A decreased in heart rate variability has been previously observed in patients with heart 

failure and myocardial ischemia (Dekker et al. 2000) as well as in young, middle-age and elderly 

subjects affected by the metabolic syndrome (Liao et al. 1998; Stein et al. 2007; Koskinen et al. 

2009). The stimulatory effect of glucose load in insulin release and action could evidence 

precocious or small alterations induced by inactivity-induced insulin resistance on autonomic 

regulations. The reduction of heart rate variability, in fact, has been demonstrated in 

hyperglycaemic condition (Singh et al. 2000) and during a glucose load, the impairment in insulin 

sensitivity is stressed. 

Finally both the components of heart rate variability are affected following 33 days of bed rest. The 

HF component is significantly decreased, evidencing a decrease in the vagal tone. On the contrary, 

the LF component is enhanced, indicating an over-activation of the sympathetic nervous system as 

well as an unbalance between sympathetic and parasympathetic systems activity on heart rate. In 

accordance, the LF-to-HF ratio, index of sympathovagal balance influence on heart rate control 

(Pagani et al. 1986) is more than duplicate at the end of the experimental period, indicating an 

higher sympathetic activation (Malliani 1999; Heart rate variability. Standards of measurement, 
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physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology1996). As previously demonstrated, 

insulin resistance is directly associated to the LF-to-HF ratio independently from body mass and, in 

particular, body fat (Emdin et al. 2001). 

Baroreflex sensitivity 

Baroreceptors activity is strictly related to autonomic adaptation to everyday living environmental 

perturbations (Eckberg et al. 1992). Baroreflex sensitivity reflects reflex vagal activity that can be 

evaluated through the use of two main indexes, the baroreflex sensitivity index, as assess by the 

sequence technique (Di Rienzo, Mancia, and Pedotti 1985; Bertinieri et al. 1988), and the α-index, 

defined considering fluctuations in RR interval and blood pressure. Both indexes provide similar 

results. A decrease in baroreflex sensitivity reflects a depression of reflex vagal activity and 

impairment in body response to external input changes. Moreover, a reduction in baroreflex 

sensitivity has been reported in subjects suffering for the metabolic syndrome. Moreover, the degree 

of reduction in baroreflex sensitivity directly correlated to the number of metabolic syndrome 

components (Stein et al. 2007; (Lindgren et al. 2006). A decrease in baroreflex sensitivity has been 

previously reported in resting condition, as evidenced after 5 days of spaceflight (Fritsch et al. 

1992) as well as in insulin resistant states (Kuusisto et al. 1994) (Smith 1599-601;Pikkujamsa et al. 

523-31). Moreover, a decrease in baroreflex sensitivity has been previously related to enhanced 

cardiovascular risk in healthy population (Tsuji et al. 1994) and to increased adverse event risk in 

subjects affected by several cardiovascular diseases (La Rovere et al. 1998; Airaksinen et al. 1998). 

In accordance with these observations, in our study, baroreflex sensitivity was significantly reduced 

following inactivity. Such alteration, evidenced by decrease in both baroreflex sensitivity indexes, 

rapidly developed after only 5 days of bed rest and then was maintained at long term. A rapid 

impairment in baroreflex sensitivity in inactivity condition, has been already reported (Fritsch et al. 

1992). Baroreflex in fact plays a key role in cardiovascular response to exercise (O'Leary 1996; 

Iellamo 2001) and regular physical activity is known to ameliorate baroreflex sensitivity in type 2 

diabetes (Loimaala et al. 2003). Even though a direct cause-effect relationship between physical 

activity level and baroreflex response has not been clarified, few hypothesis has been suggested. 

First, increase in muscle mass, following a period of regular training program, ameliorates 

glycaemic control glucose tolerance and is directly correlated with baroreflex sensitivity in diabetic 

subjects (Loimaala et al. 2003). These evidences suggest that exercise-induced improvement of 

autonomic function could be related to improved glucose tolerance (Loimaala et al. 2003). Our 

results indicate that increased plasma glycaemia decreases baroreflex sensitivity, as evidenced by 

the decrease in baroreflex sensitivity after glucose load. However, we observed the same effect also 
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in ambulatory condition, when subjects were still physically active. Moreover, prolonged bed rest 

determines an impairment in insulin sensitivity whereas does not have effects on plasma glucose 

levels. Another possible hypothesis explaining the activity-induced increase in baroreflex sensitivity 

is that the repeated activation of the baroreflex and cardiovascular end-organ responses induced by 

regular training could improve baroreflex sensitivity. This is supported also by the observation that 

the decrease in baroreflex sensitivity induced by microgravity is restored few days after the end of 

the spaceflight (Cooke et al. 2000). The absence of repeated baroreflex activation and exercise-

related cardiovascular end-organ responses could explain the reduction in baroreflex response we 

observed in healthy young subjects after only 5 days of inactivity. 

 

Autonomic nervous system dysregulation and insulin resistance after one month of physical 

inactivity. 

Our results indicate that exposure to physical inactivity induces an impairment in autonomic 

nervous system regulation, characterised by an increase in sympathetic and a reduction in the 

parasympathetic tones. These alterations are the same observed in subjects suffering the metabolic 

syndrome (Licht et al. 2010). In our study, altered insulin sensitivity induced by physical inactivity 

could be strictly related to changes in autonomic regulation we observed. In fact, strong correlations 

have been evidenced between indexes of autonomic regulation and of insulin resistance. 

Nevertheless, we demonstrated that insulin resistance completely develops in the early phase of 

unloading and that such alterations are maintained at long term. Analogously, some autonomic 

regulation indexes are affected by inactivity following the same trend that insulin sensitivity. 

Sympathetic nervous system activation could play an important role in insulin resistance 

development (Mancia et al. 2007); in fact, sympathetic activity inhibits insulin release, reducing 

thus glucose uptake in peripheral tissues and stimulating hepatic gluconeogenesis (Nonogaki 2000; 

Fehm, Kern, and Peters 2006). Otherwise, insulin centrally stimulates the sympathetic nervous 

system (Muntzel et al. 1994), as evidenced during physiological and pharmacological 

hyperinsulinemia (Scherrer et al. 1993; Vollenweider et al. 1993), both in obese (Reaven, Lithell, 

and Landsberg 1996) and lean healthy subjects (Hausberg et al. 1997; Paolisso et al. 2000). 

Additionally, when elevated but physiological plasma insulin levels are maintained at long time (36 

hours), a decrease in parasympathetic nervous system activity occurs. Nevertheless, mechanisms 

responsible for the interaction between insulin sensitivity and autonomic nervous system regulation 

are not elucidated. Moreover, further analyses are required to define a cause-effect relationship 

between inactivity-induced autonomic dysregulation and inactivity-induced insulin resistance.
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CONCLUSION 

In the present thesis the net impact of physical inactivity on the development of different 

component of the metabolic syndrome has been evaluated. 

To reach this aim, the experimental model of bed rest in young healthy volunteers has been 

employed, allowing to exclude the potential interferences of confounding factors such as aging and 

diseases. Moreover energy balance has been strictly monitored and subjects were maintained in a 

near neutral balance to eliminate the impact of altered nutritional status. 

Presented results evidenced that physical inactivity per se directly interfere with human physiology 

and metabolism, leading to muscle atrophy as well as to a pattern of metabolic alterations similar to 

that observed in subjects affected by the metabolic syndrome. 

Our data indicate that a drastic reduction in physical activity is per se sufficient for the development 

of (a,b) insulin resistance and altered autonomic nervous system regulation, occurring in the first 

phases of exposure to unloading; (c) oxidative stress at muscle level; (d) systemic inflammation; (e) 

dyslipidaemia and (f) hyperhomocysteinemia. Furthermore, oxidative stress and inflammation as 

well as dyslipidaemia and hyperhomocysteinemia are known to increase the risk of cardiovascular 

diseases. 

These results further stress the importance of regular physical activity in the population, 

independently from age and pathological condition. Moreover, these data suggest that exercise 

training is an optimal choice in care strategy in sedentary or hospitalized patients as well as in the 

prevention of several metabolic alterations.
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