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A Note on Local Compactness

Maria Manuel Clementino and Walter Tholen (∗)

Dedicated to Japie Vermeulen

Summary. - We propose a categorical definition of locally-compact
Hausdorff object which gives the right notion both, for topological
spaces and for locales. Stability properties follow from easy cat-
egorical arguments. The map version of the notion leads to an
investigation of restrictions of perfect maps to open subspaces.

1. Introduction

Both, for topological spaces and for locales, locally compact Haus-
dorff spaces are characterized as the spaces which are openly em-
beddable into compact Hausdorff spaces. While in Top this is an
obvious consequence of Alexandroff’s one-point-compactification, in
Loc one uses results of Vermeulen [10] to establish this result. In
this note we show that, taking this characterization as the defining
property for (Hausdorff) local compactness, one establishes practi-
cally all standard stability properties of local compactness – with the
big exception of Whitehead’s Theorem – with very brief and purely
categorical arguments. Hence, Top and Loc may actually be replaced
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by an arbitrary category X which comes equipped with a proper fac-
torization system and a closure operator, as in [4], [5], [3]. The only
sticky point at this level of generality is the pullback behaviour of
c-open maps (w.r.t. the closure operator c), which is not as smooth
as in Top or Loc, but which has been described in general in [6].
We briefly recall this and all other needed tools at the beginning of
Section 2, where we introduce local c-compactness and derive first
properties. Section 3 presents further properties which are deriv-
able in the presence of the Stone-Čech compactification (w.r.t. c).
All this is done in the context of topological spaces, while Section 4
explains how to pass from spaces to objects in a category. This gen-
eralisation pays off as one can now make the passage from spaces (or
objects) to maps (or morphisms), by considering the notion of local
compactness in the slices of the given category. Hence, in Section
5 we exploit the properties derived previously in the case of locally
c-compact maps, which are simply restrictions of c-perfect maps to
c-open subobjects.

2. Locally c-compact spaces

2.1. Preliminaries

In what follows, “space” means “topological space” and “map” means
“continuous mapping”. A closure operator c on the category Top of
spaces and maps assigns to all M ⊆ X ∈ Top a set cX(M) ⊆ X,
such that cX is extensive and monotone and the c-continuity con-
dition is satisfied: f(cX(M)) ⊆ cY (f(M)) for all maps f : X → Y
and M ⊆ X; equivalently, cX(f−1(N)) ⊆ f−1(cY (N)) for all f and
N ⊆ Y (cf. [4], [5]). Obviously, M ⊆ X is called c-closed (c-dense)
in X if cX(M) = M (cX(M) = X, respectively). c is idempotent
(weakly hereditary) if cX(M) is c-closed in X (if M is c-dense in
cX(M), respectively), for all M ⊆ X. (Subsets are always provided
with the subspace topology.) c is hereditary if cY (M) = Y ∩ cX(M)
for all M ⊆ Y ⊆ X ∈ Top. The following classes of maps will be of
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interest:

f ∈ M :⇔ fembedding ⇔ f induces a homeomorfism

X
∼

→ f(X) ⊆ Y
f ∈ E :⇔ fsurjective ⇔ f(X) = Y,
f ∈ Ds(c) :⇔ fc-dense ⇔ f(X) c-dense in,
f ∈ Cl(c) :⇔ fc-closed ⇔ f(cX(M)) = cY (f(M))∀M ⊆ X
f ∈ Op(c) :⇔ fc-open ⇔ f−1(cY (N)) = cX(f−1(N))∀N ⊆ Y
f ∈ Ini(c) :⇔ fc-initial ⇔ cX(M) = f−1(cY (f(M)))∀M ⊆ X
f ∈ Fin(c) :⇔ fc-final ⇔ cY (N) = f(cX(f−1(N)))∀N ⊆ Y

For c the usual closure, the last five notions assume the expected
meaning; for interrelationships between them, see [6], [2]. In par-
ticular, we record the following useful observations made in [3], [6]:
denoting by m : M →֒ X the inclusion map of M ⊆ X we have

(1) m c-closed ⇔ M c-closed in X and m c-initial;

(2) m c-closed ⇔ M c-closed in X, provided that c is weakly hered-
itary;

(3) c hereditary ⇔ m is c-initial for all M ⊆ X ∈ Top.

We also use the following important result of [6].

2.2. Pullback Ascent and Descent

Consider the pullback diagram

X Y

U V

-
f?

u

-
g

?

v

(1)

(Hence, U ∼= X ×Y V = {(x, z) | f(x) = v(z)} ⊆ X × V .) Then

(1) g is c-closed (c-open, c-initial, c-final) if f has the respective
property, provided that u is c-initial;
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(2) f is c-closed (c-open, c-initial, c-final) if g has the respective
property, provided that v is c-final.

Note that the provisions in (1), (2) are essential (see [6]). Finally
we mention that, trivially, g ∈ M (g ∈ E) if f ∈ M (f ∈ E , respec-
tively); hence, M and E are (pullback-)stable, but we note that in
general none of the other classes is. We therefore say that f is stably
c-open if in every pullback diagram (1) g is c-open.

2.3. c-Hausdorff and c-compact spaces

A space X is c-Hausdorff if the diagonal ∆X = {(x, x) |x ∈ X} is
c-closed in X×X; equivalently (see [3]), if the map δX : X → X×X,
x 7→ (x, x), is c-closed. X is c-compact if the projection X × Y → Y
is c-closed for every space Y . In categorical generality, these notions
seem to have appeared first in [8] but got treated subsequently by
many authors. Denoting by Haus(c) and Comp(c) the subcategories
arising, here we record the following properties (see [3]):

(1) X,Y ∈ Haus(c) (Comp(c)) ⇒ X × Y ∈ Haus(c) (Comp(c),
resp.);

(2) M ⊆ X ∈ Haus(c) ⇒ M ∈ Haus(c);

(3) M ⊆ X c-closed, X ∈ Comp(c), c weakly hereditary ⇒ M ∈
Comp(c);

(4) X ∈ Comp(c), Y ∈ Haus(c) ⇒ f : X → Y c-closed.

2.4. First stability properties

Definition 2.1. A space X is called locally c-compact if there is a
c-Hausdorff c-compact space K and a stably c-open embedding f :
X →֒ K.

Hence, local c-compactness entails c-Hausdorffness. It is clear
that for c the usual closure and for X Hausdorff, this definition gives
the usual notion. For the equivalence of this notion with the one
proposed in [2] in the presence of the c-Stone-Čech compactification,
see 3.1 below. We show a number of stability properties for locally
c-compact spaces.
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Proposition 2.2. For X locally c-compact, a subspace M is locally
c-compact, provided that one of the following conditions is satisfied:

(a) the embedding m : M →֒ X is stably c-open;

(b) M is c-closed in X, and c is idempotent and weakly hereditary;

(c) M = A∩B with B ⊆ X c-closed and A ⊆ X such that a : A →֒ X
is stably c-open, and c is idempotent and weakly hereditary.

Proof. (a) is trivial since stably c-open maps are closed under com-
position.

(b) Consider f : X →֒ K a stably c-open embedding with K ∈
CompHaus(c) = Comp(c)∩Haus(c) and form N := cK(f(M)). Since
c-closedness of M and c-openness of f give

M = cX(M) = cX(f−1(f(M))) = f−1(cK(f(M))),

one has the following pullback diagram:

X K

M N

-
f

�
�

?

m

��

-
f ′

�
�

?

n

��

(2)

Hence f ′ is stably c-open, and with 2.3(2),(3) N ∈ CompHaus(c),
hence (a) applies.

(c) By hypothesis, there is a pullback diagram

A X

M B

-
a

�
�

?

b′

��

-a′�
�

?

b

��

(3)

in which b and therefore also b′ is c-closed, and in which A is locally
c-compact, by (a). Hence, the assertion follows with (b).
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Proposition 2.3.

(1) X × Y is locally c-compact if X and Y are.

(2) X is locally c-compact if X×Y is, if Y has a c-closed point, and
if c is idempotent and weakly hereditary.

Proof. (1) Consider stably c-open embeddings f : X →֒ K, g : Y →֒
L with K,L ∈ CompHaus(c). Since

X K

X × Y K × Y

-
f

�
�

?

-
f × 1Y�

�

?
Y L

K × Y K × L

-
g

�
�

?

-
1K × g

�
�

?
(4)

are pullback diagrams, f × g = (1K × g)(f × 1Y ) is stably c-open,
with K × L ∈ CompHaus(c), by 2.3(1).

(2) The c-closed point y ∈ Y gives a pullback diagram

1 Y

X X × Y

-
y

�
�

?

!X

-
< 1X , y·!X >
�
�

?
(5)

with < 1X , y·!X > c-closed. Hence, Prop. 2.2(b) applies.

Remark 2.4. (1) It is easy to show that for Y c-Hausdorff, every
point in Y is c-closed. Hence, in Prop. 2.3(2) it suffices to ask
for the existence of a point in Y : for X 6= ∅, there is an em-
bedding Y →֒ X × Y with X × Y c-Hausdorff, so that Y is
c-Hausdorff, and for X = ∅ the assertion of Prop. 2.3(2) is
trivial. See also Ex. 4.3 below.

(2) Instead of asking for a c-closed point in Y , we may also ask for
a stably c-open point in Y to derive local c-compactness of X
from that of X × Y in Prop. 2.3(2).



A NOTE OF LOCAL COMPACTNESS 23

3. In the presence of Stone-Čech

3.1. β-characterisation of local c-compactness

A space X is c-Tychonoff if there is an embedding f : X →֒ K with
K ∈ CompHaus(c). In this section we assume that CompHaus(c)
is (c-dense)-reflective in the resulting subcategory Tych(c) of Top;
hence, for every X ∈ Tych(c) there is a c-dense map βX : X → βX
with βX ∈ CompHaus(c) through which every other map X → Y
with Y ∈ CompHaus(c) factors uniquely. Clearly, for X ∈ Tych(c)
one has βX ∈ M (cf. [3]).

Theorem 3.1. A space X is locally c-compact if and only if X is
c-Tychonoff and βX is stably c-open.

Proof. For the non-trivial direction, we consider a stably c-open em-
bedding f : X →֒ Y with Y ∈ CompHaus(c). It is then sufficient to
show that the commutative diagram

X Y

X βX

-
f

�
�

?

1X

-
βX�

�

?

t

(6)

(in which t is uniquely determined) is a pullback. In fact, if one
forms the pullback diagram

X Y

P = X ×Y βX βX

-
f

�
�

?

t′

-
f ′

�
�

?

t

(7)

then the map d : X → P with t′ ·d = 1X and f ′ ·d = βX is a c-dense
embedding. This follows immediately from the c-density of βX once
one shows that f ′ ∈ M is c-initial; but this is trivially true since
f ′ is c-open, and since Op(c) ∩M ⊆ Ini(c). Since P ∈ Haus(c) (by
2.3(1),(2)), the c-dense embedding d is an epimorphism in Haus(c)
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and must therefore be a homeomorphism. Consequently, (6) is a
pullback diagram.

3.2. Further stability properties

In [3], a map f : X → Y was called c-compact if it is stably c-closed,
that is: if for every pullback diagram (1), the map g is c-closed. For
c hereditary and X,Y ∈ Tych(c), it was shown that these are exactly
the maps for which

Y βY

X βX

-
βY�

�

?

f

-
βX�

�

?

βf

(8)

is a pullback diagram, i.e. that the c-version of the Henriksen-Isbell
characterization holds true; they are also called c-perfect.

Proposition 3.2. Let the map f : X → Y be surjective and βf
be c-open. Then f is c-open and Y is locally c-compact if Y is c-
Tychonoff and X locally c-compact.

Proof. It is elementary to show that with

βf · βX = βY · f

also f and βY are c-open since βY is an embedding and f is surjective.

Theorem 3.3. ([2]) Let c be hereditary and f : X → Y in Tych(c)
be c-perfect. Then

(1) local c-compactness of X implies the same for Y if f is surjective,

(2) local c-compactness of Y implies the same for X.

Proof. (1) Since βY ·f = βf ·βX is c-dense when f is surjective, also
βf is c-dense. But by 2.3(4) βf is also c-closed, hence surjective,
even c-final. Now, with 2.2(2) one concludes that c-openness of βX

implies the same for βY . (2) follows immediately from the fact that
(8) is a pullback diagram.
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3.3. Openness of dense embeddings

Theorem 3.4. Let c be idempotent and hereditary. Then every c-
dense embedding f : X → Y of a locally c-compact space X into a
c-Tychonoff space Y is c-open.

Proof. We first consider the case Y ∈ CompHaus(c). As in 3.1, one
has the pullback diagram (6). Since c is hereditary, with f = t · βX

also t is c-dense, but also c-closed, by 2.3(4). Hence t is surjective,
even c-final, so that 2.2(2) gives c-openness of f .

In the general case one considers the composite

X Y βY-
f

�
� -

βY�
�

which is c-dense when c is idempotent. Hence, as already shown,
βY · f is c-open, which implies c-openness of f since βY ∈ M.

4. In a category

4.1. The general setting

We adopt the setting of [3], [6] and let X be a finitely-complete
category with a proper (E ,M) factorization system and a closure
operator c w.r.t. M. With the understanding that now

- “space” means “object in X”

- “map” means “morphism in X”

- “subspace of X” means “equivalence class of morphisms in M
with codomain X”

- preimages and images of subspaces are given by pullback and
(E ,M)-factorization,

it is immediately clear that all statements (except Remark 2.4) carry
over from Top to X , as follows.

Theorem 4.1. If E is stable under pullback, under the translations
given above, all statements of Sections 2 and 3 are valid in X .
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Remark 4.2. Since there are important examples in which E fails to
be stable under pullback (see Ex. 4.4 below), it is worth analyzing to
which extent this hypothesis is being used in the results of Sections
2 and 3. In its full generality, it is used in the Pullback Ascent
and Descent Theorem 2.2, via the Beck-Chevalley Property (see [3],
[6]). However, subsequently we apply this result only in very special
situations, which require no or very limited use of pullback stability
of E. Specifically, the only places where additional hypotheses on E
are needed are

- Thm. 3.3(1) where E needs to be stable under pullback along
those morphisms in M that are c-dense or of the form c(m)
(i.e., c-closed, if c is idempotent)

- Thm. 3.4 where E needs to be stable along c-closed M-mor-
phisms.

4.2. Examples

Example 4.3. In the category Gph of (thin) directed graphs (where
objects are sets with a binary relation written as x→y, and where
morphisms are maps preserving the relation) with its (surjective,
embedding)-factorization structure, consider the idempotent hull c
of the up-closure ↑ with

↑X (M) = {x ∈ X |x ∈ M or ∃y ∈ M with y→x}.

One then has:

X ∈ Haus(c) ⇔ ∀x, y, z ∈ X (x→y & x→z ⇒ y = z);

X ∈ Comp(c) ⇔ ∀x ∈ X ∃y ∈ X : x→y;

hence, CompHaus(c) consists exactly of those graphs X whose rela-
tion is the graph of a mapping X → X. For every X ∈ Haus(c)
one may construct a reflexion βX : X → βX into CompHaus(c) by
attaching to every x ∈ X with cX({x}) \ {x} = ∅ a copy of IN (with
the successor relation). The natural embedding βX is stably c-open,
hence every c-Hausdorff graph is already locally c-compact.

In this example, the hypothesis of Prop. 2.3(2) that Y has a (c-
closed) point is essential (i.e., it is not sufficient to require Y 6= ∅):
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let X = {0→1} with 0 having a loop, but 1 not so, and Y = {·} (the
“naked point”); then Y and X × Y ∼= {· ·} are locally c-compact, but
X is not.

Example 4.4. We consider the category Loc of locales (i.e., the dual
of the category of frames, see [7]) with its usual closure c. Next we
show that a Hausdorff locale is locally compact (in the usual sense,
i.e it is a continuous lattice) if and only if it is openly embeddable
into a compact Hausdorff locale. Let us first observe that

- a locale is regular if it is compact Hausdorff (see [10], Prop.
2.3),

- the rather-below relation < implies the way-below relation ≪
in a compact locale (see [10], Lemma 4.1).

These two properties together guarantee that a compact Hausdorff
locale is locally c-compact. Furthermore, local c-compactness is ob-
viously open-hereditary.

Conversely, one first checks that every locally compact locale X
is covered by the interiors of its compact sublocales (see [10], Prop.
4.7). Then one constructs the one-point compactification of X by
Artin-glueing (see [1]) a point to its filter of compact sublocales.

Hence, the definition given in 2.4 is equivalent to the usual notion
of local compactness in Loc.

5. Locally c-perfect maps

5.1. First properties

Having a categorical setting as in 4.1 makes it easy to extend object
notions to morphisms, via slicing. As it is done in [3], the factor-
ization structure (E ,M) and the closure operator c of X give cor-
responding structures in each comma category X/B (B an object
of X ). A c-compact morphism f : X → Y (see 3.2) is simply a c-
compact object in X/Y ; likewise, c-Hausdorffness is defined for mor-
phisms, and c-compact c-Hausdorff morphisms are called c-perfect.
For details we refer the Reader to [3].
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Definition 5.1. A morphism f : X → Y is called locally c-perfect
if it is locally c-compact as an object in X/Y . These are exactly the
restrictions of c-perfect morphisms to subobjects whose representing
morphism is stably c-open:

X Y

Z

�
�

��stably c-open

�

@
@

@R

c-perfect

-
f (9)

Directly from the statements of Sections 2 and 3 (keeping in mind
Theorem 4.1) one derives:

Corollary 5.2. Let c be idempotent and weakly hereditary. Then,
with f also f · m is locally c-perfect if the morphism m ∈ M is (a)
stably c-open or (b) c-closed or (c) the intersection of a morphism
of type (a) with one of type (b).

Corollary 5.3. Consider the pullback diagram (1). Then

(1) with f also g is locally c-perfect;

(2) with f and v also f · u = v · g is locally c-perfect;

(3) with f · u = v · g also f is locally c-perfect, provided that v is
the retraction of a stably c-open or c-closed section and that c is
weakly hereditary.

Proof. (1) follows directly from the definition, and (2), (3) from
Prop. 2.3, in conjunction with 2.4(2).

5.2. Stone-Čech compactification for maps

For the remainder of the paper, let c be hereditary, and let the hy-
pothesis of 3.1 be satisfied. With the characterization given in 3.2, it
is easy to see that the reflexion of a morphism f : X → Y in Tych(c)
(considered as an object of Tych(c)/Y ) into a c-perfect morphism is
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given by the left commutative triangle of

Y βY

P βX

X

-
βY

-

?

m

?

βf

C
C
C
C
C
C
CCW

f

@
@R
e

XXXXXXXXXXXz

βX

(10)

with P = Y ×βY βX (see [9]); in other words, the pullback projection
m is the Stone-Čech compactification of f , with reflexion e. Now 3.1
gives:

Corollary 5.4. A morphism f of c-Tychonoff objects X, Y is lo-
cally c-perfect if and only if its “antiperfect factor” e is stably c-open.

Corollary 5.5. Let f : X → Y and g : Y → Z be morphisms
in Tych(c), with f in E c-perfect and g · f locally c-perfect. Then
also g is locally c-perfect, provided that E is stable under pullback
along c-dense morphisms in M and c-closures of M-morphisms (see
Remark 4.2).

Proof. Follows from Thm. 3.3(1) applied to the morphismf : (X, g·f)
→ (Y, g) in Tych(c)/Z.

Corollary 5.6. Let c be idempotent (in addition to being hered-
itary), and consider morphisms f : X →֒ Y and g : Y → Z in
Tych(c). If f ∈ M is c-dense, g c-perfect and g · f locally c-perfect,
then f is c-open.

5.3. The Composition Theorem

In addition to these consequences of the facts presented in Section 3
we have the following Theorem:

Theorem 5.7. The class of locally c-perfect morphisms is closed un-
der composition.
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Proof. It suffices to show that the composite f = s · g of a c-perfect
morphism g : X → Z followed by a stably c-open morphism s :
Z →֒ Y in M is locally c-perfect, and for that we must show that its
antiperfect factor e as in (10) is stably c-open. But the β-naturality
diagram for f decomposes as

Y βY

Z βZ

X βX

-
βY�

�

?

s

?

g

-
βZ�

�

-
βX�

�

?

βs

?

βg1

(11)

with the upper square 1 a pullback, since g is c-perfect. With e′ the

antiperfect factor of s, diagram 1 decomposes further, as follows:

Z Y×βY βZ βZ

X Y×βY βX βX

-e′�
�

?

g

?

βg

-
e

�
�

?

1Y ×βg

-

-

2 3

Here 2 is a pullback diagram since 1 and 3 are pullbacks. As
the antiperfect factor of a stably c-open (and therefore locally c-
perfect morphism), e′ is stably c-open; consequently, also e is stably
c-open.

Remark 5.8. We restricted ourselves to considering only morphisms
in Tych(c) from 5.2 on, only in order to have a convenient descrip-
tion of the antiperfect-perfect factorization of a morphism, as in [9].
However, it suffices to have just these factorizations, whose existence
may be guaranteed in much more general situations; see [3].
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