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Foreword

Volume 54 of our journal Rendiconti dell’Istituto di Matematica dell’Univer-
sità di Trieste is divided in three sections. The first section consists of six arti-
cles submitted spontaneously to the journal, while the second and third section
respectively contain the proceedings of the TAGSS Summer School 2021 “Hy-
perkähler and Prym Varieties: Classical and New Results” and those of the
Conference “GO60 Pure & Applied Algebraic Geometry celebrating Giorgio
Ottaviani’s 60th birthday”. Section 2 has been edited with the collaboration
of the organizers of the school, Valentina Beorchia, Barbara Fantechi and Ada
Boralevi, while for Section 3 we benefited from the collaboration of Elena An-
gelini, Maria Chiara Brambilla and Daniele Faenzi. We gratefully acknowledge
the valuable help of all the guest editors.

Michele Cirafici
Stefano Maset
Emilia Mezzetti
Fabio Perroni
Eva Sincich
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Orientation reversing finite abelian
actions on RP3

John Kalliongis and Ryo Ohashi

Abstract. We classify, up to equivalence, the orientation-reversing
finite abelian actions on RP3 and their quotient types. There are six dif-
ferent quotient types, and for each quotient type there is only one equiva-
lence class. Descriptions of each action which represents an equivalence
class are explicitly given.

Keywords: Finite group action, lens space, orbifold, orbifold handlebody, Heegaard
decomposition.
MS Classification 2020: 57M10, 22E99, 57M05, 57M12, 57M60, 57S25, 57S30.

1. Introduction

The symmetries of manifolds have been an increasingly ubiquitous topic of
study in low-dimensional topology (See for example [8, 9, 11, 14, 15, 23]). In [8],
a complete classification (up to conjugation) for symmetries of the orientable
and nonorientable 3-dimensional handlebodies of genus one is obtained. A
similar classification is obtained in [11] for I-bundles over the projective space.
In [9], the finite group actions on the lens space L(p, q) which preserve a Hee-
gaard decomposition were classified up to equivalence for p > 2, by restricting
these actions to an invariant Heegaard torus. However when p = 1 or 2, then
an action on L(p, q) may contain an element which when restricted to two
different invariant Heegaard tori are not equivalent (See the examples in [9,
p. 28]). To begin to address these questions for the case when p = 2, in [12]
we initiated the study of orientation preserving primary cyclic group actions
on L(2, 1) = RP3, and classified them up to equivalence. In [14], it was shown
that the 3-sphere and RP3 are the only 3-dimensional lens spaces L(p, q) which
admit orientation-reversing PL maps of period 4k where k ≥ 1, and in [15] no
lens space other than the 3-sphere S3 and RP3 admits an orientation-reversing
involution. In [10], a complete classification of orientation reversing geometric
finite group actions on lens spaces L(p, q) where p > 2 and q2 ≡ −1 (mod p)
is obtained if the action leaves a Heegaard torus invariant whose sides are
exchanged by an orientation-reversing element.

In this paper, continuing the study for p = 2, we consider the orientation-
reversing abelian actions on the three-dimensional projective space RP3 =

5



(2 of 44) J. KALLIONGIS AND R. OHASHI

L(2, 1), which is double covered by 3-sphere S3. Note that the special or-
thogonal group SO(3) is isomorphic to RP3 (See [7] for details). The finite
orientation reversing abelian actions on RP3 leave a Heegaard torus invariant
while preserving its sides. Using this, we are able to classify, up to equiva-
lence, these actions and compute their quotient spaces. In addition, an explicit
construction is given of a standard action representing each equivalence class.
Note that RP3 is an elliptic 3-manifold with a geometric structure, and we may
assume by [5, Theorem E], which follows from Perelman’s results in [16, 17, 18],
that a finite action on RP3 acts as a group of isometries. We work in the PL
category.

A G-action on a manifold X is a homomorphism φ : G → HomeoPL(X)
where HomeoPL(X) is the group of PL-homeomorphisms of X and φ is an
injection. Two G-actions φ and ψ are equivalent if their images are conjugate
in HomeoPL(X). When G is finite the quotient space is an orbifold which we
denote by X/φ. We will assume G is always finite.

Let φ : G→ HomeoPL(RP3) be an orientation-reversing abelian action. We
show (See Corollary 4.2) that there is a Heegaard torus (a separating torus
whose closure of the two complementary components are solid tori) which is
left invariant by the action whose sides are also preserved. The restriction to
each invariant solid torus determines an orbifold quotient whose Euler number
is zero. In [8] there is a complete list of all the handlebody orbifolds whose
Euler number is zero. For any positive integer n, the orientable orbifolds are
denoted by (A0, n) and (B0, n), while the non-orientable ones are denoted by
(A1, n), ..., (A3, n), (B1, n), ..., (B8, n). The orbifolds in the main theorem are
obtained by identifying the boundaries of the non-orientable orbifolds via ex-
plicitly defined homeomorphisms. If X and Y are orbifolds and ξ : ∂X → ∂Y is
a homeomorphism, denote by Oξ(X,Y ) the orbifold obtained by identifying ∂X
to ∂Y via ξ. These orbifolds, together with the maps ξ and their fundamental
groups are explicitly defined in the Appendix.

The main result in this paper, which appears as Theorem 6.1 in Section 6,
is as follows:

Theorem 1.1. Let φ : G → HomeoPL(RP3) be an orientation-reversing finite
abelian action. Then one of the following cases is true:

1) G = Z2bm where b>1, m is odd and RP3/φ is Oh−1
1
((B5, 2b−1m), (A1, 2));

2) G = Z2m, m is odd and RP3/φ is t Oh−1
2
((B4,m), (A3, 1));

3) G = Zm × Z2, m even and RP3/φ is Oh3
((A2, 2), (B3, ,m));

4) G = Z4 × Z2, and RP3/φ is Oh4
((B2, 2), (B2, 2));

5) G = Z2 × Z2 × Z2 and RP3/φ is Oh5
((B6, 2), (B6, 2));

6) G = Z2 × Z2 and RP3/φ is Oh6((B7, 1), (B7, 1)).

Furthermore, in each individual case i), where 1 ≤ i ≤ 6, φ is equivalent to the
Standard Quotient Type i Action.

6
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The paper is organized as follows. Section 2 is devoted to some preliminary
remarks and definitions concerning orbifolds, the Euler number, and Heegaard
decomposition. The orbifolds A(0, n) and B(0, n) which cover all the non-
orientable orbifolds of Euler number zero are defined, and the non-orientable
orbifolds which are the union of these orbifolds and have finite fundamental
group are listed. In Section 3, we define the standard abelian actions on RP3,
and identify their quotient types. We show in Section 4 that any orientation-
reversing abelian action on RP3 preserves a Heegaard torus. In Section 5,
we investigate which orbifolds defined in Section 2 and the Appendix have a
Z2-normal subgroup of their fundamental groups with abelian quotient, and
whether they are covered by RP3. Finally, we summarize the main results in
Section 6. The Appendix contains the definition of each of the non-orientable
orbifolds (A1, n), ..., (A3, n), (B1, n), ..., (B8, n), the gluing maps identifying the
boundaries of these orbifolds and their fundamental groups.

2. Orbifolds preliminaries, Heegaard decompositions with
finite fundamental groups

Orbifolds were introduced and studied by Satake in [19, 20], and developed
more fully by Thurston in [21]. Other good references include M.Yokoyama
[22]; M. Boileau, S. Maillot and J. Porti [2]; S. Choi [3]; W. Dunbar [6]; D.
Cooper, C.Hodgson and S. Kerchoff [4]. In this section we give brief preliminary
notions about orbifolds, and refer the reader to the above references for more
detail. We define the orientable orbifolds (A0, n) and (B0, n) which cover the
non-orientable orbifolds of Euler number zero. In addition, we list which of
the orbifolds having Euler number zero Heegaard decomposition have finite
fundamental groups in Theorem 2.1.

An orbifold is a space which is the quotient space of Rn by a finite linear
group. Consider (Ũ , G) where Ũ is an open subset of Rn and G is a finite group

of diffeomorphisms of Ũ . Let U = Ũ/G be the quotient space and ν : Ũ → U
the quotient map. The quotient space U is called a local model. If Gx̃ is the
stabilizer for any x̃ ∈ Ũ and Gx̃ ̸= 1, then ν(x̃) is called an exceptional point
in U ; it may be labelled with the order of Gx̃. An orbifold map ψ between local
models U and U ′ consists of a pair (ψ̃, γ), where ψ̃ : Ũ → Ũ ′ is a smooth map

and γ : G → G′ is a group homomorphism such that ψ̃(g(x̃)) = γ(g)ψ̃(x̃) for

all x̃ ∈ Ũ and g ∈ G, and ν′ψ̃ = ψν. An orbifold is a space which consists
of local models glued together by orbifold maps. The set of exceptional points
is referred to as the exceptional set or the singular locus. An orbifold O with
boundary ∂O is define similarly by replacing Rn with the closed half space Rn

+

to obtain local models for x ∈ ∂O. If M is an n-manifold and G is a group of
diffeomorphisms which acts properly discontinuously on M (for every compact
subset K ⊂ M , the set {g ∈ G | g(K) ∩ K ̸= ∅} is finite), then the quotient

7
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n

Figure 1: (A0, n)

space M/G is an orbifold. The orbifolds (A0, n) and (B0, n), defined below,
are good examples of 3-dimensional orbifolds.

An orbifold handlebody O is formed by gluing together orbifold 0-handles
(3-orbifolds covered by the 3-ball B3) and orbifold 1-handles (products with 2-
orbifolds covered by the disk D2) so that the exceptional sets of the same type
are identified. See [8] for more details. If the handlebody orbifold is orientable,
then the underlying space is a handlebody. When there is a n-sheeted covering
space H → O where H is a handlebody, then the Euler number χ(O) = 1

nχ(H).
See [4] for a more detailed description of the Euler number. An Euler number
1− g Heegaard decomposition of an orbifold O is an ordered triple (Σ, O1, O2)
where Σ ⊂ O is a closed 2-orbifold, Oi is an orbifold handlebody having Euler
number 1− g, Σ = ∂Oi = O1 ∩O2 and O = O1 ∪O2.

In this paper we will be concerned with Euler number zero Heegaard de-
compositions where the orbifolds Oi, for i = 1, 2, will come from the list of the
non-orientable orbifolds covered by (A0, n) and (B0, n). We now describe the
orbifolds (A0, n) and (B0, n).

2.1. Orbifold (A0, n)

We begin with the unit disk D2 parameterized by {ρeiθ = v | 0 ≤ ρ ≤ 1}. Let V
be the solid torus S1×D2 and define a Zn-action on V by h(u, v) = (u, ve

2πi
n ).

The orbifold quotient space V/⟨h⟩ is denoted by V (n) or (A0, n). This quotient
space is a torus with a core of exceptional points of order n (See Figure 1).

The orbifold fundamental group of V (n) is

π1(V (n)) = ⟨l1,m1 | [l1,m1] = 1,mn
1 = 1⟩ ≃ Z× Zn .

8
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n
2

2

2

2

Figure 2: (B0, n)

2.2. Orbifold (B0, n)

Let τ : V (n) → V (n) be the involution defined by τ(u, v) = (u, v). The orbifold
V (n)/⟨τ⟩ is denoted by (B0, n). Its underlying space is a 3-ball which has an
exceptional set consisting of an embedded tree with five edges, one edge labeled
with n and the other four edges each labeled with 2. The boundary is a Conway
sphere with four cone points of order 2 (See Figure 2).

We obtain a covering map ν : V (n) → (B0, n) = V (n)/⟨τ⟩ giving an exact
sequence

1 → π1(V (n)) → π1((B0, n)) → Z2 → 1

which splits. Let ν∗(l1) = l and ν∗(m1) = m. Since τ inverts both generators
of π1(V (n)), we obtain the following fundamental groups:

π1((B0, n)) = ⟨l,m, t | mn = t2 = 1, lm = ml, tlt−1 = l−1, tmt−1 = m−1⟩
= Dih(Z× Zn)

and

π1(∂(B0, n)) = ⟨l,m, t | t2 = 1, lm = ml, tlt−1 = l−1, tmt−1 = m−1⟩
= Dih(Z× Z) .

In the Appendix we show that (A0, n) will double cover the non-orientable
orbifolds (A1, n), (A2, n), (A3, n),(B3, n), (B4, n), and (B5, n); and the orbifold
(B0, n) will double cover the non-orientable orbifolds (B1, n), (B2, n), (B6, n),
(B7, n), (B8, n). Furthermore these orbifolds are described there along with
their fundamental groups. Recall that Oξ(X,Y ) is the orbifold obtained by
identifying ∂X to ∂Y via a homeomorphism ξ : ∂X → ∂Y . The orbifolds X
and Y will come from the list of non-orientable orbifolds whose boundaries
are homeomorphic, and the gluing map ξ = hi for 1 ≤ i ≤ 7 is defined in
the Appendix. For groups A and B, we use the notation A ◦ B to denote the
semidirect product A ⋊ B, and use A ◦−1 B to represent the specific action

9
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Orbifolds Fundamental Group

Oh1
((A1, n), (B5,m)) ⟨a, b | a2 = b2, a2m = b2m = (ba−1)n = 1⟩ ≃ Zn ◦−1 Z2m

Oh2
((A3, n), (B4,m)) ⟨a, b, c|an = b2 = c2m = 1, bab−1 = a−1, cac−1 = a−1,

cbc−1 = ba⟩ ≃ Dih(Zn) ◦ Z2m

Oh3
((A2, n), (B3,m)) ⟨a, b, c|[a, b] = [a, c] = 1, am = bn = c2 = 1, cbc−1 = b−1⟩

≃ Dih(Zn) × Zm

Oh4
((B2, n), (B2,m)) ⟨a, b | a2n = b2 = 1, ba2b−1 = a−2, (ab)2m = 1⟩

≃ (Zn ◦−1 Z2m) ◦ Z2

Oh5
((B6, n), (B6,m)) ⟨a, b, c, d |a2 = b2 = c2 = (bc)n = d2 = (ad)m = 1, a ↔ {b, c},

d ↔ {b, c}⟩ ≃ Dih(Zn) × Dih(Zm)

Oh6
((B7, n), (B7,m)) ⟨a, b, c |a2 = b2n = (ab−1ab)m = c2 = 1, a ↔ {b2, c}, bc = b−1⟩

≃ Dih(Zm) ◦ Dih(Z2n)

Oh7
((B1, n), (B8,m)) ⟨a, b, c | an = b2 = c2 = 1, bab−1 = a−1, [a, c] = 1, (cb)2m = 1⟩

≃ Zn ◦ Dih(Z2m)

Table 1: Notation: xy = yxy−1, and if x and y commute we write x↔ y.

bab−1 = a−1 for every a ∈ A and b ∈ B. Thus the dihedral group Dih(Zn) =
Zn ◦−1 Z2.

From [13], we have the following theorem:

Theorem 2.1. Let X and Y be any of the orbifolds (A1, n),...,(A3, n),(B1, n),
...,(B8, n), and let ξ : ∂X → ∂Y be a homeomorphism. If π1(Oξ(X,Y )) is
finite, then Oξ(X,Y ) is homeomorphic to one of the orbifolds listed in Table 1
with the corresponding fundamental group.

3. Standard orientation reversing abelian actions on RP3

In this section, we will define some standard orientation reversing abelian ac-
tions on RP3. In addition, we calculate the quotient spaces of these actions,
and the quotient spaces for their orientation preserving subgroups. These ac-
tions will be sorted by their quotient types, Quotient Type i for 1 ≤ i ≤ 6.
A standard action with Quotient Type i will be called the Standard Quotient
Type i Action. Since the later cases are similar to the previous cases, some of
the details will be omitted.

We view RP3 = V1 ∪α V2 where the boundary ∂V1 is identified with ∂V2
by a homeomorphism α : ∂V1 → ∂V2 defined by α(u1, v1) = (u2v

2
2 , u2v2) for

(ui, vi) ∈ Vi.
Consider two orbifold solid tori V (a) and V (b), let p and q be relatively

prime positive integers and choose r, s ∈ Z such that rq − ps = −1. Let
h : ∂V (a) → ∂V (b) be the homeomorphism defined by h(u, v) = (urvp, usvq).
The orbifoldW (p, q; a, b) is the orbifold obtained by identifying ∂V (a) to ∂V (b)
via the homeomorphism h. The underlying space of W (p, q, a, b), denoted by
|W (p, q, a, b)|, is the lens space L(p, q). As in the case of the lens space, the
integers p, q, a and b determine the orbifold up to homeomorphism.

10
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3.1. Quotient Type 1: Oh−1
1
((B5, 2b−1m), (A1, 2)) with b > 1

and m odd.

Let V1 = S1 ×D2, and define two homeomorphisms f and g on V1 as follows:
For m a positive odd integer

f(u1, v1) =
(
u1, v1e

2πi
m

)
, and g(u1, v1) =

(
u1e

−2πi

2b−2 , u1v1e
3(2πi)

2b

)
.

Note that

g2(u1, v1) = g
(
u1e

−2πi

2b−2 , u1v1e
3(2πi)

2b

)
=

((
u1e

−2πi

2b−2
)
e

−2πi

2b−2 ,
(
u1e

−2πi

2b−2
)
u1v1e

6(2πi)

2b

)
=

(
u1, v1e

−2πi

2b−2 e
3(2πi)

2b−1

)
=

(
u1, v1e

2πi

2b−1

)
It follows that g is an orientation reversing homeomorphism with finite

order 2b. Furthermore f and g commute, hence the two maps generate a
Zm × Z2b = Z2bm-action on V1. We obtain an orbifold covering map η1 : V1 →
V1/⟨f⟩ = V1(m) defined by η1(u1, v1) = (u1, v

m
1 ). The homeomorphism g

induces a homeomorphism g1 on V (m), and we may calculate g1 as follows:

g1(u1, v1) = ηg
(
u1, v

1
m
1

)
= η

(
u1e

−2πi

2b−2 , u1v
1
m
1 e

3(2πi)

2b

)
=

(
u1e

−2πi

2b−2 , um1 v1e
3m(2πi)

2b

)
.

We consider first the case where b > 1. Thus we have a Zm × Z2b = Z2bm-

action where b > 1 and m is odd. It also follows that g21(u1, v1) = (u1, v1e
2mπi

2b−1 )
and ⟨g21⟩ = Z2b−1 . We obtain an orbifold covering λ1 : V (m) → V (2b−1m) =

V (m)/⟨g21⟩ defines by λ1(u1, v1) = (u1, v
2b−1

1 ). Further, g1 induces an orienta-
tion reversing involution g2 on V (2b−1m) which may be computed as follows:

g2(u1, v1) = λ1g1

(
u1, v

1

2b−1

1

)
= λ1

(
u1e

−2πi

2b−2 , um1 v
1

2b−1

1 e
3m(2πi)

2b

)
=

(
u1e

−2πi

2b−2 ,−u2
b−1m

1 v1

)
.

On the other hand, g2 is an orientation reversing involution with two isolated

fixed points, (e
−2πi

2b−1 , 0) and (−e
−2πi

2b−1 , 0). Thus by [13, Proposition 13] we see
that V (2b−1m)/⟨g2⟩ is the orbifold (B5, 2b−1m), and we have the following
lemma.

11
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Lemma 3.1. For any orbifold of the form (B5, 2b−1m) where m is odd and b >
1, there exists a Zm×Z2b-action on the solid torus V1 generated by f(u1, v1) =

(u1, v1e
2πi
m ) and g(u1, v1) = (u1e

−2πi

2b−2 , u1v1e
3(2πi)

2b ). The quotient type V1/(Zm×
Z2b) = (B5, 2b−1m).

At this point, we will extend f and g to RP3 and identify the quotient
space. Let V2 = S1×D2, and recall that RP3 = V1 ∪α V2 where α : ∂V1 → ∂V2
is a homeomorphism defined by α(u1, v1) = (u2v

2
2 , u2v2). Now α−1(u2, v2) =

(u−1
1 v21 , u1v

−1
1 ). We have the following:

αfα−1(u2, v2) = αf(u−1
1 v21 , u1v

−1
1 )

= α(u−1
1 v21 , u1v

−1
1 e

2πi
m )

=
(
(u−1

2 v22)(u2v
−1
2 e

2πi
m )2, (u−1

1 v22)(u2v
−1
2 e

2πi
m )

)
= (u2e

4πi
m , v2e

2πi
m ) .

Thus f(u2, v2) = (u2e
4πi
m , v2e

2πi
m ) is a fixed-point free map on V2. Similarly

extend g to RP3 as follows:

αgα−1(u2, v2) = αg(u−1
1 v21 , u1v

−1
1 )

= α
(
(u−1

1 v21) e
−2πi

2b−2 , (u−1
1 v21)(u1v

−1
1 )e

3(2πi)

2b

)
= α

(
(u−1

1 v21) e
−2πi

2b−2 , v1e
3(2πi)

2b

)
=

((
(u−1

2 v22)e
−2πi

2b−2

)(
v2e

3(2πi)

2b

)2

,
(
(u−1

2 v22)e
−2πi

2b−2

)(
v1e

3(2πi)

2b

))
=

(
u2e

2πi

2b−1 , u2v2e
−2πi

2b

)
.

In other words, g(u2, v2) =
(
u2e

2πi

2b−1 , u2v2e
−2πi

2b
)
where b > 1.

In the mean time, we extend η to V2 to obtain a covering map η2 : V2 →
V2/⟨f⟩ = V2(1) defined by η2(u2, v2) =

(
um2 , u

m−1
2

2 v2
)
. In addition, g induces

g1 on V2(1) which may be computed as follows:

g1(u2, v2) = η2g
(
u

1
m
2 , u

1−m
2m

2 v2

)
= η2

(
u

1
m
2 e

2πi

2b−1 , u
1
m
2 (u

1−m
2m

2 v2)
−1e

−2πi

2b

)
= η2

(
u

1
m
2 e

2πi

2b−1 , u
m+1
2m

2 v−1
2 e

−2πi

2b

)
=

(
u2e

2πim

2b−1 , u
m−1
2m

2 e
2πi(m−1)

2b u
m+1
2m

2 v−1
2 e

−2πi

2b

)
=

(
u2e

2πim

2b−1 , u2v
−1
2 e

2πi(m−2)

2b

)
.

12
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Hence

g1(u2, v2) =
(
u2e

2πim

2b−1 , u2v
−1
2 e

2πi(m−2)

2b

)
and g21(u2, v2) =

(
u2e

2πim

2b−2 , v2e
2πim

2b−1

)
.

Note that ⟨g21⟩ = Z2b−1 and g2
b−1

1 has as its fixed-point set the core S1 × {0}.
We obtain an orbifold covering map λ2 : V2(1) → V1(1)/⟨g21⟩ = V2(2) defined by

λ2(u2, v2) = (u2
b−2

2 , u−1
2 v22). Furthermore, g1 induces an orientation reversing

involution g2 on V2(2) which we now compute below:

g2(u2, v2) = λ2g1

(
u

1

2b−2

2 , u
1

2b−1

2 v
1
2
2

)
= λ2

(
u

1

2b−2

2 e
2πim

2b−1 , u
1

2b−2

2 (u
1

2b−1

2 v
1
2
2 )

−1e
2πi(m−2)

2b

)
= λ2

(
u

1

2b−2

2 e
2πim

2b−1 , u
1

2b−1

2 v
−1
2

2 e
2πi(m−2)

2b

)
=

(
−u2, v−1

2 e
−2πi

2b−2

)
.

Since g2 is a fixed-point free orientation reversing involution on V2(2), it
follows by [13, Proposition 13] that V2(2)/⟨g2⟩ is the orbifold (A1, 2), and we
have the following lemma.

Lemma 3.2. For any orbifold of the form (A1, 2), there exists a Zm × Z2b-
action on the solid torus V2 where m is odd and b > 1, generated by f(u2, v2)

= (u2e
4πi
m , v2e

2πi
m ) and g(u2, v2) = (u2e

2πi

2b−1 , u2v
−1
2 e

−2πi

2b ), such that V2/(Zm ×
Z2b) = (A1, 2).

The next step is to compute the quotient space for the covering η1 ∪
η2 : (V1 ∪α V2) → (V1 ∪α V2)/⟨f⟩ = V1(m) ∪α1

V2(1). The matrix represen-

tations for η1 and η2 are

[
1 0
0 m

]
and

[
m 0

m−1
2 1

]
respectively. We compute

the gluing map α1 : ∂V1(m) → ∂V2(1) with matrix representation

[
x y
z w

]
, by

solving the equation[
x y
z w

] [
1 0
0 m

]
=

[
m 0

m−1
2 1

] [
1 2
1 1

]
.

We see that x = m, y = 2, z = m+1
2 and w = 1. Thus α1(u1, v1) =

(um2 v
2
2 , u

m+1
2

2 v2), the matrix representation for α1 is

[
m 2

m+1
2 1

]
and the quotient

space RP3/⟨f⟩ = W (2, 1;m, 1).
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Finally, consider the orbifold covering λ1∪λ2 : V1(m)∪α1
V2(1) → (V1(m)∪α1

V2(1))/⟨g21⟩ = V1(2
b−1m) ∪α2

V2(2), and identify the quotient space by com-
puting the gluing map α2. The matrix representations for λ1 and λ2 are[
1 0
0 2b−1

]
and

[
2b−2 0
−1 2

]
respectively. Solving a matrix equation similar to

that above, we obtain α2(u1, v1) = (u2
b−2m

2 v2, u2) with its matrix representa-

tion

[
2b−2m 1

1 0

]
. Thus W (2, 1;m, 1)/⟨g21⟩ = W (1, 0; 2b−1m, 2). The underly-

ing space of W (1, 0; 2b−1m, 2) is the 3-sphere S3 and the exceptional set is the
Hopf link, with one exceptional set labeled with 2b−1m and the other excep-
tional set labeled with 2.

Consequently, we can summarize the results above. Recall RP3 = V1 ∪α V2
where α : ∂V1 → ∂V2 is a homeomorphism defined by α(u1, v1) = (u2v

2
2 , u2v2)

for (ui, vi) ∈ Vi. Define homeomorphisms f and g on RP3 as follows:

f(ui, vi) =

(u1, v1e
2πi
m ), if i = 1

(u2e
4πi
m , v2e

2πi
m ), if i = 2

g(ui, vi) =

(u1e
−2πi

2b−2 , u1v1e
3(2πi)

2b ), if i = 1

(u2e
2πi

2b−1 , u2v2e
−2πi

2b ), if i = 2

Theorem 3.3. Let φ : Zs → HomeoPL(RP3) be an action such that s = 2bm
where b > 1 and m is odd. Then φ is equivalent to ⟨f⟩ × ⟨g⟩ = Zm ×
Z2b = Z2bm, and the quotient space RP3/φ is homeomorphic to the orbifold
Oh−1

1
((B5, 2b−1m), (A1, 2)). Let φ0 : Zs/2 → HomeoPL(RP3) represent the re-

striction of φ to the the orientation preserving subgroup. Then RP3/φ0 is the
orbifold W (1, 0; 2b−1m, 2) whose underlying space is the 3-sphere S3, and the
exceptional set is the Hopf link with one exceptional set labeled with 2b−1m and
the other exceptional set labeled with 2.

Proof. Let φ : Zs → HomeoPL(RP3) be an action such that s = 2bm where
b > 1 and m is odd. By [14, Theorem A], there is only one such action up to
equivalence. By construction, RP3/⟨f, g⟩ = Oα3

((B5, 2b−1m), (A1, 2)) for some
gluing map α3. Since Oα3

((B5, 2b−1m), (A1, 2)) = Oα−1
3
((A1, 2), (B5, 2b−1m)),

which by [13, Lemma 21] is homeomorphic to Oh1((A1, 2), (B5, 2b−1m)), the
result follows.

Next, we will treat the case where b = 1, and so we will consider orientation
reversing Zm × Z2 = Z2m-actions on RP3 where m is odd.
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3.2. Quotient Type 2: Oh−1
2
((B4,m), (A3, 1)) and m odd

Substituting b = 1 into the definition of g defined in Quotient Type 1, we obtain
the involution h : V1 → V1 defined by h(u1, v1) = (u1,−u1v1). It follows that h
is an orientation reversing involution which commutes with f on V1, and thus
⟨f⟩×⟨h⟩ = Zm×Z2. As above, if η : V1 → V1/⟨f⟩ = V1(m) is the covering, the

induced map ĥ on V1(m) is defined by ĥ(u1, v1) = (u1,−um1 v1). The fixed-point
set is {(1, 0)} ∪ ({−1} ×D2) ⊆ V1(m). It follows by [13, Proposition 13] and

the fixed-point set of ĥ, that V1(m)/⟨ĥ⟩ = (B4,m).
The involution h on V2 is defined by h(u2, v2) = (u2,−u2v2), and the invo-

lution ĥ on V2(1) is ĥ(u2, v2) = (u2,−u2v2). The fixed-point set consists of the
set {(−e2iθ, ρeiθ) | 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ 1} ⊆ V2(1), which is a Möbius band.

Hence by [13, Proposition 13], V2(1)/⟨ĥ⟩ = (A3, 1). We obtain the two lemmas
below:

Lemma 3.4. For any orbifold of the form (B4,m) where m is odd, there exists

a Zm × Z2-action on the solid torus V1, generated by f(u1, v1) = (u1, v1e
2πi
m )

and h(u1, v1) = (u1,−u1v1), such that V1/(Zm × Z2) = (B4,m).

Lemma 3.5. For any orbifold of the form (A3, 1), there exists a Zm×Z2-action

on the solid torus V2 where m is odd, generated by f(u2, v2) = (u2e
4πi
m , v2e

2πi
m )

and h(u2, v2) = (u2,−u2v2), such that V2/(Zm × Z2) = (A3, 1).

Let f, h : RP3 → RP3 be homeomorphisms defined as follows:

f(ui, vi) =

{
(u1, v1e

2πi
m ), if i = 1

(u2e
4πi
m , v2e

2πi
m ), if i = 2

h(ui, vi) =

{
(u1,−u1v1), if i = 1

(u2,−u2v2), if i = 2.

As a result of the above discussions, we obtain the following theorem.

Theorem 3.6. Let φ : Zs → HomeoPL(RP3) be an action such that s = 2m
where m is odd. Then φ is equivalent to ⟨f⟩ × ⟨h⟩ = Zm × Z2 = Z2m, and the
quotient space RP3/φ is homeomorphic to the orbifold Oh−1

2
((B4,m), (A3, 1)).

Let φ0 : Zm → HomeoPL(RP3) represent the restriction of φ to the the orien-
tation preserving subgroup. Then RP3/φ0 is the orbifold W (2, 1;m, 1), whose
underlying space is RP3 with exceptional set a simple closed curve labeled with
m.

Proof. Let φ : Zs → HomeoPL(RP3) be an action such that s = 2m where m
is odd. If m > 1, then applying the Smith conjecture in [1] and [14, Theo-
rem C], there is only one such action up to equivalence. If m = 1, and hence
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the action is an involution, applying [6] there is only one such action up to
equivalence. By the above construction RP3/⟨f, h⟩ = Oζ((B4,m), (A3, 1)) =
Oζ−1((A3, 1), (B4,m)) for some gluing map ζ. Since Oζ−1((A3, 1), (B4,m))
is homeomorphic to Oh2((A3, 1), (B4,m)) by [13, Lemma 23], the result fol-
lows.

3.3. Quotient Type 3: Oh3((A2, 2), (B3, ,m)) where m is
even

Define homeomorphisms f and g on RP3 as follows:

f(ui, vi) =

{
(u1e

4πi
m , v1e

− 2πi
m ), if i = 1

(u2, v2e
2πi
m ), if i = 2

g(ui, vi) =

{
(u1, u1v1), if i = 1

(u2, u2v2), if i = 2

A computation shows fg = gf , and so ⟨f, g⟩ defines a Zm ×Z2-action on RP3.
Furthermore, it can be shown that RP3/φ is the orbifold Oh′((A2, 2), (B3, ,m))
for some homeomorphism h′ between their boundaries.

Theorem 3.7. For m even, the maps f and g define an action φ : Zm ×Z2 →
HomeoPL(RP3) such that the quotient space RP3/φ is Oh3((A2, 2), (B3, ,m)).
Let φ0 : Zm → HomeoPL(RP3) represent the restriction of φ to the the orien-
tation preserving subgroup. Then RP3/φ0 is the orbifold W (1, m2 ; 2,m) whose
underlying space is the 3-sphere S3, and the exceptional set is the Hopf link with
one exceptional set labeled with 2 and the other exceptional set labeled with m.

Proof. The proof is similar to Theorem 3.6, and uses the fact that by [13,
Lemma 22], Oh′((A2, 2), (B3, ,m)) is homeomorphic to Oh3((A2, 2), (B3,m)).

3.4. Quotient Type 4: Oh4((B2, 2), (B2, , 2))

Define homeomorphisms θ and τ on RP3 as follows:

θ(ui, vi) =

{
(−u1, u1v1), if i = 1

(−u2,−u2v2), if i = 2

τ(ui, vi) =

{
(u1, v1), if i = 1

(u2, v2), if i = 2

A computation shows θ4 = id = τ2 and θτ = τθ, and so ⟨θ, τ⟩ defines a Z4×Z2-
action on RP3. We remark that letting b = 2 in the definition of g in Quotient
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Type 1 of this section, also gives a Z4-action which is conjugate to θ by the
homeomorphism:

k(ui, vi) =

{
(iu1, v1), if i = 1

(iu2, iv2), if i = 2

Observe that θ2(ui, vi) = (ui,−vi), and we have a covering map ν : RP3 →
RP3/⟨θ2⟩ = (A0, 2) ∪α1 (A0, 2) where ν(ui, vi) = (ui, v

2
i ); the matrix corre-

sponding to α1 is

[
1 1
2 1

]
. The induced maps θ and τ on (A0, 2)∪α1

(A0, 2) are

defined by

θ(ui, vi) =

{
(−u1, u21v1), if i = 1

(−u2, u22v2), if i = 2
and

τ̄(ui, vi) = (ui, vi) .

Moding out by the action of τ , we obtain a covering map ν1 : (A0, 2) ∪α1

(A0, 2) → (B0, 2) ∪α1
(B0, 2). Now θ induces an involution on (B0, 2) ∪α1

(B0, 2), whose quotient is Of ′((B2, 2), (B2, 2)) for some homeomorphism
f ′ : ∂(B2, 2) → ∂(B2, 2). We obtain the result below.

Theorem 3.8. Let φ : Z4 × Z2 → HomeoPL(RP3) be an action such that
φ(Z4 × Z2) = ⟨θ, τ⟩. Then the quotient space RP3/φ is homeomorphic to the
orbifold Oh4

((B2, 2), (B2, 2)). Let φ0 : Z4×Z2 → HomeoPL(RP3) represent the
restriction of φ to the the orientation preserving subgroup. Then RP3/φ0 is the
orbifold Oα1

((B0, 2), (B0, 2)), where α1 is uniquely determined by the matrix[
1 1
2 1

]
.

Proof. The quotient space RP3/φ has a finite fundamental group. The result
now follows by the above construction, Theorem 11 and Lemma 25 in [13].

3.5. Quotient Type 5: Oh5((B6, 2), (B6, 2))

Define homeomorphisms f , g and h on RP3 as follows:

f(ui, vi) =

{
(u1, v1), if i = 1

(u2, v2), if i = 2

g(ui, vi) =

{
(u1, u1v1), if i = 1

(u2, u2v2), if i = 2

h(ui, vi) =

{
(u1,−v1), if i = 1

(u2,−v2), if i = 2

17
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It follows that ⟨f, g, h⟩ is a Z2×Z2×Z2-action on RP3. We may choose a cover-
ing map ν : RP3 → RP3/⟨h⟩ defined by ν(u1, v1) = (u1,−u1v21) and ν(u2, v2) =
(u2, u

−1
2 v22). Then RP3/⟨h⟩ is the orbifold V (2) ∪r1 V (2) =W (1, 0; 2, 2) where

r1 : V (2) → V (2) is defined by r1(u1, v1) = (−v2, u2). The induced maps f1
and g1 on W (1, 0; 2, 2) are defined by

f1(ui, vi) =

{
(u1, v1), if i = 1

(u2, v2), if i = 2

and

g1(ui, vi) =

{
(u1, v1), if i = 1

(u2, v2), if i = 2

Now, W (1, 0; 2, 2)/⟨f1⟩ = Or2((B0, 2), (B0, 2)) for some gluing map
r2 : ∂(B0, 2) → ∂(B0, 2). The map r2 is an order 4 rotation which permutes
the cone points of order 2 on ∂(B0, 2). It follows that for the induced map
g2 on the orbifold Or2((B0, 2), (B0, 2)) we obtain Or2((B0, 2), (B0, 2))/⟨g3⟩ =
Or3((B6, 2), (B6, 2)). Summarizing we have the following theorem:

Theorem 3.9. The maps f , g and h define an action φ : Z2 × Z2 × Z2 →
HomeoPL(RP3) such that the quotient space RP3/φ is Oh5

((B6, 2), (B6, 2)).
Let φ0 : Z2×Z2 → HomeoPL(RP3) represent the restriction of φ to the the ori-
entation preserving subgroup. Then RP3/φ0 is the orbifold Or2((B0, 2), (B0, 2))

where r2 is uniquely determined by the matrix

[
0 1
1 0

]
.

Proof. The quotient space RP3/φ is the orbifold Or3((B6, 2), (B6, 2)) for some
map r3. By [13, Lemma 26], this orbifold is homeomorphic to
Or((B6, 2), (B6, 2)) which completes the proof.

3.6. Quotient Type 6: Oh6((B7, 1), (B7, 1))

Define homeomorphisms f and g on RP3 as follows:

f(ui, vi) =

{
(u1,−u1v1), if i = 1

(u2,−u2v2), if i = 2

g(ui, vi) =

{
(u1, u1v1), if i = 1

(u2, u2v2), if i = 2

We see that ⟨f, g⟩ is a Z2 × Z2-action on RP3 and fg(ui, vi) = (ui,−vi). Let
η : RP3 → RP3/⟨fg⟩ be an orbifold covering map and note that the quotient
space is Oα̂((B0, 1), (B0, 1)) for some homeomorphism α̂ : ∂(B0, 1) → ∂(B0, 1).
Let ĝ be the induced involution on Oα̂((B0, 1), (B0, 1)).
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The fixed-point set of fg|∂Vi
is Fix(fg|∂Vi

)={(1, i), (1,−i), (−1, i), (−1,−i)}.
It follows that g|∂Vi

fixes two elements of Fix(fg|∂Vi
), and exchanges the other

two.
This implies that Oα̂((B0,1),(B0,1))/⟨ĝ⟩ is the orbifold Or′((B7, 1),(B7, 1))

for some homeomorphism r′ : ∂(B7, 1) → ∂(B7, 1). As a result, we obtain the
following theorem:

Theorem 3.10. The maps f and g define an action φ :Z2×Z2→HomeoPL(RP3)
such that the quotient space RP3/φ is the orbifold Oh6

((B7, 1), (B7, 1)). Let
φ0 : Z2 → HomeoPL(RP3) represent the restriction of φ to the the orientation
preserving subgroup. Then RP3/φ0 is the orbifold Oα((B0, 1), (B0, 1)) where α

is uniquely determined by the matrix

[
1 2
1 1

]
.

Proof. The quotient space RP3/φ is the orbifold Or′((B7, 1), (B7, 1)) for some
homeomorphism r′. Since the fundamental group of the quotient space is
finite, it follows by [13, Lemma 27] that this orbifold is homeomorphic to
Oh6((B7, 1), (B7, 1)), completing the proof.

4. Splitting orientation-reversing abelian actions on RP3

In this section, we will show that any abelian orientation reversing action
on RP3 splits and preserves the sides of the splitting. An action φ : G →
HomeoPL(RP3) is said to split if there is a Heegaard torus T such that φ(g)(T )=
T for all g ∈ G. If in addition, each complementary component of the Heegaard
torus is invariant under the action, then we say φ preserves the sides of the
splitting.

Theorem 4.1. Let φ : G → HomeoPL(RP3) be a finite action which contains
an orientation reversing element j ∈ φ(G), such that ⟨j⟩ is a normal subgroup
of φ(G). If j is an involution, assume φ(G)/⟨j⟩ is not the symmetric group S4

or the alternating groups A4 and A5. Then φ splits and preserves the sides of
the splitting.

Proof. The element j generates a cyclic group Z2bm where m is odd. Since the
orientation preserving subgroup of Z2bm has index two and generated by j2, it
follows that b ≥ 1.

Suppose first that b > 1. By Theorem 3.3, ⟨j⟩ is conjugate to the group
⟨f⟩ × ⟨g⟩ = Zm × Z2b = Z2bm. Conjugating all of φ(G) by this element, we
may assume ⟨j⟩ = ⟨f⟩ × ⟨g⟩. Furthermore, the quotient space RP3/⟨j⟩ =
(B5, 2b−1m) ∪h−1

1
(A1, 2). Let ν : RP3 → RP3/⟨j⟩ be the covering map. The

core in V2 is S1 × {0} , and ν(S1 × {0}) is the exceptional set γ in (A1, 2),
which is a simple closed curve labeled with the integer 2. The induced action
φ(G)/⟨j⟩ = H on RP3/⟨j⟩ must leave γ invariant. Let U be an H-invariant
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regular neighborhood of γ. Now U is the orbifold (A0, 2), which lifts to a

φ(G)-invariant solid torus Ũ , containing the core. Its boundary ∂Ũ is a φ(G)-
invariant Heegaard torus whose sides are preserved by φ(G).

Assume b = 1. By Theorem 3.6, ⟨j⟩ is conjugate to ⟨f⟩ × ⟨h⟩ = Zm ×
Z2 = Z2m, and we may assume as above that ⟨j⟩ = ⟨f⟩ × ⟨h⟩. If m ̸= 1,

then RP3/⟨f⟩ = (A0,m) ∪α1
(A0, 1), where the matrix for α1 is

[
m 2
m+1
2 1

]
.

(See computation following Lemma 3.2.) The orbifold (A0,m) contains an
exceptional set consisting of a simple closed curve labeled with an m. Letting
H be the quotient group φ(G)/⟨f⟩, it follows that H must leave the exceptional
set invariant. The exceptional set lifts to the core in V1, and the proof follows
as above.

Now suppose m = 1. In this case RP3/⟨h⟩ = (B4, 1) ∪h−1
2

(A3, 1), and we

again let ν : RP3 → (B4, 1) ∪h−1
2

(A3, 1) be the covering map. The exceptional

set consists of a point in (B4, 1), a projective plane P with P ∩ (B4, 1) a
mirrored disk and P ∩(A3, 1) a mirrored Möbius band. For the core in S1×{0}
in V2, it follows that ν(S1 × {0}) is an orientation reversing element in the
mirrored Möbius band. Letting H be φ(G)/⟨h⟩, the projective plane must be
left invariant by H. Since φ(G)/⟨h⟩ is neither S4, A4 nor A5, it follows by [11,
Theorem 7.2] that H|P leaves an orientation reversing loop invariant. Since
the lift of this loop is isotopic to the core in V2, the proof follows as above.

We obtain the following corollary:

Corollary 4.2. Let φ :G→HomeoPL(RP3) be an orientation reversing abelian
action. Then φ splits and preserves the sides of the splitting.

5. Orbifolds covered by RP3

In this section, we will identify which of the non-orientable orbifolds listed
in Theorem 2.1 as defined in the Appendix may be covered by RP3 and iden-
tify the subgroup corresponding to the covering. The orbifolds in Section 2 are:
Oh1((A1, n), (B5,m)), Oh2((A3, n), (B4,m)), Oh3((A2, n), (B3,m)),
Oh4((B2, n), (B2,m)), Oh5((B6, n), (B6,m)), Oh6((B7, n), (B7,m)),
Oh7

((B1, n), (B8,m)).

It will be convenient to apply the following proposition and corollary, which
essentially follow from orbifold covering space theory. The reader is referred to
the paper of M. Yokoyama [22] for a good elucidation of orbifold theory.

Proposition 5.1. Let O be a 3-dimensional orbifold, W a 3-dimensional sub-
orbifold and i : W ↪→ O the inclusion map. Suppose G is a subgroup of π1(O)

and H = i−1
∗ (G) ≤ π1(W ). Let η : Õ → O and λ : W̃ → W be the cover-
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ings corresponding to G and H respectively. If W̃ is an orbifold, then Õ is an
orbifold.

Proof. Let L be a component of η−1(W ) and note that p = η|L : L → W is a

covering map. From standard covering space theory p∗(π1(L))= i
−1
∗ (η∗(π1(Õ))).

Since i−1
∗ (η∗(π1(Õ)))=H, we have p∗(π1(L)) = H, and this equals λ∗(π1(W̃ )).

Thus there is an orbifold homeomorphism f : W̃ → L ⊂ Õ, implying L and
therefore Õ is an obifold.

Corollary 5.2. Let O be a 3-dimensional orbifold, W a 3-dimensional sub-
orbifold and i : W ↪→ O the inclusion map. Let G be a subgroup of π1(O)

containing an element i∗(α) where α ∈ π1(W ), and let Õ be the covering of O
corresponding to G. Suppose the covering translation on the universal covering
space of W associated with α has a fixed point. Then Õ is an orbifold.

Proof. Let H = i−1
∗ (G) ≤ π1(W ) and note that α ∈ H. Let U be the universal

covering space of W . Since the covering translation associated with α has a
fixed point, it follows that U/H = W̃ is an orbifold, which is the covering of
W corresponding to H. The result now follows by Proposition 5.1.

5.1. Quotient Type 1: Oh1((A1, n), (B5,m))

From the Appendix the orbifold fundamental group of Oh1((A1, n), (B5,m)) is

π1(Oh1
((A1, n), (B5,m))) = ⟨a, b | a2 = b2, a2m = b2m = (ba−1)n = 1⟩

= ⟨ba−1⟩ ◦−1 ⟨a⟩ = Zn ◦−1 Z2m .

Furthermore, the elements a and b in π1((A1, n)) acting on the universal cov-
ering space R ×D2 of (A1, n) are defined by a(t, v) = (t − 1

2 , v) and b(t, v) =

(t− 1
2 , ve

2πi
n ).

Note that as elements in either π1((A1, n)) or π1(Oh1((A1, n), (B5,m)))
they are orientation reversing.

Proposition 5.3. Let H be a normal subgroup of π1(Oh1
((A1, n), (B5,m))) =

Zn ◦−1 Z2m isomorphic to Z2, and let Q = π1(Oh1
((A1, n), (B5,m)))/H be the

quotient group. Suppose n ̸= 1 and Q is abelian. Then one of the following is
true:

1) n = 2, either H = ⟨bam−1⟩ or ⟨ba−1⟩, and Q = Z2m;
2) n = 2, H = ⟨am⟩ and Q = Z2 × Zm;
3) n = 4 , H = ⟨(ba−1)2⟩ and Q = Z2 × Z2m.

Proof. Recall from Section 2 that a(ba−1)a−1 = (ba−1)−1. Let w = ba−1, and
suppose H = ⟨wsat⟩ where 0 ≤ s < n and 0 ≤ t < 2m.
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Assume first that s and t are both non-zero. Since H is normal, wsat

= a(wsat)a−1 = w−sat, which implies w2s = 1 or s = n
2 . Note that 1 =

(wn/2at)2 = a2t, for either t even or odd. This implies t = m, and thus
H = ⟨wn/2am⟩.

Suppose m is odd. Then

wn/2am=w(wn/2am)w−1=w(n/2+1)amw−1a−mam = w(n/2+2)am .

This implies w2 = 1, and thus n = 2. We now suppose m is even. Con-
sider the group Q = π1(Oh1

((A1, n), (B5,m)))/H. Since Q is abelian, wH
= (aH)(wH)(aH)−1 = w−1H, which implies w2 ∈ ⟨wn/2am⟩. If w2 ̸= 1,
then w2 = wn/2am, or w(4−n)/2 = am. But this contradicts the semi-direct
product property that ⟨w⟩ ∩ ⟨a⟩ = {1}, and so w2 = 1 and n = 2. In ei-
ther case H = ⟨(ba−1)n/2am⟩ = ⟨(ba−1)am⟩ = ⟨bam−1⟩. Furthermore, Q =
π1(Oh1((A1, n), (B5,m)))/H = ⟨a, b | a2 = b2, a2m = b2m = (ba−1)2 =
1, bam−1 = 1⟩ = ⟨a | a2m = 1⟩ ≃ Z2m.

Suppose s = 0. Then Z2 ≃ H = ⟨at⟩, and t = m. A similar argument as
above shows that if m is either even or odd, then n = 2 and Q = Z2 × Zm.
Now suppose t = 0 and Z2 ≃ H = ⟨ws⟩. It follows that s = n/2, and
Q = Zn/2 ◦−1 Z2m. In order for Q to be abelian, either n = 2, H = ⟨w⟩
and Q = Z2m, or n = 4, H = ⟨w2⟩ and Q = Z2 × Z2m.

Proposition 5.4. Let φ : G→ HomeoPL(RP3) be a finite action such that the
quotient space RP3/φ is the orbifold Oh1

((A1, n), (B5,m)). Then n ̸= 1.

Proof. Let ν : RP3 → RP3/φ = Oh1
((A1, n), (B5,m)) be the covering map, and

note that ν∗(π1(RP3)) is a normal subgroup of π1(Oh1((A1, n), (B5,m))) iso-
morphic to Z2 of finite index. Suppose n = 1, and therefore
π1(Oh1

((A1, n), (B5,m))) ≃ Z2m. This implies that G ≃ Zm, and therefore
m ̸= 1. Thus the maximum order of every exceptional point in RP3/φ is
m. However, Oh1

((A1, n), (B5,m)) has two cone points of order 2m, giving a
contradiction. Thus n ̸= 1.

Corollary 5.5. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is the orbifold Oh1((A1, n), (B5,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 1 Action;
2) n = 2, and m = 2b−1m0 where m0 is odd and b > 1;
3) G ≃ Zm0

× Z2b = Z2m;
4) The covering corresponds to the subgroup ⟨bam−1⟩.

Proof. By Proposition 5.4, n ̸= 1.
Let ν : RP3 → RP3/φ = Oh1((A1, n), (B5,m)) be the covering map, and

note that ν∗(π1(RP3)) = H is a Z2 normal subgroup. By assumption Q =
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π1(Oh1
((A1, n), (B5,m)))/H = G is an abelian group. We now apply Propo-

sition 5.3 and consider each case separately.
Suppose n = 2, H = ⟨bam−1⟩ or ⟨ba−1⟩, and Q = Z2m. Since both bam−1

and am are orientation reversing elements when m is odd, and RP3 is ori-
entable, it follows that H = ⟨bam−1⟩ or ⟨ba−1⟩ and m is even. Viewing ba−1

as an element in π1((A1, n)), we note that ba−1 has a fixed point as an ac-
tion on the universal covering space. Therefore by Corollary 5.2, the covering
of Oh1

((A1, n), (B5,m)) corresponding to ⟨ba−1⟩ is not a manifold. The case
where n = 2, H = ⟨am⟩ and Q = Z2 × Zm is eliminated in a similar way. This
is done by recalling that a in π1((A1, n)) is identified with x in π1((B5,m)),

where x acting on the universal covering space is defined by x(t, v) = (−t, veπi
m ).

Since this map has a fixed point, this case is also eliminated using Corol-
lary 5.2. Now suppose n = 4, H = ⟨(ba−1)2⟩ and Q = Z2 × Z2m. Note that
(ba−1)2(t, v) = (t,−v), and therefore has a fixed point eliminating this case
also.

Thus, the only possible case is n = 2, H = ⟨bam−1⟩ where m is even and
G = Z2m. Write m = 2b−1m0 where b > 1 and m0 is odd. By Theorem 3.3, φ
is conjugate to the Standard Quotient Type 1 Action, which is a Zm0

× Z2b =
Z2m-action on RP3 with quotient space Oh1((A1, n), (B5,m)), completing the
proof.

5.2. Quotient Type 2 : Oh2((A3, n), (B4,m))

The orbifold fundamental group of π1(Oh2
((A3, n), (B4,m))) is

⟨a, b, c | an = b2 = c2m = 1, bab−1 = a−1, cac−1 = a−1, cbc−1 = ba⟩
= (⟨a⟩ ◦−1 ⟨b⟩) ◦ ⟨c⟩ ≃ Dih(Zn) ◦ Z2m

The maps a, b and c are defined on the universal covering space of (A3, n)

by a(t, v) = (t, ve
2πi
n ), b(t, v) = (t, v) and c(t, v) = (t + 1

2 , ve
−πi
n ). Note

that b and c are orientation reversing elements when viewed as elements of
π1(Oh2

((A3, n), (B4,m))).

Proposition 5.6. Let H ≃ Z2 be a normal subgroup of
π1(Oh2

((A3, n), (B4,m))), and let Q = π1(Oh2
((A3, n), (B4,m)))/H be the

quotient group. If Q is abelian, then one of the following is true:
1) n = 1, H = ⟨cm⟩ and Q = Z2 × Zm;
2) n = 2, H = ⟨a⟩, and Q = Z2 × Z2m;
3) n = 1, H = ⟨b⟩ or H = ⟨bcm⟩, and Q = Z2m.

Proof. Recall that cac−1 = a−1, cbc−1 = ba and c2 commutes with both a and
b. As the orbifold fundamental group is a semi-direct product, we may write
H = ⟨asbϵct⟩ where 0 ≤ s < n, ϵ = 0 or 1, and 0 ≤ t < 2m.
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We first assume ϵ = 0, and so H = ⟨asct⟩. Since H is normal, asct =
casctc−1 = a−sct, which indicates a2s = 1. Observe that this implies 1 =
(asct)2 = c2t whether t is either even or odd. There are three cases to consider
depending on the values of s and t.

Suppose s = 0, and therefore t ̸= 0. Since c2t = 1, it follows that t = m
and H = ⟨cm⟩. If n = 1, then Q = Z2 ×Zm proving 1) in the statement of the
proposition. We now assume n ̸= 1. If m is odd, then bcmb−1 = b(ba)−1cm =
acm, showing H = ⟨cm⟩ is not a normal subgroup. If m is even, then H = ⟨cm⟩
is a normal subgroup. However Q = (Zn ◦−1 Z2) ◦Zm is not abelian, removing
this case from consideration.

Assume t = 0, and so s ̸= 0 and n ̸= 1. Furthermore since a2s = 1, it
follows that s = n/2 and H = ⟨an/2⟩. Obviously, Q = (Zn/2 ◦−1 Z2) ◦ Z2m is
abelian, if n = 2. Thus H = ⟨a⟩ and Q = Z2 × Z2m proving 2).

Next, we assume s ̸= 0 and t ̸= 0, and therefore n ̸= 1 and H = ⟨an/2cm⟩.
We claim that the quotient Q is not abelian, and thus this case does not oc-
cur. If m is odd, then by normality of H, we have an/2cm = b(an/2cm)b−1 =
a−n/2bcmb−1 = a−n/2b(ba)−1cm = a−n/2ba−1b−1cm = a−n/2acm. This implies
a = 1 giving a contradiction. Thusmmust be even which we now assume. Since
cm commutes with every element, it follows that the subgroup L = ⟨an/2cm, cm⟩
is also a normal subgroup of π1(Oh2((A3, n), (B4,m))). We obtain an injec-
tion π1(Oh2

((A3, n), (B4,m)))/L → π1(Oh2
((A3, n), (B4,m)))/H = Q. Now

π1(Oh2
((A3, n), (B4,m)))/L is

⟨a, b, c | an=b2=1, bab−1=a−1, cac−1=a−1, cbc−1=ba, cm=1, an/2=1⟩
= (Zn/2 ◦−1 Z2) ◦ Zm

If Q is abelian, then so is π1(Oh2
((A3, n), (B4,m)))/L. This implies n = 2 and

H = ⟨acm⟩. As a consequence, we must have

Q = π1(Oh2
((A3, n), (B4,m)))/H = ⟨b, c | b2 = 1, c2m = 1, cbc−1 = bcm⟩ ,

which is not abelian.
On the other hand, if ϵ = 1, then our Z2 normal subgroup is written as

H = ⟨asbct⟩. Assume first that s = 0, and thus H = ⟨bct⟩. By the normality
condition, bct = c(bct)c−1 = bact, which implies 1 = a and hence n = 1.
Furthermore, 1 = (bct)2 = c2t. Hence H = ⟨bct⟩ where t = 0 or m. As a result,
π1(Oh2

((A3, n), (B4,m))) = Z2 × Z2m with H = ⟨b⟩ or H = ⟨bcm⟩. In both
cases, Q = Z2m proving 3).

We now suppose s ̸= 0, and so n ̸= 1. Since H ⊴ π1(Oh2
((A3, n), (B4,m))),

we have asbct = c(asbct)c−1 = a−s(ba)ct = a−s−1bct, which implies a2s+1 = 1.
Thus n is odd and s = (n− 1)/2. In addition, 1 = (asbct)2 = c2t whether t is
even or odd. Hence t = 0 or m and H = ⟨a(n−1)/2bct⟩. If t is even, then again
by normality a(n−1)/2bct = b(a(n−1)/2bct)b−1 = a(1−n)/2bct, showing an−1 = 1.
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However the order of a is n, giving a contradiction. Thus we may assume t
is odd, therefore t = m ≥ 1, and H = ⟨a(n−1)/2bcm⟩ with m odd. The group
Q = π1(Oh2

((A3, n), (B4,m)))/H = Zn ◦−1 Z2m, and since n > 1 and m ≥ 1
are both odd, this group cannot be abelian. This completes the proof.

Corollary 5.7. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is the orbifold Oh2((A3, n), (B4,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 2 Action;
2) n = 1 and m is odd;
3) G = Z2m;
4) The covering corresponds to the subgroup ⟨bcm⟩.

Proof. Let ν :RP3→RP3/φ = Oh2
((A3, n), (B4,m)) be the covering map. Note

that ν∗(π1(RP3)) = H is a Z2 normal subgroup of π1(Oh2((A3, n), (B4,m))).
Furthermore, the quotient Q = π1(Oh2((A3, n), (B4,m)))/H is isomorphic to
the group G. Furthermore, 2) may also be excluded by Corollary 5.2 since the
element a ∈ π1((A3, n)) has a fixed point.

We now consider 1) of Proposition 5.6. Since c is orientation reversing, it
follows that m must be even. Recall that c is identified with zx ∈ π1((B4,m)),
and c2 = (zx)2 = y. Thus cm = y

m
2 . The element y ∈ π1((B4,m)) acts on

the universal covering space as y(t, v) = (t, ve
2πi
m ). Since this map has a fixed

point, again by Corollary 5.2 we exclude this case. As for case 3), since b is an
orientation reversing element, this leaves us with onlyH = ⟨bcm⟩ and G = Z2m.
Here m must be odd to guarantee an orientation preserving element. Applying
Theorem 3.6, φ is conjugate to the Standard Quotient Type 2 Action, which
is Z2m-action on RP3 with quotient type Oh2((A3, 1), (B4,m)).

5.3. Quotient Type 3: Oh3((A2, n), (B3,m))

From Section 2, the orbifold fundamental group of Oh3((A2, n), (B3,m)) is

π1(Oh3((A2, n), (B3,m)))

= ⟨a, b, c|[a, b] = [a, c] = 1, am = bn = c2 = 1, cbc−1 = b−1⟩
= (⟨b⟩ ◦−1 ⟨c⟩)× ⟨a⟩ = Dih(Zn)× Zm .

The elements a, b and c in π1((A2, n)) acting on the universal covering space

are defined by a(t, v) = (t+ 1, v), b(t, v) = (t, ve
2πi
n ) and c(t, v) = (t, v).

Proposition 5.8. Let H ≃ Z2 be a normal subgroup of
π1(Oh3

((A2, n), (B3,m))), and let Q = π1(Oh3
((A1, n), (B5,m)))/H be the

quotient group. Then one of the following is true where ϵ = 0 or 1:
1) If m and n are both not equal to 1, then m, n are both even and

H = ⟨bn/2cϵam/2⟩. If either Q is abelian or ϵ = 1, then n = 2 and Q = Z2×Zm;
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2) If n = 1 and m ̸= 1 is odd, then H = ⟨c⟩ and Q = Zm;
3) If n = 1 and m ̸= 1 is even, then H is either ⟨c⟩, ⟨am/2⟩ or ⟨cam/2⟩,

with quotient group Q isomorphic to Zm, Z2 × Zm/2 or Zm;
4) If n = 2 and m = 1, then H is either ⟨b⟩, ⟨c⟩ or ⟨bc⟩ and Q = Z2;
5) If n > 2 and m = 1, then n is even, H = ⟨bn/2⟩, and Q = Dih(Zn/2).

Proof. The subgroup H = ⟨bscϵat⟩ where 0 ≤ s < n, ϵ = 0 or 1 and 0 ≤ t < m.
We will assume first thatm and n are both not equal to 1. Since H is normal, it
follows that bscϵat = c(bscϵat)c−1 = b−scϵat. This implies b2s = 1 or s = n/2.
Observe that 1 = (bscϵat)2 is equal to a2t if either ϵ = 0 or 1. Hence t = m/2,
and in either case H = ⟨bn/2cϵam/2⟩. Suppose first that ϵ = 0, and thus
H = ⟨bn/2am/2⟩. If follows that H is normal, and so no new information is
obtained. If Q is abelian, then bH = (cH)(bH)(cH)−1 = cbc−1H = b−1H.
Hence b2 ∈ ⟨bn/2cϵam/2⟩. If b2 ̸= 1, then b2 = bn/2am/2 or b(4−n)/2 = am/2,
giving a contradiction. Thus b2 = 1, n = 2 and Q = Z2 × Zm. Suppose
ϵ = 1. Again by normality of H, it follows that bn/2cam/2 = b(bn/2cam/2)b−1

= bn/2b2cam/2, implying again that b2 = 1 and proving 1).
Since π1(Oh3

((A2, n), (B3,m))) is isomorphic to Z2 × Zm in 2) and 3) and
isomorphic to Z2 × Z2 in 4), the results follow easily. For 5),
π1(Oh3((A2, n), (B3,m))) = Dih(Zn), n > 2 and H = ⟨bscϵ⟩. If ϵ = 0, it
follows that H = ⟨bn/2⟩. However if ϵ = 1, it follows by normality that
bsc = b(bsc)b−1 = bbsc, which implies b2 = 1 and n = 2. This contradicts
n > 2.

Corollary 5.9. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is homeomorphic to Oh3((A2, n), (B3,m)). Then
the following is true:

1) The action is conjugate to the Standard Quotient Type 3 Action;
2) n = 2 and m is even;
3) G = Z2 × Zm;
4) The covering corresponds to the subgroup ⟨bam/2⟩.

Proof. Suppose φ : G→ HomeoPL(RP3) is a finite abelian action such the quo-
tient space RP3/φ = Oh3

((A2, n), (B3,m)), and let ν : RP3 →
Oh3

((A2, n), (B3,m)) be the covering map with ν∗(π1(RP3)) = H. If n =
m = 1, then π1(Oh3((A2, 1), (B3, 1))) ≃ Z2, giving a contradiction. Now
H is a normal subgroup of π1(Oh3((A2, n), (B3,m))) which is isomorphic to
Z2 and corresponds to an orientation preserving element of order 2. The
quotient group Q = π1(Oh3

((A2, n), (B3,m)))/H is abelian. The element
c ∈ π1(Oh3

((A2, n), (B3,m))) is represented by an orientation reversing ele-
ment, and therefore 2) in Proposition 5.8 is eliminated. Furthermore, since
a and b are orientation preserving, H cannot be generated by ⟨bn/2cam/2⟩,
⟨cam/2⟩ or ⟨bn/2c⟩.
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Suppose m and n are both not equal to 1. Then by 1) in Proposition 5.8,
n = 2, H = ⟨bam/2⟩ and Q = Z2 × Zm. We will show that the 3)-5) in
Proposition 5.8 may also be eliminated.

Suppose n = 1, m ̸= 1 is even, and since H must be an orientation preserv-
ing subgroup, H = ⟨am/2⟩ by 3) in Proposition 5.8. Recall that the element

a is identified with the element y in π1((B3,m)), and y(t, v) = (t, e
2πi
m ) has a

fixed point. This eliminates 3) by Corollary 5.2.
Suppose n ̸= 1 is even, and m = 1. Thus by 4) and 5) in Proposition 5.8,

H = ⟨b⟩ or H = ⟨bn/2⟩, and Q = Z2 or Q = Dih(Zn/2) respectively. In the
latter case, in order for Q to be abelian, n must be 2 or 4. Since b has a fixed
point, 4) and 5) are also eliminated by Corollary 5.2.

Since any regular covering of Oh3
((A2, n), (B3,m)) by RP3 corresponds to

the subgroup ⟨bam/2⟩, any such action is conjugate to the Standard Quotient
Type 3 Action on RP3, which is Z2 × Zm.

5.4. Quotient Type 4: The orbifold Oh4((B2, n), (B2,m))

The orbifold fundamental group of Oh4
((B2, n), (B2,m)) is

π1(Oh4
((B2, n), (B2,m))) = ⟨a, b | a2n = b2 = 1, ba2b−1 = a−2, (ab)2m = 1⟩

= (⟨a2⟩ ◦−1 ⟨ab⟩) ◦ ⟨b⟩ = (Zn ◦−1 Z2m) ◦ Z2 .

The maps a and b are defined on the universal covering space of (B2, n) by

a(t, v) = (−t+ 1
2 , ve

πi
n ), b(t, v) = (−t, v).

Proposition 5.10. Let H ≃ Z2 be a normal subgroup of
π1(Oh4

((B2, n), (B2,m))) generated by orientation preserving elements such
that the quotient group Q = π1(Oh4

((B2, n), (B2,m)))/H is an abelian group.
Then one of the following is true:

1) n = m = 2, H = ⟨a2(ab)2⟩ and Q = Z4 × Z2;
2) n = 1, m = 2, H = ⟨(ab)2⟩ and Q = Z2 × Z2;
3) n = 2, m = 1, H = ⟨a2⟩ and Q = Z2 × Z2;
4) n = m = 1, H = ⟨b⟩ and Q = Z2.

Proof. It is convenient to let x = a2, y = ab and z = b. Note that yxy−1 = x−1,
zxz−1 = x−1 and zyz−1 = x−1y−1. Let H = ⟨xsytzϵ⟩ where 0 ≤ s < n,
0 ≤ t < 2m and ϵ = 0 or 1. Since y is orientation reversing, x and z are
orientation preserving and H is generated by orientation preserving elements,
it follows that t must be even. This implies xytx−1 = yt and zytz−1 = y−t.

Case I: H = ⟨xsyt⟩.
Assume first that s ̸= 0 and t ̸= 0. Since 1 = (xsyt)2 = x2sy2t, we ob-

tain s = n
2 , t = m, and thus H = ⟨xn

2 ym⟩. It follows that ⟨xn
2 ym⟩ is

a normal subgroup, and thus no new information is obtained. Being that
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π1(Oh4
((B2, n), (B2,m)))/H is abelian, we have that xH = yHxHy−1H =

x−1H. This implies x2 ∈ ⟨xn
2 ym⟩. The equation x2 = x

n
2 ym is impossible,

and so x2 = 1 showing n = 2. This shows thatπ1(Oh4
((B2, n), (B2,m))) =

(Z2 × Z2m) ◦ Z2, and so Q = π1(Oh4((B2, n), (B2,m)))/H = Z2m ◦ Z2. The
action given in the quotient group Q is zyz−1 = ym−1. In order for Q to be
abelian, m = 2, showing 1) in the statement of the proposition.

Suppose s = 0, t ̸= 0, and so H = ⟨yt⟩. We will show that this gives 2) in
the proposition. It follows that t = m which is even, and so H is always normal
giving no new information. Now Q = (Zn ◦−1Zm)◦Z2 where zyz−1 = x−1y−1.
In order for Q to be abelian, x = 1 and so n = 1, and m = 2.

Next assume that s ̸= 0, t = 0 and so H = ⟨xs⟩. We obtain s = n
2 and

H = ⟨xn
2 ⟩. Furthermore, Q = (Zn

2
◦−1 Z2m) ◦Z2. In order for Q to be abelian,

n = 2 and m = 1, showing 3) in the statement of the proposition.

Case II: H = ⟨xsytz⟩.
Suppose t ̸= 0. It follows that 1 = (xsytz)2, giving no new information.

A computation shows y(xsytz)y−1 = x−s+1yt+2z, which must equal xsytz.
Therefore y2 = 1 and m = 1, contradicting t even.

Assume t = 0, s ̸= 0 and n ̸= 1, and thus H = ⟨xsz⟩. A computation
shows y(xsz)y−1 = x−s+1y2z, which must equal xsz implying x2s−1 = 1. In
addition, we must also have xsz = z(xsz)z−1 = x−sz, giving x2s = 1. This
implies x = 1, contradicting n ̸= 1.

We now assume t = 0, s = 0, and thus H = ⟨z⟩. By normality, z = yzy−1

= y2xz, which implies x = 1 and y2 = 1. Thus n = 1 and m = 1, giving us 4)
of the proposition and completing the proof.

Corollary 5.11. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is the orbifold Oh4

((B2, n), (B2,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 4 Action;

2) n = m = 2;

3) G = Z4 × Z2;

4) The covering corresponds to the subgroup ⟨a2(ab)2⟩.

Proof. Let ν : RP3 → RP3/φ be an orbifold covering map and ν∗(π1(RP3)) =
H, a Z2-normal subgroup of π1(Oh4((B2, n), (B2,m))) with quotient
π1(Oh4((B2, n), (B2,m)))/H an abelian group. Applying Proposition 5.10,
suppose 2) or 3) holds. Then RP3/φ is either Oh4

((B2, 1), (B2, 2)) or
Oh4

((B2, 2), (B2, 1)) and G = Z2 × Z2. In either case, there is a cone point of
order 4 in the quotient space RP3/φ. This would imply that there is an element
in G of order 4, giving a contradiction. Since b defined on the universal cov-
ering space of (B2, n) has a fixed point, 4) is also eliminated by Corollary 5.2.
This leaves 1). Now any regular covering of Oh4((B2, n), (B2,m)) by RP3 cor-
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responds to the subgroup ⟨a2(ab)2⟩. Therefore, any such action is conjugate to
the Standard Quotient Type 4 Action on RP3, which is Z4 × Z2.

5.5. Quotient Type 5: The orbifold Oh5((B6, n), (B6,m))

Recall the orbifold fundamental group of π1(Oh5
((B6, n), (B6,m))) is

⟨a, b, c, d | a2 = b2 = c2 = (bc)n = d2 = 1,

[a, b] = [a, c] = [b, d] = [c, d] = 1, (ad)m = 1⟩
= (⟨bc⟩ ◦−1 ⟨c⟩)× (⟨ad⟩ ◦−1 ⟨a⟩) = (Zn ◦−1 Z2)× (Zm ◦−1 Z2) .

We note that the generators a, b, c and d are all orientation reversing elements.
The maps on the universal covering space of (B6, n) are defined as follows:

a(t, v) = (−t, v), b(t, v) = (t, v), and c(t, v) = (t, ve
−2πi

n ) and d(t, v) = (−t −
1, v).

Proposition 5.12. Let H ≃ Z2 be a normal subgroup of
π1(Oh5((B6, n), (B6,m))) generated by orientation preserving elements such
that the quotient group Q = π1(Oh5

((B6, n), (B6,m)))/H is an abelian group.
Then the following is true:

1) n = 1 or 2 and m = 2 or 4, H = ⟨(ad)m
2 ⟩ and Q is either

Z2 × Z2, Z2 × Z2 × Z2 or Z2 × Z2 × Z2 × Z2;
2) n = 2 or 4 and m = 1 or 2, H = ⟨(bc)n

2 ⟩ and Q is either
Z2 × Z2, Z2 × Z2 × Z2 or Z2 × Z2 × Z2 × Z2;

3) n = m = 2, H = ⟨(bc)(ad)⟩ and Q = Z2 × Z2 × Z2;
4) n = m = 2, H = ⟨cd⟩ and Q = Z2 × Z2 × Z2;
5) n = 2 and m = 1 or 2, H = ⟨ba⟩ and Q is either Z2×Z2 or Z2×Z2×Z2;
6) n = 1 or 2, m = 1 or 2, H = ⟨ca⟩ and Q is either Z2, Z2 × Z2, or

Z2 × Z2 × Z2;
7) n = m = 2, H = ⟨bd⟩ and Q = Z2 × Z2 × Z2.

Proof. The group H = ⟨(bc)scϵ1(ad)taϵ2⟩ where 0 ≤ s < n, 0 ≤ t < m and
ϵi = 0 or 1. Since both (bc) and (ad) are orientation preserving, a and c
are both orientation reversing, the two cases that need to be considered are
ϵ1 = ϵ2 = 0 or ϵ1 = ϵ2 = 1.

Case I: H = ⟨(bc)s(ad)t⟩.
Suppose s = 0 and t ̸= 0. This implies that H = ⟨(ad)m

2 ⟩ and the quotient
group Q ≃ (Zn ◦−1 Z2)× (Zm

2
◦−1 Z2). If Q is abelian, we must have n = 1 or

2 and m = 2 or 4.
If s ̸= 0 and t = 0, then H = ⟨(bc)n

2 ⟩. The quotient group Q ≃ (Zn
2
◦−1

Z2)× (Zm ◦−1 Z2), and thus if Q is abelian n = 2 or 4 and m = 1 or 2.
We now assume s ̸= 0 and t ̸= 0. Since H = ⟨(bc)s(ad)t⟩ ≃ Z2, and bc and

ad commute, we have 1 = ((bc)s(ad)t)2 = (bc)2s(ad)2t. This implies s = n
2 ,
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t = m
2 and H = ⟨(bc)n

2 (ad)
m
2 ⟩. Clearly H is normal. In the abelian quotient Q,

we have bH = bcHcH = cHbcH = cbcH, which implies (bc)2 ∈ H. This could
only happen if (bc)2 = 1; hence n = 2. Similarly dH = aHadH = adHaH
= adaH, which implies (ad)2 ∈ H and m = 2. Thus H = ⟨(bc)(ad)⟩ and
n = m = 2.

Case II: H = ⟨(bc)sc(ad)ta⟩.
Suppose s = 0 and t ̸= 0. In this case H = ⟨c(ad)ta⟩. By normality, c(ad)ta

= (ad)[c(ad)ta](ad)−1 = c(ad)t(ad)2a, which implies (ad)2 = 1, m = 2 and
t = 1. Likewise, c(ad)ta = (bc)[c(ad)ta](bc)−1 = (bc)2c(ad)ta shows (bc)2 = 1
and n = 2. Therefore in this case, π1(Oh5

((B6, 2), (B6, 2))) is abelian and
H = ⟨cd⟩.

If s ̸= 0 and t = 0, then H = ⟨(bc)sca⟩. Conjugating the generator by
bc and using the argument from the previous case, shows that (bc)2 = 1, and
therefore n = 2, s = 1 and H = ⟨ba⟩. In order for Q to be abelian m = 1 or 2.

We consider the case where s = t = 0 and H = ⟨ca⟩. Suppose n ̸= 1. By
computing, we obtain (bc)(ca)(bc)−1 = bcba, and by normality this must equal
ca. Hence we obtain (bc)2 = 1 which implies n = 2. Similarly, if m ̸= 1, then
(ad)(ca)(ad)−1 = ca(ad)−1(da) = ca(ad)−2. By normality, this must equal ca,
and thus (ad)−2 = 1 implying m = 2. We conclude that n = 1 or 2, and m = 1
or 2.

Finally consider the case s ̸= 0 and t ̸= 0 and H = ⟨(bc)sc(ad)ta⟩. By
conjugating the generator by bc and ad, we conclude as above that n = m = 2.
Thus the group is abelian and H = ⟨bd⟩.

Corollary 5.13. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is the orbifold Oh5((B6, n), (B6,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 5 Action;
2) n = m = 2;
3) G = Z2 × Z2 × Z2;
4) The covering corresponds to the subgroup ⟨(bc)(ad)⟩.

Proof. We obtain the following maps: (bc)(t, v) = (t, ve
2πi
n ), (cd)(t, v) = (−t−

1, ve−
2πi
n ), (ba)(t, v) = (−t, v), (ca)(t, v) = (−t, ve− 2πi

n ) and (bd)(t, v) = (−t−
1, v). Note that all these maps have fixed points, and therefore 2) and 4) - 7)
in Proposition 5.12 may be excluded by Corollary 5.2.

The element ad in π1((B6, n)) is identified (See Appendix) with the ele-

ment yz in π1((B6,m)), and (yz)(t, v) = (t, ve
2πi
n ) which has a fixed point.

Thus 1) in Proposition 5.12 is excluded like the others above. Hence, the
only remaining case in Proposition 5.12 is 3). Since any regular covering of
Oh5

((B6, n), (B6,m)) by RP3 corresponds to the subgroup⟨(bc)(ad)⟩, any such
action is conjugate to the Standard Quotient Type 5 Action on RP3 which is
Z2 × Z2 × Z2.
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5.6. Quotient Type 6: The orbifold Oh6((B7, n), (B7,m))

The fundamental group of Oh6
((B7, n), (B7,m)) is

⟨a, b, c | a2 = b2n = (ab−1ab)m = c2 = 1, [a, b2] = [a, c] = 1, cbc−1 = b−1⟩
= (⟨ab−1ab⟩ ◦−1 ⟨a⟩) ◦ (⟨b⟩ ◦−1 ⟨c⟩) = (Zm ◦−1 Z2) ◦ (Z2n ◦−1 Z2) .

The maps a, b and c act on the universal covering space of (B7, n) as follows:

a(t, v) = (−t−1, v), b(t, v) = (−t, veπi
n ), c(t, v) = (t, v). Note also that bab−1 =

b−1ab. For convenience if we let d = ab−1ab, then bdb−1 = d−1, bab−1 = ad
and cdc−1 = d.

Proposition 5.14. Let H ≃ Z2 be a normal subgroup of
π1(Oh6((B7, n), (B7,m))) generated by orientation preserving elements such
that the quotient group Q = π1(Oh6((B7, n), (B7,m)))/H is an abelian group.
Then the following is true:

1) n = 2, m = 1, H = ⟨b2⟩ and Q = Z2 × Z2 × Z2;
2) n = 1, m = 2, H = ⟨d⟩ and Q = Z2 × Z2 × Z2;
3) n = m = 1, H is one of the groups ⟨ac⟩, ⟨ab⟩, ⟨bc⟩ and Q = Z2 × Z2.

Proof. The group H = ⟨dsaϵ1btcϵ2⟩ ≃ Z2 where 0 ≤ s < m, 0 ≤ t < 2n and
ϵi = 0 or 1. Since a, b and c are orientation reversing elements, it follows that
d is orientation preserving. Since H is an orientation preserving subgroup, we
have the following cases to consider: I) t is even, and either ϵ1 = ϵ2 = 0 or
ϵ1 = ϵ2 = 1, II) t is odd, and either ϵ1 = 1 and ϵ2 = 0 or ϵ1 = 0 and ϵ2 = 1.

Case I: t is even.
We consider first the situation when ϵ1 = ϵ2 = 0, and thus H = ⟨dsbt⟩.

Assume s ̸= 0 and t ̸= 0. Since t is even, it follows that bt commutes with d,
and thus 1 = (dsbt)2 = d2sb2t. This implies s = m

2 , t = n andH = ⟨dm
2 bn⟩. One

can verify that H is indeed a normal subgroup. Since the quotient Q is abelian,
we have dH = (bH)(dH)(bH)−1 = d−1H, or d2 ∈ ⟨dm

2 bn⟩. This is impossible
unless d2 = 1. Thus m = 2, the fundamental group π1(Oh6((B7, 2), (B7,m)))
= (Z2 × Z2) ◦ (Z2n ◦−1 Z2) and H = ⟨dbn⟩. Now Q = Z2 × (Z2n ◦−1 Z2),
which is not abelian unless n = 1. However in this case t = n is even giving a
contradiction, and so this subcase cannot happen. Therefore, in this case either
s = 0 or t = 0. Suppose s = 0, and thus H = ⟨bt⟩. It follows that t = n and
H is always a normal subgroup. Furthermore, Q = (Zm ◦−1 Z2) ◦ (Zn ◦−1 Z2)
being abelian implies m =1 and n = 2, and thus π1(Oh6((B7, 2), (B7, 1))) =
Z2 × (Z4 ◦−1 Z2). A similar argument shows that if t = 0, then n = 1, m = 2,
H = ⟨d⟩ and π1(Oh6

((B7, 2), (B7, 1))) = (Z2 × Z2) ◦ (Z2 × Z2).
Assume ϵ1 = ϵ2 = 1 and hence H = ⟨dsabtc⟩. If s = 0 and H = ⟨abtc⟩,

then we always have 1 = (abtc)2 giving no new information. By normality,
abtc = b(abtc)b−1 = adbt+2c, which implies m = 1, b2 = 1 and n = 1. Since
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t is even, we must have t = 0. Thus n = m = 1, π1(Oh6
((B7, 1), (B7, 1))) =

Z2 ×Z2 ×Z2 and H = ⟨ac⟩. We now suppose t = 0 and H = ⟨dsac⟩. It always
follows that 1 = (dsac)2. By normality, dsac = b(dsac)b−1 = d−s−1ab2c =
d−s−1b2ac. This implies b2 = 1, n = 1 and s = m−1

2 . Conjugating by a yields

d
m−1

2 ac = a(d
m−1

2 ac)a−1 = d
1−m

2 ac, which implies d =1 and m = 1. The two
outcomes give us 3) in the statement of the theorem. We now suppose s ̸= 0
and t ̸= 0. In this case it always follows that 1 = (dsabtc)2, so we do not obtain
any new information. By normality, we must have dsabtc = b(dsabtc)b−1 =
d−s−1abt+2c, which implies s = m−1

2 , b2 = 1 and n = 1. Since t is even, t = 0
giving a contradiction.

Case II: t is odd.
We suppose ϵ1 = 1 and ϵ2 = 0, and thus H = ⟨dsabt⟩. If s = 0 and thus

H = ⟨abt⟩, then 1 = (abt)2 = db2t. This implies d = 1, m = 1 and t = n.
Thus the orbifold fundamental group is Z2× (Z2n ◦−1 Z2) and Q = Z2n ◦−1 Z2.
Now Q is abelian only if n = 1. Thus n = m = 1, π1(Oh6

((B7, 1), (B7, 1))) =
Z2 × (Z2 × Z2) and H = ⟨ab⟩. Suppose s ̸= 0 and H = ⟨dsabt⟩. Since H ≃ Z2,
1 = (dsabt)2 = d2s+1b2t, so s = m−1

2 implying m is odd, and t = n which is

also odd. Thus H = ⟨dm−1
2 abn⟩, and one can check that this is always a normal

subgroup. Suppose m ̸= 1. Since Q is abelian, we have dH = (bH)(dH)(bH)−1

= d−1H, implying d2 ∈ H. It follows that d2 = 1 and m = 2. However
m is odd giving a contradiction. Thus m = 1, π1(Oh6((B7, n), (B7, 1))) =
Z2 × (Z2n ◦−1 Z2) and H = ⟨abn⟩. Now Q = Z2n ◦−1 Z2, which is abelian only
if n = 1. Thus in this case n = m = 1 to obtain π1(Oh6

((B7, 1), (B7, 1))) =
Z2 × (Z2 × Z2) and H = ⟨ab⟩.

Assume now that ϵ1 = 0 and ϵ2 = 1, and thus H = ⟨dsbtc⟩. If s = 0
and H = ⟨btc⟩, then it always follows that 1 = (btc)2. By normality, btc =
a(btc)a−1 = dbtc. Thus d = 1, m = 1 and the orbifold fundamental group is
Z2× (Z2n ◦−1Z2). Again by normality, btc = c(btc)c−1 = b−tc, implying t = n.
Furthermore, bnc = b(bnc)b−1 = bn+2c. This implies b2 = 1 and n = 1. Thus
n = m = 1 so that π1(Oh6

((B7, 1), (B7, 1))) = Z2 × (Z2 × Z2) and H = ⟨bc⟩.
We now suppose s ̸= 0. A computation shows that (dsbtc)2 = 1 is always
true. Suppose m ̸= 1. By normality, dsbtc = a(dsbtc)a−1 = d−s+1btc, and

thus s = m+1
2 ̸= 0 and H = ⟨dm+1

2 btc⟩. Again by normality, we have d
m+1

2 btc

= b(d
m+1

2 btc)b−1 = d
−m−1

2 bt+2c, which implies dm+1 = 1. Hence d = 1 and
m = 1, contradicting the fact that m ̸= 1. Hence m = 1 and H = ⟨btc⟩.
Using normality, we have btc = b(btc)b−1 = bt+2c, or b2 = 1. Thus n = 1,
π1(Oh6((B7, 1), (B7, 1))) = Z2 × Z2 × Z2 and H = ⟨bc⟩.

Corollary 5.15. Let φ : G → HomeoPL(RP3) be a finite abelian action such
that the quotient space RP3/φ is the orbifold Oh6

((B7, n), (B7,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 6 Action;
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2) n = m = 1;
3) G = Z2 × Z2;
4) The covering corresponds to the subgroup ⟨ab⟩.

Proof. Note that in 1) of Proposition 5.14, b2(t, v) = (t,−v), and in 3) ac(t, v) =
(−t−1, v) and bc(t, v) = (−t,−v). Since they have fixed points, these cases are
excluded by Corollary 5.2. In 2) of Proposition 5.14, d = ab−1ab ∈ π1((B7, 1))

is identified with y2 ∈ π1((B7, 2)) (See Appendix). Since y(t, v) = (−t, veπi
m ),

we see that ym has a fixed point, and we may exclude this case. This leaves only
the 3) where n = m = 1 and the subgroup ⟨ab⟩. Since any regular covering
of Oh6

((B7, n), (B7,m)) by RP3 corresponds to the subgroup⟨ab⟩, any such
action is conjugate to the Standard Quotient Type 6 Action on RP3 which is
Z2 × Z2.

5.7. Quotient Type 7: The orbifold Oh7((B1, n), (B8,m))

Recall that the orbifold fundamental group is

π1(Oh7((B1, n), (B8,m)))

= ⟨a, b, c | an = b2 = c2 = 1, bab−1 = a−1, [a, c] = 1, (cb)2m = 1⟩
= ⟨a⟩ ◦ (⟨cb⟩ ◦−1 ⟨c⟩) = Zn ◦Dih(Z2m) .

It follows that (cb)a(cb)−1 = a−1. From the Appendix, that maps a, b, c on the
universal covering space of (B1, n) are defined as follows: a(t, v) = (t, ve2πi/n),
b(t, v) = (−t, v), and c(t, v) = ( 12 − t, v).

Proposition 5.16. Let H ≃ Z2 be a normal subgroup of
π1(Oh7

((B1, n), (B8,m))) generated by orientation preserving elements such
that the quotient group Q = π1(Oh7

((B1, n), (B8,m)))/H is an abelian group.
Then the following is true:

1) n = 2, m = 1, H is ⟨a⟩, ⟨b⟩ or ⟨ab⟩ and Q is Z2 × Z2;
2) n = 4, m = 1, H = ⟨a2⟩ and Q is Z2 × Z2 × Z2;
3) n = 1 or 2, m = 2, H = ⟨(cb)2⟩ and Q is either Z2×Z2 or Z2×Z2×Z2.

Proof. The subgroup H = ⟨as(cb)tcϵ⟩ where 0 ≤ s < n, 0 ≤ t < 2m and
ϵ = 0 or 1. Since only c is orientation reversing, the elements cb and c are
orientation reversing. Thus there are two cases to consider, t even and ϵ = 0,
or t odd and ϵ = 1.

Case I: t is even, ϵ = 0, and thus H = ⟨as(cb)t⟩.
Since t is even, we have 1 = (as(cb)t)2 = a2s(cb)2t. Suppose first that

t = 0 and s ̸= 0, and thus H = ⟨as⟩. It follows that s = n
2 , H is normal and

Q = Zn
2
◦ (Z2m ◦−1 Z2). In order for Q to be abelian, we must have n

2 = 1 or 2
and m = 1. This gives us 1) and 2) in the statement of the proposition.
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Suppose t ̸= 0 and s = 0, and so H = ⟨(cb)t⟩. We see that t = m which is
even, and thus a and (cb)m commute. This implies H is always normal. Now
Q = Zn ◦ (Zm ◦−1 Z2), which is only abelian if both n and m equal 1 or 2.
Since m is even, m = 2. and this gives 3). Assume next that t ̸= 0 and
s ̸= 0. It follows that s = n

2 and t = m where m is even. A check shows that
H = ⟨an

2 (cb)m⟩ is always normal. Since Q is abelian, we must have a−1H =
(cbH)(aH)(cbH)−1 = aH, which implies a2 ∈ ⟨an

2 (cb)m⟩. This is impossible
unless a2 = 1, and thus n = 2. This shows H = ⟨a(cb)m⟩, and Q = Z2m ◦−1Z2.
This can only be abelian if m = 1, which contradicts m being even. So this
sub-case cannot happen.

Case II: t is odd, ϵ = 1, and thus H = ⟨as(cb)tc⟩.
It is always the case that (as(cb)tc)2 = 1, since t is odd. Suppose s = 0,

and so H = ⟨(cb)tc⟩. Now a(cb)tca−1 = a2(cb)tc, which must equal (cb)tc by
normality. This implies n = 2. Furthermore, (cb)((cb)tc)(cb)−1 = (cb)t+2c,
which by normality must equal (cb)tc. This implies (cb)2 = 1 and m = 1.
Thus π1(Oh7

((B1, 2), (B8, 1))) = Z2 × (Z2 ×Z2) and H = ⟨(cb)c⟩ = ⟨b⟩, giving
1). We now assume s ̸= 0, and thus H = ⟨as(cb)tc⟩. A computation shows
a(as(cb)tc)a−1 = as+2(cb)tc and (cb)((as(cb)tc)(cb)−1 = a−s(cb)t+2c. By nor-
mality, it must be the case that a2 = 1 and (cb)2 = 1. Thus n = 2 and m = 1,
which implies H = ⟨a(cb)c⟩ = ⟨ab⟩, giving us 1).

Corollary 5.17. There is no abelian action on RP3, whose quotient space is
the orbifold Oh7

((B1, n), (B8,m)).

Proof. By Proposition 5.16, we need only consider the subgroups listed there.
Observe that the maps a, a2, b and ab have fixed points in the universal cover
of (B1, n). So these cases may be excluded by Corollary 5.2. The remaining
case to consider is the subgroup generated by (cb)2 where n = 1 or 2 and
m = 2. From the Appendix, we see that the elements c and b in π1((B1, n))
are identified with the elements y and yz in π1((B8, 2)) respectively. Thus
(cb)2 is identified with (y2z)2. The maps y and z acting on the universal cover

R×D2 of (B8, 2) are defined by y(t, v) = (t, v) and z(t, v) = (1−t, veπi
2 ). Since

y2 = 1, we have (cb)2 identified with z2. Note that z2 has a fixed point. Again
applying Corollary 5.2 proves the result.

6. Main results

In the last section of this paper, we summarize the main results.

Theorem 6.1. Let φ : G → HomeoPL(RP3) be an orientation reversing finite
abelian action. Then one of the following cases is true:

1) G = Z2bm where b>1, m is odd and RP3/φ is Oh−1
1
((B5, 2b−1m), (A1, 2));

2) G = Z2m, m is odd and RP3/φ is t Oh−1
2
((B4,m), (A3, 1));

34



ORIENTATION REVERSING FINITE ABELIAN ACTIONS (31 of 44)

3) G = Zm × Z2, m even and RP3/φ is Oh3
((A2, 2), (B3, ,m));

4) G = Z4 × Z2, and RP3/φ is Oh4
((B2, 2), (B2, 2));

5) G = Z2 × Z2 × Z2 and RP3/φ is t Oh5
((B6, 2), (B6, 2));

6) G = Z2 × Z2 and RP3/φ is t Oh6((B7, 1), (B7, 1)).
Furthermore, in each individual case i), where 1 ≤ i ≤ 6, φ is equivalent to the
Standard Quotient Type i Action.

Proof. Let φ : G → HomeoPL(RP3) be an orientation reversing finite abelian
action. By Corollary 4.2, φ splits and preserves the sides of the splitting.
Write RP3 = V1 ∪V2, where each Vi for i = 1, 2 is a φ(G)-invariant solid torus.
The non-orientable 3-orbifold Vi/φ(G) is one of the orbifolds (A1, n),...,(A3, n),
(B1, n),...,(B8, n). This implies that if ν : RP3 → RP3/φ(G) is the orbifold
covering, then RP3/φ(G) is Oξ(X,Y ) where X and Y are any of the orb-
ifolds (A1, n),...,(A3, n),(B1, n),...,(B8, n) and ξ : ∂X → ∂Y is some home-
omorphism. Since ν∗(π1(RP3)) has finite index in π1(Oξ(X,Y )), it follows
that π1(Oξ(X,Y )) is finite. By Theorem 2.1, Oξ(X,Y ) is one of the seven
orbifolds listed in the chart. Corollary 5.17 states there is no orientation
reversing finite abelian action on RP3 whose quotient space is the orbifold
Oh7

((B1, n), (B8,m)), thus excluding the seventh orbifold in the chart. Apply-
ing Corollaries 5.5, 5.7, 5.9, 5.11, 5.13 and 5.15 to the first six orbifolds proves
the result.

Appendix

In this Appendix, we will define the orbifolds (A1, n), ..., (A3, n), (B1, n), ...,
(B8, n) along with their fundamental groups. Since the fundamental groups of
each boundary surjects onto the fundamental group of their orbifolds, we use
the same letters for both presentations of the fundamental groups. In addition,
if X and Y are orbifolds from this list having homeomorphic boundaries, we
will identify the orbifolds Oξ(X,Y ) obtained by identifying ∂X to ∂Y via ξ
which have finite fundamental groups.

In describing the orbifolds Oξ(X,Y ), we will give the details forX = (A1, n)
and Y = (B5,m) by providing the definition of the lift of the gluing map
ξ : ∂X → ∂Y to the universal cover of each boundary component. In addition,
we obtain a description of the lift of the gluing map on the orientable cov-
ers ∂V (n) and ∂V (m) of ∂(A1, n) and ∂(B5,m) respectively. For subsequent
orbifolds, we just describe the lift of the gluing map to the covers ∂V (n) and
∂V (m) and refer the reader to [13] for the details.

We start by considering the orbifolds which are double covered by (A0, n).
It will be convenient to define the 2-dimensional orbifolds D2(n) and ∆(n). Let
ro be a rotation and re be a reflection on D2, defined by ro(ρe

iθ) = ρei(θ+2π/n)

and re(ρe
iθ) = ρe−iθ. Now D2/⟨ro⟩ is the orbifold D2(n) whose underlying

space is a disk, and has a cone point of order n in its center. The map re
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induces a reflection re on D2(n), and D2(n)/⟨re⟩ is the orbifold denoted by
∆(n). We may be parameterize it as {ρeiθ | 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π} where the
point (0, 0) is a coner-reflector point of order n, and {ρeiθ | θ = 0 or π} is the
set of mirror points.

In addition, we need to define the 3-dimensional orbifolds B3(n), C(P2, 2n)
and Zh

n . Let B3 = {(x, y, z) | x2 + y2 + z2 ≤ 1} and for any point (x, y, z) ∈ B3

using spherical coordinates, we have x = ρ sinϕ · cosθ, y = ρ sinϕ · sinθ and
z = ρ cosϕ where 0 ≤ ρ ≤ 1. We begin by defining a rotation of order n on B3

as follows:

r(x, y, z) = (ρ sinϕ · cos(θ + 2π
n ), ρ sinϕ · sin(θ + 2π

n ), ρ cosϕ) .

Note that r fixes the line segment {(x, y, z) ∈ B3 | x = 0, y = 0, −1 ≤ z ≤ 1}.
We define the antipodal map i on B2 by i(x, y, z) = (−x,−y,−z). In terms

of the spherical coordinate system, i(x, y, z) = (ρ sin(ϕ + π) · cosθ, ρ sin(ϕ +
π) · sinθ, ρ cos(ϕ+ π)). Observe that i ◦ r ◦ i−1 = r.

Let B3(n) be the orbifold B3/⟨r⟩, which is a 3-ball with an arc of excep-
tional points of order n. The induced involution on B3(n) is designated by i,
and denote C(P2, 2n) to be the 3-orbifold B3(n)/⟨i⟩. The underlying space of
C(P2, 2n) is the cone over the projective plane P2, which is P2×[0, 1]/(w, 0) ≃ ∗,
where ∗ indicates a point. The exceptional set consists of an arc where all points
except one endpoint have order n, and the other endpoint has order 2n. The
boundary of this orbifold, ∂(C(P2, 2n)), consists of a projective plane with one
cone point of order n.

Let Zh
n be the orbifold B3(n)/⟨re⟩ where the reflection re : B3(n) → B3(n) is

defined by re(x, y, z) = (x, y,−z). The underlying space of Zh
n is a 3-ball, with

a half of its boundary is a mirrored disk, together with an arc of exceptional
points each of order n except for one endpoint meeting this mirrored disk at a
point of order 2n. Let s : B3 → B3 be the spin involution about the y-axis which
we defined by s(x, y, z) = (ρ sin(ϕ+π)·cos(−θ), ρ sin(ϕ+π)·sin(−θ), ρ cos(ϕ+
π)). Notice that srs−1 = r−1, and thus s induces an involution s on B3(n).
Let B3(n, 2, 2) = B3(n)/⟨s⟩. The underlying space of B3(n, 2, 2) is a ball with
a properly embedded tree having three edges meeting at one point of order 2n,
with two of the edges labeled with a 2 and the remaining edge labeled with
an n.

Orbifold (A1, n): It will be convenient to view the elements of the fundamental
groups as acting on the universal covering spaces of ∂(A1, n) and (A1, n). Let
R2 be the plane and define ã, b̃ : R2 → R2 by ã(t, s) = (t− 1

2 ,−s) and b̃(t, s) =
(t − 1

2 ,−s +
1
n ). Note that ã2 = b̃2, and (ãb̃−1)n(t, s) = (t, s − 1). If η : R2 →

R2/⟨(ãb̃−1)n⟩ = R×S1, then η(t, s) = (t, e2πis) and the induced maps a, b : R×
S1 → R × S1 are defined by a(t, v) = (t − 1

2 , v) and b(t, v) = (t − 1
2 , ve

2πi
n ).

These maps extend to R × D2, which is the universal covering of (A1, n),
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and we will use the same labels for the extensions. We obtain a covering
p1 : R×D2 → R×D2/⟨a2, ab−1⟩ = V (n) defined by p1(t, ρe

iθ) = (e2πit, ρeinθ).
The induced map a1 on V (n) is defined by a1(u, v) = (−u, v) and V (n)/⟨a1⟩ =
(A1, n). The orbifold (A1, n) is a solid Klein bottle with a simple closed curve
core of exceptional points of type n. The boundary ∂(A1, n) is a Klein bottle
with fundamental group π1(∂(A1, n)) = ⟨a, b | a2 = b2⟩. Since a(ab−1)a−1 =
a2b−1a−1 = b2b−1a−1 = ba−1 = (ab−1)−1, it follows that ab−1 is a meridian
curve. Thus the orbifold fundamental group of (A1, n) is

π1((A1, n)) = ⟨a, b | a2 = b2, (ab−1)n = 1⟩ and

π1(∂(A1, n)) = ⟨a, b | a2 = b2⟩ .

Orbifold (B5,m): Let D1 and D2 be two disjoint disks in ∂B3(m) contain-

ing the exceptional points. We consider the orbifold C(P2, 2m) ∪ B3(m) ∪
C(P2, 2m) = (B5,m) where we glue D1 to the boundary of one copy of
C(P2, 2m) and D2 to the boundary of the other copy of C(P2, 2m) so that
the exceptional sets match up. Furthermore, ∂(B5,m) is a Klein bottle whose
fundamental group surjects to the orbifold fundamental group of (B5,m). It
can be seen that if f : V (m) → V (m) is the map defined by f(u, v) = (u,−v),
then V (m)/⟨f⟩ = (B5,m).

We view the generators of the fundamental groups acting on the universal
covering space. Let x̃, ỹ : R2 → R2 be defined by x̃(t, s) = (−t, s − 1

2m ) and
ỹ(t, s) = (−t+1, s− 1

2m ). Observe that x̃2 = ỹ2 and x̃−2m(t, s) = (t, s+1). We
obtain a covering η : R2 → R2/⟨x̃−2m⟩ = R× S1 defined by η(t, s) = (t, e2πis).

The induced maps x and y on R× S1 are defined by x(t, v) = (−t, ve−πi
m ) and

y(t, v) = (−t+1, ve
−πi
m ). These maps extend to R×D2, which is the universal

covering of (B5,m). Let p1 : R × D2 → R × D2/⟨yx−1, x−2⟩ = V (m) be the
covering map defined by p1(t, v) = (e2πit, vm). The induced map x1 : V (m) →
V (m) is defined by x1(u, v) = (u,−v), and V (m)/⟨x1⟩ = (B5,m). The orbifold
fundamental group of (B5,m) is

π1((B5,m)) = ⟨x, y | x2 = y2, x2m = y2m = 1⟩ and

π1(∂(B5,m)) = ⟨x, y | x2 = y2⟩ .

Orbifold Oh1
((A1, n), (B5,m)): Recall that the maps defining the fundamen-

tal groups ã, b̃, x̃, ỹ : R2 → R2 are defined as follows: ã(t, s) = (t − 1
2 ,−s),

b̃(t, s) = (t− 1
2 ,−s+

1
n ), x̃(t, s) = (−t, s− 1

2m ) and ỹ(t, s) = (−t+ 1, s− 1
2m ).

We obtain covering maps λ1 : R2 → R2/⟨ã2, ãb̃−1⟩ = T1 = ∂(A0, n) and
λ2 : R2 → R2/⟨x̃−2, ỹx̃−1⟩ = T2 = ∂(B5,m) defined by λ1(t, s) = (e2πit, e2πins)
and λ2(t, s) = (e2πit, e2πims) respectively. The induced maps a1 on T1 and x1
on T2 are defined by a1(u, v) = (−u, v) and x1(u, v) = (u,−v) respectively. We
obtain covering maps µ1 : T1 → T1/⟨a1⟩ = ∂(A1, n) and µ2 : T2 → T2/⟨x1⟩ =
∂(B5,m).
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Define a map h̃ : R2 → R2 by h̃(t, s) = (ns, t
m ), and note that h̃−1(t, s) =

(ms, t
n ). We compute h̃ãh̃−1(t, s) = h̃ã(ms, t

n ) = h̃(ms − 1
2 ,−

t
n ) = (−t, s −

1
2m ) = x̃(t, s). A similar computation shows that h̃b̃h̃−1 = ỹ. Thus h̃ projects
to maps h1 and h making the following diagram commute:

R2 h̃−−−−→ R2yλ1

yλ2

T1
h̃1−−−−→ T2yµ1

yµ2

∂(A1, n)
h1−−−−→ ∂(B5,m)

A computation shows that h̃1(u, v) = (v, u) for any (u, v) ∈ T1.

When we identify ∂(A1, n) to ∂(B5,m) via h1, the generators are identi-
fied by a = x and b = y. It follows that the orbifold fundamental group of
Oh1

((A1, n), (B5,m)) is

π1(Oh1
((A1, n), (B5,m))) = ⟨a, b | a2 = b2, a2m = b2m = (ba−1)n = 1⟩

= ⟨ba−1⟩ ◦−1 ⟨a⟩ = Zn ◦−1 Z2m .

We note that both a and b are orientation reversing elements.

Orbifold (A3, n): The orbifold (A3, n) is

(∆(n)× [0, 1])/(ρeiθ, 0) ≃ (ρei(−θ−π), 1) .

and the underlying space of (A3, n) is a solid Klein bottle. The boundary of
the underlying space consists of two Mobius strips, one of which is mirrored
containing an orientation reversing circle of cone points of orders n.

The universal covering space of (A3, n) is R×D2, and the covering transfor-

mation maps a, b, c on R×D2 are defined as follows: a(t, ρeiθ) = (t, ρei(θ+
2π
n )),

b(t, ρeiθ) = (t, ρe−iθ) and c(t, ρeiθ) = (t+ 1
2 , ρe

i(−θ−π
n )). A computation shows

the following: cac−1 = a−1, cbc−1 = ba, bab−1 = a−1, an = b2 = 1. Hence the
group generated by these elements is Dih(Zn) ◦ Z = (⟨a⟩ ◦−1 ⟨b⟩) ◦ ⟨c⟩.

Define an orbifold covering map p1 : R ×D2 → R ×D2/⟨a, c2⟩ = Ṽ (n) by
p1(t, ρe

iθ) = (e2πit, ρeinθ). The maps b and c induce maps b1 and c1 respectively

on Ṽ (n), and it can be shown using the covering map p1 that b1(u, v) = (u, v)

and c1(u, v) = (−u,−v). Observe that b1c1(u, v) = (−u,−v). Let p2 : Ṽ (n) →
Ṽ (n)/⟨b1c1⟩ = V (n) be the orbifold covering map, and note that p2(u, v) =
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(u2, uv). We see that b1 induces a map b2 on V (n) defined by b2(u, v) =
p2b1(u

1/2, u−1/2v) = (u, uv). It follows that V (n)/⟨b2⟩ = (A3, n) and the
fundamental group π1((A3, n)) = (⟨a⟩ ◦−1 ⟨b⟩) ◦ ⟨c⟩ = Dih(Zn) ◦ Z.

The boundary of (A3, n) is a mirrored Mobius bandmM̈ , and its fundamen-
tal group π1(mM̈) = (⟨a⟩ ◦−1 ⟨b⟩) ◦ ⟨c⟩ = (Z ◦−1 Z2) ◦Z. It may be convenient
to write π1(mM̈) = (⟨b⟩ ∗ ⟨ba⟩) ◦ ⟨c⟩ = (Z2 ∗ Z2) ◦ Z where cbc−1 = ba and
c(ba)c−1 = b. Thus, the orbifold fundamental group of (A3, n) is

π1((A3, n)) = ⟨a, b, c | an = b2 = 1, bab−1 = a−1, cac−1 = a−1, cbc−1 = ba⟩
= (Zn ◦−1 Z2) ◦ Z and

π1(∂(A3, n)) = ⟨b, ba, c | cbc−1 = ba, c(ba)c−1 = b⟩ = (Z2 ∗ Z2) ◦ Z .

Orbifold (B4,m): The orbifold (B4,m) is C(P2, 2m) ∪ B3(m) ∪ Zh
m where

the exceptional sets of order m match up. The boundary ∂(B4,m) is a mir-
rored Mobius band. The covering translations on the universal covering space
R×D2 of (B4,m) are defined as follows: x(t, v) = (t+1, v), y(t, v) = (t, ve

2πi
m ),

z(t, v) = (−t, ve 2πit
m ). The element z is an orientation reversing element.

Define an orbifold covering map p1 : R × D2 → R × D2/⟨x, y⟩ = V (m) by
p1(t, ρe

iθ) = (e2πit, ρeimθ). Then z induces a map z1 : V (m) → V (m) defined
by z1(u, v) = (u, uv). The quotient space V (m)/⟨z1⟩ is the orbifold (B4,m)
and its fundamental group is

π1((B4,m)) = ⟨x, y, z | [x, y] = 1, ym = z2 = 1, zxz−1 = x−1y, zyz−1 = y⟩
= (Z× Zm) ◦ Z2 and

π1(∂(B4,m)) = ⟨x−2yz, z, zx| (zx)(x−2yz)(zx)−1 = z, (zx)z(zx)−1 = x−2yz⟩
= (⟨x−2yz⟩ ∗ ⟨z⟩) ◦ ⟨zx⟩ = (Z2 ∗ Z2) ◦ Z .

Orbifold Oh2((A3, n), (B4,m)): Recall that ∂V (n)/⟨b2⟩ = ∂(A3, n) and

V (m)/⟨z1⟩ = ∂(B4,m). Define h̃2 : ∂V (n) → ∂V (m) by h̃2(u, v) = (uv2, uv)
and observe that h̃−1

2 (u, v) = (uv2, uv). Since h̃2b2h̃
−1
2 = z1, we obtain the

following commutative diagram:

∂V (n)
h̃2−−−−→ ∂V (m)yµ1

yµ2

∂(A3, n)
h2−−−−→ ∂(B4,m)

where µi are the quotient maps.

We use the map h2 : ∂(A3, n) → ∂(B4,m) to define Oh2((A3, n), (B4,m)).
It follows by [13], that the generators are identified by b = z, ba = x−2yz, c = zx
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and c2 = y, and so the orbifold fundamental group π1(Oh2
((A3, n), (B4,m)))

is

⟨a, b, c|an = b2 = c2m = 1, bab−1 = a−1, cac−1 = a−1, cbc−1 = ba⟩
= (⟨a⟩ ◦−1 ⟨b⟩) ◦ ⟨c⟩ = Dih(Zn) ◦ Z2m .

The elements b and c are orientation reversing elements in the fundamental
group.

Orbifold (A2, n):Define the maps a, b, c : R×D2 → R×D2 as follows: a(t, v) =

(t + 1, v), b(t, v) = (t, ve
2πi
n ), c(t, v) = (t, v). We obtain an orbifold covering

map p1 : R×D2 → R×D2/⟨a, b⟩ = V (n) defined by p1(t, ρe
iθ) = (e2πit, ρeinθ).

Then c induces an involution c1 : V (n) → V (n) defined by c1(u, v) = (u, v).
There is an orbifold covering map µ1 : V (n) → V (n)/⟨c1⟩ = (A2, n). The
orbifold (A2, n) = S1×∆(n), has underlying space a solid torus with boundary
∂(A2, n) a mirrored annulus. The orbifold fundamental group of (A2, n) is

π1((A2, n)) = ⟨a, b, c | [a, b] = [a, c] = 1, bn = 1, cbc−1 = b−1, c2 = 1⟩
= (⟨b⟩ ◦−1 ⟨c⟩)× ⟨a⟩ = Dih(Zn)× Z and

π1(∂(A2, n)) = ⟨a, b, c | [a, b] = [a, c] = 1, cbc−1 = b−1, c2 = 1⟩
= Dih(Z)× Z .

Orbifold (B3,m): On R ×D2 define maps x, y and z by x(t, v) = (t + 1, v),

y(t, v) = (t, ve
2πi
m ) and z(t, v) = (−t, v). As above, we obtain an orbifold

covering map p2 : R × D2 → R × D2/⟨x, y⟩ = V (m) defined by p1(t, ρe
iθ) =

(e2πit, ρeimθ).
The induced involution z1 : V (m) → V (m) is defined by z1(u, v) = (ū, v).

There is an orbifold covering map µ2 : V (m) → V (m)/⟨z1⟩ = (B3,m). The
orbifold quotient (B3,m), has underlying space D2 × I with both D2 × {0}
and D2 × {1} being mirrored, and an exceptional set {0} × I of order m. The
boundary ∂(B3,m) is a mirrored annulus. The orbifold fundamental group of
(B3,m) is

π1((B3,m)) = ⟨x, y, z | [x, y] = 1, ym = 1, [y, z] = 1, zxz−1 = x−1, z2 = 1⟩
= (⟨x⟩ ◦−1 ⟨z⟩)× ⟨y⟩ = Dih(Z)× Zm and

π1(∂(B3,m)) = ⟨x, y, z | [x, y] = [y, z] = 1, zxz−1 = x−1, z2 = 1⟩
= Dih(Z)× Z .

Orbifold Oh3((A2, n), (B3,m)): Recall that ∂V (n)/⟨c1⟩ = ∂(A2, n) and

∂V (m)/⟨z1⟩ = ∂(B3,m). Define h̃3 : ∂V (n) → ∂V (m) by h̃3(u, v) = (v, u)
and observe that h̃−1

3 = h̃3. Since h̃3c1h̃
−1
3 = z1, we obtain the following
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commutative diagram:

∂V (n)
h̃3−−−−→ ∂V (m)yµ1

yµ2

∂(A2, n)
h3−−−−→ ∂(B3,m)

where µi are the quotient maps. Identify ∂(A2, n) to ∂(B3,m) via h3 to obtain
the orbifold Oh3

((A2, n), (B3,m)). It follows by [13] that that the generators
are identified by a = y, b = x and c = z. Hence the orbifold fundamental group
is

π1(Oh3
((A2, n), (B3,m)))

= ⟨a, b, c|[a, b] = [a, c] = 1, am = bn = c2 = 1, cbc−1 = b−1⟩
= (⟨b⟩ ◦−1 ⟨c⟩)× ⟨a⟩ = Dih(Zn)× Zm .

The element c is an orientation reversing element.

Orbifold (B2, n): The orbifold (B2, n) = B3(n, 2, 2) ∪C(P2, 2n) where a disk

in ∂(B3(n, 2, 2)) containing the exceptional point of order n is identified to a
disk in ∂(C(P2, 2n)) containing the exceptional point of order n.

Define maps a and b on R × D2 by a(t, ρeiθ) = (−t + 1
2 , ρe

i(θ+π
n )) and

b(t, ρeiθ) = (−t, ρe−iθ). The map a is orientation reversing. It is easy to check

that a2(t, ρeiθ) = (t, ρei(θ+
2π
n )) and (ab)2(t, ρeiθ) = (t+1, ρeiθ), hence we have

relations a2n = b2 = 1 and ba2b−1 = a−2. The manifold R×D2 is the universal
covering of (B2, n), which can be seen by means of the following sequence of
coverings. First, let p : R × D2 → R × D2/⟨a2, (ab)2⟩ = V (n) be defined by
p(t, ρeiθ) = (e2πit, ρeinθ). The induced maps a1 and b1 on V (n) are defined
by a1(u, v) = (−u,−v) and b1(u, v) = (u, v). Secondly, we have a covering
map p1 : V (n) → V (n)/⟨b1⟩ = (B0, n), and a1 induces the anti-podal map a2
on (B0, n). Finally we obtain a covering map µ : (B0, n) → (B0, n)/⟨a2⟩ =
(B2, n). The orbifold fundamental group of (B2, n) is

π1((B2, n)) = ⟨a, b | a2n = b2 = 1, ba2b−1 = a−2⟩
= (⟨a2⟩ ◦ ⟨ab⟩) ◦ ⟨b⟩ = (Zn ◦ Z) ◦ Z2 and

π1(∂(B2, n)) = ⟨a, b | b2 = 1, ba2b−1 = a−2⟩
= (⟨a2⟩ ◦ ⟨ab⟩) ◦ ⟨b⟩ = (Z ◦ Z) ◦ Z2 .

The boundary of (B2, n) is a projective plane with two cone points each of
order 2 (See Figure 3).
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Figure 3: ∂(B2, n)

Orbifold Oh4
((B2, n), (B2,m)): We use the letters x and y to denote the gen-

erators of π1((B2,m)), and note that the definitions are identical with n re-
placed by m. Thus R × D2/⟨a2, (ab)2⟩ = V (n) and R × D2/⟨x2, (xy)2⟩ =
V (m); and V (n)/⟨b1⟩ = (B0, n), and V (m)/⟨y1⟩ = (B0,m). Define a map
h̃4 : ∂V (n) → ∂V (m) by h̃4(u, v) = (−v, u) and observe that h̃−1

4 (u, v) =
(v,−u). A computation shows h̃4a1h̃

−1
4 = y1x

−1
1 and h̃4b1h̃

−1
4 = y1. Thus

h̃4 induces maps ĥ4 and h4 making the following diagram commute:

∂V (n)
h̃4−−−−→ ∂V (m)yp1

yp2

∂(B0, n)
ĥ4−−−−→ ∂(B0,m)yµ1

yµ2

∂(B2, n)
h4−−−−→ ∂(B2,m)

By identifying ∂(B2, n) to ∂(B2,m) via h4, it follows by [13] that the generators
are related by a = yx−1 and b = xyx. It follows that ab = x and a2b = y.
Thus the orbifold fundamental group is

π1(Oh4((B2, n), (B2,m))) = ⟨a, b | a2n = b2 = 1, ba2b−1 = a−2, (ab)2m = 1⟩
= (⟨a2⟩ ◦−1 ⟨ab⟩) ◦ ⟨b⟩ = (Zn ◦−1 Z2m) ◦ Z2 .

The element a is an orientation reversing element.

Orbifold (B6, n): Define maps on R×D2 by a(t, ρeiθ) = (−t, ρeiθ), b(t, ρeiθ)
= (t, ρe−iθ), c(t, ρeiθ) = (t, ρei(−θ− 2π

n )) and d(t, ρeiθ) = (−t − 1, ρeiθ). Let
p : R×D2 → R×D2/⟨ad, bc⟩ = V (n) be defined by p(t, ρeiθ) = (e2πit, ρeinθ).
Then a and b induce maps a1 and b1 on V (n) defined by a1(u, v) = (u, v)
and b1(u, v) = (u, v). Furthermore, there is a covering map p1 : V (n) →
V (n)/⟨a1b1⟩ = (B0, n) and b1 induces a reflection b2 on (B0, n) through a
disk containing the exceptional set. Modding out by b2 we obtain the final
covering map µ : (B0, n) → (B0, n)/⟨b2⟩ = (B6, n). The orbifold fundamental
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Figure 4: ∂(B6, n)

group of (B6, n) is

π1((B6, n)) = ⟨a, b, c, d | a2 = b2 = c2 = (bc)n = d2 = 1,

[a, b] = [a, c] = [b, d] = [c, d] = 1⟩
= (⟨bc⟩ ◦−1 ⟨c⟩)× (⟨a⟩ ∗ ⟨d⟩) = (Zn ◦−1 Z2)× (Z2 ∗ Z2) and

π1(∂(B6, n)) = ⟨a, b, c, d | a2 = b2 = c2 = d2 = 1,

[a, b] = [a, c] = [b, d] = [c, d] = 1⟩
= (⟨bc⟩ ◦−1 ⟨c⟩)× (⟨a⟩ ∗ ⟨d⟩) = (Z ◦−1 Z2)× (Z2 ∗ Z2) .

The boundary of (B6, n) is a mirrored disk with four cone points of order two
on the mirror (See Figure 4).

Orbifold Oh5
((B6, n), (B6,m)): As above, we use the letters x, y, z and w to

denote the generators of π1((B6,m)) where the definitions are identical with m
replacing n. Thus R×D2/⟨ad, bc⟩ = V (n) and R×D2/⟨xw, yz⟩ = V (m). Define
a homeomorphism h̃5 : ∂V (n) → ∂V (m) by h̃5(u, v) = (−v, u). A computation

shows h̃5a1h̃
−1
5 = y1 and h̃5b1h̃

−1
5 = x1. The map h̃5 induces maps ĥ5 and h5

making the following diagram commute:

∂V (n)
h̃5−−−−→ ∂V (m)yp1

yp2

∂(B0, n)
ĥ5−−−−→ ∂(B0,m)yµ1

yµ2

∂(B6, n)
h5−−−−→ ∂(B6,m)

Thus when identifying ∂(B6, n) to ∂(B6,m) via h5, it follows by [13] that the
generators are identified by a = y, b = xwx, c = x and d = z, and the orbifold
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Figure 5: ∂(B7, n)

fundamental of group is

π1(Oh5
((B6, n), (B6,m)))

= ⟨a, b, c, d | a2 = b2 = c2 = (bc)n = d2 = 1,

[a, b] = [a, c] = [b, d] = [c, d] = 1, (ad)m = 1⟩
= (⟨bc⟩ ◦−1 ⟨c⟩)× (⟨ad⟩ ◦−1 ⟨a⟩) = (Zn ◦−1 Z2)× (Zm ◦−1 Z2) .

Note that the elements a, b, c and d are orientation reversing.

Orbifold (B7, n): Define maps a, b, c on R×D2 as follows: a(t, ρeiθ) = (−t−
1, ρeiθ), b(t, ρeiθ) = (−t, ρei(θ+π

n )) and c(t, ρeiθ) = (t, ρe−iθ). Let p : R ×
D2 → R × D2/⟨b2, (ba)⟩ = V (n) be the covering map defined by p(t, ρeiθ) =
(e2πit, ρei(nθ+πt)). The induced maps a1 and c1 on V (n) are a1(u, v) = (u,−uv)
and c1(u, v) = (u, uv). Observe that a1c1(u, v) = (u,−v), and thus there is a
covering map p1 : V (n) → V (n)/⟨a1c1⟩ = (B0, n). If a2 be the induced map on
(B0, n), then we have another covering µ : (B0, n) → (B0, n)/⟨a2⟩ = (B7, n).
Since a and b2 commute, we have b−1ab = bab−1, hence the orbifold fundamen-
tal group of (B7, n) is

π1((B7, n)) = ⟨a, b, c | a2 = b2n = c2 = 1, [a, b2] = [a, c] = 1, cbc−1 = b−1⟩
= ⟨a, bab−1⟩ ◦ (⟨b⟩ ◦−1 ⟨c⟩) = (Z2 ∗ Z2) ◦ (Z2n ◦−1 Z2) and

π1(∂(B7, n)) = ⟨a, b, c | a2 = c2 = 1, [a, b2] = [a, c] = 1, cbc−1 = b−1⟩
= ⟨a, bab−1⟩ ◦ (⟨b⟩ ◦−1 ⟨c⟩) = (Z2 ∗ Z2) ◦ (Z ◦−1 Z2) .

The boundary of (B7, n) is a mirrored disk with two cone points on the mirror
and one cone point in the interior (See Figure 5).

Orbifold Oh6
((B7, n), (B7,m)): We use the letters x, y and z to denote the

generators of π1((B7,m)) where the definitions are identical with n replaced
with m. As above we obtain covering maps R×D2 → R×D2/⟨b2, (ba)⟩ = V (n)
and R × D2 → R × D2/⟨y2, (yx)⟩ = V (m). The induced maps on V (n) and
V (m) are denoted by a1, c1 and x1, z1 respectively.

Define a homeomorphism h̃6 : ∂V (n) → ∂V (m) by h̃6(u, v) = (−uv2, uv).
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The map h̃6 induces maps ĥ6 and h6 making the following diagram commutes.

∂V (n)
h̃6−−−−→ ∂V (m)yp1

yp2

∂(B0, n)
ĥ6−−−−→ ∂(B0,m)yµ1

yµ2

∂(B7, n)
h6−−−−→ ∂(B7,m)

Identifying ∂(B7, n) to ∂(B7,m) via h6 to obtain the orbifold
Oh6((B7, n), (B7,m)), it follows by [13] that the generators are identified by
a = z, b = zyx, and c = yxy−1. Furthermore, the fundamental group
π1(Oh6

((B7, n), (B7,m))) is

⟨a, b, c | a2 = b2n = (ab−1ab)m = c2 = 1, [a, b2] = [a, c] = 1, cbc−1 = b−1⟩
= (⟨ab−1ab⟩ ◦−1 ⟨a⟩) ◦ (⟨b⟩ ◦−1 ⟨c⟩) = (Zm ◦−1 Z2) ◦ (Z2n ◦−1 Z2) .

Note that the elements a, b and c are orientation reversing.

Orbifold (B1, n): The orbifold B3(n, 2, 2) ∪ Zh
n where a disk in ∂(B3(n, 2, 2))

containing the exceptional point of order n is identified with a disk in ∂(Zh
n)

containing the exceptional point of order n.
Define maps a, b, c on R × D2 as follows: a(t, v) = (t, ve2πi/n), b(t, v) =

(−t, v), and c(t, v) = ( 12 − t, v). The manifold R×D2 is the universal cover of
(B1, n). Let p1 : R×D2 → R×D2/⟨(cb)2, a⟩ = V (n) be defined by p1(t, ρe

iθ) =
(e2πit, ρeinθ). Then b and c induce involutions b1 and c1 respectively on V (n),
where b1(u, v) = (u, v) and c1(u, v) = (−u, v). Now V (n)/⟨b1⟩ = (B0, n); and
c1 induces an orientation reversing involution c2 on (B0, n). The quotient space
(B0, n)/⟨c2⟩ is the orbifold (B1, n). The orbifold fundamental group of (B1, n)
is

π1((B1, n)) = ⟨a, b, c | an = b2 = c2 = 1, bab−1 = a−1, cac−1 = a⟩
= ⟨a⟩ ◦ (⟨b⟩ ∗ ⟨c⟩) = Zn ◦ (Z2 ∗ Z2) and

π1(∂(B1, n)) = ⟨a, b, c | b2 = c2 = 1, bab−1 = a−1, cac−1 = a⟩
= ⟨a⟩ ◦ (⟨b⟩ ∗ ⟨c⟩) = Z ◦ (Z2 ∗ Z2) .

Orbifold (B8,m): Define orientation reversing maps x, y and z on R × D2

by x(t, v) = (−t, , veπi
m ), y(t, v) = (t, v) and z(t, v) = (1 − t, ve

πi
m ). Now R ×

D2 is the universal covering of (B8,m). Note that xz−1(t, v) = (t − 1, v).
Let p1 : R × D2 → R × D2/⟨xz−1, z2⟩ = V (m) be defined by p1(t, ρe

iθ) =
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(e2πit, ρeimθ). We obtain induced maps x1 and y1 on V (m) defined as follows:
x1(u, v) = (u,−v) and y1(u, v) = (u, v). Since x1y1(u, v) = (u,−v), this implies
V (m)/⟨x1y1⟩ = (B0,m). Furthermore, if y2 is the induced map on (B0,m),
then y2 is a reflection through a disk that does not contain the cone points of
order 2 in the boundary. The orbifold (B8,m) = (B0,m)/⟨y2⟩. The orbifold
fundamental group of (B8,m) is

π1((B8,m)) = ⟨x, y, z | x2m = y2 = z2m = 1, yxy−1 = x−1,

yzy−1 = z−1, x2 = z2⟩
= ⟨xz−1⟩ ◦ (⟨x⟩ ◦−1 ⟨y⟩) = Z ◦ (Z2m ◦−1 Z2) and

π1(∂(B8,m)) = ⟨x, y, z | y2 = 1, yxy−1 = x−1, yzy−1 = z−1, x2 = z2⟩
= ⟨xz−1⟩ ◦ (⟨x⟩ ◦−1 ⟨y⟩) = Z ◦ (Z ◦−1 Z2)

= ⟨xz−1⟩ ◦ (⟨xy⟩ ∗ ⟨y⟩) = Z ◦ (Z2 ∗ Z2) .

Orbifold Oh7((B1, n), (B8,m)): As above we obtain covering maps R×D2 →
R × D2/⟨(cb)2, a⟩ = V (n) and R × D2 → R × D2/⟨xz−1, z2⟩ = V (m). The
induced maps on V (n) are a1, b1 and c1, and the induced maps on V (m) are
x1 and y1.

Define a homeomorphism h̃7 : V (n) → V (m) by h̃7(u, v) = (v,−iu). The

map h̃7 induced maps ĥ7 and h7 making the following diagram commute:

∂V (n)
h̃7−−−−→ ∂V (m)yp1

yp2

∂(B0, n)
ĥ7−−−−→ ∂(B0,m)yµ1

yµ2

∂(B1, n)
h7−−−−→ ∂(B8,m)

When we identify ∂(B1, n) to ∂(B8,m) via h7, we obtain the orbifold
Oh7

((B1, n), (B8,m)). By [13] the generators are identified by a = (xz−1)−1 =
zx−1, b = yx and c = y and the fundamental group is

π1(Oh((B1, n), (B8,m))) = ⟨a, b, c | an = b2 = c2 = 1, bab−1 = a−1,

[a, c] = 1, (cb)2m = 1⟩
= ⟨a⟩ ◦ (⟨b⟩ ∗ ⟨c⟩/⟨(cb)2m⟩)
= ⟨a⟩ ◦ (⟨cb⟩ ◦−1 ⟨c⟩/⟨(cb)2m⟩)
= Zn ◦Dih(Z2m) .

The elements c is orientation reversing.
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Abstract. Heat conduction in a layered domain with imperfect ther-
mal contact interfaces is modeled by means of a system of elliptic or
parabolic PDEs with suitable boundary and transmission conditions.
Well-posedness of this problem is proved and a stability estimate of the
solution is given.
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1. Introduction

This note deals with heat conduction in a section of the layered body C. As-
sume that two or more layers are separated by low conductivity imperfect inter-
faces. According to the classification in [8], it means that a temperature jump
is present between two adjacent layers while the heat flux is continuous.

Suppose that C is made by two slabs C+ and C−, with different thermal
conductivities, separated by a very thin low conductivity imperfect interface
Dϵ (ϵ > 0 represents a characteristic thickness of the interface). The limit
process in which the thin “solid” interface Dϵ shrinks to a two-dimensional set
D0, is widely studied in mathematical physics (see for example [6, 11]). The
thermal properties of Dϵ for ϵ → 0, are summarized in a parameter function
h̃ : D0 → [0,∞) called thermal contact conductance. The thermal contact
conductance of the interfaceD0 is a non-negative quantity related to the average
of surface roughness effects in real objects. A detailed numerical modeling of
roughness can be found in [10].

Consider the ideal framework in which the slabs are parallelepipeds. In
particular, we focus on the intersection Ω between C and a plane π orthogonal
to the interface, so that S0 = D0 ∩ π, Ω+ = C+ ∩ π and Ω− = C− ∩ π.

In mathematical terms, the temperature of a two-dimensional layered ob-
ject like Ω is the solution of a system of two Initial Boundary Value Problems
(IBVPs) for the heat equation coupled by means of suitable transmission con-
ditions in which the function h (restriction of h̃ to S0) plays the role of heat
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transfer coefficient. This system of IBVPs is the direct model underlying the in-
verse problem of identifying h from some additional data taken on the external
boundary of the specimen (see for example [3, 7]). Existence and uniqueness of
its solutions are proved in Theorem 3.1 and it supplements mathematical back-
ground in [7]. Though many results in applied sciences and engineering rely on
this mathematical model (see for example [2, 3, 4, 7] to cite recent items), its
well-posedness is always taken for granted and, consequently, a rigorous proof
is bypassed. Here, a technique described in a recent paper about discontinuous
Galerkin methods [1] is extended (from elliptic to parabolic; from layers of the
same material to different materials) to prove existence and uniqueness of a
weak solution of our system of IBVPs (see Section 3.2). A stability estimate is
also derived in order to evaluate the sensitivity of the solution with respect to
variations in the parameter h (see Section 3.3).

2. Geometry of the specimen. Notation.

We deal with the composite environment

Ω = Ω+ ∪ Ω− ∪ S0

where
Ω+ = (−L,L)× (0, a+) , Ω− = (−L,L)× (−a−, 0) .

The interface
S0 = {(x, y) : y = 0 and x ∈ (−L,L)}

opposes to heat transfer between Ω+ and Ω−.
Let (0, T ) be a “time interval” so that

Q+ = Ω+ × (0, T ) , Q− = Ω− × (0, T ) .

The thermal behavior of layers Ω+ and Ω− is determined by their conduc-
tivity (κ+ and κ−), density (ρ+ and ρ−) and specific heat (c+ and c−). The
numbers α± = κ±

ρ±c±
are the corresponding diffusivities.

The top boundary of Ω+ is S+ = {(x, y) : y = a+ and x ∈ (−L,L)}.
The bottom boundary of Ω− is S− = {(x, y) : y = −a− and x ∈ (−L,L)}.
We assume that the thermal contact conductance of S0 takes the form

h(x) = h0+h1(x, t) where h0 is a positive real constant and h1 is a non-negative
function of class C0([−L,L] × [0, T ]). Two examples in which h1 describes,
respectively, the deterioration of an insulating interface and the worsening of
performances of an heat exchanger, are studied in [7].

In what follows, if u is a real function of two or more real variables, “uq”
means ∂u

∂q and “u(q±)” means limϵ→0+ u(q ± ϵ).
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3. Temperature of a two-layered domain with low
conductivity interface

Assume that Ω is heated through S+. The incoming heat flow is described by
a function Φ ∈ C0([−L,L] × [0, T ]). The temperature of Ω is determined by
solving a system of two IBVPs for the heat equation, respectively in Q+ and Q−

connected by means of a set of transmission conditions through the interface
(see Section 3.1). Exchange of heat between Ω and the external environment
occurs through S+ and S− and it is modeled by means of Robin conditions with
(positive) constant coefficients h+ and h− respectively. Vertical sides x = −L
and x = L are assumed, for simplicity, thermally insulated. A temperature
UM ≥ 0 is assumed for a fluid exchanging heat with S+. The temperature of a
fluid exchanging with S− can be taken equal to zero without loss of generality.
Initial temperature is given by the pair of functions U0

+ ∈ C0(Ω+) and U0
− ∈

C0(Ω−) (overbar means topological closure).

Analytical solutions (definitely not trivial) are known when the problem is
one-dimensional, i.e. when U0

+, U
0
−, h1 and Φ are non-negative constants, also

in presence of more than two layers [14]. If Ω+ and Ω− are made of the same
material and a+ = a−, the system can be easily reduced to a single problem
in Q+ (or alternatively in Q−) using the method of images [7].

3.1. A system of IBVPs for the heat equation

Since a single function from Ω to (0,∞) is not suitable for representing the
temperature of our specimen because it assumes two different values on S0, we
introduce the pair of functions

u+ : Q+ → (0,∞) , u− : Q− → (0,∞)

with their extension to respective boundaries. The pair (u+, u−) must fulfill
the following system of IBVPs

ρ+c+u
+
t = κ+∆u+, (x, y, t) ∈ Q+ ,

u+(x, y, 0) = U0
+(x, y), (x, y) ∈ Ω+ ,

κ+u
+
ν (x, a+, t)+h+(u

+(x, a+, t)−UM )=Φ(x, t), x∈(−L,L), t∈(0, T ),

κ+u
+
ν (−L, y, t) = κ+u

+
ν (L, y, t) = 0, y∈(0, a+), t∈(0, T ),

(1)

and

ρ−c−u
−
t = κ−∆u−, (x, y, t) ∈ Q− ,

u−(x, y, 0) = U0
−(x, y), (x, y) ∈ Ω− ,

κ−u
−
ν (x,−a−, t) + h−u

−(x,−a−, t) = 0, x ∈ (−L,L), t ∈ (0, T ) ,

κ−u
−
ν (−L, y, t) = κ−u

−
ν (L, y, t) = 0, y ∈ (−a−, 0), t ∈ (0, T ) ,

(2)
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coupled by means of the transmission conditions

κ+u
+
ν (x, 0+, t) + h(x, t)(u+(x, 0+, t)− u−(x, 0−, t)) = 0,

x ∈ (−L,L), t ∈ (0, T ) ,

κ+u
+
ν (x, 0+, t) = −κ−u

−
ν (x, 0−, t), x ∈ (−L,L), t ∈ (0, T ) .

(3)

3.2. Main result: Existence and uniqueness of (u+, u−),
weak solution of (1)-(3)

As for notation and basic theory of Sobolev spaces we refer to [13, Chapter 7].
In particular, we deal also with spaces involving time (see [13, Section 7.11.2]).
Let H be a Hilbert space equipped with the norm ∥.∥H and let H∗ denote its
dual space:

L2(0, T ;H) =

{
u : (0, T ) → H : u(t) measurable and

∫ T

0

∥u(t)∥2Hdt < ∞

}
,

C0([0, T ];H) =

{
u : [0, T ] → H : u(t) continuous and max

[0,T ]
∥u(t)∥H < ∞

}
.

Theorem 3.1. Suppose that:

(i) h takes the form h0 + h1 where h0 is a positive real constant and h1 is a
non-negative function of class C0([−L,L]× [0, T ]);

(ii) U0
+ ∈ C0(Ω+), U0

+ ∈ C0(Ω−) and Φ ∈ C0([−L,L]× [0, T ]).

Then:

(I) a weak solution (u+, u−) of problem (1)-(3) exists and it is unique, with
u+ ∈ L2(0, T,H1(Ω+))∩C0([0, T ];L2(Ω+)) and u− ∈ L2(0, T,H1(Ω−))∩
C0([0, T ];L2(Ω−));

(II) u+
t ∈ L2(0, T,H1(Ω+)∗) and u−

t ∈ L2(0, T,H1(Ω−)∗);

(III) the energy estimate

ρ+c+∥u+(t)∥20+ρ−c−∥u−(t)∥20+κ+

∫ t

0

∥u+(τ)∥21dτ+κ−

∫ t

0

∥u−(τ)∥21dτ

≤ e2
α+

L2 t(ρ+c+∥U0
+∥20 + ρ−c−∥U0

−∥20)

+ C(ρ+, c+, κ+,Ω
+, t) max

τ∈[0,t]
{
∫ L

−L

(UMh+ +Φ(x, τ))2dx} (4)

holds for almost all t ∈ [0, T ].
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Proof. Step 1. A variational problem in a product Hilbert space.

It is convenient to write problem (1)-(3) in weak form. More precisely, for
almost all t ∈ [0, T ], we must find u+(t) in H1(Ω+) and u−(t) in H1(Ω−) such
that

ρ+c+

∫
Ω+

u+
t (t)v

+dxdy + κ+

∫
Ω+

∇u+(t)∇v+dxdy + h+

∫ L

−L

u+(t)v+dx

+

∫ L

−L

h(x, t)(u+(t)− u−(t))v+dx =

∫ L

−L

(h+U
M +Φ(x, t))v+dx , (5)

ρ−c−

∫
Ω−

u−
t (t)v

−dxdy + κ−

∫
Ω−

∇u−(t)∇v−dxdy + h−

∫ L

−L

u−(t)v−dx

+

∫ L

−L

h(x, t)(u−(t)− u+(t))v−dx = 0 , (6)

for all v+ in H1(Ω+) and v− in H1(Ω−).

Following [1], we define the (cartesian product) Hilbert space V = H1(Ω+)×
H1(Ω−) equipped with the scalar product

(u, v)V :=

∫
Ω+

u+v+dxdy +

∫
Ω−

u−v−dxdy + L2

∫
Ω+

∇u+∇v+dxdy

+ L2

∫
Ω−

∇u−∇v−dxdy .

The scale factor L2 is required for dimensional reasons. Clearly u = (u+, u−)
and v = (v+, v−) are in V while for all w ∈ V the norm ∥w∥V :=

√
(w,w)V is

defined.

We sum (5) and (6) and obtain the variational problem:

for almost all t ∈ [0, T ], find u(t) ∈ V such that

⟨ut(t), v⟩+ a(u(t), v) =

∫ L

−L

(h+U
m +Φ(x, t))v+(x, a)dx

for all v ∈ V with u±(0) = U0
±.

Here,

⟨ut(t), v⟩ = ρ+c+

∫
Ω+

u+
t (t)v

+dxdy + ρ−c−

∫
Ω−

u−
t (t)v

−dxdy
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denotes a suitably weighted duality pairing between V ∗ and V while

a(u(t), v) = κ+

∫
Ω+

∇u+(t)∇v+dxdy + κ−

∫
Ω−

∇u−(t)∇v−dxdy

+ h+

∫ L

−L

u+(t)v+dx+ h−

∫ L

−L

u−(t)v−dx

+

∫ L

−L

h(x, t)(u+(t)− u−(t))(v+ − v−)dx

is a bilinear form on V × V .

Step 2. Existence and uniqueness of the solution.

We recall that, if w = (w+, w−) ∈ V , the trace inequality (see [5, Theo-
rem 1.5.1.10]) ∫

S±∪S0

|w±|2 ≤ c(Ω±)∥w∥2V (7)

holds. It follows from the constructive proof in [5] that c(Ω±) < 2(1+ 3
a±

) (not

optimal). Continuity of the bilinear form a follows from Schwarz inequality
and (7). Indeed, we have

|a(u(t), v)| ≤ K∥u(t)∥V ∥v∥V , (8)

where K = max{κ±}+max{h+, h−,max[−L,L]×[0,T ] h}max{c(Ω±)}.
Since h+, h− and min[−L,L]×[0,T ] h are positive, there are two positive con-

stants λ = max{κ+, κ−} and γ = min{κ+, κ−} such that

a(u(t), u(t)) + λ∥u(t)∥20 ≥ γ∥u(t)∥2V ,

i.e. the bilinear form a is weakly coercive (see [12, Section 11.1.1]). Hence,
existence of a solution u ∈ L2(0, T, V )∩C0([0, T ];V ) of (1)-(3) and its unique-
ness follow from [12, Theorem 11.1.1] (see also [9, Theorem 5.3]). Energy
estimate (4) is derived straightforwardly following [12] .

Remark 3.2. The energy estimate does not account for heat exchange through
the boundaries. In the special case in which h+ = h− = 0, it is likely to be
optimal when the interface is insulating (h = 0) or highly conductive (u+ −
u−)2 ≈ 0.

Remark 3.3. Well posedness can be proved also in the stationary case in
which the temperature u solves a system of BVPs for the Laplace equation.
If we assume Dirichlet conditions on S+ and S− instead of Robin ones, we
can use the same procedure of this section. Observe that, in the stationary
case, the required coercivity of the bilinear form a follows from the Poincaré
inequality (see [12, Section 1.3]).
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3.3. Stability of the solution with respect to the
parameters

The same technique used in deriving the energy estimate leads to the evaluation
of the sensitivity of the solution with respect to the interface conductance h.

Theorem 3.4. Let ũ denote the unique solution of (1)-(3) when the conduc-
tance in S0 is h + δh (with h + δh ≥ h0) and set δu := ũ − u. Assume that
all other parameters (α±, κ±, h±, Φ) remain unchanged. We have the local
stability estimate:

∥δu∥L2([0,T ],V )

∥u∥L2([0,T ],V )
≤ K max

[−L,L]×[0,T ]
|δh|.

Proof. Subtract

⟨ut(t), δu⟩+ ah(u(t), δu) =

∫ L

−L

(h+U
m +Φ(x, t))δu+(x, a)dx , u±(0) = U0

±

from

⟨ũt(t), δu⟩+ah+δh(ũ(t), δu) =

∫ L

−L

(h+U
m+Φ(x, t))δu+(x, a)dx , ũ±(0) = U0

±

where we have stressed the dependence of the bilinear form on conductance h
at the interface. We have

⟨δut(t), δu⟩+ ah+δh(u(t) + δu, δu)− ah(u(t), δu) = 0 , δu±(0) = 0.

Using the change of variable δw+ = e−β+tδu+ and δw− = e−β−tδu− with
β± = α±

L2 , we have

⟨ũt(t), δu⟩ = e2β+t ρ+c+
2

d

dt
∥δw+∥20 + e2β−t ρ−c−

2

d

dt
∥δw−∥20

+ e2β+tκ+∥δw+∥20 + e2β−tκ−∥δw−∥20.

Since

ah+δh(u(t) + δu, δu)− ah(u(t), δu) = κ+e
2β+t

∫
Ω+

|∇δw+(t)|2dxdy

+ e2β−tκ−

∫
Ω−

|∇δw−(t)|2dxdy + e2β+th+

∫ L

−L

δw+(t)2dx

+ e2β−th−

∫ L

−L

δw−(t)2dx+

∫ L

−L

(h+ δh)(eβ+tδw+ − eβ−tδw−)2dx

+

∫ L

−L

δh(eβ+tw+(t)− eβ−tw−(t))(eβ+tδw+ − eβ−tδw−)dx
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we have

e2β+t ρ+c+
2

d

dt
∥δw+∥20 + e2β−t ρ−c−

2

d

dt
∥δw−∥20

+ e2β+tκ+∥δw+∥20 + e2β−tκ−∥δw−∥20 + κ+e
2β+t∥∇δw+(t)∥20

+ e2β−tκ−∥∇δw−(t)∥20 + e2β+th+

∫ L

−L

δw+(t)2dx

+ e2β−th−

∫ L

−L

δw−(t)2dx+

∫ L

−L

(h+ δh)(eβ+tδw+ − eβ−tδw−)2dx

+

∫ L

−L

δh(eβ+tw+(t)− eβ−tw−(t))(eβ+tδw+ − eβ−tδw−)dx = 0.

(9)

Set βm := min{β−, β+}, βM := max{β−, β+} and κm = min{κ−, κ+} and
evaluate∫ L

−L

|δh||(u+(t)− u−(t))(δu+ − δu−)|dx

≤
∫ L

−L

|δh|(|u+(t)||δu+|+ |u+(t)||δu−|+ |u−(t)||δu+|+ |u−(t)||δu−|dx

≤ max
[−L,L]×[0,T ]

|δh|(c(Ω+)∥u+(t)∥1∥δu+∥1 +
√
c(Ω+)c(Ω−)∥u+(t)∥1∥δu−∥1

+
√
c(Ω+)c(Ω−)|u−(t)∥1∥δu+∥1 + c(Ω−)∥u−(t)∥1∥δu−∥1)

≤ max
[−L,L]×[0,T ]

|δh|eβM t max{c(Ω+), c(Ω−)}∥δw∥1∥w∥1 .

By disregarding the third line in (9), which is made of positive terms, we obtain

1

2

d

dt
⟨δw(t), δw(t)⟩+ κm∥w∥21

≤ max
[−L,L]×[0,T ]

|δh|e(βM−βm)T max{c(Ω+), c(Ω−)}∥δw∥1∥w∥1.

Integrating on t both sides of the inequality, we get

1

2
∥δu∥20 + κm

∫ T

0

∥δu∥21dt

≤ max
[−L,L]×[0,T ]

|δh|e2βMT max{c(Ω+), c(Ω−)}
∫ T

0

∥δu∥1∥u∥1dt.
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Applying the Schwarz inequality to the integral on the right hand side we have√√√√∫ T

0
∥δu∥21dt∫ T

0
∥u∥21dt

≤ K max
[−L,L]×[0,T ]

|δh| ,

where K = e2βMT

κm
max{c(Ω+), c(Ω−)}.

Conclusions

We have proved that a system of parabolic equations that model heat conduc-
tion in a layered domain is a well-posed problem under very natural hypotheses.
The proof comes from the weak formulation of the problem in a suitable product
Hilbert space. This result helps with the construction of rigorous foundations
of the inverse problem studied in [3, 7].
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1. Essential background

All operators considered here are linear but not necessarily bounded. If an
operator is bounded and everywhere defined, then it belongs to B(H) which is
the algebra of all bounded linear operators on H (see [14] for its fundamental
properties).

Most unbounded operators that we encounter are defined on a subspace
(called domain) of a Hilbert space. If the domain is dense, then we say that
the operator is densely defined. In such case, the adjoint exists and is unique.

Let us recall a few basic definitions about non-necessarily bounded oper-
ators. If S and T are two linear operators with domains D(S) and D(T )
respectively, then T is said to be an extension of S, written as S ⊂ T , if
D(S) ⊂ D(T ) and S and T coincide on D(S).

An operator T is called closed if its graph is closed in H ⊕H. It is called
closable if it has a closed extension. The smallest closed extension of it is
called its closure and it is denoted by T (a standard result states that a densely
defined T is closable iff T ∗ has a dense domain, and in which case T = T ∗∗).
If T is closable, then

S ⊂ T ⇒ S ⊂ T .

If T is densely defined, we say that T is self-adjoint when T = T ∗; symmetric
if T ⊂ T ∗; normal if T is closed and TT ∗ = T ∗T .

The product ST and the sum S + T of two operators S and T are defined
in the usual fashion on the natural domains:

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}
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and
D(S + T ) = D(S) ∩D(T ).

In the event that S, T and ST are densely defined, then

T ∗S∗ ⊂ (ST )∗,

with the equality occurring when S ∈ B(H). If S + T is densely defined, then

S∗ + T ∗ ⊂ (S + T )∗

with the equality occurring when S ∈ B(H).
Let T be a linear operator (possibly unbounded) with domain D(T ) and let

B ∈ B(H). Say that B commutes with T if

BT ⊂ TB.

In other words, this means that D(T ) ⊂ D(TB) and

BTx = TBx, ∀x ∈ D(T ).

Let A be an injective operator (not necessarily bounded) from D(A) into H.
Then A−1 : ran(A) → H is called the inverse of A, with D(A−1) = ran(A).

If the inverse of an unbounded operator is bounded and everywhere defined
(e.g. if A : D(A) → H is closed and bijective), then A is said to be boundedly
invertible. In other words, such is the case if there is a B ∈ B(H) such that

AB = I and BA ⊂ I.

If A is boundedly invertible, then it is closed.
The resolvent set of A, denoted by ρ(A), is defined by

ρ(A) = {λ ∈ C : λI −A is bijective and (λI −A)−1 ∈ B(H)}.

The complement of ρ(A), denoted by σ(A),

σ(A) = C \ ρ(A)

is called the spectrum of A.

2. Introduction

The aim of this paper is to obtain some generalizations of the Fuglede-Putnam
theorem involving unbounded operators.

Recall that the original version of the Fuglede-Putnam theorem reads:
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Theorem 2.1 ([6, 20]). If A ∈ B(H) and if M and N are normal (non-
necessarily bounded) operators, then

AN ⊂ MA =⇒ AN∗ ⊂ M∗A.

The problem leading to the above theorem was first mooted by J. von
Neumann in [18] who had already established it in a finite-dimensional setting.
B. Fuglede was the first one to prove this theorem in [6] in the case N = M ,
and where dimH = ∞ was allowed. It is important to tell readers that P. R.
Halmos obtained in [8] almost simultaneously as B. Fuglede a quite different
proof of the theorem above. More precisely, at the end of August 1949, B.
Fuglede communicated his proof to P. R. Halmos at the Boulder meeting of
the American Mathematical Society. Halmos’ proof dealt with the all bounded
version, however, P. R. Halmos indicated that only minor modifications were
needed to adapt his proof to the more general case of unbounded operators.

Then, C. R. Putnam [20] proved the above version. S. K. Berberian [3]
amazingly noted that the two versions were equivalent.

There are different proofs of the Fuglede-Putnam theorem. The most ele-
gant proof perhaps is the one due to M. Rosenblum [23]. For other proofs, see
e.g. [21] and [22].

There have been many generalizations of the Fuglede-Putnam theorem since
Fuglede’s paper. However, most generalizations were devoted to relaxing the
normality assumption (see e.g. [12], and the references therein). Apparently,
the first generalization of the Fuglede theorem to an unbounded A was estab-
lished in [19]. Then, the first generalization involving unbounded operators of
the Fuglede-Putnam theorem is:

Theorem 2.2. Let A be a closed symmetric operator and let N be an unbounded
normal operator. If D(N) ⊂ D(A), then

AN ⊂ N∗A =⇒ AN∗ ⊂ NA.

In fact, the previous result was established in [10] under the assumption of
the self-adjointness of A. However, and by scrutinizing the proof in [10] or [11],
it is seen that only the closedness and the symmetricity of A were needed.
Other unbounded generalizations may be consulted in [1], [2], and [13], as well
as some of the references therein. In the end, readers may wish to consult
the survey [16] exclusively devoted to the Fuglede-Putnam theorem and its
applications.

3. Generalizations of the Fuglede-Putnam theorem

If a densely defined operator N is normal, then so is its adjoint. However, if N∗

is normal, then N∗∗ does not have to be normal (unless N itself is closed). A
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simple counterexample is to take the identity operator ID restricted to some
unclosed dense domain D ⊂ H. Then ID cannot be normal for it is not closed.
But, (ID)∗ = I which is the full identity on the entire H, is obviously normal.
Notice in the end that if N is a densely defined closable operator, then N∗ is
normal if and only if N is.

The first improvement is that in the very first version by B. Fuglede, the
normality of the operator is not needed as only the normality of its closure will
do. This observation has already appeared in [4], but we reproduce the proof
here.

Theorem 3.1. Let B ∈ B(H) and let A be a densely defined and closable
operator such that A is normal. If BA ⊂ AB, then

BA∗ ⊂ A∗B.

Proof. Since A is normal, A
∗
= A∗ remains normal. Now,

BA ⊂ AB =⇒B∗A∗ ⊂ A∗B∗ (by taking adjoints)

=⇒B∗A ⊂ AB∗ (by using the classical Fuglede theorem)
=⇒BA∗ ⊂ A∗B (by taking adjoints again),

establishing the result.

Remark 3.2. Notice that BA∗ ⊂ A∗B does not yield BA ⊂ AB even in the
event of the normality of A∗ (see [15]).

Let us now turn to the extension of the Fuglede-Putnam version. A similar
argument to the above one could be applied.

Theorem 3.3. Let B ∈ B(H) and let N,M be densely defined closable opera-
tors such that N and M are normal. If BN ⊂ MB, then

BN∗ ⊂ M∗B.

Proof. Since BN ⊂ MB, it ensues that B∗M∗ ⊂ N∗B∗. Taking adjoints again
gives BN ⊂ MB. Now, apply the Fuglede-Putnam theorem to the normal N
and M to get the desired conclusion BN∗ ⊂ M∗B.

Jabłoński et al. obtained in [9] the following version.

Theorem 3.4. If N is a normal (bounded) operator and if A is a closed densely
defined operator with σ(A) ̸= C, then:

NA ⊂ AN =⇒ g(N)A ⊂ Ag(N)

for any bounded complex Borel function g on σ(N). In particular, we have
N∗A ⊂ AN∗.
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Remark 3.5. It is worth noticing that B. Fuglede obtained, long ago, in [7] a
unitary U ∈ B(H) and a closed and symmetric T with domain D(T ) ⊂ H such
that UT ⊂ TU but U∗T ̸⊂ TU∗.

Next, we give a generalization of Theorem 3.4 to an unbounded N , and as
above, only the normality of N is needed.

Theorem 3.6. Let p be a one variable complex polynomial. If N is a densely
defined closable operator such that N is normal and if A is a densely defined
operator with σ[p(A)] ̸= C, then

NA ⊂ AN =⇒ N∗A ⊂ AN∗

whenever D(A) ⊂ D(N).

Remark 3.7. This is indeed a generalization of the bounded version of the
Fuglede theorem. Observe that when A,N ∈ B(H), then N = N , D(A) =
D(N) = H, and σ[p(A)] is a compact set.

Proof of Theorem 3.6. First, we claim that σ(A) ̸= C, whereby A is closed.
Let λ be in C \ σ[p(A)]. Then, and as in [5], we obtain

p(A)− λI = (A− µ1I)(A− µ2I) · · · (A− µnI)

for some complex numbers µ1, µ2, · · · , µn. By consulting again [5], readers see
that σ(A) ̸= C.

Now, let λ ∈ ρ(A). Then

NA ⊂ AN =⇒ NA− λN ⊂ AN − λN = (A− λI)N.

Since D(A) ⊂ D(N), it is seen that NA− λN = N(A− λI). So

N(A− λI) ⊂ (A− λI)N =⇒ (A− λI)−1N ⊂ N(A− λI)−1.

Since N is normal, we may now apply Theorem 3.1 to get

(A− λI)−1N∗ ⊂ N∗(A− λI)−1

because (A− λI)−1 ∈ B(H). Hence

N∗A− λN∗ ⊂ N∗(A− λI) ⊂ (A− λI)N∗ = AN∗ − λN∗.

But

D(AN∗) ⊂ D(N∗) and D(N∗A) ⊂ D(A) ⊂ D(N) ⊂ D(N) = D(N∗).

Thus, D(N∗A) ⊂ D(AN∗), and so

N∗A ⊂ AN∗,

as needed.
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Now, we present a few consequences of the preceding result. The first one
is given without proof.

Corollary 3.8. If N is a densely defined closable operator such that N is
normal and if A is an unbounded self-adjoint operator with D(A) ⊂ D(N),
then

NA ⊂ AN =⇒ N∗A ⊂ AN∗.

Corollary 3.9. If N is a densely defined closable operator such that N is
normal and if A is a boundedly invertible operator, then

NA ⊂ AN =⇒ N∗A ⊂ AN∗.

Proof. We may write

NA ⊂ AN =⇒ NAA−1 ⊂ ANA−1 =⇒ A−1N ⊂ NA−1.

Since A−1 ∈ B(H) and N is normal, Theorem 3.1 gives

A−1N∗ ⊂ N∗A−1 and so N∗A ⊂ AN∗,

as needed.

A Putnam’s version seems impossible to obtain unless strong conditions are
imposed. However, the following special case of a possible Putnam’s version
is worth stating and proving. Besides, it is somewhat linked to the important
notion of anti-commutativity.

Proposition 3.10. If N is a densely defined closable operator such that N is
normal and if A is a densely defined operator with σ(A) ̸= C, then

NA ⊂ −AN =⇒ N∗A ⊂ −AN∗

whenever D(A) ⊂ D(N).

Proof. Consider

Ñ =

(
N 0
0 −N

)
and Ã =

(
0 A
A 0

)
where D(Ñ) = D(N) ⊕D(N) and D(Ã) = D(A) ⊕D(A). Then Ñ is normal
and Ã is closed. Besides σ(Ã) ̸= C. Now

ÑÃ =

(
0 NA

−NA 0

)
⊂

(
0 −AN

AN 0

)
= ÃÑ

for NA ⊂ −AN . Since D(Ã) ⊂ D(Ñ), Theorem 3.6 applies, i.e. it gives Ñ∗Ã ⊂
ÃÑ∗ which, upon examining their entries, yields the required result.
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We finish this section by giving counterexamples to some "generalizations".
Example 3.11 ([13]). Consider the unbounded linear operators A and N which
are defined by

Af(x) = (1 + |x|)f(x) and Nf(x) = −i(1 + |x|)f ′(x)

(with i2 = −1) on the domains

D(A) = {f ∈ L2(R) : (1 + |x|)f ∈ L2(R)}

and
D(N) = {f ∈ L2(R) : (1 + |x|)f ′ ∈ L2(R)}

respectively, and where the derivative is taken in the distributional sense.
Then A is a boundedly invertible, positive, self-adjoint unbounded operator.
As for N , it is an unbounded normal operator N (details may consulted in [13]).
It was shown that such that

AN∗ = NA but AN ̸⊂ N∗A and N∗A ̸⊂ AN

(in fact ANf ̸= N∗Af for all f ̸= 0).
So, what this example is telling us is that NA = AN∗ (and not just an

"inclusion"), that N and N∗ are both normal, σ(A) ̸= C (as A is self-adjoint),
but NA ̸⊂ AN∗.

This example can further be beefed up to refute certain possible general-
izations.
Example 3.12 (Cf. [17]). There exist a closed operator T and a normal M
such that TM ⊂ MT but TM∗ ̸⊂ M∗T and M∗T ̸⊂ TM∗. Indeed, consider

M =

(
N∗ 0
0 N

)
and T =

(
0 0
A 0

)
where N is normal with domain D(N) and A is closed with domain D(A) and
such that AN∗ = NA but AN ̸⊂ N∗A and N∗A ̸⊂ AN (as defined above).
Clearly, M is normal and T is closed. Observe that D(M) = D(N∗) ⊕D(N)
and D(T ) = D(A)⊕ L2(R). Now,

TM =

(
0 0
A 0

)(
N∗ 0
0 N

)
=

(
0D(N∗) 0D(N)

AN∗ 0

)
=

(
0 0D(N)

AN∗ 0

)
where e.g. 0D(N) is the zero operator restricted to D(N). Likewise

MT =

(
N∗ 0
0 N

)(
0 0
A 0

)
=

(
0 0

NA 0

)
.
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Since D(TM) = D(AN∗)⊕D(N) ⊂ D(NA)⊕L2(R) = D(MT ), it ensues that
TM ⊂ MT . Now, it is seen that

TM∗ =

(
0 0
A 0

)(
N 0
0 N∗

)
=

(
0 0D(N∗)

AN 0

)
and

M∗T =

(
N 0
0 N∗

)(
0 0
A 0

)
=

(
0 0

N∗A 0

)
.

Since ANf ̸= N∗Af for any f ̸= 0, we infer that TM∗ ̸⊂ M∗T and
M∗T ̸⊂ TM∗.
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Products of sequentially compact spaces

with no separability assumption

Paolo Lipparini

Abstract. Let X be a product of topological spaces. We prove that
X is sequentially compact if and only if all subproducts by ≤ s factors
are sequentially compact. If s = h, then X is sequentially compact if
and only if all factors are sequentially compact and all but at most < s
factors are ultraconnected. We give a topological proof of the inequality
cf s ≥ h. Recall that s denotes the splitting number and h the distribu-
tivity number. Some corresponding invariants are introduced, relative
to an arbitrary topological property, more generally, relative to a subset
of a partial infinitary semigroup.

Keywords: sequential compactness, Tychonoff product, splitting number, distributivity
number, partial infinitary semigroup.
MS Classification 2020: 54D30, 54B10, 03E17, 54A20, 20M75.

1. Introduction

A countable product of sequentially compact spaces is still sequentially compact
[7, Theorem 3.10.35]. The problem whether the above assertion generalizes to
uncountable products involves the so-called combinatorial cardinal character-
istics of the Continuum [1, 2, 16]. These are cardinals which are provably un-
countable and less than or equal to the continuum c, but consistently strictly
smaller than c. In particular, they all equal c if the Continuum Hypothesis
holds.

A cardinal characteristic has a standard definition which involves infinite
combinatorics and frequently many equivalent formulations in different set-
tings. For example, P. Simon [15] proved that one of these characteristics, the
distributivity number h, is the smallest cardinal such that every product of < h
sequentially compact spaces is still sequentially compact. Thus the problem
mentioned at the beginning is dependent on set theory: in some models of set
theory h = ω1, in which case the classical result cannot be improved, but in
other models h = c > ω1 [2], hence there are uncountable products which are
sequentially compact.
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As another influence of cardinal characteristics on products, Booth [3]
showed that the splitting number s is the smallest cardinal such that the prod-
uct 2s is not sequentially compact. Here 2 denotes the discrete 2-element space.
Since any nontrivial T1 space contains a closed subspace isomorphic to 2, we
get that if h = s (an identity which is relatively consistent with the usual ax-
ioms of set theory [2]), then a product of T1 spaces is sequentially compact if
and only if all factors are sequentially compact and the set of nontrivial fac-
tors has cardinality < s. On the other hand, we are not aware of any former
result of this kind when separation axioms are not assumed, apart from some
partial results in S. Brandhorst thesis [4] under the strong assumption of the
Continuum Hypothesis.

While many topologists usually deal with Hausdorff spaces—possibly, even
with spaces satisfying higher regularity conditions—recently the interest on
spaces satisfying lower separability conditions has newly arisen, e. g. [8, 9, 19].
In particular, see [13] for an interesting recent manifesto in support of the study
of spaces satisfying lower separation axioms from a purely topological point of
view.

In this note we show that a product of topological spaces is sequentially
compact if and only if all subproducts by ≤ s factors are sequentially compact.
If h = s, then a product is sequentially compact if and only if all factors
are sequentially compact, and all but at most < s factors are ultraconnected.
While the proofs are elementary and do not rely on set theory, apart from the
mentioned known characterizations of the cardinals h and s, we believe that
the results deserve to be explicitly presented with the details of the proofs.

Finally, a longstanding open problem has been recently solved by Dow and
Shelah [6] who showed that it is consistent that s is singular. Here we present
a simple topological proof that the cofinality of s is ≥ h. The argument has
a general flavor and suggests the idea of attaching similar invariants to an
arbitrary property P of topological spaces. At the end of Section 3 we argue
that the right framework for the argument is the context of partial infinitary
semigroups with a specified subclass. While the ideas are simple, there is the
possibility that the arguments and the general framework turn out to be a
useful paradigm for many disparate situations. We exemplify the methods in
the case of chain compactness.

2. Products of sequentially compact spaces

For the sake of simplicity, all topological spaces are assumed to be nonempty.

Recall that a space X is called ultraconnected if no pair of nonempty closed
sets of X is disjoint.
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Definition 2.1. The splitting number s is the least cardinal such that 2s is
not sequentially compact, where 2 is the two-element discrete topological space.
Usually the definition of s is given in equivalent forms, but the present one is
the most suitable for our purposes. See Booth [3, Theorem 2] or van Douwen
[16, Theorem 6.1] for a proof of the equivalences. See [2, 16, 18] for further
information about s.

A proof of the next lemma can be found in [12, Lemmata 4.1 and 4.2].

Lemma 2.2. (i) A topological space X is both ultraconnected and sequentially
compact if and only if every sequence in X converges.

(ii) A product of ≥ s spaces which are not ultraconnected is not sequentially
compact.

Proposition 2.3. If a product is sequentially compact, then the set of factors
with a nonconverging sequence has cardinality < s.

Proof. Suppose by contradiction that there are ≥ s factors with a nonconverg-
ing sequence. Since each factor is sequentially compact, then, by Lemma 2.2(i),
there are ≥ s factors which are not ultraconnected, and Lemma 2.2(ii) gives a
contradiction.

Theorem 2.4. A product of topological spaces is sequentially compact if and
only if all subproducts by ≤ s factors are sequentially compact.

Proof. Necessity is trivial, since we assume that all the spaces are nonempty
and sequential compactness is preserved by taking images of surjective con-
tinuous functions. For the other direction, suppose that each subproduct of
X =

∏
j∈J Xj by ≤ s factors is sequentially compact, and let J ′ = {j ∈

J | Xj has a nonconverging sequence}. If |J ′| ≥ s, choose J ′′ ⊆ J ′ with
|J ′′| = s. By assumption,

∏
j∈J′′ Xj is sequentially compact, and we get a

contradiction from Proposition 2.3. Thus |J ′| < s. Now X is homeomorphic to∏
j∈J′ Xj ×

∏
j∈J\J′ Xj . The first factor is sequentially compact by assump-

tion, since we have proved that |J ′| < s. For each j ∈ J \J ′, we have that every
sequence on Xj converges, thus in

∏
j∈J\J′ Xj , too, every sequence converges; a

fortiori,
∏

j∈J\J′ Xj is sequentially compact. Then X is sequentially compact,
being the product of two sequentially compact spaces.

In the context of T1 spaces, Theorem 2.4 is an immediate consequence of
Definition 2.1, since any nontrivial T1 space contains a closed subspace isomor-
phic to 2. Thus if a product of T1 spaces is sequentially compact, then all but
< s factors are one-element spaces. Then Theorem 2.4, restricted to T1 spaces,
follows, since if all subproducts of ≤ s factors are sequentially compact, then all
but < s factors are one-element spaces and the product of the nontrivial factors
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is sequentially compact by hypothesis. Thus the main point of Theorem 2.4 is
the case of spaces satisfying few separation axioms.

The value s in Theorem 2.4 is the best possible value: by Definition 2.1, all
subproducts of 2s by < s factors are sequentially compact, but 2s is not.

We now show that, under a relatively weak cardinality assumption, we can
replace “subproducts” with “factors” in Theorem 2.4.

Definition 2.5. The distributivity number h is the smallest cardinal such that
there are h sequentially compact spaces whose product is not sequentially com-
pact. Usually, the definition of h is given in some equivalent form: see Si-
mon [15] for the proof of the equivalence, and [2, 18], for further information.
Obviously, h ≤ s. It is known that h < s is relatively consistent [2].

Theorem 2.6. Assume that h = s. If X is a product of topological spaces, then
the following conditions are equivalent.

(i) X is sequentially compact.

(ii) All factors of X are sequentially compact, and the set of factors with a
nonconverging sequence has cardinality < s.

(iii) All factors of X are sequentially compact, and all but at most < s factors
are ultraconnected.

Proof. Conditions (ii) and (iii) are equivalent by Lemma 2.2(i).

Condition (i) implies Condition (ii) by Proposition 2.3.

The proof that (ii) implies (i) is similar to the proof of Theorem 2.4. Sup-
pose that (ii) holds, and thatX =

∏
j∈J Xj . SplitX as

∏
j∈J′ Xj×

∏
j∈J\J′ Xj ,

where J ′ = {j ∈ J | Xj has a nonconverging sequence}. By (ii) and the as-
sumption, |J ′| < s = h, hence, by the very definition of h (the one we have
presented),

∏
j∈J′ Xj is sequentially compact. Moreover

∏
j∈J\J′ Xj is sequen-

tially compact, since in it every sequence converges, hence alsoX is sequentially
compact.

Under the stronger assumption of the Continuum Hypothesis, we have
learned of the equivalence of (i) and (ii) in Corollary 2.6 from Brandhorst [4].
See also Brandhorst and Erné [5]. As mentioned in the introduction, when
restricted to T1 spaces, Theorem 2.6 follows immediately from Definitions 2.1
and 2.5 (for a T1 space X the following are equivalent: all sequences converge;
X is ultraconnected; X is trivial, that is, a one-point space). On the other
hand, we are not aware of any former result of this kind when no separation
axiom is assumed, apart from the mentioned partial result in [4].
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Notice that the assumption h = s is necessary in Theorem 2.6. Indeed, it
is now almost immediate to show that Conditions (i) and (ii) in Theorem 2.6
are equivalent if and only if h = s.

Corollary 2.7. The following conditions are equivalent.

(i) h = s

(ii) For every product X of topological spaces, condition (i) in Theorem 2.6
holds if and only if condition (ii) there holds.

(iii) For every product X with h factors, condition (ii) in Theorem 2.6 implies
condition (i) there.

Proof. (i) ⇒ (ii) is given by Theorem 2.6 itself, and (ii) ⇒ (iii) is trivial.
To prove (iii) ⇒ (i) we shall prove the contrapositive. Suppose that (i)

fails. By the definition of h there is a not sequentially compact product X
by h sequentially compact factors. If h < s, then condition (ii) in Theorem 2.6
trivially holds for such an X, while condition (i) there fails. Thus condition (iii)
in the present corollary fails.

3. A topological proof that cf s ≥ h and a generalization

We begin this section by giving a curious and purely topological proof of the
inequality cf s ≥ h. The proof does not use any of the results proved before,
but relies heavily on the characterizations of the cardinals s and h that we have
presented as Definitions 2.1 and 2.5. See Blass [1, Corollary 2.2] for another
proof of cf s ≥ h. Andreas R. Blass (personal communication, June 2014) has
kindly communicated us a direct simple proof which uses the combinatorial
definitions of s and h.

By the way, Dow and Shelah [6] have recently showed that it is consistent
that s is singular, solving a longstanding problem.

Proposition 3.1. cf s ≥ h.

Proof. Suppose by contradiction that cf s = λ < h, hence we can express s as⋃
α∈λ sα, with |sα| < s, for α ∈ λ; moreover, without loss of generality, we can

take the sα’s to be pairwise disjoint. Thus 2s is (homeomorphic to)
∏

α∈λ 2
sα .

By the definition of s (the one we have given) and since |sα| < s, for α ∈ λ, then
each 2sα is sequentially compact. By the definition of h, and since λ < h, we
have that

∏
α∈λ 2

sα is sequentially compact. But then 2s ∼=
∏

α∈λ 2
sα would

be sequentially compact, contradicting the definition of s.

As we mentioned in the introduction, the arguments in the proofs of Propo-
sition 3.1 have a general form and work for every property P of topological
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spaces. We could work as well with some property (= a subclass) of objects in
a category in which some infinite products or coproducts are defined. However,
the right ambient in which the results can be stated in their full generality ap-
pears to be the context of partial infinitary semigroups. We shall sketch here
a basic result. For more details and further invariants, see Section 7 in the
unpublished manuscript [11] from which the present note has been extracted.

Definition 3.2. A partial infinitary semigroup is a Σ-algebra satisfying prop-
erties (U) and (P), in the terminology from [10].

For short, in a partial infinitary semigroup we have a partially defined in-
finitary operation

∑
i∈I ai, for every index set I. Property (U) asserts that if

|I| = 1, then
∑

i∈I ai is defined and its outcome is the only element ai of the
sequence.

Property (P) asserts that if
∑

i∈I ai is defined, then, for every partition
(Jk)k∈K of I, all the sums in the following equation are defined, and equality
actually holds:

∑
i∈I ai =

∑
k∈K

∑
i∈Jk

ai.
With the customary foundational caution, classes of topological spaces mod-

ulo homeomorphism and with the Tychonoff product form a partial infinitary
semigroups.

Definition 3.3. If S is a partial infinitary semigroup and P ⊆ S, let H(P ) be
the class of all cardinals κ ≥ 2 such that the following holds. There are some I
of cardinality κ and some sum

∑
i∈I ai which is defined, whose outcome is not

in P , while
∑

i∈J ai ∈ P , for every J ⊆ I with |J | < κ, J ̸= ∅.
Notice that property (P) implies that if

∑
i∈I ai is defined, then

∑
i∈J ai is

defined, for every nonempty J ⊆ I.
Let H∗(P ) be the class of all cardinals κ ≥ 2 such that there are some I

of cardinality κ and some sum
∑

i∈I ai which is defined, whose outcome is not
in P , while ai ∈ P , for every i ∈ I. In most examples, if κ ∈ H∗(P ), then
λ ∈ H∗(P ), for every λ ≥ κ. In this case H∗(P ), if nonempty, is determined by
h(P ) = inf H∗(P ). However, we shall not need to assume this further property
of H∗(P ) in what follows.

Proposition 3.4. Suppose that S is a partial infinitary semigroup and P ⊆ S.
Then

(i) H(P ) ⊆ H∗(P ).

(ii) If κ ∈ H(P ), then 1 + cf κ ∈ H∗(P ).

(iii) If H∗(P ) is not empty, then inf H∗(P )∈H(P ), thus H(P ) ̸=∅, inf H∗(P ) =
inf H(P ), and inf H∗(P ) is a regular cardinal.
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Proof. (i) follows from the definitions and Property (U).

(ii) If κ is an infinite regular cardinal, then κ = cf κ = 1 + cf κ, hence (ii)
follows from (i).

If κ is finite, say, κ = n ≥ 2 and
∑

i<n ai witnesses κ ∈ H(P ), then an−1 +∑
i<n−1 ai witnesses 1 + cf n = 1 + 1 = 2 ∈ H∗(P ).

The remaining case is similar to Proposition 3.1. Suppose that κ is sin-
gular, thus κ =

⋃
k∈K Jk, for some sets K and pairwise disjoint Jk such that

|K|, |Jk| < κ, for k ∈ K. Let c =
∑

γ∈κ aγ witness κ ∈ H(P ). For k ∈ K, let
bk =

∑
γ∈Jk

aγ . Since |Jk| < κ, for k ∈ K, then, by the definition of H(P ), each
bk is in P . By Property (P), c =

∑
k∈K bk and this sum witnesses cf κ ∈ H∗(P ).

(iii) Let κ = inf H∗(P ) and let
∑

γ∈κ aγ witness κ ∈ H∗(P ). By assumption,
κ ≥ 2 and each aγ is in P . If there is J ⊆ κ such that 2 ≤ |J | < κ and

∑
j∈J aj /∈

P , then
∑

j∈J aj witnesses |J | ∈ H∗(P ), contradicting the minimality of κ.
Thus, by (U), for every J ⊆ κ with 1 ≤ |J | < κ, we have

∑
j∈J aj ∈ P . This

means that
∑

γ∈κ aγ witnesses κ ∈ H(P ). The rest follows from (i) and (ii).

If S is the class of topological spaces modulo homeomorphism with Ty-
chonoff products and P is the class of sequentially compact spaces, then h =
inf H∗(P ), by Definition 2.5. Moreover, s ∈ H(P ), by Definition 2.1. Thus
Proposition 3.4(ii) generalizes Proposition 3.1. Moreover, the last assertion in
Proposition 3.4(iii) generalizes the known fact that h is a regular cardinal.

By Theorem 2.4, s = supH(P ), hence H(P ) ⊆ [h, s], where [h, s] is the set
of those cardinals λ such that h ≤ λ ≤ s. It is an open problem whether the
inclusion H(P ) ⊆ [h, s] may be strict (of course, this is a nontrivial problem
only when h < s).

As an application of Proposition 3.4, one can consider chain compactness. If
λ ≤ µ are infinite cardinals, a topological spaceX is [λ, µ]-chain compact [17] if,
for every cardinal ν such that λ ≤ ν ≤ µ, every ν-indexed sequence of elements
of X has a converging cofinal subsequence. Thus [ω, ω]-chain compactness is
the same as sequential compactness.

A product of countably many [λ, µ]-chain compact spaces is still [λ, µ]-chain
compact [17]. Thus if P[λ,µ]-c is the property of being [λ, µ]-chain compact,
then h(P[λ,µ]-c) = inf H∗(P[λ,µ]-c) > ω. By Proposition 3.4, h(P[λ,µ]-c) is a
regular cardinal, and if κ ∈ H(P[λ,µ]-c), then cf κ ≥ h(P[λ,µ]-c). To the best
of our knowledge, it is an open problem to explicitly characterize the cardinal
h(P[λ,µ]-c) and the class H(P[λ,µ]-c). Some results about products of [ω, µ]-chain
compact spaces can be found in [14]. If follows from [11, Theorem 3.1] that
supH(P[λ,µ]-c) ≤ 2µ.
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1. Introduction

We consider the following Kolmogorov system{ .
x = xP (x, y),
.
y = yQ(x, y),

(1)

where P (x, y) and Q(x, y) are polynomials, the dot denotes derivative with
respect to the time t, and the coefficients are real numbers.

Generally, Kolmogorov system is introduced as the structure of many nat-
ural phenomena models. Their applications can appear in several fields such
as, physics, biology, chemical reactions, hydrodynamics, fluid dynamics, eco-
nomics, etc. for more detail see [1, 7, 16, 17].

One of the most important topics in qualitative theory of planar dynamical
systems is related to the second part of the unsolved Hilbert 16th problem
which consisted to study the maximum number of limit cycles and their relative
distributions of the real planar polynomial system of degree n, see [12].

Many different methods have been used for proving the existence and nonex-
istence of limit cycles in simply connected region, for instance see [3, 11, 18].
In recent years, existence and nonexistence of limit cycle for some class of Kol-
mogorov system has been studied, see for instance [2, 4, 5, 6, 8, 13, 14]. In this
paper we will give a unifying characterization on the invariant algebraic curves
and first integrals to investigate existence and non existence of limit cycle for
system (1).
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Firstly, we need to give some necessary definitions. We define a vector field
associated to the system (1) as follows

X = xP (x, y)
∂

∂x
+ y Q(x, y)

∂

∂y
.

Let W ⊂ R2 be an open subset such that R2\W has zero Lebesgue measure.
We say that a non-constant real function H = H(x, y) : R2 → R, is a first
integral if H(x(t), y(t)) is constant on all solutions (x(t), y(t)) of X contained
in W, i.e. XH|W = 0.

A polynomial V(x, y) ∈ R [x, y] , the ring of the real coefficient polynomials
in x, y is called a Invariant algebraic curve for the system (1) if

X V = KV, (2)

for some real polynomial K(x, y), which is called cofactor of V.
The curve Γ =

{
(x, y) ∈ R2;V(x, y) = 0

}
, is non-singular of system (1) if

the equilibrium points of the system that satisfy the following system{
xP (x, y) = 0,
yQ(x, y) = 0,

(3)

are not contained on the curve Γ.
A solution (x(t), y(t)) for a differential system (1) is said to be T-periodic

solution, if its satisfies

(x(t), y(t)) = (x(t+ T ), y(t+ T )) ,

for all t, and for some T > 0.
A limit cycle is an isolated periodic solution of a differential equation, or is

a T-periodic solution of system (1), isolated with respect to all other possible
periodic solutions of the system and defined as

γ = {(x(t), y(t)) , t ∈ [0, T ]}.

Let γ be periodic orbit of system (1) of period T , then γ is an hyperbolic limit
cycle if ∫ T

0

div (X ) (γ(t)) dt ̸= 0,

for more detail see [18].
Let W ⊂ R and Ψ : W → R be a function, Ψ is said to be an inverse inte-

grating factor of (1) if it is not locally null and satisfies the partial differential
equation

XΨ = div (X )Ψ, (4)

where div (X ) =
∂ (xP (x, y))

∂x
+

∂ (yQ(x, y))

∂y
.
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2. Main Results

As a main result, we have the following theorem,

Theorem 2.1. We consider Kolmogorov system of degree m (m ≥ 5)
.
x = x

(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

)
,

.
y = y

(
V
(
cy2n−1x2k−1 + d

)
− αx2ny2n−1Vx

)
,

(5)

where V = V(x, y), is a polynomial function, and Vx and Vy denotes the partial
derivative of variables x and y respectively. The coefficients a, b, c, d, α are non
zero reals, and the degree n and k are positive integers. Then the following
statements hold.

(1) Let Γ =
{
(x, y) ∈ R2, V(x, y) = 0

}
, be a degree l ≥ 2 invariant and non-

singular curve of the differential system (5). If b+d ̸= 0 and the bounded
components of Γ do not intersect the axes (x = 0, y = 0) , then the system
(5) admits all bounded components of Γ as hyperbolic limit cycles.

(2) If b+ d = 0 the system is integrable with first integral

H=


exp
(
(−2cn+c)x−2n+2k+(2an−a)y−2n+2k−2y−2n+1b x−2n+1(k−n)

2α(k−n)(2n−1)

)
V

if k ̸= n

y
a
α

x
c
α
exp

(
−b

(2n−1)αx2n−1y2n−1

)
V if k = n,

(6)

moreover the system has no limit cycle.

Proof of statement 1. Let Γ =
{
(x, y) ∈ R2, V(x, y) = 0

}
with degree l (l ≥ 2),

be a non-singular of system (5) and the bounded components of Γ do not
intersect the lines (x = 0, y = 0) . To show that all the bounded components
of Γ are hyperbolic limit cycles of system (5), we will prove that Γ is an invariant
curve of the system (5), and∫ T

0

div (X ) (γ(t)) dt ̸= 0,

see for instance Perko[15, Pages 216-217].
Its clearly V is an invariant curve of system (5), because

∂V
∂x

.
x+

∂U

∂y

.
y = Vxx

(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

)
+ Vyy

(
U
(
cy2n−1x2k−1 + d

)
− αx2ny2n−1Vx

)
= V

(
bVxx+ d y Vy + a x2ny2 k−1 Vx + c y2nx2 k−1Vy

)
,
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where the cofactor is

K =
(
a x2n−1y2 k−1 + b

)
xVx +

(
c y2n−1x2 k−1 − d

)
yVy.

To see
∫ T

0
div (X ) (γ(t)) dt is nonzero, we have show that∫ T

0

div (X ) (γ(t)) dt =

∫ T

0

K(x(t), y(t))dt, (7)

is non zero (see for instance Giacomini & Grau [10, theo 2]).∫ T

0

K(x(t), y(t))dt

=

∮
Γ

(
a x2n−1y2 k−1 + b

)
xVx

−αx2ny2nVx
dy +

∮
Γ

(
c y2n−1x2 k−1 + d

)
y Vy

αx2ny2nVy
dx

= −
∮
Γ

(
a x2n−1y2 k−1 + b

)
αx2n−1y2n

dy +

∮
Γ

(
c y2n−1x2 k−1 + d

)
αx2ny2n−1

dx,

by applying the Green formula,∮
Γ

(
c y2n−1x2 k−1 + d

)
αx2ny2n−1

dx−
∮
Γ

(
a x2n−1y2 k−1 + b

)
αx2n−1y2n

dy

=
1

α

∫∫
Int(Γ)

∂

(
(a x2n−1y2 k−1+ b)

x2n−1y2n

)
∂x

+

∂

(
(c y2n−1x2 k−1+d)

x2ny2n−1

)
∂y

 dxdy

= −2n− 1

α
(b+ d)

∫∫
Int(Γ)

1

y2nx2n
dxdy,

where Int (Γ) denotes the interior of Γ. As α ̸= 0, b+ d ̸= 0 and the bounded

components of Γ do not intersect the lines (x=0, y=0) then

∫ T

0

K(x(t), y(t))dt

is non zero.

To prove the second statement of Theorem 2.1, we will use the following
Theorem.

Theorem 2.2 ([11, Theorem 9]). Let Ψ : Ω → R be an inverse integrating
factor of system(1), if Γ ⊂ Ω is a limit cycle of (1) then Γ is contained in the
set Ψ−1(0) = {(x, y) ∈ Ω,Ψ(x, y) = 0} .

Proof of statement 2. For d = −b, we have a first integral in the form of equa-
tion (6). We separate the proof in two different cases . Firstly, if k ̸= n

H(x, y)=exp

(
(−2cn+c)x−2n+2k + (2an−a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k−n) (2n− 1)

)
V
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∂H
∂x

.
x+

∂H
∂y

.
y

=
1

α

((
by−2n+1x−2n − cx−2n+2 k−1

)
V + αVx

)
exp

(
(−2cn+ c)x−2n+2k + (2an− a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k − n) (2n− 1)

)
(
x
(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

))
+

1

α

((
ay−2n+2k−1 + b y−2nx−2n+1

)
V + αVy

)
exp

(
(−2cn+ c)x−2n+2k + (2an− a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k − n) (2n− 1)

)
(
y
(
V
(
cy2n−1x2k−1 − b

)
− αx2ny2n−1Vx

))
= 0.

Therefore

ẋ
∂H
∂x

+ ẏ
∂H
∂y

= 0, then
ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= Ψ,

where Ψ is an inverse integrating factor. Thus

ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −αx2ny2n exp (U(x, y)) ,

where

U(x, y) =
(2n− 1)

(
−ay2kx2n + cy2nx2k

)
+ 2bxy (k − n)

2αx2ny2n (2n− 1) (k − n)
.

According to Theorem 2.2, the system has no limit cycle because the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣
− αx2ny2n exp

(
(2n− 1)

(
−ay2kx2n + cy2nx2k

)
+ 2bxy (k − n)

2x2ny2nα (2n− 1) (k − n)

)
= 0

}

contains no closed curve.

Secondly, if k = n, then

H(x, y) =
y

a
α

x
c
α
exp

(
−b

(2n− 1)αx2n−1y2n−1

)
V(x, y) .
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is first integral and satisfies the following equation

∂H
∂x

.
x+

∂H
∂y

.
y =

((
− 1

x
1
α (c+α+2nα)

y
1
α (a−2nα)

α

(
cx2ny2n−bxy

))
V +

y
a
α

x
c
α
Vx

)

exp

(
−b

(2n− 1)αx2n−1y2n−1

)(
x
(
V
(
ax2n−1y2n−1 + b

)
+ αx2n−1y2nVy

))
+

((
1

x
1
α (c+2nα)y

1
α (α−a+2nα)α

(
ax2ny2n + bxy

))
V +

y
a
α

x
c
α
Vy

)
exp

(
−b

(2n−1)αx2n−1y2n−1

)(
y
(
V
(
cy2n−1x2n−1 − b

)
−αx2ny2n−1Vx

))
= 0.

Thus
ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −x
1
α (c+2nα)

y
1
α (a−2nα)

α exp

(
bx1−2n y1−2n

α (2n− 1)

)
.

By using Theorem 2.2, the system has no limit cycle because the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣ − x
1
α (c+2nα)

y
1
α (a−2nα)

α exp

(
bx1−2n y1−2n

α (2n− 1)

)
= 0

}

contains no closed curve.

Now, we present two examples for illustrating the result.

Example 2.3. Let a = b = c = d = α = n = 1, V(x, y) = 2
(
x2 + y2 − 2

)2 −
4x2y2 + 2xy + 1. The system (5) reduced to

.
x = x

(
(2 (x2 + y2 − 2)2 − 4x2 y2 + 2xy + 1) (xy + 1)

+y2x
(
8 (x2 + y2 − 2)y − 8x2y + 2x

))
,

.
y = y

(
(2 (x2 + y2 − 2)2 − 4x2 y2 + 2xy + 1) (yx+ 1)

−x2y
(
8 (x2 + y2 − 2)x− 8xy2 + 2 y

))
,

(8)

Γ =
{
(x, y) ∈ R2, 2

(
x2 + y2 − 2

)2 − 4x2y2 + 2xy + 1 = 0
}
, does not inter-

sect the axes (x = 0, y = 0) , and b + d ̸= 0, then the system (8) admits all
bounded components of Γ as hyperbolic limit cycles. So the system (8) admits

four limit cycles represented by the curve 2
(
x2 + y2 − 2

)2−4x2y2+2xy+1 = 0
and nine singular points where (0, 0) is an unstable node, (0.16868,−1.4441)) is
saddle point, (−0.16868, 1.4441) is a saddle point, (1.1170, 1.4373) is a strong
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unstable focus, (−1.1170,−1.4373) is a strong unstable focus, (1.3788,−1.5843)
is a strong unstable focus, (−1.3788, 1.5843) is a strong unstable focus, (1.4235,
0.46345) is a saddle point, (−1.4235,−0.46345) is a saddle point. See Figure 1.

Figure 1: Limit cycles and singular points of system(8).

Example 2.4. Let a = b = c = k = 1, d = −1, n = 2, α = 1
2 , and V(x, y) =

(x− 2)
2
+ (y − 2)2 − 1. Then system (5) becomes as follows

.
x = x

((
(x− 2)

2
+ (y − 2)2 − 1

) (
x3y + 1

)
+ x3y4(y − 2)

)
,

.
y = y

((
(x− 2)

2
+ (y − 2)2 − 1

) (
y3x− 1

)
− x4y3 (x− 2)

)
,

(9)

it has a first integral as follows

H(x, y) = exp

(
− 1

3x3y3
(
3x3y − 3xy3 + 2

))(
(x− 2)

2
+ (y − 2)2 − 1

)
,

It’s clearly aforementioned H(x, y) satisfies the definition of first integral. Then

ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −1

2
x4y4 exp

(
1

3x3y3
(
3x3y − 3xy3 + 2

))
,
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and the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣ − 1

2
x4y4 exp

(
1

3x3y3
(
3x3y − 3xy3 + 2

))
= 0

}
contains no closed curve. The system (9) admits three singular points, where
(0, 0) is a saddle point, (1.85773, 2.110525) is a strong stable focus and (1.99589,

0.777487) is a saddle point. The circle (x− 2)
2
+(y−2)2−1 = 0 is an invariant

curve for system, but the system has not a limit cycle. See Figure 2.

Figure 2: Phase portraits of system(9) in Poincaré disk.

3. Conclusion

In this paper, we investigate existence and non nonexistence of limit cycle for
a class of Kolmogorov system (1). We characterized all conditions for the
suggested system in order to find hyperbolic limit cycle. In addition, for in-
vestigating non existence limit cycle the general form of the first integral for
system (1) has been found under suitable conditions of the coefficients.
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Remark 3.1. All figures are plotted on the Poincaré disc by using polynomial
planar phase portraits program, see for instance [9, pages 233-257].
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Monotonicity theorems and inequalities
for certain sine sums

Horst Alzer and Man Kam Kwong

Abstract. Inspired by the work of Askey-Steinig, Szegö, and
Schweitzer, we provide several monotonicity theorems and inequalities
for certain sine sums. Among others, we prove that for n ≥ 1 and
x ∈ (0, π/2), we have

d

dx

Cn(x)

1− cos(x)
< 0 and

d

dx
(1− cos(x))Cn(x) > 0,

where

Cn(x) =

n∑
k=1

sin((2k − 1)x)

2k − 1

denotes Carslaw’s sine polynomial. Another result states that the in-
equality

n∑
k=1

(n− k + a)(n− k + b)k sin(kx) > 0 (a, b ∈ R)

holds for all n ≥ 1 and x ∈ (0, π) if and only if a = b = 1.
Many corollaries and applications of these results are given. Among
them, we present a two-parameter class of absolutely monotonic rational
functions.

Keywords: Sine sum, inequality, absolutely monotonic, rational function, subadditive.
MS Classification 2020: 26A48, 26C15, 26D05.

1. Introduction and statement of the results

I. A classical result in the theory of trigonometric polynomials states that

Fn(x) =

n∑
k=1

sin(kx)

k
> 0 (n ≥ 1; 0 < x < π). (1)

Fejér conjectured the validity of (1) in 1910. The first proof was published by
Jackson [21] one year later. Since then, more than 20 proofs of the Fejér-Jackson
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inequality were discovered. A remarkable stronger result than (1) was given by
Askey and Steinig [13] in 1976. They proved the monotonicity property

d

dx

Fn(x)

sin(x/2)
< 0 (n ≥ 1; 0 < x < π). (2)

Some related theorems were published by Gasper [18] and Alzer and Kouman-
dos [2].

The inequality

Cn(x) =

n∑
k=1

sin((2k − 1)x)

2k − 1
> 0 (n ≥ 1; 0 < x < π) (3)

is an elegant counterpart of (1). It is due to Carslaw [15]. We note that (3) is
equivalent to the functional inequality

Fn(2x) < 2F2n(x) (n ≥ 1; 0 < x < π).

Extensions and refinements of (3) as well as various similar results can be found
in Alzer and Koumandos [1], Alzer and Kwong [4, 5, 7], Koschmieder [23],
Meynieux and Tudor [25], Ruscheweyh and Salinas [29]; see also Milovanović
et al. [26, p. 317].

In view of (2) it is natural to ask: do there exist monotonicity properties
of functions which are defined in terms of Cn(x)? Our first theorem gives an
affirmative answer to this question.

Theorem 1.1. Let n ≥ 1 be an integer. Then, for x ∈ (0, π/2),

d

dx

Cn(x)

1− cos(x)
< 0 and

d

dx
(1− cos(x))Cn(x) > 0. (4)

For x ∈ (π/2, π), we have

d

dx

Cn(x)

1 + cos(x)
> 0 and

d

dx
(1 + cos(x))Cn(x) < 0.

Remark 1.2. (i) It follows from the formula Cn(π − x) = Cn(x) that each of
the two different sets of inequalities in Theorem 1.1 can be derived from the
other.
(ii) As an immediate consequence of the monotonicity results we obtain the
estimates

(1− cos(x))Ln < Cn(x) <
Ln

1− cos(x)
(n ≥ 1; 0 < x < π/2),

where

Ln =

n∑
k=1

(−1)k−1

2k − 1

denotes the n-th partial sum of the classical Leibniz series for π/4.
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A new lower bound for Cn(x), given in the next theorem, plays a crucial
role in the proof of (4).

Theorem 1.3. Let n ≥ 1 be an integer. For x ∈ (0, π), we have

| sin(2nx)|1− | cos(x)|
1− cos(2x)

< Cn(x). (5)

II. The inequality

n∑
k=1

(n− k + 1) sin(kx) > 0 (n ≥ 1; 0 < x < π) (6)

was first published by Fejér [17] in 1928. It is due to Lukács. Fejér offered a
proof of (6) by using properties of power series. An elegant short proof and
an extension involving a binomial coefficient were given by Turán [32]; see also
Alzer and Kwong [3]. Askey and Gasper [12] pointed out that (6) is a special
case of an inequality for the sum of Jacobi polynomials. We define

Sn(x) =

n∑
k=1

(n− k + 1)2k sin(kx).

Here, we present a companion to (6).

Theorem 1.4. Let n ≥ 1 be an integer. For x ∈ (0, π), we have Sn(x) > 0.

The following representation for Sn(x) plays a key role in our proof of
Theorem 1.4.

Theorem 1.5. Let n ≥ 1 be an integer. For x ∈ R, we have

16 sin4(x/2)Sn(x) = 4(n+ 1) sin(x)− (n+ 2) sin(nx)

− 4 sin((n+ 1)x) + n sin((n+ 2)x). (7)

Remark 1.6. Integrating Sn(t) from t = x to t = y yields, from Theorem 1.4,
an inequality involving the cosine function,

n∑
k=1

(n− k + 1)2 (cos(kx)− cos(ky)) > 0 (n ≥ 1; 0 ≤ x < y ≤ π). (8)

Remark 1.7. From Theorem 1.4 we conclude that the function

Mn(x) =

n∑
k=1

(n− k + 1)2
sin(kx)

k

is strictly concave on [0, π]. Applying the Petrović inequality (see Mitrinović
[27, section 1.4.7]) gives that Mn satisfies the subadditive property

Mn(x+ y) < Mn(x) +Mn(y) (n ≥ 1; x, y > 0, x+ y ≤ π).
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Robertson [28] proved the inequality: For n ≥ 2 and 0 < x < π,

(n+ 1)
sin((n− 1)x)

sin(x)
− (n− 1)

sin((n+ 1)x)

sin(x)
≤ 4

(
n− sin(nx)

sin(x)

)
and used it to deduce properties of certain analytic functions. Askey and
Gasper [11] refined this inequality by showing that the factor 4 can be replaced
by 3 + cos(x). The inequality

sin(nx)

n sin(x)
≤

√
6

9
(n ≥ 2; π/n ≤ x ≤ π − π/n) (9)

is due to Askey; see Jagers [22]. It plays a role in the proof of Theorem 1.4.
An application of Theorem 1.4 leads to the following related result.

Corollary 1.8. Let λ ∈ R with λ ≥ 1. The inequality

sin(nx)

n sin(x)
<

λ+ cos(nx)

λ+ cos(x)
(10)

holds for all integers n ≥ 2 and x ∈ (0, π) if and only if λ ≥ 2.

A function f : I → R (where I ⊂ R is an interval) is called absolutely
monotonic if f has derivatives of all orders and satisfies

f (n)(x) ≥ 0 (n = 0, 1, 2, ...; x ∈ I).

These functions have applications in probability theory and the theory of an-
alytic functions. We refer to Widder [33, chapter IV] and Boas [14] for more
information on this subject. An additional application of Theorem 1.4 provides
a two-parameter class of absolutely monotonic rational functions.

Corollary 1.9. Let a, b ∈ R with −1 < a, b < 1. The function

Ra,b(x) =

(
1 + x

1− x

)2
x

(x2 + 2ax+ 1)(x2 + 2bx+ 1)
(11)

is absolutely monotonic on [0, 1).

We discovered Theorem 1.4 when studying a remarkable paper published by
Szegö [31] in 1941. His work on univalent functions led Szegö to the inequality

n∑
k=1

(n− k + 1)(n− k + 2)k sin(kx) > 0 (n ≥ 1; 0 < x ≤ τ), (12)

where τ = 1.98... is defined by the equation sin2(τ/2) = 7/10. Schweitzer [30]
improved this result. He showed that (12) is valid for all n ≥ 1, x ∈ (0, 2π/3)
and that 2π/3 cannot be replaced by a larger constant. Applications and coun-
terparts of (12) can be found in Askey and Fitch [10] and Alzer and Kwong [6].
The following companion to (12) is valid.
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Theorem 1.10. Let a, b ∈ R. The inequality

n∑
k=1

(n− k + a)(n− k + b)k sin(kx) > 0 (13)

holds for all integers n ≥ 1 and x ∈ (0, π) if and only if a = b = 1.

III. In the literature, we can find numerous papers on inequalities for
trigonometric sums. The main reason for the great interest is that these results
have applications in various fields, like, for instance, geometric function theory,
numerical analysis, and number theory. Detailed information on this subject
with interesting historical comments and many references are given in Askey
[8], Askey and Gasper [12], Milovanović et al. [26, chapter 4]; see also Askey [9],
Dimitrov and Merlo [16], Gluchoff and Hartmann [19], and Koumandos [24].

IV. Our proofs of the stated theorems and corollaries are given in Sec-
tions 2-8. The algebraic and numerical computations have been carried out by
using the computer program MAPLE 13.

2. Proof of Theorem 1.3

Let n ≥ 1, x ∈ (0, π) and

Bn(x) = Cn(x)− | sin(2nx)|1− | cos(x)|
1− cos(2x)

.

Since Bn(π − x) = Bn(x), it suffices to prove that Bn is positive on (0, π/2].
Let x ∈ (0, π/2]. Then,

Bn(x) = Cn(x)−
| sin(2nx)|

2(1 + cos(x))
. (14)

We obtain

B1(x) =
sin(x)

1 + cos(x)
> 0.

Let t = cos(x). If x ∈ (0, π/4], then

B2(x) =
2 sin(x)(1 + 2 cos(x))

3(1 + cos(x))
p(t),

and if x ∈ (π/4, π/2], then

B2(x) =
2 sin(x)

3(1 + cos(x))
q(t)
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with
p(t) = −2t2 + 2t+ 1 and q(t) = 8t3 + 2t2 − 2t+ 1.

Since p is positive on [
√
2/2, 1] and q is positive on [0,

√
2/2], we conclude that

B2(x) > 0 for x ∈ (0, π/2].
Next, let n ≥ 3. We consider two cases.
Case 1. x ∈ (0, π/(2n)).
We have

Bn(x) = Cn(x)−
sin(2nx)

2(1 + cos(x))
.

Using

C ′
n(x) =

n∑
k=1

cos((2k − 1)x) =
sin(2nx)

2 sin(x)
(15)

gives
2 sin(x)B′

n(x) = sin(2nx)η(x)− 2n tan(x/2) cos(2nx)

with

η(x) = 1−
(

sin(x)

1 + cos(x)

)2

.

Since η is decreasing on (0, π), we conclude from 0 < x < π/(2n) ≤ π/6 that

η(x) ≥ η(π/6) > 0.92.

It follows that

2 sin(x)B′
n(x) > 0.92 sin(2nx)− 2n tan(x/2) cos(2nx). (16)

Case 1.1. x ∈ (0, π/(4n)).
From (16) we obtain

2 sin(x)B′
n(x) > cos(2nx)σn(x)

with
σn(x) = 0.92 tan(2nx)− 2n tan(x/2).

Since

1

n
σ′
n(x) =

1.84

cos2(2nx)
− 1

cos2(x/2)
>

1

cos2(2nx)
− 1

cos2(x/2)
> 0,

we get σn(x) > σn(0) = 0. Thus, B′
n(x) > 0.

Case 1.2. x ∈ [π/(4n), π/(2n)).
Since sin(2nx) > 0 ≥ cos(2nx), we get from (16) that B′

n(x) > 0.
From Case 1.1 and Case 1.2 we conclude that B′

n is positive on (0, π/(2n)].
This leads to Bn(x) > Bn(0) = 0.
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Case 2. x ∈ [π/(2n), π/2].
From (15) we obtain the integral representation

Cn(x) =

∫ x

0

sin(2ns)

2 sin(s)
ds.

Carslaw [15] proved that in [π/(2n), π/2], Cn attains its global minimum at
x = π/n. Thus,

Cn(x) ≥ Cn(π/n) = Yn + Zn, (17)

where

Yn =

∫ π/(2n)

0

sin(2ns)

2 sin(s)
ds =

1

4n

∫ π

0

sin(t)

sin(t/(2n))
dt

and

Zn =

∫ π/n

π/(2n)

sin(2ns)

2 sin(s)
ds =

1

4n

∫ 2π

π

sin(t)

sin(t/(2n))
dt.

Using the estimate
2n

t
≤ 1

sin(t/(2n))
(0 < t < π)

gives

Yn ≥ 1

4n

∫ π

0

2n

t
sin(t)dt > 0.92.

Since t 7→ sin(t)/t is decreasing on (0, π), we obtain for t ∈ (π, 2π),

2n

t
sin

(
t

2n

)
≥ 3

π
sin
(π
3

)
.

Thus,
1

sin(t/(2n))
≤ 4πn

3
√
3t

(π < t < 2π).

This leads to

Zn ≥ π

3
√
3

∫ 2π

π

sin(t)

t
dt > −0.27.

It follows that

Yn + Zn >
1

2
. (18)

Moreover, we have

| sin(2nx)|
2(1 + cos(x))

≤ 1

2(1 + cos(x))
≤ 1

2
. (19)

From (14), (17), (18) and (19) we conclude that Bn(x) > 0. The proof of
Theorem 1.3 is complete.
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3. Proof of Theorem 1.1

Let n ≥ 1. We define

Gn(x) =
Cn(x)

1− cos(x)
, Hn(x) = (1− cos(x))Cn(x).

Using (15) and (5) gives, for x ∈ (0, π/2),

(1− cos(x))2

sin(x)

d

dx
Gn(x) =

1

sin(x)

[
(1− cos(x))C ′

n(x)− sin(x)Cn(x)
]

= sin(2nx)
1− | cos(x)|
1− cos(2x)

− Cn(x) < 0

and

1

sin(x)

d

dx
Hn(x) =

1

sin(x)

[
(1− cos(x))C ′

n(x) + sin(x)Cn(x)
]

= Cn(x) + sin(2nx)
1− | cos(x)|
1− cos(2x)

> 0.

We define

G∗
n(x) =

Cn(x)

1 + cos(x)
, H∗

n(x) = (1 + cos(x))Cn(x).

Since G∗
n(x) = Gn(π−x) and H∗

n(x) = Hn(π−x), we obtain, for x ∈ (π/2, π),

d

dx
G∗

n(x) = −G′
n(π − x) > 0 and

d

dx
H∗

n(x) = −H ′
n(π − x) < 0.

4. Proof of Theorem 1.5

We have

n∑
k=1

k sin(kx) =
sin((n+ 1)x)

4 sin2(x/2)
− (n+ 1)

cos((n+ 1/2)x)

2 sin(x/2)
(20)

and
n∑

k=1

k cos(kx) = (n+ 1)
sin((n+ 1/2)x)

2 sin(x/2)
− 1− cos((n+ 1)x)

4 sin2(x/2)
; (21)

see Gradshteyn and Ryzhik [20, p. 38]. Next, we set

s(k) = sin(kx) and T (k) = (2 sin(x/2))k.
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By differentiation, we obtain from (20) and (21),

n∑
k=1

k2s(k) =
A∗

n

T (4)
, (22)

where

A∗
n = −2s(1)− (n+ 1)2s(n− 1) + n(3n+ 4)s(n)

− (n+ 1)(3n− 1)s(n+ 1) + n2s(n+ 2)

and
n∑

k=1

k3s(k) =
B∗

n

T (4)
, (23)

where

B∗
n = −(n+ 1)3s(n− 1) + (3n3 + 6n2 − 4)s(n)

− (3n3 + 3n2 − 3n+ 1)s(n+ 1) + n3s(n+ 2).

Moreover, (20) can be written as

n∑
k=1

ks(k) =
C∗

n

T (4)
, (24)

where

C∗
n = −(n+ 1)s(n− 1) + (3n+ 2)s(n)− (3n+ 1)s(n+ 1) + ns(n+ 2).

Applying (22), (23), (24) and the representation

Sn(x) = (n+ 1)2
n∑

k=1

ks(k)− 2(n+ 1)

n∑
k=1

k2s(k) +

n∑
k=1

k3s(k)

we conclude that (7) holds.

5. Proof of Theorem 1.4

Using (7) we obtain

2
(1− cos(x))2

sin(x)
Sn(x) = An(x),

where

An(x) = 2(n+ 1)− sin(nx)

sin(x)
− 2

sin((n+ 1)x)

sin(x)
+ n cos((n+ 1)x).

97



(10 of 17) H. ALZER AND M.K. KWONG

We show that An(x) > 0 for n ≥ 1 and x ∈ (0, π). First, we consider the cases
n = 1, 2, 3, 4, 5, 6. We set t = cos(x) ∈ (−1, 1). Then,

A1(x) = 2(1− t)2 > 0 and A2(x) = 8(1 + t)(1− t)2 > 0.

Moreover,

A3(x) = 4(1− t)2p3(t), A4(x) = 8(1 + t)(1− t)2p4(t),

A5(x) = 2(1− t)2p5(t), A6(x) = 16(1 + t)(1− t)2p6(t)

with

p3(t) = 6t2 + 8t+ 3, p4(t) = 8t2 + 4t+ 1,

p5(t) = 80t4 + 128t3 + 48t2 + 3, p6(t) = 24t4 + 16t3 − 4t2 − 2t+ 1.

A short calculation yields that the polynomials p3, p4, p5 and p6 are positive
on (−1, 1). It follows that A3, A4, A5 and A6 are positive on (0, π).

Let n ≥ 7. We consider five cases.

Case 1. x ∈ (0, π/n].

We set x = s/(n+ 1) with s ∈ (0, (n+ 1)π/n] and define

Jn(s) = sin

(
s

n+ 1

)
An

(
s

n+ 1

)
= (2n+ 2 + n cos(s)) sin

(
s

n+ 1

)
− sin

(
ns

n+ 1

)
− 2 sin(s). (25)

Case 1.1. s ∈ (0, 3π/4].

Using

1− 1

2
θ2 +

1

24
θ4 − 1

720
θ6 ≤ cos(θ) (θ ≥ 0)

and

θ − 1

6
θ3 ≤ sin(θ) ≤ θ − 1

6
θ3 +

1

120
θ5 (θ ≥ 0)

we obtain the estimates

sin

(
s

n+ 1

)
≥ s

n+ 1
− s3

6(n+ 1)3
,

− sin

(
ns

n+ 1

)
≥ − ns

n+ 1
+

n3s3

6(n+ 1)3
− n5s5

120(n+ 1)5
.
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It follows that

Jn(s) ≥
(
2n+ 2 + n

(
1− 1

2
s2 +

1

24
s4 − 1

720
s6
))(

s

n+ 1
− s3

6(n+ 1)3

)
− ns

n+ 1
+

n3s3

6(n+ 1)3
− n5s5

120(n+ 1)5
− 2s+

1

3
s3 − 1

60
s5

=
s5Pn(s)

4320(n+ 1)5

with

Pn(s) = n(n+ 1)2s4 − 6n(n+ 1)2(n2 + 2n+ 6)s2 + 72n5

+ 360n4 + 720n3 + 720n2 + 180n− 72.

It remains to show that Pn(s) > 0, or, equivalently, after replacing s2 by
t ∈ (0, (3π/4)2) ⊂ (0, 6),

Qn(t) = t2 − 6(n2 + 2n+ 6)t+
72n5+360n4+720n3+720n2+180n−72

n(n+ 1)2
> 0.

Since
Q′

n(t) = 2t− 6(n2 + 2n+ 6) < 0 (0 < t < 6),

we obtain

Qn(t) > Qn(6) =
36(n5 + 6n4 + 10n3 + 8n2 − 2)

n(n+ 1)2
> 0.

Case 1.2. s ∈ [3π/4, (n+ 1)π/n].
Applying

sin

(
ns

n+ 1

)
≤ sin

(
3nπ

4(n+ 1)

)
≤ sin

(
21π

32

)
< 0.882

and

2 sin(s) ≤ 2 sin

(
3π

4

)
< 1.415

leads to

− sin

(
ns

n+ 1

)
− 2 sin(s) > −2.297. (26)

Using the monotonicity of x 7→ sin(x)/x we obtain

(n+ 2) sin

(
s

n+ 1

)
≥ (n+ 2) sin

(
3π

4(n+ 1)

)
≥ 8(n+ 2)

n+ 1
sin

(
3π

32

)
> 2.321. (27)
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From (25), (26) and (27) we get

Jn(s) ≥ (n+ 2) sin

(
s

n+ 1

)
− sin

(
ns

n+ 1

)
− 2 sin(s) > 0.

Case 2. x ∈ [π/n, π − π/n].
Using (9) we obtain

An(x) ≥ 2(n+ 1)−
√
6

9
n− 2

√
6

9
(n+ 1)− n

=

(
1−

√
6

3

)
n+ 2

(
1−

√
6

9

)
> 0 .

Case 3. n is odd and x ∈ [π − π/n, π − π/(n+ 1)].
Since x 7→ − sin(nx) is decreasing on I = [π−π/n, π−π/(n+1)], we obtain

− sin(nx) ≥ − sin

(
nπ − nπ

n+ 1

)
= − sin

(
π

n+ 1

)
.

Moreover, we have

sin(x) ≥ sin

(
π − π

n+ 1

)
= sin

(
π

n+ 1

)
. (28)

This gives

− sin(nx)

sin(x)
≥ −1. (29)

The function x 7→ − sin((n+ 1)x) is increasing on I. Thus,

−2 sin((n+ 1)x) ≥ −2 sin

(
(n+ 1)π − n+ 1

n
π

)
= −2 sin

(π
n

)
. (30)

Using (28) and (30) gives

−2
sin((n+ 1)x)

sin(x)
≥ −2

sin(π/n)

sin(x)
≥ −2

sin(π/n)

sin(π/(n+ 1))

≥ −2
n+ 1

n
≥ −16

7
. (31)

From (29) and (31) we conclude that

An(x) ≥ 2(n+ 1)− 1− 16

7
− n = n− 9

7
> 0.

Case 4. n is odd and x ∈ (π − π/(n+ 1), π).
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We have sin((n + 1)x) < 0, and since 0 < π − x < π/(n + 1) < π/n, we
conclude from Case 1 that An(π − x) > 0. It follows that

An(x) = An(π − x)− 4
sin((n+ 1)x)

sin(x)
> 0.

Case 5. n is even and x ∈ (π − π/n, π).
We have

An(x) = An(π − x) +
n(n+ 2)

sin(x)
ωn(x), (32)

where

ωn(x) =
sin((n+ 2)x)

n+ 2
− sin(nx)

n
.

Then,
ω′
n(x) = −2 sin(x) sin((n+ 1)x).

It follows that ω′
n is positive on (π−π/n, nπ/(n+1)) and negative on (nπ/(n+

1), π). This leads to

ωn(x) ≥ min (ωn(π − π/n), ωn(π)) = 0.

Moreover, from Case 1 we obtain that An(π − x) > 0. Applying (32) gives
An(x) > 0. This completes the proof of Theorem 1.4.

6. Proof of Corollary 1.8

Let n ≥ 2 and x ∈ (0, π). We define for λ ≥ 2,

D(λ) = Dn(λ, x) = λ+ cos(nx)− (λ+ cos(x))
sin(nx)

n sin(x)
.

Applying Theorem 1.4 and Theorem 1.5 gives

D(2) = 2 + cos(nx)− (2 + cos(x))
sin(nx)

n sin(x)

=
2 sin(x)(1− cos(x))

n(1 + cos(x))
Sn−1(x) > 0.

Since

D′(λ) = 1− sin(nx)

n sin(x)
> 0,

we obtain D(λ) ≥ D(2) > 0. This leads to (10). Next, we assume that (10) is
valid for all n ≥ 2 and x ∈ (0, π). We define

E(x) = En(λ, x) = n(λ+ cos(nx)) sin(x)− (λ+ cos(x)) sin(nx).
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Then, E(x) > 0. Since E(0) = E′(0) = E′′(0) = 0, we get

E′′′(0) = n(n2 − 1)(λ− 2) ≥ 0.

This yields λ ≥ 2.

7. Proof of Corollary 1.9

Let x ∈ (−1, 1) and t ∈ (0, π). We define

U(x) =

∞∑
k=0

(k + 1)2xk =
1 + x

(1− x)3

and Vt(x) =

∞∑
k=1

cos(kt)xk =
x(cos(t)− x)

x2 − 2x cos(t) + 1
.

Let 0 < α < β < π and Wα,β(x) = U(x) (Vα(x)− Vβ(x)). Then,

Wα,β(x) =

∞∑
k=0

(k + 1)2xk
∞∑
k=1

(cos(kα)− cos(kβ))xk

=

∞∑
n=1

n∑
k=1

(n− k + 1)2 (cos(kα)− cos(kβ))xn

= (cos(α)− cos(β))

(
1 + x

1− x

)2
x

ϕ(x)
, (33)

where

ϕ(x) = (x2 − 2x cos(α) + 1)(x2 − 2x cos(β) + 1).

Moreover, we obtain

∞∑
n=1

n∑
k=1

(n− k + 1)2k
sin(kβ)

sin(β)
xn = lim

α→β

Wα,β(x)

cos(α)− cos(β)

=

(
1 + x

1− x

)2
x

(x2 − 2x cos(β) + 1)2
. (34)

Applying (8) and Theorem 1.4 we conclude that the power series in (33)
and (34) have positive coefficients. We set a = − cos(α) ∈ (−1, 1) and b =
− cos(β) ∈ (−1, 1). It follows that the function Ra,b, defined in (11), is abso-
lutely monotonic on [0, 1).
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8. Proof of Theorem 1.10

We denote the sum in (13) by Kn(a, b;x). From Theorem 1.4 we conclude that
Kn(1, 1;x) > 0 for n ≥ 1 and x ∈ (0, π). Next, we assume that (13) is valid
for all n ≥ 1 and x ∈ (0, π). From K1(a, b;x) = ab sin(x) > 0 we conclude that
ab > 0. For n = 2 we obtain

K2(a, b;x) = (1 + a+ b+ ab(1 + 4 cos(x))) sin(x) > 0.

This gives 1 + a+ b− 3ab ≥ 0. Thus,

0 < 3ab ≤ 1 + a+ b. (35)

Since Kn(a, b;π) = 0, we obtain for n ≥ 1,

d

dx
Kn(a, b;x)

∣∣∣
x=π

=

n∑
k=1

(−1)k(n− k + a)(n− k + b)k2 ≤ 0.

We consider two cases.
Case 1. n = 2N .
We obtain

d

dx
K2N (a, b;x)

∣∣∣
x=π

= N2(2ab− a− b) +N(ab− 1) ≤ 0.

This gives
2ab− a− b ≤ 0. (36)

Case 2. n = 2N + 1.
Then,

d

dx
K2N+1(a, b;x)

∣∣∣
x=π

= N2(a+ b− 2ab) +N(a+ b− 3ab)− ab ≤ 0.

It follows that
a+ b− 2ab ≤ 0. (37)

From (36) and (37) we get
a+ b = 2ab. (38)

Using (35) and (38) we conclude that a, b > 0. This gives

ab =
a+ b

2
≥

√
ab.

Thus, ab ≥ 1. Using (35) and (38) yields

1 + 2ab = 1 + a+ b ≥ 3ab.

Hence, ab ≤ 1. It follows that ab = 1. Applying this result and (38) leads to

0 = a+ b− 2ab =
1

a
(a− 1)2.

Thus, a = 1. It follows that b = 1.
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un schéma général pour obtenir des inégalités, Publ. Elektrotehn. Fak. Univ.
Beograd. Ser. Mat. Fiz. 412-460 (1973), 171–174.
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Section 2

Proceedings of TAGSS School 2021
Hyperkähler and Prym varieties:

Classical and New Results





Preface

TAGSS (Trieste Algebraic Geometry Summer School) is an ongoing series of
schools taught by outstanding women mathematicians, with the aim of bringing
doctoral students, postdocs, and anyone interested, from a review of the basic
constructions to current, state-of-the art research themes.

The previous successful editions featured programs on enumerative geom-
etry (TAGSS I - Summer School in Enumerative Geometry, held at SISSA in
2017), geometry of moduli spaces of curves (TAGSS II - Summer School on
Geometry of Moduli Spaces of Curves, held at ICTP in 2018), and applications
of geometry to biochemical networks and data clouds (TAGSS III - Algebraic
Geometry towards Applications, again at ICTP in 2019).

After a break in 2020 due to the pandemic situation, we reprised the series in
July 2021 with the online event TAGSS 2021 - Hyperkähler and Prym Varieties:
Classical and New Results, sponsored by ICTP (activity smr 3609, available
at the page https://indico.ictp.it/event/9610/overview). It featured courses
by Elham Izadi (Hyperkähler manifolds, an overview and some open problems)
and Angela Ortega (Prym varieties). Following the same format as the previous
editions, the Summer School lasted one week and included exercise sessions that
complemented the lectures, as well as contributed talks delivered by young
participants.

The topics of the school concerned the connection between Abelian varieties
and algebraic curves, which has inspired algebraic geometers for more than a
century, with each field helping to shed light on the other. With each (smooth
projective) curve one can associate its Jacobian; however, most principally
polarized abelian varieties cannot be obtained in this way. A more general
construction associates with a finite morphism of curves its Prym variety; this
construction leads to the concept of Prym-Tyurin variety. These associations
work well in families, leading to the Torelli map from the moduli of curves (and
the Prym map from the moduli of covers) to the moduli of principally polarized
abelian varieties, and have led to the proof of numerous results on all these
important moduli spaces. Other applications include Hodge theory, and in
particular primal cohomology of the theta divisor, highlighting its connections
to root lattices.

The main goal of the school was to provide a stimulating intellectual envi-
ronment where all the participants could learn about some of these important
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aspects of algebraic geometry, as well as the basic notions required for working
in this field. In particular, we encouraged female students and researchers at
the beginning of their career.

This volume contains the lecture notes of the two courses given at the school,
as well as a contribution by one of the young speakers and her collaborator.

The lecture notes Hyperkähler manifolds contain contributions by Elham
Izadi and some of her students and postdocs, who helped with the exercise
sessions, namely Samir Canning, Yajnaseni Dutta, and David Stapleton. They
give an elementary introduction to Hyperkähler manifolds, survey some of their
interesting properties and some open problems.

The lecture notes Prym varieties and Prym maps have been co-authored
by Angela Ortega and Pawe l Borówka, who also led the exercise sessions of
Ortega’s course.They contain an introduction to the theory of Prym varieties,
and a detailed analysis of the fibres of the Prym map for étale double coverings
over genus 6 curves.

Finally, the article by Gian Paolo Grosselli and Irene Spelta concerns pos-
itive dimensional fibres of the Prym map Pg,r. The authors present a direct
procedure to investigate infinitely many examples of positive dimensional fibres.

Acknowledgement. We are very grateful to ICTP - the Abdus Salam
International Centre for Theoretical Physics, to the local organizer prof. Lothar
Goettsche, and to all the secretary and technical staff for the hospitality, the
excellent support and for the constant encouragement in our proposal.

The guest Editors
Valentina Beorchia

Ada Boralevi
Barbara Fantechi
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Rend. Istit. Mat. Univ. Trieste
Vol. 54 (2022), Art. No. 2, 18 pages

DOI: 10.13137/2464-8728/33586

Explicit analysis of positive dimensional

fibres of Pg,r and Xiao conjecture

Gian Paolo Grosselli and Irene Spelta

Abstract. We focus on the positive dimensional fibres of the Prym
map Pg,r. We present a direct procedure to investigate infinitely many
examples of positive dimensional fibres. Such procedure uses families of
Galois coverings of the line admitting a 2-sheeted Galois intermediate
quotient. Then we generalize to families of Galois coverings of the line
admitting a Galois intermediate quotient of higher degree and we show
that the higher degree analogue of the aforementioned procedure gives
all the known counterexamples to a conjecture by Xiao on the relative
irregularity of a fibration.

Keywords: Families of Galois covers, Prym maps, Xiao conjecture.
MS Classification 2020: 14H10, 14H30, 14H40.

1. Introduction

Let C be a curve of genus g ≥ 1 and let f : C̃ → C be a 2-sheeted covering
of C ramified at r ≥ 0 points. The Prym variety P := P (C̃, C) is a polarized
abelian variety of dimension g − 1 + r

2 associated with f . It is defined as

the identity component of the kernel of the Norm map Nmf : JC̃ → JC.

The theta divisor of JC̃ induces a polarization on the Prym variety P of type
δ := (1, . . . , 1, 2, . . . , 2) with 2 repeated g times if r > 0 and g−1 times if r = 0.

Let us denote by Rg,r the coarse moduli space of isomorphism classes of
coverings f and by Aδ

g−1+ r
2
the one of abelian varieties of dimension g− 1+ r

2

with polarization of type δ. The theory of double coverings provides an alterna-
tive description of Rg,r. Indeed there is a 1-1 correspondence between double

covers f : C̃ → C and triples (C, η,B) in

Rg,r = {(C, η,B) : C ∈ Mg, η ∈ Pic
r
2 (C), B reduced in |η⊗2|}/ ∼= .

When r = 0, the branch divisor B is empty, hence we can identify f with a
pair (C, η), with η ∈ Pic0(C)∖ {OC} such that η⊗2 ∼= OC .
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The Prym map is the morphism

Pg,r : Rg,r → Aδ
g−1+ r

2

which sends triples [(C, η,B)] to the corresponding Prym variety P .
The case r = 0 is very classical. Indeed unramified Prym varieties are

principally polarized abelian varieties and they have been studied for over one
hundred years. Our (algebraic) point of view has been presented for the first
time by Mumford in [24] in 1974. Then many papers investigated this case and
nowadays we have a lot of information on Pg,0. Donagi very well discusses it
in [6]. Good surveys are [8] and [29].

The case r > 0 has become of interest only more recently. Indeed ramified
Prym varieties are abelian varieties no longer principally polarized (except in
the case of r = 2). As such, they started to be studied quite late. Even if some
cases with r = 4 were already considered by [25] and by [2], the seminal paper
is the one by Marcucci and Pirola ([22]), which came out only in 2012. From
this work, many other authors have investigated the ramified Prym maps Pg,r.
At this moment it is a very active area of research. For instance, very recently,
it has been proved that if r ≥ 6 then Pg,r is injective ([18, 28]).

When the genus g and the number r are low, more precisely when g < 6
for r = 0, g ≤ 4 for r = 2 and g ≤ 2 for r = 4, the fibres of the Prym maps
Pg,r are positive dimensional and they carry plenty of geometry which is well-
understood (see [6] and [13]). The structure of the generic positive dimensional
fibre is so peculiar that one needs to find an ad-hoc procedure to describe each
of them.

In [26], Naranjo stated that, for g large enough, the étale Prym map Pg,0
has positive dimensional fibres only on the locus of coverings of hyperelliptic
curves and on some components of the locus of coverings of bielliptic curves.
Naranjo and Ortega (see [28, Theorem 1.2]) showed that the ramified Prym
map Pg,r, with r = 2, 4 and any value for g, has positive dimensional fibres
when restricted to covers of hyperelliptic curves. In the same paper, the authors
also proved that the Prym map P5,2 carries positive dimensional fibres when
restricted to the locus of trigonal curves. Finally, Casalaina-Martin and Zhang
[4, Theorem 5.1] produced some positive dimensional fibres for P3,4 under the
assumption η effective.

Thus it turns out that, except for a few isolated cases, the hyperelliptic
locus represents a good place to look for positive dimensional fibres for the
Prym map. Nevertheless, when r > 0 it is unknown if we should expect the
existence of other examples. Indeed we only have the following:

Proposition 1.1 ([28]). Assume r > 0. If the differential dPg,r is not injective
then we are in one among these cases.

r = 2 : C is hyperelliptic or trigonal or plane quintic or η = OC(x+y− z), for
x, y, z ∈ C.
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r = 4 : C is hyperelliptic or h0(C, η) > 0.

This Proposition doesn’t conclude the classification. Apart from the hyper-
elliptic locus and the isolated examples mentioned in the previous paragraph
(i.e. the trigonal locus in genus 5 and η effective in genus 3), we still do not
known the behaviour of the differential dPg,r on the remaining cases.

The goal of this paper is to analyse infinitely many examples of positive
dimensional fibres of the Prym maps, both in the étale or in the ramified case.
We use positive dimensional families of Galois covers C̃ → C̃/G̃ ∼= P1 of the
line where the genus g̃ := g(C̃), the number of ramification points s and the
monodromy are fixed. Then we look for which among these families admit as
intermediate quotient C̃ → C a 2:1 map ramified in r = 0, 2, 4. Hence we select
the ones with associated dPg,r non-injective. This request corresponds to a
simple numerical condition as follows.

Proposition 1.2. If dim(S2H0(ωC̃))
G̃ − dim(S2H0(ωC))

G̃ < dimH0(ω⊗2

C̃
)G̃

then the differential dPg,r along the family is not injective. Hence the Prym
map has positive dimensional fibres along the family.

In particular, when dim(S2H0(ωC̃))
G̃ = dim(S2H0(ωC))

G̃ the family is all

contained in a fibre of Pg,r. This is always the situation in case of H0(ω⊗2

C̃
)G̃ =

1, i.e. of 1-dimensional families, under the assumption of Proposition 1.2.

We show the following:

Theorem 1.3. For any N ∈ N there exist 1-dimensional families of Galois
covers C̃ → C → P1 contained in the fibres of P2N,0,P2N,2,P2N−1,0,P2N−1,4.

Easily we show that (unfortunately) all such families arise as coverings of
curves C lying in the hyperelliptic locus.

In general, starting from a family of curves, one can construct fibrations that
have the curves of the family as fibres. In particular, we focus on those obtained
from families under the assumption of Proposition 1.2. At the same time, we
generalize to families of Galois coverings C̃ → C̃/G̃ ∼= P1 (with fixed genus
g̃ := g(C̃) and monodromy) admitting Galois intermediate quotient C̃ → C of
degree d ≥ 2. Accordingly, we give the definitions of Prym variety P (C̃, C)
and of higher degree Prym map Pg,r(d).

First, we show that a higher-degree analogue of Proposition 1.2 holds. In-
deed we prove the following:

Proposition 1.4. If dim(S2H0(ωC̃))
G̃ − dim(S2H0(ωC))

G̃ < dimH0(ω⊗2

C̃
)G̃

then the differential of the Prym map Pg,r(d) along the family is not injective.
Hence the Prym map has positive dimensional fibres along the family.
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It appears that fibrations h : S → B obtained from families under the
assumption of Proposition 1.4 are quite interesting. Indeed, using them, we
produce all the known counterexamples to a conjecture of Xiao.

In [35], Xiao proved that a non trivial fibration with base curve B ∼= P1,
general fibre of genus g̃ and irregularity q, satisfies q ≤ g̃+1

2 . Furthermore,
for g(B) > 0, he conjectured that the relative irregularity of the fibration qh
satisfies qh ≤ g̃+1

2 . The four known counterexamples have been constructed
in [30] and in [1] as fibrations associated with families of cyclic prime odd
étale covers of hyperelliptic curves (elliptic curves in case of [30]) carrying a
non-injective differential dPg,r(d). In particular, the three examples of [1] fit
perfectly in the structure of our families: a Theorem by Ries ([31]) guarantees

that they yield dihedral Galois cover of P1, i.e. they provide towers C̃
d:1−−→ C →

C̃/Dd
∼= P1.

In light of Proposition 1.4, it seemed natural to us to check if there exist

other families of Galois coverings C̃
d:1−−→ C → P1 with non-injective differential

and which disprove the conjecture. Notice that we do not require C to be
hyperelliptic and we consider any Galois (cyclic or not) intermediate quotient

C̃
d:1−−→ C of any degree. By means of computer calculations (our MAGMA script

is available at http://mate.unipv.it/grosselli/publ/ ), we show the following

Proposition 1.5. Up to g̃ = 12, s = 14 (i.e. dimension 11), the only positive

dimensional families of Galois towers C̃
d:1−−→ C → P1 carrying non-injective

differential and disproving Xiao’s conjecture are the one of [30] and the ones
of [1].

The third example of [1, Theorem 1.2] is obtained via a degeneration argu-
ment. Therefore one of the four examples that we find with Proposition 1.5 is
presented in a slightly different way from the original, although it is clearly the
same. For this reason, we think it may be useful to give a very brief description
of all the examples.

The paper is organized as follows: in Section 2 we give an overview on
Prym maps while in Section 3 we explain our constructive method. Finally,
in Section 4, we recall something on Xiao fibrations and we describe the coun-
terexamples.

2. The state of the art

In this section we would like to overview the literature on positive dimensional
fibres of the Prym maps Pg,r : Rg,r → Aδ

g−1+ r
2
. We recall that

dimRg,r = 3g − 3 + r and dimAδ
g−1+ r

2
=

1

2

(
g − 1 +

r

2

)(
g +

r

2

)
. (2.1)
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First, let us briefly recall the classical case, that is r = 0 (the standard
notation refers to Rg,0 as to Rg, the same for Pg,0). Easily from (2.1) we see
that the generic fibre of Pg is positive dimensional when g ≤ 5. A detailed study
of its geometric structure is provided by the works of Verra for g = 3 ([34]),
Recillas for g = 4 ([32]) and Donagi for g = 5 ([6]). Cases with g = 1, g = 2
are summarized in [6, Section 6]. When g = 6 the fibre is generically finite of
degree 27 ([7]). On the other hand, when g ≥ 7, the Prym map is generically
injective but never injective (see [6] and references therein).

The positive dimensional fibres of Pg are characterized as follows:

Theorem 2.1 (Mumford [24], Naranjo [26]). Assume g ≥ 13. Then Pg has

positive dimensional fibres at (C̃, C) if and only if C is either hyperelliptic or
it belongs to one among the components of the bielliptic locus where C̃ carries
Z/2× Z/2 ⊆ Aut(C̃).

Now we focus on the ramified cases, i.e. r > 0. The inequality dimRg,r >
dimAδ

g−1+ r
2
is satisfied only in six cases, that is r = 2 with 1 ≤ g ≤ 4 and

r = 4 with 1 ≤ g ≤ 2. All of them are considered in [13]. Indeed it is shown
the following:

Proposition 2.2. ([13, Proposition 1.2 and Corollary 1.3]) Under the assump-
tions

(g, r) ∈ {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (4, 2)},

the ramified Prym map Pg,r is dominant. Therefore the generic fibre Fg,r of
Pg,r has dimF1,2 = 1, dimF2,2 = 2, dimF3,2 = 2,dimF4,2 = 1, dimF1,4 =
1, dimF2,4 = 1.

Hence the paper gives a detailed description of the generic fibre for all the
six cases (see [13, Theorem 0.1]).

Let us now focus on dimRg,r ≤ dimAδ
g−1+ r

2
. The first result is the follow-

ing:

Theorem 2.3 (Marcucci-Pirola [22], Marcucci-Naranjo [21], Naranjo-Ortega
[27]). The ramified Prym map is generically injective as far as the dimension
of Rg,r is less than or equal to the dimension of Aδ

g−1+ r
2
.

Actually, the equality between the dimensions is reached only in the case
of g = 3 and r = 4 where more it is known:

Theorem 2.4 (Nagaraj-Ramanan [25]). Let g ≥ 3. The Prym map Pg,4 re-
stricted to the locus of tetragonal curves has generically degree 3.

Quite recently Theorem 2.3 has been improved:

Theorem 2.5 (Ikeda [18] for g = 1, Naranjo-Ortega [28] for all g). The Prym
map Pg,r is injective with injective differential for all r ≥ 6 and g > 0.
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Thus we will look for the positive dimensional fibres of Pg,2 and Pg,4. Since
P1,2 and P1,4 have positive dimensional generic fibre, we will assume g ≥ 2.

The codifferential of Pg,r at a point [(C, η,B)] ∈ Rg,r is given by the mul-
tiplication map ([22])

dP∗
g,r(C, η,B) : S2H0(C,ωC ⊗ η) → H0(C,ω2

C ⊗O(B)). (2.2)

We have the following:

Proposition 2.6 ([28]). Let L := ωC⊗η. If dPg,r is not injective at [(C, η,B)]
then one of the following holds:

1. L is not very ample or

2. L very ample and

(a) r = 2 and Cliff(C) ≤ 1 or

(b) r = 4 and Cliff(C) = 0.

Proof. The proof is a straightforward application of Green-Lazarsfeld Theorem
for the surjectivity of a multiplication map (see [16, Theorem 1]): the map
dP∗

g,r : S2H0(C,L) → H0(C,L2) is surjective if L is very ample and degL ≥
2g + 1− 2h1(C,L)− Cliff(C). Since

degL = 2g − 2 +
r

2
and h1(C,L) = h0(C,ωC ⊗ L−1) = 0

we conclude.

As already observed in [28, Remark 2.2], the above Proposition can be
rephrased as follows:

Proposition 2.7. If the differential dPg,r is not injective at [(C, η,B)] then:

1. r = 2 and η = O(x + y − z) for x, y, z ∈ C or r = 4 and h0(C, η) > 0.
Otherwise

2. r = 2 and C is hyperelliptic, trigonal or a quintic plane curve or r = 4
and C is hyperelliptic.

Proof. (1) is borrowed from [19, Lemma 2.1] while (2) follows from the defini-
tion of the Clifford Index.

Now we list evidence of positive dimensional fibres that we find in the
literature. For a proof of these results, we refer to the cited papers.

Proposition 2.8. (Naranjo-Ortega, [28, Theorem 1.2]) Let Phg,r be the restric-
tion of Pg,r to the locus of coverings of hyperelliptic curves of genus g ramified
in r points (r = 2, 4). Then the generic fibre of Phg,2, respectively of Phg,4, is
birational to a projective plane, respectively to an elliptic curve.
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Remark 2.9. When g = 2 the restriction Ph2,r coincides with P2,r. Indeed the
paper [13] studies P2,2, respectively P2,4, and it shows that the generic fibre is
isomorphic to a plane minus 15 lines, respectively to an elliptic curve minus 15
points.

Proposition 2.10. (Naranjo-Ortega, [28, Proposition 2.4]) Let Ptr5,2 be the
restriction of P5,2 to the locus of coverings of trigonal curves of genus 5 ramified
in 2 points. Then the fibres are all positive dimensional.

Proposition 2.11. (Casalaina Martin-Zhang, [4, Theorem 5.1]) Let REck
3,4 ⊂

R3,4 be the subset of triples (C, η,B) such that C is a smooth quartic plane
curve canonically embedded in a plane where B is reduced and cut by a line
l and η is of degree 2 and cut by a bitangent. Then the generic fibre of P3,4

restricted to REck
3,4 is isomorphic to the elliptic curve described as the covering

of l ramified on B.

Remark 2.12. Notice that here the positive dimensional fibres are realized
under the assumption η effective.

3. The procedure

In this section, we describe our strategy to investigate infinitely many positive
dimensional fibres of the Prym maps. In particular, we study families of towers

of Galois covers C̃
2:1−−→ C → P1. Our procedure does not bound the genus of

the curves occurring in such towers. For this reason, we are able to describe
infinitely many examples.

In order to do this, we introduce the Prym datum as given in [5, 11]. We
recall the definition.

Definition 3.1. A Prym datum of type (s, r) is a triple Ξ = (G̃, θ̃, σ): G̃ is a
finite group, θ̃ : Γs → G̃ is an epimorphism, σ ∈ G̃ is a central involution and

r =
∑

i:σ∈⟨θ̃(γi)⟩

|G̃|
ord(θ̃(γi))

,

where Γs := ⟨γ1, . . . , γs : γ1 . . . γs = 1⟩.

This datum corresponds to a family of Galois coverings and the generic
point of the family fits in the following diagram

C̃ C = C̃/⟨σ⟩

P1

f

π (3.1)
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where C̃ and C are curves of genus g̃ and g respectively. The cover C̃ → P1

is branched on s points. The cover f is 2-sheeted and branched on a degree
r divisor B. Let η ∈ Pic

r
2 (C) be the corresponding line bundle such that

η2 = OC(B). G := G̃/⟨σ⟩ is the quotient group acting on C, the composition
of θ̃ with the projection to the quotient is an epimorphism θ : Γs → G. The
maps θ̃ and θ are respectively the monodromies of the two Galois covers C̃ →
P1 = C̃/G̃ and C → P1 = C/G. Moreover, in all the examples we consider,
s = 4 and C → P1 is branched on the same points of C̃ → P1.

There is a natural identification between the tangent space to the fam-
ily at the generic point and the space of the infinitesimal deformations of

C̃ that preserve the action of G̃. The latter is isomorphic to H1(C̃, TC̃)
G̃

((∼= H0(C̃, ω2
C̃
)G̃)∗). Thus dimH0(C̃, ω2

C̃
)G̃ = s−3 equals the dimension of the

family.
Recall that σ gives a decomposition of V := H0(C̃, ωC̃) in ±1-eigenspaces,

resp. V+ and V−, where V+ ∼= H0(C,ωC) and V− ∼= H0(C,ωC ⊗ η). Similarly
we can define W := H0(C̃, ω2

C̃
) and get a decomposition W = W+ ⊕W− with

W+
∼= H0(C,ω2

C ⊗ η2) = H0(C,ω2
C ⊗O(B)). Let us denote

Ñ := dim(S2H0(C̃, ωC̃))
G̃ and N := dim(S2H0(C,ωC))

G. (3.2)

Immediately, we have Ñ −N = dim(S2V−)
G̃.

We are interested in families that lie in positive dimensional fibres of the
Prym map, so we look for a condition that makes the codifferential of the Prym
map not surjective. We have the following

Proposition 3.2. If Ñ − N < s − 3 the differential of the Prym map dPg,r
along the family is not injective, hence the Prym map has positive dimensional
fibres along the family.

Proof. As in (2.2), the codifferential of the Prym map at the generic element
of the family is the multiplication map

m = (dPg,r)∗ : (S2V−)
G̃ →W G̃

+ .

Since by assumption dim(S2V−)
G̃ = Ñ−N < s−3 = dimW G̃

+ the codifferential
cannot be surjective hence its dual has a non-trivial kernel.

Corollary 3.3. If Ñ = N the family is contained in a fibre of the Prym map.

Now we present our construction. It produces infinitely many Prym data.
They yield 1-dimensional families of Galois towers of type (3.1) that carry
constant Prym variety. Thus they lie in positive dimensional fibres of the
Prym map. We organize these data into 5 classes as follows.
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Theorem 3.4. For any N ∈ N there are 1-dimensional families of Galois covers
C̃ → C → P1 in the fibres of the Prym maps P2N,2, P2N−1,0 (2 families), P2N,0

and P2N−1,4. All the families lie in their respective hyperelliptic locus.

All the families carry an abelian Galois group, so we can refer to [12, Sec-
tion 4]. We describe in detail the first case.

Fix a positive integer N , set the odd number k = 2N + 1 and denote
Cn ∼= Z/nZ. The Prym datum is defined by the group G̃ = C2 × C2k ⊂ C2

2k

under the inclusion

(
1
0

)
7→

(
k
0

)
,

(
0
1

)
7→

(
0
1

)
, the monodromy θ̃ : Γ4 → G̃ is

represented by the matrix

A =

(
k 0 0 k
0 k 2 k − 2

)
where the i-th column is θ̃(γi) under the inclusion in C2

2k and the involution
σ = (k, k)t.

In case of abelian groups, the character group G̃∗ = Hom(G̃,C) is iso-
morphic to G̃. In our situation, a character in G̃∗ can be identified with an
element n = (n1, n2) where n1 ∈ C2 and n2 ∈ C2k. Set V = H0(C̃, ωC̃) and let
V = V+ ⊕ V− be the eigenspace decomposition induced by the action of σ. As
before, V+ ∼= H0(C,ωC).

Our target is to compute the dimension of (S2H0(C̃, ωC̃)−)
G̃ and to show

that it is zero. In this way, the codifferential of the Prym map would be trivial
on the family and thus the Prym map would be constant.

Let H0(C̃, ωC̃)n be the subspace of H0(C̃, ωC̃) where G̃ acts via the char-
acter n, and denote by dn its dimension. By [23, Prop. 2.8], the dimension for
a non trivial character n is given by

dn = −1 +

4∑
i=1

〈
−αi
2k

〉
where ⟨x⟩ denotes the fractional part of a real number x and

α = (α1, α2, α3, α4) := (n1, n2)·A =
(
kn1, kn2, 2n2, kn1 + (k − 2)n2

)
.

We remind that if x ∈ R∖Z then ⟨x⟩+ ⟨−x⟩ = 1. It is straightforward that
for any n such that 2n = 0 we have dn = 0. Indeed

dn = −1 +

〈
−n1
2

〉
+

〈
−n2
2

〉
+

〈
−n2
k

〉
+

〈
−kn1 + (k − 2)n2

2k

〉
,

therefore when n1 = 0, n2 = k

dn = −1 + 0 +
〈
−n2

2

〉
+ 0 +

〈
−n2

2

〉
= 0,
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and when n1 = 1, n2 = 0, k

dn = −1 +
1

2
+

〈
−n2
2

〉
+ 0 +

〈
−1 + n2

2

〉
= 0.

So now we suppose −n ̸= n, i.e. −n2 ̸= n2, so n2 ̸= 0, k.

• If n1 = 0 and n2 is even, then dn = −1 +
〈
−n2

k

〉
+

〈
− (k−2)n2

2k

〉
= 0.

• If n1 = 0 and n2 is odd, then dn = −1+ 1
2 +

〈
−n2

k

〉
+
〈
− (k−2)n2

2k

〉
. Thus

dn + d−n = 1, hence exactly one between dn and d−n is 1 and the other
is 0. In both cases the product dnd−n is zero. Moreover the sum of all
dn of this kind is k−1

2 .

• If n1 = 1 and n2 is even, then dn = −1 + 1
2 +

〈
−n2

k

〉
+

〈
−k+(k−2)n2

2k

〉
.

As in the previous case dn + d−n = 1 and dnd−n is always 0. Therefore
the sum of all dn of this kind equals k−1

2 .

• If n1 = 1 and n2 is odd, then dn = −1+ 1
2+

1
2+

〈
−n2

k

〉
+
〈
−k+(k−2)n2

2k

〉
= 1.

So all k − 1 terms of this form are 1, hence there are k−1
2 couples such

that dnd−n = 1.

The decomposition H0(C̃, ωC̃) =
⊕

nH
0(C̃, ωC̃)n gives us

g̃ = g(C̃) = dimH0(C̃, ωC̃) =
∑
n

dn = 2k − 2.

Moreover we have

dim(S2H0(C̃, ωC̃))
G̃ =

1

2

∑
2n ̸=0

dnd−n =
k − 1

2
= N.

As explained in [12, Lemma 4.3] the terms of H0(C̃, ωC̃) which are invariant
for the action of σ are those such that n1 +n2 is even. Hence the genus g of C
is

g = dimH0(C̃, ωC̃)+ =
∑

n1+n2 even

dn = k − 1

and by the Riemann-Hurwitz formula we obtain that the degree of the ramifi-
cation divisor is

r = 2g̃ − 2− 2(2g − 2) = 2(2k − 2)− 4(k − 1) + 2 = 2.
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Finally we compute the dimension of (S2V+)
G̃:

dim(S2H0(C̃, ωC̃)+)
G̃ =

1

2

∑
n1+n2 even

dnd−n =
k − 1

2
= N.

This gives (S2H0(C̃, ωC̃)−)
G̃ = 0 and thus it allows to conclude.

It only remains to observe that the unique element of G = G̃/⟨σ⟩ ∼= C2k of
order 2 gives the hyperelliptic involution of C.

In the following table, we summarize all the examples outlined in The-
orem 3.4. For any integer N we define k and consequently, we give the
data. The first line corresponds to the example described above. As seen

(S2H0(C̃, ωC̃)+)
G̃ = N . The same holds for the remaining families. Since

computations are almost identical, except case (3) which is slightly more tricky,
we do not repeat them.

n k g̃ g r G̃ A σ

(1) 2N + 1 2k − 2 k − 1 2 C2 × C2k

(
k 0 0 k
0 k 2 k − 2

) (
k
k

)
(2) 2N − 1 2k − 1 k 0 C2 × C2k

(
k 0 0 k
0 k 1 k − 1

) (
k
k

)
(3) N 4k − 3 2k − 1 0 C2 × C2k

(
k k 0 0

k − 1 k − 1 1 1

) (
k
k

)
(4) 2N 2k k 0 C2 × C2k

(
k 0 0 k
0 k 1 k − 1

) (
k
k

)
(5) 2N 2k − 1 k − 1 4 C2k

(
1 1 k − 1 k − 1

) (
k
)

In order to find other (possibly higher dimensional) families contained in
the fibres of Pg,r we use a MAGMA script similar to the one described in [11]
and [12]. In these papers, the authors look for Shimura subvarieties generically
contained in the Prym locus. For this reason, they require the differential of
the Prym map to be an isomorphism. Here we want exactly the converse, so we
look for data that satisfy Proposition 3.2. In this way, MAGMA produces various
examples of families of different dimensions and genus. While in the higher
dimensional cases we only find some sporadic examples, in the 1-dimensional
case we realized that the examples behaved cyclically in the same way. This
motivated our choice to organize them into five classes as in the above table.

4. The Xiao conjecture

In this section we look at the higher-degree analogue of the Prym maps Pg,r.
Indeed nothing prevents us to consider Galois covers of curves C ∈ Mg of
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degree greater than 2. The theory of Prym varieties easily extends to these

cases (see [19] for cyclic covers). In general, to any Galois covering f : C̃
d:1−−→ C

one can associate an abelian variety P := P (C̃, C) defined as the connected
component to the origin of the kernel of the Norm map Nm : JC̃ → JC. Letting
g̃, resp. g, be the genus of the curves C̃ and C, then P has dimension g̃ − g
and inherits a (non-principal) polarization L from the theta divisor associated
with JC̃.

We denote by R(K, g, r) the Hurwitz scheme parametrizing coverings f : K
is the Galois group acting on C̃, g is the genus of the quotient curve and r the
number of branch points. Thus we can define the Prym map:

Pg,r(d) R(K, g, r) Aδ
g̃−g

[f ] [P,L]

:
(4.1)

Let us fix a group G̃ ⊆ Aut(C̃) withK�G̃ normal subgroup. For computational
reasons, we assume that C̃ has Galois quotient C̃/G̃ isomorphic to P1 and we
let s be the number of branch points of C̃ → C̃/G̃ ∼= P1. This means that
we focus on towers C̃ → C → P1. By moving the branch points in P1, we
get a family of dimension s − 3. This family naturally gives rise to a family
of the same dimension contained in R(K, g, r). For more details, we refer the
reader to Section 3, where such construction is considered in case of covers f
of degree 2.

If we set V := H0(C̃, ωC̃), we decompose V = V+ ⊕ V−, where we identify

V+ := H0(C̃, ωC̃)
K(∼= H0(C,ωC)) and V− := H1,0(P ). Similarly we define

H1(C̃,Z)+ and H1(C̃,Z)−. As already seen, the tangent space to the family at

the generic point is H1(C̃, TC̃)
G̃. The space of the infinitesimal deformations of

(P,L) that preserve the action of G̃ is S2H0,1(P )G̃. Indeed P = V ∗
−/H1(C̃,Z)−,

hence the tangent space of P at the origin is V ∗
− and thus TPAg̃−g = S2V ∗

−.

Since we have an inclusion of G̃ in AutP , we restrict to the G̃-invariant part.
Thus the differential of the Prym map dPg,r(d) yields the map

dPg,r(d) : H1(C̃, TC̃)
G̃ → S2H0,1(P )G̃.

Dualizing we get

dPg,r(d)∗ = m|S2H1,0(P )G̃ : S2H1,0(P )G̃ → H0(C̃, ω⊗2

C̃
)G̃,

where, as usual, the multiplication map m : S2H0(C̃, ωC̃) → H0(C̃, ω⊗2

C̃
) is the

codifferential of the Torelli map.
As in (3.2), we define Ñ ,N . We have a higher degree analogue of Proposi-

tion 3.2:
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Proposition 4.1. If Ñ −N < s−3, the differential of the Prym map dPg,r(d)
along the family is not injective, hence the Prym map has positive dimensional
fibres along the family.

Proof. The proof works exactly like the one of Proposition 3.2.

Starting from our families of curves, we can construct fibrations h : S → B
that carry C̃ as fibres. Indeed the closure of the image of the modular map
t 7→ [C̃t] gives a curve in Mg̃. Then, up to resolving singularities and taking
pull-backs, we get a fibration h : S → B, as claimed.

The irregularity of the surface S is q := dimH1(S,OS), and qh = q−g(B) is
called relative irregularity of the fibration. It is quite famous that Xiao in [35]
proved the following

Theorem 4.2 (Xiao). If h is not isotrivial and B = P1 then

q ≤ g̃ + 1

2
.

Furthermore he conjectured that, for a base B of positive genus, the relative
irregularity of the fibration should satisfy

qh ≤ g̃ + 1

2
. (4.2)

It is known that the inequality (4.2) is false: Pirola in [30], resp. Albano and
Pirola in [1], explicitly constructed 1 fibration, resp. 3 fibrations, that do not
satisfy (4.2). Indeed, a modified version of the conjecture supposes qh ≤ ⌈ g̃+1

2 ⌉.
All the counterexamples are constructed considering families of covers in

R(K, g, r). They have data:

• K = Z/3Z, g = 1, r = 3;

• K = Z/5Z, g = 2, r = 0;

• K = Z/3Z, g = 4, r = 0;

• K = Z/3Z, g = 3, r = 0;

They all have constant Prym variety: indeed they have been found by consid-
ering families of coverings of hyperelliptic curves (elliptic curves in the example
of Pirola [30]) which lie in positive dimensional fibres of Prym maps.

Remark 4.3. The family studied by Pirola, i.e. the first one listed above,
turns out to be interesting also from another point of view. Indeed, in [14], the
authors show that the locus described by JC̃, for C̃ varying in the family, yields
a Shimura subvariety of A4 generically contained in the Torelli locus. Indeed
it satisfies the condition (∗) studied in the same paper which is sufficient to
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produce Shimura subvarieties generically contained in the Torelli locus. More-
over, in [15] and also in [10], it is proven that, via its Prym map, it is fibred
in totally geodesic curves, countably many of which are Shimura. One of these
Shimura fibres is the family (12) of [9]. This is exactly the family we use to
study the family of Pirola.

Remark 4.4. The example with data K = Z/5Z, g = 2, r = 0 is curious
in the same spirit of the previous Remark. Indeed, by [31, Theorem 3.1],
it involves curves whose Jacobians have a non-trivial endomorphism algebra
and the endomorphisms are not induced by the automorphisms of the curves.
In [33], the second author shows that the Jacobians of such curves yield a new
explicit Shimura subvariety of A2 generically contained in the Torelli locus.

In order to find new counterexamples to Xiao’s conjecture, it seems quite
natural to generalize the idea of [30] and [1] considering families of towers
C̃ → C → P1 whose Prym map is constant but without requiring C to be
hyperelliptic and considering any Galois covering C̃ → C of any degree. We
have the following:

Proposition 4.5. Up to g̃ = 12, s = 14 (i.e. dimension 11), the only positive
dimensional families of Galois towers C̃ → C → P1 that have Ñ −N < s − 3
and disprove (4.2) are the family (12) of [9] and the three examples of [1].

Proof. Using Proposition 4.1, we know that when Ñ − N < s − 3 the differ-
ential of the Prym map associated with the family is not injective. Under this
assumption, computer calculations in MAGMA that impose qh >

g̃+1
2 find only

the four examples of the statement.

Now we would like to explicitly describe the four examples as families of
Galois towers C̃ → C → P1.

The first example we treat is the family (12) of [9]. Indeed the family of
Pirola ([30]) cannot be realized as a Galois cover of P1. For this reason, we will
study the family (12) of [9] which is contained in the family of Pirola and which
describes Galois towers C̃ → C → P1, as already mentioned in Remark 4.3.

Example 1.
d = 3, s = 4, g̃ = 4, g = 1, r = 3.
G̃ = G(6, 2) = Z/6Z = ⟨g : g6 = 1⟩.
(θ̃(γ1), . . . , θ̃(γ4)) = (g3, g5, g5, g5), K = ⟨σ = g2⟩ ∼= Z/3Z. The monodromy
matrix is A = (3, 5, 5, 5).
The action of G̃ gives the decomposition H0(C̃, ωC̃) = W3 ⊕W4 ⊕W5, where

Wn is the subspace of H0(C̃, ωC̃) where G̃ acts via the character n. We have

dimW3 = dimW4 = 1 and dimW5 = 2. Moreover H0(C̃, ωC̃)+ = W3. There-

fore (S2H0(C̃, ωC̃))
G̃ = (S2H0(C̃, ωC̃)+)

G̃ = S2W3 and so the multiplication

map m : (S2V−)
G̃ → H0(ω⊗2

C̃
)G̃ is trivial. Hence the family is a curve that
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lies in a fibre of the Prym map P1,3(3). The relative irregularity of the fibred

surface is qh = g̃ − g = 3 > 5
2 = g̃+1

2 , hence it violates the inequality (4.2).

Next example is the first one that appears in [1, Section 4], given by an
étale 5:1 cover.

Example 2.

d = 5, s = 6, g̃ = 6, g = 2, r = 0.
G̃ = G(10, 1) = D5 = ⟨g1, g2 : g21 = g52 = 1, g1g2g1 = g−1

2 ⟩.
(θ̃(γ1), . . . , θ̃(γ6)) = (g1g

2
2 , g1g

4
2 , g1g2, g1g

4
2 , g1g2, g1g2),

K = ⟨σ = g2⟩ ∼= Z/5Z.
Using the notation of MAGMA, we get H0(C̃, ωC̃) = 2V2 ⊕ V3 ⊕ V4, where Vi are

irreducible representations of G̃ such that dimV2 = 1 and dimV3 = dimV4 = 2.

We have that (S2H0(C̃, ωC̃))
G̃ = 3S2V2 ⊕ (S2V3)

G̃ ⊕ (S2V4)
G̃ has dimension

5 and that H0(C̃, ωC̃)+ = 2V2. Therefore dim(S2H0(C̃, ωC̃)+)
G̃ = 3. Since

dim(S2H0(C̃, ωC̃)−)
G̃ = 2 < s − 3 = 3, the Prym map is not injective on the

family. Again inequality (4.2) does not hold: g̃ − g = 4 > 7
2 = g̃+1

2 .

Here we have the example of [1, Section 5].

Example 3.

d = 3, s = 10, g̃ = 10, g = 4, r = 0.
G̃ = G(6, 1) = D3 = ⟨g1, g2 : g21 = g32 = 1, g1g2g1 = g−1

2 ⟩.
(θ̃(γ1), . . . , θ̃(γ10)) = (g1, g1, g1g

2
2 , g1g

2
2 , g1g2, g1, g1g

2
2 , g1g2, g1g2, g1),

K = ⟨σ = g2⟩ ∼= Z/3Z.
In this case H0(C̃, ωC̃) = 4V2 ⊕ 3V3, where dimV2 = 1 and dimV3 = 2,

H0(C̃, ωC̃)+ = 4V2. Then (S2H0(C̃, ωC̃))
G̃ = 10S2V2 ⊕ 6(S2V3)

G̃ has dimen-

sion 16 and (S2H0(C̃, ωC̃)+)
G̃ = 10S2V2 has dimension 10. Hence Ñ − N =

6 < 7 guarantees dP4,0(3) not injective. Moreover g̃ − g = 6 > 11
2 = g̃+1

2
violates (4.2).

Finally we have the example [1, Section 6].

Example 4.

d = 3, s = 7, g̃ = 6, g = 2, r = 2.
G̃ = G(6, 1) = D3 = ⟨g1, g2 : g21 = g32 = 1, g1g2g1 = g−1

2 ⟩.
(θ̃(γ1), . . . , θ̃(γ7)) = (g1g2, g1g2, g1, g1g

2
2 , g1, g1, g2),

K = ⟨σ = g2⟩ ∼= Z/3Z.
MAGMA gives H0(C̃, ωC̃) = 2V2 ⊕ 2V3, where dimV2 = 1 and dimV3 = 2 and

H0(C̃, ωC̃)+ = 2V2. We have that (S2H0(C̃, ωC̃))
G̃ = 3S2V2 ⊕ 3(S2V3)

G̃ has

dimension 6 and that (S2H0(C̃, ωC̃)+)
G̃ = 3S2V2 has dimension 3. Once again

the differential of the Prym map along the family is not injective and g̃ − g =
4 > 7

2 = g̃+1
2 violates (4.2).
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As already said, our data give a slightly different presentation of the last
example presented by [1]. We easily observe that they are the same. Indeed
our family yields the following diagram:

C̃ C

D P1 ∼= C̃/D3,

2:1π

3:1

ψ
2:1

3:1

(4.3)

the curve D is obtained as the quotient of C̃ by a lift of the hyperelliptic
involution of C. We have 7 branch points z1, . . . , z7 in P1 and the map C̃ → P1

has three ramification points of order 2 over z1, . . . , z6. Let us call them pij , i =
1, . . . , 6, j = 1, 2, 3. Moreover ψ has 2 ramification points of order three over
z7. Let us call them q1, q2. The 2:1 map C̃ → D ramifies on one among the pij
for every i, while it is étale over the remaining two and it is étale over q1, q2.

If we denote p = π(q1) = π(q2), then we get the map D
3:1−−→ P1 associated

with the linear system |3p|. This is the starting point of the construction of
Albano and Pirola. Indeed the map C̃ → C is étale over all the pij ’s while
it is completely ramified over q1 and q2. When these two points are glued we
get the singular curve Cp of [1]. The fibration of [1, Section 6] is constructed

desingularizing such curves Cp, i.e. considering the curves C̃ provided by our
example. Therefore this example is clearly another presentation of the one
discussed in [1, Section 6].
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1. Introduction

Given a finite morphism between smooth curves one can associate to it a polar-
ized abelian variety (not necessarily principally polarized), called Prym variety.
This construction induces a map from the moduli space of coverings to the mod-
uli space of polarized abelian varieties, know as Prym map, depending on the
genus of the base curve, the degree of the map and its ramification pattern. The
classical Prym varieties revisited by Mumford in [25] are principally polarized
obtained from double coverings (étale or ramified in two points). Since then
they have been studied not only as a way of understanding abelian varieties and
their moduli space, but also as interesting objects on their own, see for instance
the recent work in [1, 9, 20, 21, 30, 31]. Prym maps in low genera often display
very rich geometry and interesting structure. These notes summarize the early
developments in the theory of Prym varieties which continue to inspire recent
work in algebraic geometry. As an introduction to the subject, we chose to
focus on the structure of the fibres of the Prym P6 for étale double coverings
over a genus 6 curve, which is generically finite of degree 27. The computation
of the degree of P6 is the ideal occasion to encounter classical algebraic objects
(cubic surfaces and threefolds, plane quintics, Fano surface of lines, etc.), geo-
metric constructions (tetragonal and trigonal constructions, conic bundles), as
well as moduli spaces (of coverings, abelian varieties, intermediate Jacobians).
We tried to put together the main ingredients for a good understanding of the
geometric structure of the fibres of P6.

These notes cover the material presented in the course “Prym Varieties”
of the Trieste Algebraic Summer School (TAGSS) 2021 given by the second
author. The series of lectures included exercise sessions run by the first author.
Some of the exercises can be found here. The main references are Beauville,
Donagi and Donagi-Smith papers [4, 5, 14, 15].

2. Basics on abelian varieties

Through this notes we work over C.

Definition 2.1. A complex torus A is a quotient V/Λ, with V ≃ Cg a C-
vector space and Λ ≃ Z2g a full rank lattice inside V . A polarization on A is
an ample line bundle1 L on A. An abelian variety is a complex torus admitting
a polarization, so (A,L) is polarized abelian variety.

Remark 2.2. In particular, with the addition operation inherited from V , an
abelian variety is an abelian group.

1In fact, the polarization depends only on the first Chern class c1(L)
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By definition of ampleness, given a line bundle L on A we have that the
map

φL⊗k : A ↪→ PH0(A,L⊗k)∗

x 7→ [s0(x) : s1(x) : · · · : sN (x)],

defined by the sections of L⊗k is an embedding for some k > 1. In fact, in the
case of polarized abelian varieties it suffices to take k = 3. Then an abelian
variety is also a projective variety.

Different incarnations of a polarization on A. The following data are equiv-
alent:

• A first Chern class c1(L) ∈ H2(A,Z) of an ample line bundle L on A.

• A non degenerated alternating form E : V×V → R such that E(Λ,Λ) ⊂ Z
and E(iv, iw) = E(v, w).

• A positive definite Hermitian form H : V × V → C with H(Λ,Λ) ⊂ Z.

• An isogeny ϕL : A→ Â := Pic0(A) that satisfies ’positivity’ properties.

• An effective Weil divisor Θ ⊂ A such that the subgroup {x ∈ A | t∗xΘ ∼
Θ} is finite.

Let E be an alternating form representing a polarization on A = V/Λ.
There exists a basis λ1, . . . , λg, µ1, . . . µg of Λ with respect to which E is given
by the matrix

(
0 D

−D 0

)
, where D is the diagonal matrix with positive integer

entries d1, . . . , dg satisfying di|di+1 for i = 1, . . . , g − 1.

Definition 2.3. The vector (d1, . . . , dg) is called the type of the polarization
of L and when it is of the form (1, . . . , 1) the polarization is principal and the
variety is called ppav.

Let C be a smooth curve and let H1(C,Z) ≃ Z2g be the group of closed
paths in C (which does not depend on the starting point) modulo homology.
This group can be seen as a full rank lattice inside of H0(C,ωC)

∗, via the
injective map

γ 7→
{
ω 7→

∫
γ

ω

}
assigning to a path γ the functional which integrates the holomorphic differen-
tials along γ.

Definition 2.4. The Jacobian of a smooth algebraic curve C (or a compact
Riemann surface) is the complex torus

JC = H0(C,ωC)
∗/H1(C,Z).
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The intersection product on H1(C,Z) induces an alternating form E on
V := H0(C,ωC)

∗. More precisely, if we choose a basis over Z, γ1, ..., γ2g of
H1(C,Z) as in the Figure 1, the intersection product has a matrix of the form(

0 1g

−1g 0

)
. As H1(C,Z) is a full rank lattice in V , the {γi} also form a basis

of V as an R-vector space. One verifies then that, with respect to this basis,
the intersection matrix gives an alternating form E on V defining a principal
polarization Θ.

Figure 1: Curve of genus g

A one-dimensional abelian variety also is an algebraic curve of genus one
(with a distinguished point), that is, an elliptic curve. The Jacobian of a genus
one curve is then isomorphic to the curve itself.

2.1. Abel-Jacobi map

Let Pic0(C) be the group of line bundles of degree 0 on C, it is the quotient
of the group of divisors Div0(C) of degree 0 modulo principal divisors. Define
the Abel-Jacobi map

Div0(C) → Pic0(C), D =
∑

(pν − qν) 7→
{
ω 7→

∑∫ pν

qν

ω

}
mod H1(C,Z).

Theorem 2.5. The Abel-Jacobi map induces an isomorphism Pic0(C) ≃ JC.

A variation of this Abel-Jacobi map is given by

αDn
: C(n) → JC,

∑
nνpν 7→

{
ω 7→

∑∫ pν

c

ω

}
mod H1(C,Z),

where Dn = nc for a fixed point c ∈ C and C(n) denotes the cartesian product
Cn of the curve modulo the symmetric group Sn, so its elements can be seen
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as effective divisors of degree n on C. For n = 1, we denote the map by αc.
Let β : C(n) → Picn(C) be the map D 7→ OC(D), so for a line bundle L of
degree n the fibre β−1(L) consists of all divisors in the linear system |L|. We
have the following commutative diagram

C(n) β //

αDn $$

Picn(C)

αO(Dn)

��
JC

Proposition 2.6. The projectivized differential of the Abel-Jacobi map αc :
C → JC is the canonical map φωC

: C → Pg−1.

Corollary 2.7. For any g ≥ 1 and c ∈ C the Abel-Jacobi map αc : C → JC
is an embedding.

Remark 2.8. Note that for any c, c′ ∈ C we have αc = t∗c′−cαc′ , where tD :
JC → JC is the translation map tD(D′) = D′ + D, so we sometimes omit a
base point c of the Abel-Jacobi map.

Algebraic geometers typically gather their objects of study in families to
investigate a general property or single out interesting elements. Ideally, the
set of all the objects forms itself an algebraic variety where one can apply
known tools. This leads to the notion of moduli space, which is the variety
parametrizing the objects. Fortunately, there exists a nice parameter space for
all principally polarized abelian varieties (ppav) of fixed dimension g (up to
isomorphism classes). Let hg be the Siegel upper half plane

hg := {τ ∈Mg×g(C) | τ t = τ, Im τ > 0}

(where Im τ > 0 means that the imaginary part is a positive definite 2-form)
and

Sp2g(Z) =
{
M ∈ GL2g(Z) : M

(
0 1g

−1g 0

)
tM =

(
0 1g

−1g 0

)}
the symplectic group, which acts on hg by

M =

(
a b
c d

)
∈ Sp2g(Z), M · τ = (a+ bτ)(c+ dτ)−1.

Thus, every point in the quotient hg/Sp2g(Z) represents an isomorphism class
of a principally polarized abelian variety of dimension g: for each τ ∈ hg set
Aτ = Cg/τZg ⊕ Zg, then

Aτ ≃ Aτ ′ as ppav ⇔ ∃ M ∈ Sp2g(Z) s.t. τ ′ =M · τ.
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In the sequel, we denote by Ag the moduli space of principally polarized abelian
varieties of dimension g. Observe that the dimension of this space is the same
as the dimension of the space of symmetric matrices of size g, thus dimAg =
g(g+1)

2 .

Let Mg be the moduli space of smooth projective curves of genus g > 1, it
is an irreducible algebraic variety of dimension 3g − 3. By associating to each
smooth curve [C] ∈ Mg its Jacobian we get the Torelli map:

t : Mg → Ag, [C] 7→ (JC,Θ).

Theorem 2.9. The Torelli map t is injective.

Comparing the dimensions of both spaces, one deduces that a general prin-
cipally polarized abelian variety of dimension 2 and 3 is the Jacobian of some
curve.

2.2. The theta divisor

Let Wn := β(C(n)) ⊂ Picn(C) for n ≥ 1; it consists of the line bundles of
degree n with non-empty linear system. According to Riemann-Roch Theorem
Wn = Picn(C) for n ≥ g. For a general divisor D of degree 1 ≤ n ≤ g,
h0(C,OC(D)) = 1, that is, in this range β is birational onto Wn. Since β
is proper Wn is an irreducible closed subvariety of Picn(C) of dimension n,
so in particular Wg−1 is a divisor in Picg−1(C). For a fixed point c ∈ C we

set W̃n = αOC(nc)(Pic
n(C)) ⊂ JC. Recall that the fundamental class [Y ] of

an n-dimensional subvariety Y of a variety X, dimX = g is the element in
H2g−2n(X,Z), Poincaré dual to the homology class of Y in H2n(X,Z).

Theorem 2.10 (Poincaré’s Formula). [W̃n]=
1

(g−n)!

∧g−n
[Θ] for any 1≤n≤ g.

Corollary 2.11. There is a line bundle η∈Picg−1(C) such that Wg−1 = α∗
ηΘ.

Proof. By Poincaré Formula [W̃g−1] = [Θ] so c1(OJC(W̃g−1) = c1(OJC(Θ)).

There exists x ∈ JC ≃ Pic0(C) such that W̃g−1 = t∗xΘ. Hence

Wg−1 = α∗
OC((g−1)c)W̃g−1 = α∗

ηΘ

with η = OC((g − 1)c)⊗ x−1.

We recall that a theta characteristic on C is a line bundle κ such that
κ⊗2 ≃ ωC . A divisor D is called symmetric if (−1)∗D ∼ D.

Theorem 2.12. Riemann’s Theorem] For any symmetric theta divisor Θ there
is a theta characteristic κ on C such that

Wg−1 = α∗
κΘ .
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The divisor Wg−1 is called the canonical theta divisor.
Given a theta characteristic κ, the map ακ : Picg−1 → JC induces a bijec-

tion between the set of theta characteristics on C and the subgroup JC[2] =
{a ∈ JC[2] | 2a = 0}

Theorem 2.13 (Riemann’s Singularity Theorem). For every L ∈ Pic(g−1)(C)

multLWg−1 = h0(C,L).

3. Prym varieties

Consider a finite covering π : C̃ → C of degree d between two smooth projective
curves and let g and g̃ denote the genera of C and C̃ respectively. By the
Hurwitz formula these genera are related by

g̃ = d(g − 1) +
degR

2
+ 1 , (1)

where R denotes the ramification divisor of f , that is the set of points in C̃
(counted with multiplicities) where the map is not locally a homeomorphism.
The map π induces a map between the Jacobians of the curves, the norm map.
As a group, the Jacobian JC is generated by the points of the curve α(C),
and in fact, by Theorem 2.5, JC parametrizes classes of linear equivalence of
divisors of degree zero. With this in mind, one can simply define the norm map
as the push forward of divisors from C̃ to C:

Nmπ : JC̃ → JC,

[∑
i

nipi

]
7→

[∑
i

niπ(pi)

]
,

where the sum is finite,
∑
ni = 0 with ni ∈ Z and the bracket denotes the

class of linear equivalence. The kernel of Nmπ is not necessarily connected but
since Nmπ is a group homomorphism the connected component containing the
zero is naturally a subgroup of JC̃. This subgroup is the Prym variety of f
denoted by

P (π) := (KerNmπ)
0 ⊂ JC̃. (2)

Moreover, the restriction Ξ of the principal polarization Θ on JC̃ to P (π),

defines a polarization so (P (π),Ξ) is an abelian subvariety of the Jacobian JC̃
of dimension

dimP (π) = dim JC̃ − dim JC = g̃ − g.

The Prym variety can be regarded as the complementary abelian subvariety to
the image of π∗ : JC → JC̃ inside JC̃, see [8, p. 125].

135



(8 of 34) P. BORÓWKA AND A. ORTEGA

Theorem 3.1. Let π : C̃ → C be of degree d ≥ 2 with g ≥ 1. Then Ξ defines a
principal polarization if and only if one of the following cases occur:

(a) π is étale of degree 2, in this case Θ|P ≡ 2Ξ, with Ξ principal;

(b) π is a double covering ramified in exactly 2 points, so Θ|P ≡ 2Ξ;

(c) g(C̃) = 2, g = 1 (any degree);

(d) g = 2, d = 3, π is non-cyclic.

Proof. Uses that (π∗)∗Θ̃ ≡ nΘ and that P and π∗JC are complementary
subvarieties of a ppav. The cases (a),(b),(c) can be found in [8, Thm 12.3.3],
where the case (d) is omitted by mistake. The case (d) is considered in [19].

From now on, we assume that the covering π : C̃ → C is étale of degree 2.
Then the dimension of the corresponding Prym variety is dimP (π) = 2g −
1 − g = g − 1. If ι denotes the involution on C̃ exchanging the sheets of the
covering f , it induces an automorphism ι∗ on JC̃. We can also describe the
Prym variety of π as

P = Im(1− ι∗) ⊂ JC̃.

So P is the ι∗-anti-invariant part of JC̃ orthogonal to π∗JC. Further, the
addition map defines an isogeny

π∗JC × P → JC̃.

Let

Rg := {[C, η] | [C] ∈ Mg, η ∈ Pic0(C) \ {OC}, η⊗2 ≃ OC}

be the moduli space parametrizing all étale double coverings over curves of
genus g up to isomorphism. Given a pair [C, η] ∈ Rg the isomorphism η⊗2 ≃
OC endows OC ⊕ η with a ring structure (actually with a structure of OC-
algebra). Thus, the corresponding double covering is given by taking the

spectrum C̃ := Spec(OC ⊕ η) and the map π is just the natural projection
Spec(OC ⊕ η) → C = SpecOC , induced by the inclusion OC ↪→ OC ⊕ η. There
are finitely many “square roots” of OC , that is, line bundles η with η⊗2 ≃ OC .
In other words, the forgetful map

Rg → Mg, [C, η] 7→ η

is finite of degree 22g − 1 and hence dimRg = dimMg = 3g − 3. The Prym
map is then defined as

Pg : Rg → Ag−1 [C, η] 7→ (P (π),Ξ).
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By comparing the dimensions on both sides, one sees that for g ≤ 6, we have

dimRg ≥ dimAg−1 = g(g−1)
2 so it makes sense to ask if for low values of g the

Prym map is dominant, i.e. if we can realize a (general) principally polarized
abelian varieties of dimension ≤ 6 as the Prym variety of some covering.

In order to investigate when the map Pg is generically finite one has to check
if the differential map is injective at a generic point of Rg or equivalently, when
the codifferential map d∗Pg is surjective. On one side, the tangent space at
0 ∈ P (π) to the Prym variety can be identified with

T0P ≃ H0(C,ωC ⊗ η)∗,

which is the (−1)-eigenspace for the action of ι on H0(C̃, ωC̃)
∗. Further, we

have the identification T ∗
[P,Ξ]Ag−1 ≃ Sym2(T0P )

∗ of the cotangent space to

[P,Ξ]. On the other hand, notice that the forgetful map [C, η] 7→ [C] is finite
over the moduli spaceMg of smooth curves of genus g. Therefore the cotangent
space to a generic point [C, η] ∈ Rg can be identified to the cotangent space to
Mg at [C], that is,

T ∗
[C,η]Rg ≃ T ∗

[C]Mg ≃ H0(C,ω2
C).

Via these identifications one obtains that the codifferential of Pg at a generic
point [C, η] is given by the multiplication of sections

d∗Pg : Sym2(T0P )
∗ → H0(C,ω2

C ⊗O),

which is surjective for g ≥ 6 at a generic point [(C, η)]. More precisely, the
following theorem summarizes the situation for the classical Prym map:

Theorem 3.2. (a) The Prym map is dominant if g ≤ 6.
(b) The Prym map is generically injective if g ≥ 7.
(c) The Prym map is never injective.

Proof. Let Bg−1 denote the image of Pg. Wirtinger showed [34] that the closure
Bg−1 is an irreducible subvariety in Ag−1 of dimension 3g− 3, so Bg−1 = Ag−1

for g ≤ 6, which implies part (a). Moreover, he also proved that the Jacobian
locus in Ag−1 (i.e. the image of the Torelli map t) is contained in Bg−1. In
this sense, Pryms are a generalization of Jacobians. Part (b) was first proved
by R. Friedman and R. Smith [16] and for g ≥ 8, by V. Kanev [18] by using
degeneration methods. More geometric proofs were given by G. Welters [33]
and later by O. Debarre [12], in the spirit of the proof of Torelli’s theorem.

The fact that the Prym map is non-injective was first observed by Beauville
[5]. Donagi’s tetragonal construction [13] provides examples for the non-injecti-
vity in any genus.

Open question. What is exactly the non-injectivity locus of the Prym
map Pg ?
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4. Allowable covers

We will focus now on the rich geometry of the fibres of the Prym map P6 :
R6 → A5. The following theorem is proved in [15].

Theorem 4.1. The degree of P6 : R6 → A5 is 27.

This number encodes the geometry of the fibres, which have the structure of
the 27 lines in a smooth cubic surfaces. Although the degree is the number of
étale double coverings mapping to a general element in A5, which in this case
is a Prym variety, the count is done over loci with positive dimensional fibers,
involving a very precise description of the blow ups. In order to compute the
degree we shall

1. extend the Pg to a proper map (Theorem 4.7),

2. study the Prym varieties on the boundary,

3. compute the local degree along the different loci.

Parts (2) and (3) will be treated in Sections 6,7 and 8.

Beauville introduced the notion of generalized Prym varieties in [4] to denote
Prym varieties associated with double coverings of stable curves, that is, lying
on the boundary of Rg. Since the objects in the compactification of Rg are
known as admissible covers, we use the terminology in [15] and denote those
covers in the boundary that give rise to a generalized Prym variety, allowable
covers.

Let Mg be the compactification of Mg by stable curves of genus g. Recall
that a (complete) curve C is stable if it is connected, the only singularities
are ordinary double points and |Aut(C)| < ∞. In particular, ρa(C) = g ̸= 1
(arithmetic genus) and every non singular rational component meet other com-

ponents in at least 3 points. Let C ∈ Mg, C̃ ∈ M2g−1 and π : C̃ → C be

a (possibly branched) double covering with an involution ι : C̃ → C̃. In or-
der to analyse the “good” coverings for the Prym map, we make the following
assumption:

(*) The fixed points of C̃ under the involution ι are exactly the singular points
and at a singular point the two branches are not exchanged under ι.

The reason for this assumption is that in this case the quotient C := C̃/ι
has only ordinary double points as singularities. We have the following com-
mutative diagram

Ñ

2:1π′

��

f̃ // C̃

π

��
N

f // C
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where f and f̃ are the normalization maps. Thus, π′ is ramified at the points
xi, yi ∈ Ñ lying over a singular point zi ∈ C̃. One can also show that π∗ωC ≃
ωC̃ ; as a consequence,

ρa(C̃) = 2ρa(C)− 1.

Let K̃ (resp. K) be the ring of rational functions on C̃ (resp. C). The

group of Cartier divisors on C̃ can be described as

Div C̃ =
⊕

x∈C̃sm

Zx⊕
⊕

s∈C̃sing

K̃∗
s /O∗

s .

Let s1, s2 ∈ Ñ be the points over a singular point s ∈ C̃. By choosing param-
eters t1, t2 around s1 and s2, we have the following isomorphism

K̃∗
s /O∗

s
∼−→ C∗ × Z× Z, a 7→ (uv ,m, n)

where a = utm1 and a = vtn2 are the local descriptions of a around s1, resp. s2.

Assuming that ι∗t1 = −t1 and ι∗t2 = −t2, the action of ι on K̃∗
s /O∗

s is

ι∗(z,m, n)s = ((−1)m+nz,m, n)s

which yields the commutative diagram

K̃∗ //

N
K̃/K

��

Div(C̃)

π∗

��

// Pic(C̃)

Nm

��

// 0

K∗ // Div(C) // Pic(C) // 0

where π∗(
∑

i xi) =
∑

i π(xi) for xi ∈ C̃sm and for singularities we have

π∗((z,m, n)s) = ((−1)m+nz2,m, n)π(s). The norm map Pic(C̃) → Pic(C) re-

stricts to a norm map between the generalized Jacobians Nm : JC̃ → JC.
We want to consider coverings such that the kernel of this map is an abelian
variety.

Example 4.2. Let X be a smooth genus g curve with two marked points p, q
and X1 = X2 = X be two copies with marked points pi, qi ∈ Xi. Define the
Wirtinger cover π : C̃ → C (see Figure 2) by

C̃ := X1 ∪X2/p1 ∼ q2, p2 ∼ q1, C = X/p ∼ q.

Let ν : X → C denote the normalization map and s ∈ C be the node. To
specify a line bundle L on C one has to specify L̃ := ν∗L and a descent data,
i.e. when a section of ν∗L is the pullback of a section of L. In this case it
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suffices to give the identification of the fibers φs : L̃p
∼→ L̃q over p and q, so

φs ∈ C∗. More generally, we have a short exact sequence

0 → (C∗)b → JC
ν∗

−→ JN → 0

where b is the first Betti number of the dual graph of C. As will see, this is an
example of an allowable cover.

Lemma 4.3. If L is a line bundle on C̃ such that Nmπ L = OC then L =
M ⊗ ι∗L−1 for some line bundle M on C̃ which can be chosen of multidegree
degM = (0, . . . , 0) or (1, 0, . . . , 0).

We define Prym variety of the covering π : C̃ → C as the connected alge-
braic subgroup

P := {M ⊗ ι∗L−1 | degM = (0, . . . , 0)}.

Proposition 4.4. The variety P is an abelian variety of dimension ρa(C)−1.

Proof. We have a commutative diagram

0

��

0

��

0

��
0 // T̃2 //

��

P × Z/2 //

��

R //

��

0

0 // T̃ //

Nm

��

JC̃

Nm

��

// JÑ

Nm

��

// 0

0 // T //

��

JC

��

// JN

��

// 0

0 0 0

Notice that Nm ◦π∗ is the multiplication by 2 and since π∗ : T → T̃ is an iso-
morphism the left vertical arrow Nm is surjective and its kernel T̃2 corresponds
to the points of order 2 in T̃ . The Kernel R is a complete subvariety of JÑ , so
P is also complete.

Choose a line bundle L ∈ Pic(C) with multidegree satisfying 2degL =
degωC̃ and define

ΘL := {M ∈ JC̃ | H0(C̃, L⊗M) ̸= 0}.

It turns out that, as in the smooth case, ΘL|P ≡ 2Ξ, with Ξ ∈ NS(P ) a

principal polarization. Thus (P,Ξ) is a ppav associated to (C̃, ι).
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Definition 4.5. A covering (C̃, ι) with C̃ ∈ M2g−1 and ι an involution, is

allowable if its associated Prym variety P is an abelian variety and ρa(C̃/ι) = g.

This definition is equivalent to any of these properties:

(a) The only fixed points of ι are the nodes where the two branches are not
exchanged and the number of nodes exchanged under ι equals the number
of irreducible components exchanged under ι.

(b) The components of C̃ can be grouped as C̃ = A ∪ A′ ∪ B̃ where ι inter-

changes A and A′ and fixes B̃, each A is tree-like and either

– B̃ = ∅, A connected and |A ∩A′| = 2, or

– A ∩ A′ = ∅, |B̃ ∩ Ai| = 1 for each connected component Ai of

A the fixed points of ι in B̃ are precisely the nodes and the two
branches there are never exchanged (so that B̃/ι) also has nodes at
the corresponding points.

Remark 4.6. The condition (*) is equivalent to (a) and (b) if there is no
exchanged components under ι.

Let us denote

Rg := {[π : C̃ → C] | [C̃] ∈ M2g−1, [C] ∈ Mg, π is an allowable cover},

which is an open subspace in the compactification by admissible coverings of
the moduli space Rg.

Theorem 4.7. The Prym map Pg : Rg → Ag−1, extends to a proper map

Pg : Rg → Ag−1

For the proof of this theorem we refer [15, Theorem 1.1]. Now the aim is
to compute the local degree of Pg along the relevant divisors (those which are
not contracted under the Prym map).

5. Computation of the local degree

Let f : Y → X be a proper dominant map between two varieties, with dimX =
dimY = n, so f is generically finite. Set d = deg f . Let W ⊂ Y be an
irreducible closed subvariety of codimension k, thus f−1(W ) consists of finitely
many irreducible components Zi of codimension li in X. The local degree of
di of f along Zi is the degree of the map obtained from f by localizing X at
Zi; thus d =

∑
i di. Let Z ⊂ X be one of these components, X̃ = BlZX (resp.
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Ỹ = BlZY ) the blow up fo X (resp. Y ) along Z. Consider the following
commutative diagram

Z̃ ⊂ X̃

��

f̃ // Ỹ ⊃ W̃

��
Z ⊂ X

f // Y ⊃W

The map f̃ induces a map between the exceptional divisors f∗ : Z̃ → W̃ ,
described as follows. Recall that Z̃ = P(NZ\X) and W̃ = P(NW\Y ) are the
projectivized normal bundles. Let z ∈ Z and w = f(z) ∈ W . The differential
dfz : TzX → TwW at z maps TzZ to TwW . therefore, this induces a map

f∗,z : NZ\X → NW\Y .

This lemma follows from the universal property of blow ups.

Lemma 5.1.

(a) The map f̃ is regular at a generic z ∈ Z̃ if and only if f∗,z is not identi-
cally zero at a generic z ∈ Z.

(b) The map f̃ is regular for all z̃ in the fiber over z ∈ Z̃ if and only if f∗,z is

injective on the normal space NZ\X,z to Z at z. In this case f̃|fiber over z

is the projectivization of the linear map f∗,z.

Lemma 5.2. Assume f∗,z is injective on NZ\X,z at each z ∈ Z. Then the local

degree of f along Z equals the degree of the map f∗ : Z̃ → W̃ on the exceptional
divisors.

Remark 5.3 (Warning). The lemma requires the injectivity for all z ∈ Z.

Otherwise f̃ is not regular on a neighbourhood of Z̃ and could involve a blow
up of some small dimensional subvariety onto W̃ , implying that Z̃ is only one
of several components of the graph f̃ over Z. In this case the degree of f∗ is
possibly smaller than the degree of f̃ restricted to f−1(neighbourhood of z),
that is, smaller than the local degree of f on Z.

Consider the locus J5 of Jacobians of smooth curves of genus 5, which is of
codimension 3 in A5. Given a generic curve X ∈ M5, Mumford [25] provided

a list of smooth double covers such that their Prym variety P (C̃/C) ≃ JX.
Later Donagi and Smith [15] extended this list to the allowable covers with the
same Jacobian. From this list only four cases are relevant for the computation
of the degree, since the rest of the cases involve covers mapping to smaller loci
in J5, that is whose image is of dimension < 12 = dimJ5, hence these loci do
not contain the generic Jacobian. These are the four relevant loci in Rg:
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(a) [C] ∈ M6 is a smooth plane quintic and π : C̃ → C is an even double

cover, that is, with the property h0(C̃, π∗OC(1)) = 0 mod 2 2. We will
denote this locus by RQ

3.

(b) Double covers over trigonal curves, denoted RT .

(c) Wirtinger covers, later denoted by RS .

(d) Elliptic tails, RE , given by : π : C̃ → C where

C̃ := X1 ∪ Ẽ ∪X2/p1 ∼ 0, p2 ∼ a, C := X ∪ E/p ∼ 0,

with [X] ∈ M5, X1 ≃ X2 copies of X and Ẽ an étale double cover of an
elliptic curve E. Here pi ∈ Xi, i = 1, 2 map to p ∈ X and intersection
points 0, a ∈ Ẽ map to 0 ∈ E.

The loci (a) and (b) are of dimension 12, whereas (c) and (d) are of dimen-
sion 14. In the next section we shall apply Lemma 5.2 to the computation of
the local degree along these loci mapping onto the Jacobi locus. We will prove
that their contributions to the degree are 1, 10, 16 and 0 respectively.

6. Plane quintics

Recall that a theta characteristic on a curve C of genus g is a line bundle
κ ∈ Picg−1(C) such that κ⊗2 ≃ ΩC ; κ is even or odd according to the parity
of h0(C, κ). Let [C] ∈ M6 be a smooth plane quintic. There is a natural odd
theta characteristic κ given by the pullback of the hyperplane class ℓ under the
embedding C ↪→ P2. Define

R′
Q = {[C, η] ∈ R6 | C is a plane quintic}.

We distinguish two types of coverings inR′
Q, if h

0(η⊗κ) = 0 mod 2 (respectively
= 1 mod 2) we say that the cover [C, η] is even (respectively odd). This gives
a decomposition of R′

Q into two irreducible components

R′
Q = RQ ⊔RC .

We will show that the locus of even coverings, RQ, maps onto J5 and odd
coverings, RC , maps to the locus of intermediate Jacobians of cubic threefolds.

Assume now, that JX = P6([C, η]) ∈ J5, with [X] ∈ M5 generic (non
hyperelliptic, nor trigonal), so (JX,Θ) ∈ A5. According to the Riemann Sin-
gularity Theorem

ΘSing = {L ∈ Pic4(X) | h0(X,L) ≥ 2}.

2 OC(1) denotes the restriction of the line bundle OP2 (1) to C.

3 In order to facilitate further reading, we keep the notation as in [15].
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On the other hand, the genericity of X implies that the image of the canonical
embedding X ↪→ P4 is given by the intersections of three smooth quadrics

X = Q0 ∩Q1 ∩Q2.

Any g14 on X is cut out by a 1-parameter family of 2-planes sweeping out a
quadric (of rank 3 or 4) in P4 containing X. Set

Π = ⟨Q0, Q1, Q2⟩ = {λ0Q0 + λ1Q1 + λ2Q2 | λ = (λ0, λ1, λ2) ∈ P2}

the net parametrizing all the quadrics containing X. The discriminant locus

{λ ∈ Π | Qλ is a singular quadric}

is a plane quintic C ⊂ P2 defined by the vanishing of 5× 5 linear determinant.
For a given λ ∈ C, the quadric Qλ possesses two 1-parameter families of planes
cutting a g14 . Let C̃ be the curve parametrizing the g14 ’s. By construction, this

defines an étale double cover C̃ → C. Actually, C̃ ≃ ΘSing.
In conclusion, one can recover uniquely a double covering [C, η] ∈ RQ from

the Jacobian of a generic genus 5 curve.

Remark 6.1. For X generic, C̃ is smooth and π is étale. This fails when
X possesses a vanishing thetanull, i.e., an even theta characteristic κ with
h0(C, κ) ≥ 2. In this case C̃ is singular. Masiewicki showed [24] that the
corresponding cover is allowable, extending the result to all the curves in M5.

In order to show that the local degree of P6 on RQ equals 1, we have to
show that P6 is not ramified on RQ. This is equivalent to showing that the
codifferential map

dP∗
6 : Sym2H0(C,ωC ⊗ η) → H0(C,ω⊗2

C )

is injective on the generic element of RQ. Using the identification (T0P )
∗ ≃

H0(C,ωC ⊗ η) one can show that the projectivized of the Abel-Prym map

C̃ → P is the composition [8, Prop. 12.5.3]

C̃
π→ C → P(H0(C,ωC ⊗ η)) ≃ P5.

Therefore, the injectivity of the map follows from:

Proposition 6.2. The Prym-canonical image Ψ(C) ⊂ P5 for a generic [C, η] ∈
RQ is contained in no quadrics.

Proof. Beauville proved [5, Prop. 7.10] that for a non-hyperelliptic curve X ∈
M5, the corresponding plane quintic C is contained in no quadrics. Since RQ

is irreducible [15, II.3.3], this suffices to to prove the proposition.
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7. Trigonal curves

Let us recall Recillas construction [32] that shows that the Jacobian of a tetrag-
onal curve is the Prym variety of a covering of a trigonal curve.

Let (X, g14) be a tetragonal curve of genus g − 1. Consider

C̃ := {p1 + p2 ∈ X(2) | ∃ p3, p4 ∈ X, p1 + p2 + p3 + p4 ∈ g14} .

Note that there exists a natural involution σ : C̃ → C̃, σ(p1 + p2) = p3 + p4,

so we can define C = C̃/σ. For the construction, we assume that X is general
tetragonal, i.e. a map f : X → P1 induced by the g14 has in any fibre at least
three points. The assumption implies that σ is a fixed point free involution. A
technical lemma shows that C̃ is smooth [8, Lemma 12.7.1].

Note that C is trigonal. This is because 4 points can be divided to pairs
in 3 different ways, as in the following Diagram.

p1 oo //
OO

��

``

  

p2OO

��

>>

~~
p3 oo // p4

This gives a g13 and a map h : C → P1. The map h is ramified in exactly the
same locus as f , so one can apply Hurwitz formula to get g(C) = g−1+1 = g.

Then g(C̃) = 2g − 1 and the aim will be to show that P (C̃/C) = JX.
Now, we will show an inverse construction that will be drawn in Dia-

gram (3). Let π : C̃ → C be a double covering of a trigonal curve C of

genus g. Let π(3) : C̃(3) → C(3) be an induced 8 : 1 covering. Note that one
can embed P1 = g13 ∋ p1 + p2 + p3 ↪→ [p1 + p2 + p3] ∈ C(3) and restrict π(3) to

the preimage of P1, called X̃. An involution σ acts on C̃, hence on C̃(3) and
X̃ is σ-invariant. Hence, π(3)|X̃ factorises via X = X̃/σ which is a tetragonal
curve of genus g − 1.

X̃

2:1

ww

� � //

8:1 π
(3)

|X̃

��

C̃(3)

8:1 π(3)

��

X̃/σ = X

4:1 &&
P1 = g13

� � // C(3)

(3)

Trigonal construction allows us to define a map:

τ : J 1
4,g−1−→Rg

(X, g14) 7−→ [C̃ → C]
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that gives us an allowable covering. We have the following proposition.

Proposition 7.1. Recall that C̃ ⊆ X(2) and let α = αg1
4
: X−→JX be the Abel

map chosen such that α(x) = 4x− g14. We get:

1. Pg(τ(X, g
1
4)) = JX.

2. The map Ψ : C̃−→JX = Pg(C̃ → C) given by (a, b) 7→ α(a)+α(b) is the

Abel-Prym map of the covering C̃ → C.

Proof. Fix c̃ ∈ C̃. We will use the universal property of Prym varieties [8, Thm
12.5.1] to get the bottom row of the diagram:

C̃
αC̃

~~

Ψ //

Ψc̃

��

JX

t−Ψ(c̃)

��

JC̃

1−ι   
P

Ψ̃ // JX

(4)

and to show the Ψ̃ is an isomorphism.
Firstly, in order to get the diagram, we need to show that Ψ◦ ι = −Ψ. This

is satisfied since

Ψ ◦ ι(a, b) = Ψ(c, d) = α(c) + α(d) = −α(a)− α(b),

for a+ b+ c+ d ∈ g14 .
Now, by Matsusaka’s criterion [8, Rmk 12.2.5] it is enough to show that

ψ(C̃) =
2

(g − 2)!

(g−2)∧
ΘJX ∈ H2g−4(JX,Z)

(note that g(X) = g − 1, both JX and P are of the same dimension and the
polarisation on P is twice the principal one).

To prove it we will use a degeneration method. Let Xt degenerate to X0 ∪
P1 with X0 being trigonal curve and g14 degenerates to g13 on X0 and the
intersection pointX0∩P1 = p0. Let p0+p1+p2 ∈ g13 and consider C = X0/p1 ∼
p2 with the Wirtinger cover C̃ where q1 = p2, q2 = p1 as in Example 4.2. Note
that the class [Ψ(C̃)] does not change in the degeneration. We compute

[Ψ(C̃)] = [α(X0) + α(X0)] = 2[α(X0)] =
2

(g − 2)!

(g−2)∧
ΘJX0

.
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Denote by

RT,g = {[C̃ → C] ∈ Rg : C trigonal }.

Then RT,g ⊂ Rg and Im(τ) = RT,g.

Remark 7.2. By Brill-Noether theory, every curve of genus 5 has got a g14 .

We have the following diagram:

R̃T

P1−bundle

��

� � // BlRT
R6 = R̃6

P̃ //

bl

��

Ã5 = BlJ5
A5

bl

��

J̃5
? _oo

P2−bundle

��
RT
� � // R6

P6 // A5 J5
? _oo

(5)

where R̃T and J̃5 are exceptional divisors of the blow ups.
Recall that for X of genus g − 1

Φ : X−→PH0(X,ωX)∗ ≃ Pg−2

is the canonical map and for (C, η) ∈ Rg of genus g

Ψ : C−→PH0(C,ωC ⊗ η)∗ ≃ Pg−2

is called the Prym-canonical map. Consider again the map

dP∗
g : Sym2H0(C,ωC ⊗ η)−→H0(C,ω2

C).

Lemma 7.3. Let C̃ → C be a double covering of a trigonal curve C of genus g,
and X its corresponding tetragonal curve of genus g − 1. Then

(i) The image in Pg−2 of the 4 points a, b, c, d ∈ X under the canonical
embedding of each divisor D ∈ g14 are coplanar.

(ii) On each of these planes the 3 points of intersection of opposite lines, that
is, ab∩ cd, ac∩ bd, ad∩ bc are on Ψ(C) and as D varies in g14, they trace
Ψ(C) once, giving the g13 on C.

Lemma 7.4. The intersection of Φ(X)∩Ψ(C) in Pg−2 consists of 2g+4 points,
corresponding to the ramification points of the g14 and g13.

Proposition 7.5. Let [C, η] ∈ R̃T , then ker(dP∗
6 ) is the one-dimensional sub-

space corresponding to the unique quadric in P4 containing Φ(X) and the family
of planes cutting the given g14 on X.
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Proof. Recall that Ker(dP∗
6 ) = {quadrics in P4 containing Ψ(C)}. A g14 is

given by cutting out X with 1-dimensional family of plane of a quadric Q ⊂ P4.
By Lemma 7.3, Q contains Ψ(C) since Ψ(C) is contained in the union of these
planes. Moreover, every quadric in Ker(dP∗

6 ) also contains Φ(X). Suppose
that Ψ(C) is contained in another quadric Q′, so Ψ(C) ⊂ Q ∩ Q′ and let Q′′

be the quadric so that
Φ(X) = Q ∩Q′ ∩Q′′.

In the smooth case Ψ(C) has degree 2g − 2 = 10. Hence Ψ(C) ∩ Φ(X) =
Ψ(C) ∩ Q′′ has degree 20, but this contradicts Lemma 7.4, since the trigonal
map has 2g + 4 = 16 ramification points.

Theorem 7.6. The local degree of P6 at RT equals 10.

Proof. Identifying J5 to M5 via the Torelli map, we denote by N (M5\A5) the

normal subbundle to J5 in A5, and N (R̃T \R̃6) denotes the normal subbundle

to the exceptional divisor R̃T in the blowup R̃6. Consider the codifferential
map on the conormal subbundles

N ∗(M5 \ A5) → N ∗(R̃T \ R̃6).

Notice that the source bundle is of rank 3 and the target one is of rank 2. By
Proposition 7.5, the kernel of this map is at most of rank one, therefore the
map is surjective. According to Lemma 5.2 the local degree equals the degree
of the

P̃e : R̃T → M̃5,

where P̃e denotes the projectivization of the conormal map on the exceptional
divisors. Let [X] ∈ M5 be a generic curve and P2 the fiber over [X] in M̃5

and R = P̃−1
e ([X]) in R̃T . We shall describe the map

P̃e : R → P2 = P(NX(M5 \ A5)).

The target plane is dual to the plane Π containing the discriminant plane
quintic F parametrizing the singular quadrics containing the canonical embed-
ding of X. Thus, a point of P2 corresponds to a line in Π, that is a pencil
of quadrics. And viceversa, a line in P2 corresponds to a point in Π, that
is a quadric Q containing Φ(X). The quadric Q is singular if and only if,

p ∈ F ⊂ Π. We have that R is a P1-bundle over [F̃ → F ] ∈ RT . Moreover,

F̃ = SingΘX parametrizes the fiber of the Prym map over JX. Indeed, an
element L ∈ SingΘX corresponds to a g41 on X and the data (X, g14) produces,

via the trigonal construction, a double covering [C̃ → C] ∈ RT over a trigonal
curve whose Prym variety is isomorphic to JX. The map

P̃e : P1 → P2
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on the fibers is injective and its image is a line in P2, that is a point in Π
corresponding to a singular quadric in ker dP ∗

6 |[C̃→C].

Now, let p ∈ P2 be a generic point, then

deg P̃e = |{P̃e}|

= |{[C̃ → C] ∈ F̃ | p ∈ P̃e(P1
C)}|

= |{[C̃ → C] ∈ F̃ | π(C) ∈ ℓ(p)}| ,

where ℓ(p) is the dual line to p in Π and π : F̃ → F is the double covering.
Hence,

deg P̃e = deg(F̃ → Π) = deg(π) · degF = 2 · 5 = 10 .

8. Boundary components

In this section we will describe the Prym map on the boundaryR6\R6 mapping
onto the Jacobian locus J5. Denote by:

RS = {[C̃ → C] ∈ R6 : [C] ∈ Mg is irreducible with one node and its

degenerations}

RE = {[C̃ → C] ∈ R6 : [C] ∈ Mg has an irreducible component of

genus g − 1 and an elliptic tail and its degenerations}

The general element of RS is a Wirtinger cover and in fact RS is a boundary
component over M5 (see Figure 2). Let RE,S denote the intersection of RS

and RE .

Lemma 8.1. The only irreducible components of R6 \R6 whose image contains
J5 are RS, RE and RT \ RT .

A fine analysis is required to study the Prym map near the singular curves
(for instance one needs to distinguish the dualising sheaf ωC from the Kähler
differentials ΩC). Donagi and Smith avoid the difficulties arising along the
locus RE and RE,S by constructing a new compactification M′

6 of M6 and a
space R′ over M′

6, such that P6 factorises through R′:

R6

β   

P6 // A5

R′

>>

such that the map β blow downs the component RE . This shows that RE has
no contribution to the degree of P6. The details of these constructions can be
found in [15, IV.§2,§4]

149



(22 of 34) P. BORÓWKA AND A. ORTEGA





                                         General elements of the boundary components





                         Wirtinger cover                                                     Elliptic tail 


Figure 2: Stable covers

In this section we will use the genericity of X ∈ M5 (1) to ignore families in
R6 of dimension smaller than 12 ( = dimM5) and (2) to assume that [X] ∈ M5

is smooth (in particular has no automorphisms).

Note that P6|RS
: RS−→J5 is proper and surjective. The fibre of a general

JX is naturally isomorphic to S2(X), since all you need is to choose p, q ∈ X
where you glue.

Lemma 8.2. For an element [C, η] ∈ RS \RE,S over a generic [X] ∈ Mg−1 we
have

Ker dP ∗
g−1 = {Quadrics Q containing Φ(X) and the chord Φ(p)Φ(q)}.

For [C, η] ∈ RS with p = q

Ker dP ∗
g−1 = {Quadrics Q containing Φ(X) and its tangent line at

the normalisation of the cusp}.

Proposition 8.3. For C = X/p ∼ q we have that ker dP ∗ is two dimensional.

Proof. Recall that for the canonical model X ⊂ P4 we have X = Q1 ∩ Q2 ∩
Q3, for some quadrics Q1, Q2, Q3. The secant pq (or the tangent line if p =
q) imposes 1 linear condition on the quadrics. The proposition follows from
Lemma 8.2.

Theorem 8.4. The local degree of the Prym map P6 at the boundary of R6

equals 16.
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Proof. The degree can be computed after blowing up M5 ↪→ A5 and restricting
the map to the exceptional divisor. On the fiber over a fixed generic [X] ∈ M5

the map becomes

f : S2X → P2 = P(NX(M5 \ A5)),

sending the (p, q) ∈ S2X to the pencil of quadrics trough the line Φ(p)Φ(q).
Therefore the degree is computed by the number of chords of Φ(X) contained
in the intersection of two quadrics in general position. The theorem follows
from Lemma 8.5 and 8.6.

Lemma 8.5. The intersection of two quadrics in general position in P4 contains
16 lines.

This is the number of lines on a del Pezzo surface of degree 4 obtained as
the blow up of 5 points in general position on P2.

Lemma 8.6. The canonical curve Φ(X) ⊂ P4 meets each of the 16 lines twice.

Proof. Recall that Φ(X) is a complete intersection of Q0 ∩ Q1 ∩ Q2 ∈ P4 of
three quadrics. Let ℓ be a line in Q1 ∩Q2. The result follows from

|(Φ(X) ∩ ℓ)|Q1∩Q2
| = |(Q0 ∩ ℓ)|P4 | = 2.

9. Cubic threefolds and their intermediate Jacobians

In this section we study the fiber of the Prym map on the locus of inter-
mediate Jacobians. Although the preimage of an intermediate Jacobian is
2-dimensional, after blow up the Prym map displays the structure of the finite
fiber. The tetragonal construction provides a beautiful geometric way of recov-
ering the fiber starting from one element in the preimage identifying it with
the structure of the 27 lines on a smooth cubic surface. The original references
for the theory of cubic threefolds are [11, 27, 28].

Let X ⊂ P4 be a smooth cubic hypersurface. Since a generic hyperplane
section intersects X in 27 lines, there is a 2-dimensional family of lines lying in
X parmetrized by the Fano surface F (X). The intermediate Jacobian

JX = H1,2(X,C)/H3(X,Z)

of X is isomorphic as a ppav to the Albanese variety Alb(F (X)). The theta
divisor Θ in JX is the image of the map

F (X)× F (X) → JX, (ℓ, ℓ′) 7→ [ℓ]− [ℓ′] ,
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which collapses the diagonal to 0 ∈ JX giving the only singularity in Θ (a
triple point). One can identify the projectivized tangent space P(T0(JX)) with
the ambient P4.

Let C be the 10-dimensional moduli space parametrizing the smooth cubic
threefolds. The construction of the intermediate Jacobian yields a map C →
A5. Since one can recover X from its tangent cone to Θ at 0, this map is
an embedding (Torelli Theorem for cubic threefolds [11], see [6] for a proof
involving Prym varieties).

Let (X, l0) be a pair consisting of a cubic threefold X and a generic line
l0 ⊂ X ⊂ P4. Let πl0 be a projection from l0 to P2 and bl the blowing up map
of X along ℓ0. We have the following diagram

Bll0X = X̃

bl

zz

pr

$$
X

πl0 // P2

where (X̃, pr) can be seen as a conic bundle over P2. It is because a point
p ∈ P2 is the image of a plane that contain l0, so its intersection with X (that
is of degree 3) is the union of l0 and a conic, either smooth, or degenerated to
two lines.

We define the discriminant locus and denote it as

C := {p ∈ P2 : pr−1(p) contains 2 lines}.

Note that C is a plane quintic, smooth for generic l0, since a generic hyperplane
section of X contains 5 pairs of lines coplanar with l. We also have a natural
line bundle L = OP2(1)|C of degree 5.

Let
C̃ = {l ∈ F (X) : l ∩ l0 ̸= ∅}

be the curve of lines intersecting l0. The plane generated by l0, l intersects X
in the third line l′ and hence there is a natural 2 : 1 map π = pr|C̃ : C̃ → C

that sends a line l to l ∩ l′ ∈ C. One checks that C̃ is also smooth and the
covering π is unramified. For any line l0 one obtains an allowable cover.

Proposition 9.1. The Prym variety of the covering C̃ → C is isomorphic to
P (C̃/C) ≃ JX. Moreover the fibre P−1

6 (JX) ≃ F (X) is 2-dimensional.

Proof. We give a sketch of the proof (a complete proof is available in [5]). Since

C̃ parametrizes a family of lines on X, there exists a map (an Abel-Prym map)

ψ : C̃ → JX, l 7→ [l]− [l0]
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defined up to translation. This induces a homomorphism a : JC̃ → JX. The
family of fibres of pr is parametrized by P2, hence its corresponding Abel-Jacobi
map is constant. Therefore, a is zero on π∗JC and it gets factorized through
a map u:

JC̃
a //

1−σ ##

JX

P (C̃/C)

u

;;

were σ is the involution exchanging the lines on the fiber of π. One shows
that u is an isomorphism by means of cohomology properties and that u pulls
back the principal polarization of JX to the principal polarization of the Prym
variety [5, §2.6].

Since C̃ is defined via a line l0 ⊂ X one can get that P−1
6 (JX) ≃ F (X).

For a generic p ∈ C, pr−1(p) is a conic in X meeting l0 in two points. For
p ∈ C ⊂ P2, we denote

pr−1(p) = l1(p) ∪ l2(p)

with l1(p) ∪ l2(p) coplanar to l0.

Proposition 9.2. The map C → X ⊂ P4 sending

p 7→ l1(p) ∩ l2(p)

is the Prym-canonical map of (C, η)

Proof. The Abel-Prym map ψ : C̃ → P (C̃, C) ≃ JX ≃ Alb(F (X)) is just the

restriction to C̃ of the map

F (X) → JX, l 7→ [l]− [l0].

The Prym-canonical image of l1(p) ∈ C̃ is the projectivized of the derivative
of ψ at l1(p) and corresponds to a point of l1(p) ⊂ P4 and similarly for l2(p).
Hence this point should be the intersection of both lines.

Proposition 9.3. The 2-torsion point η ∈ JC defining the covering π : C̃ → C
satisfies h0(C, η ⊗ L) = 1, so (C, η) ∈ RC .

Proof. The Prym-canonical map Ψ of (C, η) is given by the line bundle

ωC ⊗ η ≃ OP2(2)|C ⊗ η

and after projecting from l, C is mapped to P2 by OP2(1)|C = L. Hence, the

line bundle OP2(1)|C ⊗ η has a unique effective divisor given by the 5-points
intersection of the image of l with Ψ(C).
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Let RX := P−1
6 (JX)∩RC . We will see that the codifferential is of maximal

rank so RX is isolated in P−1
6 (JX), that is, it is a connected and irreducible

component. Therefore RX = P−1
6 (JX).

As we have seen the choice of a line in the Fano variety F (X) produces
an étale double covering whose Prym variety is isomorphic to the intermediate
Jacobian JX. Thus F (X) parametrizes a subvariety R′

X ⊂ RX . It can be
shown that the closure of the union of ∪XR′

X for all the smooth cubic threefolds
X equals the locus RC of pairs (C, η) with η odd. Let AC ⊂ A5 be the closure of
the locus of intermediate Jacobians of cubic threefolds. We have the following
blow up diagram:

(C, η, L) ∈ R̃C

P2−bundle π1

��

� � // R̃6
P̃6 //

��

Ã5

��

C̃ ∋ (X,H)? _oo

P4−bundleπ2

��
(C, η) ∈ RC

� � // R6
P6 // A5 C ∋ X? _oo

(6)

where R̃C and C̃ are the exceptional divisors, H = OP4(1)|X is a hyperplane

section and L ∈ F (X). We will see that P̃−1
e (X,H) = {l ∈ F (X) : l ∈ X ∩H}.

We can find the following dimensions of spaces and general fibres of maps that
appears in Diagram (6)

14

2

��

� � // 15
P̃6 //

0

��

15

0

��

14? _oo

4

��
12 �
� // 15

P6 // 15 10? _oo

The cotangent space

T ∗
JXA5 = Sym2 T ∗

0 (JX)

consists of all quadrics in P4 = P(T ∗
0 (JX)). The quadrics corresponding to the

conormal space N ∗
JX(AC \A5) are those Xp polar to points p ∈ P4 with respect

to X (see [17]). Thus

π−1
2 (JX) ≃ P(N ) ≃ (P4)∗.

Since R′
C is an unramified cover over the moduli space of plane quintics, we

can identify the fiber of π1 over (C, η) ∈ R′
C with the dual of the ambient P2

of C. In terms of given pair (X, l) with l ∈ F (X) this P2
l is the space of planes

through l in P4 and (P2
l )

∗ is the subspace of (P4)∗ dual to l.

Lemma 9.4. Let R̃X = π−1(R′
X) and PX be the restricted map. Then

PX : R̃X = ∪l∈F (X)(P2
l )

∗ → (P4)∗

is the natural injection on each (P2
l )

∗.
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This lemma shows that P̃e is of maximal rank and it is of degree 27, since a
generic hyperplane section of X contains 27 lines. Hence, an element in (P4)∗

has 27 planes in its preimage.

10. Tetragonal construction

As we have seen, the fiber of P̃6 over an intermediate Jacobian corresponds
to the 27 lines on a smooth cubic surface, so it carries also a structure of the
incidence correspondence of the lines. The tetragonal construction on elements
(C, η) ∈ RC on the fiber reflects this correspondence.

Let C denote a tetragonal curve of genus g (with f : C → P1 given by a g14)

and let π : C̃ → C be an étale double covering. As usual, we have the following
construction.

C̃0 ⊔ C̃1 = X̃

2:1

uu
2:1

yy

� � //

16:1 π(4)|
X̃

��

C̃(4) ∋ p̃1 + p̃2 + p̃3 + p̃4

16:1 π(4)

��

C0

4:1 ))

C1

4:1

%%
P1 = g14

� � // C(4) ∋ p1 + p2 + p3 + p4

(7)

Note that for D,D′ ∈ Pic(X̃) we have D ∼ D′ if and only if they push down
to the same divisor on C(4) and they share an even number of points in each
orbit. This shows in particular that X̃ has two connected components C̃0 and
C̃1.

We have so called triality (C̃, C, f), (C̃0, C0, f0), (C̃1, C1, f1) because
the construction does not depend from which curve we have started.
This phenomenon can be explained by the monodromy representation
π(P1 \{branch points})−→WD4 , whereW (D4) is the Weyl group of D4. Note
that S3 acts on W (D4) as the group of outer automorphisms. The outer auto-
morphism of order 3 is responsible for the appearance of the three tetragonally
related double covers.

Theorem 10.1. The tetragonal construction commutes with the Prym map,
that is,

Pg(C̃, C) ≃ Pg(C̃0, C0) ≃ Pg(C̃1, C1)

are isomorphic as ppav (for any genus g ≥ 5).

Proof. One can use Masiewicki’s criterion to prove the isomorphisms. Instead,
we sketch here the degeneration argument given in [14]. Consider RTet

g ⊂
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(28 of 34) P. BORÓWKA AND A. ORTEGA

 

Figure 3: Stable cover

Rg the space parametrizing pairs (C̃, C) of étale double coverings with C a
tetragonal curve of genus g. This is an irreducible space and the construction
varies continuously with (C̃, C), so we can make the computation for a single
pair. Consider the allowable covering

C̃ := P1 ∪q′ T̃ ∪q′′ P1, C := T ∪q P1

with T̃ → T an étale double cover over a trigonal curve T as in Figure 3.
The tetragonal construction applied to the cover produces other two

Wirtinger covers C̃i, Ci, i = 0, 1, such that the normalization of Ci is the
tetragonal curve N associated to (T̃ , T ) via the trigonal construction. In this
sense, the trigonal is a degeneration of the tetragonal construction. We have
then isomorphisms of ppav

JN ≃ Pg(T̃ , T ) ≃ Pg(C̃, C)

such that image of the Abel-Prym map αi : Ci → Pg(C̃, C) consists of the
image of the Abel-Jacobi map φ : N → JN and its involution. Thus the
fundamental class is twice that of φ(N).

Curves of genus 6 are tetragonal and the generic one possess 5 g14 ’s. Let
MTet

6 denote the moduli space parametrizing pairs of genus-6 curves with a g14 .
So the forgetful map MTet

6 → M6 is generically finite of degree 5. By base
change we get the following diagram

RTet
6

��

// R6

��
MTet

6
//M6
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The tetragonal construction induces a (2, 2) correspondence on RTet
6 whose

image in R6 is a (10, 10) correspondence Tet ⊂ R6 ×R6.

Theorem 10.2. The correspondence Tet on the fiber P−1
6 (A) for a generic

A ∈ A5 is isomorphic the the incidence correspondence of the lines on a smooth
cubic surface. Moreover, the Galois group of the Galois closure of R6 → A5 is
the Weyl group W (E6), the symmetry group of the incidence of the 27 lines on
the cubic surface.

Proof. The generically finite map RTet
6 → R6 has 1-dimesional fibers over the

locus of double coverings C̃ → C with C trigonal or a plane quintic. After
blowing up and normalizing one gets generically finite fibers over the corre-
sponding exceptional loci. One checks that the tetragonal correspondence lifts
to a generically finite (10, 10) correspondence

T̃et ⊂ R̃6 × R̃6.

It suffices to identify the structure over a point over which P̃6 and T̃et are étale.
For instance over a generic (X,H) ∈ C̃, where the group W (E6) acts on the
line of the cubic surface X ∩H. So the monodromy is contained in W (E6).

For instance, for an element (C, η, l) ∈ R̃C (that is a plane quintic C with
an odd 2-torsion point η and l a line in P2), the 5 g14 ’s correspond to the
projections of the plane quintic C from one of the 5 points of the intersection
C ∩ l. We have the identification of P̃6(X,H) with the set of lines of the cubic
surface X ∩ H, which for generic X and H there are 27 lines. For each l of
these lines the conic bundle construction (blow up of the projection from l)

gives a double cover π : C̃ → C, with L = π(H) ⊂ P2. In order to corroborate
Theorem 10.2, we need to check that for two given lines l, l′ ∈ F (X) they
intersect each other if and only if the corresponding objects (C, η, l), (C ′η′, l′)

are tetragonally related, that is, the pair belongs to T̃et. If l ∩ l′ ̸= ∅, let
A ⊂ P4 be the plane containing l, l′ and l′′ the line such that A∩X = l∪ l′∪ l′′.
The conic bundle construction gives then 3 plane quintics C,C ′, C ′′ with their
respective double covers C̃, C̃ ′, C̃ ′′. Note that the l, l′ map to a point p ∈ C and
this point determines a 4:1 map f : C → P1 by projecting from it. Similarly,
for C ′, C ′′ we obtain tetragonal maps f ′, f ′′. These 3 maps can be realised
simultaneously via the pencil of hyperplanes Sλ ⊂ P4 containing A. For a
generic λ, Sλ∩X =: Yλ is a smooth cubic surface. A line m ∈ Yλ, with m /∈ A,
m∩l′ ̸= ∅ also meets 4 of the 8 lines in Yλ\A meeting l. This gives the injection

C̃ ′ ↪→ C̃(4), m 7→ {m′ : m′ ∩ l ̸= ∅, m′ ∩m ̸= ∅}.

This shows that the three covers are tetragonally related, hence

(C̃, C, f), (C̃ ′, C ′, f ′) ∈ T̃et.
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Since both, the line incidence and the tetragonal correspondence are of bidegree
(10, 10) and we have the inclusion, they must be equal.

11. Exercises

The course has been supplemented with the exercise sessions. The idea was to
compute some examples in low genera and show that Prym theory combines
constructions from curve theory and theory abelian varieties. We would like to
show some ideas of what was covered.

Exercise 11.1. Show that if C is a genus 2 curve and f : C → E is an n : 1
covering of an elliptic curve, then there is another n : 1 covering g : C → E′.

Proof. By dimension count, one gets that the Prym variety P (f) is of dimension
1, hence an elliptic curve, say E′. Since we have an inclusion j : E′ → JC, we
can dualize it to get ĵ : JC → E′ and restrict to an image of an Abel Jacobi
map to get a map g = ĵ ◦ αC : C → E′. Here, we have used the fact that both
JC and E′ are principally polarized, hence isomorphic to their duals. It is also
worth noting that a change of the base point of an Abel Jacobi map results in
a map that differs by a translation on E′, so the map g is (up to translation on
E′) unique. Since f is n : 1, we have that E′ has restricted polarization being
n times the principal one, so g is of order n.

Remark 11.2. The locus of Jacobians of curves mentioned in Exercise 11.1
coincides with the locus of abelian surfaces that are polarized isogenous to a
product of elliptic curves of exponent n and is called the Humbert surface of
degree n2.

From the proof of Exercise 11.1, we get an immediate corollary.

Corollary 11.3. An elliptic curve E can be embedded in a Jacobian JC with
exponent n if and only if there exists an n : 1 covering C → E (that does not
factorize via C → E′ → E with E′ → E an isogeny).

Before showing next exercise, we need to recall result from [7] that deals
with curves on surfaces.

Lemma 11.4 ([7, Prop 4.3]). Let C be a smooth curve and (JC,Θ) its Jacobian.
Let (A,H) be a polarised abelian surface and suppose fC : C → A is a morphism
and f : JC → A is the canonical homomorphism defined by the universal
property of Jacobians. Then the following are equivalent:

• f̂∗(Θ) ≡ Ĥ;

• (fC)∗[C] = H in H2(A,Z).
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If C is of genus 3, we can use the fact that if JC contains an abelian
subvariety, then it contains an elliptic curve and therefore C is a covering of
an elliptic curve. We will recall Barth’s result [3] in the following exercise.

Exercise 11.5. Show that a smooth genus 3 curve C can be embedded in a
(1, 2) polarized abelian surface if and only if it is a double covering of an elliptic
curve. In such a case, the curve C is hyperelliptic if and only if C is an étale
double covering of a genus 2 curve.

Proof. Note that by [2], a general section of a polarization of type (1, d) is a
smooth curve and by Riemann-Roch, it is of genus d+1. Hence, if fC : C → A
is an embedding of a genus 3 curve, then fC(C) has to generate A as a group
and hence O(fC(C)) is a (1, 2) polarization. Now, by Universal Property of
Jacobians, we can extend fC to a map f : JC → A which will be surjective
and hence Ker(f) = E is an elliptic curve. Since E is complementary to Â in
JC, its exponent equals 2 and so there exists a double covering C → E.

On the other hand, if g : C → E is a double covering then Nmg : JC → E
has kernel Ker(Nmg) = A that is a (1, 2) polarized abelian surface. If we take

the dual map to the inclusion, we get a map JC → Â and by composing with
an Abel-Jacobi map, using Lemma 11.4 we get that the image is of arithmetic
genus 3 and hence it is a desired embedding of C.

As for the second part, it is well known that an étale double covering of a
genus 2 curve is bielliptic, i.e. hyperelliptic and a double cover of an elliptic
curve (see [25]). On the other hand, if C is hyperelliptic, we can use the
hyperelliptic involution ι to show that for any degree 0 divisor D, we have that
D + ι∗D is a principal divisor. In particular ι extends to −1 on the Jacobian
JC. Now, if τ is the involution defining the covering f : C → E, then ιτ defines
another double covering π : C → C ′ and one can compute

E = Im(Nm(f)) = Im(1 + τ) = Im(1− (−τ)) = P (C/C ′)

and in particular C ′ is of genus 2 and π an étale double covering.

Remark 11.6. A trick of composing an involution with the hyperelliptic in-
volution used in the proof of Exercise 11.5 can be generalised to any genus.
If C is hyperelliptic and f ′ : C → C ′ and f ′′ : C → C ′′ are double cover-
ings given by involutions τ and ιτ respectively then the Prym varieties equals
P (f ′) = (f ′′)∗(JC ′′) and P (f ′′) = (f ′)∗(JC ′).

One may suppose that if a Jacobian contains an abelian subvariety, then
there is a covering of curves involved. The aim of the last exercise is to show
that it may not be the case.

Exercise 11.7. Show that there exists a Jacobian of a curve that contains
abelian subvarieties but does not come from the Prym construction (i.e. the
curve is not a covering of a positive genus curve).
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Proof. Here, we will show a heuristic argument. Let C be a smooth genus 4
curve embedded in a (1, 3) polarised abelian surface A. Then we can construct
the exact sequence 0 → K → JC → A → 0 and its dual sequence 0 → Â →
JC → K̂ → 0. Since K and Â are complementary to each other in JC and
therefore of the same type (1, 3) we get that C is also embedded in K̂. The
moduli of abelian surfaces is three dimensional and on a fixed surface there is
a two dimensional family of genus 4 curves (since h0(A,L) = 3), hence there is
a five dimensional family of such curves (locally). Note that any curve can be
embedded in only finitely many surfaces, since for a fixed abelian variety (in
this case a Jacobian) there is only finitely many abelian subvarieties of a fixed
exponent. Because of that, we can assume that all A, Â,K, K̂ do not contain
elliptic curves. In such a case, C is not a covering of an elliptic curve. Now,
the only possible covering is a triple étale covering of a genus 2 curve but there
are only finitely many such curves on a fixed A.

An explicit example when we additionally assume that C is hyperelliptic
and get that K = A and a precise proof that C is not a covering of a positive
genus curve can be found in [10].

To show that the inverse to the Torelli map is mysterious even in dimensions
2 and 3, we have finished the exercises with two open questions:

Exercise 11.8. Can you find an explicit example (i.e. a hyperelliptic equation)
of a smooth genus 2 curve that is a 2021 : 1 covering of an elliptic curve? Can
you find an explicit example (i.e. a bivariate quartic equation) of a smooth
genus 3 curve that is a 2021 : 1 covering of an elliptic curve?
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1. Introduction

The cohomology of a compact Kähler manifold has remarkable properties, ab-
stractified in the modern notion of a (polarized) Hodge structure. While the
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datum of a Hodge structure of weight 1 is equivalent to the datum of a compact
complex torus, this is no longer the case in higher weights. In weight 2 there
are remarkable examples of compact Kähler manifolds which are, mostly, de-
termined by the polarized Hodge structure on their second cohomology. These
are the hyperkähler manifolds: higher dimensional analogues of K3 surfaces.
In these lecture notes, we give an elementary introduction to hyperkähler man-
ifolds and survey some of their interesting properties.

We start by reviewing the notions of tensors, connections, the curvature ten-
sor, Ricci curvature and some of their properties. We define parallel transport,
holonomy and the Levi-Civita connection. We also describe the constraints
posed by the holonomy on the curvature tensor. We define (locally) sym-
metric spaces and state the main structure theorem for them. We then state
De Rham’s decomposition theorem for simply connected complete Riemannian
manifolds and Berger’s classification of the holonomy groups of nonsymmetric,
complete, connected, irreducible Riemannian manifolds. Berger’s classification
shows that hyperkähler manifolds are the nonsymmetric complete connected
irreducible Riemannian manifolds with holonomy group contained in Sp(r):
the group of automorphisms of the quaternions Hr preserving a quaternionic
hermitian form. It follows that they are Ricci flat. In fact, it follows from
the theorems of De Rham and Berger, the Calabi-Yau theorem and results of
Cheeger-Gromoll and Bochner that, after possibly taking a finite étale cover,
Ricci-flat compact Riemannian manifolds are products of complex tori, Calabi-
Yau manifolds and hyperkähler manifolds (see Paragraph 4.5).

Constructing examples of compact hyperkähler manifolds has proven par-
ticularly challenging. Two infinite series were constructed by Beauville [2],
using an idea of Fujiki [19]. Two sporadic families of hyperkählers of dimen-
sions 6 and 10 were constructed by O’Grady ([37, 38]) via desingularization
of certain singular moduli spaces of sheaves on K3 surfaces and complex tori
of dimension 2. We give an overview of Beauville’s constructions of the two
infinite series.

It is the content of the Torelli theorem that hyperkähler manifolds are es-
sentially determined by their second cohomology. This is consistent with the
fact that all constructions to date of hyperkähler manifolds involve surfaces.

We briefly describe the moduli spaces of compact hyperkähler manifolds,
their period domains and some of their properties. By a result of Tian-Todorov
and Bogomolov, the deformations of hyperkähler manifolds are unobstructed.
This essentially means that the moduli spaces of compact hyperkähler man-
ifolds are smooth analytic spaces. It is known however, that they are not
Hausdorff.

The period domain of a given family of hyperkähler manifolds is constructed
from the lattice abstractly isometric to the second integral cohomology of the
hyperkähler together with a natural non-degenerate quadratic form called the
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Beauville-Bogomolov form. This form generalizes the intersection form in the
case of dimension 2 and the natural form on the second cohomology of the Fano
variety of lines of a smooth cubic fourfold. In the case of the Fano variety of
lines, the form is induced by the intersection form on the fourth cohomology
of the cubic fourfold, via the Abel-Jacobi isomorphism between the second
cohomology of the Fano variety if lines and the fourth cohomology of the cubic
fourfold.

For a fixed compact hyperkähler X, we describe the local and the global
period domains with their respective maps from the local and global deforma-
tion spaces of X. We explain the local Torelli theorem and Verbitsky’s weaker
version of global Torelli which holds in the hyperkähler case.

We conclude with a brief discussion of twistor conics and twistor families,
the proof of the global Torelli theorem by Verbitsky and the relation between
twistor families and hyperholomorphic bundles.

Some good general references for the material that we present here are:
[2, 5, 6, 18, 22, 45].
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2. C∞ manifolds

2.1. Tangent and cotangent bundles

For a C∞ manifold M , we denote by TM the tangent bundle of M and T ∗
M the

cotangent bundle.

For any non-negative integers (k, l), the sections of the bundle T⊗k
M ⊗(T ∗

M )⊗l

are called (k, l)-tensors. Section of TM are vector fields and sections of ΛpT ∗
M

differential p-forms. Alternatively, vector fields can be defined as first order
differential operators on C∞ functions.

In a local coordinate chart with local coordinates (x1, . . . , xn), the (local)
vector fields ∂/∂x1, . . . , ∂/∂xn form a basis of vector fields and the (local) 1-
forms dx1, . . . , dxn form a basis of differential 1-forms. A local (k, l)-tensor can
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be written as

T =
∑

T i1,...,ik
j1,...,jl

∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ . . .⊗ dxjl .

2.2. The Lie bracket

Given a vector field v =
∑
vi ∂

∂xi and a C∞ function f on M ,

v(f) =

n∑
i=1

vi
∂f

∂xi
.

Given two vector fields v =
∑
vi ∂

∂xi , w =
∑
wi ∂

∂xi , the Lie bracket of v and w
is given by

[v, w] =

n∑
j=1

(
n∑

i=1

vi
∂wj

∂xi
− wi ∂v

j

∂xi

)
∂

∂xj
.

Alternatively, the Lie bracket can be defined via its action on C∞ functions
on M :

[v, w](f) = v(w(f))− w(v(f)).

2.3. Connections

Tangent vectors allow us to take derivatives of C∞ functions. Connections
allow us to take derivatives of sections of arbitrary vector bundles.

For a C∞ vector bundle E on M , a connection is a linear map

∇ : C∞(E) −→ C∞(E ⊗ T ∗
M ),

satisfying the Leibnitz rule

∇(fe) = f∇(e) + e⊗ df

for all C∞ sections e of E and C∞ functions f on M . For any vector field v
on M , the connection ∇ defines a linear map ∇v : C∞(E) → C∞(E) via

∇v(e) := ∇(e)(v).

We call ∇v the covariant derivative in the direction of v.
We may thus also think of ∇ as a linear map

∇ : C∞(E ⊗ TM ) −→ C∞(E).

When E = TM , the torsion of a connection ∇ : C∞(TM ⊗ TM ) → C∞(TM ) is
the linear map

T : C∞(Λ2TM ) −→ C∞(TM )

defined as
T (v ∧ w) := ∇v(w)−∇w(v)− [v, w].

We say ∇ is torsion-free or symmetric when T = 0.
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2.4. Curvature

Euclidean space is “flat”. What this means is that when we take second partial
derivatives of vector fields, the order of differentiation does not affect the final
result. Roughly speaking, the curvature of a connection measures the difference
between the second partials of a section of a vector bundle taken in different
orders.

For general vector fields v, w, the curvature measures the difference between
∇v∇w − ∇w∇v and the derivative in the direction of the bracket [v, w]. On
the tangent bundle of Euclidean space this difference is 0.

Precisely, the curvature of a connection ∇ is a linear map

R : C∞(E) −→ C∞(E ⊗ Λ2T ∗
M )

or, equivalently,
R : C∞(E ⊗ Λ2TM ) −→ C∞(E)

or a global section
R ∈ C∞(End(E)⊗ Λ2T ∗

M ).

It can be defined via its action on sections e of E and vector fields v, w as

R(e⊗ (v ∧ w)) = ∇v(∇w(e))−∇w(∇v(e))−∇[v,w](e).

We say that the connection ∇ (or sometimes the bundle E) is flat if R = 0.
In a coordinate chart with coordinates (x1, . . . , xn), the partial derivatives

commute, i.e., [
∂

∂xi
,
∂

∂xj

]
= 0

for all i, j. Hence

R

(
e⊗

(
∂

∂xi
∧ ∂

∂xj

))
= ∇ ∂

∂xi

(
∇ ∂

∂xj
(e)
)
−∇ ∂

∂xj

(
∇ ∂

∂xi
(e)
)

and the connection is flat if and only if its partial (covariant) derivatives com-
mute.

2.5. Parallel transport

Suppose given a C∞ vector bundle E on M with a connection

∇ : E −→ E ⊗ T ∗
M ,

and a smooth curve γ : [0, 1] → M . Parallel transport along γ produces
sections of the pull-back γ∗E that are ‘constant’ or ‘horizontal’ along γ. As we
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see below, such sections exist and are determined by their values at one point
of γ.

The pull-back γ∗E is a C∞ vector bundle on [0, 1] with fiber Eγ(t) at t ∈
[0, 1]. The connection ∇ defines the connection γ∗∇ on γ∗E as the composition

γ∗∇ : γ∗E −→ γ∗E ⊗ γ∗T ∗
M →→ γ∗E ⊗ T ∗

[0,1]

where the second map is induced by the projection T ∗
M →→ T ∗

[0,1].

In local coordinates (x1, . . . , xn) on M , with γ(t) = (x1(t), . . . , xn(t)),

γ̇(t) = (ẋ1(t), . . . , ẋn(t)) =

n∑
i=1

ẋi(t)
∂

∂xi

and, for all (local) sections e of E,

∇γ̇(t)(e) := ∇∑n
i=1 ẋi(t) ∂

∂xi
(e) =

n∑
i=1

ẋi(t)∇ ∂

∂xi
(e).

Definition and Proposition 2.1. Put x := γ(0), y := γ(1). Then, for all
e ∈ Ex = (γ∗E)0, there exists a unique smooth section s of γ∗E such that
s(0) = e and γ∗∇(s) = 0, i.e., ∇γ̇(t)(s) = 0.

The parallel transport of e along γ to y is Pγ(e) := s(1) ∈ Ey = (γ∗E)1.
The map Pγ : Ex −→ Ey is a linear isomorphism.

2.6. Holonomy

As we saw above, parallel transport defines linear isomorphisms between fibers
of E at points of M . In particular, for a given point x of M , it defines linear
automorphisms of the fiber Ex. The holonomy of ∇ is the group generated
by these automorphisms. It acts on all tensors of E and its invariants are the
covariantly constant tensors:

Definition and Proposition 2.2. If γ is a loop (i.e. x = y), then Pγ ∈
GL(Ex). The holonomy group Holx(∇) at x is

Holx(∇) := {Pγ | γ is a loop based at x}.

It has the following properties.

1. Holx(∇) is a Lie subgroup of GL(Ex):

γδ(t) =

{
δ(2t) if t ∈

[
0, 12

]
γ(2t− 1) if t ∈

[
1
2 , 1
]

γ−1(t) = γ(1− t),

Pγδ = Pγ ◦ Pδ, Pγ−1 = P−1
γ .
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2. If γ is a path from x to y, then

Holy(∇) = Pγ Holx(∇)P−1
γ .

Hence, up to conjugation, Holx(∇) only depends on the connected com-
ponent of M containing x.

3. if M is simply connected, then Holx(∇) is connected. Any loop can be
shrunk to a point:

γ : [0, 1]× [0, 1] −→M ; γs(t) := γ(s, t) ; γ1(t) = x for all t.

Then {Ps := Pγs
| s ∈ [0, 1]} is a path in Holx(∇) from P0 = Pγ0

to
P1 = Pγ1

= Id.

4. Let holx(∇) ⊂ gl(Ex) = End(Ex) be the Lie algebra of Holx(∇). Recall
that the curvature operator R(∇) belongs to C∞(E∗ ⊗ E ⊗ Λ2T ∗

M ) =
C∞(End(E)⊗ Λ2T ∗

M ). At a point x, the fiber R(∇)x of R(∇) belongs to
End(Ex)⊗ Λ2T ∗

xM . We have

R(∇)x ∈ holx(∇)⊗ Λ2T ∗
xM.

As we shall see below, Riemannian holonomy plays a central role in the
structure theory of Riemannian manifolds.

The connection ∇ induces connections on all tensor powers E⊗k ⊗ (E∗)⊗l,
and all exterior and symmetric powers of E and E∗ and their tensor products.
We shall denote these induced connections by ∇ as well.

Definition 2.3. A tensor S is called (covariantly) constant if ∇(S) = 0.

Theorem 2.4. For a tensor S, ∇(S) = 0 if and only if S is fixed by Holx(∇),
if and only if Pγ(S(x)) = S(y) for all x, y ∈M and all paths γ from x to y.

3. Riemannian manifolds

A C∞ manifold is called Riemannian if it has a Riemannian metric, i.e., a
(2,0)-tensor g ∈ C∞((T ∗

M )2 which is symmetric:

g ∈ C∞(Sym2 T ∗
M ),

and defines a positive definite quadratic form on the tangent space TM,x for all
x ∈ M . It is a fundamental result in differential geometry that every smooth
manifold can be endowed with a Riemannian metric.

Riemannian manifolds have canonical connections on their tangent bundles:
the Levi-Civita connection. The holonomy of the Levi-Civita connection is
called Riemannian holonomy and the classification of Riemannian manifolds is
based on the classification of Riemannian holonomy groups.
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3.1. Levi-Civita connection

Suppose (M, g) is a Riemannian manifold. The fundamental theorem of Rie-
mannian geometry is the following.

Theorem 3.1. There exists a unique torsion free (or symmetric) connection ∇
on TM such that ∇g = 0. This unique connection is called the Levi-Civita or
Riemannian connection of (M, g).

One can verify that the condition ∇g = 0 is equivalent to the following
compatibility property: For all vector fields u, v, w on M ,

u(g(v, w)) = g(∇uv, w) + g(v,∇uw).

The Levi-Civita connection ∇ can be explicitly defined via

2g(∇uv, w) = u(g(v, w)) + v(g(u,w))− w(g(u, v))

+ g([u, v], w)− g([v, w], u)− g([u,w], v).

The curvature R(∇) is a (1, 3) tensor:

R(∇) : TM −→ TM ⊗ Λ2T ∗
M .

More symmetries of R(∇) can be exhibited by defining the (0, 4) tensor R̃(∇)
as the compostion

R̃(∇) : TM
R(∇)−→ TM ⊗ Λ2T ∗

M
g⊗Id−→ T ∗

M ⊗ Λ2T ∗
M .

While a priori R̃(∇) ∈ C∞((T ∗
M )⊗2 ⊗ Λ2T ∗

M ), one can show that in fact

R̃(∇) ∈ C∞(Sym2(Λ2T ∗
M )).

The Bianchi identities can be written in the form

R(u, v)w +R(v, w)u+R(w, u)v = 0,

∇uR(u, v) +∇vR(w, u) +∇wR(u, v) = 0.

In a basis of local coordinates x1, . . . , xn, we can write R̃(∇) as

R̃(∇) =
∑

a,b,c,d

R̃abcd

(
dxa ∧ dxb ⊙ dxc ∧ dxd

)
,

where α⊙ β := α⊗ β + β ⊗ α is the symmetric tensor. The Bianchi identities
then can be written as

R̃abcd + R̃acdb + R̃adbc = 0,
∂

∂xe
R̃abcd +

∂

∂xc
R̃abde +

∂

∂xd
R̃abec = 0.
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3.2. Ricci curvature

The Ricci curvature is a (0, 2) tensor, obtained by contracting R(∇):
At each point x ∈M , the curvature tensor R defines a multilinear map

Rx : TxM × TxM × TxM −→ TxM
(u, v, w) 7−→ R(u, v)w

The Ricci curvature is the (0, 2) tensor defined as

Ricx : TxM × TxM −→ R
(u, v) 7−→ tr(w 7→ Rx(u,w)v)

where tr is the trace of a linear map. It follows from the symmetries of the
curvature tensor that the Ricci curvature is symmetric. In local coordinates, if
we write the curvature tensor as

R(∇) =
∑

a,b,c,d

Ra
bcd

∂

∂xa
⊗ dxb ⊗ dxc ∧ dxd,

then the coordinates of the Ricci tensor are

Ricab =
∑
c

Rc
acb.

Definition 3.2. We say g is an Einstein metric if the Ricci curvature is a
constant multiple of the metric. We say g is Ricci flat if the Ricci curvature
is 0.

3.3. Riemannian holonomy

For a Riemannian manifold (M, g), the holonomy of the Levi-Civita connec-
tion ∇ is called Riemannian holonomy. For x ∈M , we write

Holx(g) := Holx(∇) ⊂ GL(TxM),

holx(g) := holx(∇) ⊂ gl(TxM) = End(TxM) = TxM ⊗ T ∗
xM.

A first symmetry property of Riemannian holonomy is seen using the isomor-
phism g : TM → T ∗

M .

Proposition 3.3. We have

(gx ⊗ Idx)(holx(g) ⊂ Λ2T ∗
xM.

We saw that the curvature tensor R̃ ∈ (holx(g)⊗Λ2T ∗
xM)∩Sym2(Λ2T ∗

xM).
Hence

Theorem 3.4.
R̃ ∈ Sym2 holx(g) ⊂ Sym2(Λ2T ∗

xM).
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3.4. Reducibility

The first step in the classification of Riemannian manifolds is to decompose
them into their ‘irreducible’ factors. As we see below, these correspond to the
irreducible summands in the representation of the Riemannian holonomy group
on the tangent space of M .

Definition 3.5. A Riemannian manifold is called (locally) reducible if every
point has a neighborhood isometric to a product. It is called irreducible if it is
not locally reducible. We have

Proposition 3.6. Suppose a neighborhood of x ∈M is isometric to the product
(M1, g1)× (M2, g2). Then

Holx(g1 × g2) = Holx(g1)×Holx(g2).

Theorem 3.7. If (M, g) is irreducible at x, then Rn = TxM is an irreducible
representation of Holx(g).

3.5. Symmetric and locally symmetric spaces

A large and relatively well understood class of irreducible Riemannian mani-
folds is that of locally symmetric spaces.

Definition 3.8. A Riemannian manifold is called symmetric if, for all p ∈M ,
there exists an isometry sp : M → M such that s2p = IdM and p is an isolated
fixed point for sp.

Definition 3.9. A Riemannian manifold is called locally symmetric if every
point has an open neighborhood isometric to an open subset of a symmetric
space. It is called nonsymmetric if it is not locally symmetric.

Theorem 3.10. (M, g) is locally symmetric if and only if ∇R = 0.

3.6. Geodesics and completeness

To better understand locally symmetric spaces, we use ‘geodesics’. Geodesics
allow us to define a notion of ‘completeness’ (often called geodesic complete-
ness) for Riemannian manifolds. Among other things, these notions allow us
to describe all symmetric spaces in terms of Lie groups.

Definition 3.11. A geodesic is a parametrized smooth curve γ : (a, b) → M
such that, for all t ∈ (a, b), ∇γ̇(t)γ̇(t) = 0.

Intuitively, a geodesic is the trajectory of a particle moving with constant
velocity on the manifold: the equation ∇γ̇(t)γ̇(t) = 0 means that the accelera-
tion of the particle is 0 with respect to the Levi-Civita connection.
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The Riemannian metric defines a norm in the tangent space at each point
ofM . By integrating the length of the velocity vector of a parametrized (piece-
wise) smooth curve, we define the length of such a curve. One can show that
geodesics are locally the ‘shortest’ curves on M for the Riemannian length. It
can happen however that there are many geodesics of different lengths between
two given points on a manifold. The simplest example of this is the cylin-
der with Riemannian metric induced from R3: Consider a vertical cylinder,
obtained by revolving the vertical line L at x = 1, y = 0 around the z-axis.
Then the line L and all helixes on the cylinder are geodesics. Such curves give
infinitely many geodesics between any pair of distinct points on L.

The Riemannian distance is defined as the infimum of the lengths of the
(piecewise) smooth curves between two points on M . We have the following
useful existence and uniqueness theorem for geodesics.

Theorem 3.12. For all p ∈ M,v ∈ TpM , there exists a unique geodesic γ :
(a, b) →M such that γ(0) = p, γ̇(0) = v.

Definition 3.13. A manifold (M, g) is (geodesically) complete if every geodesic
(a, b) →M can be defined on all of R ⊃ (a, b).

All compact Riemannian manifolds and all symmetric spaces are complete.
Every path connected Riemannian manifold which is also a complete metric
space with respect to the Riemannian distance is geodesically complete.

We can now give a description of symmetric spaces in terms of Lie groups.

Proposition 3.14. Suppose (M, g) is a connected, simply connected symmetric
space. Then (M, g) is complete. Put

G := {sp ◦ sq | p, q ∈M} ⊂ Isom(M).

Then G is a connected Lie group. Choose p ∈ M and let H be the stabilizer
subgroup of p in G. Then H is a closed connected Lie subgroup of G and the
map

G/H −→ M
g 7−→ g(p)

is a diffeomorphism.

3.7. De Rham’s theorem

De Rham’s theorem describes the decomposition of a Riemannian manifold
into the product of its irreducible factors.

Theorem 3.15. Suppose (M, g) is Riemannian, complete, simply connected.
Then M is isometric to a product M0 ×M1 × . . . ×Mk where M0 is a Eu-
clidean space and M1, . . . ,Mk are irreducible. The decomposition is unique up
to reordering M1, . . . ,Mk. The holonomy group of M is the product of the
holonomies of M1, . . . ,Mk.
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3.8. Berger’s theorem

Suppose (M,G) is connected. Then, Hol(g) := Holx(g) is independent of the
choice of x up to conjugation in GLn(R).

Definition 3.16. The restricted holonomy group Hol(g)0 is the connected com-
ponent of the identity of Hol(g).

Berger’s theorem classifies the possibilities for the restricted holonomy
group Hol(g)0 and describes the corresponding manifolds.

Theorem 3.17. Suppose (M, g) is Riemannian, complete, connected, nonsym-
metric, irreducible. Then the restricted holonomy group Hol(g)0 is one of the
following:

1. Hol(g)0 ∼= SO(n) (automorphisms of Rn preserving the metric, generic
metric),

2. n = 2m ≥ 4, Hol(g)0 = U(m) ⊂ SO(n) (automorphisms of Cm perserv-
ing a hermitian form, Kähler),

3. n = 2m ≥ 4, Hol(g)0 = SU(m) ⊂ SO(n) (automorphisms of Cm, Calabi-
Yau, Ricci-flat, Kähler),

4. n = 4r ≥ 4, Hol(g)0 = Sp(r) ⊂ SO(n) (R-linear automorphisms of
Hr preserving a quaternionic hermitian form, hyperkähler, Ricci-flat,
Kähler), (when r = 1, the group Sp(1) is abstractly isomorphic to the
group SU(2) = S3 of unit quaternions)

5. n = 4r ≥ 8, Hol(g)0 = Sp(r)Sp(1) ⊂ SO(n) (R-linear automorphisms of
Hr, quaternionic-Kähler, Einstein, not Ricci-flat, not Kähler), (the group
Sp(1) = SU(2) = S3 of unit length quaternions acts on Hr by right scalar
multiplication and commutes with Sp(r), however, this action is different
from the action of Sp(1) on H preserving a quaternionic hermitian form;
the Lie group Sp(r)Sp(1) generated by combining this action with that of
Sp(r) is abstractly isomorphic to (Sp(r) × Sp(1))/(Z/2Z); when r = 1,
Sp(1)Sp(1) = SO(4)),

6. n = 7, Hol(g)0 = G2 ⊂ SO(7) (automorphisms of ImO ∼= R7, excep-
tional, Ricci-flat),

7. n = 8, Hol(g)0 = Spin(7) ⊂ SO(8) (automorphisms of O ∼= R8, excep-
tional, Ricci-flat).
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4. Kähler manifolds

For a complex manifold M , multiplication by i defines an endomorphism I :
TM → TM satisfying I2 = − Id. This is called the complex structure (operator)
of M . A metric g on M is called Hermitian if

g(v, w) = g(Iv, Iw), for all vector fields v, w.

The (1, 1) form associated to g and I is

ω(v, w) := g(Iv, w), for all vector fields v, w.

Equivalently, ω is the composition

ω : TM
I−→ TM

g−→ T ∗
M .

The fact that ω is a (1, 1) form means ω(Iv, Iw) = ω(v, w). One also checks
that ω is anti-symmetric.

It is easy to check that any two of {I, g, ω} determine the third.

Definition and Proposition 4.1. The metric g is Kähler with respect to I
if one of the following equivalent conditions hold:

1. dω = 0,

2. ∇ω = 0,

3. ∇I = 0.

In such a case, ω is called the Kähler form of g.

So g is Kähler if and only if ω and I are constant. Equivalently Hol(g)
preserves ω and I. The subgroup of SO(n) preserving I is U(m) (n = 2m).
Therefore, M is Kähler if and only if Hol(g) ⊂ U(m).

4.1. Ricci form

Given a Kähler manifold (M, g, I), its Ricci form ρ is the differential form
associated to the Ricci curvature via I:

ρ(v, w) := Ric(Iv, w), for all vector fields v, w.

Equivalently, ρ is the composition

ρ : TM
I−→ TM

Ric−→ T ∗
M .

As in the case of ω and g, one has ρ ∈ C∞(Λ2T ∗
M ). The Ricci form is also

the curvature of the connection induced on KM := Ωm
M by the Levi-Civita

connection. We have the following

Proposition 4.2. The Ricci form ρ is a closed (1, 1) form. Its cohomology
class in H2(M,R) is [ρ] = 2πc1(KM ) = 2πc1(T

∗
M ).

176
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4.2. Ricci flatness (the Calabi–Yau case)

Since the Ricci form ρ is the curvature of the connection induced on KM by
the Levi-Civita connection, if ρ = 0, then KM is a flat bundle.

Assume now thatM is Ricci-flat and simply connected. The flat bundleKM

admits locally flat, i.e., covariantly constant, sections. Since M is simply con-
nected, KM has a global flat section. Such a section is hence invariant under
Riemannian holonomy and, by the following lemma which is a consequence of
Bochner’s principle, holomorphic.

Lemma 4.3. Suppose (M, I, g) is a compact Kähler, simply connected, Ricci-
flat manifold with holonomy group H. For all x ∈ M and all positive integers
p, the natural evaluation map

H0(M,Ωp
M ) −→ (Ωp

M,x)
H

w 7−→ wx

is an isomorphism.

Hence KM has a nowhere vanishing holomorphic section, which implies
that KM is trivial, i.e., M is Calabi–Yau. Furthermore, on the tangent space
TpM at a point p ∈M , a nonvanishing differential m-form is a multiple of the
determinant. Hence Hol(g) preserves the determinant. Since we already know
that Hol(g) ⊂ U(m), this implies that Hol(g) ⊂ SU(m).

Conversely, if Hol(g) ⊂ SU(m), then M admits a nowhere vanishing differ-
ential m-form, KM is trivial and ρ = 0.

4.3. The hyperkähler case

Recall that the quaternions have bases of the form

H = R1⊕ Ri⊕ Rj ⊕ Rk, with i2 = j2 = k2 = ijk = −1.

A triple (i, j, k) as above is called a quaternionic triple. The Lie group Sp(r) is
the group of R-linear endomorphisms ofHr preserving a quaternionic Hermitian
form q. Recall that q is quaternionic Hermitian if

q(av, bw) = a b q(v, w), for all a, b ∈ H, v, w ∈ Hr

where, if a = λ + µi + νj + ρk, then a = λ − µi − νj − ρk. Such a q can be

represented by an r × r matrix A with entries in H such that AA
t
= Id is the

identity of Hr.
We can embed Sp(r) in SU(2r) each time we choose i ∈ H with i2 = −1 as

follows.
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Complete i to a quaternionic triple (i, j, k) and write

q = h+ ωj

where h is Hermitian with respect to i and ω is alternating C-bilinear with
respect to the complex structure on Hr given by i. Then Sp(r) can be identified
with the group of R-linear automorphisms of H preserving h and ω. Hence,
thinking of U(2r) as the group of transformations of Hr = C⊕Ci preserving h,
we can identify Sp(r) as the subgroup of U(2r) of transformations preserving ω.
In particular, they preserve ∧rω, which means they belong to SU(2r).

Given a Riemannian manifold M with Holp(g) ⊂ Sp(r), we can identify
TpM with Hr. The form ω obtained as above by decomposing the form q is in-
variant under the holonomy group ofM, hence globalizes to an alternating flat,
i.e., holomorphic, 2-form on M which is non-degenerate everywhere. Further-
more, the quaternionic triple (i, j, k) gives three complex structures I, J,K on
M satisfying the quaternionic relations and with respect to which g is Kähler
(I, J,K are invariant under Holp(g), hence flat). We then obtain a sphere of
complex structures λ = aI+ bJ+ cK with a, b, c ∈ R, a2+ b2+ c2 = 1 such that
∇λ = 0. The metric g is therefore Kähler with respect to all these complex
structures.

Note that if Hol(g) = U(m) or SU(m), then M has a unique complex
structure with respect to which g is Kähler because the only complex endo-
morphisms commuting with U(m) or SU(m) are multiplication by scalars. So
Calabi–Yaus have only one Kähler complex structure.

If Hol(g) = Sp(r), then M has exactly an S2 of Kähler complex struc-
tures because the only quaternionic endomorphisms commuting with Sp(r) are
multiplication by quaternionic scalars.

If M is a complex torus, then Hol(g) = 0. Any complex structure is then
Kähler.

Definition 4.4. We say that a simply connected Ricci-Flat manifold M is
irreducible hyperkähler if Hol(g) = Sp(r), i.e., M has exactly an S2 of Kähler
complex structures.

4.4. The Calabi conjecture and its consequence

Theorem 4.5. Calabi’s conjecture, Yau’s theorem:
Let (M, I) be a compact complex manifold and g a metric Kähler with respect

to I with Kähler form ω and Ricci form ρ. Let ρ′ be a real closed (1, 1) form on
M with cohomology class [ρ′] = [ρ] = 2πc1(KM ). There exists a unique Kähler
metric g′ on M whose Ricci form is ρ′ and whose Kähler form ω′ satisfies
[ω′] = [ω].

For Ricci-flat manifolds this has the following useful consequence.
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Corollary 4.6. Suppose (M, I, g) is compact Kähler with c1(KM ) = 0. There
exists a unique Ricci-flat Kähler metric in each Kähler class on M . The Ricci-
flat Kähler metrics on M form a smooth family of dimension h1,1(M), isomor-
phic to the Kähler cone of M .

4.5. The decomposition theorem

The following decomposition theorem for Ricci-flat manifolds, usually referred
to as the Beauville–Bogomolov decomposition theorem, is a consequence of De
Rham’s decomposition theorem, the Berger classification theorem and results
of Cheeger–Gromoll and Bochner. (see [2, Théorème 1]).

Theorem 4.7. Let (M, I, g) be a compact Kähler, complete, Ricci-flat manifold.
Then

1. the universal cover of M is isomorphic to Ck ×
∏

i Vi ×
∏

j Xj where

Ck has the standard Kähler metric, and, for all i, Vi is compact simply
connected with holonomy SU(mi) and, for all j, Xj is compact simply
connected with holonomy Sp(rj),

2. there exists a finite étale cover of M isomorphic to T ×
∏

i Vi ×
∏

j Xj

where T is a complex torus of complex dimension k.

The proof uses

Lemma 4.8. Suppose (M, I, g) is a compact Kähler, simply connected, Ricci-flat
manifold. The group of automorphisms of (M, I) is discrete. In particular, the
group of automorphisms of (M, I, g) is finite (because it is contained in SO(n)
which is compact).

5. Holomorphic symplectic manifolds

We now present the infinite series of examples of compact hyperkähler mani-
folds constructed by Beauville [2]. For this, the point of view of holomorphic
symplectic geometry is more convenient. We begin with the following.

Proposition 5.1. Suppose (M, I, g) is a compact Kähler, simply connected,
Ricci-flat manifold of complex dimension 2r with holonomy group Sp(r). Then

1. there exists a holomorphic 2-form φ on M which is nondegenerate every-
where (represented by the form ω in the decomposition of the quaternionic
Hermitian form q = h+ ωj),

2. for all 0 ≤ p ≤ r,

H0(M,Ω2p+1
M ) = 0, H0(M,Ω2p

M ) = Cφp.
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Definition and Proposition 5.2. A compact Kähler manifold X is called
holomorphic symplectic if there exists an everywhere non-degenerate holomor-
phic 2-form on X. This is equivalent to: X is compact hyperkähler or X is
Kähler and Holg(X) ⊂ Sp(r).

A compact Kähler manifold X is called irreducible holomorphic symplectic
if X is simply connected and H0(X,Ω2

X) is generated by an everywhere non-
degenerate holomorphic 2-form. This is equivalent to: X is irreducible compact
hyperkähler X is Kähler and Holg(X) = Sp(r).

5.1. The case of surfaces

In dimension 2, Sp(1) = SU(2), so Calabi–Yau and hyperkähler are the same:
these are K3 surfaces and complex tori.

Definition 5.3. A K3 surface is a compact complex manifold of dimension 2
such that Ω2

X
∼= OX and H1(X,OX) = 0.

One can prove that K3 surfaces are simply connected and their integral
cohomology is torsion free.

It is a deep theorem of Siu that a K3 surface admits a unique Kähler metric.
Examples of algebraic K3 surfaces (see, e.g., [3]):

1. Double covers of P2 branched along smooth sextics.

2. Smooth quartics in P3.

3. (2, 3) complete intersections in P4.

4. (2, 2, 2) complete intersections in P5.

5.2. Hilbert schemes of points

Both infinite series of examples are constructed using the Hilbert schemes of
points, the first uses the Hilbert schemes of points of K3 surfaces, and the
second uses the Hilbert schemes of points of complex tori of dimension 2. The
construction begins by showing that these Hilbert schemes have natural holo-
morphic symplectic structures.

Suppose S is a compact complex manifold of dimension 2. Denote Sr the
r-th Cartesian power of S and

π : Sr →→ S(r) := Sr/Sr

its quotient by the action of Sr permuting the factors. Let ∆ij ⊂ Sr be the
diagonal where the i-th and j-th components are equal. The action of Sr is
not free on the diagonals ∆ij . The stabilizer of a generic point of ∆ij is the
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subgroup {1, (ij)} ⊂ Sr where (ij) is the transposition exchanging i and j.
The quotient morphism π is étale away from ∪i,j∆ij . For any i, j, the diagonal
∆ij has codimension 2 in Sr. Hence, by the theorem on the purity of the
ramification locus of a morphism of smooth varieties, the symmetric power
S(r) is singular along the diagonal D := π(∆ij) = π(∪i,j∆ij). Note that D is
irreducible.

The symmetric power S(r) has a natural desingularization: the Hilbert
scheme S[r] of length r Artinian subschemes of S. The natural map ϵ : S[r] →
S(r) sends a subscheme Z of length r to its underlying 0-cycle. Since, for any
r distinct points x1, . . . , xr ∈ S, there exists a unique Artinian subscheme sup-
ported on {x1, . . . , xr}, the map ϵ : S[r] \ ϵ−1(D) → S(r) \D is an isomorphism.

Let D∗ ⊂ D be the open subset where exactly two points of the K3 surface
are equal. Given a fixed 2x1 + x2 + . . .+ xr−1 ∈ D∗, the datum of an Artinian
subscheme of length r supported on 2x1 + x2 + . . . + xr−1 is equivalent to
the datum of a tangent line to S at x1. So the set of Artinian subschemes of
length r supported on 2x1 +x2 + . . .+xr−1 is naturally identified with PTx1S.

Let S
(r)
∗ , respectively Sr

∗ , be the open subset where at most two of the

coordinates coincide and let S
[r]
∗ be the inverse image of S

(r)
∗ in S[r]. The fiber

of ϵ : S
[r]
∗ → S

(r)
∗ at x = 2x1 + x2 + . . .+ xr−1 ∈ D∗ is naturally identified with

PTx1S. One can prove:

Theorem 5.4. 1. The complex analytic pair (S
(r)
∗ , D∗) is locally isomorphic

to (B × C,B × {O}), where B is a ball, C is a cone with vertex O over
a smooth conic in P2.

2. The complex manifold S
[r]
∗ is the blow up of S

(r)
∗ along D∗.

3. If we denote Bl∆(S
r
∗) the blow up of Sr

∗ along the union of its diagonals,
then the action of Sr lifts to Bl∆(S

r
∗) and

S
[r]
∗ = Bl∆(S

r
∗)/Sr.

So we have the Cartesian diagram

Bl∆(S
r
∗)

ρ
��

η
// Sr

∗

π
��

S
[r]
∗

ϵ // S
(r)
∗ .

Note that when r = 2, we have D∗ = D,S2
∗ = S2, S

(2)
∗ = S(2), S

[2]
∗ = S[2], and

S[2] is the blow up of S(2) along the diagonal.
Next we construct differential forms on S[r], starting from differential forms

on S.

181



(20 of 44) E. IZADI ET AL.

Given a holomorphic differential form ω on S, the form ψ := pr∗1ω + . . . +
pr∗rω and its pull-back η∗ψ to Bl∆(S

r
∗) are invariant under the action of Sr.

Hence there exists a holomorphic differential form φ on S
[r]
∗ such that

η∗ψ = ρ∗φ.

Proposition 5.5. If KS is trivial, then S[r] admits a holomorphic symplectic
form.

Proof. Let ω be a generator of KS . Defining ψ and φ as above, we show that
φ extends to S[r] as an everywhere non-degenerate form.

The form φ extends to all of S[r] because S[r] \S[r]
∗ has codimension ≥ 2 in

S[r]. The fact that φ is everywhere non-degenerate means that ∧rφ does not
vanish anywhere.

The form ∧rφ is a section of KS[r] , so the locus where it vanishes is a
canonical divisor on S[r].

Denote Eij := η∗∆ij . Then the divisors Eij are the exceptional divisors of
the blow up η : Bl∆(S

r
∗) → Sr

∗ and the ramification divisors of the morphism

ρ : Bl∆(S
r
∗) → S

[r]
∗ . Hence

KBl∆(Sr
∗)

= ρ∗K
S

[r]
∗

+
∑
i<j

Eij ,

and the divisor of zeros of ρ∗ ∧r φ is

Div(ρ∗ ∧r φ) = ρ∗ Div(∧rφ) +
∑
i<j

Eij .

However,

Div(ρ∗ ∧r φ) = Div(η∗ ∧r ψ) = Div(∧rη∗ψ) =
∑
i<j

Eij .

Indeed, choose z = (x1, . . . , xr) ∈ Sr, then

TzS
r = Tx1

S ⊕ . . .⊕ Txr
S.

The differential form ψ is a bilinear form on TzS
r, the decomposition TzS

r =
Tx1

S ⊕ . . . ⊕ Txr
S is orthogonal with respect to ψ and ψ is non-degenerate

at any z. Hence Div(∧rψ) = 0 on Sr. However, the differential of the blow
up η : Bl∆(S

r
∗) → Sr

∗ has image of dimension 2r − 1 along the union of the
diagonals, so η∗ψ is degenerate of rank 2r − 2 along ∪i<jEij . It follows that
Div(∧rη∗ψ) =

∑
i<j Eij .

So ρ∗ Div(∧rφ) = 0 and Div(∧rφ) = 0.
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To determine the type of S[r], we compute its fundamental group. The
map Sr → S(r) is a Galois cover with Galois group Sr. So we have the exact
sequence of fundamental groups

1 −→ Sr −→ π1(S
r) −→ π1(S

(r)) −→ 1.

We have

π1(S
r) = π1(S

r
∗) = π1(Bl∆(S

r
∗)), π1(S

(r)) = π1(S
(r)
∗ ), π1(S

[r]) = π1(S
[r]
∗ ).

The map Bl∆(S
r
∗) → S

[r]
∗ is also a Galois cover with Galois group Sr. So we

have the commutative diagram of exact sequences

1 // Sr
// π1(Bl∆(S

r
∗)) // π1(S

[r]
∗ )

��

// 1

1 // Sr
// π1(S

r) // π1(S
(r)) // 1.

Therefore, we also have π1(S
[r]
∗ )

∼=→ π1(S
(r)).

It is a fact from algebraic topology and group theory that π1(S
(r)) is the

largest commutative quotient of π1(S), hence it is isomorphic to H1(S,Z).

Lemma 5.6. 1. Hi(S(r),Q) = Hi(Sr,Q)Sr ,

2. H2(S[r],Q) = H2(S(r),Q)⊕Q[E],

3. H2(S(r),Q) = H2(S,Q)⊕ Λ2H1(S,Q).

Proof. 1. Standard.

2. Replace Sr by Sr
∗ , S

(r) by S
(r)
∗ and S[r] by S

[r]
∗ : the second cohomology

does not change. We compute

H2(S
[r]
∗ ,Q) = H2(Bl∆(S

r
∗),Q)Sr

=
(
H2(Sr

∗ ,Q)⊕ (⊕1≤i<j≤rQ[Eij ])
)Sr

= H2(Sr
∗ ,Q)Sr ⊕Q[ρ∗E].

3. We compute, using part (1),

H2(S(r),Q) = H2(Sr,Q)Sr ∼=
(
H2(S,Q)⊕r ⊕

(
H1(S,Q)⊗2

)⊕(r2))Sr

= H2(S,Q)⊕
(
H1(S,Q)⊗2

)τ ∼= H2(S,Q)⊕ Λ2H1(S,Q)

where, by skew-symmetry, τ sends a tensor v ⊗ w to −w ⊗ v.
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We immediately obtain.

Corollary 5.7. If S is a K3 surface, then S[r] is an irreducible holomorphic
symplectic manifold and

H2(S[r],Q) = H2(S,Q)⊕Q[E].

S[r] is Kähler by results of Varouchas.

5.3. Generalized Kummers

Now take S = A a complex torus of dimension 2. Then A[r+1] is a holomorphic
symplectic manifold. As in the case of K3 surfaces, it is Kähler. By the previous
results,

π1(A
[r+1]) = H1(A,Z) = π1(A) ̸= {1},

H2(A[r+1],Q) = H2(A,Q)⊕ Λ2H1(A,Q)⊕Q[E].

So in this case, the Hilbert scheme is not irreducible holomorphic symplectic.
We determine its factors according to the decomposition theorem.

Consider the addition map s : A(r+1) → A and its composition

ζ : A[r+1] ρ−→ A(r+1) s−→ A.

Definition 5.8. The (r + 1)-st generalized Kummer manifold of A is

Kr := ζ−1(0).

One can see that Kr is a manifold as follows.
The complex torus A acts on itself by translation, hence also on A[r+1] by

pull-back:
If Z ⊂ A is an analytic subspace of length r+1, then a ∈ A acts as Z 7→ t∗aZ

on A[r+1]. The map ζ is equivariant for this action on A[r+1] and the action of
A on itself via x 7→ t∗(r+1)ax. In other words we have the Cartesian diagram

A×A[r+1]

��

(a,Z)7→t∗aZ
// A[r+1]

ζ

��

A×A
(a,x)7→t∗(r+1)ax

// A

which induces the Cartesian diagram

A×Kr

��

(a,Z) 7→t∗aZ// A[r+1]

ζ

��

A
a 7→(r+1)a

// A.
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It follows that ζ is a smooth map and all its fibers are isomorphic to Kr which
is therefore also smooth.

Proposition 5.9. The holomorphic symplectic structure of A[r+1] restricts to
a holomorphic symplectic structure on Kr.

Proof. Since Kr is a fiber of a smooth morphism, its normal bundle is trivial:
the normal space at every point of Kr maps isomorphically onto T0A, so that
we have NKr|A[r+1]

∼= T0A⊗OKr . From the normal bundle sequence

0 −→ TKr
−→ TA[r+1] |Kr

−→ NKr|A[r+1] −→ 0

we obtain KKr
∼= KA[r+1] |Kr

∼= OKr
.

Recall the differential forms ψ = pr∗1ω⊕. . .⊕pr∗r+1ω and φ with η∗ψ = ρ∗φ.
The form ∧r(φ|Kr ) is a section of KKr

∼= OKr . We show that it remains
everywhere non-degenerate. As before, this means that ∧r(φ|Kr

) does not
vanish anywhere. Since KKr

is trivial, either ∧r(φ|Kr
) is zero everywhere or it

does not vanish anywhere. We prove that it is nonzero at one point.
Let Z = x1 + . . .+ xr+1 ∈ Kr be such that the xi are all distinct. Then

TZA
[r+1] ∼= T(x1, . . . , xr+1)A

r+1 ∼= Tx1
A⊕ . . .⊕ Txr+1

A ∼= (T0A)
⊕(r+1).

We can choose the isomorphism above in such a way that the differential dζ :
TZA

[r+1] → T0A of ζ is the sum map. The form φ acts as ω on each summand
T0A of TZA

[r+1] and the summands are orthogonal to each for φ. It is then an
exercise in linear algebra to check that φ|Ker dζ is non-degenerate, i.e., ∧r(φ|Kr

)
is not 0.

Proposition 5.10. The manifold Kr is simply connected. For r ≥ 2, we have

H2(Kr,Q) ∼= H2(A,Q)⊕Q[E]

where E is the intersection of the exceptional divisor of A[r+1] with Kr.

Proof. Immediate from the definition of Kr and the description of the coho-
mology and fundamental group of A[r+1].

It now follows that the factors of A[r+1] in the decomposition theorem are
Kr and A itself.

Note that S[r] (for K3 surfaces S) and Kr have different Betti numbers,
hence are not deformation equivalent. These provide two infinite series of
families of hyperkähler manifolds.

There are two known examples of families of hyperkähler manifolds due
to O’Grady that are not deformation equivalent to Hilbert schemes of K3s or
generalized Kummers: these are hyperkählers of dimensions 6 and 10.

Question 5.11. Are there other families of compact irreducible hyperkählers?

185



(24 of 44) E. IZADI ET AL.

6. Moduli of hyperkählers, the Beauville-Bogomolov
form, the period domain and the period map

6.1. Moduli of complex structures and Teichmüller space

Given a differentiable manifold X, there can be many different complex struc-
tures on X. We define the Teichmüller space of X as

Teich(X) := {complex structures on X}/ ∼0

where two complex structures I, J on X satisfy I ∼0 J if there exists a diffeo-
morphism φ : X → X isotopic (or homotopic) to the identity IdX such that
φ∗I = J . The moduli space of complex structures on X is, by definition,

Mcx(X) := {complex structures on X}/ ∼

where two complex structures I, J on X satisfy I ∼ J if there exists a diffeo-
morphism φ : X → X such that φ∗I = J . If we denote Diff(X) the group of
diffeomorphisms of X and Diff0(X) its connected component of the identity,
then G := Diff(X)/Diff0(X) is the discrete group of components of Diff(X),
and

Mcx(X) = Teich(X)/G.

A priori, Mcx(X) is the space that we are interested in. However, it usually
does not have many good properties while Teich(X) does. So we will, most of
the time, work with small open sets of Teich(X) which describe small defor-
mations of given complex structures.

6.2. Universal families and Kuranishi’s theorem

Suppose given a complex manifold (X, I).

Definition 6.1. A family of complex manifolds is a smooth proper morphism
of complex spaces

π : X → S.

A deformation of (X, I) is a family of complex manifolds with a point s0 ∈ S
and an isomorphism X0 := π−1(s0) ∼= X.

A deformation is called universal if, for any deformation X ′ → S′, there
exists a unique morphism φ : S′ → S such that φ(s′0) = s0 and X ′ → S′ is the
pull-back of X → S under φ. In other words, we have the Cartesian diagram

X ′

��

// X

π

��

S′
φ
// S.
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It immediately follows from its definition that the universal deformation is
unique up to unique isomorphism and we denote it

X → Def(X).

Kuranishi’s theorem is the following.

Theorem 6.2. Suppose (X,I) is a compact complex manifold with H0(X,TX)=
0. Then a local universal deformation of (X, I) exists and it is universal for
all of its fibers.

Under the conditions of the theorem, the local universal deformation X →
Def(X) is sometimes called the Kuranishi family.

Note that the condition H0(X,TX) = 0 means that there are no global
holomorphic vector fields on X or X has no infinitesimal automorphisms: given
two complex manifolds X,Y and a holomorphic map f : X → Y , the tangent
space to the space of holomorphic maps Hom(X,Y ) at f can be identified with
H0(X, f∗TY ). This can be deduced from general results in deformation theory,
applied to the deformations of the graph of f in X × Y .

6.3. Unobstructedness for K-trivial Kähler manifolds

For any compact complex manifold X, if H0(X,TX) = 0, then X has a local
or small universal deformation denoted X → Def(X). By this we mean a germ
of a deformation, i.e., whose base is suitably small. Such a deformation is
universal for all its fibers, its base Def(X) is a “Kuranishi slice” ⊂ H1(X,TX).
For t ∈ Def(X) small, we have

Tt Def(X) = H1(Xt, TXt
).

The obstructions to deformations (to various orders) provide local analytic
equations for Def(X) in a neighborhood of 0 ∈ H1(X,TX). We say that the
deformations ofX are unobstructed if all the obstructions to deformations are 0.
If the deformations of X are unobstructed (i.e., dimT0 Def(X) = dimDef(X)),
then the base Def(X) is a small open neighborhood of the origin in H1(X,TX).
The following theorem is due to Bogomolov in the hyperkähler case and to
Tian-Todorov in the general case.

Theorem 6.3. If the canonical bundle KX is trivial (we say X is K-trivial),
then the deformations of X are unobstructed.

We have the following facts.

• If X is Kähler, then so is any small deformation of X.

• If X is Kähler and K-trivial, then small deformations Xt of X are also
Kähler and K-trivial and h1(TXt) is constant.
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• If X is holomorphic symplectic, then small deformations of X are also
holomorphic symplectic. If X is irreducible holomorphic symplectic, then
all fibers of any deformation of X are irreducible holomorphic symplectic.

6.4. The Beauville-Bogomolov form

The key to understanding the deformations of hyperkähler manifolds is the
period domain. Small open subsets of the period domain are isomorphic
to Def(X). We define the period domain using the second cohomology of
hyperkähler manifolds, together with a non-degenerate quadratic form: the
Beauville-Bogomolov form.

Suppose X is irreducible holomorphic symplectic (irreducible hyperkähler)
of dimension 2n and choose σ ∈ H0(Ω2

X) such that∫
X

(σσ)n = 1.

For α ∈ H2(X,C), define

qX(α) :=
n

2

∫
X

α2(σσ)n−1 + (1− n)

∫
X

σn−1σnα

∫
X

σnσn−1α.

One can show this is equal to

qX(α) = λµ+
n

2

∫
X

β2(σσ)n−1

where α = λσ + β + µσ with β ∈ H1,1(X).
Beauville showed that there exists dX ∈ N such that∫

X

α2n = dX(qX(α))n.

In fact dX =
(
2n
n

)
by [22, 23.4]. Therefore, if rX is the positive real root of dX ,

then q̃X := rXqX is an n-th root of the n-th power cup-product on H2(X,C).
Beauville [2] and Fujiki [20] proved that the quadratic form q̃X is non-

degenerate of signature (3, b2 − 3) on H2(X,R). Furthermore,

q̃X(σ) = 0, q̃X(σ + σ) > 0

and
q̃X(σt) = 0, q̃X(σt + σt) > 0

for t close to 0 in any deformation of X.
The form q̃ is called the Beauville-Bogomolov form of the hyperkähler man-

ifold. The inspiration for the Beauville-Bogomolov form came from the study
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HYPERKÄHLER MANIFOLDS (27 of 44)

of the Fano variety of lines of a cubic fourfold. There, it naturally appears as
the intersection form on the fourth cohomology of the cubic threefold which
is isomorphic to the second cohomology of its Fano variety of lines which is a
hyperkähler manifold.

Note that for n = 1, q̃X = 2qX is the usual intersection form on H2(X,Z).
Beauville and Fujiki, loc. cit., also proved that q̃X has a positive real multi-

ple, say q′X , which is integer valued and indivisible onH2(X,Z). The Fujiki con-
stant is the positive rational number cX such that

∫
X
α2n = cX

(2n)!
2nn! (q

′
X(α))n

for all α ∈ H2(X,R). The reason for the factor (2n)!
2nn! is that, in all known

examples of compact hyperkählers, the Fujiki constant as defined is in fact an
integer, see, e.g., [40] and [8].

6.5. The local period domain and the local Torelli
theorem

Define

QX := {α | qX(α) = 0, qX(α+ α) > 0} ⊂ QX ⊂ PH2(X,C).

We saw that for t ∈ Def(X) close to 0, qX(σt) = 0, qX(σt + σt) > 0. Hence we
can define the local period map

PX : Def(X) −→ QX

t 7−→ [σt].

This is holomorphic because ⟨σt⟩ = H2,0(Xt) = H0(Ω2
Xt

) varies holomorphi-
cally with t: H0(Ω2

Xt
) is the fiber of the holomorphic line bundle π∗Ω

2
X/Def(X)

on Def(X).
We have the local Torelli theorem [2]:

Theorem 6.4. The local Torelli map PX is a local isomorphism, i.e., dPX is
an isomorphism at 0.

6.6. The period domain

We now construct the global period domain for hyperkähler manifolds. For
this we first fix the discrete data of a lattice which will usually be abstractly
isomorphic to the second integral cohomology of a hyperkähler manifold with
its Beauville-Bogomolov form.

Definition 6.5. A lattice is the data of a free Z-module Γ of finite rank with
an integral non-degenerate quadratic form qΓ.

Definition 6.6. Given a lattice (Γ, qΓ), the period domain QΓ is

QΓ := {α | qX(α) = 0, qX(α+ α) > 0} ⊂ QΓ ⊂ P(Γ⊗Z C).
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6.7. The moduli space of marked holomorphic symplectic
manifolds and local period maps

We will construct a moduli space of marked holomorphic symplectic manifolds
and a global period map on it which is, roughly speaking, a glueing of local
period maps.

Definition 6.7. 1. A marking of an irreducible holomorphic symplectic
manifold is a lattice isomorphism

φ : (H2(X,Z), q̃X)
∼=−→ (Γ, qΓ).

2. The pair (X,φ) is called a marked manifold.

3. Two marked manifolds (X,φ), (X ′, φ′) are isomorphic if there exists f :
X → X ′ such that φ′ = φ ◦ f∗. We write (X,φ) ∼= (X ′, φ′).

4. The moduli space of marked irreducible holomorphic symplectic manifolds
is the set

MΓ := {(X,φ)}/ ∼= .

We use the local period map to show that MΓ is a smooth (non-Hausdorff)
complex analytic space.

Given an irreducible holomorphic manifold X, we choose a marking
φ : H2(X,Z) → Γ. The Kuranishi family X → Def(X) is locally isomor-
phic to the period domain QΓ, and the marking φ : H2(X,Z) → Γ induces
isomorphisms forming the commutative diagram

QX� _

��

∼= // QΓ� _

��

PH2(X,C)
∼= // P(Γ⊗Z C).

Hence an open ball in the Kuranishi space Def(X) is isomorphic to an open ball
in QΓ. Such open balls cover MΓ and the analytic structures on intersections
coincide because the Kuranishi family is the local universal deformation of all
of its fibers. Hence we obtain a well-defined smooth complex analytic structure
on MΓ.

6.8. The global period map and Verbitsky’s global Torelli
theorem

Definition 6.8. The global period map is

P : MΓ −→ QΓ ⊂ QΓ ⊂ P(Γ⊗Z C)
(X,φ) 7−→ [φ(σ)].
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Verbitsky’s global Torelli theorem [44] (also see [25] and [32]) for compact
hyperkähler manifolds is the following.

Theorem 6.9. The map P is generically injective on each connected component
of MΓ.

Note that the datum of the line H2,0(X) ⊂ H2(X,C) determines the Hodge
structure on H2(X,Z): H0,2(X) = H2,0(X) (complex conjugate), H2,0(X)⊥ =
H2,0(X)⊕H1,1(X), H1,1(X) =

(
H2,0(X)⊕H1,1(X)

)
∩ (H2,0(X)⊕H1,1(X)).

We say that the global Torelli theorem holds for a class of manifolds, if a
manifold is determined by its Hodge structure, possibly together with the data
of a polarization (such as the form q̃X in the hyperkähler case). For instance,
two complex tori are isomorphic if and only if their first cohomologies are
isomorphic as Hodge structures. Two Riemann surfaces are isomorphic if and
only if their first cohomologies are Hodge isometric, i.e., they are isomorphic
as Hodge structures and, under the given Hodge isomorphism, the intersection
forms for the two curves coincide. Similarly, two K3 surfaces are isomorphic if
their second cohomologies are Hodge isometric.

In fact we have stronger Torelli theorems in the above cases: for complex
tori, any Hodge isomorphism between the first cohomologies of two tori is
induced by an isomorphism of the tori. For curves, any Hodge isometry between
their first cohomologies is induced by an isomorphism between the curves up
to a change of sign. For generic K3 surfaces, any Hodge isometry between the
second cohomologies is induced by an isomorphism of the surfaces up to a sign.

For hyperkähler manifolds of dimension > 4, none of the above stronger
versions of Torelli hold. There are examples of

1. non-isomorphic (but bimeromorphic) compact hyperkähler manifolds
with Hodge isometric second cohomologies [16],

2. non-birational projective hyperkähler manifolds of dimension 4 with
Hodge isometric second cohomologies, [36].

Question 6.10. Is there a good characterization of irreducible holomorphic
symplectic manifolds that are Hodge isometric but not isomorphic?

We have the following maps of moduli spaces

Teich(X)

��

{complex structures on X}/ ∼0

MΓ(X)

��

{marked complex structures on X}/ ≈

Mcx(X) {complex structures on X}/ ∼ Teich(X)/G
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and the period map

Teich(X)
local isom. //MΓ(X)

PΓ // QΓ ⊂ QΓ ⊂ P(Γ⊗ C).

The spaces Teich(X) and MΓ(X) are non Hausdorff smooth analytic spaces
and QΓ is a (Hausdorff) simply connected complex manifold. Verbitsky con-
structed a new (Hausdorff) complex manifold Ms

Γ(X) which is obtained by
identifying all non-separated points of MΓ(X). In other words

Ms
Γ(X) = MΓ(X)/ ≡

where, for two points p, q ∈ MΓ(X), p ≡ q when every neighborhood of p
contains q and every neighborhood of q contains p. The period map then
factors through Ms

Γ(X):

PΓ : MΓ(X)
local isom. //Ms

Γ(X)
P s

Γ // QΓ.

Verbitsky proved

Theorem 6.11. The map P s
Γ is surjective from any connected component of

Ms
Γ(X) to QΓ.

Combined with the facts that P s
Γ is a local isomorphism and QΓ is simply

connected, this implies

Corollary 6.12. The map P s
Γ induces an isomorphism from any connected

component of Ms
Γ(X) to QΓ.

Verbitsky’s proof uses twistor conics which we will describe in the next
section.

The following results of Huybrechts help us understand the difference be-
tween MΓ(X) and Ms

Γ(X).

Proposition 6.13. If two marked hyperkähler manifolds (X,φ) and (X ′, φ′)
correspond to two non-separated points of MΓ(X), then X and Y are bimero-
morphic and their period PΓ(X,φ) = PΓ(X

′, φ) is contained in the hyperplane
QΓ ∩ α⊥ for some α ∈ Γ.

Proposition 6.14. Suppose given a bimeromorphism f : X → X ′ between
compact, hyperkähler manifolds. Then there exist families of compact hy-
perkähler manifolds

X −→ D, X ′ −→ D

over a complex disc D such that

1. X0
∼= X and X ′

0
∼= X ′,

192
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2. there exists a bimeromorphism F : X → X ′ commuting with the pro-
jections to D which is an isomorphism over D \ {0} and induces f on
X0

∼= X 99K X ′
0
∼= X ′.

Proposition 6.15. For any x ∈ QΓ, the set of hyperkähler complex structures
on a differentiable manifold X with period x ∈ QΓ consists of a finite number
of bimeromorphic equivalence classes.

7. Twistor spaces and twistor conics

7.1. Hyperkähler structures

Given X hyperkähler, let g be the hyperkähler metric of X. We saw that there
exist complex structures I, J,K such that g is Kähler with respect to I, J,K
and IJK = −1. In fact g is Kähler with respect to any linear combination
λ = aI + bJ + cK such that a2 + b2 + c2 = 1. The Kähler form associated to λ
is ωλ(·, ·) := g(λ·, ·). So we have a family {(X,λ) | λ ∈ S2} of compact Kähler
manifolds.

7.2. Twistor spaces

With the notation above, the twistor space X → P1 of (X, g) is the product
X × P1 (as a real manifold) endowed with the almost complex structure

IX×P1 : TxX ⊕ TλP1 −→ TxX ⊕ TλP1

(v, w) 7−→ (λ(v), IP1(w))

which is integrable by a result of Hitchin, Karlhede, Lindström, Roček.

7.3. Twistor conics

Fix a lattice (Γ, qΓ), isometric to (H2(X,Z), q̃X). Recall that the signature of
qΓ⊗R is (3, b2−3) where b2 is the second Betti number of X. Since P1 is simply
connected, we can choose consistent markings on all the fibers of X → P1 to
obtain the period map

Pg : P1 −→ QΓ

λ 7−→ [σ(X,λ)]

whose image is a twistor conic.
One can show that it is the intersection of a linearly embedded P = P2 with

QΓ in P(Γ⊗ C). Furthermore P = P(W ⊗ C) where W is a three dimensional
real subspace of Γ⊗ R totally positive for the intersection form qΓ.
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Conversely, one can show that each choice of a 3-dimensional real space
W ⊂ Γ⊗ R positive for qΓ gives a twistor conic:

C := P(W ⊗ C) ∩QΓ ⊂ QΓ.

Recall the following

Definition 7.1. A Kähler class is the cohomology class of a (1, 1) form which
is Kähler with respect to some metric. The Kähler cone is the cone generated
by all Kähler classes.

By Corollary 4.6, given the family {(X,λ) | λ ∈ S2} as in 7.1, for every
Kähler class α ∈ H1,1(M), there exists a unique hyperkähler metric gλ, Kähler
with respect to λ, such that [ωgλ ] = α.

For each such metric gλ, we can construct a twistor family Xλ → P1. In
other words, through each point [(X, I)] of the twistor conic there passes an-
other twistor conic.

One can show [22, §25.4]

Proposition 7.2. QΓ is twistor path connected, i.e., any two points of QΓ can
be joined by a connected sequence of twistor conics.

From which it follows (again see Huybrechts’ lecture notes [22, §25.4])

Corollary 7.3. The period map PΓ : MΓ → QΓ is surjective on any connected
component of MΓ.

7.4. Hyperholomorphic bundles

Verbitsky studied conditions under which a holomorphic bundle which is stable
for a particular Kähler class λ is hyperholomorphic, i.e., extends to a holomor-
phic bundle on the twistor family Xλ → P1. Verbitsky’s results form the basis
for Markman’s proof of the Hodge conjecture for abelian fourfolds of Weil type
with discriminant 1 [33]. We start with the precise definition of hyperholomor-
phic bundles.

Definition 7.4. Given a hermitian vector bundle B on X, with hermitian
connection θ, we say (B, θ) is hyperholomorphic if it is compatible with all the
complex structures λ ∈ S2 = P1.

Definition 7.5. A C∞ vector bundle B on X is hermitian if it has a hermitian
metric (denoted ⟨, ⟩). A connection

θ : B −→ B ⊗ T ∗
X
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is hermitian if the metric is (covariantly) constant with respect to θ. If we are
given a complex structure I on B, we say that θ and I are compatible if the
curvature form

Θ : B −→ B ⊗ Λ2T ∗
M

is a (1, 1)-form with respect to I.

Intuitively, considering the twistor family

X × P1

C∞ X

��

B × P1

C∞
oo

P1,

the C∞ vector bundle B × P1 on X has a structure of complex vector bundle
holomorphic on each fiber (X,λ) of X → P1.

Stability conditions allow us to construct moduli spaces of bundles.

Definition 7.6. Fix a Kähler form ω on X. For a coherent sheaf F on X, put

deg(F ) :=
1

vol(X)

∫
X

c1(F ) ∧ ωn−1

where n is the complex dimension of X and vol(X) :=
∫
X
ωn. Define

slope(F ) :=
deg(F )

rank(F )

where rank(F ) is the complex rank of F . We say F is stable with respect to ω
if for all subsheaves F ′ ⊂ F with rank(F ′) < rank(F ), we have

slope(F ′) < slope(F ).

We say F is semi-stable with respect to ω if for all subsheaves F ′ ⊂ F , we have

slope(F ′) ≤ slope(F ).

Verbitsky (see [45]) proved that, given a stable vector bundle B on (X, I),
if c1(B) and c2(B) are of type (1, 1) and (2, 2) with respect to all complex
structures λ ∈ S2 = P1 on X, then B is hyperholomorphic. In particular, the
class c2(B) is analytic on each (X,λ).

A useful characterization of stable bundles is given by the Hitchin-
Kobayashi correspondence. To state it, we first need the following definition.

Definition 7.7. Let ω be the Kähler form ofM and denote by Λ : Ω1,1
M ⊗B → B

the adjoint of cup-product with ω. A hermitian metric with curvature form
Θ : B → B ⊗ Ω1,1

M is Hermitian-Einstein if the composition ΛΘ : B → B is a
multiple of the identity.
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The Hitchin-Kobayashi correspondence, proved by Donaldson, Uhlenbeck
and Yau is the following theorem.

Theorem 7.8. Suppose B is an indecomposable bundle on a compact Kähler
manifoldM . Then B is stable if and only if B has a Hermitian-Einstein metric.

8. Examples of hyperkählers in dimension 2 and beyond,
by Samir Canning

8.1. Betti and Hodge numbers of K3 surfaces

The purpose of this exercise is to compute the Betti and Hodge numbers of a
complex K3 surface X, which is the simplest example of a hyperkähler mani-
fold. Feel free to add the additional assumption that X is algebraic if you are
more comfortable in that setting.

Problem 8.1. Show that H0(X,Z) = H4(X,Z) = Z, H1(X,Z) = 0, and
H3(X,Z) is torsion. (Hint: use the exponential exact sequence.)

Problem 8.2. Show that H2(X,Z) is torsion free. Conclude that H3(X,Z) =
0. (Hint: continue analyzing the exponential exact sequence, using that Pic(X)
is torsion free. Prove this if you know about Riemann-Roch. For the second
statement, use the universal coefficient theorem for cohomology.)

Recall the Hirzebruch–Riemann–Roch Theorem.

Theorem 8.3 (Hirzebruch–Riemann–Roch). Let F be a (holomorphic) vector
bundle on a compact complex manifold X. Then,

χ(X,F ) =

∫
X

ch(F ) td(X).

When we write ci(X), we mean ci(TX), where TX is the tangent bundle.
Here are the first few terms of the Chern character and Todd class for reference:

ch(F ) = rank(F ) + c1(F ) +
1

2
(c1(F )

2 − 2c2(F )) + · · ·

and

td(F ) = 1 +
1

2
c1(F )

2 +
1

12
(c1(F )

2 + c2(F )) + · · ·

Problem 8.4. Compute c2(X) for X a K3 surface. (Hint: set F = OX .)

Problem 8.5. Compute H2(X,Z). (Hint: take F = ΩX .)

You have now computed all of the Betti numbers. Next, we will compute
the Hodge numbers.
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Definition 8.6. Let X be a compact Kähler manifold. The Hodge numbers of
X are

hp,q = dimHq(X,Ωp
X).

Theorem 8.7 (The Hodge Decomposition). Let X be a compact Kähler man-
ifold. There is a direct sum decomposition

Hi(X,Z)⊗ C = Hi(X,C) =
⊕

p+q=i

Hq(X,Ωp
X).

Moreover hp,q = hq,p.

Problem 8.8. Compute all of the Hodge numbers of a compact complex K3
surface X.

Further remarks 8.9. The same ideas, especially the use of the Hirzebruch–
Riemann–Roch Theorem, can be used to give restrictions on the Betti and Hodge
numbers of higher dimensional hyperkähler manifolds. For more in this direc-
tion, see the paper of Salamon [41] and Debarre’s exposition thereof [15]. For
even further restrictions on the Betti numbers of hyperkähler fourfolds, see the
paper of Guan [23]. For sixfolds, see the paper by Sawon [42].

8.2. Identifying hyperkähler manifolds

One of the most interesting areas of research in hyperkähler geometry is the
construction of examples. This exercise will focus on identifying examples. We
begin with some basic problems.

Problem 8.10. Convince yourself that any holomorphic two-form σ on a com-
plex manifold X induces a morphism of bundles

σ : TX → Ω1
X .

where TX is the tangent bundle and Ω1
X is the cotangent bundle.

We call σ non-degenerate if the morphism above is an isomorphism.

Problem 8.11. Can you convince yourself that K3 surfaces are irreducible
hyperkähler? (Hint: the tricky part is probably the simply connectedness. It
may require some extra background knowledge.)

Problem 8.12. Show that h2,0 = h0,2 = 1, KX
∼= OX , and that dim(X) is

even for any irreducible compact hyperkähler manifold X.

Now that we know that KX is trivial for compact hyperkähler manifolds
X, a natural question is: given a KX -trivial manifold, how can we show that
it is hyperkähler, if it is? We will focus on a real-life example due to Debarre–
Voisin [17]. The same type of argument works for another famous example of
Beauville–Donagi [7] (the Fano variety of lines on a cubic fourfold.)
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Let V10 be a 10-dimensional complex vector space. Let ω ∈ ∧3V ∨
10 be a

3-form on V10. We define a subvariety of G(6, V10):

Xω := {[W ] ∈ G(6, V10) : ω|W×W×W ≡ 0}.

Problem 8.13. Show that for a general choice of ω, Xω is a smooth fourfold.
(Hint: show that Xω is given by the vanishing of a section of a certain globally
generated vector bundle.)

Problem 8.14. Show that KXω
∼= OXω . (Hint: use adjunction.)

Now that we know we have a KX -trivial variety, we want to show it’s
hyperkähler. Using something called the Koszul resolution, one can compute
the Euler characteristic of the structure sheaf:

χ(Xω,OXω ) = 3.

Definition 8.15. A strict Calabi–Yau manifold is a simply connected projective
manifold X such that H0(X,Ωp

X) = 0 for 0 < p < dim(X).

Problem 8.16. Show that any simply connected smooth KX -trivial compact
Kähler fourfold with χ(X,OX) = 3 is irreducible compact hyperkähler. (Hint:
use the nice multiplicative properties of χ(X,OX).)

Further remarks 8.17. The proof that Xω above is hyperkähler is done dif-
ferently (more geometrically) in [17]. I also highly recommend the classic pa-
per [7]. It turns out in both cases, the resulting hyperkähler is deformation
equivalent to the Hilbert scheme of 2 points on a K3 surface.

9. Basic properties of Lagrangian fibrations of
Hyperkählers, by Yajnaseni Dutta

The following exercises are based on a couple of fundamental results from [34]
and [35]. Given a Lagrangian fibration f : X → B of a Hyperkähler manifold
X, the geometry and topology of B are heavily influenced by X. In fact,
Matsushita conjectured that B ≃ Pn. It is known by work of Hwang [28] that
if B is smooth then B ≃ Pn. The conjecture is known to be true if dimB = 2
by recent results of [9, 27, 39]

9.1. Lagrangian fibrations

Let S be a K3 surface and f : S → C a proper surjective morphism onto a
smooth irreducible curve with connected fibres 1.

1we will call such a morphism a fibration throughout the rest of these exercises.
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Problem 9.1. Show that C ≃ P1. (Hint: Use that S is simply connected.)

Problem 9.2. Show that the general fibres of f are elliptic curves. (Hint: Use
Adjunction.)

Problem 9.3. Find an explicit fibration of the Fermat quartic (x4 + y4 + z4 +
w4 = 0) ⊂ P3. (Hint: rewrite as an equality of two fractions.)

Let X be a hyperkähler manifold of dimension 2n. The following exercises
show how similar the situation is in higher dimensions. The quadratic space
(H2(X,R), qX) controls much of the geometry of X and is a central gadget in
the study of hyperkähler manifolds.

Recall that qX is a priori dependent on the symplectic form σ ∈ H0(X,Ω2
X),

however, up to scaling, it is independent of σ. Here are some key properties of
qX (we denote the associated bilinear form again by qX).

• The symplectic form σ, upto a normalization, satisfies qX(σ) = 0 and
qX(σ + σ) = 1.

• More generally, for αi ∈ H2(X), we have∫
X

α1 · · ·α2n = cX
∑
s∈Sn

qX(αs(1), αs(2)) . . . qX(αs(2n−1), αs(2n−2))

for some constant cX depending only on X. As a consequence, we obtain∫
X
σσω2n−2 = c′qX(ω)n−1.

• If a line bundle L is ample, then qX(c1(L)) > 0. The Kähler cone is
contained in a connected component of {α ∈ H1,1(X,R) | qX(α) > 0}.
Partial converses to these statements exist. For instance, if L is a line
bundle with qX(L) > 0 then X is projective [22, Prop. 26.13]. Further-
more, if qX(α) > 0 and, for every rational curve C ⊂ X,

∫
C
α > 0, then

α is a Kähler class [11, Théorème 1.2].

• H1,1(X,C) is orthogonal to H2,0(X,C)⊕H0,2(X,C) with respect to qX .

• By [10, 43] whenever there exists 0 ̸= β ∈ H2(X,C) that satisfies qX(β) =
0, we have βn ̸= 0 and βn+1 = 0

We begin with a Hodge index type theoerem.

Problem 9.4. Given a divisor E on X, show that if E satisfies E2n = 0 and
E ·A2n−1 = 0 for some ample bundle A, then E ∼ 0. (Hint: Use qX(tE+A) =
t2q(E)+2tq(E,A)+ q(A) for any variable t and that (tE+A)2n = cXqX(tE+
A)n.)
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Problem 9.5. Given a divisor E on X, show that if E satisfies E2n = 0 and
E · A2n−1 > 0 for some ample line bundle A, then qX(E,A) > 0 and the
following are true

Em ·A2n−m = 0 ; for m > n

Em ·A2n−m > 0 ; for m ≤ n.

(Hint: Expand qX(tE +A) as in the previous exercise.)

Problem 9.6. Let f : X → B be a fibration of a hyperkähler manifold X2.
Using the previous exercise show that dimB = n. (Hint: Apply the previous
exercise to the pull-back of an ample class H on B.)

Problem 9.7. Show that Pic(B) is of rank 1. (Hint: Show that any divisor E
on X that satisfies E2n = 0 and En · (f∗H)n = 0 is in fact a rational multiple
of f∗H.)

For the next exercise we need the definition of a Lagrangian (possibly singular)
subvariety. Recall that

Definition 9.8. A subvariety Y ⊂ X is said to be a Lagrangian subvariety if
dimY = 1

2 dimX and there exists a resolution of singularities µ : Y ′ → Y such
that µ∗σ|Y ′ = 0.

Problem 9.9. Show that a general fibre of f is Lagrangian. By a classical
theorem, the general fibres of f are then complex tori. A more recent result
of Voisin [12, Prop. 2.1] or, more generally, [31, Theorem 1.1], shows that even
if X is not projective, a Lagrangian subvariety of a hyperkähler manifold is
always projective. Thus, a general fibre F is isomorphic to an abelian variety.
(Hint: Let A be an ample class on X.)

Problem 9.10. Show that every fibre of f is Lagrangian and hence f is equidi-
mensional. (Hint: Use the map H2(X,OX) → H0(B,R2f∗OX) induced by the
Leray spectral sequence and that R2f∗OX is torsion free.)

Problem 9.11. Show that B is Q-factorial with at worst Kawamata log ter-
minal singularities. (Hint: see [26, Prop. 5.10] or use that f is equidimensional
and [30, Lemma 5.16] which states that if the source of a finite surjective map
between normal varieties is Q-factorial and klt then so is the target.)

For the next exercise, recall and use the following

Definition 9.12 (Kodaira Dimension). Let X be a Q-factorial variety. Then

κ(X) = sup
m

dimϕm(X)

2you may assume both X and B are projective, although the results presented here work
in a more general setting.
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HYPERKÄHLER MANIFOLDS (39 of 44)

where ϕm : X 99K PPm is the rational map defined by the global sections of
ω⊗m
X and Pm = dimH0(X,ω⊗m

X ). Another way to interpret this is

κ(X) := trdeg
k

(⊕
m

H0(X,ω⊗m
X )

)
− 1

where the algebra structure on the right side is given by the multiplication map.

Iitaka’s Cn,m conjecture then states that

Conjecture 9.13. Let f : X → B be a fibration of smooth projective varieties,
and let F be a general fibre of f . Then,

κ(X) ≥ κ(F ) + κ(B).

By a result of Kawamata [29, Theorem 1.1(2)], the conjecture is known when
F is a minimal variety.

Problem 9.14. Assume B is smooth, show that B is Fano, i.e., the inverse of
the canonical bundle of B is ample. (Hint: use that the Picard rank of B is 1
and Kawamata’s result above.)

Problem 9.15. Assume B is smooth. Let B0 be the open set where f is
smooth. Let X0 := f−1(B0). Show that Rif0∗OX0 = Ωi

B0 . (Hint: Use Ω1
X0 ≃

TX0 to conclude that f∗TB0 ≃ Ω1
X0/B0 .)

Matsushita [35] (also see [34]) extends this equality to the big open set U
which includes the smooth points of the discriminant divisorDf , using Deligne’s
canonical extension. Then, using the reflexivity of Rif∗OX and the isomor-
phism Rnf∗OX ≃ ωB , he shows that Rif∗OX ≃ Ωi

B .

10. Rational curves on K3 surfaces and Euler
characteristics of Moduli spaces, by David Stapleton

We follow a paper of Beauville [4], inspired by work of Yau and Zaslow [46],
which uses hyperkähler geometry to count the number of rational curves in a
very general K3 surface of degree 2d.

Problem 10.1. Assume that a K3 surface X admits an elliptic pencil – that
is a map

π : X → P1

so that the general fibers are smooth genus 1 curves. Assume that all the fibers
that do not have geometric genus 1 are irreducible rational curves with a single
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node. Count the number of rational fibers. (Hint: If R = ⊔n
i=1Ri is the union of

rational curves, compute the topological Euler characteristic using the formula:

e(X) = e(R) + e(X \R)

and compute e(Ri).)

10.1. Hyperkählers as moduli spaces of sheaves on K3
surfaces.

Let X be a very general K3 surface of degree 2d with primitive line bundle L
(with L2 = 2d) and let Π = P(H0(X,L)) ∼= Pd−1. Moduli spaces of sheaves on
X are frequently hyperkähler manifolds. Here are two examples:

1. Hilbert schemes of n points on X – denoted X [n], this space compact-
ifies the space of unordered distinct points on X by considering length n
subschemes as their limits.

2. Compactified Jacobians – denoted J d
(X) – parametrizing coherent

sheaves supported on curves C ∈ Π, which when thought of as sheaves on
C are line bundles (or torsion-free sheaves of rank 1 when C is singular)
of degree d.

Problem 10.2. Show that if X is a K3 surface, then Π contains only finitely
many rational curves (curves with geometric genus 0).

Problem 10.3. Compute the dimension of X [n] and J d
(X).

Problem 10.4. Show that the hyperkählers X [g] and J g
(X) are birational.

There is a natural map
π : J g

(X) → Π

which sends a coherent sheaf F to the curve in Π that it is supported on.

Problem 10.5. Show that the general fiber of π is an Abelian variety. Describe
the fibers over a general point C ∈ Π.

Problem 10.6. (this is [4, Prop. 2.2]) Let C be an integral curve such that

the normalization Ĉ has genus ≥ 1. We show that e(J d
(C)) = 0 as follows.

1. Find a line bundle M on C which is torsion of order m (for any m > 0).

(This uses the comparison between the Jacobian of C and of Ĉ.)

2. Show that tensoring by M is a free action of Z/mZ on J d
(Ĉ).

3. Conclude that m divides e(J d
(C)) for all m > 0.
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It follows by the scissor property of Euler characteristics that

e(J g
(X)) =

∑
Ri∈Π

e(J g
(Ri))

where Ri ∈ Π is a rational curve and π−1(Ri) is the fiber over Ri (i.e., the set
of torsion free sheaves of rank 1 and degree g supported on Ri).

Problem 10.7. Show that
e(J g

(Ri)) = 1

if Ri is a nodal, irreducible rational curve. Thus by a result of Xi Chen [13], if
X is very general then

e(J g
(X)) = #{Ri ∈ Π}.

Hint: Locally at a node p ∈ Ri there are only 2 types of rank 1 torsion
free sheaves (1) line bundles and (2) the ideal sheaf of a point. Show that if
p1, · · · , pg ∈ Ri are the nodes then J g

(Ri) is stratified into loci J g

S ⊂ J g
(Ri)

consisting of torsion-free sheaves that are not locally free exactly at the points
in a subset S ⊂ {p1, · · · , pg}. Conclude that the only stratum where e(J g

S) ̸= 0
is when S = {p1, · · · , pg} (a single point). See also [4, §3].

It remains to actually calculate the Euler characteristic of J g
(X). This

relies on

1. The birational invariance of Euler characteristic for hyperkählers (see [24]
or use the birational invariance of betti numbers of Calabi–Yaus [1]).

2. The computation of the Euler characteristic of X [n] by Göttsche [21] (see
[14] for a nice explanation of these results).

In particular, for a K3 surface, by (1) and (2) we have:∑
(# rational curves on a K3 of genus g)qg =

∑
g≥0 e(J

g
(X))qg

=
∑

g≥0 e(X
[g])qg = Π∞

k=1

(
1

1−qk

)e(X)

where the sum over g ≥ 0 is understood to take a very general K3 surface of
genus g.

Problem 10.8. Compute the Euler characteristic of X [2] for any complex sur-
face using that

1. there is a birational map

h : X [2] → X(2)

to the symmetric product X(2) := X2/Σ2 which is given by blowing up
the diagonal locus and
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2. the exceptional divisor of h is a P1-bundle over X.

Problem 10.9. Find the number of bitangents to a very general plane sextic
curve C ⊂ P2 using that a very general K3 surface of genus 2 is a double cover
of P2 branched at such a sextic.
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[21] L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth vari-
eties, Lecture Notes in Math., vol. 1572, Springer, Berlin, 1994.

[22] M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and re-
lated geometries, Universitext, Springer, Berlin, 2003, Lectures from the Summer
School held in Nordfjordeid, June 2001.

[23] D. Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of
complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669.

[24] D. Huybrechts, Birational symplectic manifolds and their deformations, J.
Differential Geom. 45 (1997), no. 3, 488–513.

[25] D. Huybrechts, A global Torelli theorem for hyperkähler manifolds [after M.
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Preface

Section 3 of Volume 54 of Rendiconti dell’Istituto di Matematica dell’Univer-
sità di Trieste is dedicated to the proceedings of the conference GO60 - Pure
and Applied Algebraic Geometry celebrating Giorgio Ottaviani’s 60th birthday.
This workshop, originally planned in Levico (Trento, Italia), June 20-26, 2020
and held on-line, June 21-25, 2021 due to Covid-19 restrictions, was organized
on the occasion of the sixtieth birthday of our friend Giorgio Ottaviani, in ap-
preciation of his many contributions to Algebraic Geometry and of his role as
teacher and mentor.

Giorgio Ottaviani, Full Professor at University of Florence since Novem-
ber 1, 1997, is a world-wide recognized mathematician, who is able to convey
enthusiasm and passion to open new perspectives to other researchers. His
scientific interests cover both the pure and applied sides of Algebraic Geome-
try. Giorgio’s main results on pure Algebraic Geometry concern the geometry of
projective subvarieties in projective space, in particular those of small codimen-
sion, vector bundles and their moduli space, instantons, Lefschetz properties,
homogeneous vector bundles on rational homogeneous varieties and classical
chapters of Algebraic Geometry such as Lüroth quartics, Hessians etc. His
interests encompass also topics which lie close to applications, for instance
higher secant varieties and tensor decomposition, Euclidean distance degree,
tensor rank and identifiability of tensors, complexity of matrix multiplication
algorithm, entanglement and Quantum Information and algorithms developed
by current symbolic software.

This section collects articles by many of the speakers of the conference, to-
gether with contributions by some of Giorgio’s many students, now professional
researchers, and from other distinguished mathematicians who have actively
collaborated with him and are still very close to him. Many of the papers
we are presenting are stricly related to the topics that fascinate Giorgio and
witness how much he is respected by his colleagues, both from the human and
scientific point of view.

We would like to thank Giorgio, for everything he has taught us, in his
passionate and informal style. For his friendship and the support that he gave
us all over the years. For showing us how one can be open minded, humble
and brilliant at the same time. And finally for giving us the opportunity to
organize this conference, whose interesting talks were very useful to outline the
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state of the art of the mathematical research in our field.
We heartly thank the authors of the articles published in this section for

their highly appreciated contributions. We are indebted with Emilia Mezzetti,
Editor-in-Chief of RIMUT, for accepting our proposal of this section and for her
suggestions and technical support during its achievement. A special thank to
the referees of all the papers, for their careful readings and interesting remarks.

Finally we gratefully acknowledge CIRM-FBK, Università Politecnica delle
Marche, GNSAGA-INdAM, and Università degli Studi di Firenze for the sup-
port in the organization of the conference.

The guest Editors
Elena Angelini

Maria Chiara Brambilla
Daniele Faenzi

and the other members of the Organizing Committee
Ada Boralevi
Simone Naldi
Elena Rubei
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Examples of non-effective rays at the
boundary of the Mori cone of blow-ups

of the plane

Ciro Ciliberto and Rick Miranda

We dedicate this paper to Giorgio Ottaviani on his 60th birthday

Abstract. In this paper we prove that no multiple of the linear system
of plane curves of degree d ⩾ 4 with a point of multiplicity d−m (with
2 ⩽ m ⩽ d) and m(2d−m) simple general points is effective.

Keywords: Linear systems, Mori cone, Nagata’s conjecture, nef rays.
MS Classification 2020: 14E07, 14E30, 14J26.

1. Introduction

Alex Massarenti and Massimiliano Mella asked us the following question. Con-
sider 13 general points p0, . . . , p12 in the projective plane and consider the class
of a quartic curve with a singular point at p0 and passing through p1, . . . , p12.
Is it the case that no multiple of this class is effective?

In trying to answer this question we got aware of the fact that we are able
to prove the following more general result.

Theorem 1.1. Let d be any integer and p0, . . . , pm(2d−m) general points in the
plane with m ⩽ d. Consider the class (or system) ξd,m of plane curves of
degree d with a point of multiplicity at least d − m at p0 and passing through
p1, . . . , pm(2d−m). Fix k ⩾ 1.

(a) For any d ⩾ 4 and any m with 2 ⩽ m ⩽ d, the class kξd,m is not effective.

(b) For any d, the system ξd,1 is a pencil of rational curves and ξd,0 is com-
posed with the pencil of lines through the point p0 and has dimension d.
The multiple linear systems kξd,1 are composed with the corresponding
pencil and have dimension k. There is no member of these systems that
contains an irreducible curve which is not a component of a member of
this pencil. The same is true for the system ξ2,2.

(c) For d = 3, the systems ξ3,3 and ξ3,2 coincide with the system of cubics
through 9 general points, which consists of a unique cubic C. The systems
kξ3,3 and kξ3,2 consist of the unique curve kC.
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A few remarks are in order. First statements (b) and (c) in the theorem are
trivial (we stated them for completeness and we will inductively use them in the
proof of (a) which is the core of the theorem. Secondly, if m = d or m = d− 1
the statement is Nagata’s theorem for d2 general points in the plane (see [4]),
hence the theorem can be viewed as a generalization of Nagata’s theorem. So
for the proof of (a) we may and will assume 2 ⩽ m ⩽ d− 2.

Let Xn be the blow–up of the projective plane at n general points. Let
Ld(m1, . . . ,mn) be the linear system on Xn corresponding to plane curves of
degree d with general points of multiplicities at least m1, . . . ,mn.

If we blow–up p0, . . . , pm(2d−m) we get the surface Xm(2d−m)+1 and ξd,m
can be interpreted as an element in Pic(Xm(2d−m)+1); note that ξ2d,m = 0.
Moreover ξd,m is nef. Indeed we consider a general plane curve C of degree d
with a point p0 of multiplicity d−m and we can fix m(2d−m) general points
on C. If we blow up p0 and the m(2d−m) chosen points, the proper transform
of C is an irreducible curve with 0 self–intersection, and therefore it is nef on
the blow–up. Since nefness is an open condition, this is true for the general
class ξd,m.

Our result says that there is no positive number k such that Lkd(k(d −
m), km(2d−m)) is non–empty (the exponential notation for repeated multiplic-
ities is clear). If we set N1(Xm(2d−m)+1) = Pic(Xm(2d−m)+1) ⊗Z R, then ξd,m
generates a rational ray in N1(Xm(2d−m)+1) that is not effective (see [1, §3.1])
and therefore it sits in the boundary of the Mori cone of Xm(2d−m)+1. Such
a ray, if rational in N1(Xm(2d−m)+1), is called a good ray in [1, §3.2] whereas,
if irrational, it is called a wonderful ray. So far no wonderful ray has been
discovered1. However, proving that a given ray is good is in general not easy,
and in [1] the authors were able to exhibit some examples. Therefore it is in-
teresting to find good rays, and in this paper we make a new contribution in
this direction.

Our proof uses the degeneration technique we introduced for analyzing the
dimension of such linear system (see, e.g., [2]). We briefly recall this in Sec-
tion 2. The proof is by induction on m, the case m = 2 being the critical one.
We prove the m = 2 case in Section 5. This particular example relies on a
subtlety that requires us to analyze, more deeply than what we did in [3], the
case in which there are multiple (−1)–curves splitting off a linear system in the
limit. This we describe in Section 3. Finally in Section 5 we finish the proof of
Theorem 1.1.

We notice that the surprising phenomenon that allows us to make the final
analysis of the limit linear systems in the case m = 2 is that we eventually end
up with curves of a certain degree tn in the plane with n2 points of multiplicity t,

1After this paper was finished wonderful rays have been exhibited in the preprint “Ir-
rational nef rays at the boundary of the Mori cone for very general blowups of the plane”
(arXiv:2201.08634), by J. Roé and the two authors of the present paper.
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which is currently the only case in which Nagata’s conjecture is proven (see [4]).
Indeed we use here an argument inspired by the original one of Nagata (see l.c.)
to deal with these cases.

The ideas in this note can be generalized to prove more general similar
results about general linear systems with zero self–intersection and we will do
this in a forthcoming paper.

2. The degeneration method

In this section we briefly recall the degeneration technique that we use to
analyse planar linear systems (see [2]). We want to study a linear system
Ld(m1, . . . ,mn). To do this we consider a trivial family P2 × D → D over a
disc D. In the central fibre over 0 ∈ D we blow–up a line R producing a new
family X → D with an exceptional divisor F ∼= F1 and the proper transform
P ∼= P2 of the original central fibre. The new central fibre consists now of F∪P ,
with F, P transversely intersecting along the line R, which is the (−1)–curve
in F .

Next we fix a general points on P and b general points of F , so that a+b = n.
Consider sections of the family X → D extending these n points to general
points on the general fibre. Blowing up these sections, we have a degeneration
of Xn to the union of an Xa (the blow–up of P at the a general points) and of
an Xb+1 (the blow–up of F at the b general points).

Since there is an obvious map π : X → P2, we have the bundle OX (d) =
π∗(OP2(d)). This bundle restricts to the general fibre to OP2(d). On the central
fibre it restricts to the bundle OP2(d) on P and to OF (df), where f is the class
of a fibre of the ruling of F over P1. This is a limit of the line bundle on the
general fibre; there are other limits obtained by twisting by OX (−lP ), i.e., by
tensoring the above limit bundle by OX (−lP ), with l an integer. This restricts
to OP2(d+ l) on P and to OF (df− lR) on F . So we have a discrete set of limits
of Ld(m1, . . . ,mn), depending on all choices for a, b, l and distribution of the
multiplicities among the a+ b points on the central fibre.

A section of a limit line bundle is given by a pair of sections on P and F ,
that restrict equally to the double curve R. We will call this the naive matching
condition. Such a section could be identically zero on one of the components of
the central fibre, and in this case a matching section on the other component
corresponds to a section of the linear system (called a kernel linear system) of
curves on the other component containing the double curve R. One way to
prove emptiness of the system on the general fibre is to find a, b, a distribution
of the multiplicities and a twisting parameter l such that there is no section
of the limit line bundle on the central fibre that verifies the naive matching
condition and that is non–zero on at least one of the two components.
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An alternative approach to proving the emptiness of the linear system on
the general fibre is the following. Suppose that the system is non–empty on the
general fibre. Then for every choice of a, b and a distribution of the multiplici-
ties, there will be a limit curve which must be the zero of a section of a limit
line bundle given by some particular twist parameter l, this section being not
identically zero on both P and F . As we said, naively the matching condition
means that the two curves restrict equally to R. However we will see in the
next section that when the curves are non–reduced the matching conditions are
more subtle. We will call these conditions refined matching conditions. Hence,
to prove that the system on the general fibre is empty, it suffices to find a, b
and a distribution of the multiplicities so that for no l there is a limit curve as
above, i.e., a pair of curves on P and F satisfying the refined matching. This
will be the approach we will use in the proof of the case m = 2.

Clearly the former approach is easier than the latter, which however could
be necessary if the naive approach fails for every twist, which could be the case.

3. Refined matching conditions

In this section we will perform an analysis, needed later, which is a generaliza-
tion of the concepts of 1–throws and 2–throws considered in [3].

Suppose that a (−1)-curve C lives on a component P in a degeneration with
two components P and F in the central fibre of a family X → D, intersecting
transversely along a curve R, and suppose we are given a line bundle L on X .
Suppose that the intersection number of C with the restriction of L to P is −s.
Suppose in addition that C meets transversely at m points the double curve R.

For m = 1 we have the 1–throw considered in [3], which reveals that the
appropriate matching conditions for a curve on F to be a limit is that it must
have a point of multiplicity s at the intersection point of C with R, not simply
an intersection multiplicity s.

Now suppose that m > 1. We blow up C in the threefold X m times, thus
obtaining a new threefold X ′ and a new family X ′ → D. This blows up F
m times at each of the m intersection points of C with R, for a total of m2

blow–ups. We denote by F̄ the resulting surface.

These blow–ups create m ruled surfaces Qm−1, Qm−2, . . . , Q1, Q0 which are
stacked one on the other. In the central fiber of X ′, Qi appears with multiplicity
m− i, for i = 0, . . . ,m−1. One checks that Qi

∼= Fi, with non–positive section
Bi and disjoint non–negative section Si; on Qi we have B2

i = −i, S2
i = i, and

Si ∼ Bi + if , where f denotes as usual the fibre class and ∼ is the linear
equivalence. Q0 meets the surface P in a section B0 (equal to C on P ), with
B2

0 = 0. Each Qi meets Qi+1 so that Si (on Qi) is identified with Bi+1 (on
Qi+1). Each Qi also meets the other component F̄ in m fibers of the ruling,
corresponding to the m points where C meets R.

214



EXAMPLES OF NON-EFFECTIVE RAYS (5 of 9)

The normal bundle of Q0 in X ′ is (−1/m)(B0+(m−1)S0+mf) = −B0−f .
For 1 < i < m − 1, the normal bundle of Qi in X ′ is (−1/(m − i))((m − i +
1)Bi + (m − i − 1)Si + mf) = −2Bi − (i + 1)f . For i = m − 1, the normal
bundle of Qm−1 in X ′ is (−1)(2Bm−1 +mf) = −2Bm−1 −mf .

When we pull back the bundle L to X ′, this pull back L′ restricts to −sf
on each Qi. At this point we make the additional assumption that s is divisible
by m: write s = hm. Twist L′ by OX ′(−h(

∑m−1
i=0 (m− i)Qi)). Let us analyze

the restriction of this new bundle on each component of the central fibre.
First we consider the surface P , on which the original curve C sits. Since

the only exceptional surface that meets P is Q0, we are twisting the restriction
of the bundle on P by −hmQ0 = −sQ0, and since Q0 restricts to C on P this
removes sC from the restriction of the bundle on P , and then this restriction
is trivial on C.

The restriction to Q0 is

−sf − hmQ0|Q0 − h(m− 1)Q1|Q0 = −sf − s(−B0 − f)− h(m− 1)S0 = hB0.

For 1 < i < m− 1, the restriction to Qi is

−sf − h(m− i+ 1)Qi−1|Qi
− h(m− i)Qi|Qi

− h(m− i− 1)Qi+1|Qi
=

−sf − h(m− i+ 1)Bi − h(m− i)(−2Bi − (i+ 1)f)− h(m− i− 1)Si = 0.

Finally for i = m− 1 the restriction to Qm−1 is

−sf − 2hQm−2|Qm−1
− hQm−1|Qm−1

= 0.

The above analysis shows that the bundle is now trivial on Qm−1,Qm−2, . . . ,Q1,
and non–trivial only on Q0, where it consists of hB0, i.e., h horizontal sections.
Therefore the matching divisor on F̄ does not meet any of the exceptional
divisors of the first m − 1 blow–ups, and meets only the last ones h times at
each of them points. Moreover, there is a correspondence on the divisors on the
final exceptional curves, namely they must all agree with h horizontal sections.
In other words, any one of these intersections determines all the other m − 1
ones. This behaviour of the curves on F̄ means that the curve on F must have
at each of the m points of the intersection of C and R, m infinitely near points
of multiplicity h along R. We denote this phenomenon by [hm]R. Hence the
matching conditions for the curves on F can be written as ([hm]R)

m, plus the
correspondence.

We can summarize what we proved in this section in the following statement:

Proposition 3.1. Suppose we have a semistable degeneration of surfaces π :
X → D over a disc D (i.e., X is smooth, all fibres of π are smooth except perhaps
for the one over 0, that has normal crossings) and a line bundle L on X which
restricts to line bundles on every component of the central fibre. Let P be a

215



(6 of 9) C. CILIBERTO AND R. MIRANDA

component of the central fibre containing a (−1)–curve C which is not a double
curve and intersects the double curve R transversely at m points p1, . . . , pm that
are not triple points of the central fibre. Suppose that C ·L = −hm, with h > 0.
Then any curve on the central fibre that is a limit of a curve in the general
fibre in the linear system determined by the restriction of L, must satisfy the
following conditions: for every point pi the curve on the component different
from P has the singularity of type [hm]R at pi and the final h infinitely near
points to the pi’s of order m correspond in the sense described above.

4. The proof of the case m = 2

We focus in this section on the case m = 2. We will consider the degeneration
described in Section 2 and first we want to describe the distribution of the
multiplicities and the limit linear systems on P and F . For convenience we set
n = d − 1 and note that there are 4n simple points in the case m = 2, which
we will distribute evenly among P and F . So the limit linear systems will be

LP := Lkn+t(k(n− 1), k2n), LF := Lk(n+1)(kn+ t, k2n)

with t the twisting parameter.
In order to prove Theorem 1.1(a), for m = 2, we will use the refined match-

ing approach. This requires that we prove that for any twisting parameter t
there is no limit curve satisfying the refined matching conditions stated in
Proposition 3.1.

Consider the curve class (useful on both P and F ) equal to Ln(n− 1, 12n).
We note that this linear system is of dimension 0 and consists of a unique
(−1)–curve C.

The linear system Lkn(k(n− 1), k2n) is equal to |kC|, and has dimension 0.
Therefore if t < 0, then LP is empty. Hence we may assume t ⩾ 0.

Let us analyze LF . The lines through the first point and through any one
of the other 2n points split off with multiplicity t. The residual system has
the form Lk(n+1)−2nt(kn + t − 2tn, (k − t)2n). Now we intersect this system
with C and get −t(n − 1). So C splits t(n − 1) times. The further residual
system is L′

F = L(n+1)(k−tn)(n(k− tn), (k− tn)2n). For L′
F to be effective, one

needs t ⩽ k/n, which we will assume from now on. A sequence of n quadratic
transformations (each based at the first point and at two of the 2n points)
brings L′

F to the complete linear system Lk−tn.
As for LP , one sees that C splits off with multiplicity k−tn and the residual

system is L′
P = Lt(n2+1)(tn(n − 1), (tn)2n). A sequence of n quadratic trans-

formations (each based at the first point and at two of the 2n points) brings
this system to Lt(n+1)(t

2n).
Let us see what the refined matching implies on L′

P or rather on its Cremona
transform Lt(n+1)(t

2n).
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Each of the 2n lines splitting t times from LF are (−1)–curves meeting the
double curve R once. Hence in the notation of the previous section m = 1 and
s = h = t and therefore we are imposing 2n points of multiplicity t to the linear
system Lt(n+1)(t

2n). These points are located along the curve T , the Cremona
image of R on P , which is easy to see to be equal to a curve of degree n + 1,
with a point of multiplicity n.

Also the curve C splits t(n−1) times from LF and meets the double curve R
transversely at n− 1 points. In the notation of the previous section m = n− 1,
s = t(n− 1) = tm hence h = t. Therefore we are imposing to Lt(n+1)(t

2n) also
the multiple points ([tn−1]T )

n−1, plus the correspondence.

Eventually the resulting system on P is Cremona equivalent to the system
L of plane curves of degree t(n+1), with (n+1)2 points of multiplicity t, plus
the correspondence. These (n+1)2 points are distributed in 2n general points,
2n general points on T , and n− 1 general points of type [tn−1]T .

Assume now t > 0. We want to prove that L is empty and therefore LP is
empty. To prove this, we need the following:

Lemma 4.1. For any t > 0 the linear system of plane curves of degree t(n+ 1)
with n− 1 general points of type [tn−1]T , with 2n general points of multiplicity
t on T and 2n additional general points of multiplicity t consists of at most one
element.

Proof. We specialize the configuration of the imposed multiple points to n− 1
general points of type [tn−1]T , and with 4n more general points of multiplicity
t on T . This is a total (n+1)2 points (some of them are infinitely near) forming
a divisor D on T supported on the smooth locus of T . By generality, for no
positive integer t, tD belongs to |OT (t(n+1))|. So any curve of degree t(n+1)
with the above multiple points on T must contain T . To the residual curve
we may apply the same argument, so T recursively splits; by induction we
conclude that the only possible member of the system is tT . This implies the
assertion.

To prove that L is empty, we notice that the possible unique curve satisfying
the multiplicity conditions imposed on L (see Lemma 4.1) will not satisfy the
required correspondence as soon as m = n − 1 ⩾ 2, i.e., n ⩾ 3, hence LP is
empty.

Finally we have to deal with the case t = 0. In this case we take k =
hn and LP consists of the unique curve hnC. Now C is a (−1)–curve that
intersects R transversely at n points. Therefore, in the notation of Section 3, we
have m = n, s = k. So the refined matching implies that we eventually have to
impose to LF , or rather to its Cremona transform Lhn, n points of type [hn]T ′ ,
where T ′ is the Cremona image of the double curve R, plus the correspondence.
Note that T ′ is a curve of degree n with a point of multiplicity n− 1.
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By the same argument as in Lemma 4.1, we see that the only curve verifying
all the above conditions is hT ′, so in the original analysis it is hR plus some
exceptional curves which appear in the Cremona transformation. However, as
we saw in the refined matching analysis, on P the bundle is now trivial, so the
corresponding section on P has to vanish identically on P . This shows that
there is no limit curve in the case t = 0 either.

Eventually we have seen that for any twisting parameter t there is no lim-
iting curve verifying the refined matching conditions, finishing the proof of
Theorem 1.1(a) for m = 2 and d ⩾ 4.

5. The proof for m > 2

In this section we will complete the proof of Theorem 1.1(a) in the case m ⩾ 3,
arguing by induction on m (the case m = 2 for all d ⩾ 4 is the starting case of
the induction). For this we will again use the degeneration as in Section 2 and
the naive matching approach will be sufficient.

Let us describe the limit linear systems we will use, i.e.,

LP = Lk(d−2)(k(d−m), k(m−2)(2d−m−2)) = kξd−2,m−2,

LF = Lkd(k(d− 2), k4d−4) = kξd,2.

By the m = 2 case, LF is empty, and therefore also the kernel system is
empty. Hence it suffices to show that the kernel system on P is also empty.

First consider the case m = 3. Then, by Theorem 1.1(b), LP is composed
with a pencil of rational curves, and the kernel system is empty because it
consists of the members of LP that vanish along the double curve R, which is
a general line on P . This proves the m = 3 case for all d ⩾ 5 (remember that
m ⩽ d− 2).

Next assume m ⩾ 4, and therefore, since m ⩽ d− 2, we have d ⩾ 6. Then,
by induction, LP is empty and hence also the kernel system is empty, finishing
the proof of Theorem 1.1.
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Geometry of dependency equilibria

Irem Portakal and Bernd Sturmfels

Abstract. An n-person game is specified by n tensors of the same
format. We view its equilibria as points in that tensor space. Depen-
dency equilibria are defined by linear constraints on conditional proba-
bilities, and thus by determinantal quadrics in the tensor entries. These
equations cut out the Spohn variety, named after the philosopher who
introduced dependency equilibria. The Nash equilibria among these are
the tensors of rank one. We study the real algebraic geometry of the
Spohn variety. This variety is rational, except for 2× 2 games, when it
is an elliptic curve. For 3× 2 games, it is a del Pezzo surface of degree
two. We characterize the payoff regions and their boundaries using ori-
ented matroids, and we develop the connection to Bayesian networks in
statistics.

Keywords: Nash equilibria, dependency equilibria, Spohn variety, conditional indepen-
dence models.
MS Classification 2020: 14A10, 14Q30, 62R01, 91A06, 91A80.

1. Introduction

The geometry of Nash equilibria has been a topic of considerable interest in
economics, mathematics and computer science. It is known, thanks to Datta’s
Universality Theorem [6], that the set of Nash equilibria can be an essentially
arbitrary semialgebraic set. Yet, a game with generic payoff tables has only
finitely many Nash equilibria, with tight bounds known for their number [11].
They can be found with the tools of computational algebraic geometry.

For many games one encounters Nash equilibria with undesirable or coun-
terintuitive properties. This issue has been a concern not just in the economics
literature, but also in philosophy. Several authors proposed more inclusive no-
tions of equilibria. One of these is the concept of correlated equilibria, due to
Aumann [1]. In this concept, one augments the original game with a coordina-
tion device which allows players to coordinate actions (i.e. a joint probability
distribution). These equilibria form a convex polytope in tensor space, studied
in [4, 14], with Nash equilibria being precisely the rank one tensors.

In this article, we examine another inclusive notion of equilibria, intro-
duced by a prominent philosopher, Wolfgang Spohn, in his articles [19, 20].
Spohn’s notion of dependency equilibria leads to interesting structures in non-
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linear algebra [12]. Unlike the polyhedral setting of correlated equilibria, the
characterization of dependency equilibria requires nonlinear polynomials, even
for two-player games. This is the reason why they are interesting for us.

Spohn offers the following warning about the nonlinear algebra that arises
in his approach: The computation of dependency equilibria seems to be a messy
business. Obviously it requires one to solve quadratic equations in two-person
games, and the more persons, the higher the order of the polynomials we become
entangled with. All linear ease is lost. Therefore, I cannot offer a well developed
theory of dependency equilibria [20, page 779, Section 3].

This paper lays the foundations for the desired theory, by introducing novel
algebraic varieties in tensor spaces. The bemoaned loss of linear ease is our
journey’s point of departure.

It is useful to think of this article as a case study in algebraic statistics [3, 22].
In that field one examines statistical models for n discrete random variables.
Such a model is a semialgebraic set whose points are positive tensors whose
entries sum to one. These represent joint probability distributions, and the
statistical task is to identify points that best explain some given data set. To
address such an optimization problem, it is advantageous to relax the constraint
that tensors are real and positive. Thus, one replaces the model by its Zariski
closure in a complex projective space, and one studies algebro-geometric fea-
tures – such as dimension, degree, equations, decomposition, and singularities
– of these varieties.

The statistical model in this article is the set of dependency equilibria of an
n-person game in normal form. These equilibria are real positive tensors whose
entries sum to one. Relaxing the reality constraints yields an algebraic variety
in complex projective space. This is called the Spohn variety of the game, in
recognition of the fundamental work in [19, 20].

Our presentation is organized as follows. In Section 2 we review the basics
on n-player games in normal form, and we present the equations that define
dependency equilibria. After clearing denominators, these are expressed as the
2 × 2 minors of n matrices whose entries are linear forms in the entries of P .
Small cases are worked out in Examples 2.1, 2.2, 2.3 and 2.4.

The Spohn variety VX of a normal form game X is formally introduced in
Section 3. We determine its dimension and degree in Theorem 3.2. The inter-
section of VX with the Segre variety recovers the Nash equilibria. Theorem 3.4
shows that VX is generally rational, with an explicit rational parametrization.
Example 3.6 covers Del Pezzo surfaces of degree two.

Section 4 offers a detailed study of the dependency equilibria for 2×2 matrix
games. This case is an exceptional case because the Spohn variety VX is not
rational. It is the intersection of two quadrics in P3, hence an elliptic curve,
when the payoff matrices are generic. A formula for the j-invariant is given in
Proposition 4.2. The real picture is determined in Theorem 4.4.
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Section 5 concerns the payoff region PX . This is a semialgebraic subset
of Rn, visualized in Figures 2 and 3. The points of PX are the expected
utilities of positive points on VX . Theorem 5.5 identifies that region in the
oriented matroid stratification given by the Konstanz matrix KX(x). Its al-
gebraic boundaries are determinantal hypersurfaces, such as the K3 surfaces
in Example 5.7. These offer an algebraic representation for Pareto optimal
equilibria.

Section 6 develops a perspective that offers dimensionality reduction and
a connection to data analysis. Namely, we consider conditional independence
models, in the sense of algebraic statistics [3, 22]. These models are represented
by projective varieties. We focus on the case of Bayesian networks [8]. Their
importance for dependency equilibria was already envisioned by Spohn in [19,
Section 3]. This offers many opportunities for future research.

2. Games, Tensors and Equilibria

We work in the setting of normal form games, using the notation fixed in [21,
Section 6.3]. Our game has n players, labeled as 1, 2, . . . , n. The ith player can
select from di pure strategies. This set of pure strategies is taken to be [di] =
{1, 2, . . . , di}. The game is specified by n payoff tables X(1), X(2), . . . , X(n).
Each payoff table is a tensor of format d1 × d2 × · · · × dn whose entries are

arbitrary real numbers. The entry X
(i)
j1j2···jn ∈ R represents the payoff for

player i if player 1 chooses pure strategy j1, player 2 chooses pure strategy j2,
etc. These choices are to be understood probabilistically. Think of the n
players as random variables. The ith random variable has the state space [di].
The players collectively choose a mixed strategy, which is a joint probability
distribution P . More precisely, P is a tensor of format d1×d2×· · ·×dn whose
entries are positive reals that sum to 1. The entry pj1j2···jn is the probability
that player 1 chooses pure strategy j1, player 2 chooses pure strategy j2, etc.

We write V = Rd1×d2×···×dn for the real vector space of all tensors. Let
P(V ) denote the corresponding projective space, and let ∆ be the open simplex
of positive real points in P(V ). The set of equilibria of our game is a subset
of ∆, and we are interested in its Zariski closure in P(V ). The classical theory
of Nash equilibria arises through the Segre variety Pd1−1×Pd2−1× · · · ×Pdn−1

whose points are the tensors of rank one in P(V ). Namely, the entries of a rank
one tensor P factor into the decision variables of [21, Section 6.3] as follows:

pj1j2···jn = π
(1)
j1
· π(2)

j2
· . . . · π(n)

jn
.

Here π
(i)
ji

represents the probability that player i unilaterally selects pure strat-
egy ji. In the study of totally mixed Nash equilibria, these quantities are
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positive reals, and they satisfy

π
(i)
1 + π

(i)
2 + · · ·+ π

(i)
di

= 1. (1)

However, in what follows the n players are not independent. We view them as
acting together. Their collective choice of a mixed strategy is thus a tensor P
which need not have rank 1.

Consider two players with binary choices, so n = d1 = d2 = 2. Here
V = R2×2 is a four-dimensional vector space, and P (V ) = P3 is the projective
space whose points are 2 × 2 matrices up to scaling. A game is specified by
two matrices X(1) and X(2) in V . The two players collectively choose a joint
probability distribution P for two binary random variables. Thus, they choose

a positive matrix P =

[
p11 p12
p21 p22

]
whose entries sum to one, i.e. P ∈ ∆.

Example 2.1 (Bach or Stravinsky). A couple decides which of two concerts
to attend. The payoff matrices indicate their preferences among composers,
Bach = 1 or Stravinsky = 2:

X(1) =

[
3 0
0 2

]
and X(2) =

[
2 0
0 3

]
. (2)

In texts on game theory, this is called a bimatrix game. The two payoff
matrices are often written in a combined table. For the game (2), the combined
table looks as follows:

Player 2

Bach Stravinsky

Player 1
Bach (3, 2) (0, 0)

Stravinsky (0, 0) (2, 3)

Different entries are used in [20, Section 3]. We refer to that source for further
examples. The four pure choices BB, BS, SB and SS label the vertices of the
tetrahedron in Figure 1. In the game, the couple selects a mixed strategy P ,
which is a point in that tetrahedron.

Returning to our general set-up, we consider the expected payoff for the ith
player. By definition, this is the dot product of the tensors X(i) and P . In
symbols, the expected payoff is

PX(i) =

d1∑
j1=1

d2∑
j2=1

· · ·
dn∑

jn=1

pj1j2···jnX
(i)
j1j2···jn . (3)

Player i desires this quantity to be as large of possible. Aumann’s correlated
equilibria [1] are choices of P where no player can raise their expected payoff
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by changing their strategy or breaking their part of the agreed joint probability
distribution while assuming that the other players adhere to their own recom-
mendations. The set of correlated equilibria is a convex polytope inside the
simplex ∆. Its combinatorial structure is studied in [4, 14].

In Spohn’s theory [20], expected payoff is replaced by conditional expected
payoff. We focus on the payoff expected by player i conditioned on player
i having fixed pure strategy k ∈ [di]. In precise mathematical terms, the
conditional expected payoff is the ratio of two linear forms in the entries of
P , each of which has d1 · · · di−1di+1 · · · dn summands. The numerator is the
subsum of (3) given by all summands with ji = k. The denominator is the sum
of all probabilities pj1j2···jn where ji = k. In algebraic statistics texts, this is
denoted p+···+k+···+.

Here is now the key definition due to Spohn [19, 20]. Consider the game
given by the tuple X = (X(1), X(2), . . . , X(n)). A tensor P in ∆ is a dependency
equilibrium for X if the conditional expected payoff of each player i does not
depend on player i’s choice k. In symbols, this definition says that the following
equations hold, for all i ∈ [n] and all k, k′ ∈ [di]:

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn
p+···+k+···+

=

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k′···jn

pj1···k′···jn
p+···+k′+···+

. (4)

Thus, dependency equilibria are defined by certain equalities among ratios of
linear forms.

One issue with this definition is that p+···+k+···+ might be zero. Spohn
calls this a “technical flaw” [20, Section 2], and he suggests a fix by taking
limits to the boundary of ∆. From the algebraic statistics perspective, this is
not a flaw but a feature. Many models are defined by constraints on strictly
positive probabilities. Possible extensions to the boundary are studied using
the technique of primary decomposition [22, Section 4.3]. We here disregard
boundary phenomena since ∆ is the open simplex. This allows us to divide by
p+···+k+···+.

We have argued that clearing denominators in (4) does not change the
solution sets of interest. Thus we can write our equations as 2×2 determinants
of linear forms in the entries of P . We define a matrix Mi = Mi(P ) with di rows
and two columns as follows. The kth row of Mi consists of the denominator
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and the numerator of the ratio on the left of (4):

Mi = Mi(P ) :=



...
...

p+···+k+···+

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jnpj1···k···jn

...
...

. (5)

Dependency equilibria for X are the points P ∈ ∆ for which each Mi has rank
one. If n is small then we simplify our notation by using letters a, b, c for the
tensors X(1), X(2), X(3).

Example 2.2 (2 × 2 games). Let n = d1 = d2 = 2 and aij , bij ∈ R. The
matrices in (5) are

M1 =

[
p11 + p12 a11p11 + a12p12
p21 + p22 a21p21 + a22p22

]
,

M2 =

[
p11 + p21 b11p11 + b21p21
p12 + p22 b12p12 + b22p22

]
.

The dependency equilibria are solutions in ∆ to the equations det(M1) =
det(M2) = 0.

Example 2.3 (2×2×2 games). Consider a game with three players who have
binary choices, i.e. n = 3 and d1 = d2 = d3 = 2. In [21, Section 6.1] the players
are called Adam, Bob and Carl, and their payoff tables are X(1) = (aijk),
X(2) = (bijk) and X(3) = (cijk). Dependency equilibria are 2 × 2 × 2 tensors
P = (pijk) such that these three 2× 2 matrices have rank ≤ 1:

M1 =

[
p111 + p112 + p121 + p122 a111p111 + a112p112 + a121p121 + a122p122
p211 + p212 + p221 + p222 a211p211 + a212p212 + a221p221 + a222p222

]
,

M2 =

[
p111 + p112 + p211 + p212 b111p111 + b112p112 + b211p211 + b212p212
p121 + p122 + p221 + p222 b121p121 + b122p122 + b221p221 + b222p222

]
,

M3 =

[
p111 + p121 + p211 + p221 c111p111 + c121p121 + c211p211 + c221p221
p112 + p122 + p212 + p222 c112p112 + c122p122 + c212p212 + c222p222

]
.

If X = (A,B,C) is generic then their determinants are quadrics that intersect
transversally. This defines an irreducible variety VX of dimension 4 and degree
8 in the tensor space P7. We now intersect VX with the Segre variety P1×P1×P1

of rank one tensors in P7. Setting α = π
(1)
1 , β = π

(2)
1 , and γ = π

(3)
1 , we use the
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following parametrization for the Segre variety:

p111 = αβγ, p211 = (1− α)βγ,

p112 = αβ(1− γ), p212 = (1− α)β(1− γ),

p121 = α(1− β)γ, p221 = (1− α)(1− β)γ,

p122 = α(1− β)(1− γ), p222 = (1− α)(1− β)(1− γ).

After this substitution, and after removing extraneous factors, the three 2 × 2
determinants are precisely the three bilinear polynomials exhibited in [21,
Corollary 6.3]. These equations have two solutions in P(V ), so there can be
two distinct totally mixed Nash equilibria.

For any game X, the set of dependency equilibria contains the set of Nash
equilibria. The latter is usually finite. It is instructive to compare these objects
for some examples from game theory text books. Some of these games are not
presented in normal form, but in extensive form. It takes practise to derive the
payoff tensors X(i) from extensive forms.

Example 2.4 (Centipede Game). This is a famous class of two-person games
due to Robert Rosenthal [17]. They are presented in extensive form, by graphs
that looks like a centipede. We discuss an instance with d1 = 3, d2 = 2. Our
game is presented by the following graph:

d d d

rrr1 12

(1, 0) (0, 2) (3, 1)

(2, 4)

The two players chose sequentially between going right r or down d. A down
choice ends the game. In our instance, the game also ends after three right
choices. The payoffs for the four outcomes d, rd, rrd or rrrd are the labels of
the leaves. This translates into a 3× 2-game:

Player 2

d r

d (1, 0) (1, 0)

Player 1 r + d (0, 2) (3, 1)

r + r (0, 2) (2, 4)

This table gives the 3 × 2 payoff matrices X(1) and X(2). Similarly to the
Prisoner’s Dilemma, the Nash equilibrium of the centipede game is not Pareto
efficient. To compute the dependency equilibria, we consider four quadrics in
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six unknowns, namely the 2× 2 minors of the matrices M1 and M2. The ideal
they generate is the intersection of two prime ideals:

⟨ p31 − p32 , p21 − 2p22 ,

p11p22 − 4p12p22 − 2p222 + 4p11p32 − 2p12p32 + 3p22p32 + 2p232 ⟩
∩ ⟨ p11 + p12 , 3p22p31 − 2p21p32 + p22p32 ,

6p12p21+3p12p22+3p21p22+6p12p31+12p12p32−4p21p32−p22p32−6p31p32 ⟩.

The second component, a singular quartic surface in a hyperplane in P5, is
disjoint from ∆. The first component is a hyperboloid in a 3-space P3 which
intersects the open simplex ∆. That intersection is the set of dependency
equilibria. There are no Nash equilbria in ∆.

3. The Spohn variety

In this section we work in the complex projective space P(V ) of d1 × · · · × dn
tensors. We write VX for the subvariety of P(V ) that is given by requiring
M1, . . . ,Mn to have rank one. We call VX the Spohn variety of the game X.
Thus VX is defined by

∑n
i=1

(
di

2

)
quadratic forms in

∏n
i=1 di unknowns pj1···jn ,

namely the 2× 2 minors of the n matrices Mi in (5).
We already saw several examples in the previous section. For three-person

games with binary choices (Example 2.3), the Spohn variety VX is a fourfold in
P7. For the centipede game (Example 2.4), the Spohn variety VX is a surface
in P8. We next consider a 2× 2 game.

Example 3.1 (Bach or Stravinsky). For the game in Example 2.1, we consider
the matrices

M1 =

[
p11 + p12 3p11
p21 + p22 2p22

]
and M2 =

[
p11 + p21 2p11
p12 + p22 3p22

]
.

The ideal generated by det(M1) and det(M2) is the intersection of three prime
ideals:

⟨p11, p22⟩ ∩ ⟨2p12+3p21, 3p11p21+p11p22+3p21p22⟩ ∩ ⟨2p12−3p21−p22, p11−p22⟩.

This shows that the Spohn variety VX is the reduced union of three curves, two
lines and one conic, shown in Figure 1. Only one component, namely a line,
intersects the open tetrahedron ∆. This game has two pure Nash equilibria
(1, 0, 0, 0), (0, 0, 0, 1) and one totally mixed Nash equilibrium ( 6

25 ,
9
25 ,

4
25 ,

6
25 ).

The latter is the positive point of rank one on the curve VX .

The curve in Figure 1 has multiple components because the payoff matrices
in (2) are very special. If we perturb the matrix entries, then the resulting
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SB

BB

BS
SS

Figure 1: The Spohn variety is a reducible curve of degree four in P3. It has
three components but only one passes through the tetrahedron. The figure also
shows the Segre surface in the tetrahedron. The curve and the surface meet in
one point, namely the totally mixed Nash equilibrium.

curve VX will be smooth and irreducible in P3. As we shall see, the analogous
result holds for games of arbitrary size.

We now present our first result in this section. It summarizes the essential
geometric features of Spohn varieties, and it shows how these varieties are
related to the Nash equilibria.

Theorem 3.2. If the payoff tables X are generic then the Spohn variety VX is
irreducible of codimension d1 + d2 + · · · + dn − n and degree d1d2 . . . dn. The
intersection of VX with the Segre variety in the open simplex ∆ is precisely the
set of totally mixed Nash equilibria for X.

Proof. Consider a generalized column of the di × 2 matrix Mi, i.e. a linear
combination of the columns of Mi with coefficients λ1, λ2 ∈ R that are not
both zero. Since the payoff table X(i) is generic, every generalized column of Mi

consists of linearly independent linear forms. We know from [7, Theorem 6.4]
that the ideal generated by the 2 × 2 minors of Mi is prime of codimension
di−1. Moreover, by [5, Proposition 2.15], the degree of this linear determinantal
variety is

(
2+di−1−1

di−1

)
= di. Since the tensor X(i) is generic and its entries
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occur only in Mi, the intersection of the n varieties is transversal. Now, [18,
Theorem 1.24] and Bézout’s Theorem for dimensionally transverse intersections
yield the first assertion.

The second assertion says that the totally mixed Nash equilibria are the

dependency equilibria of rank one. Set pj1...jn = π
(1)
j1
· · ·π(n)

jn
with π

(i)
k > 0 for

k ∈ [di] and i ∈ [n]. Suppose (1) holds. The dependency equilibria of rank one
are defined by the 2× 2 minors of the matrix

1
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···1···jnπ

(1)
j1
· · ·π(i−1)

ji−1
π
(i+1)
ji+1

· · ·π(n)
jn

...
...

1
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···di···jnπ

(1)
j1
· · ·π(i−1)

ji−1
π
(i+1)
ji+1

· · ·π(n)
jn

.
We subtract the first row from the kth row for all k ∈ {2, . . . , di}. The 2 × 2
minors of the resulting matrix are the pairwise differences of the entries in the
second column. These differences are precisely the di− 1 multilinear equations
exhibited in [21, Theorem 6.6].

The Spohn variety VX is a high-dimensional projective variety associated
with a game X. Each point P on VX is a tensor. We say that P is a Nash
point if that tensor has rank one. The positive Nash points in VX ∩∆ are the
totally mixed Nash equilibria. Their number is given by the formula in [21,
Section 6.4], namely it expressed as the mixed volume of certain products of
simplices. That mixed volume is zero when the tensor format is too unbalanced.

Remark 3.3. A generic game X has no Nash points unless

di ≤ d1 + · · ·+ di−1 + di+1 + · · ·+ dn − n + 2 for i = 1, 2, . . . , n. (6)

Experts on tensor geometry recognize these inequalities from a result by
Gel’fand, Kapranov and Zelevinsky on hyperdeterminants [9, Theorem 14.I.1.3].
Namely, the existence of Nash points for a given tensor format is equivalent to
the hyperdeterminant being a hypersurface. In particular, two-person games
have Nash points if and only if the matrix is square (d1 = d2).

We continue to assume that the payoff tables are generic. Then the following
result holds.

Theorem 3.4. If n = d1 = d2 = 2 then the Spohn variety VX is an elliptic
curve. In all other cases, the Spohn variety VX is rational, represented by a
map onto (P1)n with linear fibers.

Proof. We shall provide a parametrization of VX . Along the way, we shall see
why the case n = d1 = d2 = 2 is special. The entries of these n matrices Mi

in (5) are linear forms in the entries pj1···jn of the tensor P . Their coefficients
depend linearly on the entries of X.

230



GEOMETRY OF DEPENDENCY EQUILIBRIA (11 of 26)

Consider the affine line whose coordinate xi = PX(i) is the expected
payoff (3) for player i. We embed this into a projective line P1 by setting
zi = (xi : −1). We call (P1)n the algebraic payoff space. Its homogeneous
coordinates are z = (z1, z2, . . . , zn). The algebraic payoff map is the following
rational map from the Spohn variety to the algebraic payoff space:

πX : VX 99K (P1)n , P 7→
(

ker(M1(P )) , ker(M2(P )) , . . . , ker(Mn(P ))
)
. (7)

The name “payoff map” is justified as follows. Suppose that P is a depen-
dency equilibrium, so P is a point in the set VX ∩∆. The expected payoff xi

for the ith player satisfies

Mi(P ) ·
[

xi

−1

]
= 0 for i = 1, 2, . . . , n. (8)

To see this, augment the rank one matrix Mi(P ) by its row of column sums,
like in (18). Equation (8) implies πX(P ) =

(
(x1 :−1), . . . , (xn :−1)

)
. We now

write (8) on (P1)n as follows:

Mi(P ) · zTi = KX,i(zi) · P, (9)

where the tensor P is vectorized as column. The matrix KX,i(zi) has di rows
and d1d2 · · · dn columns. Its entries are binary forms in zi whose coefficients
depend on the entries of X(i).

Definition 3.5. The Konstanz matrix KX(z) of the game X is a matrix with∑n
i=1 di rows and d1d2 · · · dn columns. It is obtained by stacking the matrices

KX,1(z1), . . . ,KX,n(zn) on top of each other. When working on the affine chart
zi = (xi : −1), we write KX(x).

The Konstanz matrix KX(z) has linearly independent rows when z is generic.
Therefore, its kernel is a vector space of dimension D =

∏n
i=1 di−

∑n
i=1 di. We

regard ker(KX(z)) as a linear subspace of dimension D − 1 in the projective
space P(V ). Our construction implies that the Spohn variety is the union of
these linear spaces for z ∈ (P1)n:

VX =
{
P ∈ P(V ) : KX(z) · P = 0 for some z ∈ (P1)n

}
. (10)

At this point we must distinguish the cases D ≥ 1 and D = 0. First, let
D ≥ 1. Then the map πX is dominant, and its generic fiber is a linear space
PD−1. This map furnishes an explicit birational isomorphism between the
Spohn variety VX and PD−1×(P1)n. The representation (10) gives the inverse,
hence the desired rational parametrization of VX . This confirms the dimension
formula in Theorem 3.2, which is here rewritten as dim(VX) = D − 1 + n.

Finally, let D = 0. This implies n = d1 = d2 = 2, so the Konstanz matrix
has format 4× 4. It is shown in (19). The determinant of KX(z) is a curve of
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degree (2, 2) in P1×P1, so it is an elliptic curve. The map πX gives a birational
isomorphism from VX onto this curve. This elliptic curve is studied in detail
in Section 4, and we will revisit it in Example 5.2.

The case D = 1 is also of special interest, because here πX is a birational
isomorphism.

Example 3.6 (Del Pezzo surfaces of degree two). Let n = 2, d1 = 3, d2 = 2.
Up to relabelling, this is the only case satisfying D = 1. The Konstanz matrix
equals

KX(x) =


x1 − a11 x1 − a12 0 0 0 0

0 0 x1 − a21 x1 − a22 0 0
0 0 0 0 x1 − a31 x1 − a32

x2 − b11 0 x2 − b21 0 x2 − b31 0
0 x2 − b12 0 x2 − b22 0 x2 − b32

 . (11)

Here (x1, x2) are coordinates on an affine chart C2 of P1×P1. The rank of (11)
drops from 5 to 4 at precisely six points in P1×P1. Five of these lie in C2. We
obtain a rational map

P1 × P1 99K P5 , (x1, x2) 7→ ker(KX(x)).

This blows up six points, and its image is the Spohn surface VX . The inverse
map is πX . We conclude that VX is the blow-up of P1×P1 at six general points.
When seen through the lens of algebraic geometry [16, Example 1.9], this is a
del Pezzo surface of degree two.

Konstanz matrices for three other tensor formats are shown in Examples
5.2, 5.6 and 5.7.

4. Elliptic Curves

In this section we take a closer look at 2 × 2 games, with payoff matrices
X(1) = (aij) and X(2) = (bij). The Spohn variety VX is the elliptic curve in
P3 defined by the two quadrics

f1 = det(M1) = (a21 − a11)p11p21 + (a22 − a11)p11p22

+ (a21 − a12)p12p21 + (a22 − a12)p12p22,

f2 = det(M2) = (b12 − b11)p11p12 + (b22 − b11)p11p22

+ (b12 − b21)p12p21 + (b22 − b21)p21p22.

This curve passes through the coordinate points E11, E12, E21, E22 in P3. It
is smooth and irreducible when aij and bij are generic. A planar model of
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this elliptic curve is obtained by eliminating p22 from f1 and f2. Setting
p11 = x, p12 = y, p21 = z, we find the ternary cubic

(a11 − a22)(b11 − b12)x2y + (a11 − a21)(b22 − b11)x2z

+ (a12 − a22)(b11 − b12)xy2 + (a11 − a21)(b22 − b21)xz2

+ (a12 − a22)(b21 − b12)y2z + (a12 − a21)(b22 − b21)yz2

+
(
(a12 − a21)(b22 − b11) + (a11 − a22)(b21 − b12)

)
xyz.

(12)

A ternary cubic of the form (12) is called a Spohn cubic. This passes through
the three coordinate points in P2. But there are other restrictions. To see this,
we consider all cubics

c1x
2y + c2x

2z + c3xy
2 + c4xz

2 + c5y
2z + c6yz

2 + c7xyz. (13)

The set of such cubics is a projective space P6 with homogeneous coordinates
c1, . . . , c7.

Proposition 4.1. The Spohn cubics (12) form the 4-dimensional variety in P6

given by c1+c2−c3−c4+c5+c6−c7 = c2c4c5−c3c4c5−c2c3c6+c4c5c6+c3c4c7−
c4c5c7 − c24c5 + c4c

2
5 = 0. This is a cubic hypersurface inside a hyperplane P5.

Its singular locus consists of nine points.

Proof. This is obtained by a direct computation using the software Macaulay2

[10].

While the general Spohn cubic is smooth, it can be singular for special
payoff matrices. To identify these, we compute the discriminant D of the
ternary cubic (13). This discriminant is an irreducible polynomial of degree 12
in seven unknowns. It is a sum of 127 terms:

D = 16c51c
2
4c

2
5c

3
6+16c41c

2
2c

2
5c

4
6−24c41c2c

2
4c

3
5c

2
6+· · ·+c22c

2
3c

2
4c

2
5c

4
7−c22c23c4c5c6c57.

We now plug in the Spohn cubic (12). The resulting discriminant is a polyno-
mial of degree 24 in the eight unknowns aij , bij . It factors into nine irreducible
factors, namely

D(a, b) = (a11 − a12)2(a11 − a21)2(a12 − a22)2(a21 − a22)2 ·
· (b11 − b12)2(b11 − b21)2(b12 − b22)2(b21 − b22)2E(a, b).

The last factor E(a, b) has 587 terms of degree 8. Nonvanishing of the discrim-
inant D(a, b) ensures that the Spohn cubic (12) is smooth in P2, and hence so
is the curve VX in P3.

We have argued that the general Spohn curve VX is an elliptic curve. It is
thus natural to express its j-invariant, which identifies the isomorphism type,
in terms of the payoff matrices.
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Proposition 4.2. The j-invariant of the Spohn cubic equals I(a, b)3/D(a, b),
where I(a, b) is an irreducible polynomial of degree 8 with 633 terms in the
entries of the two payoff tables.

Proof. For any ternary cubic, the j-invariant is the cube of the Aronhold in-
variant divided by the discriminant; see [12, Example 11.12]. Here, I(a, b) is
the Aronhold invariant of (12).

The dependency equilibria of our game are the points in VX ∩∆. To better
understand this semialgebraic set, we identify some landmarks on the curve
VX . The first such landmark is the Nash point, which is the unique rank one
matrix in P3 lying on VX :

N =

[
b22 − b21
b11 − b12

] [
a22 − a12 a11 − a21

]
. (14)

Suppose that the following holds and the two signs are non-zero:

sign(a11−a21) = sign(a22−a12) and sign(b11− b12) = sign(b22− b21). (15)

Then we can scale the matrix N in (14) by
(
(a11− a21 + a22− a12)(b11− b12 +

b22 − b21)
)−1

to land in ∆, and the result is the unique totally mixed Nash
equilibrium of the game.

Next recall that the four coordinate points Eij lie on the curve VX . Their
tangent lines span(Dij , Eij) are specified by their intersection points with the
opposite coordinate planes:

D11 =

[
0 (a11−a21)(b22−b11)

(a22−a11)(b11−b12) (a11−a21)(b11−b12)

]
,

D12 =

[
(a22−a12)(b12−b21) 0
(a22−a12)(b11−b12) (a12−a21)(b11−b12)

]
,

D21 =

[
(a21−a12)(b21−b22) (a11−a21)(b21−b22)

0 (a11−a21)(b12−b21)

]
,

D22 =

[
(a22−a12)(b21−b22) (a11−a22)(b21−b22)
(a12−a22)(b11−b22) 0

]
.

And, finally, our curve intersects each coordinate plane in a unique non-coor-
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dinate point:

F11 =

[
0 (a12−a21)(b21−b22)

(a12−a22)(b21−b12) (a12−a21)(b12−b21)

]
,

F12 =

[
(a11−a22)(b21−b22) 0
(a11−a22)(b22−b11) (a11−a21)(b11−b22)

]
,

F21 =

[
(a12−a22)(b11−b22) (a11−a22)(b22−b11)

0 (a11−a22)(b11−b12)

]
,

F22 =

[
(a12−a21)(b12−b21) (a11−a21)(b21−b12)
(a12−a21)(b11−b12) 0

]
.

We now show that dependency equilibria may exist even if there are no Nash
equilibria in ∆:

Example 4.3 (Disconnected equilibria). Consider the game X given by the
payoff matrices[

a11 a12
a21 a22

]
=

[
2 0
4 1

]
and

[
b11 b12
b21 b22

]
=

[
2 1
4 3

]
,

with Nash point N =

[
−1 2

1 −2

]
.

Here, VX is smooth and irreducible.
This elliptic curve has j-invariant −(731033)/(283247). The real curve

VX ∩ ∆ has two connected components, both disjoint from the Segre surface
⟨p11p22 − p12p21⟩. One arc connects E11 and F21, and the other arc connects
E22 and F12.

The combinatorics of the curve VX ∩∆ is given by the signs of the entries
in the nine matrices N , Dij and Fij . These signs are determined by the respec-
tive orderings of a11, a12, a21, a22 and b11, b12, b21, b22, assuming that these are
quadruples of distinct numbers. We derive the following theorem by analyzing
all (4!)2 = 576 possibilities for these pairs of orderings.

Theorem 4.4. For a generic 2× 2 game X, the curve of dependency equilibria
VX ∩ ∆ has either 0, 1 or 2 connected components, each of which is an arc
between two boundary points. If (15) holds then there is exactly one EE, EF
or FF arc. If (15) does not hold then all components are EF arcs, and their
number can be 0, 1 or 2.

5. The Payoff Region

The n payoff tensors X(i) define a canonical linear map from tensor space to
payoff space:

πX : V → Rn , P 7→
(
PX(1), PX(2), . . . , PX(n)

)
. (16)
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The ith coordinate PX(i) is the expected payoff for player i, given by the
formula in (3). We call πX the payoff map. By (8), this is the lifting to V of
the algebraic payoff map in (7).

The image of the probability simplex ∆ is a convex polytope πX(∆) that
is usually full-dimensional in Rn. This polytope is known as the cooperative
payoff region of the game X. Its points are all possible expected payoff vectors
for the game in question. Tu and Jiang [23] investigate the semialgebraic subset
that is obtained by projecting all rank one tensors in ∆. This is a nonconvex
subset of πX(∆), known as the noncooperative payoff region.

For 2× 2 games, this region is the image of the Segre surface under a linear
projection into the plane. Our readers might like to compare [23, Figure 1]
with the surface shown in Figure 1.

We are interested in the subset of payoff vectors that arise from dependency
equilibria:

PX := πX(VX ∩∆) ⊂ πX(∆) ⊂ Rn.

The set PX is semialgebraic, by Tarski’s Theorem on Quantifier Elimination.
The authors of [23] would probably call PX the dependency payoff region of
the game X. In the present paper, we just use the term payoff region for PX ,
since our focus is on dependency equilibria.

We begin by noting that, at every dependency equilibrium of X, the ex-
pected payoffs agree with the various conditional expected payoffs. We can
thus use conditional expectations in (16) to define the payoff region PX . This
is the content of the following lemma.

Lemma 5.1. Let P be a tensor in V with p++···+ = 1 that represents a point in
VX . Then

PX(i) =

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn
p+···+k+···+

,

for all i ∈ [n] and k ∈ [di]. (17)

Proof. The di × 2 matrix Mi in (5) has rank one, by definition of VX . We
replace the first row by the sum of all rows. This transforms Mi into the
following matrix whose rank is one:

1 PX(i)

p+···+2+···+
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···2···jnpj1···2···jn

...
...

p+···+di+···+
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···di···jnpj1···di···jn

. (18)

The 2 × 2 minor given by the first row and the kth row is zero; see also (8).
This implies the desired identity (17) for k ≥ 2. The case k = 1 is obtained by
swapping rows in Mi.
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(a) (b)

Figure 2: The payoff region for each of these 2× 2 games is the blue arc in the
yellow triangle.

Example 5.2 (2×2 games). The polygon πX(∆) is the convex hull in R2 of the
points (a11, b11), (a12, b12), (a21, b21) and (a22, b22), so it is typically a triangle
or a quadrilateral. This polygon contains the payoff curve PX , which is the
image of the curve VX ∩ ∆ under the payoff map πX . This is a plane cubic,
defined by the determinant of the Konstanz matrix

KX(x) =


x1 − a11 x1 − a12 0 0

0 0 x1 − a21 x1 − a22
x2 − b11 0 x2 − b21 0

0 x2 − b12 0 x2 − b22

 . (19)

For each point x on this curve, the kernel of (19) gives the unique matrix P
satisfying πX(P ) = x. The payoff region PX is the subset of points x on the
curve for which P > 0.

Figure 2a shows the payoff region for the Bach or Stravinsky game in Exam-
ple 2.1. It is the blue arc inside the yellow triangle πX(∆) = conv{(0, 0), (2, 3),
(3, 2)}. This picture is the image of Figure 1 under the payoff map πX . Fig-
ure 2b shows a perturbed version, with a11 = 3.3 and b22 = 3.2, where the
Spohn curve is irreducible.

We now consider cases other than 2× 2 games, so that dim(VX) ≥ n holds.
We further assume that X is generic and that VX ∩ ∆ is non-empty. Since
the algebraic payoff map πX in (7) is dominant, the payoff region PX is a
full-dimensional semialgebraic subset of Rn.

Example 5.3 (3 × 2 games). The following two payoff matrices exhibit the
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(a11, b11)

(a12, b12)

(a22, b22)

(a21, b21)

(a31, b31)

(a32, b32)

Figure 3: The payoff region PX for the 3× 2 game in Example 5.3 consists of
two curvy triangles, inside the pentagon πX(∆). Its boundary is given by two
lines and two cubics.

generic behavior:

X(1) =

[
a11 a12

a21 a22

a31 a32

]
=

[
0 30
5 25
13 24

]
and X(2) =

[
b11 b12
b21 b22
b31 b32

]
=

[
6 42
21 12
36 0

]
. (20)

The polygon πX(∆) is the pentagon whose vertices are (aij , bij) with {i, j} ̸=
{2, 2}. The payoff region PX = πX(VX ∩∆) is shaded in blue in Figure 3. The
algebraic boundary of PX is given by the two cubics 9x2

1x2 − 2x1x
2
2 − 162x2

1 −
189x1x2 + 30x2

2 + 3906x1 − 540x2 + 2160 and 72x2
1x2 − 19x1x

2
2 − 1512x2

1 −
1614x1x2 + 390x2

2 + 36288x1 − 2340x2, plus the two vertical lines x1 − 13 and
x1 − 24. The two curvy triangles that form PX meet at the special point(

22.9902299164, 16.2987107576
)
. (21)

Figure 3 illustrates the general behavior for 3×2 games. We can understand
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this via the del Pezzo geometry in Example 3.6. The Spohn surface VX is the
blow-up of P1 × P1 at six points. One of these six is the special point (21).
The Konstanz matrix KX(x) in (11) has rank four at this point, so there is
a line segment in VX ∩ ∆ that maps to (21) under πX . At all nearby points
x ∈ R2, the rank of KX(x) is five. Here, πX gives a bijection between VX ∩∆
and the payoff region PX . The boundary curves of PX are defined by maximal
minors of KX(x). Each minor is a 5× 5-determinant, but it has degree four as
a polynomial in x = (x1, x2). That quartic factors into a linear factor x1 − aij
times a cubic in (x1, x2).

We now work towards the main result of this section, generalizing Exam-
ple 5.3 to arbitrary tensor formats. The key players are the maximal minors of
the Konstanz matrix KX(x).

Lemma 5.4. Given any game X, each of the
(

d1d2···dn

d1+d2+···+dn

)
maximal minors of

the Konstanz matrix KX(x) is a polynomial of degree at most
∑n

i=1 di − n + 1
in the unknowns x1, . . . , xn.

Proof. The highest degree seen in the maximal minors is the rank of KX(x)
after setting all entries in the payoff tables X(i) to zero. After rescaling the
rows, the columns of this matrix are homogeneous coordinates for the vertices
of the product of standard simplices ∆d1−1 × · · · ×∆dn−1. The dimension of
this polytope is one less than the matrix rank.

Suppose now that X is fixed and generic. We consider the stratification of
the payoff space Rn defined by the signs taken on by the maximal minors of
KX(x). We call this the oriented matroid stratification of the game X. Indeed,
it is the restriction to Rn of the usual oriented matroid stratification (cf. [13])
of the space of matrices with

∑n
i=1 di rows and

∏n
i=1 di columns. The maximal

minors of KX(x) that are nonzero polynomials give the bases of a matroid.
The full-dimensional strata correspond to orientations of that matroid. The
open stratum containing a given point x ∈ Rn consists of all points x′ ∈ Rn

such that corresponding nonzero maximal minors of KX(x) and KX(x′) have
the same sign +1 or −1.

The oriented matroid strata in Rn are semialgebraic. Their boundaries are
delineated by the maximal minors of KX(x). These minors are the polynomials
in Lemma 5.4. The oriented matroid strata can be disconnected (cf. [13]). This
happens in Examples 4.3 and 5.3. Note that the union of the two open curvy
triangles in Figure 3 is a single chamber (open stratum) for the game X given
in (20). It is given by prescribing a fixed sign +1 or −1 for each of the six
maximal minors of (11). Interestingly, PX itself is connected in this case. The
point (21) lies in PX because its fiber under πX is a line that meets the interior
of ∆.
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We now present our characterization of the payoff region PX of a generic
game X. By the algebraic boundary of PX we mean the Zariski closure of its
topological boundary.

Theorem 5.5. The payoff region PX for a generic game X is a union of ori-
ented matroid strata in Rn that are given by the signs of the maximal minors
of the Konstanz matrix KX(x). Its algebraic boundary is a union of irreducible
hypersurfaces of degree at most

∑n
i=1 di − n + 1.

Proof. For fixed x ∈ Rn, the set of probability tensors P with expected payoffs
x is equal to

kernel
(
KX(x)

)
∩ ∆. (22)

This is a convex polytope which is either empty or has the full dimension∏n
i=1 di −

∑n
i=1 di − 1. The payoff region PX is the set of all x ∈ Rn such

that this polytope is nonempty. We know from oriented matroid theory [2,
Chapter 9] that the combinatorial type of the polytope (22) is determined by
the oriented matroid of the matrix KX(x). Therefore, the combinatorial type is
constant as x ranges over a fixed oriented matroid stratum in Rn. In particular,
whether or not (22) is empty depends only on the oriented matroid of KX(x).
Namely, it is non-empty if and only if every column index lies in a positive
covector of that oriented matroid. This proves the first sentence. The second
sentence follows from Lemma 5.4.

One of the reasons for our interest in the algebraic boundary is that it helps
in characterizing dependency equilibria P that are Pareto optimal. We thus
address a question raised in [20, Section 4]. Recall that P is Pareto optimal if
its image x = πX(P ) in PX satisfies (x + Rn

≥0) ∩ PX = {x}. This condition
implies that x lies in the boundary of PX , hence one of the maximal minors of
KX(x) must vanish. For instance, for the 3×2 game in Example 5.3, the Pareto
optimal equilibria correspond to the points on the upper-right boundaries of
the two curvy triangles in Figure 3. At such points x, the product of our two
cubics vanishes.

We close this section by discussing Theorem 5.5 for two cases larger than
Example 5.3.

Example 5.6 (3×3 games). Let n = 2 and d1 = d2 = 3. The Konstanz matrix
KX(x) equals
x1−a11 x1−a12 x1−a13 0 0 0 0 0 0

0 0 0 x1−a21 x1−a22 x1−a23 0 0 0
0 0 0 0 0 0 x1−a31 x1−a32 x1−a33

x2−b11 0 0 x2−b21 0 0 x2−b31 0 0
0 x2−b12 0 0 x2−b22 0 0 x2−b32 0
0 0 x2−b13 0 0 x2−b23 0 0 x2−b33

.
Among the

(
9
6

)
= 84 maximal minors of this 6×9 matrix, six are identically zero.

Six others are irreducible polynomials of degree five in x = (x1, x2). Each of the
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remaining 72 minors is an irreducible cubic times a product (x1−aij)(x2−bkl).
The resulting arrangement of lines, cubics and quintics divides the plane R2

into open chambers. We examine the chambers that lie inside the polygon
πX(∆). The rank 6 oriented matroid of KX(x), given by 78 signed bases, is
constant on each chamber. The payoff region is a union of some of them.

Example 5.7 (2× 2× 2 games). The game played by Adam, Bob and Carl in
Example 2.3 has the Konstanz matrix KX(x) as:
x1−a111 x1−a112 x1−a121 x1−a122 0 0 0 0

0 0 0 0 x1−a211 x1−a212 x1−a221 x1−a222
x2−b111 x2−b112 0 0 x2−b211 x2−b212 0 0

0 0 x2−b121 x2−b122 0 0 x2−b221 x2−b222
x3−c111 0 x3−c121 0 x3−c211 0 x3−c221 0

0 x3−c112 0 x3−c122 0 x3−c212 0 x3−c222

.
All

(
8
6

)
= 28 maximal minors are irreducible polynomials of degree four in

x = (x1, x2, x3). Each of them defines a smooth quartic surface in C3 that has
three isolated singularities at infinity in P3. This data specifies an arrangement
of 28 K3 surfaces in P3. We examine its chambers inside the polytope πX(∆),
which has ≤ 8 vertices. The payoff region PX is the union of a subset of these
chambers, so its algebraic boundary consists of quartic surfaces.

6. Conditional Independence and Bayesian Networks

One drawback of dependency equilibria is that they are abundant. Indeed, if
the Spohn variety VX intersects the open simplex ∆, then the semialgebraic set
VX ∩∆ of all dependency equilibria has dimension

∏n
i=1 di −

∑n
j=1 dj + n− 1.

This follows from Theorem 3.2. To mitigate this drawback, we restrict to
intersections of VX with statistical models in ∆. Natural candidates are the
conditional independence models in [21, Section 8.1] and [22, Section 4.1].

We view the n players as random variables with state spaces [d1], . . . , [dn].
A point P in ∆ is a joint probability distribution. Let C be any collection of
conditional independence (CI) statements on [n]. These statements have the
form A ⊥⊥ B |C, where A,B,C are pairwise disjoint subsets of [n]. Each CI
statement translates into a system of homogeneous quadratic constraints in the
tensor entries pj1j2···jn . This translation is explained in [21, Proposition 8.1]
and [22, Proposition 4.1.6]. We write MC for the projective variety in P(V )
that is defined by these quadrics, arising from all statements A⊥⊥B |C in C.
Here we assume that components lying in the hyperplanes {pj1j2···jn = 0} and
{p++···+ = 0} have been removed.

Suppose X is any game in normal form, and C is any collection of CI
statements. We define the Spohn CI variety to be the intersection of the Spohn
variety with the CI model:

VX,C = VX ∩ MC . (23)
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We again assume that components lying in the special hyperplanes above have
been removed. The intersection VX,C ∩ ∆ with the simplex ∆ is the set of
all CI equilibria of the game X. This is a semialgebraic set which is a natural
extension of the set of Nash equilibria of X. In what follows we assume that
all random variables are binary, i.e. d1 = d2 = · · · = dn = 2.

Example 6.1 (Nash points). Let C be the set of all CI statements on [n].
The model MC is the Segre variety of rank one tensors, and the Spohn CI
variety (23) is the set of all Nash points in the Spohn variety VX . By [21,
Corollary 6.9], this variety is finite, and its cardinality is the number of de-
rangements of [n], which is 1, 2, 9, 44, 265, . . . for n = 1, 2, 3, 4, 5, . . .

For n ≥ 3, the Nash points span a linear subspace of codimension 2n in
P(V ) ≃ P2n−1. To see this, we note that the ith multilinear equation in [21,
Theorem 6.6] has degree n−1 and it misses the ith unknown π(i). Multiplying
that equation by π(i) and by 1 − π(i) gives two linear constraints on P(V ) for
each i. These 2n linear forms are linearly independent.

Example 6.2 (n = 3, d1 = d2 = d3 = 2). Consider games X for three players
with binary choices. The Spohn variety VX is a complete intersection of dimen-
sion 4 and degree 8 in P7. It is defined by imposing rank one constraints on the
three matrices Mi in Example 2.3. It is parametrized by the lines ker(KX(x))
where x ∈ C3 and KX(x) is the matrix in Example 5.7.

We examine the Spohn CI varieties given by three models MC in [21, Sec-
tion 8.1]. In each case, the intersection (23) is transversal in ∆, and we find
that VX,C is irreducible in P7.

(a) Let C = { 1⊥⊥2 | 3} as in [21, eqn (8.3)]. The CI modelMC has codimen-
sion 2 and degree 4, and the Spohn CI variety VX,C is a surface of degree
28 in P7. We find that the prime ideal of VX,C is minimally generated by
five quadrics and three quartics.

(b) Let C = { 2⊥⊥3 } as in [21, eqn (8.4)], so here C = ∅. The CI model MC
is the hypersurface, defined by the quadric p+11p+22 − p+12p+21. The
Spohn CI variety VX,C is a threefold of degree 10 in P7. Its prime ideal
is minimally generated by six quadrics.

(c) Let C = { 1⊥⊥23 } as in [21, eqn (8.5)]. HereMC ≃ P1×P3 is defined by
the 2 × 2 minors of a 2 × 4 matrix obtained by flattening the tensor P .
The Spohn CI variety VX,C is a curve of degree 8 and genus 3. It lies in a
P5 inside P7. Its prime ideal is generated by two linear forms and seven
quadrics. These will be explained after Example 6.5.

The computation of the prime ideals is non-trivial. One starts with the ideal
generated by the natural quadrics defining (23), and one then saturates that

ideal by p+++ ·
∏2

i,j,k=1 pijk. We performed these computations with the com-
puter algebra system Macaulay2 [10].
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Of special interest are graphical models, such as Markov random fields and
Bayesian networks. These allow us to describe the nature of the desired equi-
libria by means of a graph whose nodes are the n players. This is different from
the setting of graphical games in [21, Section 6.5], where the graph structure
imposes zero patterns in the payoff tables X(i).

Inspired by [19, Section 3], we now focus on Bayesian networks, where the
CI statements C describe the global Markov property of an acyclic directed
graph with vertex set [n]. These CI statements and their ideals are explained
in [8, Section 3]. In Macaulay2, they can be computed using the commands
globalMarkov and conditionalIndependenceIdeal in the GraphicalModels

package. Sometimes, it is preferable to work with the prime ideal ker(Φ) in [8,
Theorem 8]. From this we obtain the ideal of the Spohn CI variety VX,C by
saturation, as described at the end of Example 6.2. For all the models we were
able to compute, this ideal turned out to be of the expected codimension. In
each case, except for the network with no edges, the variety VX,C is irreducible.
We conjecture that these facts hold in general.

Conjecture 6.3. For every Bayesian network C on n binary random variables,
the Spohn CI variety VX,C has the expected codimension n inside the modelMC
in P2n−1. The variety VX,C is positive-dimensional and irreducible whenever
the network has at least one edge.

Proposition 6.4. Conjecture 6.3 holds for n ≤ 3.

Proof. For the network with no edges, MC is the Segre variety (P1)n. The
dimension statement holds, but the Spohn CI variety is reducible, as seen in
Example 6.1. We thus examine all Bayesian networks with at least one edge.
These satisfy dim(MC) ≥ n + 1. The case n ≤ 2 being trivial, we assume that
n = 3. If the network is a complete directed acyclic graph, then the ideal ofMC
is the zero ideal and VX,C = VX . There are four networks left to be considered.
By [8, Proposition 5], they are precisely the three models in Example 6.2:

(a) 1← 3→ 2 or 2→ 3→ 1 (b) 3→ 1← 2 (c) 3→ 2 1.

This means that the proof was already given by our analysis in Example 6.2.

Consider the next case n = 4. Up to relabeling, there are 29 Bayesian
networks C with at least one edge. They are listed in [8, Theorem 11], along
with a detailed analysis of the varietyMC in each case. We embarked towards
a proof of Conjecture 6.3, by examining all 29 models. But the computations
are quite challenging, and we leave them for the future.

Example 6.5. Consider the network #15 in [8, Table 1]. The variety MC
has dimension 9 and degree 48. An explicit parametrization ϕ is shown in [21,
page 109]. We can represent VX,C by substituting this parametrization into the
equations det(Mi) = 0 for i = 1, 2, 3, 4.
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The smallest irreducible variety in Conjecture 6.3 arises from the Bayesian
network C with only one edge, here taken to be n → n − 1. The Spohn CI
variety VX,C contains all the Nash points in Example 6.1. The rest of this paper
is dedicated to this scenario. It is important for applications of dependency
equilibria because of its proximity to Nash equilibria.

For our one-edge network,MC is the Segre variety (P1)n−2×P3 embedded
into P2n−1. Hence MC has dimension n + 1. The Spohn CI variety VX,C is a
curve. This curve lies in a linear subspace of codimension 2n− 4 in P2n−1. In
addition to the quadrics that define the Segre variety MC , the ideal of VX,C
contains 2n − 4 linear forms and 2n−1 quadrics that depend on the game X.
The determinants of the matrices M1,M2, . . . ,Mn−2 give rise to two linear
forms each. The determinants of the matrices Mn−1 or Mn give rise to 2n−2

quadrics.
For example, if n = 3 then the variety MC ≃ P1 × P3 has the parametric

representation
pijk = σiτjk for 1 ≤ i, j, k ≤ 2.

The prime ideal of MC is generated by the six 2× 2 minors of the matrix[
p111 p112 p121 p122
p211 p212 p221 p222

]
. (24)

After removing common factors from rows and columns, the three matrices in
Example 2.3 are

M1 =

[
1 a111τ11 + a112τ12 + a121τ21 + a122τ22
1 a211τ11 + a212τ12 + a221τ21 + a222τ22

]
,

M2 =

[
τ11 + τ12 b111σ1τ11 + b112σ1τ12 + b211σ2τ11 + b212σ2τ12
τ21 + τ22 b121σ1τ21 + b122σ1τ22 + b221σ2τ21 + b222σ2τ22

]
,

M3 =

[
τ11 + τ21 c111σ1τ11 + c121σ1τ21 + c211σ2τ11 + c221σ2τ21
τ12 + τ22 c112σ1τ12 + c122σ1τ22 + c212σ2τ12 + c222σ2τ22

]
.

By multiplying det(M1) with σ1 and with σ2, we obtain two linear forms in
p111, p112, . . . , p222 that vanish on VX . Likewise, by multiplying det(M2) and
det(M3) with σ1 and with σ2, we obtain four quadratic forms in p111, p112, . . . ,
p222 that vanish on VX . Three of the six minors of (24) are linearly independent
modulo the linear forms. This explains the 2 + 7 generators of the prime ideal
of the curve VX,C , which has genus 3 and degree 8 in P5 ⊂ P7.

Let now n = 4. The one-edge model MC is the Segre variety P1 × P1 × P3

in P15. Its prime ideal is generated by 46 binomial quadrics. Of these, 32 are
linearly independent modulo the four linear forms that arise from the matrices
M1 and M2 as above. Similarly, M3 and M4 contribute eight quadrics. We
conclude that VX,C is an curve of genus 23 and degree 30 in P11 ⊂ P15, and its
prime ideal is minimally generated by 4 linear forms and 40 quadrics.
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In the recent work [15] it is proven, for generic games, that the Spohn CI
curve for the one-edge model is an irreducible complete intersection curve in
the Segre variety (P1)n−2 × P3. Moreover the authors give an explicit formula
for its degree and genus. In the spirit of Datta’s universality theorem for Nash
equilibria, they show that any affine real algebraic variety S ⊆ Rm defined by
k polynomials with k < m can be represented as the Spohn CI variety of an
n-person game for one-edge Bayesian networks on n binary random variables.
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[13] N. E. Mnëv, The universality theorem on the oriented matroid stratification
of the space of real matrices, Discrete and Computational Geometry: Papers
from the DIMACS Special Year (J. E. Goodman et al., ed.), DIMACS Series in
Discrete Math. Theoret. Comput. Sci., vol. 6, DIMACS/AMS, 1990, pp. 237–
244.

[14] R. Nau, S.G. Canovas, and P. Hansen, On the geometry of nash equilibria
and correlated equilibria, Internat. J. Games Theory 32 (2004), 443—453.

[15] I. Portakal and J. Sendra–Arranz, Nash conditional independence curve,
accepted in MEGA Effective Methods in Algebraic Geometry, Kraków, 2022.

[16] S. Rocco and K. Ranestad, On surfaces in P6 with no trisecant lines, Ark.
Mat. 38 (2000), no. 2, 231 – 261.

[17] R. W. Rosenthal, Games of perfect information, predatory pricing and the
chain-store paradox, J. Econom. Theory 25 (1981), no. 1, 92–100.

[18] I. R. Shafarevich and M. Reid, Basic algebraic geometry 1: Varieties in
projective space, Springer Berlin, Heidelberg, 2013.

[19] W. Spohn, Dependency equilibria and the causal structure of decision and game
stituations, Homo Oeconomicus 20 (2003), 195–255.

[20] W. Spohn, Dependency equilibria, Philos. Sci. 74 (2007), 775–789.
[21] B. Sturmfels, Solving systems of polynomial equations, CBMS Reg. Conf. Ser.

Math., Amer. Math. Soc., 2002.
[22] S. Sullivant, Algebraic statistics, Grad. Stud. Math., Amer. Math. Soc., 2018.
[23] Y.-S. Tu and W.-T. Juang, The payoff region of a strategic game and its

extreme points, preprint arXiv:1705.0145, 2017.

Authors’ addresses:

Irem Portakal,
Technical University of Munich
Department of Mathematics
Boltzmannstr. 3
85748 Garching, Germany
E-mail: mail@irem-portakal.de

Bernd Sturmfels,
Max Planck Institute for Mathematics in the Sciences Leipzig
Inselstr. 22
04103 Leipzig, Germany
&
University of California at Berkeley
Department of Mathematics
925 Evans Hall
Berkeley, CA 94720-3840 USA
E-mail: bernd@mis.mpg.de

Received January 21, 2022
Revised April 23, 2022
Accepted May 2, 2022

246



Rend. Istit. Mat. Univ. Trieste
Vol. 54 (2022), Art. No. 6, 15 pages

DOI: 10.13137/2464-8728/33882

Ramification and discriminants of
vector bundles and a quick proof of

Bogomolov’s theorem

Hirotachi Abo, Robert Lazarsfeld,
and Gregory G. Smith

Dedicated to Giorgio Ottaviani on the occasion of his sixtieth birthday.

Abstract. By analyzing degeneracy loci over projectivized vector
bundles, we recompute the degree of the discriminant locus of a vector
bundle and provide a new proof of the Bogomolov instability theorem.

Keywords: Vector bundles, degeneracy loci, discriminant, instability.
MS Classification 2020: 14J60, 14C17, 14N05.

1. Introduction

Let X be an n-dimensional smooth complex projective variety and let E be a
globally generated vector bundle on X of rank e ⩽ n. The projective space
Pr = P

(
H0(X,E)∗

)
parameterizes sections of E up to scalars. The discriminant

of E is the locus in Pr, typically a hypersurface, defined by

∆(E) :=
{
s ∈ Pr

∣∣ the zero scheme Zeroes(s) of s is singular
}
.

The closed algebraic set Zeroes(s) is understood to have its natural scheme
structure: when e = n, ∆(E) consists of those sections that vanish at something
other than

∫
cn(E) distinct points. There are various situations where it is

of interest to calculate the degree of ∆(E). This comes up, for instance, in
connection with eigenvalues of tensors [2]. In [1], the first author derives a
formula for the degree when e = n and X = Pn.

The first purpose of this note is to give a very quick derivation of a formula
for the (virtual) degree of ∆(E) reproving some results from [10]. For example,
when e = n, we show that the expected degree of ∆(E) is given by

δ(E) =

∫
X

(
KX + c1(E)

)
cn−1(E) + n cn(E) .

If each section s in ∆(E) is singular at several points, then the actual degree
of the discriminant hypersurface is smaller than its postulated one. However,
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when E is very ample and 1-jet spanned, we also show that ∆(E) is irreducible
of the expected degree.

As one might expect, the basic idea is to compute the class of the singular
locus of the universal zero-locus over Pr. It turns out that a somewhat related
computation leads to an extremely quick proof of the Bogomolov instability
theorem for vector bundles of rank 2 on an algebraic surface, reducing the
statement in effect to the Riemann–Hurwitz formula. The existence of a proof
along these lines seems to have been known to the experts, but as far as we
can tell it is not generally familiar. We therefore take this occasion to present
the argument. Some time ago, Langer [9, Appendix] gave an even quicker, but
related proof, using the fact that stability is preserved under pulling back by
generically finite morphisms.

The formula for the ramification locus is derived in Section 1. In Section 2,
we show that, when E is very ample and 1-jet spanned, the discriminant locus
is irreducible of the expected degree. The proof of the Bogomolov instability
theorem occupies Section 3.

Conventions

We work throughout over the complex numbers C. For any vector space V or
vector bundle E, P(V ) or P(E) denotes the projective space of one-dimensional
quotients. Given a smooth variety X, the Chow ring of X is A•(X) (or, if the
reader prefers, this is the even cohomology ring H2•(X,Z)). We write ci(E)
and si(E) for the i-th Chern and Segre classes of a vector bundle E whereas
c(E) and s(E) are the corresponding total Chern and Segre classes. Following
[6, Example 3.2.7], we use the notation c(E − F ) := c(E)/c(F ) = c(E) s(F )
for the “difference” of the total Chern classes of two bundles. Finally, given a
class α in A•(X), the component of α in codimension k is αk ∈ Ak(X).

2. Ramification Locus

In this section, we derive a formula for ramification class of certain morphisms
from projectivized vector bundles. To be more explicit, fix an n-dimensional
smooth complex projective variety X and consider a globally-generated vector
bundle E on X of rank e such that e ⩽ n.

Let VE := H0(X,E) be the C-vector space of global sections of E and set
r := dimC VE − 1. The trivial vector bundle on X with fibre VE is VE ⊗C OX
and the kernel of the evaluation map evE : VE ⊗C OX → E is ME := Ker(evE).
It follows that ME is a vector bundle of rank r−e+1 sitting in the short exact
sequence

0 ME VE ⊗C OX E 0 .
evE
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Applying the duality functor (−)∗ := Hom(−,OX), we obtain the short exact
sequence

0 E∗ (VE ⊗C OX)∗ M∗
E 0 .

The surjective map ontoM∗
E identifies the projectivization P(M∗

E) with a closed
subscheme in the product P

(
(VE ⊗C OX)∗

)
= X × P(V ∗

E) where V ∗
E is the dual

vector space of VE . Thus, we have P(M∗
E) = {(x, [s]) ∈ X × P(V ∗

E) | s(x) = 0}.
Let pE : X × P(V ∗

E) → X be the projection onto the first factor. We also use
pE for the restriction to P(M∗

E). Let qE : P(M∗
E) → P(V ∗

E) be the restriction of
the projection from X×P(V ∗

E) onto the second factor P(V ∗
E). When the vector

bundle E is unnecessary, we omit the subscripts on V , M , p, and q.

Guided by Example 14.4.8 in [6], the ramification locus R(q) of the map
q : P(M∗) → P(V ∗) is the (r−1)-st degeneracy locus of the induced differential
dq : q∗ΩP(V ∗) → ΩP(M∗);

R(q) :=
{
x ∈ P(M∗)

∣∣ rank of map dq at the point x is at most r − 1
}

= Zeroes(
∧r

dq) .

Since P(V ∗) and P(M∗) have dimension r and n + r − e, the subscheme R(q)
has codimension at most

(
r − (r − 1)

)(
n + r − e − (r − 1)

)
= n − e + 1; see

[6, p. 242]. The next proposition provides a formula for the ramification class
[R(q)] in the Chow ring A•(P(M∗)

)
.

Proposition 2.1. When the ramification locus R(q) has codimension n−e+1,
its class in A•(P(M∗)

)
is [R(q)] =

{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n−e+1

and
the degree of its pushforward is

deg q∗[R(q)] =

∫
X

p∗

(
[R(q)] c1

(
OP(M∗)(1)

)
r−1

)
.

Proof. Since R(q) has codimension n − e + 1, the Thom–Porteous formula [6,
Theorem 14.4] establishes that [R(q)] = cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
. Hence, it

suffices to prove that

cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
= cn−e+1

(
p∗ΩX − p∗E∗ ⊗ OP(M∗)(−1)

)
.

By combining the two short exact sequences

0 IP(M∗)/I
2
P(M∗) ΩX×P(V ∗)

∣∣
P(M∗)

ΩP(M∗) 0

0 q∗ΩP(V ∗) ΩX×P(V ∗)

∣∣
P(M∗)

p∗ΩX 0 ,

δ

θ
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we obtain the commutative diagram:

0

q∗ΩP(V ∗)

0 IP(M∗)/I
2
P(M∗) ΩX×P(V ∗)

∣∣
P(M∗)

ΩP(M∗) 0 .

p∗ΩX

0

dq

δ

θ

The snake lemma shows that Coker(dq) ∼= Coker(θ ◦ δ), so we deduce that

cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
= cn−e+1

(
p∗ΩX − IP(M∗)/I

2
P(M∗)

)
.

It remains to show that the conormal bundle IP(M∗)/I
2
P(M∗) on P(M∗) is

isomorphic to the vector bundle p∗E∗ ⊗OP(M∗)(−1). As a closed subscheme of
X × P(V ∗), the projectivization P(M∗) is the zero scheme of a regular section
of p∗E ⊗ OX×P(V ∗)(1); see [6, Appendix B.5.6]. Tensoring the Koszul complex
associated to this regular section with OP(M∗) produces the desired isomorphism
p∗E∗ ⊗ OP(M∗)(−1) ∼= IP(M∗) ⊗ OP(M∗)

∼= IP(M∗)/I
2
P(M∗).

To prove the second part, observe that OP(M∗)(1) = q∗OP(V ∗)(1); see [11,
Example 6.1.5]. It follows from the projection formula that the degree of push-
forward is

deg q∗[R(q)] =

∫
P(V ∗)

q∗[R(q)] c1
(
OP(V ∗)(1)

)
r−1

=

∫
P(M∗)

q∗
(
q∗[R(q)] c1

(
OP(V ∗)(1)

)
r−1

)
=

∫
P(M∗)

[R(q)] c1
(
OP(M∗)(1)

)
r−1

=

∫
X

p∗

(
[R(q)] c1

(
OP(M∗)(1)

)
r−1

)
.

In the following examples, we examine three special cases that express ram-
ification class as a polynomial in the Chern classes for E and ΩX . For all
nonnegative integers i, the defining short exact sequence of the kernel bundle
ME shows that p∗ c1

(
OP(M∗)(1)

)
r−e+i = si(M) = ci(E).
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Example 2.2 (e = 1). Suppose that the vector bundle E has rank 1. When
ramification locus R(q) has codimension n, Proposition 2.1 implies that

[R(q)] =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n

=

n∑
i=0

cn−i(p
∗ΩX) (−1)ic1

(
p∗E∗ ⊗ OP(M∗)(−1)

)i
=

n∑
i=0

cn−i(p
∗ΩX)

i∑
j=0

(
i
j

)
c1(p

∗E)j c1
(
OP(M∗)(1)

)
i−j ,

and deg q∗[R(q)] =

n∑
i=0

(i+ 1)

∫
X

cn−i(ΩX) c1(E)i.

Example 2.3 (n = e). Suppose that the rank of the vector bundle E equals
the dimension of its underlying variety X. When R(q) has codimension 1,
Proposition 2.1 implies that

[R(q)] =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
1

= c1(p
∗ΩX)− c1

(
p∗E∗ ⊗ OP(M∗)(−1)

)
= c1(p

∗ΩX) + c1(p
∗E) + n c1

(
OP(M∗)(1)

)
and deg q∗[R(q)] =

∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E).

Example 2.4 (e = n− 1). Suppose that the rank of E is the dimension of X
minus 1. Observe that s2(p

∗E) = s1(p
∗E)2 − c2(p

∗E∗) = c1(p
∗E)2 − c2(p

∗E)
and

s2
(
p∗E∗ ⊗ OP(M∗)(−1)

)
=

(
n

n− 2

)
c1
(
OP(M∗)(1)

)
2 − n s1(p

∗E∗) c1
(
OP(M∗)(1)

)
+ s2(p

∗E∗)

=
(
n
2

)
c1
(
OP(M∗)(1)

)
2 − n c1(p

∗E) c1
(
OP(M∗)(1)

)
+ c1(p

∗E)2 − c2(p
∗E) ;

see [6, p. 50 and Example 3.1.1]. When R(q) codimension 2, Proposition 2.1
implies that

[R(q)]

=
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
2

= c2(p
∗ΩX) + c1(p

∗ΩX) s1
(
p∗E∗ ⊗ OP(M∗)(−1)

)
+ s2

(
p∗E∗ ⊗ OP(M∗)(−1)

)
= c2(p

∗ΩX) + c1(p
∗ΩX)

(
c1(p

∗E) + (n− 1) c1
(
OP(M∗)(1)

))
+
(
n
2

)
c1
(
OP(M∗)(1)

)
2 − n c1(p

∗E) c1
(
OP(M∗)(1)

)
+ c1(p

∗E)2 − c2(p
∗E)

251



(6 of 15) H. ABO ET AL.

and

deg q∗[R(q)] =

∫
X

(
c2(ΩX) + c1(ΩX) c1(E) + c1(E)2 − c2(E)

)
cn−2(E)

+
(
(n− 1) c1(ΩX) + n c1(E)

)
cn−1(E) .

3. Discriminant Locus of a Vector Bundle

This section determines the degree of the discriminant of a vector bundle. As
in the first section, X is an n-dimensional smooth complex projective variety
X and E is a globally-generated vector bundle on X of rank e ⩽ n. Set
VE := H0(X,E), let ME be the kernel of evE : VE ⊗C OX → E, and write
qE : P(M∗

E) → P(V ∗
E) for composition of the inclusion P(M∗

E) → X × P(V ∗
E)

and the projection X × P(V ∗
E) → P(V ∗

E) onto the second factor.
The discriminant locus ∆(E) of the vector bundle E is the reduced scheme

structure on the image of the ramification locus R(qE) under the map qE . A
section s in V ∗

E is nonsingular if its zero scheme Zeroes(s) is nonsingular and
has codimension e in P(V ∗

E); otherwise it is singular. With this terminology,
one verifies that

∆(E) :=
{
[s] ∈ P(V ∗

E)
∣∣ the section s is singular

}
.

The defect of the vector bundle E is the integer def(E) := codim∆(E)−1, the
expected degree of the discriminant locus ∆(E) is δ(E) := deg(qE)∗[R(qE)], and
the coefficient of R(qE) in [R(qE)red] is the unique positive integer mE such
that [R(qE)] = mE [R(qE)red] in the Chow ring A•(P(M∗

E)
)
.

The significance of these numerical invariants becomes clear with an addi-
tional hypothesis.

Remark 3.1. Assume that the ramification locus R(qE) is irreducible and has
dimension r − 1 (or equivalently codimension n − e + 1). It follows that the
discriminant locus ∆(E) is also irreducible. For the function fields C

(
R(qE)

)
and C

(
∆(E)

)
of the reduced schemes R(qE)red and ∆(E), the degree of the

field extension is
[
C
(
R(qE)

)
: C

(
∆(E)

)]
and the degree of R(qE) over ∆(E) is

degR(qE)/∆(E) :=

{[
C
(
R(qE)

)
: C

(
∆(E)

)]
if dim∆(E) = r − 1

0 if dim∆(E) < r − 1.

The definition of the pushforward of a cycle gives

(qE)∗[R(qE)] = mE

(
degR(qE)/∆(E)

)
[∆(E)] ;

see [6, Section 1.4]. Hence, we have def(X) > 0 if and only if δ(E) = 0. When
R(qE) is integral and birational to ∆(E), we also have deg∆(E) = δ(E).
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Although the next result is likely known to experts, we could not find an
adequate reference.

Theorem 3.2. Assume that X an n-dimensional smooth projective variety X
and let E be a very ample vector bundle on X of rank e ⩽ n. Let π : P(E) → X
be the projective bundle associated to E and let L := OP(E)(1) be the tautological
line bundle on the projectivization P(E).

• The discriminant locus ∆(E) of the vector bundle E is isomorphic to the
discriminant locus ∆(L) of the line bundle L. In particular, the discriminant
locus ∆(E) is irreducible.

• When the discriminant locus ∆(E) is a hypersurface, the reduced scheme
R(qE)red is birational to ∆(E) and

deg∆(E) = mE

{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗

E)(−1)
)}
n−e+1

.

Proof. The canonical isomorphism VE = H0(X,E)
∼=−−→ H0

(
P(E), L

)
= VL in-

duces an isomorphism φ : P(V ∗
L ) → P(V ∗

E). It is enough to show that the
restriction of φ to the discriminant locus ∆(L) yields an isomorphism from
∆(L) to ∆(E). To accomplish this, it suffices to prove that a section s in V ∗

E

is singular if and only if the corresponding section s̃ in V ∗
L is singular. As

this assertion is local, we may assume that X is affine and E ∼=
⊕e

i=1 OX .
Hence, there exist f1, f2, . . . , fe ∈ H0(X,OX) such that s = (f1, f2, . . . , fe) and
s̃ = f1 x1 + f2 x2 + · · · + fe xe where x1, x2, . . . , xe are homogeneous coordi-
nates of Pe−1 = P(V ∗

E). The assertion now follows from a local calculation of
derivatives as appears in [1, Subsection 3.2].

The same calculation shows that restriction of the map

π × φ : P(E)× P(V ∗
L ) → X × P(V ∗

E)

to R(qL)red is a birational map from R(qL)red to R(qE)red. When ∆(L) is a
hypersurface, Proposition 3.2 in [7] demonstrates that reduced scheme R(qL)red
is birational to discriminant locus ∆(L). It follows that the reduced scheme
R(qE)red is birational to discriminant locus ∆(E). Finally, the degree formula
is an immediate consequence of Remark 3.1.

To prove that the ramification locus is reduced, we first record a general
observation about degeneracy loci. Consider three vector bundles A, B, and
C on a smooth projective variety X together with an injective vector bundle
morphism µ : A ⊗ B∗ → C. Let ϖ : P(C) → X be the projective bundle
associated to C, let η : ϖ∗C → OP(C)(1) be the natural surjective morphism,
and let µ̃ : ϖ∗(A ⊗ B∗) → OP(C)(1) be the composition of µ with η. The map
µ̃ corresponds to the morphism µ′ : ϖ∗A → ϖ∗B ⊗ OP(C)(1) via tensor-hom
adjunction.
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Lemma 3.3. For any nonnegative integer k, the k-th degeneracy locus

Dk(µ
′) := Zeroes(

∧k+1
µ′)

is reduced and Cohen–Macaulay of codimension
(
rank(A)− k

)(
rank(B)− k

)
.

Proof. As the assertion is local, we may assume that X is affine and the three
vector bundles are trivial. Let U , V , and W be complex vector spaces such
that A = U ⊗C OX , B = V ⊗C OX , and C = W ⊗C OX . For each nonnegative
integer k, let Dk(U, V ) be the locus of points in P(U ⊗C V

∗) = P
(
HomC(U, V )

)
whose corresponding linear transformations from U to V have rank at most k.

Consider the projective bundle ρ : P(A⊗B∗) → X associated to A⊗B∗. On
Y := P(A⊗B∗), the surjective morphism θ : ρ∗(A⊗B∗) → OY (1) corresponds
to the morphism θ′ : ρ∗A → ρ∗B ⊗ OY (1) whose k-th degeneracy locus Dk(θ

′)
is X × Dk(U, V ). In particular, Dk(θ

′) is reduced and Cohen–Macaulay of
codimension

(
rank(A)− k

)(
rank(B)− k

)
.

Let Q be the cokernel of the map µ : A⊗ B∗ → C. It follows that P(Q) is
a subbundle of P(C). Let ψ : P(C)− P(Q) → Y be the associated trivial affine
bundle over X. Since the map µ′ : ϖ∗A → ϖ∗B ⊗ OP(C)(1) is nonzero away
from P(Q), we have the commutative diagram

P(C)− P(Q) Y

X

ψ

ϖ ρ

with the property that µ′ = ψ∗(θ′). Hence, the k-th degeneracy locus Dk(µ
′)

is the “cone” over Dk(θ
′) in P(C) with vertex P(Q); it is the product of X and

the cone over Dk(U, V ) in P(W ) with vertex P
(
W/(U ⊗ V ∗)

)
. We conclude

that the k-th degeneracy locus Dk(µ
′) is also reduced and Cohen–Macaulay of

codimension
(
rank(A)− k

)(
rank(B)− k

)
.

To ensure that the ramification locus R(qE) is reduced, we rely on a stronger
hypothesis than E being very ample. To define this condition, we use the first
jet bundle J1(E) that parametrizes the first-order Taylor expansions of the
sections of E. More precisely, let J be the ideal sheaf defining the diagonal
embedding X ↪→ X ×X and let pr1,pr2 : Zeroes(J2) → X be the restrictions
of the projections X ×X → X to the closed subscheme Zeroes(J2) ⊂ X ×X.
The first jet bundle is J1(E) := (pr1)∗ pr

∗
2 E; this is also called the bundle of

principal parts in [6, Example 2.5.6]. The vector bundle J1(E) has rank n+ 1
and sits in the short exact sequence

0 ΩX ⊗ E J1(E) E 0 .

254



DISCRIMINANT LOCI (9 of 15)

The vector bundle E is 1-jet spanned if the evaluation map VE⊗C OX → J1(E)
is surjective; see [3, Subsection 1.3]. With this concept, we have the following
corollary.

Corollary 3.4. Let X be an n-dimensional smooth projective variety and let
E be a very ample vector bundle of rank e ⩽ n. Assuming that the vector
bundle E is 1-jet spanned, the ramification locus R(qE) is reduced and Cohen-
Macaulay of codimension n − e + 1, so ∆(E) = (qE)∗[R(qE)]. Furthermore,
the discriminant locus ∆(E) is a hypersurface if and only if we have δ(E) > 0.
When ∆(E) is a hypersurface, the degree of discriminant locus is

deg∆(E) =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n−e+1

.

Proof. By Theorem 3.2 and Lemma 3.3, it suffices to show the existence of an
injective vector bundle morphism from E∗ ⊗ (ΩX)∗ to M∗

E or equivalently a
surjective map fromME to E⊗ΩX . To establish this, we combine the defining
short exact sequence forME with the canonical short exact sequence for J1(E)
to obtain the following commutative diagram with exact rows:

0 ME VC ⊗C OX E 0

0 ΩX ⊗ E J1(E) E 0 .

Since E is 1-jet spanned, the second vertical map is surjective. Hence, the
snake lemma implies that the first vertical map is also surjective.

Remark 3.5. Remark 0.3.2 in [4] establishes that, for any very ample line bun-
dle L on an m-dimensional smooth projective variety Y , we have def(L) > 0 if
and only if cm

(
J1(L)

)
= 0. When the discriminant locus ∆(L) is a hypersurface,

this remark also shows that deg∆(L) =
∫
Y
cm

(
J1(L)

)
.

Given an n-dimensional smooth projective variety X and a very ample
vector bundle E on X of rank e ⩽ n, Lanteri and Muñoz compute the top
Chern class of the first jet bundle of the line bundle L := OP(E)(1). More

precisely, when Y = P(E), Proposition 1.1 in [10] expresses cn+e−1

(
J1(L)

)
as a

polynomial in the Chern classes of E and the tangent bundle TX . Under the
assumption that the vector bundle E is 1-jet spanned, Corollary 3.4 provides
a different formula for the degree of ∆(E).

Example 3.6. Let L be a very ample line bundle on a smooth projective
variety X. The line bundle L is 1-jet spanned; see [3, Subsection 1.3]. When
the discriminant locus ∆(L) is a hypersurface, Example 2.2 and Corollary 3.4
show that

deg∆(L) =

n∑
i=0

(i+ 1)

∫
X

cn−i(ΩX) c1(L)
i .

Thus, we recover the degree of the classical discriminant; see [7, Example 3.12].
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Our second corollary focuses on vector bundles whose rank equals the di-
mension of their underlying variety. Part of this result provides an alternative
proof for Proposition 2.2 in [10].

Corollary 3.7. Let X be a n-dimensional smooth complex projective vari-
ety. For any very ample vector bundle E of rank n on X, the discrimi-
nant locus ∆(E) is irreducible and def(E) > 0 if and only if X = Pn and
E =

⊕n
i=1 OPn(1). Assuming that the vector bundle E is 1-jet spanned and

(X,E) ̸=
(
Pn,

⊕n
i=1 OPn(1)

)
, the discriminant locus ∆(E) is an irreducible hy-

persurface of degree∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E) .

Proof. Theorem 3.2 and Example 2.3 show that the discriminant locus ∆(E)
is irreducible and def(E) > 0 if and only if

δ(E) =

∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E) = 0 .

When (X,E) =
(
Pn,

⊕n
i=1 OPn(1)

)
, we have δ(E) =

(
(−n − 1) + n

)
n + n = 0

and def(E) > 0. Hence, it suffices to show that, for any very ample E excluding⊕n
i=1 OPn(1), we have δ(E) > 0. If E is 1-jet spanned as well as very ample,

then Corollary 3.4 shows that deg∆(E) = δ(E).
Since E is very ample, we have

∫
X
cn(E) > 0; see [5, Proposition 2.2]. Thus,

it is enough to prove that
∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) ⩾ 0. Let KX be the

canonical divisor on X and let D be the Cartier divisor associated to det(E).
Since E is very ample, D is also. Moreover, Theorem 2 in [13] establishes
that the adjoint divisor KX + D is nef unless (X,E) =

(
Pn,

⊕n
i=1 OPn(1)

)
.

The very ampleness of the vector bundle E implies that cn−1(E) ̸= 0; again
see [5, Proposition 2.2]. We deduce that cn−1(E) is the class of a curve C by
a Bertini-type argument; see [8, Theorem B]. It follows that∫

X

(
c1(ΩX) + c1(E)

)
cn−1(E) = (KX +D) · C ⩾ 0 .

To illustrate this corollary, we recompute the degree of the discriminant
locus for nonnegative twists of the tangent bundle on Pn; see [2, Corollary 4.2]
and [1, Example 4.9].

Example 3.8. Let d be a nonnegative integer and let TPn be the tangent bundle
on Pn. We have c1(ΩPn) = c1

(
OPn(−n− 1)

)
. From the Euler sequence

0 OPn

n⊕
i=1

OPn(1) TPn 0 ,
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we deduce that ∫
Pn

ci
(
TPn(d)

)
=

i∑
j=0

(n− j
i− j

)
di−j

(
n+ 1
j

)
for all nonnegative integers i. Combining Propositions 2.1–2.3 in [3], the Euler
sequence also shows that vector bundle TPn(d) is very ample and 1-jet spanned.
Thus, Corollary 3.7 establishes that the discriminant locus ∆

(
TPn(d)

)
is an

irreducible hypersurface and

deg∆
(
TPn(d)

)
= nd

n−1∑
j=0

(n− j) dn−1−j
(
n+ 1
j

)
+ n

n∑
j=0

dn−j
(
n+ 1
j

)
= n

n∑
j=0

dn−j(n+ 1− j)
(

n+ 1
n+ 1− j

)
= n(n+ 1)

n∑
j=0

dn−j
(
n
j

)
= n(n+ 1)(d+ 1)n .

4. Bogomolov Instability Theorem

In this section, we use calculations involving the discriminant divisor of a multi-
section to give a simple proof of the Bogomolov instability theorem for vector
bundles having rank 2 on an algebraic surface. At the very least, it was known
to experts that one could give an argument along these lines. However, since
it fits well with the themes of this note and is not widely known, we felt it
worthwhile to include it here. We refer the reader to [9] for another approach
having several points of contact with the present proof.

Let X be a smooth complex projective surface. We consider a vector bundle
E of rank 2 on X, and denote by D a Cartier divisor associated to det(E). The
vector bundle E is Bogomolov unstable if there exist a divisor A and a finite
scheme W ⊂ X (possibly empty) such that the sequence

0 OX(A) E OX(D −A)⊗ IW 0 ,

is exact, (2A − D)2 > 4 length(W ), and (2A − D) · H > 0 for some (or any)
ample divisor H on X. Roughly speaking, being Bogomolov unstable means
that the vector bundle E contains an unexpectedly positive subsheaf.

Bogomolov’s theorem asserts that instability is detected numerically.

Theorem 4.1. The vector bundle E is Bogomolov unstable if and only if∫
X

c1(E)2 − 4 c2(E) > 0 .
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The defining exact sequence for a Bogomolov unstable vector bundle gives∫
X

c2(E) = length(W ) +A · (D −A) ,

so the inequality holds. Thus, the essential content of the Theorem 4.1 is
the converse statement: the inequality implies the existence of a destabilizing
subsheaf OX(A).

For our proof of this implication, suppose that
∫
X

(
c1(E)2 − 4 c2(E)

)
> 0.

Let π : P(E) → X the projectivization of E, so dimP(E) = 3. The starting
point, as in other arguments, is the next lemma.

Lemma 4.2. When the vector bundle E satisfies the inequality in Theorem 4.1,
the line bundle OP(E)(2)⊗π∗OX(−D) on P(E) is big. In other words, there is a
positive number C > 0 such that, for all sufficiently large integers m, we have

h0
(
P(E),OP(E)(2m)⊗π∗OX(−mD)

)
= h0

(
X,Sym2m(E)⊗OX(−mD)

)
⩾ Cm3 .

Idea of proof. The asymptotic Riemann–Roch theorem [11, Theorem 1.1.24]
shows that

χ
(
X,Sym2m(E)⊗ OX(−mD)

)
= 1

3

(
c21(E)− 4 c2(E)

)
m3 +O(m2) .

The assertion follows via Serre duality and the fact that the vector bundle
Sym2m(E)⊗ OX(−mD) has trivial determinant; see [12, Proposition 2].

Now let H be an ample divisor on X. By an argument of Kodaira [11,
Proposition 2.2.6], it follows from the lemma that, for all sufficiently large
integers m, we have H0

(
P(E),OP(E)(2m) ⊗ π∗OX(−mD − H)

)
̸= 0. Fix one

such integer m and choose nonzero section

s ∈ H0
(
P(E),OP(E)(2m)⊗ π∗OX(−mD −H)

)
.

Let Z := Zeroes(s) be the zero locus of the global section s. The subscheme Z
is a divisor on P(E) of relative degree 2m over X.

We study the irreducible components of Z with the aim of singling out a
particularly interesting one. To begin, let Z0 ⊂ P(E) denote the union of any
“vertical” components of Z: Z0 is the preimage under π of the zeroes of a section
of OX(−A0) for some anti-effective divisor A0 on X. Write Z1, Z2, . . . , Zt in
P(E) for the remaining irreducible components of Z allowing repetitions to
account for multiplicities. In other words, each Zi ⊂ P(E) is a reduced and
irreducible divisor that is defined by a section of OP(E)(di) ⊗ π∗OX(−Ai) for
some divisor Ai on X and positive integer di. By construction, the divisor
A0+A1+ · · ·+At is linearly equivalent to mD+H and d1+d2+ · · ·+dt = 2m,
so the divisor

∑
i⩾1

(
Ai− di

2 D
)
is numerically equivalent to H−A0. Since −A0
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is an effective divisor, it follows that
(∑

i⩾1 2Ai−diD
)
·H > 0. By reindexing

the components if necessary, we may assume that (2A1 − d1D) ·H > 0.

The idea is to consider the discriminant divisor ∆ ⊆ X over which the fibre
of the map Z1 → X is not d1 distinct points. Specifically, Proposition 4.3 shows
that the class of ∆ is given by δ = d1(d1 − 1)D − 2(d1 − 1)A1 and δ is either
effective or zero, so δ ·H ⩾ 0. However, if d1 > 1, then this would contradict the
assumption that (2A1−d1D) ·H > 0. Thus, we have d1 = 1 and Z1 is defined
by a (necessarily saturated) section in H0

(
P(E),OP(E)(1)⊗ π∗OX(−A1)

)
. The

corresponding section in H0
(
X,E ⊗OX(−A)

)
defines a closed subscheme W of

X and gives rise to a short exact sequence

0 OX(A1) E OX(D −A1)⊗ IW 0 .

The inequality
∫
X
c1(E)2 − 4 c2(E) > 0 implies that (2A−D)2 > 4 length(W )

and (2A −D) ·H > 0. Therefore, we have established that the vector bundle
E is unstable.

It remains to prove the following proposition.

Proposition 4.3. Let E be a vector bundle on X having rank 2 and satisfying
det(E) = OX(D), let π : P(E) → X be the projectivization of E, and consider
a reduced and irreducible divisor

Y P(E)

X
f π

defined by a section of OP(E)(d)⊗ π∗OX(−A) for some positive integer d. The
locus ∆(f) ⊆ X of points x ∈ X over which the fibre f−1(x) fails to consist of
d distinct points supports an effective divisor in the class

δ = d(d− 1)D + 2(d− 1)A .

In particular, this class is effective or zero.

Proof. Consider the set Γ :=
{
y ∈ Y

∣∣ f is not étale at y
}
. The map f is

generically étale because Y is reduced. It follows that Γ has dimension 1 (or is
empty) and ∆(f) = f(Γ). We claim that, viewed as a cycle of codimension 2
on P(E), Γ supports the effective class

γ :=
(
(d− 2) c1

(
OP(E)(1)

)
+ π∗(D −A)

)
·
(
d c1

(
OP(E)(1)

)
− π∗A

)
. (∗)

There are at least two ways to confirm this claim.
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• As a cycle on Y , γ is the class of the first degeneracy locus of the induced
differential df : f∗ΩX → ΩY , so

γ = c1(ΩY − f∗ΩX) = c1
(
OY (KY − f∗KX)

)
which is the class of the relative canonical divisor KY/X := KY − f∗KX .
The adjunction formula shows that KY/X = (KP(E)/X + Y )|Y . Thus, as a
cycle on P(E), we have γ = [(KP(E)/X + Y )|Y ] ∩ [Y ]. Since we also have

[Y ] = c1
(
OP(E)(d) ⊗ π∗OX(−A)

)
, the equation (∗) follows from the equality

[KP(E)/X ] = c1
(
OP(E)(−2)⊗ π∗OX(D)

)
; see [11, Section 7.3.A].

• The section s in H0
(
X,OP(E)(d) ⊗ π∗OX(−A)

)
defining Y lifts to a section

of the first relative jet bundle of ds ∈ H0
(
P(E), Jπ1

(
OP(E)(d)⊗ π∗OX(−A)

))
,

and Γ = Zeroes(ds). From the canonical short exact sequence

0 ΩP(E)/X(d)⊗ π∗OX(−A) Jπ1
(
OP(E)(d)⊗ π∗OX(−A)

)
OP(E)(d)⊗ π∗OX(−A) 0

we see that γ = c2
(
Jπ1

(
OP(E)(d)⊗ π∗OX(−A)

))
, which again establishes the

equation (∗).
It remains to check that π∗(γ) = δ. This follows from the Grothendieck relation

c1
(
OP(E)(1)

)2 − π∗(c1(E)
)
· c1

(
OP(E)(1)

)
+ π∗(c2(E)

)
= 0 ,

π∗
(
π∗(α) · c1

(
OP(E)(1)

))
= α, and π∗

(
π∗(β)

)
= 0 for any classes α ∈ A1(X) and

β ∈ A2(X).
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Abstract. Few explicit families of 3-folds are known for which the
computation of the canonical ring is accessible and the birational geom-
etry non-trivial. In this note we investigate a family of determinantal
3-folds in P2 × P3 where this is the case.
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1. Introduction

There has been substantial progress in higher dimensional birational geometry
over C in the past decade. For instance, we currently know that for every
smooth projective variety X, the canonical ring

R(X,KX) = ⊕
m∈N

H0
(X,mKX)

is finitely generated and that varieties with mild singularities and of log general
type have good minimal models [1, 2, 3]. Numerous other results have also
recently been obtained when X is not necessarily of general type, but the
existence of minimal models and the Abundance conjecture remain unproven
in general.

Lack of examples in higher dimensional geometry is one of the problems
in the field for two reasons: (a) ultimately, one wants to apply the general
theory in concrete examples, preferably described by concrete equations, and
(b) without examples, it is often difficult to decide if a certain conjecture is
plausible or to devise a route to a possible proof of a conjecture.

Recall that some of the main examples of higher dimensional constructions
are the following: projective bundles (this is probably the most common class
of examples, see [11, §2.3.B]); toric bundles, see [16, Chapter IV]; deformations.
Recently, blowups of P3 along a very general configuration of points were used
in [14] to give counterexample to a conjecture of Kawamata, and a relatively
simple example from [17] (a complete intersection of general hypersurfaces of
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bi-degrees (1,1), (1,1) and (2,2) in P3×P3) was used in [15] to disprove a widely
believed claim from [6, 13, 16] about an expected behaviour of the numerical
dimension.

The last two examples above should illustrate that more examples are
needed in order to speed up progress in the field. We provide a general class
of new examples in this note, and investigate the birational geometry of a
particular subclass of examples in detail.

The class of examples we study in this paper are a particular case of deter-
minantal varieties. The situation in general is explained in detail in Section 2.
In particular, denote P = P2 ×P3 and F = O⊕2P , and for each integer b ≥ 1 define
the sheaf

Gb = OP(1, b)⊕ ker (H0
(P,OP(1,0))⊗OP(1,1)→ OP(2,1)).

Pick φ ∈ Hom(F ,Gb) general, and Xb let be the 3-fold given as

Xb = {p ∈ P ∣ rankφ(p) ≤ 1}.

Our main result is:

Theorem 1.1. The variety Xb is birational to a hypersurface Yb of degree 2b+2
in the weighted projective space P(1,1,1,1, b + 1). In particular, we have

κ(Xb) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−∞ if b = 1 or 2,

0 if b = 3,

3 if b ≥ 4.

The image X1
b of X in P1 × P3 is a small resolution of Yb in (b + 1)3 A1-sin-

gularities. The morphism X →X1
b is the blowup of one of the two components

of the preimage of a twisted C ⊆ P3 which intersects the branch divisor of
Yb → P3 tangentially. The variety X1

b has precisely two minimal models and
one nontrivial birational automorphism ι of order two. The automorphism ι
interchanges the two models.

Thus for b ≥ 4 the 3-fold X1
b is a minimal model of X and Yb is the canon-

ical model. In particular, this family of examples has an unexpectedly rich
birational geometry.

2. Determinantal varieties

In this section we describe a general construction of determinantal varieties in
products of projective spaces, and specialise to a particular case which is the
main object of this paper.
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2.1. A general construction

Let P be a product of projective spaces, let F and G be vector bundles on P of
rank f and g ≥ f respectively, and let φ∶F → G be a general homomorphism.
Define an algebraic set X ⊆ P by

X = {p ∈ P ∣ φ(p) does not have maximal rank f}.

For example, if the sheaf HomOP(F ,G) ≃ F
∗⊗OP G is ample, then X is non-

empty, connected and has codimension g−f +1 by [9], and is smooth outside a
sublocus of codimension 2(g−f+2) by [10], which is empty if dimP < 2(g−f+2).
Moreover, in this case the sheaf

L = coker(φt∶G∗ → F∗) (1)

is a line bundle on X.
If f = 1, then X is a zero loci of a section of a vector bundle on P. If

additionally G is a direct sum of line bundles, then X is a complete intersection.

Perhaps the simplest case beyond the one above is when f = g − 1. In that
case, X is a codimension 2 subvariety in P and, if JX is the ideal sheaf of X
in P, then we have the resolution

0→ F
φ
Ð→G → JX ⊗OP(c1(G) − c1(F))→ 0, (2)

see [4, 5]. By above, we expect these X to be a smooth variety only when
dimP ≤ 5.

2.2. Examples

Thus, from now on we choose P = P2×P3, and we let f = 2 and g = 3. Specifying
further F ∶= O⊕2P , thenX is a 3-fold and the linear system ∣L∣, where L is defined
as in (1), defines a morphism P→ P1. Since we also have the projections from P
to its two factors, we obtain three maps

π1∶X → P1, π2∶X → P2, π3∶X → P3, (3)

which we use to study X.

At first sight, the case G = OP(1,1)
⊕3 might look like the simplest possible

case. In this case, the morphism π2∶X → P2 is a fibration into twisted cubic
curves, π3∶X → P3 is generically finite of degree 3 ∶ 1, and π1∶X → P1 is a
fibration into cubic surfaces.

Now, let θ∶OP(1,1)
⊕4 → OP(2,1) be a general morphism and consider the

case G = ker θ. In suitable coordinates on P2 we have

G = OP(1,1)⊕ ker (H0
(P,OP(1,0))⊗OP(1,1)→ OP(2,1)),
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where the map is the evaluation morphism. This case is even simpler, in the
sense that π3∶X → P3 is generically finite of degree 2 ∶ 1. Indeed, let F be a
general fiber of the second projection P→ P3. Then the sheaf

G∣F ≃ ker (OP2(1)⊕4 → OP2(2))

has the Chern polynomial

ct(G∣F ) =
(1 + t)4

1 + 2t
= 1 + 2t + 2t2,

and thus c2(G∣F ) = 2 implies that π3 is generically 2 ∶ 1.

3. Cohomological properties

3.1. The main example

Our main example is a generalisation of this last construction. As announced
in the introduction, for each integer b ≥ 1 we consider 3-folds Xb constructed
as follows: we set P = P2 × P3, F = O⊕2P , and

Gb = OP(1, b)⊕ ker (H0
(P,OP(1,0))⊗OP(1,1)→ OP(2,1)),

where the morphism is the evaluation morphism in suitable coordinates (x0 ∶
x1 ∶ x2) on P2. Then for a general φ ∈ Hom(F ,Gg) we define

Xb = {p ∈ P2
× P3

∣ rankφ(p) ≤ 1}.

This is the main object of this paper.
By (2), there exists a locally free resolution

0→ O⊕2P → Gb → JXb
⊗OP(2, b + 2)→ 0, (4)

and π3∶Xb → P3 is generically 2 ∶ 1 similarly as in Section 2. Dualizing (4) we
obtain a resolution of L:

0← L← O⊕2P ← OP(−1,−1)
⊕3
⊕OP(−1,−b) (5)

← OP(−2,−1)⊕OP(−2,−2 − b)← 0,

and thus

ωXb
≃ Ext2OP

(OXb
,OP(−3,−4)) (6)

≃ Ext2OP
(OXb

(2, b + 2),OP(−1, b − 2)) ≃ L(−1, b − 2).
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Some of the computationally accessible information in explicit examples are
the dimensions of the cohomology groups Hi(Xb,OXb

(α,β)). It is useful to
arrange this data in cohomology polynomials

pα,β =
3

∑
i=0
hi(Xb,OXb

(α,β)) ⋅ hi ∈ Z[h].

We also consider the ring

R =⊕
β≥0

H0(Xb,OXb
(0, β)).

3.2. Cohomology groups of X3

Using the theory of Tate resolutions for product of projective spaces [7] we can
calculate the dimensions of these groups. In this subsection, we concentrate on
the case b = 3. Fix the range

−3 ≤ α ≤ 3, −7 ≤ β ≤ 7.

Then we can summarize the result in matrix of cohomology polynomials pα,β
as below.

88h 56h 20 140 304 512 764
53h 41h 8 94 217 377 574
24h 26h 2 60 148 266 414

5h2
+ 8h 13h 0 36 95 177 282

10h2
+ 2h 4h 0 20 56 108 176
7h2 h 0 10 29 57 94

12h3
+ 4h2 6h3 2h3 4 12 2h + 24 6h + 40

40h3
+ h2 21h3 8h3 h3

+ 1 3 5h + 6 16h + 10
88h3 48h3 20h3 4h3 0 8h 28h

157h3 89h3 40h3 10h3 h2 h2
+ 8h 34h

248h3 146h3 70h3 20h3 4h2 4h2
+ 2h 2h2

+ 28h
363h3 221h3 112h3 36h3 7h2 17h2 8h2

+ 14h
504h3 316h3 168h3 60h3 2h3

+ 10h2 36h2 24h2

673h3 433h3 240h3 94h3 8h3
+ 13h2 57h2 62h2

872h3 574h3 330h3 140h3 20h3
+ 16h2 78h2 106h2

Let us point out a few interesting values: we have

h1(Xb,OXb
) = h2(Xb,OXb

) = 0 and h3(Xb,OXb
) = h0(Xb, ωXb

) = 1

from the center entry. Moreover, we see that h0(Xb,OXb
(0,4)) = 36 > 35, so

the ring R has a further generator in degree 4.
Another interesting sequence of values are the dimensions of the H2-coho-

mology in the first vertical strand (that is, for α = 1):

. . . ,16,13,10,7,4,1.

This looks like the Hilbert function of the twisted cubic in P3.
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3.3. Cohomology groups of Xb

The tables for other values of b have a lot of similarity with the table above.
Recall from (6) that L ≅ ωXb

(1,−b + 2). Dualising the resolution (5) we
obtain

0→ O⊕2P → OP(1,1)
⊕3
⊕OP(1, b)

→ OP(2,1)⊕OP(2, b + 2)→ OXb
(2, b + 2)→ 0.

Twisting back by OP(−2,−b − 2) we deduce

Rπ3,∗OXb
= π3,∗OXb

= OP3 ⊕OP3(−b − 1),

and twisting by back by OP(−3,−b − 2) gives

Rπ3,∗OXb
(−1,0) = OP3(−b − 2)⊕2.

Since Rπ3,∗OXb
(α,0) is computed with the vertical strands in the Tate reso-

lution, this explains the values in the 0-th and (−1)-st vertical strand in the
cohomology table. In particular, we see that

h0(Xb,OXb
(−1, b + 2)) = 2.

3.4. A twisted cubic

As suggested in §3.2, we can find a twisted cubic on P3 in our construction.
Recall that we fixed coordinates (x0 ∶ x1 ∶ x2) on P2. We may write

Gb = OP(1, b)⊕ ker (OP(1,1)
⊗3 OP(2,1))

(x0,x1,x2)

so that we have two projections

Gb → OP(1, b) and Gb → OP(1,1)
⊗3.

The composition

O
⊕2
P

φ
Ð→Gb → OP(1,1)

⊕3

factors over

O
⊕2
P

ψ
Ð→OP(0,1)

⊕3 K2
Ð→OP(1,1)

⊕3,

where

K2 =
⎛
⎜
⎝

0 −x2 x1
x2 0 −x0
−x1 x0 0

⎞
⎟
⎠
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is the Koszul matrix, and in suitable coordinates (y0 ∶ y1 ∶ y2 ∶ y3) of P3 we have

ψ = (
y0 y1 y2
y1 y2 y3

) .

We denote by C ⊆ P3 the twisted cubic curve defined by the 2 × 2 minors of ψ.

The remaining partO⊕2P → OP(1, b) of φ can be factored as B⋅(x0 x1 x2)
t
,

with

B = (
b00 b01 b02
b10 b11 b12

) , (7)

where bij ∈ C[y0, y1, y2, y3] are forms of degree b. To this matrix we associate
the matrix

M =

⎛
⎜
⎜
⎜
⎝

2
2

∑
i=0
yib0i

2

∑
i=0
yib1i +

2

∑
i=0
yi+1b0i

2

∑
i=0
yib1i +

2

∑
i=0
yi+1b0i 2

2

∑
i=0
yi+1b1i

⎞
⎟
⎟
⎟
⎠

; (8)

this matrix will be important in §4.2 below.

Proposition 3.1. In the notation as above, we have:

(a) π−13 (C) ⊆Xb decomposes into two components: C1 of dimension 1 and E
of dimension 2,

(b) C1 is defined by the 2 × 2 minors of

(
y0 y1 y2 x0 x1
y1 y2 y3 x1 x2

) ,

(c) E is defined by the minors of ψ and the entries of

(x0 x1 x2) ⋅B
t
⋅ (

0 1
−1 0

) ⋅ ψ,

(d) C1 → C is an isomorphism while E → C is a P1-bundle. In particular,
C1 and E are smooth.

Proof. Parts (b) and (c) follow from direct calculations [8] or [12]. Note that

{p ∈ P3
∣ rankB(p) ≤ 1 and rankψ(p) ≤ 1} = ∅

for a general choice of B. Therefore, rankB(p) = 2 for p ∈ C, so Bt ⋅(
0 1
−1 1

) ⋅ψ

has rank 1 over the points of C. Hence, E is a P1-bundle. We have C1 ≅ C
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and the projection π2 maps C1 isomorphically to the conic V (x0x2 − x
2
1) ⊆ P2.

This shows (d).
Finally, consider the matrix φt as a 2 × 4 matrix with entries in

Q[x0, x1, x2, y0, y1, y2, y3, b00, . . . , b12].

The defining ideal of Xb is the annihilator of the cokerφ, once we substitute the
actual values for the bij in H0(P,OP(0, b)). Adding the defining equations of
C, a primary decomposition gives the two components in this generic setting.
Since C1 and E are smooth, specialising bij gives the actual components.

4. Two minimal models

In this section we describe the birational geometry of Xb.

4.1. An overview

We introduce several new varieties. Denote

X1
b ∶= (π1 × π3)(Xb) ⊆ P1

× P3.

Moreover, let
R = C[y0, y1, y2, y3,w]/⟨w2

+ detM⟩,

where w has degree b + 1 and M is defined as in (8), and denote

Yb = ProjR ⊆ P(1,1,1,1, b + 1).

An easy argument with an exact sequence in §4.2 shows the existence of a
rational map ρ∶X1

b ⇢ P1, and we denote

X2
b ∶= (ρ × π3)(X

1
b ) ⊆ P

1
× P3.

We will show that these varieties fit into the diagram

Xb X2
b

X1
b Yb,

α1

α2

ξ2

ξ1

(9)

such that the following holds:

(a) X1
b ⊆ P1 × P3 is a hypersurface of bi-degree (2, b + 1),

(b) X1
b and X2

b are small resolutions of Yb.

This then implies our main result.
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4.2. The geometry of X1
b

Our first goal is to compute X1
b .

By §3.4, the defining ideal of Xb ⊆ P1 × P2 × P3 is given by the four entries
of the matrix

(z0 z1) ⋅ [ψ ⋅K2 ∣B ⋅ (x0 x1 x2)
t
]. (10)

The saturation of this ideal with respect to ⟨x0, x1, x2⟩ gives the hypersur-
face X1

b .

Proposition 4.1. With notation as in §4.1, we have:

(a) The variety X1
b is a smooth hypersurface of bi-degree (2, b+ 1) in P1 ×P3

defined by

f = (z0 z1) ⋅M ⋅ (
z0
z1
) ,

with matrix M given as in (8).

(b) The map α1∶Xb → X1
b is birational: it is the blow down of the P1-bundle

E from Proposition 3.1 to the rational curve C1 ⊆X1
b defined by the 2×2

minors of the matrix

(
y0 y1 y2 −z1
y1 y2 y3 z0

) .

Proof. We rewrite the equation (10) of Xb as

(x0 x1 x2) ⋅N = 0,

where

N =
⎛
⎜
⎝

0 z0y2 + z1y3 −z0y1 − z1y2 z0b00 + z1b10
−z0y2 − z1y3 0 z0y0 + z1y1 z0b01 + z1b11
z0y1 + z1y2 −z0y0 − z1y1 0 z0b02 + z1b12

⎞
⎟
⎠
.

We conclude that X1
b ⊆ P1×P3 coincides with the variety defined by the radical

of the 3×3 minors of N . This radical coincides with the form f in the statement
of the proposition; the details of the calculations are in [8] or [12]. Moreover,
the map α1 is birational outside the preimage of the ideal defined by the 2 × 2
minors of N : this is the curve C1. Since α1 blows down a smooth P1-bundle E,
the variety X1

b is smooth.

With this information, one can calculate the cohomology table of X1
b in the

test case b = 3, using the Macaulay2 package TateOnProducts:
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148h 96h 44h 8 60 112 164 216 268
100h 66h 32h 2 36 70 104 138 172
60h 40h 20h 0 20 40 60 80 100
30h 20h 10h 0 10 20 30 40 50
12h 8h 4h 0 4 8 12 16 20

5h3
+3h 4h3

+2h 3h3
+h 2h3 h3

+1 2 h2
+3 2h2

+4 3h2
+5

20h3 16h3 12h3 8h3 4h3 0 4h2 8h2 12h2

50h3 40h3 30h3 20h3 10h3 0 10h2 20h2 30h2

100h3 80h3 60h3 40h3 20h3 0 20h2 40h2 60h2

172h3 138h3 104h3 70h3 36h3 2h3 32h2 66h2 100h2

268h3 216h3 164h3 112h3 60h3 8h3 44h2 96h2 148h2

From the table, we see that h0(X1
b ,OX1

b
(−1,4)) = 2. In fact, for every b we

have
h0(X1

b ,OX1
b
(−1, b + 1) = 2. (11)

This follows from the exact sequence

0→ OP1×P3(−3,0)→ OP1×P3(−1, b + 1)→ OX1
b
(−1, b + 1)→ 0

and the fact that h1(P1 × P3,OP1×P3(−3,0)) = 2. Therefore, as announced
in §4.1, by (11) we obtain a rational map

ρ∶X1
b ⇢ P1. (12)

4.3. The first small resolution

Next we show that X1
b is a small resolution of Yb and analyse in detail the

geometry of Yb. Recall that by the definition of Yb in §4.1, there exists a
double cover

δ∶Yb → P3. (13)

Proposition 4.2. For a general choice of bij in (7) we have:

(a) the double cover δ has A1-singularities above the (b + 1)3 distinct points
defined by the zero loci of entries of M , and is otherwise smooth,

(b) X1
b is a small resolution of Yb.

Proof. Recall that the variety X1
b comes with a projection to P3. By the

description in Proposition 4.1, the fibre of the map X1
b → P3 over a point p ∈ P3

consist either of two points, of one point or is isomorphic to P1, depending
on whether M(p) has rank 2, 1 or 0 respectively. For general bij , the three
entries of the matrix M form a regular sequence, which intersect in (b + 1)3

distinct points. Since this is an open condition for the values of bij , it suffices
to construct an example.
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To this end, pick λ0, . . . , λb, µ0, . . . µb ∈ C which are algebraically indepen-
dent over Q. Define forms

b̃01 ∈ Q[λ0, . . . , λb][y0, y1], b̃11 ∈ Q[µ0, . . . µb][y2, y3]

of degree b by the relations

b

∏
i=0
(y0 − λiy1) = y

b+1
0 + y1b̃01,

b

∏
j=0
(y3 − µjy2) = y

b+1
3 + y2b̃11,

and define the matrix

B○ = (
yb0 b̃01 0

0 b̃11 yb3
) .

We consider B○ as the matrix B from (7) for special values of bij . For these
values, the corresponding matrix M from (8) turns into

M○
= (

2(yb+10 + y1b̃01) yb0y1 + y1b̃11 + y2y
b
3 + y2b̃01

yb0y1 + y1b̃11 + y2y
b
3 + y2b̃01 2(yb+13 + y2b̃11)

) .

Fix 0 ≤ i, j ≤ b. The diagonal entries of M○ have solutions y0 = λiy1 and
y3 = µjy2. Substituting these values for y0 and y3 into the off diagonal entry
of M○ yields non-zero polynomials

Pij = λ
b
iy
b+1
1 + y1b̃11(y2, µjy2) + µ

b
jy
b+1
2 + y2b̃01(λiy1, y1)

= λbiy
b+1
1 − (µb+1j + . . .)y1y

b
2 + µ

b
jy
b+1
2 − (λb+1i + . . .)y2y

b
1

∈ Q[λ0, . . . , λb, µ1, . . . , µb][y1, y2].

The highest exponent of λi and µj in the Sylvester matrix for the resultant

R(
∂Pij

∂y1
,
∂Pij

∂y2
)

is b + 1 and the coefficient of (λiµj)
b(b+1) is ±1 obtained from the coefficient

of yb2 in
∂Pij

∂y1
and the coefficient of yb1 in

∂Pij

∂y2
. Hence, the discriminant of Pij

in Q[λ0, . . . , λb, µ1, . . . , µb] is not identically zero. Since λ0, . . . , λb, µ1, . . . , µb
are algebraically independent over Q, each Pij factors into b + 1 distinct linear
forms in C[y1, y2]. Hence, the entries ofM○ vanish in precisely (b+1)3 distinct
points, as desired.

Now, write

M = (
a0 a1
a1 a2

)

for forms ai of degree b + 1 on P3 as in (8). For any B leading to (b + 1)3

distinct points in P3, the entries a0, a1, a2 generate locally at each point its
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maximal ideal, so the branch divisor detM = 0 has A1-singularities at these
points. Since X1

b is smooth by Proposition 4.1, the branch divisor detM = 0 is
smooth outside the A1-singularities.

Consider the subvariety of P1 ×P(1,1,1,1, b+1) defined by the 2×2 minors
of the matrix

(
a0 a1 −w z1

a1 +w a2 −z0
) . (14)

This is a small resolution of Yb, and it is easy to see that it is isomorphic to X1
b ,

as defined in Proposition 4.1(a).

Proposition 4.3. Let C ⊆ P3 be the twisted cubic defined in §3.4 and let δ
be the double cover from (13). Then C intersects the branch divisor of δ tan-
gentially. We have (δ ○ ξ1)

−1(C) = C1 ∪C2 ⊆ X1
b , where C

1 is the curve from
Proposition 4.1, and C2 is defined by the 4 × 4 Pfaffians of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 y1 y2 y3
0 0 y0 y1 y2
−y0 −y1 0 z0b02 + z1b12 −z0b01 − z1b11
−y1 −y2 −z0b02 − z1b12 0 z0b00 + z1b10
−y2 −y3 z0b01 + z1b11 −z0b00 − z1b10 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The projection π1 induces a map C2 → P1 which is a covering of degree 3b + 2.

Proof. Let IC = ⟨y
2
1 −y0y2, y1y2 −y0y3, y

2
2 −y1y3⟩ denote the homogeneous ideal

of C ⊆ P3. Since

detM ≡ −(y1b00 + y2b01 + y3b02 − y0b10 − y1b11 − y2b12)
2 mod IC ,

the curve C intersects the branch divisor of δ tangentially in 3(b + 1) distinct
points for general choices of bij and the preimage of C in P(1,1,1,1, b + 1) has
two components defined by IC and

w ± (y1b00 + y2b01 + y3b02 − y0b10 − y1b11 − y2b12) = 0.

The second statement follows by computing a primary decomposition of
IC + ⟨f⟩ ⊆ Q[z0, z1, y0, y1, y2, y3, b00, . . . , b12], where f is given as in Proposi-
tion 4.1(a).

4.4. The second small resolution

Finally, we show that the variety X2
b defined in §4.1 is another small resolution

of Yb, and we finish the proof of the main theorem.

Proposition 4.4. The variety X2
b is another small resolution of Yb.
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Proof. As in the proof of Proposition 4.2, write

M = (
a0 a1
a1 a2

)

for forms ai of degree b + 1 on P3 as in (8). Let (u0 ∶ u1) be the coordinates
on P1. Consider the subvariety of P1 × P(1,1,1,1, b + 1) defined by the 2 × 2
minors of the matrix

⎛
⎜
⎝

a0 a1 −w
a1 +w a2
u1 −u0

⎞
⎟
⎠
;

compare to (14). This is another small resolution of Yb, and we will show
that it is isomorphic to X2

b , as defined in §4.1. To this end, it suffices to
show that the base locus of the linear system ∣OX1

b
(−1, b + 1)∣ is precisely the

collection of the (b+1)3 exceptional curves of the small resolution ξ1∶X
1
b → Yb,

see Proposition 4.2.
We have {u1 = 0} = V (a0, a1 +w,w

2 + detM). In X1
b this fiber is contained

in V (a0, f). Since
f ≡ z1(2z0a1 + z1a2) mod a0

is reducible, the locus V (a0) cuts X
1
b in two components: V (z1) ∈ ∣OX1

b
(1,0)∣

and
V (a0,2z0a1 + z1a2) ∈ ∣OX1

b
(−1, b + 1)∣.

By analysing {u0 = 0}, we get that another divisor in this linear system is
V (a2, z0a0 + 2z1a1). Hence, the base locus of ∣OX1

b
(−1, b + 1)∣ is the zero locus

V (a0, a2,2z0a1,2z1a1) = V (a0, a2, a1), which is precisely the collection of the
(b + 1)3 exceptional curves of ξ1.

Finally, our main result follows from combining all these results with the
following theorem.

Theorem 4.5. The Picard group of X1
b is Pic(X1

b ) ≃ Pic(P1 × P3). The nef,
effective and movable cones of X1

b are

Nef(X1
b ) = ⟨(1,0), (0,1)⟩ and

Eff(X1
b ) =Mov(X1

b ) = ⟨(1,0), (−1, b + 1)⟩.

The variety X1
b has precisely two minimal models and one nontrivial birational

automorphism ι of order two. The automorphism ι interchanges the two models.

Proof. The isomorphism Pic(X1
b ) ≃ Pic(P1 ×P3) follows from H2(X ′b,OX′b) = 0

and from H2(P1 × P3,Z) ≃H2(X1
b ,Z), see [11, §3.2.A].

We first prove that Nef(X1
b ) = ⟨(1,0), (0,1)⟩. Indeed, the fibres P1 of the

small resolution ξ1∶X
1
b → Yb have intersection number 0 with OX1

b
(0,1) and 1
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with OX1
b
(1,0). Thus, OX1

b
(α,β) with α < 0 has negative intersection number

with these curves. On the other hand, the curves which arise as the intersection
of a fiber of π1∶X

1
b → P1 with π−13 (H), where H ∈ ∣OP3(1)∣, have positive

intersection number with OX1
b
(0,1) and intersection number 0 with OX1

b
(1,0).

Since these curves form a covering family, the line bundles OX1
b
(α,β) with

β < 0 are neither nef nor effective.
Next we compute the effective and movable cone. Since OX1

b
(−1, b + 1) has

no fixed component by the proof of Proposition 4.4, we have ⟨(1,0), (−1, b+1)⟩ ⊆
Mov(X1

b ). To see that this coincides with Eff(X1
b ) we note that the two small

resolutions X1
b and X2

b of Yb coincide in codimension 1 and are isomorphic as
abstract varieties. Thus, we have

h0(X1
b ,OX1

b
(α,β)) = h0(X2

b ,OX2
b
(α,β)) = h0(X1

b ,OX1
b
(−α,α(b + 1) + β)).

In particular, these groups are zero for α > 0 and β < 0 and

Eff(X1
b ) =Mov(X1

b ) = ⟨(1,0), (0,1)⟩ ∪ ⟨(0,1), (−1, b + 1)⟩.

The interiors of the two subcones are ample on X1
b and X2

b , respectively.

All computations in Macaulay2 can be found in [12].
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Abstract. In the space of sextic forms in 4 variables with a decompo-
sition of length 18 we determine and describe a closed subvariety which
contains all non-identifiable sextics. The description of the subvari-
ety is geometric, but one can derive from that an algorithm which can
guarantee that a given form is identifiable.
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1. Introduction

The paper describes an application of geometric tools, mainly from the theory
of finite sets in projective spaces, to the study of Waring decompositions of
forms.

The tools have been introduced and employed, in a series of papers, mainly
for forms of degree 4 or for forms in three variables (see [2, 3, 4, 5, 11]). Since
quaternary forms of degree 5 are considered in a forthcoming paper [9], we turn
now our attention to forms of degree 6 in four variables.

Our starting point is the same starting point of the celebrated Kruskal’s
criterion for the minimality and uniqueness of a decomposition (to be precise,
in its version for symmetric tensors). We assume that we know a (Waring)
expression of a form F in terms of powers of linear forms, as the one given
in formula (1) below. The problem consists of determining if the expression
is minimal, in which case it computes the Waring rank of F. In addition, one
would like to know if the expression is unique (up to trivialities).

We attack the problem by considering the linear forms appearing in the
expression as a set of points A in a projective space P3, and analyzing the
existence of another set B, of length smaller or equal than the length of A,
whose 6−Veronese image spans F .
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It turns out that the union Z = A ∪ B must satisfy several geometric
and algebraic restrictions. This makes it possible to analyze the situation up
to rank 18. Indeed, we prove that when the length (= cardinality) of A is
strictly smaller than 18 and A is sufficiently general in a very precise sense (see
the statement of Proposition 4.4), then the expression is necessarily unique.
The geometric situation in this case is similar to the one treated in Kruskal’s
criterion (which, by the way, even in its reshaped version described in [12],
cannot work for r > 14 in the case of quaternary sextics).

The case r = 18 turns out to be different. For r = 18, even if A is completely
general, there are forms in the span of the 6−Veronese image of A for which a
second decomposition B exists. We can be more specific: when A is general, so
that cubic surfaces through A define a complete intersection irreducible curve C
of degree 9, then B is forced to be residual to A in a complete intersection of C
and a quartic surface. This allows us to parameterize the possible sets B,
and thus parameterize a (locally closed) subvariety Γ of the span of v6(A),
which contains the forms F of degree 6 in 4 variables, rank 18, which are not
identifiable. The closure of Γ is the image of a map from a subspace of the
projective space P((IA)4) to ⟨v6(A)⟩. We refer to Theorem 5.5 for a more
precise description.

In particular, we get that if F is a non-identifiable form, then the second
decomposition B is bounded to an invariant curve C, defined by A. This is a
case of confinement for decompositions of forms, as described in general in [1].

Since the generic rank of a form of degree 6 in four variables is 21, one may
wonder what happens for the missing cases r = 19, 20, 21. For r = 19, the same
procedure proves that a hypothetical second decomposition B must be bounded
to the unique cubic surface defined by A, but we are not able to characterize it
any more. For r = 20, 21 we have no precise characterization. This is probably
due to the fact that the theory of finite sets in P3 is far from being completely
understood, and also opens a series of questions on the structure of finite sets
in higher dimensional spaces, which could suggest directions to investigators in
the field.

2. Preliminaries

All polynomials in the paper are defined over the complex field.
We will often, by abuse, use the same letter to indicate a form in a poly-

nomial ring, the projective hypersurface defined by the form, and the point
defined by the form in the corresponding projective space.

Given a finite set A in a projective space, we denote by ℓ(A) its length (i.e.
its cardinality).

Consider a form F of degree 6 in 4 variables, over the complex field.
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Assume we know a Waring expression of F (of length r) as a linear combi-
nation of powers of linear forms

F =

r∑
i=1

aiL
6
i (1)

but we do not know a priori if the expression is minimal or unique (up to
trivialities). Thus we do not know if r is the (Waring) rank of F , and we do
not know whether F is identifiable or not.

On the other hand, we can certainly assume that the expression is non-
redundant, in the sense that the powers L6

i ’s are linearly independent and no
coefficient ai is 0.

Call A = {L1, . . . , Lr} the set of linear forms involved in the expression,
considered as points in a projective space P3. If we denote with vd : P3 → PN

the d-Veronese map, the expression tells us that F (as we said above, identified
by abuse with one point of the space P83 of sextic forms in P3) belongs to
the span of the Veronese image v6(A). The non-redundancy of A is equivalent
to saying that, for all proper subsets A′ ⊂ A, F is not contained in the span
of v6(A

′).
We have full control on the set A, so we may assume that we know all its

invariants. Thus we can assume that

(∗) A is in General Position (GP )

which, in this setting, means that all subsets of A have maximal Hilbert func-
tion.

Notice that if A has this property, then all subsets of A also have it.

Remark 2.1. When r ≤ 14, then the celebrated Kruskal’s criterion, in its
reshaped version (see [12]) guarantees that r is the rank of F , and the expression
is unique (up to trivialities: product by a scalar or reordering).

Namely, if u = min{r, 10} then necessarily

r ≤ u+ u+ u− 2

2
,

thus we can take a partition 6 = 2 + 2 + 2 and consider F as a tensor of
Sym2(C4) ⊗ Sym2(C4) ⊗ Sym2(C4). Since the second Kruskal’s rank of A is
u by the genericity assumption, then a direct application of Kruskal’s criterion
guarantees that (1) is the unique expression of F of length r.

When r > 14, we assume the existence of another expression

F =

s∑
i=1

aiM
6
i , s ≤ r (2)
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and call B = {M1, . . . ,Ms} the consequent finite set in P3.

Again we may directly assume that also B is non-redundant.

When r ≥ 15 the Kruskal’s criterion cannot provide a proof of the minimal-
ity and uniqueness of the expression (1). Indeed in this case new expressions are
possible. A finer geometrical analysis is required to understand the situation.

Call hA, hB , hZ the Hilbert functions of A,B and Z = A ∪B respectively.

By assumptions we know that the difference DhA(i) = hA(i)− hA(i− 1) is
defined by the following table

i 0 1 2 3 4 5 . . .

DhA(j) 1 3 6 r − 10 max{0, r − 20} 0 · · ·

From [2, Proposition 2.19], we know that

dim(⟨v6(A)⟩ ∩ ⟨v6(B)⟩) = ℓ(A ∩B)− 1 + h1
Z(6).

where h1
Z(i) is defined by h1

Z(i) = ℓ(Z)− hZ(i).

In particular hZ(6) < ℓ(Z) when A,B are disjoint.

We recall the Cayley-Bacharach property of Z from [5] and [2, Section 2.4].

Remark 2.2. Since A,B are both non-redundant, if A∩B = ∅ then the set Z
satisfies the Cayley-Bacharach property. In particular for j = 0, 1, 2, 3,

j∑
i=0

DhZ(i) ≤
j∑

i=0

DhZ(7− j).

Proposition 2.3. Assume r ≤ 20. Then s = ℓ(B) ≥ r. If r = 15 then A,B
are disjoint. Moreover, for all r the ideals of A and Z agree up to degree 3.

Proof. If A ∩B = ∅, then by Remark 2.2 we must have:

ℓ(Z) = ℓ(A) + ℓ(B) ≥
7∑

i=0

DhZ(i)

≥ 2

3∑
i=0

DhZ(i) ≥ 2

3∑
i=0

DhA(i) = 2ℓ(A)

which proves s ≥ r. If r = s, the inequalities become equalities, and this
implies the result on the ideals of A and Z.

Assume A ∩B ̸= ∅, i.e. assume Li = Mi for i = 1, . . . , j, for some j > 0.
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Then

F = a1L
6
1 + · · ·+ ajL

6
j + aj+1L

6
j+1 + · · ·+ arL

6
r

= b1L
6
1 + · · ·+ bjL

6
j + bj+1M

6
j+1 + · · ·+ brM

6
r .

Define F ′ by

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ arL

6
r

= bj+1M
6
j+1 + · · ·+ bsM

6
s .

F ′ has two disjoint decomposition. The former can have some vanishing coef-
ficients, but its length in any case is at least r − j, while the latter has length
≤ s− j.

If r = 15 we obtain a contradiction by the reshaped Kruskal’s criterion
(Remark 2.1) or by what we concluded above in the disjoint case. Then, arguing
by induction on r, we get that s ≥ r.

If A0, B0 are the two decompositions of F ′ defined above, then by induction
the ideals of A0 and Z0 = A0∪B0 agree up to degree 3. Since A,B are obtained
from A0, B0 by adding the same subset S, then also the ideals of A and Z agree
up to degree 3.

The minimality of the expression (1) proved in the previous result indeed
also follows from [6, Theorem 1.2], or by [14, Theorem 3.1] .

3. The case r = 15

We know from Proposition 2.3 and its proof that if F has two decompositions
A,B, then A ∩B = ∅.

We show an example in which the second decomposition B exists.

Example 3.1. Assume that A is a general set of 15 points in a general ellip-
tic quintic curve C. The 6-Veronese map maps C to a normal elliptic curve
of degree 30 which spans a P29. In P29 a general point has two different de-
compositions with respect to the elliptic curve C (see [10, Proposition 5.2]).
Thus one gets that a general F in the span of v6(A) has exactly two different
decompositions.

It is easy indeed to construct examples of forms F with two decompositions
of this type. A general set A of 15 points in an elliptic quintic and a general F
in the span of v6(A) will do.

On the other hand, it is also simple to realize that a general setA of 15 points
in P3 does not lie in an elliptic quintic. This is just a count of parameters:
the Hilbert scheme of elliptic quintics has dimension 5 · 4 = 20, so the sets
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of 15 points in such curves cannot depend on more than 20+ 15 = 35 parame-
ters; on the other hand, the family of sets of 15 points in P3 has dimension 45.

One can easily exclude that a given set A of 15 points in P3 lies in an elliptic
quintic by considering the base locus of the system of cubics through A which,
by assumption, has dimension 5.

Proposition 3.2. Assume r = 15 and assume that the base locus of the sys-
tem of cubics through A contains no curves. Then A is the unique minimal
decomposition of F .

Proof. Assume there exists a second decomposition B of length ≤ 15. Arguing
as in the final part of the proof of Proposition 2.3, since we can apply the
reshaped Kruskal’s criterion for decompositions of length ≤ 14, we see that
A,B must be disjoint. We know that the ideal of Z = A∪B coincides with the
ideal of A in degree 3. Since the base locus of the system of cubics through A
contains no curves, then by Bézout Z has length at most 27. Thus ℓ(B) ≤ 12,
which is excluded by Proposition 2.3.

One checks easily the dimension of the base locus of the system of cubics
through A, by standard computer algebra packages.

4. The cases r = 16, 17

The situation for r = 16, 17 is quite similar to the case r = 15, except that now
an intersection between the two decompositions is allowed.

Example 4.1. Let A0 be a general set of 15 points lying in a general elliptic
quintic curve C. We saw in Example 3.1 that a general form F0 in the span
of v6(A0) has a second decomposition B0 of length 15, disjoint from A0. If
L0 is a general linear form, then {L0} ∪ A0 and {L0} ∪ B0 are two different,
non-disjoint, decompositions of length 16 of L6

0 + F0.
Arguing as in Proposition 2.3, one sees that these two decompositions are

minimal, when A0, B0, L0 are general.

Also examples with different disjoint decompositions are possible.

Example 4.2. Let A be a general set of 16 points lying in a general rational
quintic curve C. By Bézout, since C is irreducible, the ideal of C and the ideal
of A agree in degree 3. The Veronese map v6 maps C to P30. Since no curves
are defective, a general point F of P30 has infinitely many (mostly disjoint)
decompositions of length 16 with respect to v6(C).

Sets A of this type lie in the Terracini locus, as defined in [7]: the differential
of the map from the abstract 16-secant variety to the space P83 of v6(P3) drops
rank over a general F ∈ ⟨v6(A)⟩.
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Example 4.3. Starting with forms with two decompositions of length 16, as
e.g. in Example 4.2, and adding one point as in Example 4.1, one finds easily
examples of non-disjoint different decompositions of length 17 for some sex-
tics F .

As in the case r = 15, if the system of cubics through A has no curves in
the base locus, then the decomposition A of F is unique.

Proposition 4.4. Assume r = 16 or r = 17 and assume that the base locus
of the system of cubics through A contains no curves. Then A is the unique
minimal decomposition of F .

Proof. The proof is given only for r = 16, since the other case is completely
analogous.

Assume there exists a second decomposition B of length 16. If A ∩B = ∅,
since the ideal of Z = A∪B coincides with the ideal of A in degree 3, by Bézout
Z has length at most 27. Thus ℓ(B) ≤ 11, which is excluded by Proposition 2.3.

If the intersection A ∩B contains j > 0 points, then as above write

F = a1L
6
1 + · · ·+ ajL

6
j + aj+1L

6
j+1 + · · ·+ a16L

6
16

= b1L
6
1 + · · ·+ bjL

6
j + bj+1M

6
j+1 + · · ·+ b16M

6
16.

Define F ′ by

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ a16L

6
16

= bj+1M
6
j+1 + · · ·+ b16M

6
16 .

F ′ has two disjoint decompositions, one for which A′ is contained in A. Thus
the system of cubics through A′ has no curves in the base locus. Even if the
length of A′ is 15, we have a contradiction with Proposition 3.2.

Since for r ≤ 17 and A very general the system of cubics through A has
no curves in the base locus, the previous proposition excludes the existence of
a second decomposition, except for sets A contained in a Zariski closed subset
of (P3)r.

5. The case r = 18

For r = 18 and A general, the base locus of the system of cubics through A is
a complete intersection curve C of degree 9 and genus 10. There is no way to
use a strategy similar to the statement of Proposition 4.4 in order to prove the
identifiability of F .

Remark 5.1. From Proposition 3.2 and Proposition 4.4 it turns out that, when
r = 15, 16, 17 and the system of cubics through A has no curves in the base
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locus, then all forms F in the span of v6(A) are identifiable of (Waring) rank r,
unless the decomposition A is redundant for F , i.e. unless F sits in the span
of some strict subset of v6(A).

We can see immediately that the situation changes completely for r = 18.

Example 5.2. Let A be a general set of 18 points in P3. Then A is contained
in the complete intersection of two cubics G1, G2. Consider the complete inter-
section curve C = G1∩G2 and let G be a general quartic not containing C. The
intersection of C with the surface G consists of 36 points Z = A∪B. B is thus
a set of 18 points in the curve C, disjoint from A. By the Cayley-Bacharach
property of complete intersections, one knows that h1

Z(6) > 0. Thus by [2,
Proposition 2.19], we know that ⟨v6(A)⟩ and ⟨v6(B)⟩ meet in some point F .
Such F ∈ ⟨v6(A)⟩ has a second decomposition B of length 18.

Remark 5.3. By [4, Proposition 3.9], when A,B are disjoint decompositions
of F , then the sum of the homogeneous ideals IA + IB does not coincide with
the polynomial ring R in degree 6, and F is dual to IA + IB

Consider again the sets A,B described in Example 5.2.
The ideal of B can be found from G and the ideal of A as a result of the

mapping cone process (see [13]). By the Minimal Resolution Conjecture, which
holds in P3 (see [8]), a resolution of the ideal IA is given by 0 → R8(−6) →
R18(−5) → R2(−3)⊕R9(−4) → IA → 0. Combining with the Koszul complex
of G1, G2, G one obtains a diagram

0 → R(−10)
α′

→ R(−6)⊕R2(−7)
β′

→ R2(−3)⊕R(−4) → IZ → 0
γ ↓ γ′ ↓ γ′′ ↓

0 → R8(−6)
α→ R18(−5)

β→ R2(−3)⊕R9(−4) → IA → 0

(3)

where the map γ′′ is defined by G1, G2, G. From the diagram one obtains a
resolution of IB by the dual of the mapping cone:

0 → R8(−6) → R18(−5)
(α⊕γ′)∨−→ R2(−3)⊕R9(−4)

(α′⊕γ)∨−→ IB → 0

Thus there is a standard way to compute IB , hence IA + IB , from IA and G.

We have then all the ingredients to study the existence of a second decom-
position for F .

Proposition 5.4. Assume that the decomposition A of length 18 of F , satisfy-
ing condition (∗), also satisfies the following condition: for all subsets A′ ⊂ A
of length 17, the linear system of cubics through A′ has base locus of dimension
0. Then any other decompositions of length 18 of F is disjoint from A.

Proof. Assume there exists another decomposition B of length 18 with ℓ(A ∩
B) = j > 0. Then arguing as in the proof of Proposition 2.3 one finds another
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sextic form F ′ with decompositions

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ a18L

6
18

= bj+1M
6
j+1 + · · ·+ b18M

6
18,

where A = {L1, . . . , L18} and ai, bi ̸= 0 for all i. If some coefficient ai −
bi, i = 1, . . . , j, is non-zero, then the second decomposition of F ′ has length
smaller than the first one, which is contained in A. We get a contradiction
with Proposition 2.3. Thus ai = bi for all i = 1, . . . , j. But then F ′ has two
disjoint decompositions of length 18− j, and one of them A′ = {Lj+1, . . . , L18}
is contained in A. By assumption the system of cubics through A′ has no
curves in the base locus. Then we get a contradiction with either the Reshaped
Kruskal’s Criterion, or Proposition 3.2, or Proposition 4.4.

Theorem 5.5. Let F be a sextic in 4 variables, with a non-redundant decom-
position A of length 18. Assume that A satisfies the following properties.

(*) A is in General Position;

(**) for all subsets A′ ⊂ A of length 17, the linear system of cubics through
A′ has base locus of dimension 0;

(***) the base locus of the pencil of cubics through A is an irreducible curve C.

Then A is minimal, and any other decomposition B of length 18 of F (if any)
is disjoint from A, and Z = A ∪ B is a complete intersection of surfaces of
degrees 3, 3, 4.

Proof. The unique thing that remains to prove is the last assertion, i.e. that
A ∪B is the intersection of C with a quartic surface.

If B exists, Z = A ∪B lies in the pencil of cubics containing A, by Propo-
sition 2.3. If all the quartics containing Z are composed with the pencil, then
hZ(4) = 35 − 8 = 27, so that DhZ(4) = 9. But then DhZ(5) + DhZ(6) +
DhZ(7) ≤ 9 < DhZ(2) + DhZ(1) + DhZ(0), which contradicts the Cayley-
Bacharach property. hence there is a quartic containing Z and not C. The
claim follows.

Remark 5.6. For a given form F and a decomposition A of length 18, one
can produce a procedure which tests if A is unique i.e. if F is identifiable of
rank 18, as follows.

1. Control if A is in GP .

2. Control that the system of cubics through any subset of length 17 of A
has 0-dimensional base locus.
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3. Control that the system of cubics through A has an irreducible nonic
curve as base locus.

4. Consider a linear space W in (IA)4 orthogonal to the 8-dimensional sub-
space spanned by the cubics through A.

5. For all G ∈ W compute the generators of the residue B of A in G ∩ C,
in terms of coordinates of G ∈ W .

6. Prove that for no choice of the coordinates of G the form F is dual to
IA + IB .

Notice that the generators of IB , mod the cubics containing C, are 9 quartics,
by the resolution following diagram 3.

One of the most expensive points in the procedure is step (1), which requires
to control that none of the

(
18
8

)
= 43, 758 subsets of length 10 of A is contained

in quadrics.
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Abstract. This is a survey primarily about determining the border
rank of tensors, especially those relevant for the study of the complexity
of matrix multiplication. This is a subject that on the one hand is
of great significance in theoretical computer science, and on the other
hand touches on many beautiful topics in algebraic geometry such as
classical and recent results on equations for secant varieties (e.g., via
vector bundle and representation-theoretic methods) and the geometry
and deformation theory of zero dimensional schemes.
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1. Introduction

This is a survey of uses of secant varieties in the study of the complexity of
matrix multiplication, one of many areas in which Giorgio Ottaviani has made
significant contributions. I pay special attention to the use of deformation
theory because at this writing, deformation theory provides the most promising
path to overcoming lower bound barriers. For an introduction to more general
uses of algebraic geometry in algebraic complexity theory see [35]. I begin by
reviewing some classical results.

1.1. Symplectic bundles on the plane, secant varieties,
and Lüroth quartics revisited [45]

In the 1860’s, Darboux studied degree n curves in P2 that pass through all the(
n+1
2

)
vertices of a complete (n + 1)-gon in P2 (i.e., the union of n + 1 lines

in P2 with no points of triple intersection). In 1869 Lüroth studied the n = 4
case. A naïve dimension count indicates that all quartics should pass through
the 10 vertices of some complete pentagon but Lüroth proved it is actually a
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codimension one condition.
In 1902 Dixon [24] proved all degree n curves in P2 arise as a n×n symmetric

determinant (also see [23] for the general determinantal case).
In 1977 Barth [6] studied the moduli space of stable (symplectic) vector

bundles on P2. In particular he showed that the curve of jumping lines of a
rank 2 stable bundle on P2 with Chern classes (c1, c2) = (0, 4) is a Lüroth
quartic. Barth also gave a new proof of Lüroth’s theorem via vector bundles.

In [45] Giorgio Ottaviani explains these results via the defectivity of secant
varieties of Seg(P2 × v2(Pn−1)), where Seg(P2 × v2(Pn−1)) ⊂ P(C3⊗S2Cn) is
the set of points [x⊗z2], where [x] ∈ P2 and [z] ∈ Pn−1. The proof uses the
bounded derived category version of Beilinson’s monad Theorem [8], see [4] for
an excellent introduction.

1.2. Secant varieties

Throughout this paper V,A,B,C denote finite dimensional complex vector
spaces. Let X ⊂ PV be a projective variety, Define its r-th secant variety, or
variety of secant Pr−1’s, to be

σr(X) :=
⋃

x1,...,xr∈X

⟨x1, . . . , xr⟩.

Here, for a set or subscheme Z ⊂ PV , ⟨Z⟩ ⊂ PV denotes its linear span, and
the overline denotes Zariski closure.

In this article I will be particularly interested in the case X = Seg(PA ×
PB × PC) ⊂ P(A⊗B⊗C), the variety of rank one (3-way) tensors. Given
T ∈ A⊗B⊗C, define the border rank of T , R(T ) to be the smallest r such that
[T ] ∈ σr(X).

Secant varieties have a long history in algebraic geometry dating back
to the 1800’s. In the 20th century they were used by J. Alexander and A.
Hirschowitz [1] to solve the polynomial interpolation problem, and by F. Zak
[51, Chap II, §2] to solve a linearized version of R. Hartshorne’s famous con-
jecture on complete intersections, called Hartshorne’s conjecture on linear nor-
mality. L. Manivel and I used them to study the geometry of the exceptional
groups and their homogeneous varieties, and even to obtain a new proof of the
Killing-Cartan classification of complex simple Lie algebras and prove geomet-
ric consequences of conjectured categorical generalizations of Lie algebras by
Deligne and Vogel, see [37] for a survey. In this article, I discuss their use in
the context of algebraic complexity theory, more specifically, in proving lower
and upper bounds on the complexity of matrix multiplication.
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1.3. Matrix multiplication

In 1968, V. Strassen [47] discovered the usual way we multiply n×n-matrices,
which uses O(n3) arithmetic operations, is not optimal. After much work, it
was generally conjectured that one can in fact multiply matrices using O(n2+ϵ)
arithmetic operations for any ϵ > 0. To fix ideas, define the exponent of matrix
multiplication ω to be the infimum over all τ such that n× n matrices may be
multiplied using O(nτ ) arithmetic operations, so the conjecture is that ω = 2.
The matrix multiplication tensor M⟨n⟩ : Cn2 ×Cn2 → Cn2

executes the bilinear
map of multiplying two matrices. Fortunately for algebraic geometry, Bini [9]
showed R(M⟨n⟩) = O(nω) so we may study the exponent via secant varieties
of Segre varieties.

Thus one way to prove complexity lower bounds for matrix multiplication
would be to prove lower bounds on the border rank of M⟨n⟩. I will give a
history of such lower bounds. Perhaps more surprising, is that one way of
showing upper bounds for the complexity of matrix multiplication would be to
prove the border rank of certain auxiliary tensors is small, as I discuss in §4.

1.4. Dimensions of secant varieties

One expects dimσr(X) = min{r dimX+r−1,dimPV }, because one can pick r
points on X, and then a point on the Pr−1 spanned by them. This always gives
an upper bound on the dimension.

Strassen [48], motivated by the complexity of matrix multiplication, showed
that this expectation fails for X = Seg(P2 × Pn−1 × Pn−1) ⊂ P(C3⊗Cn⊗Cn),
n odd, r = 3n−1

2 .
Previously, E. Toeplitz, in 1877 [50], had already shown it fails for X =

Seg(P2 × v2(P3)) ⊂ P(C3⊗S2C4), r = 5.
In 2007 Ottaviani [45] showed that more generally the expectation fails for

X = Seg(P2×v2(Pn−1)) ⊂ P(C3⊗S2Cn) with n even r = 3n
2 −1, and that this

failure implies Lüroth’s theorem. In the same paper he also partially recovers
Barth’s moduli results.

2. Koszul flattenings and variants

2.1. Idea of Proofs of results in §1.4

To prove the naïve dimension count for dimσr(X) is wrong (e.g., in the case
of Lüroth’s theorem that σr(X) ̸= PV ), one can show that the ideal of σr(X)
is non-empty by exhibiting an explicit polynomial in the ideal.

Strassen did this and his result was revisited by Ottaviani: Consider
Seg(PA × PB × PC) ⊂ P(A⊗B⊗C) , dimA = 3 , dimB = dimC = m. Let
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{ai}, {bj}, {ck} be bases of A,B,C. Given T =
∑
T ijkai⊗bj⊗ck ∈ A⊗B⊗C,

consider the linear map

T∧1
A : A⊗B∗ → Λ2A⊗C

a⊗β 7→
∑
i,j,k

T ijkβ(bj)a ∧ ai⊗ck

Exercise: If [T ] ∈ Seg(PA × PB × PC), then rank(T∧1
A ) = 2, and thus, by

linearity, if rank(T∧1
A ) > 2R, then [T ] ̸∈ σR(Seg(PA× PB × PC)).

Ottaviani states in a remark that these minors are a reformulation of
Strassen’s equations (however see Remark 2.1 below), which, for tensors
T ∈A⊗B⊗C = Ca⊗Cm⊗Cm such that there exists α ∈ A∗ with rank(T (α)) =
m, are naturally expressed as follows: consider T (A∗) ⊂ B⊗C, and for α ∈ A∗

with rank(T (α)) = m, consider the linear isomorphism T (α) : B∗ → C. Then
T (A∗)T (α)

−1 ⊂ End(C) is a space of endomorphisms. If T =
∑m

j=1 ej⊗bj⊗cj
for some ej ∈ A, then one obtains a space of diagonal matrices. In partic-
ular, the matrices commute. Since the property of commuting is closed, if
[T ] ∈ σm(Seg(PA×PB×PC)), then one still obtains a space of commuting en-
domorphisms. Moreover, the rank of the commutator (a measure of the failure
of commutivity) may be computed from the rank of T∧1

A . Note that in both
cases one restricts to a three dimensional subspace of A.

To see Strassen’s equations as polynomials, for X ∈ B⊗C, let X∧m−1 ∈
Λm−1B⊗Λm−1C ≃ B∗⊗C∗ denote the adjucate (cofactor matrix), and recall
that X−1 is essentially the adjugate times the determinant. Then Strassen’s
equations for T to have border rank (at most) m [48] become, for all X,Y, Z ∈
T (A∗) ⊂ B⊗C,

XY ∧m−1Z − ZY ∧m−1X = 0. (1)

These are equations of degree m+ 1.
Using a refinement of these equations that takes into account the rank of

the commutator, Strassen proved R(M⟨n⟩) ≥ 3
2n

2, the first non-classical lower
bound on the border rank of the matrix multiplication tensor.

Call a tensor T which satisfies the genericity condition that there exists
α ∈ A∗ with rank(T (α)) = m, 1A-generic.

When T is 1A-generic, taking Y of full rank and changing bases such that it
is the identity element, the equations require the space to be abelian. If T (A∗)
is of bounded rank m − 1, for each X,Y, Z, the set of m2 equations reduces
to a single equation. If T (A∗) is of bounded rank m − 2, then the equations
become vacuous.

Lemma 3.1 of [45] states that if T is 1A-generic, then the condition on
rank(T∧1

A ) is indeed a reformulation of Strassen’s equations.
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Remark 2.1. Recently, with my student Arpan Pal and Joachim Jelisiejew
[32], we proved that if T is not 1A-generic, then the condition on rank(T∧1

A ) is
a stronger condition than the A-Strassen equations.

2.2. Generalizations: Young flattenings [43, 44]
2.2.1. Koszul flattenings

Consider Seg(PA × PB × PC) ⊂ P(A⊗B⊗C), let dimA = 2p + 1, dimB =
dimC = m. (If dimA > 2p + 1, restrict to a general 2p + 1 dimensional
subspace.)

Given T =
∑
T ijkai⊗bj⊗ck ∈ A⊗B⊗C, consider the linear map

T∧p
A : ΛpA⊗B∗ → Λp+1A⊗C

ai1 ∧ · · · ∧ aip⊗β 7→
∑
i,j,k

T ijkβ(bj)ai1 ∧ · · · ∧ aip ∧ ai⊗ck

Exercise: If [T ] ∈ Seg(PA × PB × PC), then rank(T∧p
A ) =

(
2p
p−1

)
. Thus if

rank(T∧p
A ) >

(
2p
p−1

)
R, then [T ] ̸∈ σR(Seg(PA×PB×PC)). Call these equations

the p-Koszul flattenings.
When Ottaviani and I found the p-Koszul flattenings, we were sure we

would get a new lower bound for matrix multiplication. Our first attempts
were discouraging, we were attempting to take 2p + 1 = n2 or nearly so. It
turns out that our initial attempts were too greedy, as such values do not give
good lower bounds. Only months later, we finally tried taking p = n − 1
which enabled us to prove the first new lower bounds for border rank of matrix
multiplication since 1983:

Theorem 2.2 ([44]). R(M⟨n⟩) ≥ 2n2 − n.

It is worth noting that the absolute limit of Koszul flattenings, and any
determinantal equations that we found, was 2n2 − 1, i.e., for tensors in
Cm⊗Cm⊗Cm, 2m− 1.

2.2.2. Young flattenings

We found the p-Koszul flattenings as part of a general program to systematically
find equations for secant varieties, especially equations of secant varieties of
homogeneous varieties, which we call Young flattenings. Giorgio likes to think
of these in terms of degeracy loci of maps between vector bundles, and I prefer
a more representation-theoretic perspective. The basic idea is for X ⊂ PV , to
find an inclusion of V into a space of matrices. Then if the matrices associated
to points of X have rank at most q, the size qr+ 1 minors restricted to V give
equations for σr(X).
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Vector bundle perspective

Let E → X be a vector bundle of rank e, write L = OX(1) so V = H0(X,L)∗ =
H0(L)∗. Let v ∈ V and consider the linear map AE

v : H0(E) → H0(E∗⊗L)∗
induced by the multiplication map H0(E)⊗H0(L)∗ → H0(E∗⊗L)∗. Then, as-
suming all spaces are sufficiently large, the size (re+1) minors of AE

v give equa-
tions for σr(X). Here we have an inclusion V =H0(L)∗⊂H0(E)∗⊗H0(E∗⊗L)∗.

Representation theory perspective

Let X = G/P ⊂ PVλ where Vλ is an irreducible module for the reductive
group G of highest weight λ and X is the orbit of a highest weight line, i.e.,
the minimal G-orbit in PVλ. Look for G-module inclusions Vλ ⊂ Vµ⊗Vν , so
in coordinates one realizes Vλ as a space of matrices. Then for x ∈ X if the
associated matrix has rank k, the size rk+1 minors of Vµ⊗Vν restricted to Vλ
give equations in the ideal of σr(X).

We spent some time trying to find more powerful Young flattenings. At
first we just thought we were not being clever enough in our search for deter-
minantal equations, but then we came to suspect that there was some limit to
the method.

3. Beyond Koszul flattenings: steps forward and barriers
to future progress

3.1. The cactus barrier

Around the same time, in both algebraic complexity theory [25] and algebraic
geometry [7, 11] (see [34, Chap. 10] for an overview), it was proven that
determinantal methods are subject to an absolute barrier that is at most 6m
for tensors in Cm⊗Cm⊗Cm.

To explain the barrier from a geometric perspective, rewrite the definition
of the secant variety as

σr(X) :=
⋃

{⟨R⟩ | length(R) = r, R ⊂ X, R : smoothable}.

Here R ⊂ X denotes a zero dimensional scheme and the union is taken over all
zero dimensional schemes satisfying the conditions in braces. Define the cactus
variety [11]:

κr(X) :=
⋃

{⟨R⟩ | length(R) = r, R ⊂ X}.

It turns out that κ6m−4(Seg(Pm−1×Pm−1×Pm−1)) = P(Cm⊗Cm⊗Cm), com-
pared with σr(Seg(Pm−1×Pm−1×Pm−1)) which does not fill P(Cm⊗Cm⊗Cm)

until r ∼ m2

3 .
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The barrier results from the fact that determinantal equations for σr(X)
are also equations for κr(X)!

When I learned this, I became very discouraged.

3.2. A Pyrrhic victory
With M. Michałek, we were able to push things a little further for tensors
with symmetry. Given T ∈ A⊗B⊗C, R(T ) ≤ r if and only if there exists a
curve Et ⊂ G(r,A⊗B⊗C), the Grassmannian of r planes through the origin in
A⊗B⊗C, such that

• For t ̸= 0, Et is spanned by r rank one elements.

• T ∈ E0.

Let GT := {g ∈ GL(A)×GL(B)×GL(C) | g ·T = T} denote the symmetry
group of T . Then if we have such a curve Et, then for all g ∈ GT , gEt also
gives a border rank decomposition. Thus one can insist on normalized curves,
those with E0 Borel fixed for a Borel subgroup of GT [40]. Then one can apply
a border rank version of the classical substitution method (see, e.g., [2]) to
reduce the problem to bounding the border rank of a smaller tensor. Applying
this to the matrix multiplication tensor, we proved:

Theorem 3.1 ([41]). R(M⟨n⟩) ≥ 2n2 − log2 n− 1.

Recall that the limit of lower bounds one can prove with Young flattening
is 2m− 1. We wrote down an explicit sequence of tensors Tm ∈ Cm⊗Cm⊗Cm

with a one-dimensional symmetry group and proved:

Theorem 3.2 ([42]). R(Tm) ≥ (2.02)m.

After that, I did not see any path to further lower bounds.

3.3. A vast generalization: border apolarity
W. Buczyńska and J. Buczyński [12] had the following idea: Consider not just
a curve in the Grassmannian obtained by taking the spans of r moving points
{Tj,ϵ}, where T = limϵ→0

∑r
j=1 Tj,ϵ, but the curve of ideals Iϵ ∈ Sym(A∗ ⊕

B∗⊕C∗) that the points give rise to: let Iϵ be the ideal of polynomials vanishing
on [T1,ϵ]∪ · · · ∪ [Tr,ϵ] ⊂ PA× PB × PC. Now consider the “limiting ideal”. But
how should one take limits? If one works in the usual Hilbert scheme the r
points limit to some zero dimensional scheme and one could take the span of
that scheme. But for secant varieties one is really taking the limit of the spans
⟨T1,ϵ, . . . , Tr,ϵ⟩ in the Grassmannian of r planes and the span of the limiting
scheme can be strictly smaller than the limit of the spans, so this idea does not
work.
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The answer is to work in the Haiman-Sturmfels multigraded Hilbert scheme
[29], which lives in a product of Grassmannians and keeps track of the entire
Hilbert function rather than just the Hilbert polynomial. The price one pays
is that now one must allow unsaturated ideals.

As with the border substitution method, one can insist that limiting ideal
I0 is Borel fixed, which for tensors with a large symmetry group reduces in
small multi-degrees to a small search that has been exploited in practice.

Instead of single curve Eϵ ⊂ G(r,A⊗B⊗C) limiting to a Borel fixed point,
for each (i, j, k) one gets a curve in each Gr(r, SiA∗⊗SjB∗⊗SkC∗), each curve
limiting to a Borel fixed point and satisfying compatibility conditions. Here
Gr(r, V ) is the Grassmannian of codimension r subspaces in V . In this situa-
tion, Eϵ = (Iϵ)

⊥
(111).

The upshot is an algorithm that either produces all normalized candidate
I0’s or proves border rank > r. The caveat is that once one has a candidate
I0 one must determine if it actually came from a curve of ideals of r distinct
points.

Using border apolarity, in [19] we proved numerous new matrix multiplica-
tion border rank lower bounds, as well as determining the border rank of the
size three determinant polynomial considered as a tensor det3 ∈ C9⊗C9⊗C9,
whose importance for complexity is explained below. In particular, our results
include the first nontrivial lower bounds for “unbalanced matrix multiplication
tensors”, something that was untouchable using previous methods.

3.4. Border apolarity is subject to the cactus barrier

In practice, one attempts to construct an ideal by building it up from low
multi-degrees. The main restrictions one obtains is when one has the ideal
constructed up to multi-degrees (s−1, t, u), (s, t−1, u) and (s, t, u−1), and one
wants to construct the ideal in degree (s, t, u). In order that the construction
may continue, one needs that the natural symmetrization and addition map

Is−1,t,u⊗A∗ ⊕ Is,t−1,u⊗B∗ ⊕ Is,t,u−1⊗C∗ → SsA∗⊗StB∗⊗SuC∗ (2)

has image of codimension at least r. Here Is−1,t,u ⊂ Ss−1A∗⊗StB∗⊗SuC∗

denotes the component of the ideal in multi-degree (s− 1, t, u) etc. (Here and
in what follows, the direct sum is the abstract direct sum of vector spaces, so
there is no implied assertion that the spaces are disjoint when they live in the
same ambient space.)

That is, the minors of the map of appropriate size must vanish. These are
determinantal conditions and therefore subject to the cactus barrier.

Remark 3.3. Aside for the experts: J. Buczyński points out that not all com-
ponents of the usual Hilbert scheme contain ideals with generic Hilbert func-
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tion. Thus in those situations, border apolarity may give better lower bounds
on border rank than on cactus border rank.

3.5. Deformation theory

Although border apolarity alone cannot overcome the cactus barrier, by placing
calculations in the Haiman-Sturmfels multigraded Hilbert scheme, it provides
a path to overcoming the cactus barrier. Namely one can apply the tools
of deformation theory (see, e.g., [30] for an introduction) to determine if a
candidate ideal is deformable to the ideal of a smooth scheme. Below, after
motivating the problem, I describe a first implementation of this in the special
case of tensors of minimal border rank.

4. Strassen’s laser method for upper-bounding the
exponent of matrix multiplication using tensors of
minimal or near minimal border rank

The best way to prove an upper bound on matrix multiplication complexity
would be to prove an upper bound for matrix multiplication directly. Fortu-
nately for algebraic geometry, Bini [9] showed that this is measured by the
border rank of the matrix multiplication tensor. However, there has been
little progress in this direction since the early 1980’s. Instead, border rank
upper bounds for M⟨n⟩ have been proven using indirect methods, the most
important papers are those of Schönhage [46], Strassen [49] and Coppersmith-
Winograd [22]. The resulting technique is called Strassen’s laser method. Re-
markably, it begins with a tensor of minimal (or near minimal) border rank,
i.e., a concise tensor in Cm⊗Cm⊗Cm of border rank m or nearly m, and then
builds a large tensor from it, using its Kronecker powers defined below, and
then, using methods from probability and combinatorics, shows this large ten-
sor admits a degeneration to a large matrix multiplication tensor.

For tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C ′, the Kronecker product of
T and T ′ is the tensor T ⊠ T ′ := T⊗T ′ ∈ (A⊗A′)⊗(B⊗B′)⊗(C⊗C ′), re-
garded as 3-way tensor. Given T ∈ A ⊗ B ⊗ C, the Kronecker powers of T
are T⊠N ∈ A⊗N ⊗ B⊗N ⊗ C⊗N , defined iteratively. Rank and border rank
are submultiplicative under Kronecker product: R(T ⊠ T ′) ≤ R(T )R(T ′),
R(T ⊠ T ′) ≤ R(T )R(T ′), and both inequalities may be strict.

Given T, T ′ ∈ A ⊗ B ⊗ C, we say that T degenerates to T ′ if
T ′ ∈ GL(A)×GL(B)×GL(C) · T , the closure of the orbit of T , the closures
are the same in the Euclidean and Zariski topologies.

Strassen’s laser method [49, 21] obtains upper bounds on ω by showing a
certain explicit degeneration of a large Kronecker power of a tensor T satisfy-
ing certain combinatorial properties, admits a further degeneration to a large
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matrix multiplication tensor. Since border rank is non-increasing under degen-
erations and one has an upper bound on R(T⊠N ) inherited from the knowledge
of R(T ), one obtains an upper bound on the border rank of the large matrix
multilplication tensor.

An early success of the laser method was with a tensor of border rank
m + 1, now called the small Coppersmith-Winograd tensor Tcw,q ∈ (Cq+1)⊗3.
Coppersmith and Winograd showed that for all k and q = m− 1, [22]

ω ≤ logq

(
4

27

(
R

(
T⊠k
cw,q

)) 3
k

)
. (3)

They used this when q = 8 and the estimate R(T⊠k
cw,q) ≤ (q + 2)k to obtain

ω ≤ 2.41. In particular, one could even potentially prove ω equaled two were
limk→∞(R(T⊠k

cw,2))
3
k equal to 3 instead of 4. Using an enhancement of border

apolarity, with A. Conner and H. Huang, in [20] we solved the longstanding
problem of determining R(T⊠2

cw,2). Unfortunately for matrix multiplication up-
per bounds, we proved that R(T⊠2

cw,2) = 42. Previously, just using Koszul flat-
tenings, analogous (and even higher Kronecker power) results for other small
Coppersmith-Wingorad tensors were obtained with A. Conner, F. Gesmundo,
and E. Ventura [18].

A more intriguing tensor is the “skew-cousin” of the small Coppersmith-
Winograd tensor Tskewcw,q occuring in odd dimensions, which similarly satisfies
for all k and even q, [18]

ω ≤ logq

(
4

27

(
R

(
T⊠k
skewcw,q

)) 3
k

)
. (4)

Again, the q = 2 case could potentially be used to prove the exponent is two.
Here one begins with a handicap, as R(Tskewcw,2) = 5 > 4, but with A. Conner
and A. Harper, using border apolarity for the lower bound and numerical search
methods for the upper bound, in [19] we showed R(T⊠2

skewcw,2) = 17 < 25.
Unfortunately 17 > 16. The problem of determining the border rank of the
cube remains.

It is worth remarking that T⊠2
cw,2 is isomorphic to the size three permanent

polynomial considered as a tensor and T⊠2
skewcw,2 is isomorphic to the size three

determinant polynomial [18].
The best bounds on the exponent were obtained using the laser method

applied to the big Coppersmith-Winograd tensor TCW,q, which has minimal
border rank. However, barriers to future progress using the laser method ap-
plied to this tensor have been discovered, first in [3], and then in numerous
follow-up works. In particular, one cannot prove ω < 2.3 using TCW,q in the
laser method. A geometric interpretation of the barriers is given in [16].

Very recently, at an April 2022 workshop on geometry and complexity the-
ory in Toulouse, France, J. Jelisiejew and M. Michałek announced a path to

300



SECANT VARIETIES (11 of 21)

improving the laser method. Their observation was that the border rank es-
timate for the “certain degeneration” of T⊠N in the laser method mentioned
above can be improved! The proof exploits properties of the algebra associated
to T⊠N (discussed in §7.1 below) that persist under the degeneration.

Even without that recent developement, other minimal border rank tensors
could potentially prove ω < 2.3 with the standard laser method. In fact in
[31, Cor 4.3] and [17, Cor 7.5] it was observed that among tensors that are
1A, 1B and 1C generic (such are called 1-generic tensors), TCW,q is the “worst”
for the laser method in the sense that any bound one can prove using TCW,q

can also be proved using any other minimal border rank 1-generic tensor. This
provides strong motivation to understand tensors of minimal border rank. A
second motivation is that it can serve as a case study for the implementation
of deformation theory to overcome the cactus barrier.

5. Classical and neo-classical equations for tensors of
minimal border rank

Before discussing recent developments for tensors of minimal border rank, I ex-
plain the previous state of the art. I already have discussed Strassen’s equations
and Koszul flattenings. What follows are additional conditions.

5.1. The equations of [36, 38]

Several modules of equations were found in [36, 38] using representation the-
ory and variants of Strassen’s equations. Many of these still lack a geometric
interpretation.

5.2. The flag condition

If R(T ) = m there exists a flag A1 ⊂ · · · ⊂ Am−1 ⊂ A such that for all j,
T (A∗

j ) ⊂ σj(Seg(PB × PC)). This has been observed several times, dating
back at least to [13, Exercise 15.14]. Note that to convert this condition to
polynomial conditions, one would have to use elimination theory, even for the
first step that there exists a line A∗

1 such that PT (A∗
1) ∈ Seg(PB × PC). The

flag condition was essential to the results in [20].

5.3. The End-closed condition

Gerstenhaber [28] observed the following: Let ⟨x1, . . . , xm⟩ ⊂ End(Cm) be a
limit of spaces of simultaneously diagonalizable matrices. Then ∀i, j, xixj ∈
⟨x1, . . . , xm⟩. Call this the “End-closed condition”. To express the condition as
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polynomials, let {αi} be a basis of A∗, with α1 chosen to maximize the rank
of T (α1), then for all α′, α′′ ∈ A∗, the End-closed condition is

(T (α′)T (α1)
∧m−1T (α′′)) ∧ T (α1) ∧ · · · ∧ T (αm) = 0 ∈ Λm+1(End(C)). (5)

These are polynomials of degree 2m+ 1. When T is 1A-generic and one takes
α1 such that rank(T (α1)) = m, these correspond to T (A∗)T (α1)

−1 ⊂ End(C)
being closed under composition of endomorphisms.

5.4. The symmetry Lie algebra condition

Let g = gl(A) ⊕ gl(B) ⊕ gl(C). Let ĝT = {X ∈ g | X.T = 0}. (This is the
pullback of the symmetry Lie algebra of T to gl(A) ⊕ gl(B) ⊕ gl(C).) With
T understood, write gAB = {X ∈ gl(A) ⊕ gl(B) | X.T = 0} and similarly for
gBC , gAC .

A concise tensor of rank m, M⊕m
⟨1⟩ , has dim ĝM⊕m

⟨1⟩
= 2m and dim gAB =

dim gAC = dim gBC = m. The dimension of the symmetry Lie-algebra is semi-
continuous under degenerations, thus if T is of minimal border rank dim ĝT ≥
2m and dim ĝAB ≥ m and permuted statements.

Computing these dimensions amounts to determining the dimension of the
kernel of a linear map. Precisely to check if dim ĝT ≥ 2m are equations of
degree 3m2 − 2m+ 1 and dim gAB ≥ m are equations of degree 2m2 −m+ 1.

6. The 111-equations and first consequences

6.1. The 111-equations

The 111-equations are the rank conditions on the map (2) when (s, t, u) =
(1, 1, 1) and one is testing for border rank m. Note that in this case there
are no choices for the ideal in degrees (110), (101), (011), so they are really
polynomial equations. These equations first appeared in [12, Thm 1.3].

The 111-equations for concise tensors of minimal border rank may be re-
phrased as the requirement that

dim((T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C)) ≥ m. (6)

A special case of the 111-equations are the two-factor 111-equations, which
have a natural geometric interpretation and are easier to implement because
a pairwise intersection can be computed using inclusion-exclusion: Given sub-
spaces X1, X2, X3 of a vector space V , by inclusion-exclusion dim(Xi ∩Xj) =
dim(Xi) + dim(Xj)− dim⟨Xi, Xj⟩.

Thus the two-factor 111-test may be computed by checking if
dim⟨T (A∗)⊗A, T (B∗)⊗B⟩ ≥ 2m2 − m + 1 and permuted statements. These
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are equations of degree 2m2 −m+ 1 in the T ijk. Notice that if (X,Y ) ∈ gAB ,
i.e., X.T = −Y.T , then (X,−Y ) gives rise to an element of (T (A∗)⊗A) ∩
(T (B∗)⊗B), i.e., the two factor 111-tests are equivalent to the dimension re-
quirements on gAB , gAC , gBC for minimal border rank.

More generally, the full 111-equations may also be understood as a general-
ization of the lower bound on dim(ĝT ), where one not just bounds dimension,
but restricts the structure of ĝT as well.

To compare the 111-equations with other previously known equations, we
have:

Proposition 6.1. [32, Prop. 1.1, Prop. 1.2] The 111-equations imply both
Strassen’s equations and the End-closed equations. The 111-equations do not
always imply the p = 1 Koszul flattening equations.

Consider the situation of a concise tensor where each of the associated
spaces of homomorphisms is of bounded rank m − 1. Strassen’s equations
do allow some assertions in this situation. A normal form for such tensors
was proved by S. Friedland [26]. This normal form was generalized in [32,
Prop. 3.3] by using the 111-equations instead of Strassen’s equations. (In
fact this generalized normal form allowed the proof that the 111-equations
imply Strassen’s equations and the End-closed equations.) These normal forms
respectively allowed the characterization of concise tensors of minimal border
rank when m = 4 and m = 5, in fact S. Friedland was even able to resolve the
non-concise m = 4 case using additional equations he developed, solving the
set-theoretic “salmon prize problem” posed by E. Allman.

Recall that Strassen’s equations and the End-closed equations are trivial
when a tensor gives rise to three linear spaces of bounded rank at most m− 2.
The 111-equations do not share this defect. We are currently implementing
them for such spaces of tensors. (The p = 1 Koszul flattenings are not trivial
in this setting, we have yet to determine their utility for bounded rank m− 2
situations.)

7. Deformation theory for tensors of minimal border rank

For tensors T ∈ Cm⊗Cm⊗Cm satisfying genericity conditions, one has natural
algebraic structures associated to them that can be utilized to help determine
if they have minimal border rank.

7.1. Binding tensors and algebras

Say T ∈ A⊗B⊗C is 1A and 1B generic with T (α1) : B∗ → C and T (β1) :
A∗ → C of full rank. (A tensor that is at least two of 1A, 1B or 1C generic is
called binding.) Use their inverses to obtain a tensor isomorphic to T , where
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I abuse notation and also denote by T , T ∈ C∗⊗C∗⊗C, i.e., a bilinear map
T : C ×C → C, which gives C the structure of an associative algebra with left
identity α1 and right identity β1. (The algebra is associative because matrix
multiplication is associative.)

If T satisfies the A-Strassen equations then it is isomorphic to a partially
symmetric tensor, see Proposition 8.1, and the associated algebra is abelian.
Conversely, given such an algebra, one obtains its structure tensor.

Explicitly, let I ⊂ C[x1, . . . , xn] be an ideal whose zero set in affine space
is finite, more precisely so that AI := C[x1, . . . , xn]/I is a finite dimensional
algebra of dimension m. (This will be the case, e.g., if the zero set consists of
m distinct points each counted with multiplicity one.) Let {pI} be a basis of
AI with dual basis {p∗I} We can write the structure tensor of AI as

TAI =
∑

pI ,pJ∈AI

p∗I⊗p∗J⊗(pIpJ mod I).

Then [10] shows that a binding tensor T that is the structure tensor of a
smoothable algebra is of minimal border rank, i.e., the tensorM⊕m

⟨1⟩ degenerates
to T , where M⊕m

⟨1⟩ is the tensor whose associated algebra AM⊕m
⟨1⟩

comes from the
ideal of m distinct points. The key step is showing that in this situation T ∈
GL(A)×GL(B)×GL(C)M⊕m

⟨1⟩ if and only if (using the above identifications)

T ∈ GL(C)M⊕m
⟨1⟩ .

Thus one may utilize deformation theory on the Hilbert scheme of points to
determine if a binding tensor satisfying the A-Strassen equations has minimal
border rank. In particular, such tensors automatically are of minimal border
rank when m ≤ 7 [14].

7.2. 1-Generic tensors: Gorenstein algebras

Now say T is 1A, 1B , and 1C generic (such tensors are called 1-generic) and
satisfies the A-Strassen equations. We have γ1 ∈ C∗ such that T (γ1) ∈ End(C)
is invertible. What extra structure do we obtain?

Recall that an algebra A is Gorenstein if there exists f ∈ A∗ such that any
of the following equivalent conditions holds:

1) TA(f) ∈ A∗ ⊗A∗ is of full rank,
2) the pairing A⊗A → C given by (a, b) 7→ f(ab) is non-degenerate,
3) Af = A∗.
Thus f = γ1 above tells us AT is Gorenstein by (1). By the second assertion

in Proposition 8.1, T is moreover symmetric.
In particular, such T is of minimal border rank when m ≤ 13 [15]. For an

algorithm that resolves the m = 14 case, see [27].
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The additional algebraic structure of being Gorenstein makes the deforma-
tion theory easier to implement.
Example 7.1. Consider A = C[x]/(x2), with basis 1, x, so

TA = 1∗⊗1∗⊗1 + x∗⊗1∗⊗x+ 1∗⊗x∗⊗x.

Writing e0 = 1∗, e1 = x∗ in the first two factors and e0 = x, e1 = 1 in the
third,

TA = e0⊗e0⊗e1 + e1⊗e0⊗e0 + e0⊗e1⊗e0
That is, TA = TWState is a general tangent vector to Seg(PA× PB × PC).
Example 7.2 (The big Coppersmith-Winograd tensor). Consider the algebra

ACW,q = C[x1, . . . , xq]/(xixj , x2i − x2j , x
3
i , i ̸= j)

Let {1, xi, [x21]} be a basis of A, where [x21] = [x2j ] for all j. Then

TACW,q
=1∗⊗1∗⊗1 +

q∑
i=1

(1∗⊗x∗i⊗xi + x∗i⊗1∗⊗xi + x∗i⊗x∗i⊗[x21])

+ 1∗⊗[x21]
∗⊗[x21] + [x21]

∗⊗1∗⊗[x21].

Set e0 = 1∗, ei = x∗i , eq+1 = [x21]
∗ in the first two factors and e0 = [x21], ei = xi,

eq+1 = 1 in the third to obtain

TACW,q
=TCW,q = e0⊗e0⊗eq+1 +

q∑
i=1

(e0⊗ei⊗ei + ei⊗e0⊗ei + ei⊗ei⊗e0)

+ e0⊗eq+1⊗e0 + eq+1⊗e0⊗e0,

which is the usual expression for the big Coppersmith-Winograd tensor.

7.3. 1∗-generic tensors: modules and the ADHM
correspondence

When dimA = dimB = dimC = m, one says T is 1∗-generic if it is 1A or 1B
or 1C generic.

Consider the case of a tensor that is 1A-generic but not binding. What
structure can we associate to it? Fixing α1 as above we obtain T ∈ A⊗C∗⊗C,
i.e., T (A∗)T (α1)

−1 ⊂ End(C), and if Strassen’s equations are satisfied, we have
an abelian subspace, and if furthermore the End-closed condition holds, we may
think of this space as defining an algebra action on End(C), which we may lift to
an action of the polynomial ring S := C[y2, . . . , ym] by ys(c) := T (αs)T (α1)

−1c.
(The choice of indices is deliberate, as T (α1)T (α1)

−1 = IdC corresponds to
1 ∈ S.)
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That is, the vector space C becomes a module over the polynomial ring.
This association is called the ADHM correspondence in [33], after [5]. This
leads one to deformation theory in the Quot scheme that parametrizes such
modules.

This correspondence allowed Jelisiejew, Pal and myself [32] to character-
ize concise 1∗-generic tensors of border rank ≤ 6 as the zero set of Strassen’s
equations and the End-closed equations, and also as the zero set of the 111-
equations. Strassen’s equations, the 111-equations and the End-closed equa-
tions fail to characterize minimal border rank tensors when m ≥ 7.

7.4. Concise tensors: the 111-algebra and its modules
Now say we just have a concise tensor. Previously there had not been any
algebraic structure available for studying such tensors. Moreover, as remarked
above, both Strassen’s equations and the End-closed equations are trivially
satisfied for such tensors when the three associated spaces of homomorphisms
are of rank bounded above by m − 2. Despite this, the 111-equations still
give strong restrictions in these cases. I now explain that they also allow the
implementation of deformation theory even in this situation.

For X ∈ End(A) = A∗⊗A, let X ◦A T denote the corresponding element
of T (A∗)⊗A. Explicitly, if X = α⊗a, then X ◦A T := T (α)⊗a and the map
(−) ◦A T : End(A) → A⊗B⊗C is extended linearly.

Definition 7.3 ([32, Def. 1.9]). Let T be a concise tensor. We say that a
triple (X,Y, Z) ∈ End(A)×End(B)×End(C) is compatible with T if X ◦AT =
Y ◦B T = Z ◦C T . The 111-algebra of T is the set of triples compatible with T .
We denote this set by AT

111.

Thus a compatible triple gives a point in the triple intersection (6). The
name 111-algebra is justified by the following theorem:

Theorem 7.4 ([32, Thm. 1.10]). The 111-algebra of a concise tensor T ∈
A⊗B⊗C is a commutative unital subalgebra of End(A) × End(B) × End(C)
and its projection to any factor is injective.

Using the 111-algebra, one obtains four consecutive obstructions for a con-
cise tensor to be of minimal border rank [32]:

1. dim(AT
111) ≥ m. For the next three conditions, assume equality holds.

2. AT
111 must be smoothable.

3. Using the 111-algebra, A,B,C become modules for it and the polynomial
ring S. These three S-modules, A,B,C (where the underline is there to
emphasize their module structure) must lie in the principal component
of the Quot scheme.
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4. There exists a surjective module homomorphism A⊗AT
111
B → C associ-

ated to T and this homomorphism must be a limit of module homomor-
phisms Aϵ⊗Aϵ

Bϵ → Cϵ for a choice of smooth algebras Aϵ and semisimple
modules Aϵ, Bϵ, Cϵ.

8. New proofs of existing results

In this section I present two significantly simpler proofs than the original that
binding tensors satisfying Strassen’s equations are partially symmetric and the
original, more elementary proof that binding tensors satisfying Strassen’s equa-
tions automatically satisfy the End-closed condition. These proofs were ob-
tained in conversations with J. Jelisiejew and M. Michałek.

Let A,B,C≃Cm and let T ∈A⊗B⊗C be 1A-generic. Say rank(TA(α0))=m.
Note the tautological identities: T (α, β) = TA(α)β = TB(β)α.
TheA-Strassen equations for minimal border rank say that for all α1, α2∈A,

TA(α1)TA(α0)
−1TA(α2) = TA(α2)TA(α0)

−1TA(α1).

Proposition 8.1 ([39]). Let T be 1A and 1B-generic and satisfy the A-Strassen
equations. Then T is isomorphic to a tensor in S2C∗⊗C. If T is 1-generic
then it is isomorphic to a symmetric tensor.

Here are two proofs:

Proof. Assume T (α0) ∈ B⊗C and T (β0) ∈ A⊗C are of full rank. Define
T̃ ∈ C∗⊗C∗⊗C by T̃ (c1, c2) := T (TB(β0)

−1c1, TA(α0)
−1c2).

Set α1 = TB(β0)
−1c1, α2 = TB(β0)

−1c2 so

T̃ (c1, c2) = T (α1, TA(α0)
−1TB(β0)α2) definition

= T (α1, TA(α0)
−1TA(α2)β0) taut.id.

= TA(α1)TA(α0)
−1TA(α2)β0 taut.id.

= TA(α2)TA(α0)
−1TA(α1)β0 Strassen

= T̃ (c2, c1) taut.id.

The second assertion follows as S3 is generated by the transpositions (1, 2) and
(1, 3).

Proof. Under the hypotheses T∧1
A : A⊗B∗ → Λ2A⊗C has rank m2 − m and

the 1B-genericity condition assures that the m-dimensional kernel contains an
element of full rank, ψ : A → B, which makes (ψ⊗ IdB⊗C)(T ) ∈ S2B∗⊗C.
The second assertion follows similarly.
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Note that Proposition 8.1 implies the B-Strassen equations are satisfied as
well.

The following proposition appeared in [32] with a less elementary proof.
Below is the original proof.

Proposition 8.2. If T is 1A and 1B generic and satisfies the A-Strassen equa-
tions, then T (A∗)T (α0)

−1 ⊂ End(C) satisfies the End-closed condition.

Proof. We need to show that for all α1, α2, that, there exists α′ such that

TA(α1)TA(α0)
−1TA(α2)TA(α0)

−1 = TA(α
′)TA(α0)

−1.

It is sufficient to work with T̃ ∈ S2C∗⊗C. Here, by symmetry T̃A(c) =
T̃B(c) =: T̃C∗(c). We claim T̃C∗(c1)T̃C∗(c2) = T̃C∗(T̃ (c1, c2)). This will finish
the proof as c1, c2, T̃ (c1, c2) ∈ C ∼= A∗ play the role of α1, α2, α

′ above.
To see this

T̃C∗(c1)T̃C∗(c2)(c) = T̃C∗(c1)T̃ (c2, c) taut.

= TC∗(c1)T̃ (c, c2)) sym.

= T̃C∗(c1)T̃C∗(c)(c2) taut.

= T̃C∗(c)T̃C∗(c1)(c2) Strassen

= T̃ (c, T̃ (c1, c2)) taut.

= T̃ (T̃ (c1, c2), c) sym.

= T̃C∗(T̃ (c1, c2))(c) taut.
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Abstract. It is known that a plane projective curve D consisting of a
union of degree n curves in the same pencil with a smooth base locus is
free if and only if D contains all the singular members of the pencil and
its Jacobian ideal is locally a complete intersection. Here we generalize
this result to pencils having a singular base locus.
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1. Introduction

Let R = ⊕k≥0Rk = k[x, y, z] be the graded ring in three indeterminates. The
partial derivatives in these three variables are denoted ∂x, ∂y and ∂z. The R
graded-module of derivations is a rank 3 module DerR = ⊕k≥0[Rk∂x +Rk∂y +
Rk∂z]. The so-called Euler derivation is δE = x∂x + y∂y + z∂z.

To a reduced homogeneous polynomial of degree n ≥ 1, f ∈ Rn, one asso-
ciates its module of tangent derivations:

Der(f) = {δ ∈ DerR | δ(f) ∈ (f)}.

The Euler derivation belongs to Der(f) and there is a factorization

Der(f) = RδE ⊕Der0(f),

where
Der0(f) = {δ ∈ DerR | δ(f) = 0}.

Let ∇(f) = (∂xf, ∂yf, ∂zf) be the vector of partial derivatives. Then Der0(f)
is the kernel of the Jacobian map

R3 ∇(f)−−−−→ R[n− 1].

The modules Der(f) and Der0(f) could also be defined in higher dimensions
where instead of curves, we would have hypersurfaces. One reason to focus
on curves is that the module Der0(f) is locally free (its associated sheaf in P2

is reflexive and then it is a vector bundle for dimensional reasons). In some
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very particular cases, these modules can also be free (see the definition below).
This was first pointed out in [4] for reduced hypersurfaces and studied in [7] for
line arrangements (finite sets of distinct lines in P2) presenting a very special
combinatorics; for instance, a union of lines invariant under the action of some
reflection group or the Hesse arrangement of 12 lines through the 9 inflection
points of a smooth cubic curve (see [2] for detailed examples). Actually, in [2],
Terao conjectures that freeness of hyperplane arrangements depends only on its
combinatorics. This conjecture is still unsolved even for line arrangements; this
is certainly because we do not know enough examples of free line arrangements
and more generally of free curves to clearly understand what distinguishes a
free curve from a non free curve. Although combinatorics is not as relevant
for general curves as for line arrangements, understanding why a curve is free,
in addition to the interest of this result for itself, could help solve Terao’s
conjecture. Before going further on this subject, let us recall the definition of
freeness for a reduced plane curve.

Definition 1.1. The reduced curve V (f) is free if and only if Der0(f) (or
equivalently Der(f)) is a free module. More precisely Der0(f) is free with ex-
ponents (a, b) if Der0(f) = R[−a]⊕R[−b] where a and b are integers verifying
0 ≤ a ≤ b and a+ b+ 1 = deg(f) (or Der(f) = R[−1]⊕R[−a]⊕R[−b]).

Remark 1.2. A smooth curve of degree ≥ 2 is not free, an irreducible curve
of degree ≥ 3 with only nodes and cusps as singularities is not free (see [1,
Example 4.5]). Few examples of free curves are known and of course very few
families of free curves are known. One such family can be found in [6, Prop. 2.2].

One method to produce free curves given in [8] (suggested by E. Artal-
Bartolo and J. Cogolludo-Agustin in a personal communication), consists in
taking the union of all the singular curves in a generic pencil of curves of the
same degree ; generic means here that the base locus is smooth. More precisely,
it was proved that:

Theorem 1.3. Let f, g two reduced polynomials in Rn such that B = V (f) ∩
V (g) consists in n2 distinct points. Denote by Dk the union of k ≥ 2 curves and
by Ds the union of all the singular curves of the pencil ⟨f, g⟩ of degree n curves
generated by f and g. Then Dk is free with exponents (2n− 2, n(k − 2) + 1) if
and only if Ds ⊂ Dk and the singularities of Ds are quasihomogeneous.

Let us first give some classical examples.

Example 1.4. The Braid arrangement defined by xyz(x−y)(x−z)(y−z) = 0
is the union of the three singular curves of the pencil ⟨(x− y)z, y(x− z)⟩. It is
free with exponents (2, 3).

Example 1.5. The Hesse arrangement defined by∏
ϵ=0,1,j,j2

(x3 + y3 + z3 − ϵ xyz) = 0
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is the union of four triangles, that are all the singular curves of the pencil
⟨x3 + y3 + z3, xyz⟩. It is free with exponents (4, 7).

Example 1.6. The Fermat arrangement defined by

(xn − yn)(yn − zn)(xn − zn) = 0

is the union of three sets of n concurent lines that are all the singular curves
of the pencil ⟨xn − yn, yn − zn⟩. It is free with exponents (n+ 1, 2n− 2).

As a definition of quasihomogeneous singularity we follow the characteriza-
tion given in [5]:

Definition 1.7. Let f ∈ C[x, y, z] a reduced polynomial. Let C = V (f) its cor-
responding projective curve. A singular point p ∈ V (f) is a quasi-homogeneous
singularity if and only if τp(C) = µp(C), where τp(C) and µp(C) are the Tju-
rina and Milnor numbers of C at p.

Remark 1.8. The definition being local one can assume that p = (0, 0) and

C{x, y} is the ring of convergent power series ; then τp(C) = C{x,y}
(∂xf,∂yf,f)

and

µp(C) = C{x,y}
(∂xf,∂yf)

. This implies in particular that τp(C) ≤ µp(C).

Remark 1.9. When p is a smooth point of C, these numbers vanish.

Remark 1.10. These numbers play a crucial role here. Indeed, denoting by
Tf the logarithmic tangent sheaf associated to V (f) which is the sheafification
of Der0(f), and by Jf the sheaf of ideals, called Jacobian ideal, image of the
Jacobian map, one has

0 −−−−→ Tf −−−−→ O3
P2

∇(f)−−−−→ Jf (n− 1) −−−−→ 0.

Since the curve C = V (f) is reduced, its singular locus is a finite scheme and
the Jacobian ideal defines a finite scheme of length

c2(Jf ) =
∑
p∈C

τp(C).

The sum τ(C) :=
∑

p∈C τp(C) is called the total Tjurina number of C. This
gives also the following relation:

c2(Tf ) = (n− 1)2 − τ(C).

The proof of Theorem 1.3 was based on the following observations:

1. there exists a canonical derivation δ = det[∇f,∇g,∇] = ⟨∇f ∧ ∇g | ∇⟩
(where ⟨ | ⟩ is the usual scalar product of vectors in C3) associated to a
pencil ⟨f, g⟩ of degree n curves; this canonical derivation induces for any
k ≥ 2 a non zero section sk ∈ H0(TDk

(2n− 2));
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2. the zero locus of this section sk is empty if and only if Dk ⊂ Ds and at
each singular point p of Ds one has τp(D

s) = µp(D
s).

The smoothness of the base locus B is necessary to certify that its contribution
to the length of the Jacobian scheme is

n2∑
i=1

(k − 1)2 = n2(k − 1)2.

1.1. Objectives

We would like to extend this construction of free curves to more general pencils,
i.e. pencils with a singular base locus. Here we focus on two cases.

1. The fat case: pencils generated by two powers ⟨f b, ga⟩ where V (f) and
V (g) are two curves of degree a and b such that (a, b) = 1 and V (f)∩V (g)
is a smooth set of ab distinct points. In such pencils any curve is singular
along the base locus B when a > 1 and b > 1. The interest for this case
comes from the celebrated example of the two types of 6-cusped sextics
with non-isomorphic fundamental groups given by Zariski [9]; indeed the
six cusps belong to a smooth conic for the first type and do not belong
to a conic for the second type. The sextic of the first type is a general
curve in a pencil ⟨f3, g2⟩ where f = 0 is a smooth conic and g = 0 is a
smooth cubic.

2. The tangential case: pencils of degree n curves such that the general
one is smooth but with a singular base locus B, i.e. card(B) < n2.
The complete description of these pencils remains difficult and we will
concentrate in this text on the case of pencils generated by conics.

2. The fat case

In this section we do not study all the singular pencils but only those defined
by two multiple structures on reduced curves with primary degrees meeting
along a smooth set. More precisely, we prove:

Theorem 2.1. Let a, b be two positive integers such that gcd(a, b) = 1, f ∈ Ra,
g ∈ Rb be two reduced polynomials such that the corresponding curves V (f)
and V (g) meet along ab distinct points. We consider the pencil Cab = ⟨f b, ga⟩
of degree ab curves. Then,

1. if a > 1 and b > 1 then all curves of Cab are singular at B;
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2. there is a finite number of curves in Cab, disjoint from V (f b) and V (ga),
that are singular outside B. We call these curves the +singular curves
and their union is denoted by D+s ; the length of the scheme of all the
singular points of these +singular curves, including the singularities of
V (f) and V (g) when these generators are not smooth, is

(a− 1)2 + (b− 1)2 + (a− 1)(b− 1);

3. if V (f) and V (g) are smooth, a union Dk of k curves of the pencil Cab is
free with exponents (a+ b− 2, kab− (a+ b) + 1) if and only if D+s ⊂ Dk

and any singularity of D+s outside B is quasihomogeneous;

4. if V (f) is not smooth (resp. or/and V (g)), the curve Dk ∪ V (f) (resp.
Dk ∪ V (g) and Dk ∪ V (f) ∪ V (g)) where Dk is a union of k curves
of the pencil Cab is free with exponents (a + b − 2, kab − b + 1) (resp.
(a+ b− 2, kab− a+1), (a+ b− 2, kab+1)) if and only if D+s ⊂ Dk and
any singularity of D+s outside B is quasihomogeneous.

Proof. Let us prove each assertion.

(1) If (x, y) is a local system of coordinates at any base point p ∈ B, then
any curve of the pencil is contained in the ideal (xa, yb) then singular at p.

(2) Let us consider a curve H = λf b + µga with λµ ̸= 0 with a singular
point p /∈ B. Since p is singular we obtain ∇H(p) = 0. We have by Liebniz’s
rule:

∇H(p) = bλf b−1(p)∇f(p) + aµga−1(p)∇g(p) = 0.

Since p /∈ B, f b−1(p) ̸= 0 and ga−1(p) ̸= 0. This is equivalent to say that
∇f(p) and ∇g(p) are proportional, in other words that the two by two minors
of the matrix [∇f,∇g] vanish simultaneously at p. Moreover since f and g
meet transversally at B, these minors do not vanish at any point in B. The
scheme Γ of singular points outside B is then defined by the following exact
sequence

0 −−−−−→ OP2(1− b)⊕ OP2(1− a)
[∇f,∇g]−−−−−→ O3

P2
∇f∧∇g−−−−−→ JΓ(a+ b− 2) −−−−−→ 0.

Reciprocally, if p ∈ Γ then one can find easily two non zero constants λ and µ
such that ∇(λf b + µga)(p) = 0. The length of Γ is the number by

c2(JΓ) = (a− 1)2 + (b− 1)2 + (a− 1)(b− 1).

(3) Let Dk, defined by Hk = 0, be a union of k curves in the pencil that
contains D+s. We consider the canonical derivation

δ = det[∇f,∇g,∇] = ⟨∇f ∧∇g | ∇⟩.
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Since by Liebniz’s rule, we have δ(Hk) = 0 for any k ≥ 2, this derivation induces
a non zero section of H0(TDk

(a+ b− 2)) and gives a commutative diagram:

0 0y y
OP2 (2−a−b) OP2 (2−a−b)

sδ

y [∇f∧∇g]

y
0 −−−−−→ TDk

−−−−−→ O3
P2 −−−−−→ JDk

(kab−1) −−−−−→ 0y y ∥∥∥
0 −−−−−→ JZ(sk)

(a+b−kab−1) −−−−−→ F −−−−−→ JDk
(kab−1) −−−−−→ 0y y

0 0

where the sheaf F is a rank two sheaf singular along Γ, the scheme of +singular
points defined above. Dualizing the last exact sequence we obtain:

0 −−−−−−→ OP2 (1−kab)
[U,V ]t−−−−−−→ OP2 (1−a)⊕OP2 (1−b)

[−V,U]−−−−−−→ OP2 (1−a−b+kab)

−−−−−−→ ωDk
−−−−−−→ OΓ −−−−−−→ OZ(sk) −−−−−−→ 0,

where ωDk
is the dualizing sheaf of the Jacobian scheme associated to Dk, U

and V are the polynomials of degree kab− a and kab− b such that

∇Hk = U∇f + V∇g.

Denoting by T the complete intersection defined by {U = 0} ∩ {V = 0}, we
find finally a shorter exact sequence:

0 −−−−→ OT −−−−→ ωDk
−−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0.

Cutting this exact sequence in two short exact sequences we get

0 −−−−→ OT −−−−→ ωDk
−−−−→ R −−−−→ 0 (s1)

and
0 −−−−→ R −−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0. (s2)

The complete intersection T is supported by B. Since Γ ∩ B = ∅ the exact
sequence (s2) proves that the scheme R is supported on a subset of Γ and does
not meet B. The exact sequence (s1) then shows that R is supported by all
the +singular points appearing in Dk.

If D+s ⊂ Dk both schemes R and Γ have the same support ; if the singu-
larities of D+s are quasihomogeneous then these schemes coincide. The curves
V (f) and V (g) meeting transversally, the scheme Γ is lci (see [8, proof of The-
orem 2.7]) ; this proves that R = OΓ and finally, this implies Z(sk) = ∅.
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2.1. Example

Consider the pencil ⟨f3, g2⟩ of sextic curves where

Cf = V (f) = {y2 − xz = 0} and Cg = V (g) = {x3 + y3 + z3 = 0}.

The smooth conic Cf and the smooth cubic Cg meet in six different points
pi = (a2i , ai, 1) where a6i + a3i + 1 = 0. All curves of this pencil are singular in
the six points pi. Let us describe now the +singular curves of this pencil with
more details.

Proposition 2.2. In the pencil ⟨f3, g2⟩ there are exactly five curves that are
singular in a point not belonging to the pi’s. Two of these five curves C1,0 and
C0,1 are defined respectively by the equation f3 = 0 g2 = 0, the three other
are C1,−1, C4,1 and C4,−3 defined respectively by the equations f3 − g2 = 0,
4f3 + g2 and 4f3 − 3g2 = 0.
The additional singular point of C1,−1 is (0, 1, 0).
The additional singular points of C4,1 are (1, 0, 1), (1, 0, j) and (1, 0, j2).

The additional singular points of C4,−3 are (−1
2 , 1, −1

2 ), (−j2

2 , 1, −j
2 ) and

(−j
2 , 1, −j2

2 ).

The curve C1,−1 ∪ C4,1 ∪ C4,−3 is free with exponents (3, 14).

Proof. The singular points p = (a, b, c) ̸= pi of Cλ,µ := λf3+µg2 = 0 are those
verifying:

∇(λf3 + µg2)(p) = 3λf2(p)∇(f)(p) + 2µg(p)∇(g)(p) = 0⃗.

• If f(p) = 0 then (λ, µ) = (1, 0) and the corresponding curve is f3 = 0.

• If g(p) = 0 then (λ, µ) = (0, 1) and the corresponding curve is g2 = 0.

• If f(p)g(p) ̸= 0 then ∇(f)(p) = (−c, 2b,−a) and ∇(g)(p) = (3a2, 3b2, 3c2)
are proportional. More precisely, (a, b, c) verifies the equations:

 3b(bc+ 2a2) = 0
c3 − a3 = 0

3b(ab+ 2c2) = 0.

Solving this system by elementary computations, we find the additional
singular points and the singular curves associated. According to Theo-
rem 2.1 the curve C1,−1 ∪C4,1 ∪C4,−3 is free with exponents (3, 14).
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2.2. Example

This second example corresponds to the case (4) of the main theorem.

We consider the pencil ⟨f3, g2⟩ of sextic curves where

f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = xyz.

The smooth conic V (f) and the singular cubic V (g) meet in six different points
(1, i, 0), (1,−i, 0), (1, 0, i), (1, 0,−i), (0, 1, i) and (0, 1,−i). Using the same
method than in the previous example, we find that the locus V (∇f ∧∇g) con-
sists in 7 points that are the three vertices of the triangle, (1, 0, 0), (0, 1, 0),
(0, 0, 1) and the four singular points of f3 − 27g2 = 0. Then the curve
xyz(f3 − 27g2) = 0 is free with exponents (3, 5).

3. The tangential case

The pencil is generated by two curves of degree n that do not meet transversally
(i.e. the cardinality of the set B is < n2). At the point p ∈ B where V (f) and
V (g) share the same tangent line, the canonical derivation δ = det(∇f,∇g,∇)
verifies δ(p) = 0. This is the main difficulty here. Indeed the computation of
the length of the Jacobian scheme becomes harder and we could have µp(Hk) ̸=
τp(Hk) at such a point p ∈ B for a union of k curves in the pencil. If V (f) and
V (g) are two smooth conics such that B consists in a subscheme of length 3
and a distinct simple point. Then V (fg(af + bg)), where V (af + bg) is also
smooth, is free with exponents (2, 3). So it is possible for a union of smooth
curves of the same pencil to be free. It is also possible to be free when instead
of containing all the singular curves the union contains only some irreducible
components of some singular curves. For instance, if V (f) and V (g) are two
smooth conics tangent in a point p. Then V (fg(af +bg)h) where V (af +bg) is
also smooth and V (h) is the line passing through the two smooth points in B,
is free with exponents (2, 4).

p p
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We will focus on pencil of conics. Our aim is to

1. determine the “smaller” free union of conics for each kind of pencil;

2. compute the Tjurina numbers at the base points for any kind of pencil.

3.1. Pencil of conics

There are different regular pencils (the general conic of the pencil is smooth)
generated by two conics C andD with no component in common. Let us precise
now for any of this different pencils what generators ⟨f, g⟩ can be chosen. Recall
that the canonical derivation is δ = det[∇f,∇g,∇]. The pencil is

1. generic when C ∩D consists of 4 distinct points. Then, up to a linear
transformation, C and D can be defined by x2 − z2 = 0 and y2 − z2 = 0.
The canonical derivation δ has degree 2 ; among the intersection points
appearing in the picture, the base points are blue and the singular points
are red;

2. tangent when C ∩ D consists of 3 points, one double and two simple
points. Then, up to a linear transformation, C and D can be defined by
x2 − z2 = 0 and yz = 0. The canonical derivation δ has degree 2; now
base points and singular points are not disjoint;
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3. bitangent when C ∩D consists of 2 double points. Then, up to a linear
transformation, C and D can be defined by x2 − z2 = 0 and y2 = 0.
The canonical derivation δ can be factorized by y, i.e. δ = yν where the
derivation ν has degree 1;

4. osculating when C ∩ D consists of 2 points, one simple and one triple
point. Then, up to a linear transformation, C and D can be defined by
xy = 0 and y2 − xz = 0. The canonical derivation δ has degree 2;

5. +osculating when C ∩D consists of one quadruple point. Then, up to
a linear transformation, C and D can be defined by y2 − xz = 0 and
x2 = 0. The canonical derivation δ can be factorized by x, i.e. δ = xν
where the derivation ν has degree 1.
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3.2. A free union of curves remains free by deleting a
smooth curve

Proposition 3.1. Assume that A is a union of curves V (λf +µg) of a regular
pencil of degree n curves ⟨f, g⟩ in P2. Assume also that A contains a singular
member V (h1h2) (h1h2 ∈ ⟨f, g⟩) which is a normal crossing divisor at the points
V (h1) ∩ V (h2) and that V (h1) is smooth. Then if A is free the arrangement
A \ V (h1) is also free.

Proof. Let δ be the canonical derivation associated to the pencil ⟨f, g⟩. If
the pencil does not contain any multiple curve the degree of δ is αn = 2n −
2. If it contains a multiple curve then one can factorize it to define a new
“canonical” derivation (vanishing along any curve of the pencil) with degree
αn < 2n − 2. Since V (h1h2) belongs to the pencil ⟨f, g⟩ one gets δ(h1h2) =
det(∇(f),∇(g),∇(h1h2)) = 0. Then h1δ(h2) = −h2δ(h1). Hence there exists
a polynomial k such that δ(h2) = −kh2 and δ(h1) = kh1. The derivation
δ′ = δ − k

deg(h1)
δE verifies δ′(h1) = 0 and it has the same degree than δ. Since

V (h1h2) is a normal crossing divisor at p ∈ V (h1)∩V (h2) then k(p) ̸= 0 ; indeed
h1(p) = k(p) = 0 implies that δ(h1) vanishes at p at the order two contradicting
the normal crossing at p. Then δ′(p) ̸= 0 and the section induced by δ′ does
not vanish at p. Hence when the component V (h1) is deleted from A, p is
removed from the scheme defined by the Jacobian ideal J∇A and also removed
from Z(sδ′) the zero scheme of the section induced by δ′. Then Z(sδ′) = ∅ and
A \ V (h1) is also free.

Example 3.2. The following arrangement of four lines can be seen as a union of
two singular conics, the dashed one and the black one. It is free with exponents
(2, 1).
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The following arrangement of lines is still free by Proposition 3.1 with exponents
(2, 0).

Example 3.3. Pappus arrangement consists in 9 lines given by the well known
configuration 93. The 9 lines are the sides of the 3 triangles passing through 9
points. In the pencil generated by two triangles, singular curves are missing.
In general three nodal cubics are missing but in the following example there is
only one singular cubic missing: it consists in the union of a line union and a
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smooth conic; indeed let us consider the pencil generated by one set of three
concurrent lines and one triangle [x(x2 − z2), (x+ y)(x− 2y + z)(x− 2y − z)].
It still contains another triangle (x − y)(x + 2y − z)(x + 2y + z) = 0 and a
conic+line y(3x2 − 4y2 + z2) = 0.

eq1eq2f gh

i j

k

l

p

The union of all the singular members of the pencil is free with exponents
(4, 7) (by [8], Theorem 1.3). By Proposition 3.1 we obtain a new arrangement
which is free with exponents (4, 6) by removing the line from the conic+line
member:

x(3x2 − 4y2 + z2)(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0 .

By Proposition 3.1 again, we obtain a new arrangement which is free with
exponents (4, 5) by removing the conic from the conic+line member:

xy(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0.

3.3. A free union of curves remains free by adding a
smooth curve

Proposition 3.4. Let C be a smooth curve in a pencil ⟨f, g⟩ of degree n curves,
A be an arrangement of curves, or components of curves, of this pencil. Assume
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that the section of TA(αn) induced by the canonical derivation δ (of degree αn)
does not vanish. Then A is free with exponents (αn,−αn − c1(TA)) and A∪C
is free with exponents (αn,−αn − c1(TA∪C)).

Proof. There is a short exact sequence:

0 −−−−→ TA∪C −−−−→ TA −−−−→ L −−−−→ 0,

where L is a line bundle over C. Indeed on an open affine neighborhood U ⊂ P2

the first arrow is given by a 2 × 2 matrix

(
a b
c d

)
where a, b, c, d ∈ OU

and C|U = {ad − bc = 0}. Assuming that the rank of Lp is > 1 at some
p ∈ C means that a(p) = c(p) = b(p) = d(p) = 0. But this would imply that
∇(ad− bc)(p) = 0 which contradicts the smoothness of C.

Since C belongs to the pencil the canonical derivation δ induces a non zero
section of TA(αn) but also a non zero section of TA∪C(αn). This gives the
following commutative diagram:

0 0y y
OP2(−αn) OP2(−αn)

s1

y ys

0 −−−−−→ TA∪C −−−−−→ TA −−−−−→ L −−−−−→ 0y y ∥∥∥
0 −−−−−→ JZ(s1)(c1(TA∪C)+αn) −−−−−→ OP2(c1(TA)+αn) −−−−−→ L −−−−−→ 0y y

0 0

Then A is free with exponents (αn,−αn−c1(TA))) and L = OC(c1(TA)+αn)).
This proves

JZ(sk+1)(c1(TA∪C) + αn)) = OP2(c1(TA∪C) + αn).

Example 3.5. By Proposition 3.4 the following arrangement (three concurrent
lines with one of them tangent to a smooth conic) is free with exponents (2, 2).
Computing the Chern classes of the logarithmic vector bundle associated, this
implies that τp(A ∪ C) = 10. Computing the Milnor number at p we find
µp(A ∪ C) = 11 showing that the tangent point p is not a quasihomogeneous
singularity.
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p

3.4. Tjurina number for pencils of conics

Proposition 3.6. Let p be the double point of a tangent pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 3 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 2((k − 1)2 + 1).

Proof. By a direct computation, using for instance Macaulay 2, one can prove
that the union of three smooth conics and a line through the two simple points
of the base locus B is free with exponents (2, 4). Adding smooth conics of the
same pencil does not change the freeness and the arrangement A consisting in
k ≥ 3 smooth conics plus one line through the two simple points is free with
exponents (2, 2k − 2). Then

c2(TA) = 4k − 4 = (2k)2 − τ(A).

The total Tjurina number is the sum of the two normal crossing singular points
in B counting each of them as k2 and the Tjurina number at the double point
which is τp(

⋃k
i=1 Ci). This means

τ(A) = 4k − 4 = 4k2 − 2k2 − τp

(
k⋃

i=1

Ci

)
,

proving the result.

Proposition 3.7. Let p be one of the two double points of a bitangent pencil
⟨f, g⟩. Let C1, . . . , Ck be k ≥ 2 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 2k2 − 3k + 1.
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Proof. By a direct computation, using for instance Macaulay 2, one can prove
that the union of two smooth conics and the tangent lines along p and q, the two
base points, is free with exponents (1, 4) (the degree of the canonical derivation
is 1 instead of 2 because of the double line in the pencil). By Proposition 3.4
adding smooth conics of the same pencil does not change the freeness and the
arrangement A consisting in k ≥ 2 smooth conics plus the two tangent lines is
still free with exponents (1, 2k). Then

c2(TA) = 2k = (2k + 1)2 − τ(A) = (2k + 1)2 − 1− τp(A)− τq(A)

= (2k + 1)2 − 1− 2τq(A).

Then we find τq(A) = k(2k + 1). By Proposition 3.1, removing one of these
two lines we get a new free arrangement A′ with exponents (1, 2k − 1). Then

c2(TA′) = 2k − 1 = (2k)2 − τ(A′) = (2k)2 − τp(A′)− τq(A′).

Since τq(A′) = τq(A) = k(2k + 1), we find τp(A) = 2k2 − 3k + 1. At p the
Tjurina number of A coincide with the one of k smooth conics in a bitangent
pencil. This proves the assertion.

Proposition 3.8. Let p be the triple point of an osculating pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 3 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 3((k − 1)2 + 1).

Proof. The union of three osculating smooth conics is a free divisor with expo-
nents (2, 3). This is verified for instance with Macaulay2. Then adding smooth
conics remains free, more precisely for k ≥ 3 smooth osculating conics, this
union is free with exponents (2, n(k − 2) + 1). The second Chern class of the
logarithmic bundle associated is 2× (n(k − 2) + 1). This number is also com-
puted with the total Tjurina number. There are two points of intersection,
p the osculating point and q where the k conics meet transversally. At q the
Tjurina number is the Milnor number (k − 1)2. This gives τp(

⋃k
i=1 Ci).

Proposition 3.9. Let p be 4-uple point of a +osculating pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 2 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 4k2 − 6k + 3.

Proof. The union of two +osculating smooth conics is a free divisor with ex-
ponents (1, 2). This is verified with Macaulay2. Then adding smooth conics
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remains free, more precisely for k ≥ 2 smooth overosculating conics, this union
is free with exponents (1, 2(k − 1)). The second Chern class of the logarith-
mic bundle associated is 2(k − 1). This number is also computed with the
total Tjurina number. There is only one point of intersection, p. This gives
τp(
⋃k

i=1 Ci).
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Abstract. We give a geometric description of singular pencils of
quadrics of constant rank, relating them to the splitting type of some
naturally associated vector bundles on P1. Then we study their orbits
in the Grassmannian of lines, under the natural action of the general
linear group.

Keywords: Symmetric matrices, pencils of quadrics, general linear group, orbit.
MS Classification 2020: 14C21, 14M15, 14L30, 14F06.

1. Introduction

A pencil of quadrics in the projective space of dimension N is a two-dimensional
linear subspace L in the space of symmetric matrices of order N + 1, and it is
a widely studied object in algebraic geometry.

A complete classification of pencils of quadrics, based on algebraic consid-
erations, Segre symbols and minimal indices, has been known for a long time:
we refer to the classical book by Gantmacher [9] and the expository article by
Thompson [14].

There is also an extensive literature on geometric descriptions and interpre-
tations of pencils of quadrics; among the many contributions, let us cite some
older works, from [13] to [3], as well as more recent ones, such as [8].

Often, when studying pencils of quadrics in PN , one assumes that they are
regular, that is, that they contain quadrics of maximal rank N+1. As observed
in [8], these pencils form an open subset in the appropriate Grassmannian, that
admits a natural stratification by Segre symbols. The pencils in the comple-
mentary closed subset, called singular pencils, are less studied, even if in [9]
it is shown that their analysis can be traced back to that of regular pencils
and of singular pencils of constant rank. The purpose of this article is to give
a description of the geometry of such pencils of constant rank, to relate it to
the splitting of certain bundles on P1 naturally associated with them, and to
give a description of their orbits under the natural action of the general linear
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group GL(N + 1).
To be more precise, we set up our notations: we work over an algebraically

closed field of characteristic 0, for simplicity over the complex field C. Let V be
a vector space of dimension N + 1 over C. Denote by X the Veronese variety,
that is, the image of the Veronese map P(V ) → P(S2V ). The natural action
of the group GL(N +1) on P(V ) extends to P(S2V ), and the orbits under this
latter action are X and its secant varieties.

Fixing a basis for V , the elements of the vector space S2V can be seen as
symmetric (N + 1) × (N + 1) matrices: then the action of GL(N + 1) is the
congruence, X corresponds to symmetric matrices of rank 1, and its k-secant
variety σk(X) to symmetric matrices of rank at most k.

Working in this projective setting, we interpret a pencil of quadrics as a line
P(L) ⊆ P(S2V ): it is singular when it is entirely contained in the determinantal
hypersurface σN (X). If a singular pencil is entirely contained in a stratum
σk(X) \ σk−1(X), we say that the pencil has constant rank k. All the quadrics
in such a pencil are cones having as vertex a linear space of dimension N − k.

In Section 2 we show that a pencil of constant rank k corresponds to a
matrix of linear forms in two variables, that naturally defines a map of vector
bundles of rank N + 1 over P1; since the rank is constant, the cokernel E
of this map is also a vector bundle over P1, of rank N + 1 − k, and its first
Chern class is k

2 ; in particular the constant rank k is an even number that
we denote by 2r. We prove that the splitting type of E characterizes the
orbits, and for each orbit we give two explicit constructions for the canonical
form of the representative: one is the expression described in [9], the other
one is analogous to the representative given in [7], adapted from the skew-
symmetric case. Indeed, several techniques used in articles on spaces of skew-
symmetric matrices of constant rank, such as [12, 2, 1], can be applied to pencils
of quadrics.

Analyzing these canonical forms, in Section 3 we describe the geometry of
the pencils in the various orbits. If we make the assumption that the bundle E
has no trivial direct summand, which is equivalent to the condition that the
quadrics in the pencil L have no common point in their vertices, the pencil is
called non-degenerate. In this case, if the splitting type of E is r1, . . . , rh, any
two quadrics of L have a generating space S of (maximal) dimension N − r
in common, and are tangent along a rational normal scroll of dimension r and
type r1, . . . , rh contained in S.

In Section 4, we prove our main result Theorem 4.1: we find an explicit
expression for the dimension of every GL(N + 1)-orbit of pencils of constant
rank. We recall that these pencils are all unstable, nevertheless we are able to
find an explicit expression for the matrices in the Lie algebra of the stabilizer
of any pencil L. In particular these Lie algebras all have dimension 5 when the
corank of the pencil is 1, i.e. E is a line bundle with c1 = r. In Proposition 4.6
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we prove that they are of the form sl2⋉C2. We conclude with a table collecting
the results for r ⩽ 6.

2. Classification’s details and first results

Recall from the Introduction that, given an (N+1)-dimensional vector space V ,
one has the natural Veronese map P(V ) → P(S2V ) sending [v] 7→ [v2], whose
image is the Veronese variety X. Once we fix a basis of V , the elements of
S2V are identified with symmetric (N +1)× (N +1) matrices, X corresponds
to symmetric matrices of rank 1, and its k-secant variety σk(X) to symmetric
matrices of rank at most k. The group GL(N + 1) acts by congruence on
P(S2V ), and the orbits are exactly X and its secant varieties.

Now let P(L) ⊆ σk(X)\σk−1(X) be a singular pencil of quadrics of constant
rank k. Notice that P(L) can be seen as a symmetric matrix whose entries are
linear forms in two variables, that is, a vector bundle map on P1 = P(L) of the
form V ∗ ⊗OP1(−1) → V ⊗OP1 , inducing a long exact sequence:

0 → E∗(−1) → V ∗ ⊗OP1(−1) → V ⊗OP1 → E → 0. (1)

The cokernel is a vector bundle of rank N +1−k on P1, hence it splits as a
direct sum of line bundles; we denote it by E. The symmetry implies that the
kernel is E∗(−1).

From a direct computation of invariants (see [10] for details), one finds that
the rank k = 2r is even, the bundle E is generated by its global sections, and
moreover its first Chern class is c1(E) = r.

We start our description of L generalizing to the symmetric case some results
from [7] that refer to the skew-symmetric case. We are of course interested
in non-trivial cases: for this, recall that a space of matrices is called non-
degenerate if the kernels of its elements intersect in the zero subspace and the
images of its elements generate the entire vector space V . This is equivalent to
saying that the space is not GL(N + 1)-equivalent to a space of matrices with
a row or a column of zeroes. Therefore the classification of degenerate spaces
of matrices can be traced back to that of non-degenerate spaces of matrices
of smaller size. From now on, we will only consider non-degenerate spaces of
constant rank 2r.

Non-degeneracy also implies that as the quadrics vary in the pencil L, their
vertices are pairwise disjoint.

An immediate remark is that not all values of N allow a non-degenerate
pencil of symmetric matrices of size N + 1 and fixed constant rank 2r.

Proposition 2.1. Let L ⊂ P(S2V ) be a non-degenerate pencil of singular
quadrics of constant rank 2r. Then 2r ⩽ N ⩽ 3r − 1.
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Proof. The proof of [7, Proposition 3.6] goes through step by step. Since the
cokernel bundle E from (1) is a vector bundle on P1, it is of the form

E = Om0

P1 ⊕OP1(1)m1 ⊕ · · · ⊕ OP1(k)mk ,

where m0, . . . ,mk are non-negative integers such that m1+2m2+ . . .+kmk =
c1(E) = r, and m0 +m1 + . . .+mk = rk(E) = N + 1− 2r.

The assumption that L is non-degenerate implies m0 = 0.
Obviously 2r ⩽ N . For the other inequality, notice that

r = m1+2m2+. . .+kmk = (m1+m2+. . .+mk)+(m2+2m3+. . .+(k−1)mk);

since m0 = 0, m1+m2+ . . .+mk = N +1−2r, while since k ⩾ 1, m2+2m3+
. . .+(k−1)mk) ⩾ 0. This means that r ⩾ N+1−2r, and thus 3r−1 ⩾ N .

The group GL(N +1) acts by congruence on P(S2V ), the space of quadrics
in P(V ), and thus it acts on pencils of quadrics, that correspond to lines in
P(S2V ): this induces an action on the Grassmannian G(1,P(S2V )). Given
a non-degenerate pencil of quadrics in P(V ), the splitting type of the vector
bundle E determines a partition of the integer r in h parts, where the number
of parts h = N + 1− 2r is exactly the rank of the bundle E. For every choice
of constant rank 2r there are exactly r possible sizes N + 1 for these pencils,
namely N can vary from 2r to 3r − 1. On the other hand, if the rank and the
order of the matrix are fixed, the number of parts h of the partition of r is
determined.

Our main result in this Section states that, for a fixed r, all possible values
of N are attained, and that the partitions of r consisting of h = N + 1 − 2r
parts completely characterize the orbits of pencils of quadrics of constant rank.

In our proof we will use the classification of the GL(N + 1)-orbits given in
terms of minimal indices, see [9, Chapter XII, §6].

In fact, even if GL(N + 1) acts on a pencil L ⊂ P(S2V ) by congruence,
one can also consider a different natural action of the general linear group
on L, namely two pencils of matrices aA+ bB and λL+ µM are called strictly
equivalent if there exist two non-singular matrices P ′ and P ′′ with the property
that P ′(aA + bB)P ′′ = λL + µM . The latter action implies the former if the
matrices are symmetric or skew-symmetric [9, Theorem 6, Chapter XII]: in
particular, two pencils of quadrics are strictly equivalent if and only if they are
congruent.

Following the same notations as [9] (so slightly different than [7]), our con-
struction is based on the following “building blocks”.

Definition 2.2. Let r ⩾ 1 be an integer, and (r1, . . . , rh) a partition of r,
with r1 ⩽ . . . ⩽ rh. Set N = 2r + h − 1. Denote by L(r1,...,rh) the pencil
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of (N + 1) × (N + 1) symmetric matrices of constant rank 2r constructed as
follows.

First, define the ri × (ri + 1) matrix

Mri :=


a b 0 0 · · · 0
0 a b 0 · · · 0
...

. . .
. . .

...
0 · · · 0 a b

 , (2)

and the (2ri + 1)× (2ri + 1) symmetric block matrix

Lri :=

(
0ri,ri Mri

tMri 0ri+1,ri+1

)
. (3)

The pencil of quadrics L(r1,...,rh) is the direct sum of the blocks Lri , so

L(r1,...,rh) :=


Lr1

Lr2

. . .

Lrh

 , (4)

where all off-diagonal blank spaces are blocks of zeros.

By combining the construction of the pencils L(r1,...,rh) and the classification
contained in Theorem 7 and the subsequent remarks in [9, Chapter XII, §6],
we obtain the following Theorem, that achieves a complete description of the
GL(N +1)-orbits of singular pencils of quadrics L ⊂ P(S2V ) of constant rank.

Theorem 2.3. Let V be a complex vector space of dimension N + 1, and let
L ⊆ P(S2V ) be a singular pencil of quadrics of constant rank 2r. If L is non-
degenerate, it is GL(N + 1)-equivalent by congruence and strict equivalence to
a pencil of type L(r1,...,rh) defined in (4) for some partition (r1, . . . , rh) of r,
with r1 ⩽ . . . ⩽ rh, h = N + 1− 2r, and whose associated vector bundle E has
splitting type precisely (r1, . . . , rh).

Viceversa, for every integer r ⩾ 1 and every partition (r1, . . . , rh) of r,
with r1 ⩽ . . . ⩽ rh, there exists a non-degenerate singular pencil of quadrics of
constant rank 2r and size N + 1, for all 2r ⩽ N ⩽ 3r − 1.

Remark 2.4. An alternative proof of Theorem 2.3 could be obtained by adapt-
ing to the symmetric case the proof of [7, Theorem 3.12], which is based on
compression spaces and 1-generic matrices.
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Remark 2.5. If one wanted to take into consideration degenerate pencils, it
would be enough to consider partitions of r that admit 0 as a summand, with
multiplicity corresponding to the number of copies of OP1 appearing in the
splitting of the vector bundle E in (1).

To conclude this Section, we underline the fact that the content of Theo-
rem 2.3 was already known, even though the relation between the classification
of the orbits of singular pencils of quadrics of constant rank and the splitting
type of the vector bundle has never been explicitly written down. In [3] the
Author provides a geometric classification of the orbits, but the relation with
the vector bundles is not clarified; on the other hand, in the recent work [6]
there is an explicit description of the splitting type of the bundles, but the
Authors are interested in different properties than the orbits of pencils in the
Grassmannian.

3. Geometry of pencils of quadrics and their orbits

We now want to study more in detail the geometry of pencils of quadrics of
constant rank and their orbits. To this end, in this Section we use a different
canonical form from the one given in Definition 2.2 for the pencils with h ⩾ 2. It
is analogous to the canonical form described in [7] in the skew-symmetric case,
and is more convenient to understand the geometry of our pencils because it
highlights that they are compression spaces. Recall that a subspace L contained
in V ⊗V is called a compression space if there exists a subspace U ⊆ V that is
“compressed” by the elements of L, that is, dim(L(U)) < dim(U) for all L ∈ L.
Such a space is GL(N +1)-equivalent to a space of matrices having a common
block of zeros.

We start by describing some examples, namely the first cases where r = 1, 2
and 3.

Example 3.1. The first (and easiest) example is r = 1: then the only possible
value for N is 2, and the only partition of r is (1), so there is a unique orbit,
whose representative is the compression space

L(1) =

 0 a b

a
b

02,2

 . (5)

The cokernel bundle from the exact sequence (1) is E = OP1(1). This is a
pencil of conics in P2, generated by A = {x0x1 = 0} and B = {x0x2 = 0}, that
split into a common line S = {x0 = 0} and a second line that goes through the
point P = [1 : 0 : 0]. The base locus of the pencil is exactly the union of the
line S, and the isolated point P . Notice that S is swept by the singular points
of the conics of the pencil.
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The pencils belonging to the orbit of L(1) in the Grassmannian G(1,P5) are

determined by their base locus, that varies in the open subset of P2 × P2∗ of
disjoint pairs point-line. Therefore the orbit in G(1,P5) has dimension 4.

Example 3.2. When r = 2, the possible values of N are 4 and 5, corresponding
to the two partitions (2) and (1, 1).

The first case gives a 5× 5 symmetric matrix of constant rank 4:

L(2) =


02,2

a b 0
0 a b

a 0
b a
0 b

03,3

 ,

with associated line bundle OP1(2). The pencil is generated by the quadrics
A = {x0x2 + x1x3 = 0} and B = {x0x3 + x1x4 = 0}; its elements are cones
over quadrics in P3, having a single point as vertex. As the cones vary, their
vertices describe a conic Γ in the plane S = {x0 = x1 = 0}. The base locus
is the union of the plane S and the rational normal scroll of degree 3 in P4

defined by the 2× 2 minors of the matrix(
x0 x3 x4

−x1 x2 x3

)
.

The singular locus of the base locus is the conic Γ, which coincides with the
improper intersection of the 2 irreducible components.

A pencil in this orbit is completely determined by its base locus, that is the
union of a rational normal scroll and a plane generated by a unisecant conic.
From [5] we learn that the Hilbert scheme of these rational normal scrolls has
dimension 12; moreover the linear system of unisecant conics on such a surface
has dimension 2; it follows that the orbit has dimension 14.

The partition (1, 1) of r = 2 gives a 6 × 6 symmetric matrix of constant
rank 4, whose associated bundle is E = OP1(1)⊕OP1(1). As we mentioned at
the beginning of the Section, we consider the following canonical form (here
and in the next examples the blank spaces all represent zeros):

L̃(1,1) =


a b 0 0
0 0 a b

a 0
b 0
0 a
0 b

 .

Of course, L̃(1,1) is strictly equivalent to the block construction from Defini-
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tion 2.2, namely:

L(1,1) =

(
L1

L1

)
.

Since the co-rank is 2, the cones of this pencil have a line as vertex. The
generators are A = {x0x2 + x1x4 = 0} and B = {x0x3 + x1x5 = 0}, the
base locus is reducible, and its components are the 3-dimensional linear space
S = {x0 = x1 = 0} and a rational normal 3-fold scroll of degree 3 in P5, defined
by the 2× 2 minors of (

x0 x4 x5

−x1 x2 x3

)
.

The locus swept by vertices is a smooth quadric surface in S. By a count of
parameters similar to previous case, the dimension of the orbit is 26: indeed,
the dimension of the Hilbert scheme of rational normal cubic scrolls in P5 is 24
and the linear system of unisecant quadrics has dimension 2.

One of the advantages of using the form L̃(1,1) lies precisely in the fact that
the codimension 2 linear space S contained in the base locus is now apparent,
since we are dealing with a compression space. This phenomenon will generalize
in the next cases.

Example 3.3. As a last series of examples, aiming to illustrate the general
case, we now consider the possible partitions of r = 3. One has three possible
values 6 ⩽ N ⩽ 8, corresponding to the three partitions (3), (1, 2) and (1, 1, 1).
By now we know that the representatives of their orbits are, respectively,

L(3) =


03,3

a b 0 0
0 a b 0
0 0 a b

a 0 0
b a 0
0 b a
0 0 b

04,4


, L(1,2), and L(1,1,1).

The base locus of the pencil L(3) in P6 is an irreducible quartic, complete
intersection of the two quadrics A = {x0x3 + x1x4 + x2x5 = 0} and B =
{x0x4 + x1x5 + x2x6 = 0}; it is singular along a twisted cubic C swept by the
vertices and it contains the 3-dimensional linear space S = {x0 = x1 = x2 = 0}
spanned by C.

To analyze the other two cases, we will again look at representatives that
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are strictly equivalent to L(1,2) and L(1,1,1), namely:

L̃(1,2) =



a b 0 0 0
0 0 a b 0
0 0 0 a b

a 0 0
b 0 0
0 a 0
0 b a
0 0 b



and

L̃(1,1,1) =



a b 0 0 0 0
0 0 a b 0 0
0 0 0 0 a b

a 0 0
b 0 0
0 a 0
0 b 0
0 0 a
0 0 b


.

Considering the kernels of these matrices, we see that in both cases the Jacobian
locus of the pencil is contained in the linear space S = {x0 = x1 = x2 = 0}
of codimension 3 (so of dimension 4 and 5 respectively). The base locus is
irreducible in both cases and it is singular along the Jacobian locus, that is a
rational normal scroll in S, P(OP1(1)⊕OP1(2)) and P(OP1(1)⊕OP1(1)⊕OP1(1))
respectively.

We now describe the general case of a pencil L = L(r1,...,rh) of constant
rank 2r in PN , corresponding to the partition (r1, · · · , rh) of r, h = N +1−2r.
Recall that we can write our L as {aA + bB | [a : b] ∈ P1}. We denote by
B(L) = A ∩ B the base locus of L. It is a known fact that its singular locus
is contained in the Jacobian locus J(L) of L, the union of the vertices of the
quadrics in the pencil, and such vertices are linear spaces of dimension N − 2r.

As we did in the previous examples, we use a canonical form for the pencils
that is slightly different from (4), and instead agrees with the notations used
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in [7]: given the ri × (ri + 1) block Mri defined in (2), we set

L̃(r1,...,rh) :=



Mr1

Mr2

. . .

Mrh
tMr1

tMr2

. . .
tMrh


, (6)

where again the blank spaces have blocks of zeros.

From this canonical form, it is immediate to see that all these pencils cor-
respond to compression spaces, because the associated matrices have a block
of zeros of dimension N + 1 − r; a direct consequence is that the Jacobian
locus J(L) is contained in the linear space S of dimension N − r defined by the
equations x0 = x1 = · · · = xr−1 = 0.

Moreover, one easily computes that the Jacobian locus coincides with the
singular locus of B(L), which is irreducible, and it is exactly a rational normal
scroll P(OP1(r1) ⊕ . . . ⊕ OP1(rh)). Any element of the pencil is a cone over a
smooth quadric of dimension 2r − 2, so it admits two families of linear spaces
of dimension (r− 1) + (N − 2r) + 1 = N − r. Two quadrics of the pencil share
a maximal linear subspace S of dimension N − r belonging to one of the two
families, and are tangent along a rational normal scroll of type r1, . . . , rh in S.

As a last remark ending this Section, we quote the article [13], a continuation
and completion of the thesis of Corrado Segre, where he studied the geometry
of singular pencils of quadrics in PN of rank at most k, that he calls “coni
quadrici di specie N − k”, relating them to rational normal scrolls contained
in their Jacobian locus.

4. Orbits’ dimension

We recalled in Section 2 that the natural action of the group GL(N + 1) on
V = CN+1 extends to the congruence action on P(S2V ), and hence on the lines
contained in P(S2V ). Looking at pencils of quadrics as points in the Grass-
mannian G(1,P(S2V )), we get an action of GL(N + 1) on the Grassmannian.
We are interested in the orbits of singular pencils of quadrics L ⊆ P(S2V ) of
constant rank 2r under this latter action. As we saw in Theorem 2.3 non-
degenerate pencils of quadrics in PN of constant rank 2r exist if and only if
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2r ⩽ N ⩽ 3r − 1 and the orbits of these pencils correspond bijectively to the
partitions (r1, . . . , rh) of r, with 1 ⩽ r1 ⩽ r2 ⩽ . . . rh, where h = N + 1− 2r.

This last Section contains our main result Theorem 4.1, namely we compute
the dimension of all the orbits of pencils of singular quadrics of constant rank.
More precisely, for every partition (r1, . . . , rh) we describe explicitly the Lie
algebra of the stabilizer of the pencil L(r1,...,rh).

Theorem 4.1. Let r ⩾ 1 be an integer, and (r1, . . . , rh) a partition of r, with
r1 ⩽ . . . ⩽ rh. Set N = 2r + h − 1. Under the natural action of GL(N + 1),
the dimension of the stabilizer of the singular pencil L(r1,...,rh) of symmetric
matrices of size N + 1 and constant rank 2r is

δ(r1, . . . , rh) := h+ 4 +
∑
i<j

(2rj + 1) + #{(i, j) | ri = rj}. (7)

Corollary 4.2. The GL(N + 1)-orbits of singular pencils L(r1,...,rh) of sym-
metric matrices of size N + 1 and constant rank 2r have (affine) dimension
(N + 1)2 − δ(r1, . . . , rh).

The plan of the proof of Theorem 4.1 is the following: we first analyze, in
Propositions 4.5 and 4.6 the case of partitions with only one part, i.e. pencils of
symmetric matrices of constant corank 1; then, in Proposition 4.7, we consider
the case of partitions with two parts, i.e. pencils of constant corank 2. We
obtain a complete description of the Lie algebra of the stabilizer in both cases.
The key remark is then that, in the general case, due to the particular canonical
form of the representatives of the orbits under consideration, a matrix X in
the Lie algebra of the stabilizer can be interpreted as a block matrix of the
form (16), where the blocks involved already appear and are described in the
first two cases.

The next Lemma is probably well known. We report it here for completeness
and because it is a fundamental ingredient for computing the Lie algebras of
the stabilizers in the two cases h = 1, 2.

Lemma 4.3. Let L be the pencil generated by the symmetric matrices A and
B, let X be a (N + 1) × (N + 1) matrix with entries in C. Then X belongs
to the Lie algebra of the stabilizer of L for the action of GL(N + 1) on the
Grassmannian if and only if the following relations hold:

(tXA+AX) ∧A ∧B = (tXB +BX) ∧A ∧B = 0. (8)

Proof. The point in the Grassmannian G(1,P(S2V )) corresponding to the pen-
cil L via the Plücker map is [A ∧ B]. Its GL(N + 1)-orbit is the image of the
map GL(N + 1) → G(1,P(S2V )) given by X 7→ (tXAX) ∧ (tXBX). So the
condition for X to belong to the stabilizer of L is [A∧B] = [(tXAX)∧(tXBX)].
This is equivalent to the equations (tXAX) ∧ A ∧ B = (tXBX) ∧ A ∧ B = 0.
Differentiating these equations at the origin we get the thesis.
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Remark 4.4. In the article [4], the Authors are interested in the same problem
of computing the dimensions of orbits of pencils of symmetric matrices. But
instead of interpreting them as points in the appropriate Grassmannian, they
work with pairs of matrices generating the pencil, thus obtaining a different
result from ours.

We start with the partition having only h = 1 part. We have a pencil of
symmetric matrices of size N + 1 = 2r + 1 and rank 2r, whose cokernel is the
line bundle E = OP1(r); the orbit representative is L(r), that we write in the
following form, suitable to apply Lemma 4.3:

L(r) = aA+ bB =



0r,r

a b
a b

. . .
. . .

a b
a
b a

b
. . .

. . . a
b

0r+1,r+1


. (9)

Proposition 4.5. Let r ⩾ 1 be an integer. The GL(2r + 1)-orbit of pencils
of singular quadrics of constant rank 2r and order 2r + 1 has a stabilizer of
dimension 5. The Lie algebra of the stabilizer is the vector space of matrices
X of the form:

X =

(
X1 0r,r+1

0r+1,r X2

)
, (10)

where, for r ⩾ 2:

1. X1 and X2 are square matrices of order r and r + 1 respectively;

2. both X1 and X2 are tridiagonal, i.e. all the elements out of the main
diagonal, the sub-diagonal (the first diagonal below this), and the supra-
diagonal (the first diagonal above the main diagonal) are zero;

3. the sub-diagonal, main diagonal, and supradiagonal of X1 are respectively:

y(r−1, r−2, . . . , 1), x00(1, 0,−1,−2, . . . ,−(r−2))+x11(0, 1, 2, . . . , r−1),

z(1, 2, . . . , r − 1);

4. the sub-diagonal, main diagonal, and supradiagonal of X2 are respectively:

−z(1, 2, . . . , r), (x00−x11)(0, 1, . . . , r)+x33(1, 1, . . . , 1), −y(r, r−1, . . . , 1),
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where x00, x11, x33, y, z are independent parameters.

For instance, if r = 3, X is as follows:



x00 z 0
2y x11 2z
0 y 2x11−x00

x33 −3y 0 0
−z x00−x11+x33 −2y 0
0 −2z 2x00−2x11+x33 −y
0 0 −3z 3x00−3x11+x33


.

Proof. Let X = (xij)i,j=0,...,N be a matrix of unknowns. If A,B are the matri-
ces introduced in (9), the elements of indices i ⩽ j in the symmetric matrices
tXA+AX and tXB +BX are as described below:

(tXA+AX)ij =



xj+r,i + xi+r,j if 0 ⩽ i ⩽ j ⩽ r − 1
xj−r,i + xi+r,j 0 ⩽ i ⩽ r − 1, r ⩽ j ⩽ 2r − 1
xi+r,2r 0 ⩽ i ⩽ r − 1, j = 2r
xj−r,i + xi−r,j r ⩽ i ⩽ j ⩽ 2r − 1
xi−r,2r r ⩽ i ⩽ 2r − 1, j = 2r
0 i = j = 2r

(11)

(tXB +BX)ij=



xj+r+1,i + xi+r+1,j if 0 ⩽ i ⩽ j ⩽ r − 1
xi+r+1,r 0 ⩽ i ⩽ r − 1, j = r
xj−r−1,i + xi+r+1,j 0 ⩽ i ⩽ r−1, r+1⩽j⩽2r
0 i = r = j
xj−r−1,i + xi−r−1,j r + 1 ⩽ i ⩽ j ⩽ 2r
xj−r−1,r i = r, r + 1 ⩽ j ⩽ 2r

(12)

In view of Lemma 4.3, X belongs to the Lie algebra of the stabilizer of the
orbit of L(r) if and only if it satisfies the equations (8), that are equivalent to
a series of equations in the entries of each of the two matrices tXA+ AX and
tXB +BX, and precisely:

(i) vanishing of the elements with equal indices;

(ii) vanishing of the elements with indices 0 ⩽ i < j ⩽ r − 1, r ⩽ i < j ⩽ 2r,
(i, i+ r+2), . . . , (i, 2r) for i = 0, . . . , r− 2, and (i, r), . . . , (i, i+ r− 1) for
i = 1, . . . , r − 1;

(iii) elements with indices (0, r), (1, r + 1), . . . , (r − 1, 2r − 1) must be two by
two equal;

(iv) elements with indices (0, r + 1), (1, r + 2), . . . , (r − 1, 2r) must be two by
two equal.
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Now, using (11) and (12) together with (i) we get x0,r = x1,r+1 = · · · =
xr−1,2r−1 = xr,0 = · · · = x2r−1,r−1 = 0, and also x0,r+1 = x1,r+2 = · · · =
xr−2,2r−1 = xr+1,0 = · · · = x2r,r−1 = 0; note that in all these cases the
difference of the indices is either r or r + 1.

From the vanishings just obtained and those in (ii) whose indices differ
by 1, we get x0,r−1 = x1,r = · · · = xr−1,2r−2 = xr−1,0 = · · · = x2r−2,r−1 = 0,
x0,r+2 = x1,r+3 = · · · = xr−2,2r = xr+2,0 = · · · = x2r,r−2 = 0, and also
x2r,r = xr−1,2r = 0.

We continue in this way, considering relations in (ii) whose indices differ
by 2 and so on, until we get all the claimed vanishings in matrix (10) and
moreover the following 2r equations:

x0,1 + xr+1,r = x1,2 + xr+2,r+1 = · · · = xr−1,r + x2r,2r−1 = 0,

and the symmetric ones

x1,0 + xr,r+1 = x2,1 + xr+1,r+2 = · · · = xr,r−1 + x2r−1,2r = 0.

The relations in (iii) and (iv) impose 2r−2 conditions on the elements of the
main diagonal of X, and 2r − 2 conditions on the elements of the subdiagonal
and supradiagonal of X, and precisely:

x0,0 + xr,r = x1,1 + xr+1,r+1 = · · · = xr−1,r−1 + x2r−1,2r−1,

x0,0 + xr+1,r+1 = x1,1 + xr+2,r+2 = · · · = xr−1,r−1 + x2r,2r,

x1,0 + xr,r+1 = x2,1 + xr+1,r+2 = · · · = x2r−1,2r,

xr+1,r = x0,1 + xr+2,r+1 = · · · = xr−2,r−1 + x2r,2r−1.

Combining everything, we obtain for X the expression in (10), with z = x0,1

and y = xr−1,r−2; the Proposition is proved.

Our description of the stabilizer compared with the known classification of
Lie algebras of small dimension ([11]) gives the following result.

Proposition 4.6. The Lie algebra of the stabilizer of the GL(2r + 1)-orbit of
pencils of quadrics of constant rank 2r and order 2r + 1 described in Proposi-
tion 4.5 is isomorphic to sl2 ⋉C2.

Proof. From the detailed description of the Lie algebra of the stabilizer given in
Proposition 4.5, one sees that its elements depend on 5 independent parameters,
namely any element X in this Lie algebra is X = X(x00, x11, x33, y, z). With
obvious notation, let us call

C1 = X(1, 0, 0, 0, 0), C2 = X(0, 1, 0, 0, 0),

X = X(0, 0, 0, 0, 1), Y = X(0, 0, 0, 1, 0), Z = X(r − 1, r − 3,−r, 0, 0).
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If we compute the bracket of these elements, we get that [C1, C2] = 0 and
[X ,Y] = Z
[Z,X ] = 2X
[Z,Y] = −2Y

which tells us that C2 =< C1, C2 > and sl2 =< X ,Y,Z >. The fact that
[C1,X ] = X = −[C2,X ]

[C1,Y] = −Y = −[C2,Y]

[C1,Z] = [C2,Z] = 0

allows us to conclude that our Lie algebra falls into the first case in the clas-
sification table appearing in [11, Section 4], namely the semidirect product
sl2 ⋉C2.

When the partition has h = 2 parts, the balanced and unbalanced case have
two different behaviors, as explained in the following result.

Proposition 4.7. Let r ⩾ 1 be an integer. The GL(2r + 2)-orbit of pencils of
singular quadrics of constant rank 2r and order 2r+2, whose associated bundle
is OP1(r1)⊕OP1(r2), with r1+ r2 = r, and r1 ⩽ r2, has stabilizer of dimension

1. 2r2 + 8 = r + 8 when r is even and r1 = r2 = r
2 ;

2. 2r2 + 7 when r1 < r2.

Proof. In the notation of Section 2, a representative of the orbit is the matrix

L(r1,r2) = aA+ bB =

(
Lr1

Lr2

)
.

We also introduce the notation A =

(
A1

A2

)
, B =

(
B1

B2

)
, where

Ai, Bi are matrices of order 2ri + 1, for i = 1, 2.
Let X = (xij)i,j=0,...,N be a matrix of unknowns. We write X as a block

matrix as follows:

X =

(
X11 X12

X21 X22

)
=

 (xij)i=0,...,2r1+1
j=0,...,2r1+1

(xij) i=0,...,2r1+1
j=2r1+2,...,N

(xij)i=2r1+2,...,N
j=0,...,2r1+1

(xij)i=2r1+2,...,N
j=2r1+2,...,N


where Xii are square matrices of order (2ri + 1), and X12, X21 have order
(2r1 + 1)× (2r2 + 1) and (2r2 + 1)× (2r1 + 1) respectively.

345



(16 of 22) A. BORALEVI AND E. MEZZETTI

Then tXA+ AX and tXB +BX can be written as block matrices as well,
and precisely:

tXA+AX =

(
tX11A1 +A1X11

tX21A2 +A1X12

tX12A1 +A2X21
tX22A2 +A2X22

)
, (13)

and similarly for B. Lemma 8 implies that X belongs to the Lie algebra of the
stabilizer if and only if equations (8) are satisfied. We analyze separately what
this means for the diagonal blocks X11, X22 and for the off-diagonal blocks
X12, X21 of X.

Diagonal blocks. We use Proposition 4.5: X11, X22 must belong to the
Lie algebras of the stabilizers of the orbits of L(r1) and L(r2) respectively,
therefore each of them depends on 5 parameters and has the form described
in Proposition 4.5. But equations (8) imply that the parameters appearing in
X11 and X22 are not independent, and precisely, after fixing the 5 parameters
required to describe X11, an explicit computation shows that only one new
parameter is needed to describe X22, therefore the two diagonal blocks depend
on a total of 6 parameters.

Off-diagonal blocks. The matrices tX21A2+A1X12 and tX12A1+A2X21 are
the transpose of each other, and they both have to be the zero matrix. The
same holds for tX21B2 +B1X12 and tX12B1 +B2X21.

From the explicit expressions of their entries, we get the following condi-
tions:

xa,b + xi,j = 0 for any 2r1 + 1 ⩽ a, j ⩽ 2r, 0 ⩽ i, b ⩽ 2r1 − 1 (14)

with |b− i| = r1, |a− j| = r2,

xa,b + xi,j = 0 for any 2r1 + 1 ⩽ a, j ⩽ 2r + 1, 0 ⩽ i, b ⩽ 2r1 (15)

with |b− i| = r1 + 1, |a− j| = r2 + 1.

We also get a first series of four vanishings, referring to the last and the central
columns of X12 and X21:

(i) the last column of X12 except its last element:

x0,2r+1 = x1,2r+1 = · · · = x2r1−1,2r+1 = 0,

(ii) the central column of X12, of index 2r1+r2+1, except its central element
xr1,2r1+r2+1;

(iii) the last column of X21 except its last element:

x2r1+1,2r1 = x2r1+2,2r1 = · · · = x2r,2r1 = 0,
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(iv) the central column of X21, of index r1, with the exception of its central
element x2r1+r2+1,r1 .

The vanishing of these columns, together with conditions (14) and (15), implies,
in order, the following second series of vanishings, referring to the rows of the
two matrices:

(i) the row of index 2r1 + r2 of X21, except the element x2r1+r2,r1−1; this is
the row above the middle;

(ii) the first row of X21 except its first element x2r1+1,0;

(iii) the row of index r1 − 1 of X12 except xr1−1,2r1+r2 ; this is the row above
the middle;

(iv) the first row of X12 except its first element x0,2r1+1.

We now analyze separately the two cases (1) and (2) in our statement.

Case (1): when r1 = r2, X12, X21 are square matrices. Going on with the
argument above, we deduce that in both X12 and X21 all the elements above
the central row and to the right of the central column are zero, except those of
the main diagonal. Moreover, the first r2 entries of the main diagonal of X12

are equal to each other and also to the last r2 elements of the main diagonal of
X21, and similarly the last r2 elements of the main diagonal of X12 are equal
to each other and also to the first r2 elements of the main diagonal of X21.

We are left to analyze the two rectangles of order (r2 +1)× r2 in the lower
left corner: from conditions (14) and (15) we get that they depend on 2r2
parameters, independent of those previously considered. More precisely, we
can divide each of the two rectangles into its 2r2 anti-diagonals; each of them
results to be formed by elements all equal to each other and to those of the
same anti-diagonal of the other matrix.

All in all, there are 2 + 2r2 independent parameters for this case (1). For
the reader’s convenience, we illustrated the case (2, 2) in Figure 1.

Case (2): assume now r1 < r2. We obtain the vanishing of the entire first
r1 rows of X12 and of the last r1 + 1 columns of X21. Now we need to look
at the last r1 + 1 rows of X12 and the first r1 columns of X21. The former is
divided into two blocks α12 and β12 of size (r1 +1)× r2 and (r1 +1)× (r2 +1)
respectively, while the latter is divided into two blocks α21 and β21 of size r2×r1
and (r2+1)× r1 respectively. All entries in each of the r2+2 anti-diagonals of
α12 are equal to each other, and the same is true for the r2 + 2 anti-diagonals
of β21. Moreover, these diagonals are paired, in the sense that they depend in
order exactly on the same r2 + 2 parameters. Finally, the same relations hold
for the r2 − 1 principal diagonals of the blocks β12 and α21, with the difference
that this time all entries above and below these r2 − 1 principal diagonals are
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Figure 1: Structure of the submatrices X12 and X21 in an element of the Lie
algebra of the stabilizer of L(2,2): entries that are equal (up to a sign) are
highlighted with the same color.

zero. (By “principal diagonal” we mean a maximal length diagonal with r1+1
entries in β12 and r1 entries in α21.)

All in all, there are (r2 + 2) + (r2 − 1) = 2r2 + 1 independent parameters
for this case (2). Figure 2 illustrates the case (2, 3).

Notice that the unknowns appearing in the on and off-diagonal blocks are
independent from each other: this means that we only need to add the number
of independent parameters coming from the off-diagonal blocks to the 6 ones
needed for the diagonal blocks. This concludes the proof in both cases.

Proof of Theorem 4.1. We mimic and generalize the proof of Proposition 4.7.
Given a pencil L(r1,...,rh) in the canonical form (4) and generated by A and B,
with obvious notation we write

A =


A1

A2

. . .

Ah

 and B =


B1

B2

. . .

Bh

 .

To describe the matrices X belonging to the Lie algebra of the stabilizer
of L(r1,...,rh) we use Lemma 4.3. We write a general matrix of unknowns X =
(xij)i,j=0,...,N as a block matrix with the same type of blocks Xij as above,
each of size (2ri + 1)× (2rj + 1):

X =


X11 X12 . . . X1h

X21 X22

...

...
. . .

...
X1h . . . . . . Xhh

 . (16)
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Figure 2: Structure of the submatrices X12 and X21 in an element of the Lie
algebra of the stabilizer of L(2,3): again, the entries that are equal (up to a
sign) are highlighted with the same color.

Then tXA + AX can also be written as a block matrix, where the square
blocks on the diagonal have the form

tXiiAi +AiXii,

while the off-diagonal ones with i < j are

tXjiAj +AiXij ,

and similarly for B. As in the proof of Proposition 4.7, the upper left diagonal
block X11 depends on 5 independent parameters, and each other diagonal block
contributes with 1 more degree of freedom. This accounts for 5+(h−1) = 4+h
parameters. The off-diagonal blocks Xij and its symmetric Xji are in the same
relation described for X12 and X21 in the proof of Proposition 4.7, so each pair
accounts for 2rj + 2 if ri = rj , and 2rj + 1 if ri < rj .

As anticipated, now we make the key remark that the blocks Xij and Xkℓ

are independent for (i, j) ̸= (k, ℓ), meaning that none of the variables xpq

appear in two different blocks; therefore, the total number of parameters is

4 + h+
∑
i<j

(2rj + 1) + #{(i, j) | ri = rj},

and this concludes our proof.

To illustrate our result, we collected in Table 1 all orbits of pencils of
quadrics of constant rank 2r, r ⩽ 6, their dimension, and the dimension of
their stabilizer.
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r h partition N = 2r + h− 1 dim orbit dim stabilizer
1 1 (1) 2 4 5
2 1 (2) 4 20 5

2 (1,1) 5 26 10
3 1 (3) 6 44 5

2 (1,2) 7 53 11
3 (1,1,1) 8 62 19

4 1 (4) 8 76 5
2 (2,2) 9 88 12
2 (1,3) 9 87 13
3 (1,1,2) 10 100 21
4 (1,1,1,1) 11 112 32

5 1 (5) 10 116 5
2 (2,3) 11 131 13
2 (1,4) 11 129 15
3 (1,2,2) 12 146 23
3 (1,1,3) 12 144 25
4 (1,1,1,2) 13 161 35
5 (1,1,1,1,1) 14 176 49

6 1 (5) 12 164 5
2 (3,3) 13 182 14
2 (2,4) 13 181 15
2 (1,5) 13 179 16
3 (2,2,2) 14 200 25
3 (1,2,3) 14 199 26
3 (1,1,4) 14 196 29
4 (1,1,2,2) 15 218 38
4 (1,1,1,3) 15 215 40
5 (1,1,1,1,2) 16 236 53
6 (1,1,1,1,1,1) 17 254 70

Table 1: Dimension of orbits of pencils of quadrics and their stabilizers.
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Looking at Table 1, it is interesting to observe the phenomenon occurring
when there are two different partitions of r of the same length. As expected
from the behaviour of a rational normal scroll P(OP1(r1) ⊕ OP1(r2)) degener-
ating to a P(OP1(r1 − 1) ⊕ OP1(r2 + 1)), the dimension of the relative orbit
increases.
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Abstract. Elina Robeva discovered quadratic equations satisfied
by orthogonally decomposable (“odeco”) tensors. Boralevi-Draisma-
Horobeţ-Robeva then proved that, over the real numbers, these equations
characterise odeco tensors. This raises the question to what extent they
also characterise the Zariski-closure of the set of odeco tensors over the
complex numbers. In the current paper we restrict ourselves to sym-
metric tensors of order three, i.e., of format n×n×n. By providing an
explicit counterexample to one of Robeva’s conjectures, we show that for
n ≥ 12, these equations do not suffice. Furthermore, in the open subset
where the linear span of the slices of the tensor contains an invertible
matrix, we show that Robeva’s equations cut out the limits of odeco
tensors for dimension n ≤ 13, and not for n ≥ 14. To this end, we
show that Robeva’s equations essentially capture the Gorenstein locus in
the Hilbert scheme of n points and we use work by Casnati-Jelisiejew-
Notari on the (ir)reducibility of this locus.

Keywords: symmetric tensors, orthogonally decomposable tensors, Gorenstein algebras.
MS Classification 2020: 15A69 Multilinear algebra, tensor calculus.

1. Introduction

In [11], Robeva discovered quadratic equations satisfied by orthogonally de-
composable (odeco) tensors. In [1], it is proved that over the real numbers,
these quadratic equations in fact characterise odeco tensors.

This raises the question whether Robeva’s equations also define (the Zariski
closure of) the set of complex odeco tensors. Indeed, Robeva conjectured that
they might even generate the prime ideal of this Zariski closure, at least in
the case of symmetric tensors [11, Conjecture 3.2]. She proved this stronger
statement when the ambient space has dimension at most 3 [11, Figure 2]. In
general, however, the answer to the (weaker) question is no, as already pointed
out by Koiran in [7]. In this short paper, based on the first author’s Master’s
thesis, we give an explicit symmetric tensor in (C12)⊗3 that satisfies Robeva’s
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equations but is not approximable by complex odeco tensors. We do not know
whether 12 is the minimal dimension for which this happens, but we show that
if we impose a natural, additional open condition on the tensor, then Robeva’s
equations characterise the Zariski closure of the odeco tensors precisely up to
dimension 13.

A key idea in [1] is to associate an algebra A to a symmetric three-tensor T
and to realise that Robeva’s equations express the associativity of that algebra.
Furthermore, the symmetry of the tensor implies that A is commutative and
that the bilinear form is an invariant form on A; see Section 2.2 for definitions.
If, in addition, A contains a unit element – this turns out to be an open con-
dition on T – then A is a Gorenstein algebra. Consequently, we can use the
results of [2] on (ir)reducibility of the Gorenstein locus in the Hilbert scheme
of points in affine space to study the variety defined by Robeva’s equations.

In the opposite direction, we use this relation between algebras and tensors
to give an elementary proof that the Gorenstein locus in the Hilbert scheme
of n points in An has a dimension that grows as Θ(n3). This seems surprising
at first, since the component containing the schemes consisting of n distinct
reduced points has dimension only n2; on the other hand, it is well-known that
the dimension of the Hilbert scheme itself does grow as a cubic function of n.

This relation between algebras and tensors is, of course, not new: a bilinear
multiplication on V can be thought of as an element of V ∗⊗V ∗⊗V , and in the
presence of a bilinear form on V , the copies of V ∗ may be identified with V .
Further properties of the algebra, such as associativity, cut out subvarieties of
the corresponding tensor space. A classical reference for varieties of algebras
is [4], where the term algebraic geography is coined. Another, more closely
related paper is [10], whose Remark 4.5 is closely related to Lemma 9.3, and
together with [10, Theorem 9.2] gives the cubic lower bound on the dimension
of the Hilbert scheme mentioned above. Finally, we note that the Zariski clo-
sure of the odeco tensors consists of tensors of minimal border rank; equations
for these are studied in the recent paper [6]. In particular, [6, Proposition 1.4],
which states that, in the 1-generic locus, the A-Strassen equations are suffi-
cient to characterise tensors of minimal border rank is closely related to our
Theorem 2.13.

1.1. Organisation of this paper

In Section 2, we introduce the fundamental notions of this paper, including
Robeva’s equations, of which we show that they are the only quadrics that van-
ish on odeco tensors. We also state our main results (Theorems 2.10 and 2.13).
In Section 3 we extend the well-known decomposition of finite-dimensional uni-
tal algebras into products of local algebras to the non-unital case. In Section 4
we recall that the Zariski closure of the odeco tensors is a component of the
variety cut out by Robeva’s equations; this was already established in [11,
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Lemma 3.7]. In Section 5 we show that there are many weakly odeco tensors;
combined with later results, this gives a lower bound on the dimension of the
Gorenstein locus in the Hilbert scheme of n points in An. In Section 6 we show
how to unitalise algebras along with an invariant bilinear form to turn them into
a local Gorenstein algebra, and vice versa. In Section 7 we use this construction
to motivate the search for nilpotent counterexamples to Robeva’s conjecture.
Then, in Section 8 we find such a counterexample for n = 12. In Section 9
we make the connection with the Gorenstein locus in the Hilbert scheme of n
points and prove our second main result – that a version of Robeva’s conjecture
holds in the (open) unital locus precisely up to n = 13. Finally, in Section 9.5
we show that the dimension d(n) of that Gorenstein locus is lower-bounded
bounded by a cubic polynomial in n. Since it is also trivially upper-bounded
by such a polynomial, we have that d(n) = Θ(n3).

1.2. Acknowledgement

The authors were partly funded by Vici grant 639.033.514 from the Netherlands
Foundation for Scientific Research and by project grant 200021 191981 from
the Swiss National Science Foundation.

2. Set-up

2.1. Weakly and strongly odeco tensors

Let VR be a finite-dimensional real vector space equipped with a positive-
definite inner product (.|.).

Definition 2.1. A symmetric tensor T ∈ S3VR ⊆ VR ⊗ VR ⊗ VR is called
orthogonally decomposable (odeco, for short) if, for some integer k ≥ 0, T can
be written as

T =

k∑
i=1

v⊗3
i

where v1, . . . , vk ∈ VR are nonzero, pairwise orthogonal vectors. We write
Y (VR) ⊆ S3VR for the set of odeco tensors.

Positive-definitiveness of the form implies that (vi|vi) > 0 for each i, so that
v1, . . . , vk are linearly independent. Hence k ≤ n := dim(VR), and Y (VR) is a
semi-algebraic set of dimension at most

(
n
2

)
+n: the dimension of the orthogonal

group plus n degrees of freedom for scaling. It turns out that Y (VR) is in fact
the set of real points of an algebraic variety defined by quadratic equations that
we will discuss below. Furthermore, the k and the vi in the decomposition of an
odeco tensor T are unique [1, Proposition 7], which implies that the dimension
of Y (VR) is precisely

(
n
2

)
+ n.
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We now set V := C⊗ VR and extend (.|.) to a complex symmetric bilinear
form (not a Hermitian form; that setting is studied in [1] under the name
udeco). We note that the extended bilinear form is nondegenerate, as the inner
product (.|.) is positive-definite on the real vector space VR.

Definition 2.2. A symmetric tensor T ∈ S3V ⊆ V ⊗V ⊗V (where the tensor
product is over C) is weakly odeco if T can be written as

T =

k∑
i=1

v⊗3
i

where the vi are nonzero pairwise orthogonal vectors. It is called strongly odeco
if T admits such a decomposition where, in addition, (vi|vi) ̸= 0. We write
Y (V ) ⊆ S3V for the Zariski closure of the set of strongly odeco tensors.

Remark 2.3. The set called SODECOn(C) in [7] consists of the strongly odeco
tensors in S3Cn. Koiran proves that these are precisely the set of symmetric
tensors whose n× n slices are diagonalisable and commute.

As pointed out above, every element of Y (VR), regarded as an element
of S3V , is strongly odeco. Since the real orthogonal group O(VR) is Zariski
dense in the complex orthogonal group O(V ), Y (V ) is the Zariski closure of
Y (VR). On the other hand, due to the presence of isotropic vectors and higher-
dimensional spaces in V , the set of weakly odeco tensors strictly contains the
set of strongly odeco tensors; we will return to this theme shortly. First we give
the easiest example that shows the need for a Zariski closure in the definition
of Y (V ).

Example 2.4. Consider the vector space V = C2 equipped with the symmetric
bilinear form for which (e1|e2) = 1 and all other products are zero. (Of course,
since all nondegenerate symmetric bilinear forms on a finite-dimensional com-
plex vector space are equivalent, we could have changed coordinates such that
the bilinear form is the standard form.) Then

S = e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1

=
1

2
lim
t→0

[(t2e1 + t−1e2)
⊗3 + (t2e1 − t−1e2)

⊗3]

shows that S is a limit of strongly odeco tensors and so S ∈ Y (C). To see that
the tensor S is not strongly odeco, it is enough to show that its tensor rank is 3.
For order three tensors, the rank of the tensor equals the number of rank one
matrices needed to span a space containing the space generated by the slices

of the tensor [8, Theorem 3.1.1.1]. The tensor S has slices

(
0 0
0 1

)
,

(
0 1
1 0

)
,

which are not contained in a subspace spanned by two rank 1 matrices, so S
has rank 2.
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2.2. Commutative algebras from symmetric tensors

We now associate an algebra structure on V to a tensor.

Definition 2.5. We identify V with V ∗ via the map v 7→ (v|.). Then any

element T =
∑k

i=1 ui ⊗ vi ⊗ wi ∈ V ⊗3 can also be regarded as an element of
V ∗ ⊗ V ∗ ⊗ V , hence defines a bilinear map

µT : V × V → V ; (x, y) 7→ µT (x, y) =

k∑
i=1

(ui|x)(vi|y)wi.

We call V with µT the algebra associated to T .

If T is symmetric, then, first, µT is commutative, and second, µT satisfies

(µT (x, y)|z) = (x|µT (y, z)),

i.e., the bilinear form (.|.) is invariant for the multiplication µT . When T is
fixed in the context, then we will often just write xy instead of µT (x, y).

2.3. Odeco implies associative

Proposition 2.6. If T ∈ S3V is weakly odeco, then µT is associative.

This was observed in [1] in the real case, but the argument easily generalises,
as follows.

Proof. Write

T =

k∑
i=1

v⊗3
i

where the vi are pairwise orthogonal. Let x, y, z ∈ V . Then

µT (x, µT (y, z)) =µT (x,

k∑
i=1

(y|vi)(z|vi)vi) =
k∑

j=1

k∑
i=1

(y|vi)(z|vi)(x|vj)(vi|vj)vj

=

k∑
i=1

(y|vi)(z|vi)(x|vi)(vi|vi)vi

where the last equality uses that (vi|vj) = 0 whenever i ̸= j. A similar compu-
tation for µT (µT (x, y), z) yields the exact same result.
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2.4. Robeva’s equations

For any fixed x, y, z (e.g. chosen from a basis of V ), the condition that
µT (x, µT (y, z)) equals µT (µT (x, y), z) translates into n quadratic equations for
T . All these equations together, with varying x, y, z, are called Robeva’s equa-
tions.

Definition 2.7. We denote by X(V ) ⊆ S3V the affine variety defined by
Robeva’s equations, i.e.,

X(V ) := {T ∈ S3V | µT is associative}.

To prove that Robeva’s equations are all quadratic equations satisfied by
strongly odeco tensors, we reinterpret them as follows. The condition that
µT (x, µT (y, z)) equals µT (µT (x, y), z) means that for every w ∈ V , we have

(µT (x, µT (y, z))|w) = (µT (µT (x, y), z)|w),

which can be rewritten as

(µT (y, z)|µT (x,w)) = (µT (x, y)|µT (z, w)). (1)

In other words: Robeva’s equations precisely express that the 4-linear map

T • T : V 4 → C
(x, y, z, w) 7→ (µT (x, y)|µT (z, w))

is invariant under arbitrary permutations of (x, y, z, w). This was, in fact,
Robeva’s original description of these quadratic equations in [11].

Proposition 2.8. The only quadratic equations vanishing on Y (V ) are
Robeva’s equations.

Proof. If we consider the natural map

S2(S3V ) → S2(S2V )

(v1 ⊗ v2 ⊗ v3)⊗ (w1 ⊗ w2 ⊗ w3) 7→ (v1|w1)(v2 ⊗ v3)⊗ (w2 ⊗ w3),

then for any T ∈ S3V , we can identify T • T with the image of T under the
composition

S3V
ν2−→ S2S3V → S2S2V, (2)

where ν2 is the second Veronese embedding. Then T satisfies Robeva’s equa-
tions if and only if T • T ∈ S4V ⊆ S2S2V .

Since quadratic equations on Y (V ) correspond to linear equations on
ν2(Y (V )), we want to show that the image of (2), when restricted to Y (V ), lin-

early spans S4V . But (2) maps an odeco tensor
∑k

i=1 v
⊗3
i to the odeco tensor∑k

i=1(vi|vi)v
⊗4
i , and these tensors clearly span S4V .
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2.5. The main question

By Proposition 2.6, X(V ) contains weakly odeco tensors, hence in particular
the variety Y (V ). On the other hand, the results of [1] imply that the set of
real points of X(V ) equals Y (VR). This raises the following question.

Question 2.9. For which dimensions n = dim(V ) is X(V ) equal to Y (V )?

Our partial answer to this question is as follows.

Theorem 2.10. For n = dim(V ) ≤ 3, X(V ) equals Y (V ). For n ≥ 12, we
have Y (V ) ⊊ X(V ).

Proof. See Section 8.

In fact, the result for n ≤ 3 is due to Robeva [11, Figure 2]. Our contribution
is a counterexample to [11, Conjecture 3.2] for n = 12.

2.6. The existence of a unit

The answer in Theorem 2.10 is unsatisfactory because of the large interval of
dimensions n = dim(V ) for which we do not know whether X(V ) is strictly
larger than Y (V ). However, in a certain open subset of S3V , we do know
precisely where the two stop being equal.

Lemma 2.11. The condition on T ∈ X(V ) that µT has a multiplicative unit
element is equivalent to the condition that there exists a x ∈ V such that the
multiplication map Lx : v 7→ µT (x, v) is invertible. This is an open condition
on T .

In the case of ordinary tensors, the analoguous condition is called 1-generi-
city; see, e.g., [6].

Proof. We write xv instead of µT (x, v). For the implication ⇒ take x to be
the unit element. For the implication ⇐, assume that Lx is invertible. Then
in particular there exists an e ∈ V such that ex = xe = x. We then find, for
any y ∈ V , that

ey = exL−1
x (y) = xL−1

x (y) = y

so that e is a unit element.
It follows that (V, µT ) is not unital if and only if det(Lx) = 0 for all x ∈ V ;

this is a system of degree n polynomial equations on T ∈ S3(V ) defining the
complement of the unital locus.

We will refer to the variety in S3(V ) defined by the degree n equations
in the proof above as the non-invertibility locus. If T ∈ S3(V ) is not in the
non-invertibility locus, then µT needs not have a unit element; but it does if
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furthermore T lies in X(V ) – we have used associativity of µT in the proof
above.

We define X0(V ) as

X0(V ) := {T ∈ X(V ) | µT is unital},

and similarly for Y 0(V ). Note that Y 0(V ) = Y (V ). This leads to the following
weakening of Question 2.9.

Question 2.12. For which dimensions n = dim(V ) is X0(V ) equal to Y 0(V )?
In other words, for which dimensions do Robeva’s quadrics characterise the set
of limits of strongly odeco tensors in the complement of the non-invertibility
locus?

To answer this question, we will prove the following theorem.

Theorem 2.13. The number of irreducible components of X0(Cn) equals that
of the Gorenstein locus in the Hilbert scheme of n points in An

C.

Proof. See Section 9.

We can now make use of the following result on the irreducibility of Goren-
stein loci of Hilbert schemes.

Theorem 2.14 ([2]). The Gorenstein locus of n points in Ad
C

• is irreducible if n ≤ 13, or if n = 14 and d ≤ 5.

• has 2 irreducible components if n = 14 and d ≥ 6.

Note that the second item implies reducibility of the Gorenstein locus of
n points in Ad

C for all n ≥ 14 if d ≥ 6. Indeed, reducibility of the Gorenstein
locus means existence of a non-smoothable point, and if one finds such a point
for given pair (n, d), then one can always add to this point more disjoint points
(increase d) or embed it in higher dimensions (increase n).

Combining the two previous theorems together with the fact that Y (Cn)
is an irreducible component of X(Cn), which is proven in Section 4, gives a
complete answer to Question 2.12.

Corollary 2.15. The locus X0(Cn) is irreducible and equal to Y 0(Cn) for
n ≤ 13, and is not irreducible and not equal to Y 0(Cn) for n ≥ 14.

3. Decomposing (the algebra of) a tensor in X(V )

3.1. Motivation

Recall that if B is a unital finite-dimensional algebra over C, then B is isomor-
phic to a product B1 × · · · ×Bk of local algebras; here k = |Spec(B)|. In this
section we want to establish a similar decomposition for not necessarily unital
algebras.
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3.2. The unital/nilpotent decomposition

Proposition 3.1. Let T ∈ X(V ) and equip V with the corresponding commu-
tative, associative multiplication µT . Then V has a unique decomposition as a
direct sum

V1 ⊕ · · · ⊕ Vk ⊕N ,

where the Vi are nonzero and N is potentially zero, such that N and each Vi
is an ideal in (V, µT ), (Vi, µT |Vi×Vi

) is a local unital algebra for each i, and N
is a nilpotent algebra. Furthermore, this unique direct sum decomposition is
orthogonal.

Accordingly, T decomposes as T1 + · · ·Tk + TN with Ti ∈ X(Vi) and TN ∈
X(N); and we have T ∈ Y (V ) if and only if Ti ∈ Y (Vi) for all i and TN ∈
Y (N).

Proof. Note that if a, b ∈ V belong to different factors in any decomposition of
V as a direct sum of ideals, and if the first factor has unit element e, then

(a|b) = (ae|b) = (e|ab) = (e|0) = 0;

this proves the orthogonality of the decomposition.

That a unital finite-dimensional commutative, associative algebra V has a
unique product decomposition into local algebras is well-known – it is found by
taking a decomposition of 1 into minimal idempotents ei satisfying eiej = δijei
and taking Vi := eiV .

To reduce to the unital case, we proceed as follows. If V is nilpotent, then
we set k := 0 and N := V . Otherwise, there exists an element x ∈ V that is not
nilpotent. Let Lx : V → V be multiplication with x. Then there exists an m
such that imLm

x = imLm+1
x = . . .. Set y := xm and W := yV . Then (Ly)|yV

is invertible, so the ideal yV is unital by Lemma 2.11. On the other hand, we
have V = yV ⊕ ker(Ly): indeed, the dimensions of yV = im(Ly), ker(Ly) add
up to n, and if Ly(yv) = 0, then L2

yv = 0, so already Lyv = 0, so yv = 0.

Now kerLy has strictly lower dimension than V , and by induction we know
that kerLy is the direct sum of a nilpotent ideal N and an ideal I that is unital
as an algebra. Then so is V : it equals the direct sum of the ideals N and
yV ⊕ I, where the latter is unital as an algebra. The decomposition of V into
a unital ideal V0 and a nilpotent ideal V1 is unique, because V0 is the space of
elements v ∈ V for which there is an idempotent e ∈ V with v ∈ imLe.

The statements about T are straightforward from the fact that µT is the
sum of its restrictions to the ideals Vi and N . Here we note that the re-
strictions of (.|.) to the Vi and to N are non-degenerate, so that the notation
X(Vi), X(N), Y (Vi), Y (N) make sense.
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4. Y (V ) is a component of X(V )

4.1. Motivation

While, as we will see, Y (V ) is in general not equal to X(V ), at least it is an
irreducible component. This was already observed in [11]; we paraphrase the
argument here.

4.2. A tangent space computation

Here, and later in the paper, we will write e1, . . . , en for the standard basis
of Cn.

Proposition 4.1. For each V equipped with a nondegenerate symmetric bilin-
ear form, the variety Y (V ) of limits of strongly odeco tensors is an irreducible
component of the variety X(V ) defined by Robeva’s quadrics.

Proof. It suffices to prove that for a suitable tensor T0 ∈ Y (V ), the tangent
space to X(V ) at T0 has dimension equal to dim(Y (V )) =

(
n+1
2

)
. We take

V = Cn and T0 = E =
∑n

i=1 e
⊗3
i .

Let us first write Robeva’s equations in coordinates: writing

T =
∑
i,j,k

Tijkei ⊗ ej ⊗ ek ,

equation (1) becomes ∑
r

TjkrTiℓr =
∑
r

TijrTkℓr . (3)

The equations defining the tangent space at E are given by substituting
T = E + εX in (3) and taking the coefficients of ε:

δjkXijℓ + δiℓXijk = δijXikℓ + δkℓXijk, (4)

where δij denotes the Kronecker delta.

By taking i = ℓ ̸= j ̸= k ̸= i in (4) we find that Xijk = 0 for i, j, k
pairwise distinct, and by taking i = ℓ ̸= j = k we find that Xiij = −Xijj

for all i ̸= j. But this implies that our tangent space has dimension at most
n+

(
n
2

)
=

(
n+1
2

)
.

Remark 4.2. In a similar manner, one finds that all strongly odeco tensors of
tensor rank n are smooth points of Y (V ).
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5. Many weakly odeco tensors

5.1. Motivation

In this section, we give our first negative answer to Question 2.9 by showing
that, for n sufficiently large, there are many more weakly odeco tensors than
strongly odeco tensors.

5.2. Weakly odeco tensors from isotropic spaces

Recall that V is a complex vector space of dimension n equipped with a sym-
metric bilinear form (.|.).

Proposition 5.1. The variety X(V ) contains the union over all (maximal)
isotropic subspaces U ⊆ V of S3U . This union is an affine variety Z(V ) ⊆ S3V
of dimension (

⌊n/2⌋+ 2

3

)
+

(
⌈n/2⌉
2

)
.

Proof. For the first statement, note that if u1, . . . , uk are elements of an iso-
tropic subspace U of V , then

∑
i u

⊗3
i is weakly odeco, hence in X(V ) by Propo-

sition 2.6.
There is no harm in restricting our attention to maximal isotropic subspaces,

i.e., those of dimension ⌊n/2⌋. Hence Z(V ) is the projection of the incidence
variety

{(U, T ) ∈ Griso(⌊n/2⌋, V )× S3V | T ∈ S3U}

onto the second factor. Since the isotropic Grassmannian is a projective variety,
Z(V ) is closed. Furthermore, for U ⊆ V isotropic of dimension ⌊n/2⌋ and
T ∈ S3U concise, i.e. such that the associated linear map S2U∗ → U is
surjective, the fibre over T is the single point (U, T ), hence dim(Z(V )) equals
the dimension of the isotropic Grassmannian, which is the second term above,
plus the dimension of S3U for a fixed isotropic U ⊆ V of dimension ⌊n/2⌋,
which is the first term.

Remark 5.2. Clearly, dim(Z(V )) grows as a cubic (quasi-)polynomial in n,
whereas dim(Y (V )) is a quadratic polynomial in n. Since X(V ) ⊇ Z(V ), this
shows that X(V ) ⊋ Y (V ) for all V of sufficiently high dimension. In fact,
dim(Z(V )) > dim(X(V )) for n ≥ 16. However, we will show with an explicit
example that X(V ) ⊋ Y (V ) holds already for n ≥ 12 (and possibly already for
smaller n).

Remark 5.3. The variety Z(V ) consists precisely of the tensors T ∈ S3V
whose algebra is 2-step nilpotent:

T ∈ Z(V ) ⇐⇒ µT (x, µT (y, z)) = 0 ∀x, y, z ∈ V.
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One implication is clear: if T ∈ Z(V ), we can write T =
∑

i u
⊗3
i with the

ui isotropic and pairwise orthogonal, and the computation from the proof of
Proposition 2.6 gives that µT (x, µT (y, z)) = 0. For the other direction we can
work in coordinates: write V = Cn, then the condition

µT (ei, µT (ej , ek)) = 0 ∀i, j, k ∈ {1, . . . , n}

is equivalent to

n∑
r=1

TijrTkℓr = 0 ∀i, j, k, ℓ ∈ {1, . . . , n}.

But this means that that the space U spanned by the columns of T is isotropic.

6. Unitalisation and de-unitalisation

6.1. Motivation

It is well known that if an associative algebra A, say over C, has no multi-
plicative unit element, then one can turn A into a unital associative algebra by
setting A′ := C1⊕A and extending the multiplication on A to A′ via 1a′ := a′

for all a′ ∈ A′. In this section, we describe a process that also extends an
invariant bilinear form.

6.2. Unitalising algebras with invariant forms

Let A be an associative algebra over C equipped with a bilinear form (.|.) such
that (ab|c) = (a|bc) for all a, b, c ∈ A. We do not require A to be commutative
or (.|.) to be symmetric.

We construct a new algebra

Ã := C1⊕A⊕ Cy

with multiplication determined by

1 ∗ x := x, x ∗ 1 := x for all x ∈ Ã,

a ∗ a′ := aa′ + (a|a′)y for all a, a′ ∈ A,

a ∗ y := 0, y ∗ a = 0 for all a ∈ A, and

y ∗ y := 0.

We also extend the form (.|.) to Ã by requiring that

(1|1) = (a|1) = (1|a) = (a|y) = (y|a) = (y|y) = 0 for all a ∈ A

and (1|y) = (y|1) = 1.
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Remark 6.1. Let us consider the special case where the multiplication on A
is identically zero. If we let a1, . . . , an be an orthonormal basis of A, then the
tensor associated to Ã is equal to

n∑
i=1

(1⊗ ai ⊗ ai + ai ⊗ 1⊗ ai + ai ⊗ ai ⊗ 1) + 1⊗ 1⊗ y+ 1⊗ y⊗ 1 + y⊗ 1⊗ 1.

This tensor is known as the Coppersmith-Winograd tensor [3]; it has played
a central role in the literature on the complexity of matrix multiplication. We
refer the reader to [9] (in particular Chapter 3.4.9) for an overview. In the
notation of the latter reference, the above tensor is denoted Tn,CW .

Proposition 6.2. The algebra Ã is associative, and the form (.|.) on Ã is
invariant. Furthermore, if (.|.) is nondegenerate or symmetric on A, then its

extension to Ã has the same property; and if A is commutative and (.|.) is

symmetric, then Ã is commutative.

Proof. It suffices to prove the identity a ∗ (b ∗ c) = (a ∗ b) ∗ c for a, b, c ranging
over a spanning set of Ã. If at least one of a, b, c is 1, then the identity is
immediate. If none of them is 1 and at least one of them is y, then both sides
are zero. So the interesting case is the case where a, b, c are all in A. Then we
have

a ∗ (b ∗ c) = a ∗ (bc+ (b|c)y) = a(bc) + (a|bc)y + 0 = a(bc) + (a|bc)y

and

(a ∗ b) ∗ c = (ab+ (a|b)y) ∗ c = (ab)c+ (ab|c)y + 0 = (ab)c+ (ab|c)y.

These two expressions are equal by associativity of A and invariance of (.|.)
on A.

Now we turn to the identity (a ∗ b|c) = (a|b ∗ c) for a, b, c ranging over the
same spanning set. If b = 1, then the identity is immediate. If b ∈ A⊕Cy and
a = 1, then the identity reads

(b|c) = (1|b ∗ c).

Now the right-hand side is the coefficient of y in b ∗ c. Write b = b′ + βy and
c = γ1 + c′ + δy with β, γ, δ ∈ C and b′, c′ ∈ A. Then the coefficient of y in
b ∗ c equals βγ + (b′|c′), and this also equals (b|c). Since a, c play symmetric
roles, the identity also holds when c = 1. So we are left with the case where
a, b, c ∈ A⊕ Cy. But then, since y is perpendicular to A, we have

(a ∗ b|c) = (ab|c) = (a|bc) = (a|b ∗ c),
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as desired.
That the extension of (.|.) inherits the properties of symmetry and non-

degeneracy is immediate, and so is the statement about the commutativity
of Ã.

Remark 6.3. The spaceM := A⊕Cy is a maximal ideal in Ã, and in particular
a non-unital subalgebra of Ã. This subalgebra has an ideal Cy, and the natural
map A → M/Cy is an isomorphism of algebras. We will use this construction
below to de-unitalise a local Gorenstein algebra in a canonical manner.

Lemma 6.4. Suppose that A is commutative and that (.|.) is symmetric. Then

A is nilpotent if and only if Ã is (unital and) local.

Proof. If A is nilpotent, then M consists of elements that are nilpotent in Ã,
and hence any element not in M is invertible. Conversely, if Ã is local, then M
is the unique maximal ideal and its elements are nilpotent. This implies that
A ∼=M/Cy is nilpotent.

We now show that each local, unital algebra with an invariant bilinear form
arises as Ã for some A equipped with a bilinear form.

Proposition 6.5. Let B be a commutative, local, unital, finite-dimensional
algebra with dim(B) ≥ 2, equipped with a nondegenerate invariant symmetric

bilinear form. Then B ∼= Ã for some nilpotent algebra A equipped with a
nondegenerate invariant symmetric bilinear form.

Proof. Let M be the maximal ideal of B, and let d be maximal such that Md

is nonzero. Then d ≥ 1 since dim(B) ≥ 2.
We claim that Md is one-dimensional. Indeed, if it were at least two-

dimensional, then 1⊥ ∩Md would contain a nonzero element x. This element
would satisfy (x|1) = 0 and (x|z) = (xz|1) = (0|1) = 0 for all z ∈ M , contra-
dicting the non-degeneracy of (.|.).

Choose a spanning vector z ∈ Md. Then (1|z) ̸= 0, and hence we may
replace z by a (unique) scalar multiple with (1|z) = 1. Furthermore, z⊥ =M .
We define A as the algebraM/Cz equipped with the induced symmetric bilinear

form. We claim that Ã ∼= B as algebras with bilinear forms. The isomorphism
ϕ : Ã → B sends 1 ∈ Ã to 1 ∈ B, y ∈ Ã to z ∈ B and m ∈ A to the unique
element m′ ∈ m + Cz ⊆ B that satisfies (1|m′) = 0 in B. All checks are then
straightforward.

Now let V be an n-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form (.|.). Define Ṽ := C1⊕ V ⊕ Cy, equipped
with the symmetric bilinear form as above.

Let T ∈ X(V ) and let V = V1 ⊕ · · · ⊕ Vk ⊕ N be the decomposition of

Proposition 3.1. Let ei be the unit element in Vi. Now Ṽ = C1 ⊕ V ⊕ Cy
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is also a commutative, associative algebra with invariant symmetric bilinear
form (.|.), hence it corresponds to an element T̃ ∈ X(Ṽ ), which in turn gives a

decomposition of Ṽ as in Proposition 3.1. The following proposition expresses
the latter decomposition into the former.

Proposition 6.6. We have an orthogonal decomposition

Ṽ = V ′
1 ⊕ · · · ⊕ V ′

k ⊕N ′ ⊕ 0

into ideals, where V ′
i ⊆ Ṽ is isomorphic to Vi via the isomorphism

ϕi : Vi → V ′
i , ϕi(v) := v + (v|ei)y

and where N ′ is a local unital algebra spanned by N , y, and the unit element
ek+1 := 1− e1 − · · · − ek.

Proof. First, ϕi is clearly injective. It is also an algebra homomorphism because

ϕi(vw) = vw + (vw|ei)y = vw + (v|wei)y
= vw + (v|w)y = (v + (v|ei)y) ∗ (w + (w|ei)y) = ϕi(v) ∗ ϕi(w).

Now note that if v, w belong to Vi ̸= Vj , respectively, then

ϕi(v) ∗ ϕj(w) = (v + (v|ei)y) ∗ (w + (w|ej)y) = vw + (v|w)y = 0.

This shows that V ′
i ∗V ′

j = {0}. Similarly, we have N ′ ∗Vi = {0} for all i – e.g.,
for v ∈ Vi we have

ek+1∗ϕi(v) = (1−e1−· · ·−ek)∗(v+(v|ei)y) = v+(v|ei)y−(eiv+(ei|v)y) = 0.

Finally, ek+1 is clearly a unit element in N ′. Indeed, we even have an isomor-

phism Ñ → N ′ of unital algebras with invariant bilinear forms that sends 1 to
1− e1 − · · · − ek and y to y.

Proposition 6.7. The map T 7→ T̃ is a morphism from X(V ) into X(Ṽ ) that

maps Y (V ) into Y (Ṽ ).

We call this morphism the unitalisation morphism.

Proof. The first statement is immediate: the algebra structure on Ṽ depends in
a polynomial manner on the algebra structure on V . For the last statement, we
note that if T is strongly odeco of tensor rank n, then (V, µT ) is an orthogonal

direct sum of n one-dimensional unital ideals. By Proposition 6.6, (Ṽ , µT̃ )
is then an orthogonal direct sum of n one-dimensional unital ideals and one
two-dimensional ideal which, as an algebra with symmetric bilinear form, is
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isomorphic to C[y]/(y2) with the blinear form determined by (1|y) = 1. The
latter corresponds to the tensor

S := y ⊗ y ⊗ 1 + y ⊗ 1⊗ y + 1⊗ y ⊗ y

from Example 2.4, hence it is a limit of strongly odeco tensors. Consequently,
by Proposition 3.1, T̃ is in Y (Ṽ ). Since the map T 7→ T̃ maps the dense subset

of Y (V ) of strongly odeco tensors of rank n into Y (Ṽ ), it maps Y (V ) into

Y (Ṽ ).

Remark 6.8. Unfortunately, we see no reason why, if T ∈ X(V ) satisfies

T̃ ∈ Y (Ṽ ), T should be in Y (V ). Indeed, the assumption says that T̃ is a limit
of sums with n + 2 pairwise orthogonal terms, and we do not see a natural
construction that shows that T is a limit of sums with n pairwise orthogonal
terms; we do not have a counterexample, though.

7. Nilpotent counterexamples

7.1. Motivation

When one studies the Hilbert scheme of n points in a fixed space for increasing
n, and n is taken minimal such that the scheme has more than one irreducible
component, then all components other than the main component parameterise
subschemes supported in a single point. We will establish a similar result here.

7.2. First counterexamples are nilpotent

Theorem 7.1. Let n = dim(V ) be minimal such that X(V ) ̸= Y (V ). Then for
all T ∈ X(V ) \ Y (V ) the algebra (V, µT ) is nilpotent.

Proof. Let T ∈ X(V ) \ Y (V ). Decompose V = V1 ⊕ · · · ⊕ Vk ⊕ N as in
Proposition 3.1, and decompose T = T1 + · · · + Tk + TN accordingly. By
Proposition 3.1, either some Ti does not lie in Y (Vi), or TN does not lie in
Y (N). By minimality of n, we find that either k = 0 and we are done, or else
k = 1 and N = {0}. In the latter case, by Proposition 6.5, the algebra (V, µT )

equals Ã for some nilpotent algebra A of dimension dim(V )−2 equipped with a

nondegenerate symmetric bilinear form. This means that T = S̃ for some tensor
S ∈ X(A). By minimality of n, S lies in Y (A). But then, by Proposition 6.7,

T = S̃ lies in Y (V ), a contradiction. Hence (V, µT ) is nilpotent, as claimed.

8. Proof of Theorem 2.10

Proof of Theorem 2.10. Let V be a finite-dimensional complex vector space of
dimension n ≥ 12 and let (.|.) be a nondegenerate symmetric bilinear form
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on V . We first show that X(V ) is not equal to Y (V ) when n = 12.

In [5] an explicit 14-dimensional local Gorenstein algebra is constructed
which is not smoothable. Call this algebra B, and let (.|.) be a nondegenerate
invariant symmetric bilinear form on B. LetM be the maximal ideal of B, and
letMd be its minimal ideal. Then A :=M/Md is a nilpotent algebra and since
Md is the radical of the restriction of (.|.) to M , (.|.) induces a nondegenerate
bilinear form on A. Note that dim(A) = 12, so we may assume that V (with
its bilinear form) is the underlying vector space of A (with its bilinear form).
Let T ∈ X(V ) be the tensor corresponding to the algebra A. We claim that T
does not lie in Y (V ). Indeed, if it does, then T = limi→∞ Ti for a convergent
sequence of strongly odeco tensors Ti. Applying the unitalisation morphism,
we obtain T̃ = limi→∞ T̃i. Now T̃ is the structure tensor of the algebra Ã,
which by (the proof of) Proposition 6.5 is isomorphic to B.

However, by (the proof of) Proposition 6.7, each T̃i is the direct product
of 12 one-dimensional ideals and one copy of C[x]/(x2). In particular, each

T̃i corresponds to a smoothable algebra, and B is smoothable, as well. This
contradicts the choice of B, finishing the proof in the case n = 12. If n > 12,
one can embed the algebra A =M/Md from above into the vector space V by
A′ := A⊕ Cn−12 and then proceed as in the proof above.

9. Proof of Theorem 2.13

We set V :=Cn, equipped with the standard symmetric bilinear form β0(u, v) :=∑
i uivi. Recall that X0(V ) is the variety of tensors corresponding to unital

associative algebras on V for which β0 is invariant. We want to show that
X0(V ) has the same number of irreducible components as HGor.

9.1. Locating the unit element

Lemma 9.1. The map u : X0(V ) → V that assigns to a tensor T the unit
element of (V, µT ) is a morphism of quasi-affine varieties.

Proof. For given T , the unit element u = u(T ) is the solution to the system
of linear equations µT (u, ei) = ei for i = 1, . . . , n. For each T ∈ X0(V ),
this system has a unique solution. This means that we can cover X0(V ) with
open affine subsets in which some subdeterminant of the coefficient matrix
has nonzero determinant, and on such an open subset the map u is morphism
with a formula in which that determinant appears in the denominator. These
morphisms glue to a global morphism u.

369



(18 of 22) B. BIAGGI ET AL.

9.2. A map from X0(V ) to the Hilbert scheme

We write R := C[x1, . . . , xn], denote by H the Hilbert scheme of n points in An,
and by HGor the open subscheme of H parameterising Gorenstein schemes. In
fact, since we care only about irreducible components, we may and will replace
both of these by the corresponding reduced subvarieties, and we will only speak
of C-valued points of these varieties. Points in H will be regarded as ideals in
R of codimension n. To define a morphism from an affine variety B over C to
H, it suffices to indicate a subscheme of B ×An (product over C), flat over B,
such that the fibre over each b ∈ B is defined by such a codimension-n ideal.

Take B = X0(V ). A tensor T ∈ X0(V ) gives rise to the ideal IT := ker(ϕT ),
where ϕT : C[x1, . . . , xn] → (V, µT ) is the homomorphism of associative alge-
bras that maps xi to ei and 1 to the unit element u(T ) from Lemma 9.1. The
ideals IT have vector space codimension n in R and together define a sub-
scheme of X0(V )×An flat over X0(V ). Hence we have described a morphism
Φ : X0(V ) → H. Since any algebra corresponding to a tensor in X0(V ) has a
nondegenerate invariant bilinear form, Φ(T ) ∼= (V, µT ) is Gorenstein for each
T ∈ X0(V ), so Φ is a morphism X0(V ) → HGor. We want to use Φ to compare
irreducible components of HGor and X0(V ). However, the map Φ is not an
isomorphism, so some care is needed for this. We first describe the image of Φ;
the following is immediate.

Lemma 9.2. The image of Φ consists of all codimension-n ideals I ∈ HGor such
that x1, . . . , xn ∈ R map to a basis of R/I and moreover the bilinear form on
R/I for which this basis is orthonormal is invariant for the multiplication in
R/I.

The following lemma shows that, as far as irreducible components are con-
cerned, it is no real restriction to consider ideals I modulo which x1, . . . , xn is
a basis.

Lemma 9.3. The locus HGor
0 in HGor of ideals I in R for which x1, . . . , xn maps

to a vector space basis of R/I is open and dense in HGor
0 . Consequently, HGor

0

has the same number of irreducible components as HGor.

This is well-known to the experts – see [10, Remark 4.5] – but we include a
quick proof.

Proof. The condition on I can be expressed by the non-vanishing of certain
determinants; this shows that HGor

0 is open. For density, suppose that some
component C of HGor does not meet HGor

0 , and let I0 be a point in C such
that the image of ⟨x1, . . . , xn⟩C in R/I0 has maximal dimension, say m < n.
After a linear change of coordinates (which preserves all components of HGor

and hence in particular C), we may assume that xm+1, . . . , xn are in I0, and
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there exists a monomial r in x1, . . . , xm of degree ̸= 1 such that x1, . . . , xm, r
are linearly independent in R/I0.

Now, for a ∈ C, consider the nonlinear automorphism ψa : R → R that
maps all xi, i ̸= n to themselves but xn to xn + a · r. The map (a, I) 7→ ψ−1

a (I)
defines an action of the additive group (C,+) on HGor, and since the additive
group is irreducible, this action preserves all components of HGor. Since, for
a ̸= 0, x1, . . . , xm, xn+ar are linearly independent modulo I0, their pre-images
x1, . . . , xm, xn under ψa are linearly independent modulo Ia := ψ−1

a (I0). Since
Ia is in C, this contradicts the maximality assumption in the choice of I0.

The last statement is now immediate.

9.3. Varieties Z2 → Z1 → HGor
0 with the same number of

components

In what follows, we will identify V with the space in R spanned by the variables
x1, . . . , xn, via the identification ei 7→ xi. Each point in HGor

0 defines a unital,
commutative, associative algebra structure on V . The structure constant tensor
in (S2V ∗)⊗V of this algebra does not necessarily lie in X0(V ), though, because
the standard form β0 may not be invariant for it.

Lemma 9.4. Let Z1 be the subvariety

{(I, [β]) ∈ HGor
0 × P(S2V ∗) | β is invariant for R/I} ⊆ HGor

0 × P(S2V ∗).

Then the projection Z1 → HGor
0 is surjective and induces a bijection on irre-

ducible components.

Proof. Indeed, every (possibly degenerate) invariant bilinear form on R/I is of
the form β(r, s) = ℓ(rs) for a unique linear form ℓ ∈ (R/I)∗, namely, the form
ℓ(r) := β(1, r). Moreover, since for I ∈ HGor

0 the space V is a vector space
complement of I in R, the natural map (R/I)∗ → V ∗ is a linear bijection. We
conclude that, in fact, Z1 is isomorphic to HGor

0 ×P(V ∗) via the map that sends
(I, [β]) to (I, [v 7→ β(1, v)]). So each component of Z1 is just a component of
HGor

0 times the projective space P(V ∗).

Lemma 9.5. Let Z2 be the subvariety

{((I, [β]), g) ∈ Z1 ×GL(V ) | g[β] = [β0]} ⊆ Z1 ×GL(V ).

Then the projection Z2 → Z1 has dense image and induces a bijection between
irreducible components.

Proof. For the first statement, if I ∈ HGor
0 , then by definition there are non-

degenerate invariant bilinear forms on R/I. These correspond to a dense open
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subset of P(V ∗) via the correspondence in the proof above. This shows that
Z2 → Z1 has dense image. This image, U , is open in Z1.

Next we claim that, in the analytic topology, Z2 → U is a fibre bundle with
fibre the group C∗ · O(β0) ⊆ GL(V ); here O(β0) is the orthogonal group of
the form β0. To see this, it consider a point (I, [β1]) ∈ U . By definition of U ,
there exists a g1 ∈ GL(V ) such that g1[β1] = [β0]. Furthermore, there exists a
holomorphic map γ defined in an open neighbourhood Ω in PS2V ∗ of [β0] to
GL(V ) such that γ([β0]) = idV and γ([β])[β] = [β0] for all [β] ∈ Ω. Essentially,
γ([β]) is found by the Gram-Schmidt algorithm – note that in this algorithm
one has to divide by square roots of complex numbers, which, since [β] is close
to [β0], are close to 1; this can be done holomorphically.

Now the map

(U ∩ (HGor
0 × g−1

1 Ω))× (C∗ ·O(β0)) → Z2,

((I, [β]), g) 7→ ((I, [β]), g · γ(g1[β]) · g1)

trivialises the map Z2 → Z1 over an open neighbourhood of (I, [β1]); here we
use that C∗ ·O(β0) is the stabiliser of [β0] in GL(V ).

Now since Z2 → U is a fibre bundle with irreducible fibre C∗ ·O(V ) – this
is where it is important that we work with the projective space PS2V ∗ rather
than S2V ∗; the orthogonal group O(V ) itself has two components! – that map
induces a bijection between irreducible components.

9.4. Completing the proof

Proof of Theorem 2.13. Recall that X0(V ) parameterises the unital associa-
tive, commutative algebra structures on V such that β0 is invariant for the
multiplication. Now consider the map

GL(V )×X0(V ) → HGor
0 , (g, T ) 7→ g · Φ(T )

By Lemma 9.2, this map is surjective. Since GL(V ) is irreducible, the left-
hand side has as many irreducible components as X0(V ). This shows that
X0(V ) has at least as many irreducible components as HGor

0 , hence as HGor

by Lemma 9.3.
For the converse, by Lemmas 9.4 and 9.5, HGor

0 has as many irreducible
components as Z2. Now we claim that the morphism

Z2 → (S2V ∗)⊗ V

((I, [β]), g) 7→ the structure constant tensor of R/(g · I)

has as image the variety X0(V ). Indeed, if ((I, [β]), g) lies in Z2, then β
is an invariant symmetric bilinear form for the multiplication on R/I, and
gβ ∈ C∗ · β0 is an invariant symmetric bilinear form for the multiplication on
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R/(g · I); this therefore corresponds to an element in X0(V ). We conclude
that the number of components of X0(V ) is also at most that of HGor. This
concludes the proof.

9.5. Cubic dimension growth for the Gorenstein locus

We conclude this paper with an observation on the dimension of dim(HGor).

Proposition 9.6. The dimension of HGor, and hence that of the Hilbert scheme
H of n points in An, is lower-bounded by a cubic polynomial in n for n→ ∞.

Note that this was already known for H by [10, Theorem 9.2]. The algebras
constructed there are of the form A := C[x1, . . . , xd]/(V +m3) where m is the
maximal ideal (x1, . . . , xd) and where V ⊆ m2/m3 has the correct codimension
r = n − 1 − d for this quotient to have dimension n. Since any 1-dimensional
subspace of m2/(V + m3) is a minimal ideal in A, A is not Gorenstein unless
m2/(V +m3) is one-dimensional, in which case r = 1. However, to obtain cubic
behaviour in n, one needs r to grow linearly with d. So the cubic-dimensional
locus in [10] is a non-Gorenstein part of the Hilbert scheme.

Proof. The unitalisation morphism sends X(Cn−2) into X0(Cn) by Proposi-
tion 6.7, and it does so injectively. This means that the latter variety has
dimension at least that of Z(Cn−2), which is lower-bounded by a cubic poly-
nomial by Proposition 5.1. Furthermore, the morphism Φ : X0(Cn) → HGor is
also injective.

Remark 9.7. The coefficient of n3 in dim(Z(Cn)) equals 1
48 , which is consider-

ably smaller than the coefficient 2
27 in [10] for the lower bound on the dimension

of the Hilbert scheme of n points in An. We do not know whether the 1
48 can

be improved.
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Abstract. Let (X,L) be a complex polarized n-fold with the structure
of a geometric quadric fibration over a smooth projective surface. The
Hilbert curve of (X,L) is a complex affine plane curve of degree n,
containing n − 3 evenly spaced parallel lines. This paper is devoted
to a detailed study of the cubic representing the residual component.
Reducibility, existence of triple points, and properties of the irreducible
components are analyzed in connection with the structure of (X,L).
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1. Introduction

The Hilbert curve of a polarized manifold (X,L) with dim(X) = n ≥ 2 is the
complex affine plane curve Γ = Γ(X,L), of degree n, defined by the Hilbert-
like polynomial χ(xKX + yL), where KX is the canonical bundle of X and x
and y are regarded as complex variables. This notion was introduced in [3]
and extensively studied in [10, 11, 13, 6] for varieties which are special from
the adjunction theoretic point of view. The natural expectation is that sev-
eral properties of the polarized manifold that one considers are encoded by its
Hilbert curve, as suggested by [3, Theorem 6.1]. In particular, if X is endowed
with a fibration φ : X → Y over a normal variety Y of dimension m < n − 1
and KX + (n − m)L = φ∗A, for some ample Q-line bundle A on Y , then Γ
contains n − m − 1 parallel lines of prescribed equations as components, and
therefore it becomes important to understand the properties of the residual
curve of the union of such lines in Γ.

In this paper, relying on our previous study of the Hilbert curve of three-
folds which are conic fibrations over a smooth surface [6], we investigate n-
dimensional pairs (X,L) with n ≥ 4, where X is a quadric fibration in the
classical sense over a smooth surface and L makes it an adjunction theoretic
quadric fibration at the same time. We refer to pairs (X,L) of this type as
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geometric quadric fibrations. In this setting, Γ = ℓ1 + · · · + ℓn−3 + C, where
the ℓi’s are certain n − 3 parallel lines and C is the residual cubic; moreover,
both Γ and C are Serre-invariant, i.e. invariant under the involution induced
on the affine plane by Serre duality on X.

In order to make the equation of C explicit in terms of the numerical in-
variants associated with (X,L) (Proposition 3.1) we describe X as a divisor
of relative degree 2 inside the projective bundle defined by E := φ∗L, where
φ : X → S is the fibration morphism. The whole Section 3 is devoted to
computations involving Chern classes which lead to the equation of C. Various
consequences of these computations are discussed in Section 4 and Section 5. A
first crucial implication is that the projective closure of our cubic C intersects
the line at infinity transversely at a special point, say P∞, whose homogeneous
coordinates depend on n (Proposition 4.2). The cubic C is irreducible in gen-
eral. The above property allows us to prove that C contains a special line
of the affine plane whose direction is given by P∞ if and only if the quadric
fibration has no singular fibers, and also to characterize the existence of a
triple point for C in terms of the structure and the numerical invariants of X
(Theorem 4.5). This provides a complete generalization of [6, Theorem 5.2].
Moreover, this in turn leads to investigate other significant circumstances, for
instance, under what conditions: a) Γ is nonreduced (Proposition 4.7), b) C is
reducible (Corollary 5.3), c) C contains a general line, at least in the case when
(X,L) is a 4-dimensional geometric quadric fibration over P2 (Proposition 5.4).

Next we consider a special class of geometric quadric fibrations that we call
“deriving from cones”, in view of their construction (Section 6). They gener-
alize the geometric conic fibrations studied in [6, Section 6]. When the base
surface S of such a pair (X,L) is a minimal surface of Kodaira dimension zero,
we prove that the residual cubic of the Hilbert curve is always irreducible unless
n ≥ 4, S is abelian or bielliptic and the Chern classes of the vector bundle E
satisfy a precise numerical condition depending on n (Theorem 6.2). In partic-
ular, this result amends the sentence given for n = 3 in [6, Proposition 6.3 (ii)]
and at the same time provides a generalization to higher dimensions.

Clearly, Γ = C for n = 3, and several results established here for C specialize
to those proven for Γ in [6]. As it is natural to expect, passing from threefolds
to varieties of higher dimensions, new situations arise, for instance this happens
when we investigate the nonreducedness of Γ (Proposition 4.7). This fact makes
case n = 4 particularly relevant in our study. For this reason, in Section 7 we
discuss several examples in the setting of fourfolds, taking also advantage of
the fact that the Riemann–Roch formula, which is crucial to determine the
equation of Γ, is still handleable for n = 4. In particular, we discuss three
types of geometric quadric fibrations (X,L) whose underlying varieties X arise
in the classification of Fano fourfolds of index 2 with Picard number ≥ 2 [14].
For all of them the residual cubic C is reducible, containing a line that depends
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on the polarization L.

In Section 8, in the framework of plane cubic curves we provide a unifying
perspective for residual cubics of our Γ’s and for Serre-invariant cubics, which
constitute a dense Zariski open subset of P5. In particular we describe the
varieties whose points represent the cubics satisfying the various properties
discussed in the previous sections, like reducibility, existence of triple points,
etc. . This offers a global view of the families in which the residual cubic of
the Hilbert curve of a geometric quadric fibration (X,L) can fit into. It is
worth noting that while the families we describe are “continua”, only points
with rational coordinates on them can represent a residual cubic, because, as
for Γ, its equation has rational coefficients.

2. The leading idea

Let (X,L) be a quadric fibration with dim(X) = n over a smooth projective
surface S, via a morphism φ : X → S. In view of [6], we will assume that
n ≥ 4. We say that (X,L) is a geometric quadric fibration, to mean that
the following two facts hold. 1) The morphism φ is equidimensional with
connected fibers, and all of them are irreducible quadric hypersurfaces of Pn−1

with L inducing the hyperplane bundle. In particular, φ is flat, and for the
general fiber F of φ we have (F,LF ) =

(
Qn−2,OQ(1)

)
, where Qn−2 stands for

a smooth quadric hypersurface in Pn−1. 2) KX + (n − 2)L = φ∗H for some
ample line bundle H on S. Condition 1) means that φ : X → S is a fibré en
quadriques in the sense of [1] and, to emphasize the role of the polarization L
we can say that (X,L) is a classical quadric fibration, while condition 2) says
that (X,L) is also an adjunction theoretic quadric fibration over S (in the sense
of [4, p. 81]). Thanks to Grauert’s theorem, conditions 1) and 2) are enough to
guarantee that E := φ∗L is a locally free sheaf, i.e. a vector bundle, of rank n
on S, [9, Corollary 19.2]. If we consider its projectivization P := P(E) and we
denote by ξ the tautological line bundle on it, then X is fiberwise embedded
in the Pn−1-bundle P as a divisor of relative degree 2; more precisely, letting
π : P → S denote the bundle projection of P , we have that X ∈ |2ξ+ π∗B| for
some line bundle B on S, φ = π|X , and L = ξX .

The discriminant curve of (X,L) is the possible empty curve D ⊂ S param-
eterizing the singular fibers of π. By [7, (3.3)] we know that D ∈ |2c1(E) +nB|
(for n = 3 see also [6, (5)]).

Let p(x, y) = 0 be the equation of the Hilbert curve of (X,L). Recall
that p(x, y) = χ(xKX + yL), the polynomial expressing the Euler–Poincaré
characteristic of xKX + yL, when x and y are regarded as complex variables.
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According to [3, Theorem 6.1], we have that

p(x, y) =

n−3∏
i=1

(
(n− 2)x− y − i

)
R(x, y), (1)

where R(x, y) is a polynomial of degree 3. From the qualitative point of view,
this means that the Hilbert curve Γ of (X,L) can be written as

Γ = ℓ1 + · · ·+ ℓn−3 + C, (2)

i.e., it consists of n− 3 evenly spaced parallel lines with slope (n− 2) (the nef
value of (X,L)) plus a cubic C, which we call the residual cubic.

We call Serre involution the map s : A2 → A2 sending (x, y) to (1− x,−y),
induced by Serre duality. Note that Γ is Serre-invariant, i.e., invariant under
s. Moreover, s exchanges the line ℓi of equation (n − 2)x − y − i = 0 with
ℓn−2−i (i = 1, . . . , n−3), hence the set consisting of the n−3 lines ℓ1, . . . , ℓn−3

is globally Serre-invariant. It thus follows that the cubic C itself is also Serre-
invariant. We use coordinates (u, v) in place of (x = 1

2 + u, y = v) in order
to make this invariance more evident. Since the degree of C is odd, then
R( 12 + u, v) is the sum of two homogeneous polynomials in u and v of degrees
3 and 1 respectively [3, Lemma 7.1]. Thus we can write

R

(
1

2
+ u, v

)
= R3(u, v) +R1(u, v). (3)

where

R3(u, v) = αu3 + βu2v + γuv2 + δv3 (4)

with (α, β, γ, δ) ̸= (0, 0, 0, 0), because degC = 3, and

R1(u, v) = σu+ τv. (5)

Note that the property of having an equation of this type characterizes any
Serre-invariant plane cubic, which is not necessarily the residual cubic of Γ.

Our aim is to obtain the explicit expression of R
(
1
2 + u, v

)
in our specific

case, which in particular describes our cubic C. To do that, first recall that for
any divisor D on X,

χ(D) =
1

n!
Dn + . . . ,

where the dots stand for lower degree terms. So, by using homogeneous coordi-
nates (x : y : z), where z is the homogenizing coordinate, and letting p0(x, y, z)
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denote the homogeneous polynomial associated to p, we have:

p0(x, 1, 0) =
1

n!
(xKX + L)n (6)

=
1

n!

[
dnx

n +

(
n

1

)
dn−1x

n−1 +

(
n

2

)
dn−2x

n−2 + . . .

· · ·+
(

n

n− 3

)
d3x

3 +

(
n

n− 2

)
d2x

2 +

(
n

n− 1

)
d1x+ d

]
,

where di := Ki
X · Ln−i for i = 0, 1, . . . , n (d0 = d being the degree of (X,L)).

On the other hand, from (1) and (3) we see that p0(x, y, 0) = R3(x, y)
(
(n −

2)x− y
)n−3

. Hence (4) gives

p0(x, 1, 0) = (αx3 + βx2 + γx+ δ)
(
(n− 2)x− 1

)n−3
. (7)

By comparing (6) with (7), we can get the explicit expressions of α, β, γ and δ in
terms of the natural invariants of (X,L). Next, recalling that χ(OX) = χ(OS)
and Serre duality, we have

p(1, 0) = χ(KX) = (−1)nχ(OX) = (−1)nχ(OS). (8)

On the other hand, from (1) and (3) we get

p(1, 0) =

n−3∏
i=1

(n− 2− i)
(α
8
+

σ

2

)
=

(n− 3)!

8
(α+ 4σ). (9)

So, taking into account the previous discussion, we obtain the expression of σ.
It remains to determine τ . To do it, recall that KX + (n − 2)L = φ∗H. We
have, for every i ≥ 0,

Hi
(
KX + (n− 2)L

)
= Hi(φ∗H) ∼= Hi

(
φ∗(φ

∗H)
)
= Hi(H). (10)

The last equality will follow once we prove that Riφ∗(φ
∗H)) = 0 for i > 0, see

[9, p. 252, Ex. 8.1].
Because by projection formula Riφ∗(φ

∗H) ∼= Riφ∗OX ⊗H, it is enough to
show that Riφ∗OX = 0 for i > 0. As X ⊂ P and X ∈ |2ξ + π∗B|, we have the
following exact sequence

0 → OP (−2ξ − π∗B) → OP → OX → 0, (11)

and applying to it the direct image functor and using [9, p. 281, Ex. 11.8] we
obtain the following long exact sequence
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0 → R0π∗OP (−2ξ − π∗B) → R0π∗OP → R0φ∗OX → (12)

R1π∗OP (−2ξ − π∗B) → · · · · · · · · · → Rn−2φ∗OX →
Rn−1π∗OP (−2ξ − π∗B) → Rn−1π∗OP → Rn−1φ∗OX = 0,

the last equality coming from the fact that the fibers of φ have dimension
n − 2. By [9, p. 253, Ex. 8.4 (a)] we thus conclude that φ∗OX = R0φ∗OX =
R0π∗OP = OS and Riφ∗OX = Riπ∗OP = 0 for i > 0. Therefore,

p(1, n− 2) = χ(KX + (n− 2)L) = χ(φ∗H) = χ(H), (13)

in view of (10). Now, recalling the canonical bundle formula for P-bundles, by
adjunction we have

KX = (KP +X)X =
(
− nξ + π∗(KS + det E) + 2ξ + π∗B

)
X

(14)

=
(
− (n− 2)ξ + π∗(KS + det E + B)

)
X

= −(n− 2)L+ φ∗(KS + det E + B).

Hence, due to the injectivity of the homomorphism induced by φ between the
Picard groups of S and X, we get

H = KS + c1(E) + B. (15)

Thus (13) allows us to express p(1, n− 2) in terms of KS , c1(E) and B via the
Riemann–Roch theorem. On the other hand, from (1)–(5) we get

p(1, n− 2) =

n−3∏
i=1

(
n− 2− (n− 2)− i

)
R(1, n− 2) (16)

= (−1)n−3(n− 3)!
(α
8
+

β

4
(n− 2) +

γ

2
(n− 2)2

+ δ(n− 2)3 +
σ

2
+ τ(n− 2)

)
.

So (13) and (16) give another equation, which, added to the previous ones,
allows us to determine τ . For the explicit computations see Section 3, which
leads to Proposition 3.1.

3. Some computations

First of all we make explicit the coefficients of some of the powers of x from (6),
and precisely
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coeff(xn) = 1
n!dn,

coeff(x2) = 1
2(n−2)!d2,

coeff(x) = 1
(n−1)!d1,

coeff(1) = 1
n!d.

On the other hand, doing the same with (7), we get:

coeff(xn) = (n− 2)n−3α,

coeff(x2) = (−1)n−5
(
n−3
2

)
(n− 2)2δ + (−1)n−4(n− 3)(n− 2)γ + (−1)n−3β,

coeff(x) = (−1)n−4(n− 3)(n− 2)δ + (−1)n−3γ,

coeff(1) = (−1)n−3δ.

So, by equating the corresponding expressions of the coefficients of xn, x2,
x, 1, we obtain:

α =
1

n!(n− 2)n−3
dn, (17)

δ = (−1)n−1 1

n!
d, (18)

γ = (−1)n−1 1

(n− 1)!

(
d1 +

(n− 2)(n− 3)

n
d

)
, (19)

β = (−1)n−1

(
1

2(n− 2)!
d2 +

(n− 2)(n− 3)

(n− 1)!
d1 +

(n− 2)3(n− 3)

2n!
d

)
. (20)

This shows that the values of d, d1, d2 and dn are enough to compute the
coefficients of R3(u, v). As to R1(u, v), combining (8), (9) and (17) it follows
that

σ =
(−1)n8

4(n− 3)!
χ(OS)−

α

4
= (−1)n

2

(n− 3)!
χ(OS)−

1

4n!(n− 2)n−3
dn. (21)

Furthermore, using (13), (16) it follows that

τ =
(−1)n−3χ(H)

(n− 2)!
− 1

(n− 2)

(α
8
+

β(n− 2)

4
+

γ(n− 2)2

2
+ δ(n− 2)3 +

σ

2

)
and plugging in such expression the values from (17), (20), (19), (18), (21) we
get

τ =
(−1)n−1

(n− 2)!

(
χ(H)+χ(OS)−

1

8
d2−

n− 2

4
d1−

(n− 2)2(n2 − n+ 2)

8n(n− 1)
d
)
. (22)

381



(8 of 33) M.L. FANIA AND A. LANTERI

Hence, for the time being, we obtain the following expression for the poly-
nomial defining the residual cubic C:

R

(
1

2
+ u, v

)
=

1

n!(n − 2)n−3
dnu

3

+ (−1)
n−1

( 1

2(n − 2)!
d2 +

(n − 2)(n − 3)

(n − 1)!
d1 +

(n − 2)3(n − 3)

2n!
d
)
u
2
v

+ (−1)
n−1 1

(n − 1)!

(
d1 +

(n − 2)(n − 3)

n
d

)
uv

2
+ (−1)

n−1 1

n!
dv

3

+
(
(−1)

n 2

(n − 3)!
χ(OS) −

1

4n!(n − 2)n−3
dn

)
u

+
(−1)n−1

(n − 2)!

(
χ(H) + χ(OS) −

1

8
d2 −

n − 2

4
d1 −

(n − 2)2(n2 − n + 2)

8n(n − 1)
d
)
v.

To determine the value of di we need several computations involving Chern
classes. From now on, for simplicity we set ci = ci(E), i = 1, 2. First of
all, we recall the following facts. In the projective bundle P := P(E), since
dim(P ) = n+ 1, for any divisors D1,D2 on S, we have

ξnπ∗D1 = c1D1 and ξn−1π∗D1π
∗D2 = D1D2.

Moreover, according to the Chern–Wu relation

ξn − ξn−1π∗c1 + ξn−2π∗c2 = 0,

we get
ξn = ξn−1π∗c1 − ξn−2π∗c2 and ξn+1 = c21 − c2. (23)

Then standard computations relying on the above relations lead to the following
expression:

d = Ln = 2
(
c21 − c2

)
+ c1B. (24)

Next, recalling that X is contained in P as an element of |2ξ + π∗B| and the
expression of KX given by (14), we get

d1 = KXLn−1 = 2(n− 2)c2 − 2(n− 3)c21 + 2KSc1 (25)

− (n− 5)c1B +KSB + B2,

d2 = K2
XLn−2 = 2(n− 3)2c21 − 2(n− 2)2c2 − 4(n− 3)KSc1 (26)

+ 2K2
S − 2(n− 4)KSB + (n2 − 10n+ 20)c1B − 2(n− 3)B2,

and

dn = Kn
X = (−1)n(n− 2)n−2

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (27)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
.
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Plugging (24), (25), (26), (27), in (21) and (22), respectively, we see that

σ = (−1)n

(n−3)! 2χ(OS)− (−1)n(n−2)
4n!

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (28)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
and

τ = (−1)n

4

(
(3n2−9n+8)

n! c21 −
2(n−2)2

n! c2 +
(3n2−6n+4)

n! c1B (29)

+ 1
(n−2)! (B

2 + 2KSB) + 1
(n−2)!

(
K2

S − 4χ(OS)− 4χ(H)
))

= (−1)n

4

[
(n2−7n+8)

n! c21 −
2(n−2)2

n! c2 − (n2+2n−4)
n! c1B

+ 1
(n−2)!

(
K2

S − B2 − 8χ(OS)
)]
,

after replacing χ(H) with its expression provided by the Riemann–Roch theo-
rem.

Similarly, plugging (24), (25), (26), (27), in (17), (20), (19), (18), respec-
tively, we see that

α =
(−1)n(n− 2)

n!

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (30)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
,

δ = (−1)n−3 1

n!

(
2c21 − 2c2 + c1B

)
, (31)

γ =
(−1)n−1

n!

[
4(3− n)c21 + 6(n− 2)c2 + 6c1B (32)

+ n(2KSc1 +KSB + B2)
]
,

β = (−1)n−1
[ 1

n!
(3n2 − 17n+ 24)c21 −

6

n!
(n− 2)2c2 +

1

(n− 2)!
K2

S (33)

− (n− 3)

(n− 1)!
(2KSc1 + B2) +

2

(n− 1)!
KSB − (n2 + 2n− 12)

n!
c1B

]
.

The above discussion proves the following result.

Proposition 3.1. Let (X,L) be a geometric quadric fibration over a smooth
surface S, as in Section 2. Then the residual cubic of its Hilbert curve is defined
by (3), where the homogeneous part of degree 3 is
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R3(u, v) =
(−1)n−1

n!

{
− (n− 2)

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (34)

+ n2KSB + n(n− 1)K2
S + 2nKSc1 + 4c1B + nB2

]
u3

+
[
(3n2 − 17n+ 24)c21 − 6(n− 2)2c2 + n(n− 1)K2

S

− n(n− 3)(2KSc1 + B2) + 2nKSB − (n2 + 2n− 12)c1B
]
u2v

+
[
4(3− n)c21 + 6(n− 2)c2 + 6c1B + n(2KSc1 +KSB + B2)

]
uv2

+
(
2c21 − 2c2 + c1B

)
v3
}
,

while the homogenous part of degree 1 is

R1(u, v) =
(−1)n

4n!

{(
8n(n− 1)(n− 2)χ(OS)− (n− 2)

[
(n2 − 5n+ 8)c21 (35)

− 2(n− 2)2c2 + n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B

+ nB2
])

u+
[
(n2 − 7n+ 8)c21 − 2(n− 2)2c2 − (n2 + 2n− 4)c1B

+ 4n(n− 1)
(
K2

S − B2 − 8χ(OS)
]
v
}
.

We like to point out that if we plug n = 3 in (34) and (35) then their sum
gives the equation of Γ in [6, Proposition 4.1].

4. First properties of the Hilbert curve

Let ℓ∞ be the line at infinity of the (u, v) plane. We denote by ℓ0 the line of
equation (n− 2)u− v = 0, whose point at infinity is P∞ := (1 : n− 2 : 0).

Lemma 4.1. Let C be any Serre-invariant plane cubic and let (3) be its equa-
tion, with R3 and R1 given by (4) and (5) respectively.
a) The projective closure C of C contains the point P∞ if and only if

α+ (n− 2)β + (n− 2)2γ + (n− 2)3δ = 0. (36)

b) C contains the line ℓ0 if and only if, in addition to (36), we have

σ + (n− 2)τ = 0. (37)

Proof. If we put v = (n−2)u in (3) then (36) and (37) express the vanishing of
the homogeneous parts of degree 3 and 1 of the polynomial in (3), respectively.
This proves a) and b).
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The computations done for Proposition 3.1 have the following consequence.

Proposition 4.2. Let (X,L) be a geometric quadric fibration over S as in Sec-
tion 2 and let C be the residual cubic of its Hilbert curve. Then condition (36)
is always satisfied for C. Moreover, C intersects ℓ∞ at P∞, transversely.

Proof. If we plug the values (30), (33), (32), (31) in (36) we get an expression
involving c21, c2, K

2
S , KSc1, KSB, B2, c1B, with appropriate coefficients. At a

close look such coefficients are all zeroes, hence our former claim follows. To
prove the latter, suppose, by contradiction, that C intersects ℓ∞ at P∞ with
multiplicity > 1. Then, dividing R3(u, v) by u3 and letting t := v/u, the value
n− 2 has to be a common root of the polynomial

δt3 + γt2 + βt+ α

and of its derivative. Hence

3(n− 2)2δ + 2(n− 2)γ + β = 0. (38)

However, taking into account (31), (32) and (33), the term on the left hand
side of (38) becomes

3(n− 2)2δ + 2(n− 2)γ + β =
(−1)n

(n− 2)!
(KS + c1 + B)2,

and since H = KS + c1 + B is the ample divisor in (15), this cannot be zero, a
contradiction.

As to the residual intersections of C with ℓ∞ we have the following result.

Proposition 4.3. Let C be a Serre-invariant plane cubic as in Lemma 4.1
such that P∞ ∈ C, and let Q∞ be a point at infinity distinct from P∞. The
cubic C intersects ℓ∞ at Q∞ with multiplicity 2 if and only if the following
condition

4αδ + (n− 2)
(
γ + (n− 2)δ

)2
= 0 (39)

is satisfied, in addition to (36). Moreover, in this case, if C is irreducible,
then C is singular at Q∞.

Proof. Let Q∞ = (−a : b : 0). Dividing R3(u, v) by u3 and letting t = v/u, as
before, we see that

C ∩ ℓ∞ = P∞ + 2Q∞ (40)

if and only if
δt3 + γt2 + βt+ α = (t− n+ 2)(at+ b)2, (41)

identically with respect to t. This is equivalent to

δ = a2, γ = 2ab− (n− 2)a2, β = b2 − 2ab(n− 2), α = −(n− 2)b2, (42)
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and eliminating a, b from these equations gives (36) and (39). Now suppose
that C is irreducible and smooth at Q∞. The Serre involution (u, v) 7→
(−u,−v) induces an involution ι : C → C such that ι(Q∞) = Q∞. Then,
as in [3, Lemma 3.3], we see that either ι is the identity map, or its differential,
acting on the tangent space TQ∞(C) to C at Q∞, is the multiplication by −1.
But the projective closure of TQ∞(C) is ℓ∞ itself because the intersection index
of C and ℓ∞ at Q∞ is 2. We thus get a contradiction since the Serre involution
induces the identity on ℓ∞ but not on C. It thus follows that Q∞ is a singular
point of C.

Actually, more can be said about the singular point Q∞.

Proposition 4.4. Let C be a Serre-invariant plane cubic such that P∞ ∈ C.
If C is irreducible and Q∞ is a double point of C, then Q∞ is necessarily
a node. Moreover the Serre involution exchanges the principal tangents to C
at Q∞.

Proof. Let Q∞ = (−a : b : 0) be a double point and suppose that a ̸= b. Up to
the change of homogenous coordinates u = U − aW, v = V + bW,w = U + V ,
with a ̸= b we can assume that Q∞ is the origin. In the new affine coordinates
U, V (if we set W = 1) the equation of C, after using (42), is:

(bU + aV )2[b+ (n− 2)a]− (U + V )2(aσ − bτ) + [σ − b2(n− 2)]U3 + [b2

−2ab(n−2)+2σ+ τ ]U2V +[2ab−a2(n−2)+σ+2τ ]UV 2+(a2+ τ)V 3 = 0.

The coefficient of the first term is not zero because Q∞ ̸= P∞. We thus
see that Q∞ is a cusp, the line of equation bU + aV = 0 being the unique
principal tangent to C at Q∞, if and only if σa− τb = 0. Next, note that the
point O, the origin of the affine coordinates (u, v), is a smooth point of C, due
to the assumptions. Thus the condition σa − τb = 0 is equivalent to saying
that the line tangent to C at O (whose equation is σu + τv = 0) contains
the point Q∞. But then, the intersection index of this line and C would be
greater than 3 (2 intersections at O, due to the tangency plus 2 intersections at
least at the singular point Q∞), a contradiction. If a = b, the same argument
as above works by using the following change of homogeneous coordinates:
u = U + V −W , v = U +W , w = U + V .

To see that the Serre involution exchanges the principal tangents at the
node Q∞, let s denote the extension of the Serre involution to P2. If ℓ is a
principal tangent at Q∞, then s(ℓ) is also a principal tangent. But if s(ℓ) = ℓ,
then necessarily ℓ must contain O. This comes from the fact that the only lines
fixed by s are those in the pencil through O plus ℓ∞. The latter, however,
cannot be a principal tangent to C at Q∞, since the multiplicity of intersection
is just 2. But then the intersection index of ℓ and C would be greater than 3 (1
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intersection at O and 3 at Q∞, since it is a principal tangent), a contradiction
again.

The following result is a generalization of [6, Theorem 5.2].

Theorem 4.5. Let (X,L) be a geometric quadric fibration of dimension n
over S and let C be the residual cubic of the Hilbert curve Γ of (X,L). Then

(i) ℓ0 is contained in C if and only if X is a bundle.

(ii) C has a triple point if and only if X is a bundle and

Kn
X + (−1)n−18n(n− 1)(n− 2)n−2χ(OX) = 0.

(iii) If ℓ0 is contained in C, then it is an irreducible component of multiplicity
1 of C.

Proof. A tedious check shows that

σ + (n− 2)τ =
(−1)n+1

4n!
n(n− 2)(2c1 + nB)(KS + c1 + B). (43)

Recalling that the discriminant curve D ∈ |2c1+nB| and that H = KS+c1+B
is the ample divisor in (15) this shows that

σ + (n− 2)τ =
(−1)n+1

4n!
n(n− 2)DH. (44)

Therefore σ + (n− 2)τ = 0 if and only if D = 0, i.e. X has no singular fibers.
Then (i) follows from Lemma 4.1, b) taking into account Proposition 4.2. To
prove (ii) note that if C has a triple point, then the origin must be a triple
point, and this happens if and only if σ = τ = 0. This is equivalent to
σ = σ + (n − 2)τ = 0 and we know from (i) that the latter of these two
conditions is equivalent to X being a bundle, hence to the fact that B = − 2

nc1.
Replace B with this value in the expression of σ provided by (21). Recalling
that χ(OX) = χ(OS) since X is a bundle, we thus get (ii). Finally, (iii) follows
from the latter assertion in Proposition 4.2.

The next question we want to address is about the nonreducedness of Γ,
where Γ is the Hilbert curve of a geometric quadric fibration (X,L) as in
Section 2. First of all consider the residual cubic C. As a consequence of
Theorem 4.5 we have the following result.

Corollary 4.6. Let (X,L) be a geometric quadric fibration of dimension n
over S and let C be the residual cubic of the Hilbert curve Γ of (X,L). Then
C is nonreduced if and only if C = ℓ0 + 2ℓ′, with ℓ′ a line through the origin
transverse to ℓ0. This happens if and only if (40) holds, where Q∞ ̸= P∞, i.e.
if and only if, letting Q∞ = (−a : b : 0), the coefficients of R3(u, v) satisfy
conditions (36) and (39).
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Proof. Suppose that C is nonreduced. Clearly for no line ℓ it can happen that
C = 3ℓ, in view of Proposition 4.2. Therefore C = ℓ + 2ℓ′ where ℓ and ℓ′ are
two distinct lines, which cannot be parallel, by Proposition 4.2. Thus C has
a single triple point at ℓ ∩ ℓ′, which necessarily has to be the origin, and then
Theorem 4.5 and Proposition 4.2 again imply that X is a bundle and ℓ = ℓ0.
Moreover, (40) holds, where Q∞ is the point at infinity of ℓ′. Then the last
assertion follows from Proposition 4.3. The converse is obvious.

For an example of the situation described in Corollary 4.6, see [6, Exam-
ple 5.3, case (ii) on p. 556 and Remark 5.4].

Next look at Γ. In view of Corollary 4.6 we can suppose that C is reduced.
Assume that Γ = ℓ1 + · · ·+ ℓn−3 + C is nonreduced; then C = ℓ+ γ is neces-
sarily reducible into a line ℓ and a conic γ which could possibly be reducible.
Recall that ℓ1, . . . , ℓn−3 have the same point at infinity, which is P∞. Due to
Proposition 4.2 there are two possibilities: either

i) P∞ is the point at infinity of ℓ but it does not belong to γ, or

ii) P∞ is a point at infinity of γ but not of ℓ.

In case i), even if γ is reducible no line constituting γ can overlap one of the
ℓi’s, having a point at infinity distinct from P∞. On the other hand, ℓ has to
contain the origin O regardless of the rank of γ, in view of the symmetry of
C, hence ℓ =< O,P∞ >= ℓ0. Therefore ℓ0 must coincide with one of the ℓi’s
(i = 1, . . . , n − 3). Since ℓi is described, in coordinates u, v by (n − 2)u − v −
(i+ 1− n

2 ) = 0, we have that ℓ0 = ℓi if and only if n = 2m ≥ 4 and i = m− 1.

In case ii), since C is reduced, the nonreducedness of Γ implies that γ is
reducible in two lines, one of which, say ℓ′, has P∞ as point at infinity. Since
C also contains the line ℓ, we conclude that C has a triple point, which is
the origin O, due to the symmetry, hence ℓ′ =< O,P∞ >= ℓ0. Then up to
exchanging ℓ with ℓ′ we fall in case i) again and we get the same conclusion.

As we have seen, if Γ is nonreduced, then ℓ0 ⊂ C regardless of the fact that
C is reduced or not; hence X is a bundle; moreover, if C is reduced, ℓ0 is the
unique irreducible multiple component of Γ.

We want to stress the following fact. Suppose that C has no triple point (or,
equivalently, that γ has not a double point at the origin). This is equivalent
to requiring that the polynomial R1(u, v) is not identically zero. In this case,
it represents ℓ0, hence it divides R3(u, v), since C = ℓ0 + γ. So R3(u, v) =
Q(u, v)R1(u, v), where Q is a homogeneous polynomial in u, v of degree 2 and
then, recalling (3), C has equation

R

(
1

2
+ u, v

)
=

(
Q(u, v) + 1

)
R1(u, v) = 0. (45)
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Therefore the conic γ is described by Q(u, v) + 1 = 0; this clearly shows that
its rank is ≥ 2. In particular, if equality holds, our assumptions imply that
γ consist of two parallel lines, symmetric with respect to the origin. This
situation does really occur, as [6, Example 7.1, equation (41) at p. 563] shows.

In conclusion, we have

Proposition 4.7. Let (X,L) be a geometric quadric fibration of dimension n
over a smooth surface S as in Section 2. Its Hilbert curve Γ is nonreduced if
and only if either

1. C = γ + ℓ0, where γ is a conic of rank ≥ 2 and n = 2m ≥ 4, or

2. C is non reduced.

In both cases X is a bundle. In the former case ℓ0 is the only multiple compo-
nent of Γ and its multiplicity is 2; in the latter, γ = 2ℓ′, where ℓ′ ̸= ℓ0 is a line;
ℓ′ is the only component of multiplicity 2 of Γ, unless n = 2m ≥ 4, in which
case ℓ0 is a further component of multiplicity 2.

Case 1. in Proposition 4.7 is clearly a novelty with respect to what is known
for n = 3.

5. More on the residual cubic C

In this Section we analyze further the reducibility of the residual cubic C. More
generally, we first look at reducible Serre-invariant plane cubics.

Proposition 5.1. Let C ⊂ A2 be a Serre-invariant plane cubic such that C
meets ℓ∞ transversely at P∞, and let O be the origin of coordinates (u, v). If
C is reducible then C = ℓ + γ, where ℓ is a line passing through O and γ is a
conic, possibly reducible. Moreover, either

a) γ is of hyperbolic type, with center at O (in particular it has two distinct
points at infinity), or

b) γ consist of two parallel lines.

Proof. Clearly, if C is reducible, then it contains a line, say ℓ. There are two
possibilities: either

i) the line ℓ contains the origin O, or

ii) the line ℓ does not contain O.

We claim that in case ii) ℓ is an irreducible component of a conic residual with
respect to another line, which is also contained in C, and passes through O.
So, up to renaming, case ii) reduces to i), which gives the first assertion in the
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statement. To prove the claim, note that the map ι : C → C induced by the
Serre involution maps ℓ to another line ι(ℓ), which also does not contain O.
Thus C consists of three lines, two of which do not contain O, hence O belongs
to the third line, say λ. Note that ℓ and its conjugate ι(ℓ) are parallel, due to
the symmetry properties of C. Thus their projective closures cannot contain
the point P∞ = (1 : n− 2 : 0), in view of the assumption on C. It thus follows
from Lemma 4.1 a) that P∞ is the point at infinity of λ and therefore λ = ℓ0,
since it contains both the origin and P∞. In conclusion, in case ii) we have that
C = ℓ0 + ℓ′ + ℓ′′, where ℓ′ and ℓ′′ are two parallel lines, and letting γ = ℓ′ + ℓ′′

this gives b) in the statement. Next come to case i). Clearly γ := C − ℓ is
symmetric with respect to O. Hence γ is as in a) (regardless the fact that it
is irreducible or not) if O is its unique center. Otherwise it is as in b), since it
cannot be a parabola, because it is Serre-invariant itself.

Now let C be any Serre-invariant plane cubic. If C has a triple point then
necessarily it has a triple point at the origin, hence assuming that C has not
a triple point is equivalent to requiring that (σ, τ) ̸= (0, 0). So, let C be a
Serre-invariant reducible plane cubic again. Suppose that C has not a triple
point. Then R1(u, v) = 0 represents a line ℓ through O. Moreover, since C is
reducible, R1(u, v) divides R3(u, v), hence R3(u, v) = Q(u, v)R1(u, v), Q being
a homogeneous (nontrivial) polynomial of degree two in u and v. Thus, C is
described by (45). This shows that ℓ is a component of C and the conic residual
of ℓ in C has rank ≥ 2, in accordance with the assumption that C has not a
triple point. Now, by applying the same argument as in [6, p. 551] we see that
the existence of a polynomial Q as above is equivalent to the condition

σ2(σδ − τγ) + τ2(σβ − τα) = 0. (46)

Note that (46) is trivially satisfied also when C has a triple point. On the other
hand (45) obviously implies reducibility. Therefore, we have

Proposition 5.2. Let C be a Serre-invariant plane cubic and let (3) be its
equation, with R3 and R1 given by (4) and (5) respectively. Then C is reducible
if and only if (46) holds.

In particular, we get the following consequence.

Corollary 5.3. Let (X,L) be a geometric quadric fibration over a smooth
surface, as in Section 2, and let C be the residual cubic of its Hilbert curve
with respect to the lines ℓ1, . . . , ℓn−3. Then C is reducible if and only if (46)
holds.

For n = 4, assuming that S = P2, we can characterize the fact that C
contains a given line ℓ through the origin even more explicitly. In view of
Theorem 4.5(i), we can suppose that ℓ ̸= ℓ0.

390



HILBERT CURVES OF QUADRIC FIBRATIONS (17 of 33)

Proposition 5.4. Let (X,L) be a 4-dimensional geometric quadric fibration
over P2 and let Γ be its Hilbert curve. Then Γ contains the line ℓ : pu− qv = 0
((p, q) ̸= (0, 0)), with p ̸= 2q, if and only if [p(c1+b−1)−4q][p(c1+b+1)−8q] =
0, where c1 and b are such that c1(E) = OP2(c1) and B = OP2(b).

Proof. Because dim(X) = 4 then Γ = ℓ1 + C, where ℓ1 : 2u − v = 0 and C is
the residual cubic. Thus if the line ℓ : pu− qv = 0, with p ̸= 2q is contained in
Γ it follows that it is a component of the residual cubic C. Because the base of
the geometric quadric fibration (X,L) is P2, c1(E) = OP2(c1) and c2(E) = c2,
for some c1, c2 ∈ Z. Thus the coefficients of the terms in R3(u, v) become, up
to the factor 1

24 :

α = 8c21 − 16c2 − 48c1 − 96b+ 8c1b+ 8b2 + 216,

β = −
(
4c21 − 24c2 + 24c1 − 12c1b− 4b2 − 24b+ 108

)
,

γ = 4c21 − 12c2 + 24c1 − 6c1b+ 12b− 4b2,

δ = −2c21 + 2c2 − c1b.

Likewise the coefficients of u and v in R1(u, v) are, up to the factor 1
24 , respec-

tively

σ = −
(
2c21 − 4c2 − 12c1 − 24b+ 2c1b+ 2b2 + 6

)
,

τ = −
(
c21 + 2c2 + 5c1b+ 3b2 − 3

)
.

In view of Proposition 5.3, the line ℓ : pu− qv = 0 is a component of C if and
only if (46) holds with σ = pk and τ = −qk for some non zero k ∈ Z (since σ
and τ , expressed by the above equalities, are integers). Recalling that p ̸= 2q,
the last two conditions, combined with the above expressions of σ and τ , give

c2 =− 1

2

1

p− 2q
(2qc21 + 2qb2 − 12qc1 − 24qb+ 2qc1b+ pc21 + 5pc1b+ 3pb2

− 3p+ 6q).

The relation (46), after replacing σ = pk, τ = −qk and α, β, γ, δ with the
above expressions, becomes

k3(2q−p)(4q2c21 − 8q2c2 + 108q2 − 24q2c1 − 48q2b+ 4q2bc1

+ 4q2b2 + 8qpc2 − 24qpc1 + 8qpc1b+ 4qpb2

− 12qpb− 2p2c2 + 2p2c21 + p2c1b) = 0. (47)

Because k ̸= 0, after dividing out (47) with k3 and replacing the value of c2,
we see that (47) can be rewritten as

3(2q − p)(−4q − p+ c1p+ bp)(−8q + p+ c1p+ bp) = 0,

and this proves the assertion, since, as we said, p− 2q ̸= 0.
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As a further comment, we note the following. If p(c1 + b− 1)− 4q = 0 then
b = −c1 +

4q
p + 1 and in this case C = ℓ+ γ1, where the equation of γ1 is

(16p+ 4pc1 − 32q)u2 + (−4pc1 − 10p+ 20q)uv + (pc1 + p− 2q)v2

+ 2p− pc1 + 8q = 0.

On the other hand, if p(c1 + b+ 1)− 8q = 0 then b = −c1 +
8q
p − 1 and in this

case C = ℓ+ γ2, where the equation of γ2 is

(20p+ 4pc1 − 64q)u2 + (−4pc1 − 8p+ 40q)uv + (pc1 − p− 4q)v2

− 2p− pc1 + 16q = 0.

For instance, as to γ2, the determinant of its matrix is 36(p− 2q)2
(
p(c1 + 2)−

16q
)
. Hence γ2 is reducible if and only if p = 16q/(c1 + 2).

6. A special class of geometric quadric fibrations

Here we introduce a special class of quadric fibrations (X,L) which generalize
conic fibrations considered in [6, Section 6]. In line with [6], we call them
quadric fibrations deriving from cones since they are defined by generic quadric
sections of a cone with vertex a point over a scroll on a surface. As we will see,
they can never be quadric bundles, however the equation of the corresponding
Hilbert curve simplifies considerably with respect to that of a general quadric
fibration. The construction goes as follows.

6.1. Construction.

Let S be a smooth surface and let V be a very ample vector bundle of rank
n − 1 ≥ 2 on S. Set T := P(V) and denote by h the tautological line bundle.
Then h embeds T as an n-dimensional scroll over S in some projective space,
say Pm. Now set E := V ⊕ OS , and R := P(E). Then R is a Pn−1-bundle over
S, with projection π : R → S. Let ξ be the tautological line bundle of E on R
and denote by ϕ : R → PN the map defined by ξ. Clearly ϕ is a morphism,
since E is spanned. We have

ci(E) = ci(V) for i = 1, 2, (48)

by construction. Furthermore, from the additivity of H0, we get h0(ξ) =
h0(E) = h0(V)+1 = h0(h)+1, hence N = m+1. Note that ξ restricts trivially
to the section, say σ, of R corresponding to the obvious surjection E → OS .
Hence ϕ contracts σ to a point, say v, of the image Y := ϕ(R). Due to the
properties of ϕ, Y ⊂ Pm+1 is the cone over T with vertex v, ϕ : R → Y being
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the desingularization morphism; in fact, any fiber Fs = π−1(s) of π : R → S
is a Pn−1, and ϕ maps it isomorphically to the linear subspace of PN spanned
by v and the Pn−2 which is the fiber of the scroll T over s. Now consider a
general quadric hypersurface Q ⊂ PN (i.e., not containing v) and let X ⊂ R
be its inverse image via ϕ. Then X ∈ |2ξ|, because ξ = ϕ∗OPm+1(1). Note that
X is smooth and L := ξX is ample since X ⊂ R \ σ. Moreover, X intersects
every fibre Fs of π along a quadric. Therefore, by restricting π to X we get a
fibration φ := π|X : X → S in quadrics over S.

Because L = ξX we have that E = π∗ξ = φ∗L, thus R is exactly the
Pn−1-bundle P introduced in Section 2.

By the canonical bundle formula, recalling (48), we know that KR = −nξ+
π∗(KS + detV), thus, since X ∈ |2ξ|, we get by adjunction

KX = (KR +X)X =
(
− (n− 2)ξ + π∗(KS + detV)

)
X

= −(n− 2)L+ φ∗(KS + detV).

The fact that B is trivial implies that H := KS + det E = KS + detV, hence
H is ample unless (S,V) is in a precise list of exceptions [8, Main Theorem].
Therefore,

Proposition 6.1. Let (X,L) be a quadric fibration over S deriving from cones.
Then (X,L) is a geometric quadric fibration if and only if (S,V) is not one of
the following pairs:

(i) (S,V) = (P2,OP2(1)⊕r)), with r = 2, 3,

(ii) (S,V) = (P2,OP2(2)⊕OP2(1))),

(iii) (S,V) = (P2, TP2),

(iv) S is a P1-bundle over a smooth curve and V restricts as OP1(1)⊕2 to every
fiber.

Note that the exception (S,V) = (Q2,OQ2(1)⊕2)) (case 6 in [8, Main The-
orem]) is included in case (iv).

According to what we said before, for quadric fibrations (X,L) as in the
above construction, the line bundle B is trivial. This has strong implications.
As a first thing, we observe the following fact.

Remark 6.1. If (X,L) is quadric fibration deriving from cones then X cannot
be a bundle. Actually, were X a bundle, the fact that D ∈ |2c1(E)+nB| would
imply c1(E) = 0, hence c1(V) = 0 by (48), but this would prevent V from being
ample.
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By Proposition 3.1 the equation of the residual cubic of its Hilbert curve is
such that the homogeneous part of degree 3 is

R3(u, v) =
(−1)n

n!

{
(n − 2)

[
(n

2 − 5n + 8)c
2
1 − 2(n − 2)

2
c2 + n(n − 1)K

2
S + 2nKSc1

]
u
3

+
[
(3n

2 − 17n + 24)c
2
1 − 6(n − 2)

2
c2 + n(n − 1)K

2
S − 2n(n − 3)KSc1

]
u
2
v

+
[
4(3 − n)c

2
1 + 6(n − 2)c2 + 2nKSc1

]
uv

2
+

(
2c

2
1 − 2c2

)
v
3
}
,

(49)

while the homogenous part of degree 1 is

R1(u, v) =
(−1)n

4n!

{(
8n(n − 1)(n − 2)χ(OS) − (n − 2)

[
(n

2 − 5n + 8)c
2
1

− 2(n − 2)
2
c2 + n(n − 1)K

2
S + 2nKSc1

])
u

+
[
(n

2 − 7n + 8)c
2
1 − 2(n − 2)

2
c2 + 4n(n − 1)

(
K

2
S − 8χ(OS)

)]
v
}
.

(50)

Moreover, if the base surface S is a minimal surface of Kodaira dimension
zero, then the fact that KS is numerically trivial produces a further simplifica-
tion, which leads to the following result.

Theorem 6.2. Let (X,L) be a quadric fibration deriving from cones over a
minimal surface S with κ(S) = 0 and dim(X) = n ≥ 3.

(1) If n = 3 then C = Γ is always irreducible.

(2) If n ≥ 4 then C is irreducible in the following cases:

(i) if S is a K3 surface or an Enriques surface, and

(ii) if S is an abelian or a bielliptic surface and d ̸= 2n(n−3)
n2−5n+8 c2.

Proof. Due to Proposition 5.2, and Proposition 4.2 we know that (46) can be
rewritten as

[σ + (n− 2)τ ] U = 0,

where

U := n2δτ2−nδστ−4nδτ2+nγτ2+βτ2+δσ2+2δστ+4δτ2−γστ−2γτ2.

Now, taking into account that B is trivial, we can compute the coefficients
σ, τ, β, γ, δ from (50) and (49). Moreover, adding the information that KS is
numerically trivial and recalling (15), we get

σ + (n− 2)τ =
(−1)nn(n− 2)

2n!
c21 =

(−1)nn(n− 2)

2n!
H2 ̸= 0,

Therefore C is reducible if and only if U = 0. Plugging in the expression of U
the values of the coefficients σ, τ, β, γ, δ we see that, up to the scalar factor
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− (−1)3nn(n−1)
16n!3 c21

U =


[
− (n2 − 5n+ 8)c21 + 2(n− 2)2c2 + 16n(n− 1)

]2
+ 64n2c21 if S is K3[

−(n2 − 5n+ 8)c21 + 2(n− 2)2c2 + 8n(n− 1)
]2

+ 32n2c21 if S is Enriques[
(n2 − 5n+ 8)c21 − (2n2 − 8n+ 8)c2

]2
if S is abelian or bielliptic.

Thus for every n ≥ 3, U is different from zero if S is a K3 surface or an
Enriques surface, being U the sum of two quantities in which the first one is
greater than or equal to zero and the second one is strictly greater than zero
because c21 = H2 > 0. If S is an abelian or a bielliptic surface we see that if

n = 3 then U =
[
(n2 − 5n+8)c21 − (2n2 − 8n+8)c2

]2
= 2c21 − 2c2 and recalling

that d = L3 = 2(c21 − c2) our claim follows. This proves (1) and (i) of (2). On

the other hand, if n ≥ 4 then U =
[
(n2 − 5n+ 8)c21 − (2n2 − 8n+ 8)c2

]2
= 0 if

and only if c21 = 2n2−8n+8
n2−5n+8 c2, in which case d = 2(c21 − c2) = [2 + 4(n−4)

n2−5n+8 ]c2.
This proves (ii) of (2).

We have to point out that in [6, Proposition 6.3, (ii)] the statement is not
correct, in fact no condition on L3 is needed in order to have the irreducibility
of Γ. As to case n ≥ 4 with S abelian or bielliptic we observe that C is
certainly irreducible if (n − 1)c21 > 2nc2 (that is if E is not Bogomolov stable,
being rk(E) = n), because this prevents the term U from being zero.

Example 6.2. If in the construction 6.1, as T =P(V) we take the 5-dimensional
scroll in P11, over P2, of degree 10 and sectional genus 3, that is T =P(OP2(1)⊕4)
= P2 × P3, then (X,L) is a geometric quadric fibration, with c1(E) = c1(V) =
OP2(4) and c2(E) = c2(V) = 6 and plugging such values in (49) and (50) we get

p(X,L)

(
1

2
+ u, v

)
= − 1

12
(2u− v)(12u2 − 10uv + 2v2 + 3).

Note that the linear factor 2u− v is not the one defining the line ℓ0 whose
equation is (n− 2)u− v = 0, that is 3u− v = 0.

Example 6.3. If in the construction 6.1, as T = P(V) we take the 4-dimensional
scroll in P10, over P2, of degree 10 and sectional genus 3, that is T = P(TP2 ⊕
OP2(1)), then (X,L) is a geometric quadric fibration, with c1(E) = c1(V) =
OP2(4) and c2(E) = c2(V) = 6 and plugging such values in (49) and (50) we get

p(X,L)

(
1

2
+ u, v

)
=

7

3
u3 − 31

6
u2v +

11

3
uv2 − 5

6
v3 +

17

12
u− 25

24
v.

We like to stress the following fact. Let T1 and T2 be the scrolls in Exam-
ple 6.2 and Example 6.3 respectively. Adding OP2(1) to the three terms of the
Euler sequence on P2, we get the following exact sequence

0 → OP2 ⊕OP2(1) → OP2(1)⊕4 → TP2 ⊕OP2(1) → 0,
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where TP2 is the tangent bundle to P2. Then by using, for instance, [12,
Lemma 0.7], we see that T2 ⊂ P10 is the general hyperplane section of T1,
Segre embedded in P11.

7. Examples

Let (X,L) be a geometric quadric fibration over a smooth surface as in Sec-
tion 2. The key point in passing from the case of threefolds studied in [6] to
higher dimensions is clearly n = 4, as already (1), and what we proved in the
previous sections, show. For this reason the examples we discuss in this Section
are concerned with n = 4. First of all, note that if (X,L) is general, then the
residual cubic C of its Hilbert curve is irreducible according to Proposition 5.3.
Here is an example.

Example 7.1. Let P(E) be the P3-bundle over the smooth quadric Q2, defined
by the rank four vector bundle E = OQ2(1, 2)⊕4. Let π : P(E) → Q2 be the
projection morphism, let X be a general element in |2ξ + π∗OQ2(1, 2)|, where
ξ denotes the tautological line bundle of E on P(E), and call φ : X → Q2 the
restriction of π to X. On X we consider the polarization given by L = (ξ)X
Note that KX =

(
−4ξ+π∗OQ2(4, 8)+π∗OQ2(−2,−2)+2ξ+π∗OQ2(1, 2)

)
X

=(
− 2ξ + π∗OQ2(3, 8)

)
X
. The polarized pair (X,L) is a geometric quadric

fibration over Q2. Using (28) through (33) and the fact that c1 = OQ2(4, 8),
c2 = 24 and B = OQ2(1, 2), we see that the residual cubic C of the Hilbert
curve Γ of (X,L) has equation

4u3 − 12u2v − 3uv2 + 4v3 − 3u+
17

2
v = 0. (51)

In this case C is irreducible, the term on the left hand side of (46) taking the
value 266.

The remainder of this Section is devoted to examples for which C is re-
ducible.

Example 7.2. Let Y := P2 × P3 and let π and ρ be the projections onto the
first and the second factors respectively. Set A := π∗OP2(1), B := ρ∗OP3(1),
and write O(r, s) for rA + sB. Let X ⊂ Y is a smooth element in the linear
system |O(1, 2)|, hence

X ∼ A+ 2B. (52)

By adjunction, KX = [O(−3,−4)+X]X = O(−2,−2)X = −2 O(1, 1)X , so that
X is a Fano 4-fold of index 2; moreover, taking into account that A3 = B4 = 0
and A2B3 = 1, we have(

O(1, 1)X
)4

= O(1, 1)4X = (A+B)4(A+ 2B) = (4 + 12)A2B3 = 16
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(i. e. (X,O(1, 1)X) has degree 16).
Up to now φ := π|X : X → P2 is only a classical quadric fibration. To

make it a geometric quadric fibration consider on X the ample line bundle
L := O(a, 1)X for some positive integer a. Clearly L induces the hyperplane
bundle on every quadric surface, fiber of φ. Moreover,

KX + 2L = O
(
2(a− 1), 0

)
X

= φ∗OP2

(
2(a− 1)

)
.

Therefore, for (X,L) to be a geometric quadric fibration we need a ≥ 2.
Note that Y = P(V), where V = OP2(1)⊕4, the corresponding tautological

line bundle being ζ := O(1, 1). This is clear once we compare the two expression
of the canonical bundle of Y , viewed both as a product and as P(V) respectively.
Then V = π∗ζ and, recalling that φ = π|X , we also have V = φ∗(ζX). Next let

us determine the vector bundle E := φ∗L. Since L =
(
ζ + (a− 1)π∗OP2(1)

)
X
,

we get

E = φ∗[
(
ζ + π∗OP2(a− 1)

)
X
] = V ⊗OP2(a− 1) = OP2(a)⊕4.

In particular, this gives
c1 = OP2(4a). (53)

Since E is V twisted by a line bundle, we see that P := P(E) ∼= Y itself; note
however that the tautological line bundle corresponding to E is ξ = ζ+(a−1)A
(in accordance with the fact that L = ξX). Now recall that, in our setting,
X ∈ |2ξ + π∗B|. So, letting B = OP2(b), we get

2ξ + π∗B =
(
2ζ + 2(a− 1)A+ bA

)
= [2(A+B) + (2a+ b− 2)A]

= [(2a+ b)A+ 2B],

and from a comparison with (52) we deduce that b = −2a + 1, i.e. B =
OP2(−2a+ 1). Finally, look at D, the discriminant curve of our quadric fibra-
tion (X,L). From a general result already mentioned in Section 2 combined
with (53), since n = 4 we get

D ∈ |2c1 + nB| = |OP2(4)|.

Therefore certainly X is not a Q2-bundle over P2, D being non-trivial. It
remains to determine the canonical equation of the Hilbert curve Γ of (X,L).
By using the Riemann–Roch–Hirzebruch formula in the following form
(see [2, (8)])

χ(D) =
1

24
E4+

1

48

(
2c2(X)−K2

X

)
E2+

1

384

(
K2

X −4c2(X)
)
K2

X +χ(OX), (54)

where D = 1
2KX + E and E = uKX + vL, after standard Chern class compu-

tations we get the canonical equation of Γ, which is

p

(
1

2
+ u, v

)
=

1

6
(v − 2u)(av − 2u)

(
16u2 − 2(3a+5)uv + (3a+1)v2 + 2

)
= 0.
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We note that Γ is reducible, but, in addition to the line 2u − v = 0, which is
a prescribed component of Γ according to [3, Theorem 6.1], there is another
linear component for any a ≥ 2, namely the line av − 2u = 0.

As to the conic component, say γ, note that it is irreducible since a ≥ 2. On
the other hand, if a = 1, then (X,L) is not a geometric quadric fibration, as
already observed; moreover the equation of Γ becomes (2u− v)2

(
4(2u− v)2 +

2
)
= 0. In particular we see that the projective closure Γ of Γ has a singular

point of multiplicity 4 at (2 : 1 : 0). Note that this is in accordance with [3,
Lemma 3.2], since for a = 1, we have KX + 2L = 0, hence (X,L) fits into the
degenerate case.

Example 7.3. Consider P2 × Q3 and let p1 and p2 be the projections onto
the first and the second factor respectively. Set H1 := p∗1

(
OP2(1)

)
and H2 :=

p∗2
(
OQ3(1)

)
, and write O(r, s) for rH1 + sH2. Let X ⊂ P2 × Q3 be a smooth

element in the linear system |O(1, 1)|. By adjunction, KX = [O(−3,−3) +
X]X = −2 O(1, 1)X , so that X is a Fano 4-fold of index 2. Taking into account
that H3

1 = H4
2 = 0 and H2

1H
3
2 = 2, we see that

(
X,O(1, 1)X

)
has degree 20.

Let φ : X → P2 be the restriction of p1 to X, and take on X the polarization
given by L := O(a, 1)X for some positive integer a. Clearly L induces the
hyperplane bundle on every quadric surface, fiber of φ. Moreover,

KX + 2L = O
(
2(a− 1), 0

)
X

= φ∗OP2

(
2(a− 1)

)
.

Therefore, (X,L) will be a geometric quadric fibration as soon as a ≥ 2.
In order to compute the canonical equation of Γ, we tensor the structure

sequence
0 → O(−1,−1) → O(0, 0) → OX → 0

with O(ay − 2x, y − 2x) and we get

0 → O(ay− 2x− 1, y− 2x− 1) → O(ay− 2x, y− 2x) → xKX + yL → 0. (55)

Using the fact that χ(P2 × Q3,O(r, s)) = χ(P2,OP2(r)) · χ(Q3,OQ3(s)) and
standard computations, after replacing x = u + 1

2 , y = v we see that the
canonical equation of Γ is

p

(
1

2
+ u, v

)
=

1

6
(v − 2u)(av − 2u)

(
20u2 − 2(3a+7)uv + (3a+2)v2 + 1

)
= 0.

Thus the residual cubic C has equation

1

6
(av − 2u)

(
20u2 − 2(3a+ 7)uv + (3a+ 2)v2 + 1

)
= 0.

Even in this case the conic γ is irreducible, since a ≥ 2. Because X sits in
P := P(E) as a divisor, X ∈ |2ξ + π∗B| where ξ is the tautological line bundle,
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we compute the values of ci. Let B = OP2(b) for some integer b. From (15) we
have

2a− 2 = c1 − 3 + b

and thus c1 = 2a+ 1− b. Easy computations show that

d = 12a2 + 8a. (56)

d1 = −24a− 4− 12a2. (57)

On the other hand from (24) and (25), since KS = OP2(−3), B = OP2(b),
n = 4, and c1 = 2a+ 1− b we get that

d = 8a2 + 8a− 6ab+ 2− 3b+ b2 − 2c2. (58)

and

d1 = −8a2 − 20a+ 10ab− 8 + 8b− 2b2 + 4c2. (59)

Using (56),(57),(58),(59) we get that b = −2a, c1 = 4a+ 1, c2 = 6a2 + 3a+ 1.
As to the discriminant curve D of our quadric fibration (X,L), we have

D ∈ |2c1 + 4B| = |OP2(2)|.

Example 7.4. Let π : X → P2 × P2 be a double cover of P2 × P2, branched
along a smooth divisor of type (2, 2) and let R ⊂ X be the ramification divisor.
Then R is a smooth hypersurface and π(R) ∈ |2H|, with H = OP2×P2(1, 1).
We have a short exact sequence

0 → π∗T ∗
P2×P2 → T ∗

X → N∗
R/X → 0, (60)

where N∗
R/X is the conormal bundle of R ⊂ X. It comes from a local compu-

tation combined with the fact that N∗
R/X = J /J 2, where J is the ideal sheaf

of R in X. We will use (60) and the short exact sequence

0 → −2R → −R → N∗
R/X → 0 (61)

to determine ci(X). In fact arguing as in [5, Lemma 2.6] (which holds in any
dimension) we see that

c1(X) = π∗(c1(P2 × P2)−H
)
, (62)

c2(X) = π∗(c2(P2 × P2)− c1(P2 × P2)H + 2H2
)
. (63)

Let pi : P2×P2 → P2 be the projection onto the i-th factor. Let p∗1(OP2(1))=H1

and p∗2(OP2(1)) =H2, where H1 and H2 satisfy H3
1 =H3

2 = 0 and H2
1H

2
2 = 1.
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In order to compute ci(P2 × P2) we use the following exact sequence, deriving
from the Euler sequence,

0 → p∗1(OP2)⊕ p∗2(OP2) → p∗1
(
OP2(1)

)⊕3 ⊕ p∗2
(
OP2(1)

)⊕3 →
p∗1(TP2)⊕ p∗2(TP2) = TP2×P2 → 0

and we see that

c1(P2 × P2) = 3(H1 +H2), c2(P2 × P2) = 3(H2
1 +H2

2 + 3H1H2).

Thus

c1(X) = π∗(c1(P2 × P2)−H
)
= π∗(2H1 + 2H2),

c2(X) = π∗(c2(P2 × P2)− c1(P2 × P2)H + 2H2
)
= π∗(2H2

1 + 2H2
2 + 7H1H2).

Let φ = p1 ◦ π : X → P2, which is a classical quadric fibration. To make
it a geometric quadric fibration we consider on X the ample line bundle L :=
π∗(OP2×P2(a, 1)

)
for some positive integer a. Because

KX + 2L = π∗OP2×P2

(
2(a− 1), 0

)
= φ∗OP2

(
2(a− 1)

)
it follows that (X,L) will be a geometric quadric fibration if a ≥ 2.

By (54), after standard computations, we get the canonical equation of Γ,
which is

p

(
1

2
+ u, v

)
=

1

2
(v − 2u)(av − 2u)

(
4u2 − 2(a+ 1)uv + av2 + 1

)
= 0.

Thus the residual cubic C has equation

1

2
(2u− av)

(
4u2 − 2(a+ 1)uv + av2 + 1

)
= 0.

Even in this case the conic γ is irreducioble, provided that a ≥ 2. For such
(X,L) we see that

d = L4 =
(
π∗(OP2×P2(a, 1)

))4
= 2 · 6(aH1)

2H2
2 = 12a2. (64)

Similarly

d1 = 2(−2H1 − 2H2)(aH1 +H2)
3 = −12a2 − 12a. (65)

We now compute the values of ci. Let B = OP2(b) for some integer b.
From (15) we have

2a− 2 = c1 − 3 + b

and thus c1 = 2a+ 1− b.
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On the other hand from (24) and (25), since KS = OP2(−3), B = OP2(b),
n = 4, and c1 = 2a+ 1− b we get that

d = 8a2 + 8a− 6ab+ 2− 3b+ b2 − 2c2. (66)

and
d1 = −8a2 − 20a+ 10ab− 8 + 8b− 2b2 + 4c2. (67)

Using (64), (66), (65), (67) we obtain b = −2a+ 2, c1 = 4a− 1, c2 = 6a2 − 3a
and thus for the discriminant curve D, of our quadric fibration (X,L), we have

D ∈ |2c1 + 4B| = |OP2(6)|.

We like to point out that in Examples 7.2 - 7.4 X is a Fano 4-fold as in
[14, Table 0.3, No. 5, 8, 4, respectively]. For a ≥ 2 (X,L) is a 4-dimensional
geometric quadric fibration over P2 and fits into the situation described by
Proposition 5.4, satisfying the condition p(c1 + b − 1) − 4q = 0 in all three
cases. For instance, in Example 7.2, p = 2, b = − c1

2 + 1, q = c1
4 . On the other

hand, if a = 1 then KX = −2L, hence Γ itself is reducible into 4 parallel lines,
in accordance with [13, Lemma 3.1].

Example 7.5. Let P(E) be the P3-bundle over the Segre–Hirzebruch surface Fe

of invariant e (≥ 0), defined by the rank four vector bundle E = [C0+(e+1)f ]⊕4,
where C0 is a section of self-intersection C2

0 = −e and f a fiber of the bundle
projection Fe → P1. Let π : P(E) → Fe be the projection morphism, let X be
a general element in |2ξ + π∗B|, where ξ denotes the tautological line bundle
of E on P(E), B = aC0 + bf and call φ : X → Fe the restriction of π to X.
Note that KX =

(
− 4ξ+π∗(4C0+4(e+1)f − 2C0− (e+2)f)+2ξ+π∗B

)
X

=(
− 2ξ + π∗((2 + a)C0 + (3e + 2 + b)f)

)
X
. The polarized pair (X,L) where

L = (ξ)X is a geometric quadric fibration over Fe. Using (28) through (33)
and the fact that c1 = 4C0 + 4(e+ 1)f , c2 = 6(e+ 2), we see that the residual
cubic C of the Hilbert curve Γ of (X,L) has equation

2

3
(2u− 3v)(v2 − uv − 2u2 + 2) = 0, (68)

if the base surface is F0 and B = 2C0, and

1

6
(2u− 3v)(5v2 − 8uv − 4u2 + 7) = 0. (69)

if the base surface is F1 and B = OF1 .

8. A unifying perspective

Here we discuss a natural framework in which the residual cubics of Hilbert
curves of geometric quadric fibrations over a smooth surface fit into, offering
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a unifying perspective to many results proved in the previous Sections. To
start with let V be the family of Serre-invariant cubics, see for instance [3,
Section 7]. As observed in Section 2, a cubic C in the complex affine plane of
coordinates u and v belongs to V if and only if it is described by an equation
of type (3), with R3(u, v) and R1(u, v) as in (4) and (5), respectively, for some
complex numbers α, . . . , τ , with (α, β, γ, δ) ̸= (0, 0, 0, 0). So we can look at C
as the point (α : β : γ : δ : σ : τ) of P5 lying outside the line, say Λ, defined by
α = β = γ = δ = 0. Thus we have a natural identification

V = P5 \ Λ. (70)

According to Proposition 5.2, we can identify the reducible C ∈ V with the
points of the quartic hypersurface V ⊂ P5 of equation (46), lying outside Λ.
Let us rewrite the equation of V in the form

f(α, β, γ, δ, σ, τ) = σ2(σδ − τγ) + τ2(σβ − τα) = 0. (71)

Clearly, V contains Λ and also the 3-plane σ = τ = 0. In fact we have

Proposition 8.1. The singular locus Sing(V ) is exactly the 3-plane of equa-
tions σ = τ = 0.

Proof. The assertion follows immediately from the Jacobian criterion. Actually,
from (71) we get

grad(f) = (−τ3, τ2σ,−σ2τ, σ3, 3δσ2 − 2γστ + βτ2,−γσ2 + 2βστ − 3ατ2).

This shows that condition grad(f) = 0 is equivalent to the vanishing of the
first and the fourth components only.

As a consequence of Proposition 8.1 we have that also the singular locus of
V \ Λ is the 3-plane σ = τ = 0, since the latter and the line Λ are skew.

Now we consider another relevant locus in P5. We denote by S the family
of cubics C ∈ V such that the projective closure C contains the point at
infinity P∞ = (1 : n − 2 : 0) and intersects the line at infinity ℓ∞ at that
point transversely. The first condition says that the point corresponding to C
lies on the hyperplane H of equation (36), while the latter means that it
does not belong to the hyperplane h of equation (38), according to the proof
of Proposition 4.2. So S seems the most appropriate locus of V to include
the residual cubics of the Hilbert curves of geometric quadric fibrations as in
Section 2.

Because the coefficients in (1) are rationals, all residual cubics of the Hilbert
curves of our quadric fibrations correspond to rational points of the locus S .
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By definition S is the complement of h in V ∩ H , hence it is a quasi-
projective variety of dimension 4. In fact, noting that both H and h contain Λ,
we have that

S := V ∩ (H \ h) = (P5 \ Λ) ∩ (H \ h) = H \ h. (72)

In particular, S = H . Next, consider

T := {C ∈ S | C has a triple point}. (73)

According to the discussion in Section 4, any C ∈ T has a triple point at
the origin, hence it is reducible into three lines through the origin. Moreover,
since C contains P∞, any such C consists of the line ℓ0 and two other lines
distinct from ℓ0 belonging to the same pencil. Thus T = S(2)(P1 \ {o}), the
second symmetric product of P1\{o} with itself, o representing the line ℓ0, which
is removed from the pencil. Recall that for a C ∈ V , having a triple point at
the origin is equivalent to satisfying the equations σ = τ = 0 with the further
condition that C ∈ H . Removing the intersection with the hyperplane h, this
shows that T is a P2 minus a line, which agrees with the previous description,
since S(2)(P1) = P2. Proposition 8.1 has the following consequence.

Corollary 8.2. We have Sing(V ) ∩ S = T .

Remark 8.1. Since all reducible cubics of S lie in V ∩H , one could be tempted
to think that the singular locus Sing(V ∩H ) is more related to our analysis than
Sing(V ). However, this is not the case, as we will see in a moment. Of course
Sing(V ∩H ) is larger than Sing(V )∩H and using the Jacobian criterion one
can see that it consists of two components. Precisely, Sing(V ∩H ) = T ∪Z ,
where Z is defined by the following three equations: σ = −(n − 2)τ , β =
−(n− 2)

(
2γ + 3(n− 2)δ

)
and α = (n− 2)2

(
γ + 2(n− 2)δ

)
. However

(Z \ T ) ∩ S = ∅, (74)

which says that the component Z is irrelevant for S . To see this, suppose
that C ∈ Z . Then its equation is

(n− 2)2
(
γ + 2(n− 2)δ

)
u3 − (n− 2)

(
2γ + 3(n− 2)δ

)
u2v

+ γuv2 + δv3 − (n− 2)τu+ τv = 0,

where τ ̸= 0 if, in addition, C ̸∈ T . Note that the polynomial at the left hand
side is divisible by (n− 2)u− v, hence the above equation can be rewritten as(
(n−2)u−v

)[
γu

(
(n−2)u−v

)
+δ

(
2(n−2)2u2−(n−2)uv−v2

)
−τ

]
= 0. (75)

This shows that C = ℓ0 + G, where G is the conic described by the factor in
brackets. Looking for the points at infinity of G we immediately see that they
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are Q′
∞ = (1 : n− 2 : 0) and Q′′

∞ =
(
− δ : γ + 2(n− 2)δ : 0

)
, up to renaming.

But Q′
∞ = P∞, the point at infinity of ℓ0, hence C intersects ℓ∞ at P∞ with

multiplicity ≥ 2. Therefore C ̸∈ S .

We can also revisit Proposition 4.3 in the current setting. Let Q ⊂ P5 be
the quadric hypersurface of equation (39). According to Proposition 4.3, the
section of Q with the hyperplane H of equation (36), outside of Λ, that is

Q′ := Q ∩ H \ Λ,

describes the Serre-invariant cubics C such that C∩ ℓ∞ = P∞+2Q∞, whereQ∞
is a point at infinity, distinct from P∞. An immediate check shows that Sing(Q)
is the plane of equations δ = γ = α = 0, and combining them with (36), we see
that Sing(Q) ∩ H = Λ. But Λ is not included in S , hence

Sing(Q) ∩ S = ∅.

On the other hand, replacing α in (39) with its expression provided by (36)
we get an equation in β, γ, δ, mute in σ and τ , representing a quadric hy-
persurface of P4, say Q′′, which is the image of Q′ in the hyperplane Π
of equation α = 0 via the projection ρ : P5 \ {A} → Π from the point
A = (1 : 0 : 0 : · · · : 0) ∈ P5. A straightforward computation shows that
the singular locus of Q′′ in the hyperplane Π is described by the equations
β = γ = δ = 0, i.e. Sing(Q′′) = Λ. So, coming back to Q′ through the
projection ρ to describe Sing(Q′), we see that

Sing(Q′) ∩ S = ∅.

To complete the picture it remains to understand which loci of Q′ represent
the different kinds of cubics C fitting in Proposition 4.3. They are:

1) Serre-invariant cubics (the general being irreducible) passing through P∞
and with a node on ℓ∞, not in P∞;

2) reducible Serre-invariant cubics passing through P∞ and having a double
intersection with ℓ∞, not in P∞.

Now, come back to reducible Serre-invariant cubics. According to Proposi-
tion 5.1, in case 2) we have C = ℓ + γ; moreover, if γ is irreducible, then ℓ
contains O and γ has center in O, due to the Serre invariance, hence it cannot
be a parabola. As a consequence, γ ∩ ℓ∞ consists of two distinct points. Since
we are dealing with cubics C such that C ∩ ℓ∞ = P∞ + 2Q∞, we have that
ℓ ̸= ℓ0 and γ is a hyperbola whose asymptotes are ℓ0 and the line < O,Q∞ >.
In this case C intersects ℓ∞ with multiplicity one in P∞ and two in Q∞. Note
that for these cubics C, the admissible conics γ constitute a pencil; however,
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since Q∞ can vary on ℓ∞, with the only restriction of being different from P∞,
the family of such conics depends on two parameters. In addition, the line ℓ
moves in a pencil, since it has to contain O. Therefore the family of cubics C
of this type is 3-dimensional. Let us call this case 2a). Clearly, case 2) also
includes the following two possibilities.

2b) ℓ = ℓ0 and γ consists of two lines through O. This is the situation in
which C has a triple point, i.e., C ∈ T . We already know that this is a
2-dimensional family.

2c) ℓ = ℓ0 again, but C has no triple points. In this case, according to
Proposition 5.1(b), γ consists of two parallel lines ℓ′ and ℓ′′ with direc-
tion corresponding to Q∞ (and obviously symmetric with respect to O).
This family too has dimension 2, as one can see from the following com-
putation.

Concerning the dimensions of the various families, we note the following. We
know that case 1) is effective, as [6, Example 6.3] shows. Suppose that the node
is Q∞ = (−b : a : 0) and for simplicity, to treat equations in affine coordinates,
call m = −a/b the slope; then Q∞ = (1 : m : 0). The equation of C, in
homogeneous coordinates u, v, w is

f0 := f0(u, v, w) = αu3 + βu2v + γuv2 + δv3 + σuw2 + τvw2 = 0.

Imposing the vanishing of the three partial derivatives of f0 evaluated at Q∞,
we get the following system:{

f0,u = 3α+ 2βm+ γm2 = 0

f0,v = β + 2γm+ 3δm2 = 0.
(76)

Note that we get only two nontrivial equations, since the derivative of f0 with
respect to w evaluated at any point of ℓ∞ is zero, because only the last two
terms of f0 contain w, and in fact only w2. Equivalently, the homogeneous
equation of the tangent line to C at any of its points at infinity does not contain
w, hence it passes through O (cf. [3, Theorem 3.4]). Now, the occurrence of a
singular point of C at Q∞ is equivalent to the fact that m is a common root of
both equations in (76), This happens if and only if the resultant Res(f0,u, f0,v)
of the two polynomials in m at the left hand side of the two equations vanishes.
On the other hand,

Res(f0,u, f0,v) =

∣∣∣∣∣∣∣∣
γ 2β 3α 0
0 γ 2β 3α
3δ 2γ β 0
0 3δ 2γ β

∣∣∣∣∣∣∣∣ ,
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which, up to the multiplicative factor 3, is given by

F := 4αγ3 + 4β3δ − β2γ2 + 27α2δ2 − 18αβγδ.

An easy check shows that this quartic polynomial is irreducible. It defines a
quartic hypersurface in P5 and then the locus of the cubics C as in 1) corre-
sponds to the section of the quadric Q′ with the quartic of equation F = 0. In
particular this says that the family corresponding to case 1) depends on three
parameters. This is in accordance with the following fact: Serre-invariant cu-
bics passing through P∞ depend on 4 parameters (general point of the hyper-
plane H ) and imposing a singularity at a point that can vary on ℓ∞ requires
only one condition; hence the dimension is 4 − 1 = 3. We already said about
the dimensions of the families corresponding to cases 2a) and 2b), hence we
come to case 2c). Since ℓ0 is fixed, having equation (n − 2)u − v = 0, C is
determined by the slope of ℓ′ (the same as that of ℓ′′) and e. g. the distance
between ℓ′ and ℓ′′; hence the family depends on two parameters. In fact, letting
Q∞ = (−a : b : 0), ℓ′ has equation bu + av − c = 0 for some c ∈ C, and then
the equation of C has the form:

[(n− 2)u− v][(bu+ av)2 − c2] = 0.

Therefore C depends on the two parameters m := −b/a and c/a. In conclusion,
letting Fi) denote the family of the cubics C as in case i), where i = 1, 2a, etc.,
we have

dim[F1)] = dim[F2a)] = 3, while dim[F2b)] = dim[F2c)] = 2.
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