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INTRODUZIONE 

 

Le tecnologie di sequenziamento di nuova generazione e la loro applicazione in ambito 

trascrittomico di organismi non-modello 

 

Prima dell'avvento delle nuove tecnologie di sequenziamento denominate di “nuova generazione” 

(NGS, dal termine inglese “Next Generation Sequencing”), la tecnologia di sequenziamento 

storicamente più utilizzata è stata la tecnologia Sanger. 

Questa tecnologia, chiamata anche metodo della terminazione della catena, è stata sviluppata da 

Frederick Sanger nel 1977 (Sanger et al., 1977) e, data l'alta efficienza e la bassa radioattività,  ha 

riscosso subito un enorme successo. 

Negli anni questa tecnologia è stata inoltre migliorata con l'utilizzo dell'elettroforesi capillare che ha 

permesso una maggior accuratezza e velocità di sequenziamento. 

Solamente da quando Roche Diagnostic rilasciò, dopo l'acquisizione della 454 Life Scienze, il primo 

sequenziatore GS20 nel 2005 le tecnologie di sequenziamento di nuova generazione si sono rese 

disponibili. 

Oltre ad un perfezionamento e miglioramento della tecnologia 454, negli anni immediatamente 

successivi si sono affacciate sul mercato anche altre piattaforme come Illumina, con il Genome 

Analyzer I nel 2007, e Solid della Applied Biosystem nel 2008. 

Queste innovative tecnologie, oltre ad aumentare la velocità di sequenziamento riducendone 

simultaneamente i costi, hanno anche portato un elevato aumento di produttività. 

Questa maggior produttività, motivo per cui queste tecniche vengono definite spesso “high 

throughput sequencing” (HTS), deriva dal sequenziamento in parallelo di un gran numero di molecole 

di DNA. 

Queste piattaforme inoltre, seppur diverse nella biochimica di sequenziamento, utilizzano un 

protocollo concettualmente simile. 

Innanzitutto vi è una fase di ancoraggio, in cui le singole molecole di DNA  vengono immobilizzate 

su di un supporto solido, seguita da diversi cicli di amplificazione tramite PCR su fase solida, con 

cicli ripetuti di lavaggio e scansione (“wash-and-scan”), 
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Nel processo di sequenziamento “wash-and-scan” le molecole ancorate al supporto solido sono 

immerse in reagenti, come nucleotidi marcati, in modo che i nucleotidi vengano incorporati nelle 

eliche di DNA. Dopo aver fermato l'incorporazione l'eccesso di reagente viene eliminato, viene 

scansionato il supporto per identificare quale base è stata incorporata e, infine, la nuova base 

incorporata viene trattata in modo da preparare il template di DNA per il successivo ciclo “wash-and-

scan”. 

Una descrizione dettagliata della chimica di questi metodi di sequenziamento esulano dallo scopo di 

questa tesi e, per un approfondimento delle tecnologie NGS,  si rimanda quindi a specifiche review 

sull'argomento. (Shendure and Ji, 2008) 

Questi supporti, dove il DNA è ancorato, possono avere un elevatissima densità di frammenti di DNA 

portando una processività che, ad esempio nel caso dello strumento Illumina HiSeq 2500,  può 

generare in un unica corsa fino a 600 gigabasi di dati di sequenze. 

A causa di questi cicli, e a seconda della metodica di sequenziamento scelto, le operazioni possono 

impiegare da alcune ore a diversi giorni (Tabella 1). 

Poiché il rendimento per ogni passaggio è inferiore al 100%, una popolazione di molecole diventa 

più “asincrona” per ogni base aggiunta. Questa perdita di sincronicità, chiamata “dephasing” causa 

un incremento nel rumore di fondo ed un aumento di errori di sequenziamento durante l'estensione 

delle reads. 

Il dephasing, oltre a rendere la gestione dei dati più difficoltosa, è anche alla base della limitata 

lunghezza delle sequenze prodotte dai sequenziamenti NGS rispetto al sequenziamento Sanger.  

(Schadt et al., 2010) 

Recentemente si sono rese disponibili tecnologie di sequenziamento denominate di “terza 

generazione” che, seppur basate anch'esse sulla metodica “wash-and-scan”, non necessitano di una 

fase di PCR prima del sequenziamento e si basano principalmente sul fatto che il segnale è catturato 

in tempo reale ed è monitorato durante la reazione enzimatica di aggiunta di nucleotidi nell'elica 

complementare. 

Grazie a queste caratteristiche le tecnologie di terza generazione, tra le quali ad esempio la Ion 

Torrent, permettono di avere una velocità di esecuzione maggiore e, essendo più stabili, sembrano 

avere un'accuratezza maggiore rispetto alle tecniche di seconda generazione. 

Anche in questo caso, per un approfondimento della chimica delle tecnologie di terza generazione 

rimando a pubblicazioni specifiche. (Schadt et al., 2010) 
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Sequenziatore 454 Gs FLX+ Illimina HiSeq 2500 Solidv4 

Metodica di 

Sequenziamneto 

Pyrosequencing Suquencing by 

synthesis 

Ligation and two-base 

coding 

Lunghezza di Reads 1000pb 100-150pb paired-end 50+50pb 

Accuratezza 99,997% 98% 99,94% 

Numero di Basi 700M 600Gb (100Pe) 90Gb 

(150Pe) 

120 Gb 

Tempo di Esecuzione 23 Ore Da 3 a 10 giorni Da 7 a14 giorni 

Costo per milione di 

basi 

 

10$ 0.07$ 0.14$ 

Vantaggi Velocità e lunghezza 

delle reads 

Numero di basi 

prodotte 

Qualità delle Reads 

Svantaggi Costo, processività Lunghezza delle reads Lunghezza delle reads 

Tabella 1: Vantaggi, costi e maccanismi di sequenziamento delle tecnologie di sequenziamento di 

nuova generazione 

 

Queste tecniche di sequenziamento sono state recepite dalla comunità scientifica molto rapidamente 

ma se nei primi anni le tecnologie 454 e Illumina si sono divise quasi equamente il mercato, 

ultimamente appare chiaro come quest'ultima sia la tecnologia che più di ogni altra viene utilizzata 

(Figura 1). 

Le metodiche NGS non solo hanno portato degli enormi vantaggi nel sequenziamento genomico ma 

anche, sopratutto grazie alla tecnologia denominata RNA-seq, una vera e propria rivoluzione in 

campo trascrittomico. 
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Questa tecnologia denominata anche “Whole Transcriptome Shotgun Sequencing” (WTSS), basata 

sul sequenziamento del cDNA, permette di ottenere ottenere informazioni sull'mRNA espresso e di 

assemblare de novo interi trascrittomi. 

 

 

 

La possibilità di produrre un assemblaggio trascrittomico de novo, senza la necessità di avere 

informazioni genomiche pregresse, ne ha fatto uno strumento di eccellenza nello studio di organismi 

non-modello. 

Il sequenziamento trascrittomico per gli organismi non-modello è, inoltre, diventata negli ultimi anni 

molto utilizzato grazie ai suoi costi relativamente contenuti e alla minor necessità di potenza di 

calcolo rispetto alla gestione di un sequenziamento genomico. 

Nonostante i dati ottenibili siano inferiori rispetto al sequenziamento genomico, le informazioni 

trascrittomiche possono essere utilizzate in una grande varietà di studi biologici come lo studio dei 

livelli di espressione genica, studi riguardanti i profili d'espressione dopo uno specifico trattamento, 

l'individuazione di isoforme di splicing alternativi, l'identificazione di trascritti di fusione o di 

espressioni strand-specifiche. (Dillies et al., 2012) 

Oltre a permettere di avere un accesso diretto alle sequenze codificanti di molti geni, infatti, la 

tecnologia RNA-seq, ci consente di avere informazioni sui loro livelli di espressione relativi. 

 

Figura 1 Confronto tra le 4 principali piattaforme NGS (ABI Solid, 454 Life Science, Illumina e Ion-torrent) negli 

ultimi 6 anni. Il numeri di dati sono ricavati dagli esperimenti depositati negli archivi SRA 
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La WTTS permette anche di superare alcune problematiche tipiche della tecnologia microarray. 

Quest'ultima, infatti, necessita di informazioni pregresse sulla sequenza genomica e di avere a 

disposizione una quantità elevata di sequenze per effettuare la cross-ibridazione. 

Rispetto all'RNA-seq, il microarray presenta un inferiore range dinamico di rilevamento, a causa sia 

del segnale di background che della saturazione del segnale, e pone dei problemi di comparazione nei 

livelli di espressione tra differenti esperimenti che rendono necessario l'utilizzo di appositi metodi di 

normalizzazione. 

L'RNA-Seq permette, al contrario, di avere un'intera panoramica su tutti i trascritti espressi in un 

tessuto, senza dover necessariamente avere informazioni genomiche pregresse, e permette di 

calcolare il livello di espressione assoluto di un trascritto senza segnali di background. 

Oltre a questi vantaggi l'RNA-Seq, richiede una minor quantitativo di RNA di partenza, ha un range 

dinamico per lo studio dell'espressione genica maggiore e possiede un elevato livello di 

riproducibilità. (Wang et al., 2009) 

 

Problematiche legate all'elaborazione di dati RNA-seq 

Le sequenze prodotte da NGS necessitano, nel caso in cui non sia disponibile una genoma o un 

trascrittoma di riferimento, di essere assemblate tra loro per ottenere le predizione geniche. 

L'assemblaggio delle corte sequenze derivanti dal sequenziamento (reads) pone numerosi problemi, 

non ultimo l'enorme potenza di calcolo necessaria per gestirle. 

Se da un lato sembrerebbe essere più semplice la gestione di sequenze trascrittomiche rispetto a 

sequenze genomiche, poiché i livelli di ripetizioni sono minori nelle regioni codificanti, in realtà 

l'assemblaggio e l'analisi di questo tipo di sequenze porta con se un elevato numero di problematiche. 

Innanzitutto le sequenze trascrittomiche sono molto meno informative delle genomiche, a causa della 

mancanza di regioni introniche, e questo pone particolari problemi nello studio di famiglie 

multigeniche che risultano essere più difficili da identificare. 

Poiché i geni meno espressi sono molto meno rappresentati da corrispondenti reads vi è una differente 

copertura dei vari trascritti che pone dei problemi durante l'assemblaggio in cui le sequenze con bassa 

copertura sono più difficilmente assemblabili rispetto ai trascritti altamente espressi. 
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L'assemblaggio di dati  trascrittomici è ulteriormente complicata dalla presenza di splicing alternativi 

che, a seconda dei parametri scelti per l'assemblaggio, possono essere messi più o meno in evidenza. 

Un altro problema tipico della gestione di trascrittomi è dato dai software di assemblaggio. 

La quasi totalità di assembler disponibili sono stati creati per l'assemblaggio di genomi e devono 

quindi  essere utilizzati con particolare attenzione per l'assemblaggio trascrittomico. 

E' possibile evidenziare tre fattori che maggiormente incidono sulla difficolta d'utilizzo di assembler 

non specifici. 

Innanzitutto, i programmi di sequenziamento genomico utilizzano la differenza di copertura per 

discernere le regioni altamente ripetute e quindi non riescono a gestire correttamente le ampie 

differenze di copertura dei dati trascrittomici. 

Le sequenze di RNA-Seq, inoltre, sono solitamente strand-specifiche mentre gli assembler genomici 

sono sviluppati per gestire sequenze both-stands e non utilizzano, quindi, le informazioni 

sull'orientamento per risolvere i problemi di overlapping.   

Infine, gli assembler genomici hanno difficoltà nel gestire strutture ripetute portando quindi notevoli 

problemi nell'analisi trascrittomica in cui varianti di uno stesso gene possono condividere lo stesso 

esone. 

Tutti questi problemi portano, nell'assemblaggio de novo  da sequenze di RNA-seq, la produzione di 

vari tipi di errori di predizione, tra i quali: chimere, frammenti genici, alleli non assemblati e 

assemblaggi di paraloghi. 

Risulta quindi chiaro come la gestione di queste sequenze debba essere effettuata con particolare cura. 

 

Software di assemblaggio e analisi 

Nel corso di questo dottorato è stata messa a punto una pipeline che permette, fondendo assieme i 

contig derivanti da diversi programmi di sequenziamento, di ovviare parte dei problemi citati. 

Non avendo lavorato su organismi modello, ne su organismi dei quali era già disponibile un genoma 

o un trascrittoma di riferimento, in una prima fase le reads di tutti gli organismi studiati sono state 

assemblate. 
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Prima di poter procedere all'assemblaggio le sequenze sono state state filtrate utilizzando il software 

CLC Genomic Workbench (http://www.clcbio.com), in modo da eliminare sequenze a bassa qualità 

o parti di sequenze contenenti adattatori utilizzati nel protocollo di sequenziamento. 

In un primo momento gli assemblaggi sono stati quasi esclusivamente elaborati da una workstation 

con 74gb di RAM, presente all'interno del laboratorio in cui ho svolto il dottorato. 

Nonostante l'ingente quantitativo di RAM in dotazione alla macchina solamente alcuni degli 

assembler disponibili riuscivano a completare la fase d'assemblaggio a causa dell'elevato numero di 

sequenze a nostra disposizione, 

Inizialmente abbiamo testato alcuni assembler sviluppati appositamente per le corte reads di nuova 

generazione, alcuni basati sull'algoritmo Overlap-Layout-Consensus (OLC), come Newbler e Mira, 

altri sull'utilizzo di grafici de Bruijn (DBG), come il CLC Genomic Workbench. 

I test di assemblaggio sono stati fatti utilizzando reads ibride, proveniente, cioè, da diverse tecnologie 

di sequenziamento. 

Dopo alcuni test è stato subito evidente come solamente il software CLC Genomic Workbench 

riuscisse a gestire le sequenze a nostra disposizione nelle nostra workstation con risultati 

soddisfacenti. 

Una delle caratteristiche peculiari di questo software proprietario è, oltre all'utilizzare un quantitativo 

di RAM inferiore rispetto ai software concorrenti, la sua velocità di assemblaggio che ci ha permesso 

di elaborare fino a 450 milioni di reads in poche ore. 

Un altro vantaggio di questo software è dato dall'immediatezza d'utilizzo, della facilità con cui è 

possibile visualizzare i mapping delle sequenze sui contig creati e dalla possibilità di creare 

facilmente delle statistiche d'assemblaggio. Queste caratteristiche permettono di avere subito una 

stima della qualità dell'assemblaggio ottenuto. 

Sfortunatamente per riuscire a garantire una così alta velocità d'esecuzione, unita ad una modesta 

richiesta di potenza di calcolo, il software CLC Genomic Workbench ha, nei confronti di altri 

assembler, una sensibilità più bassa e non riesce a riconoscere alcuni overlaps tra le reads. 

Pur utilizzando una metodica DBG il CLC Genomic Workbench non permette di modificare la 

dimensione dei K-mears per cui non è possibile scegliere il rapporto tra sensibilità e velocità. 
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Questo software infine gestisce con difficoltà sequenze che presentano un elevato numero di 

ripetizioni e tende a ridurre la complessità degli assemblaggi fondendo varianti simili (possibili 

paraloghi, varianti alleliche o splicing alternativi) in un’unica sequenza consensus. 

Rispetto ad altri assembler, inoltre, non garantisce lo stesso numero di contig creati ne l'utilizzo dello 

stesso numero di reads. (Kumar and Blaxter, 2010) 

Poiché la scelta dell'assembler era stata limitata dalla potenza di calcolo dei nostri computer è stato 

richiesto un accesso al cluster DIAG, una griglia di computer in cloud fondata dalla National Science 

Foundation, messo a disposizione dall'università del Maryland. 

Grazie alla potenza di calcolo a disposizione (125 nodi bi-processore con 48Gb di ram per nodo) sono 

riuscito ad utilizzare un assembler specificatamente sviluppato per la gestione di sequenze di RNA-

Seq, sviluppato dal Broad Institute, chiamato Trinity (Grabherr et al., 2011) 

Questo software, basato anch'esso sull'utilizzo di grafi de Bruijn e già preinstallato in DIAG, 

garantisce, rispetto al CLC, una maggiore percentuale di reads mappate e la possibilità di scegliere 

con più libertà i singoli parametri d'assemblaggio. 

 

Quanto si effettua un sequenziamento trascrittomico, i livelli d'espressione dei differenti geni sono 

determinati dal conto del numero di reads mappate in un'entità biologica (per esempi un gene) e dalla 

normalizzazione di questo numero di reads, basata sulla lunghezza del gene preso in esame e il 

numero totale di reads mappate sul campione. 

Solitamente i livelli di espressione sono quindi indicati in “Reads Per Kilobase per Million mapped 

reads” (RPKM), ossia  le conte sono divise per la lunghezza dei trascritti in kilobasi e moltiplicate 

per il numero totale delle reads mappate, espresse in milioni. 

Questo dovrebbe permettere la comparazione dei livelli di espressione sia tra geni di lunghezza 

differente che tra campioni di diversa profondità di sequenziamento. 

Recentemente questo tipo di normalizzazione è stata messa in discussione in alcune pubblicazioni per 

cui nello studio di cambiamenti di livelli d'espressione fatti durante questo dottorato sono stati 

utilizzanti anche altri metodi statistici. (Wagner et al., 2012) 

Per effettuare un'analisi dei livelli d'espressione è necessario che le reads vengano allineate sulle 

sequenze contigue create dall'assemblaggio. 
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A momento sono disponibili più di 60 di questi software che permettono l'allineamento, denominati 

mapper. 

La maggior parte di questi software sono stati rilasciati dopo il 2008, e tra questi solamente 9 sono 

specifici per il mapping di dati trascrittomici. (Fonseca et al., 2012) 

Questo gran numero di software disponibili deriva dal fatto che ognuno di questi deve adattarsi alla 

crescente quantità di dati generati dall'NGS cercando di seguire lo sviluppo dei nuovi protocolli e 

delle nuove tecnologie. 

La scelta del miglior mapper deve tener conto non solo della tecnologia specifica per cui un 

determinato mapper è stato creato (DNA, RNA, miRNA) ma anche deve tener conto della piattaforma 

di sequenziamento che ha generato tali dati. 

Come già spiegato in precedenza, a causa del “dephasing”, nella piattaforma Illumina, ad esempio, 

l'accuratezza di sequenziamento decresce con l'aumentare del numero di cicli, quindi verso l'estremità 

3' di ogni sequenza sono presenti basi meno affidabili. 

Alcuni mapper, come ad esempio Bowtie2, tenendo conto dell'inferiore affidabilità nelle estremità, 

possono tagliare alcune basi per cercare di contrastare questo problema (Langmead and Salzberg, 

2012). 

Non tutti i mapper riescono, inoltre, a gestire le sequenze paired e, quindi, scegliendo il software 

sbagliato si rischierebbe di perdere quest'utile informazione che permetter di migliorare la rilevazione 

degli errori di allineamento e di migliorarne sensibilità e specificità. 

Visti gli enormi numeri di sequenze che vengono generate dalle più recenti tecnologie di 

sequenziamento è, inoltre, preferibile che i mapper, così come gli assembler, possano nativamente 

essere essere eseguiti in parallelo, come ad esempio in cluster composti da molti computer . 

Durante il mio lavoro di dottorato si è scelto di utilizzare due diversi mapper. 

Se il numero di sequenze era gestibile da una sola macchina ho scelto di utilizzare il software CLC 

Genomic Workbench data la sua velocità e la facilità con cui è subito possibile avere una visione 

d'insieme della qualità del mapping e dei possibili errori. 

Quando il numero di reads non era gestibile dalla workstation del nostro laboratorio, ho scelto di 

utilizzare Bowtie2 sul cluster DIAG. 

Questo software gratuito oltre a poter essere eseguito usando computer con memoria condivisa 

permette, a differenza di altri mapper, che pongono delle limitazioni sul numero di mismatch/gaps 
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per aumentare l'efficienza computazionale, di avere una piena libertà di scelta sui parametri di 

mapping. 

Per identificare i geni differenzialmente espressi, sono stati utilizzati DEGSeq (Wang et al., 2010) e 

edgeR (Anders and Huber, 2010) due pacchetti del software di analisi bioinformatiche Bioconductor 

(http://www.bioconductor.org) che utilizza il linguaggio di programmazione statistico R 

(http://www.r-project.org). Sia DEGseq che EdgeR, pur con alcune differenze, usano un test statistico 

simile, basato sulla distribuzione binomiale negativa, chiamata anche distribuzione di Pascal. 

I dati provenienti da questi due programmi, inoltre, sono facilmente utilizzabili e confrontabili usando 

una pipeline che automatizza i passaggi di analisi e le comparazione dei risultati denominata DEB 

(Yao and Yu, 2011). 

 

 

Figura 2 Rappresentazione grafica di come varie strategie di assemblaggio e filtraggio sono stati applicate per 

ottenere trascritti non ridondanti di alta qualità. C = contig, S = singoletti 

http://www.bioconductor.org/
http://www.r-project.org/
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Un'ulteriore fase nell'analisi di sequenze NGS è l'annotazione delle sequenze ottenute 

dall'assemblaggio per cercare di dal loro un significato biologico. 

I software utilizzati in questa fase sono basati sulla ricerca di analogie di sequenze (es. Blast) tra le 

sequenze e i dati depositati su vari database biologici e su modelli probabilistici basati su profili 

Markoviani (es. HMMER). 

Per la gestione dei file risultanti da queste analisi si è resa necessario la creazione di programmi e 

script ad-hoc per la loro gestione. Per la quasi totalità degli script creati sono stati utilizzati i 

linguaggio di programmazione Python (http://www.python.org) e Perl (http://www.perl.org), e le 

corrispettive librerie bioinformatiche Biopython (http://biopython.org) e BioPerl 

(http://www.bioperl.org). 

Per la durata del dottorato, inoltre, ho fatto un largo uso della la metodica chiamata bash-scripting 

che sfrutta le potenzialità della shell unix Bash. 

Se non diversamente specificato tutti gli script e i programmi in Python e Perl citati in questa tesi 

sono stati da me sviluppati appositamente durante il dottorato. 

Con l'utilizzo degli script sviluppati è stato possibile creare nuove strategie di annotazione e testare 

vari metodi di assemblaggio confrontando e filtrando i vari risultati ottenuti. (Figura 2) 

 

Tabella 2: Tabella riassuntiva degli organismi studiati, dati ottenuti dal sequenziamento e statistiche d'assemblaggio. * 

I dati si riferiscono ad un assemblaggio non ancora filtrato 

 Mytilus 

galloprovincialis 

Ruditapes 

philippinarum 

Procambarus 

clarkii 

Astacus 

leptodactylus 

Latimeria 

menadoensis 

NGS Sanger, 454, 

Illumina 

454 Illumina Illumina Illumina 

Reads 297.948.875 

 

1.288.514 83.170.732 445.265.969 145.435.156 

Contigs 206377* 81.410 81.231 91.732 66.308 

Media 555* 647 1.036 754 626 

N50 586* 755 1.860 1.277 1.761 

Trascritto 

più lungo 

21101* 8.748 20.419 23.528 20.815 

http://www.python.org/
http://www.perl.org/
http://biopython.org/
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In questa tesi si descrivono le applicazioni di next-generation sequencing a 5 organismi non-modello. 

Gli organismi presi in esame sono stati: Mytilus galloprovincialis, Latimeria menadoensis,   

Pontastacus leptodactylus, Procambarus clarkii e Ruditapes philippinarum. 

Per la maggior parte degli organismi i dati provenivano da sequenziamento Illumina, tranne per R. 

philippinarum, per cui è stato eseguito un sequenziamento 454 e M. galloprovincialis di sono stati 

generati dati derivanti da sequenziamento Sanger, 454 e Illumina. (Tabella 2) 

Questi lavori hanno permesso di sviluppare dei database di trascritti espressi nei vari organismi 

tramite assemblaggio de novo e hanno permesso di effettuare degli studi di espressione genica negli 

individui sottoposti a stimoli diversi. 

I database creati rappresentano inoltre un’enorme risorsa che permetterà di allargare gli argomenti di 

studio sugli organismi sequenziati. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

17 
 

PRODUZIONE SCIENTIFICA DEL CANDIDATO 

 

In questa sezione sono presentati i testi originali e integrali, in lingua inglese, che sono stati  prodotti 

a partire dal lavoro del candidato. 

Per ciascuno degli organismi verrà presentata una breve introduzione in italiano del lavoro di analisi 

informatica svolta. 

Di seguito la lista dei lavori allegati, divisi per organismo. 

 

Mytilus galloprovincialis: 

 

Gerdol M, De Moro G, Manfrin C, Milandri A, Riccardi E, Beran A, Venier P, Pallavicini A: RNA-

seq and de novo digestive gland transcriptome assembly of the mussel Mytilus galloprovincialis 

provide insights on mussel response to paralytic shellfish poisoning. Manuscript in preparation 

2013. 

 

Gerdol M, Manfrin C, De Moro G, Figueras A, Novoa B, Venier P, Pallavicini A: The C1q domain 

containing proteins of the Mediterranean mussel Mytilus galloprovincialis: A widespread and 

diverse family of immune-related molecules. Developmental & Comparative Immunology 2011, 

35(6):635-643. 

 

Gerdol M, De Moro G, Manfrin C, Venier P, Pallavicini A: Big defensins and mytimacins, new 

AMP families of the Mediterranean mussel Mytilus galloprovincialis. Developmental & 

Comparative Immunology 2012, 36(2):390-399. 

 

Domeneghetti S, Manfrin C, Varotto L, Rosani U, Gerdol M, De Moro G, Pallavicini A, P. V: How 

gene expression profiles disclose vital processes and immune responses in Mytilus spp. ISJ - 

Invertebrate Survival Journal 2011, 8(2). 
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Manfrin,C., De Moro,G., Torboli1, V., Venier, P., Pallavicini, A., Gerdol, M. Physiological and 

molecular responses of bivalves to toxic dinoflagellates. ISJ - Invertebrate Survival Journal 9; 

2012, 9(2). 

 

Latimeria menadoensis.: 

 

Pallavicini A., Canapa, A., Barucca, M., Alfoldi, J., Biscotti M.A., Buonocore F., De Moro, G., Di 

Palma, F., Fausto, A.M., Forconi, M., Gerdol, M., Makapedua, D.M., Turner-Meier, J., Olmo, E., 

Scapigliati, G., Analysis of the transcriptome of the Indonesian coelacanth Latimeria 

menadoensis. BMC Genomics, submitted. 2013 

 

Forconi,M., Canapa, A., Barucca, M., Biscotti M.A., Buonocore, Fausto, A.M., Makapedua, D.M., 

Pallavicini, A., Gerdol,M., De Moro, G., Scapigliati, G., Olmo, E., Schartl, M., Characterization of 

sex determination and sex differentiation genes in Latimeria. PLoS ONE, accepted. 2013. 

 

Amemiya, C.T., Alföldi, J., Lee, A.P., Fan, S., Brinkmann, H., MacCallum, I., Braasch, I., Manousaki, 

T., Schneider, I., Rohner, N., Organ, C., Chalopin, D., Smith, J.J., Robinson, M., Dorrington, R.A., 

Gerdol, M., Aken, B., Biscotti, M.A., Barucca, M., Baurain, D., Berlin, A.M., Blatch, G.L., Buonocore, 

F., Burmester, T., Campbell, M.S., Canapa, A., Christoffels, A., De Moro, G., Edkins, A.L., Fan, L., 

Fausto, A.M., Feiner, N., Forconi, M., Gamieldien, J., Gnerre, S., Haerty, W., Hahn, M.E., Hesse, U., 

Hoffmann, S., Johnson, J., Karchner, S.I., Lara, M., Levin, J., Litman, G.W., Mauceli, E., Miyake, T., 

Mueller, M.G., Nitsche, A., Olmo, E., Ota, T., Pallavicini, A., Panji, S., Picone, B., Ponting, C.P., 

Prohaska, S.J., Przybylski, D., Saha, N.R., Ravi, V., Ribeiro, F., Sauka-Spengler, T., Scapigliati, G., 

Searle, S.M.J., Sharpe, T., Simakov, O., Stadler, P.F., Sumiyama, K., Tafer, H., Turner-Maier, J., van 

Heusden, P., White, S., Yandell, M., Philippe, H., Volff, J.-N., Tabin, C.J., Shubin, N., Schartl, M., 

Jaffe, D., PostlethwaitJ.H., Venkatesh, B., Palma, F.D., Lander, E.S., Meyer, A., Lindblad-Toh  K., 

Comparative analysis of the genome of the African coelacanth, Latimeria chalumnae, sheds 

light on tetrapod evolution, Nature,  submitted. 2013 

 

Forconi M., Biscotti M. A., Barucca M., Buonocore F, De Moro G., Fausto A. M., Gerdol M., 

Pallavicini A., Scapigliati G., Schartl M., Olmo E., Canapa A., Characterization of purine catabolic 

pathway genes in coelacanths, Journal of Experimental Zoology Part B, accepted. 2013 
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Pontastacus leptodactylus: 

Manfrin, C., Tom, M., De Moro, G., Gerdol, M., Mosco, A., Pallavicini, A., Giulianini1, P.G., 

Hepatopancreatic transcriptome in the crayfish Pontastacus leptodactylus reveals peptidase 

activation and glycolysis suppression following injection of D-crustacean Hyperglycemic 

Hormone. Manuscript in preparation  
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Mytilus galloprovincialis 

 

Nei primi due anni di dottorato l'attenzione è stata rivolta quasi esclusivamente nella gestione e nel 

l'elaborazione di sequenze trascritte di Mytilus galloprovincialis ottenute mediante diverse tecniche 

di sequenziamento. 

Il materiale da cui sono partito era composto da 24.896 sequenze Sanger, 150.857 sequenze ottenute 

con la metodica di pirosequenziamento 454 e 108.556.255 sequenze Illumina. 

In questo lavoro sono state sfruttate le più recenti tecnologie di sequenziamento di nuova generazione 

per un esperimento di RNA-sequencing al fine di comparare i profili di espressione genica di mitili 

nutriti con ceppi tossigenici e non-tossigenici dell’alga dinoflagellata Alexandrium minutum. 

Questo dinoflagellato è comunemente associato all'avvelenamento di origine marina chiamato 

Paralytic Shelfish Poisoning (PSP). M. galloprovincialis è in grado di accumulare questo tipo di 

tossine a livelli molto elevati e potenzialmente tossici per il consumo umano. 

Oltre a permettere l'identificazione di un'eventuale risposta trascrizionale nel mitilo, successivamente 

ad un accumulo di tossine paralitiche, questo lavoro ha permesso di costruire un database di sequenze 

espresse nelle ghiandola digestiva di questo organismo. 

A causa della mancanza di un trascrittoma o genoma di riferimento di M. galloprovincialis, infatti, si 

è reso necessario utilizzare tutte le sequenze a nostra disposizione per creare un set come riferimento 

per l'analisi di espressione genica. 

Il materiale genetico per il sequenziamento è stato estratto dalla ghiandola digestiva in due distinti 

tempi sperimentali (24 e 48 ore dall’inizio del’esperimento) da gruppi di 3 mitili trattati con un ceppo 

di Alexandrium minutum produttore di tossine oppure con l'alga non tossica, oltre ad un terzo gruppo 

di mitili di controllo. 

Per prima cosa le sequenze sono state pulite da eventuali adattatori ed è stato fatto un trimming per 

poter eliminare sequenze, o parti di sequenze, a bassa qualità. Questa analisi ha permesso di scartare 

45.254 sequenze per la maggior parte proveniente dalla metodica 454, probabilmente a causa 

dell'intrinseca minor qualità delle sequenze ottenute con questa tecnologia di sequenziamento. 

Le 108.686.754 sequenze risultanti sono state assemblate utilizzando il software CLC Genomic 

Workbench. 

In questa fase del lavoro, infatti, non avevo ancora a disposizione l'accesso al cluster DIAG motivo 

per il quale le scelte dei possibili assembler erano piuttosto limitate. 

Da questa prima fase di assemblaggio ho ottenuto 110.972 contig con una lunghezza media di 590 

basi. 
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Un'ulteriore analisi è stata fatta per ricercare eventuali contig ridondanti tramite l'utilizzo di 

BlastClust, software che permette di raggruppare sequenze tra loro simili. Da questa analisi solamente 

203 contig sono risultati essere ridondanti denotando, così, una buona qualità dell'assemblaggio 

ottenuto. 

E' seguita una fase in cui si sono cercati eventuali contaminanti all'interno del set di sequenze creato. 

Per prima cosa sono state cercate, con il programma BLASTn, eventuali similarità in un database 

contenente sequenze proveniente da dinoflagellati, funghi e piante. 

I potenziali contaminanti sono stati ulteriormente sottoposti ad un'analisi utilizzando un set di 

sequenze del regno Metazoa e successivamente un database di sequenze batteriche. 

Quest'ultimo passaggio si è reso necessario per evitare di scartare sequenze di geni altamente 

conservate che avrebbero potuto essere presenti nel regno animale, vegetale o batterico. 

Anche in questa fase abbiamo ottenuto risultati confortanti poiché meno dell'1% delle sequenze 

risultavano essere potenziali contaminanti. 

Per cercare di eliminare contig derivanti da un errato assemblaggio, sono stati scartati i trascritti 

troppo corti o  con una copertura molto bassa. 

In particolare sono stati mantenuti i contig con una copertura media superiore a 10 reads, formati da 

un almeno 50 reads e con una lunghezza non inferiore a 250 basi. 

Successivamente, i 39.289 contig rimanenti, di lunghezza media pari a 689 pb e con un N50 di 814, 

sono stati annotati utilizzando software pubblicamente disponibili (Blast e InterproScan, HMMER) e 

script da me creati. 

Come prima analisi è stato effettuato un BLASTx mantenendo come cut-off un e-value pari a 1e-5 per 

ricercare eventuali similarità tra i contig e le sequenze contenute nel database proteico, rilasciato 

pubblicamente dall'NCBI, NT/NR. 

Da questa analisi 34.157 sequenze hanno avuto un riscontro positivo. 

I contig sono stati successivamente tradotti in peptidi potenziali usando FrameDP, un software che 

permette di predire sequenze codificanti partendo da sequenze trascrittomiche. 

Poiché nelle sequenze lunghe e con una bassa copertura può presentarsi il problema della 

frammentazione dei trascritti è stato applicato un metodo chiamato “Ortholog Hit Ratio”, metodo che 

permette di stimare l'integrità dei trascritti. 
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I risultati ottenuti dal precedente BLASTx contro database NR sono stati processati dividendo la 

lunghezza della sequenza senza gap della query con la lunghezza del subject. 

A causa della mancanza di genomi completi di bivalvi una corretta predizione della frammentazione 

dei trascritti non è facilmente ottenibile, ciononostante circa il 50% dei contig sono stati assemblati 

con una lunghezza corrispondente ad almeno il 75% dei loro ortologhi. 

 

Un ulteriore analisi è stata effettuata cercando similarità all'interno del database Superfamily, database 

di annotazioni funzionali e strutturali di proteine costruito mediante profili markoviani. 

Per la ricerca all'interno di questo database è stato usato HMMER, software che si basa sull'utilizzo 

di modelli probabilistici anch'essi basati su profili di modelli markoviani nascosti. 

Dai risultati ottenuti da Superfamily è stato possibile, usando un programma Python appositamente 

sviluppato, risalire alle annotazioni corrispondenti di Gene Ontology. 

Questo metodo per l'annotazione Gene Ontology ha permesso di ottenere i risultati in modo molto 

piuttosto rapido, sono stati sufficienti infatti solo poche ore di elaborazione. 

Le sequenze peptidiche sono state, inoltre, analizzate usando una versione locale di InterproScan in 

modo da ricercare eventuali motivi conservati e informazioni funzionali e strutturali. 

Dopo aver terminato l'annotazione delle sequenze nucleotidiche e peptidiche è stato creato un 

database MySQL in modo che tutte le informazioni ricavate fossero facilmente utilizzabili. 

Successivamente si è cercato di identificare eventuali alterazioni nell'espressione genica, in modo da 

evidenziare potenziali geni candidati per il monitoraggio della contaminazione in un evento naturale 

di bloom algale. 

Il mapping che ha permesso di ottenere la lista dei geni con i loro valori d'espressione è stato fatto 

utilizzando il software CLC Genomic Workbench e sono stati utilizzati, come valore d'espressione, 

gli RPKM. 

Per aver una maggior affidabilità statistica le differenze di espressione nei campioni sono state 

analizzate utilizzando edgeR e DEGseq tramite l'utilizzo della pipeline DEB. 

Da questa analisi è stato possibile identificare solamente 16 geni come differenzialmente espressi 

nella ghiandola digestiva degli animali nutriti con il ceppo tossigenico. 

Questi 16 geni, assieme a campioni provenienti da un set più di tempi sperimentali, sono stati oggetto 

di un'analisi con esperimenti di real-time PCR. 
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I profili di espressione derivanti da questa analisi non sono compatibili con i profili che ci 

aspetteremmo da geni responsivi all’accumulo di tossine dimostrando, così, che i geni derivanti 

dall'analisi di RNA-seq sono probabilmente dei falsi positivi. 

L'assemblaggio de novo e l'annotazione del trascrittoma di mitilo ottenuto ha permesso di 

implementare enormemente il precedente database di sequenze trascrittomiche di M. 

galloprovincialis, Mytibase. 

Questo database, formato da 7.112 contig assemblate dalle sole sequenze Sanger, è stato, al momento 

della pubblicazione nel Febbraio 2009, il più grande database di sequenze trascritte di mitilo 

disponibile. (Venier et al., 2009) 

Questo database è stato alla base degli ulteriori studi, presentati in questa tesi, principalmente volti 

allo studio di specifiche famiglie geniche, in particolar modo famiglie proteiche coinvolte 

nell'immunità innata di mitilo, e rappresenta un importante risorsa come supporto per eventuali studi 

genomici futuri. 

Successivamente alla stesura delle pubblicazioni presentate è stato fatto sequenziare RNA 

proveniente da branchia che ha prodotto ha prodotto 189.392.620 reads. 

Con un totale di 298.124.628 di sequenze è stato effettuato un sequenziamento de-novo con Trinity 

che ha portato alla creazione di 222.325 contig. 

Questi contig sono, al momento della stesura di questa tesi, ancora in fase di elaborazione. 
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RNA sequencing and de novo assembly of the digestive gland transcriptome in 

Mytilus galloprovincialis fed with toxinogenic and non-toxic strains of 

Alexandrium minutum 

 

Gerdol Marco1, De Moro Gianluca1, Manfrin Chiara1, Milandri Anna2, Riccardi Elena2, Beran 

Alfred3, Venier Paola4, Pallavicini Alberto1* 

 

Abstract 

 

Paralytic shellfish poisoning (PSP) represents a serious and emerging issue for human health and 

causes severe economic losses worldwide, due to the closure of shellfish aquacultures. Although the 

possible physiological and histopathological effects of PSP on mollusks have been extensively 

studied, they have been only marginally investigated at a molecular level. We used deep RNA 

sequencing to compare gene expression profiles of the digestive gland in Mytilus galloprovincialis 

fed for 5 days with toxic and non-toxic strains of the dinoflagellate Alexandrium minutum. 

The gene expression analysis performed in mussel digestive gland indicated that paralytic shellfish 

toxins (PSTs) scarcely affected mussels, as the few genes identified as possibly differentially 

expressed in response to toxin accumulation were revealed to be false positives by real-time PCR. 

Although not conclusive, the overall absence of gene expression changes supports the classification 

of mussels as bivalves refractory to PSTs and points out that the identification of PSP molecular 

biomarkers in this organism is problematic. Comprehensive de novo assembly of the pre-existing 

mussel ESTs with the new dataset, and bulk re-annotation of the mussel transcriptome, yielded a 

collection of 39,289 consensus sequences with an average length of 689 bp, a basic resource for 

expanding functional genomics investigations in the Mediterranean mussel. 

 

Keywords: Mytilus galloprovincialis, Alexandrium minutum, paralytic shellfish poisoning, harmful 

algal bloom 

 

Abbreviations: PSP: paralytic shellfish poisoning; PSTs: paralityc shellfish toxins; NGS: next 

generation sequencing; STX: saxitoxin; HABs: harmful algal blooms. 
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Introduction 

 

PSP (paralytic shellfish poisoning) is a syndrome associated with the consumption of filter-feeding 

mollusks contaminated with toxins usually produced by various unicellular algae. Although paralytic 

shellfish toxins (PSTs) can be produced by some Cyanobacteria species (Humpage et al., 1994), the 

organisms most commonly associated with PSP are dinoflagellates, such as Alexandrium catenella, 

A.tamarense (Cembella et al., 1987) A. minutum (Hallegraeff et al., 1988), A. cohorticula (Kodama 

et al., 1988), A. fundyense (Schwinghamer et al., 1994), A. ostenfeldii (Hansen et al., 1992), 

Gymnodinium catenatum (Mee et al., 1986) and Pyrodinium bahamense (Gacutan et al., 1985). Filter-

feeding organisms such as bivalve mollusks can accumulate paralytic shellfish toxins (PSTs) at very 

high concentrations and act as lethal vectors of toxins for organisms at higher trophic levels, including 

humans. 

PSTs are structurally similar to STX (saxitoxin) and their paralytic effects depend on their high 

affinity to the neuronal voltage-gated sodium ion channels (Terlau et al., 1991). The binding of STX 

to the channel blocks action potentials, in a similar fashion to tetrodotoxin (Narahashi et al., 1967). 

The symptoms of intoxication in humans are mainly of a neurological nature and include numbness, 

tingling, weakness, shortness of breath and ataxia (James et al., 2010). While recovery is generally 

complete and uncomplicated, in some cases respiratory paralysis and death may occur, especially 

with the consumption of heavily contaminated mollusks (García et al., 2004). 

The widespread occurrence of PSP reflects the broad distribution of the causative algae. In fact, cases 

of PSP toxicity have been extensively reported in Japan (Hashimoto et al., 2002, Okumura et al., 

1994, Takatani et al., 1998), both in the eastern and western coast of Northern America (Gessner and 

Middaugh, 1995, Jester et al., 2009, Shumway et al., 1994) and in Southern America (Álvarez et al., 

2009, Montebruno, 1993), in Britain (Ayres, 1975), and along the Atlantic coasts of the Iberian 

peninsula (Anderson et al., 1989, Bravo et al., 1999) and France (Amzil et al., 1999). Sporadic cases 

have also been described elsewhere, i.e. in the Mediterranean Sea (Lilly et al., 2002, Honsell et al., 

1996, Ujević et al.). According to HAEDAT (The Harmful Algae Event Database, 

http://iodeweb6.vliz.be/haedat), almost 800 blooms of PSP-producing dinoflagellates have been 

recorded worldwide since 1987. 

PSP certainly represents a serious threat for human health (James et al., 2010), but also causes severe 

economic damage to the molluscan industry because of the closure of farming areas affected by the 

algal blooms (Conte, 1984, Anderson et al., 1989). The current toxicity limits set by both EU 

(Regulation (EC) No 853/2004 of the European Parliament) and FDA (Compliance Policy Guide Sec. 

540.250) for human consumption of shellfish is -1 meat. Considering the  

http://iodeweb6.vliz.be/haedat
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ingestion of large quantities of shellfish meat, the European Food Safety Authority established that 

-1, 

in orde -1 body weight (EFSA, 

2009). 

Likewise humans and other vertebrates (Coulson et al., 1968, Geraci, 1989, Kvitek et al., 1991, 

Cembella et al., 2002), certain bivalve species suffer the paralytic effect of PSPs. Shell valve closure, 

siphon retraction and burrowing incapacitation are the most commonly observed effects in susceptible 

species such as Mya arenaria and Geukensia demissa, whereas other species such as Spisula 

solidissima and Modiolus modiolus seem to be completely unaffected (Bricelj et al., 1991). Although 

different species display different behavioral responses to PSP blooms, there is a broad negative 

relationship between the susceptibility to PSTs and the ability to feed on toxigenic algae and to 

consequently bioaccumulate toxins (Bricelj et al., 1991, MacQuarrie and Bricelj, 2008). One of the 

most common behavioral modifications observed in susceptible bivalves is the reduction of filtration 

rate (Gainey Jr and Shumway, 1988, Basti et al., 2009, Nagai et al., 2006) which could be either 

interpreted as a paralytic effect or as a strategy adopted to avoid contamination (Tran et al., 2010, 

Haberkorn et al., 2011). Other mechanisms adopted by susceptible species to reduce the intoxication 

involve accumulation of PSTs in specific tissues (Sagou et al., 2005, Kitts et al., 1992), binding to 

sequestering proteins (Takati et al., 2007), enzymatic or chemical transformation and degradation 

reactions (Tian et al., 2010, Oshima, 1995, Sullivan et al., 1983), even though it is not clear whether 

this latter processes depend on bivalve metabolism or on symbiotic bacteria (Smith et al., 2001, 

Donovan et al., 2008). 

Electrophysiological studies indicated that mussel nerves are insensible to the paralytic effects of 

STX (Twarog et al., 1972, Twarog, 1974). Such a resistance may reflect adaptive evolution to 

recurrent toxic algal blooms (a direct link between the sensitivity to PSTs and frequency of red tides 

has been observed in clam populations) and may be explained by sodium channel mutations leading 

to a decreased affinity to PSTs in resistant populations (Bricelj et al., 2005, Connell et al., 2007). 

Due to the substantial lack of physiological and behavioral changes in response to the feeding with 

PSP-producing dinoflagellates, mussels are considered refractory to PSP (Bricelj et al., 1990, 

Marsden and Shumway, 1993). On the other hand, increased valve closure, decreased filtration rates 

and reduced byssus production have been occasionally observed and these symptoms have been 

associated to the increased mortality of M. edulis fed with toxic A. tamarense (Shumway and Cucci, 

1987, Shumway et al., 1987) and to the extensive histopathological modifications described in blue 

mussels exposed to A. fundyense (Galimany et al., 2008). 
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While the kinetics of toxin accumulation and decontamination in mussels have been thoroughly 

investigated, relatively little attention has been paid to molecular aspects of the mussel response to 

PSP. To the best of our knowledge the only study about the effects of an algal toxin in bivalves ever 

performed at a whole-transcriptome scale concerns a purified okadaic acid (Manfrin et al., 2010). 

Detectable changes occurring in response to toxin accumulation could be used as early warning 

signals of contamination, and reveal which strategy, if any, mussels adopt to cope with significant 

amounts of bioaccumulated PSTs. 

The advent of next generation sequencing has definitely expanded large-scale molecular studies to 

non-model invertebrates (Pérez-Enciso and Ferretti, 2010).  Based on the 454 (Milan et al., 2011, 

Hou et al., 2011, Clark et al., 2010, Craft et al., 2010, Bettencourt et al., 2010, Joubert et al., 2010, 

Philipp et al., 2012), SOLiD (Gavery and Roberts, 2012) and Illumina (Ghiselli et al., 2012) 

technologies, the massive sequencing of bivalve transcriptomes is revealing the molecular basis of 

the functional responses to environmental changes and paving the way to an improved view of the 

evolutionary relationships within mollusks (Smith et al., 2011, Kocot et al., 2011). 

In the present study, we investigated the response of the Mediterranean mussel to PSTs 

bioaccumulated in vivo by comparing the transcription profiles of digestive gland samples from 

animals fed with toxigenic or non-toxigenic strains of the dinoflagellate A. minutum via Illumina 

RNA sequencing. The transcriptional analysis performed on the digestive gland did not reveal useful 

biomarkers of mussel exposure to PST but the overall assembly of the new sequencing reads with 

transcript sequences previously obtained (Venier et al., 2009) significantly enriched the overall 

knowledge of M. galloprovincialis transcriptome, thus helping us to create one of the most relevant 

sequence collection existing to date in the Mollusca phylum. 

 

 

Results and Discussion 

 

Toxin accumulation 

Concentrations of A. minutum varying from 1 to 47 x 106 cells L-1 have been reported in toxic blooms 

(Delgado et al., 1990, Maguer et al., 2004, Garcés et al., 2004, Galluzzi et al., 2004, Van Lenning et 

al., 2007). We exposed adult M. galloprovincialis individuals for five days to 5x106 cells L-1 of the 

PSP-producing A. minutum AL9T strain, a significant but not extreme concentration selected to 

simulate mussel PSP contamination at levels comparable to those commonly observed during PSP-

producing dinoflagellate blooms. Another group of mussels was exposed to identical concentrations 

of the non-toxigenic strain AL1T in parallel. A third group of animals, not subjected to a forced diet 
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based on dinoflagellates, was used as a control. Mussels were sacrificed before daily feeding at seven 

time points during 5 days of intoxication and 6 days of depuration in order to collect digestive glands 

for gene expression analysis and estimate the bioaccumulation of PSTs at selected time points. The 

experimental design is summarized in Table 1 and detailed in Methods. 

According to the HLPC analyses, the A. minutum strain AL9T produced an average concentration of 

76,4 fg STXdiHCleq\cell, whereas the strain AL1T did not produce any toxins, as expected. The 

estimate of toxin bioaccumulation was performed on the soft mussel tissues, after the digestive gland 

was taken apart for RNA extraction. The levels of PSTs in the remaining tissues and estimated on 3 

individuals, resulted to be 

experiment). Visceral organs are known to accumulate approximately 95% of PSTs in mussel (Bricelj 

et al., 1990): considering the removal of the digestive gland, the accumulation of PSTs at T4 could 

-1 

STX eq kg-1). Although accumulation of PSTs was detected also at T1 in the AL9T strain-fed mussels, 

it was not possible to exactly calculate the PSTs concentration in soft tissues deprived of the digestive 

gland, as it was below the limit of quantification of the method used. Nevertheless, time-course 

studies previously published pointed out that mussels accumulate paralytic toxins at very high rates, 

resulting high toxic in the matter of a few hours (Blanco et al., 2003, Bricelj and Shumway, 1998, 

Navarro and Contreras, 2010). 

 

De novo assembly of the digestive gland transcriptome 

The Illumina sequencing of the digestive gland samples (see Table 1), generated 74,470,393 trimmed 

nucleotide reads (129,003 single and 74,341,390 paired-end reads). The average read length was 

97.75 bp, overall equivalent to ~7.4 GB of sequence. Table 2 summarizes the trimming statistics and 

the number of sequenced reads per sample. The raw Illumina reads have been deposited at the NCBI 

Sequence Read Archive (study ID: SRP011280.2). Aiming to refine the data set, the trimmed Illumina 

reads from the whole sample series were preliminarily assembled together with the pre-existing 

Sanger and 454 Life Sciences sequences from various tissues and challenges (18,788 and 115,557, 

respectively) plus an additional set of Illumina reads from the digestive gland of naïve mussels 

(28,186,684). The processing of sequence consensuses was carefully performed to overcome the 

creation of short and low quality or misassembled contigs, a problem commonly arising from the 

assembly of next generation sequencing data (Feldmeyer et al., 2011), and to remove contaminant 

sequences (mainly originated by ingested A. minutum cells). Contig filtering provided a remarkable 

improvement of the assembly quality (Figure 1), producing a shift of the contig length towards higher 

ranges, hence reducing the bias towards short, incomplete contigs. 
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Overall, the final assembly yielded a high quality collection of M. galloprovincialis transcripts 

(39,289 consensus sequences) (Table 2). The average contig length was 689 bp (from 250, the 

minimum length allowed, to 13,211 bp) and the N50 statistic of the assembly was 814. 

 

RNA-seq expression analysis 

The de novo assembly described above generated the reference contigs used for the subsequent 

mapping of RNA-seq data for the expression analysis. Nevertheless, a further filtering step was 

applied prior to analysis in order to remove transcripts whose expression was too low. As a result, 

only 5,523 contigs with a global average coverage higher than 5 were selected. The representation of 

poorly expressed transcripts is highly dependent on the total number of reads obtained from a sample 

and it has been demonstrated that not negligible random variability can occur even between technical 

replicates when the sequence coverage is particularly low (McIntyre et al., 2011). Overall, the 

removal of these contigs guaranteed the achievement of a less noisy dataset, less prone to false 

positive detection. 

Since several different methods for differential expression detection in RNA-seq experiments have 

been developed, based on different mathematical assumptions (Oshlack et al., 2010), we chose to 

perform the statistical analyses with 3 different algorithms, namely EdgeR (Robinson et al., 2010), 

DEseq (Anders and Huber, 2010a) and the Baggerly’s test on proportions included in the CLC 

Genomic Workbench (Baggerly et al., 2003). The analyses revealed a rather low number of genes as 

significantly differentially expressed (FDR <0.01) in the AL9T toxigenic strain-fed mussels both at 

T1 and T4. More in detail, only 20 genes were identified by EdgeR, 65 genes by DESeq and 258 by 

the Baggerly’s test. A schematic representation of the results is summarized in the Venn diagram in 

Figure 2. 

The comparison of the results revealed that only five transcripts were found differentially expressed 

by all the 3 algorithms. These sequences, all up-regulated in the PSP-contaminated mussels (Table 

3), were selected as the most likely PSP-responsive candidate genes. Nevertheless, the functional 

classification could not directly link any of these 5 sequences to PSTs accumulation. More in detail, 

3 contigs were found to have no similarity with other known sequences (and were therefore named 

“transcripts of unknown function”), reflecting the low representation of molluscan sequences in 

public databases and the difficult annotation of poorly conserved sequences. One contigs pertained 

to the C1qDC family which is an extremely large class of immunity-related lectin-like molecules, 

possibly including several hundred genes in bivalves (Gerdol et al., 2011) and representing the largest 

group of sequences expressed in M. galloprovincialis. In this study, the overall abundance of C1qDC 

transcripts is close to 1.5%, with 580 contigs being annotated as containing the C1q domain 
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IPR001073 (Table 4). Finally, one contig was an IMAP family GTPase characterized by the presence 

of AIG1, another domain very common in mussel (IPR006703) (Table 4). 

Despite the important role of these molecules in many different aspects of mussel life, none of them 

could be directly linked to functions related to toxin accumulation, excretion, transport or metabolism. 

 

Real Time PCR 

The real time PCR analysis was performed on samples from all the available time points (T0 to T7, 

see Table 1) to monitor the expression trends of 6 selected transcripts. We selected 3 out of the 5 

sequences identified as differentially expressed by EdgeR, DEseq and the Baggerly’s test (transcript 

of unknown function I and II and C1q domain containing protein I). Furthermore, since the 

involvement in PSP contamination of other genes identified by just one or two of the algorithms (see 

Figure 2), although less probable, couldn’t be completely ruled out, we also selected 1 sequence 

identified by both EdgeR and DEseq (hemicentin 1-like) and 2 exclusively detected by the Baggerly’s 

test (retinol dehydrogenase and C1q domain containing protein II). 

The results confirmed the data obtained by the RNA-seq experiment at T1 and T4, showing 

significantly different expression values in the AL9T strain-fed mussels in all cases, except from 

retinol dehydrogenase at T1 (Figure 3). On the other hand, the analysis also revealed remarkable 

fluctuations in the expression levels of these genes throughout the intoxication and depuration phases, 

apparently independent from the bioaccumulation of PSTs (data not shown). Therefore, the real-time 

PCR analyses, while confirming the experimental data obtained with RNA-seq at T1 and T4, also 

showed that the changes observed were likely the result of random expression fluctuations, leading 

to an apparent responsiveness to PSTs at the two time points analyzed by RNA-seq (T1 and T4). 

Overall, these results suggest that most, if not all, the genes identified as differentially expressed by 

the expression analyses were not connected to PSP accumulation in any way. Therefore, given the 

absence of trustworthy PSP-responsive genes, the accumulation of toxins achieved in our experiment 

likely didn’t produce any remarkable effect on the transcriptomic profile of digestive gland in mussel. 

 

Transcriptome annotation 

Following global assembly, 34,157contigs (86,94%) found BLASTx hit similarity in the NCBI nr 

protein database, with the number of unknown sequences being significantly lower than those 

previously reported for Mytibase (Venier et al., 2009). Not surprisingly, the most represented species 

identified by the top BLAST hits are invertebrates whose genome has been fully sequenced and 

released, namely the cephalocordate Branchiostoma floridae, the hemicordate Saccoglossus 

kovalevskii, the echinoderm Strongylocentrotus purpuratus and the cnidarian Nematostella vectensis 
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(Figure S1). Despite the few Mytilus sequences available in the nr database, M. galloprovincialis 

stands as the fifth top hit species. 

Due to the limited sequence resources available for mollusks in public databases, homologies have 

been investigated in the only fully sequenced molluscan genome available to date, the gastropod snail 

Lottia gigantea (Grigoriev et al., 2012). About half (54%) of the assembled contigs displayed 

significant similarity (e-value < 10-6) to proteins predicted from the snail genome, with highly 

significant e-value (< 10e-50) in the 16% of the cases (Figure S2). 

To address the problem of transcript fragmentation, an ortholog hit ratio analysis was performed 

(O'Neil et al., 2010). Since this measure is strongly influenced by the availability of sequence data 

from closely related organisms, due to evolutionary divergence resulting in sensible 

underestimations, we modified the test of O’Neil ad described in the Methods section, by only 

considering “true orthologs”. The ortholog hit ratios distribution (Figure 4) shows that approximately 

25% contigs were assembled to a length corresponding to >90% of their ortholog. About 40% contigs 

were assembled to less than 50% of their hypothetical full length, pointing out that increased 

sequencing depth and RNA-seq experiments from additional tissues would be required to improve 

full-length transcript reconstruction. 

InterPro domains could be assigned to 17,726 contigs (45% out of the total). The most abundant 

Interpro domains are shown in Table 4. Consistently with the GO assignements (molecular function) 

several of the most abundant domains (i.e. immunoglobulin-like, ankyrin, C1q, etc.) are characterized 

by marked binding properties. 

On the basis of the sequence homologies identified with BLAST and InterPro domains annotations, 

Gene Ontology (GO) terms could be assigned to 17,738 contigs (45%). More in detail 5,634 were 

mapped to a cellular component, 12,290 to a biological process and 14,625 to a molecular function. 

The summary of GO classification is shown in Figure S3. The predominant molecular function was, 

by far “binding”, with catalytic activity as the second most abundant GO term, reflecting the high 

enzymatic activity of the digestive gland, evidence supported by the relevance of “cellular processes” 

and “metabolic processes” among other biological processes, with most transcripts located within the 

cell while only a minority resulted to be located in organelles, macromolecular complexes or in the 

extracellular environment. The high metabolic activity of the digestive gland was also confirmed by 

exploring the level 3 GO terms, as the “primary metabolic process”, “cellular metabolic process” and 

“macromolecule metabolic process” resulted to be the three most abundant categories (Table S4). 
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Comparison with Mytibase 

The sequence data generated by RNA-seq in the present study provide a limited view of the entire 

complement of transcripts expressed in different tissues, different life stages and in response to many 

and fluctuating biotic and abiotic stimuli in M. galloprovincialis, as it has also been highlighted by 

the fragmentation of a relevant proportion of contigs (Figure 4), linked to low coverage. Since the 

digestive gland has already been reported as a tissue characterized by the expression of transcripts 

having all together a broad spectrum of functions,  we mapped the RNA-seq data from the digestive 

gland of mussels fed with A. minutum on Mytibase, a collection of  24,937 Sanger ESTs, assembled 

into 7,112 consensus sequences, derived from different tissues of normal, treated and 

immunostimulated mussels (Venier et al., 2009). 

An overview of the mapping statistics is shown in Figure 5. A large proportion of Mytibase contigs 

displayed an average coverage higher than 100X (33 % of the total) or comprised between 10X and 

100X (39%) whereas a limited number of the Mytibase transcripts was not present (7%) or expressed 

at very low levels (5%, average coverage <1X) in the new dataset, indicating that the large majority 

of the sequence data generated by the previous Sanger sequencing efforts were virtually included 

within the new digestive gland sequence dataset. Compared to the 51% of the Illumina reads finding 

a match on Mytibase sequences, 49% the sequence data could not be mapped and were therefore 

originated from transcripts not included in Mytibase, contributing to the de novo assembly of novel 

transcripts. 

Overall, the sequencing depth applied to this study was high enough to obtain a good coverage also 

of genes expressed at relatively low levels in the mussel digestive gland. Nevertheless, a certain 

number of Mytibase transcripts (7%) not found in the new dataset could be the product of genes 

whose expression is strictly regulated or extremely specific of tissues other than the digestive gland. 

This data, together with the ortholog hit ratio results, suggests that RNA-seq should be performed 

from additional tissues in order to obtain a comprehensive overview of the M. galloprovincialis 

transcriptome. 

The comparison between the relative abundance of specific functional domains within the two 

datasets (de novo assembly vs Mytibase) revealed a perceivable enrichment of many common 

Interpro signatures of Metazoans (e.g. immunoglobulin-like and zinc-finger C2H2, as reported in 

Table 4), most closely approaching the expected frequencies from a complete transcriptome. On the 

contrary, Interpro signatures closely associated to immununity-related functions, such as C1q, C-type 

lectin-like and fibrinogen C-terminal globular domain were under-represented in the new dataset 

compared to Mytibase (see Table 4), additionally confirming Mytibase as a valuable source of 

immune- and defense-related transcripts (Venier et al., 2011). Therefore, the new transcript collection 
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obtained from the RNA-sequencing of the digestive gland integrates and substantially enriches 

Mytibase and provides the basis for specific studies as illustrated by the recent description of novel 

defense peptides using a whole-transcriptome mining approach (Gerdol et al., 2012). 

 

Conclusion 

 

This study provides the first comprehensive analysis of the transcriptional effects of bioaccumulated 

PSTs in a molluscan species (M. galloprovincialis). 

The analysis of the expression profiles revealed that paralytic toxins did not affect mussels, at least 

not at the concentrations reached -1 of meat) which were 

well above the consented limit for human consumption. Most of the previous studies classified 

Mytilids as organisms not responsive to PSP (Bricelj et al., 1990) or just observed a mild early 

response followed by an extremely rapid acclimatization (Blanco et al., 1997, Blanco et al., 2003, 

Fernández-Reiriz et al., 2008) (even though this response could be merely related to the adaptation to 

a different alimentation regime). Our study provided the first molecular lines of evidence supporting 

the classification of mussels as organisms not responsive to PSP, as no significant alteration of gene 

expression was observed in the digestive gland. 

The occasional reports of PSP adverse effects on mussels (Shumway and Cucci, 1987, Galimany et 

al., 2008) did not find any confirmation in our result. Nevertheless, these observations are not 

necessarily contradictory, as different responses could be linked to inter-population variability in the 

sensitivity to PSTs, in a similar fashion to other mollusk species (Connell et al., 2007). 

The identification of molecular markers typical of PSP could provide the basis for straightforward 

studies aimed at the development of tools for the biomonitoring of PSP contamination. In particular, 

the identification of alternative methods is a priority for the monitoring authorities, in order to replace 

the unreliable mouse bioassay and support the HPLC-based methods (EFSA, 2009), and as a  strategy 

to minimize the possibility of PSP contamination in the aquaculture sector (Desbiens and Cembella, 

1993). Nevertheless, given the virtually null responsiveness of mussels evidenced by our study, we 

argue that the possibility of identifying PSP molecular markers in this organism is extremely unlikely. 

Such a task will be probably easier in responsive bivalves, such as oysters and clams, where the 

remarkable physiological modifications observed are likely matched by evident alteration of gene 

expression. 

The new sequencing data allowed a novel global assembly of the M. galloprovincialis transcriptome. 

RNA deep sequencing had already been applied to a few bivalve mollusks species (Clark et al., 2010, 

Craft et al., 2010, Gavery and Roberts, Hou et al., 2011, Milan et al., 2011, Philipp et al., 2012), but 
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this is the first Illumina technology-based sequencing effort ever reported in Mytilus. The resulting 

transcript sequence collection remarkably improves the existing database Mytibase, further revealing 

the variety of genes expressed in the digestive gland tissue. Nevertheless, further RNA sequencing of 

different tissues would be needed to obtain a comprehensive overview of the mussel transcriptome. 

The newly annotated sequence set will certainly provide an important resource for improving the 

molecular knowledge of this species and will be the basis for further studies requiring whole-

transcriptome mining approaches. 

 

Methods 

 

Mussel specimens 

Adult Mytilus galloprovincialis (Lamarck, 1819) were obtained from a commercial producer of the 

Gulf of Trieste. All the mussels were collected from the same location. Individuals of similar size and 

weight (medium length 55 ±4 mm, mean fresh weight 2,48 ± 0,42 g) were acclimated at  15°C and 

32‰ salinity for one week in running prefiltered seawater and for 3 days in bacteria-free filtered 

seawater (Millipore Durapore GV 0,22 μm, hydrophile PVDF) at 12:12 h dark:light regime. Mussels 

were tested by HPLC before the start of the experiment and were found free of PSP toxins. 

 

Alexandrium minutum cultures 

The AL1T (non-toxigenic) and AL9T (toxin producing) strains of A. minutum, previously isolated 

from the Gulf of Trieste, were cultured in medium B (Agatha et al., 2004) in a suitable number of 

aerated 1 L batch cultures. The cultures were maintained at 15°C at 10:14 h dark:light regime with 

an irradiance of 60 μE m-2 s-1. Algal cells were harvested in the late exponential phase of growth. 

Both strains were tested at the time points T1 and T4 (relevant for RNA-seq analysis) for the 

production of PSTs as described below in Toxin analysis: 100 ml of culture were filtered on Millipore 

Durapore GV 0,22 μm filters and immediately frozen at -18°C for HPLC analysis. The typical toxin 

profile of the AL9T strain is shown in Figure S5. 

 

Experimental design 

Mussels were maintained in standard conditions in glass tanks containing 0.4 L of 0.22 μm filtered 

seawater per mussel. Water was renewed every morning at 9 AM with filtered bacteria-free seawater. 

The overall work plan is outlined in Table 1. 

A total of 6 tanks were prepared for the exposure to A. minutum: 3 sets hosted the AL1T (non-

toxigenic) cells and the remaining 3 the AL9T (toxigenic) cells.  During the 5 days of intoxication, a 
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dose of 2x106 cells of A. minutum per mussel was added every 2 hours, 5 times a day, beginning at 

10 AM. Then, mussels were allowed to depurate with regular water renewal but without food supply 

for other six days. At selected time points, always at 9.00 AM, one mussel per aquarium was 

sacrificed for further analyses. Namely at T1 (24 hours), T2 (48 hours) T3 (3 days), T4 (5 days), T5 

(2 days into the detoxification phase), T6 (4 days into the detoxification phase) and T7 (6 days into 

the detoxification phase). 

Three additional tanks were kept as a “standard diet” controls. Mussels were fed once a day at 9 AM 

with 36 mg marine invertebrate feed (Brightwell Reef Snow) per animal. One mussel per tank was 

sacrificed at T1 and T4 to provide the control material for the RNA-seq analysis. 

 

Toxin analysis 

The analysis of the PSTs was performed on the A. minutum cells and soft mussel tissues at the time 

points T0, before the first feeding dose, and T4 when the maximum bioaccumulation of toxins was 

supposedly achieved. The PSTs detection was based on pre-column oxidation and High Performance 

Liquid Chromatography coupled to Fluorescence Detection (HPLC-FLD) according to the protocol 

AOAC 2005.06 (Lawrence et al., 2004). 

The algal pellets were suspended in 0.1 mM acetic acid up to a total volume of 3 mL. The acidic algal 

suspensions were transferred to a 50 mL centrifuge tube and sonicated for 30 min (sonicator 

Ultrasonic® Liquid Processor Model XL2020, Heat Systems Inc.) in order to break the algal cells. 

Sonicated algal suspensions were centrifuged (10 min, 4500 rpm) and aliquots subjected to the 

analysis. 

From each single mussel, whole body tissues deprived of the digestive gland (used in parallel for 

RNA extraction) were homogenised and tissue aliquots equivalent to 1.7 g were analysed.  Following 

preliminary sample oxidation with both peroxide and periodate, the HPLC-FDL method allows 

quantitation of individual PSP toxins, with the exception of the epimeric pairs (GTX1\4; GTX2\3, 

and C1\2) which form identical oxidation products and cannot be separated (Quilliam et al., 1993). 

Toxins were quantified against linear calibrations of all currently-available PSP toxin certified 

reference standards and the toxicity equivalence factors (TEFs) proposed by the CONTAM Panel 

(EFSA, 2009) were used to calculate STX-equivalent concentrations and to estimate the concentration 

of PSTs in the whole mussel tissues. 
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RNA extraction and analysis 

Digestive glands were excised from 1 mussel per aquarium at each of the selected time points during 

the exposure and recovery period (see Table 1) and immediately homogenized in TRIzol® reagent 

(Life Technologies, Carlsbad, California). Total RNA was individually purified according to the 

manufacturer’s instructions. Following extraction, the RNA quality was assessed by electrophoresis 

on denaturing agarose gel and its quantity was estimated by UV-spectrophotometry. Complementary 

DNA was prepared by retro-transcription with the iScript™ cDNA Synthesis Kit (Bio-Rad) and used 

for Real Time quantitative PCR. RNA extracted from the 3 individual mussels sampled at each 

experimental time point from the two groups (the AL1T and AL9T A. minutum strains-fed mussels) 

were pooled in equal quantities and used for the RNA-seq analysis and for the expression analysis by 

real-time PCR, according to the scheme outlined in Table 1. RNA pools, comprising 3 individuals 

each, were also prepared from the 3 control aquariums at T1 and T4 respectively and used for the 

RNA-seq analysis. 

 

Sequencing and de novo transcriptome assembly 

cDNA libraries were prepared and subjected to massive sequencing at the Biotechnology Center of 

the University of Illinois, using an Illumina GAII sequencing platform. The output sequencing reads 

were further processed for adapter removal and trimming, according to the base calling quality. The 

resulting sequences were assembled with the CLC Genomic Workbench 4.5.1 (CLC Bio, 

Katrinebjerg, Denmark) assuming a distance of 100-350 bp between paired reads, setting the penalties 

for mismatches, insertions and deletions at 3, and the length fraction and similarity to 0.5 and 0.9, 

respectively. To increase the overall quality of the assembly, the process included the 18,788 Sanger 

sequences of Mytibase (Venier et al., 2009); (mismatch\insertion\deletion cost set at 3\3\2, length 

fraction and similarity at 0.2\0.9), additional 115,557 reads obtained from different tissues of mussels 

by 454 Life Sciences sequencing (gap\insertion\mismatch penalties set at 2\2\2, length 

fraction\similarity at 0.4\0.8) and also 28,186,684 Illumina reads obtained from the digestive gland 

of naive mussels (same settings stated above for Illumina reads). The minimum contig length allowed 

in the assembly was set at 250 base pairs. 

The resulting contigs were filtered to eliminate sequences originated from ingested A. minutum cells 

and contaminants such as symbiont bacteria and parasites as follows: all contigs were subject to 

BLASTx searches against both the Metazoa and Viridiplantae + Bacteria subsets of UniprotKB 

sequences. Contigs achieving a higher BLAST e-value in the latter selection by at least a 10-5 factor 

were discarded as probable contaminants. Furthermore, a BLASTn analysis was conducted against 

an assembly of the A. catenella ESTs obtained by Toulza et al. (2010), discarding the contigs showing 
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identity and possibly originated from the ingestion of A. minutum cells. Contigs created by less than 

50 sequencing reads were not included in the final “high quality” set of expressed sequences. Finally, 

all the transcripts without an open reading frame of at least 50 codons, the possible result of 

fragmentation or misassembly of longer transcripts, were discarded before the annotation step. 

 

Transcripts annotation 

The BLASTx algorithm (Altschul et al., 1997) was used to determine the contig homology to known 

sequences, with an e-value cut-off of 10-6. The NCBI non-redundant protein database was used for 

BLAST. The annotation was performed with Blast2GO (Conesa and Götz, 2008), and Gene Ontology 

mapping and InterPro domains (Hunter et al., 2009) annotation were performed using the default 

settings. The Gene Ontology mappings were used to generate graphs summarizing Biological 

Process, Molecular Function and Cellular Component annotations at Level 2. BLASTx was also used 

to determine homologies with the only molluscan species whose genome has been fully sequenced to 

date, Lottia gigantea, by using the predicted protein models from this organism (http://genome.jgi-

psf.org/Lotgi1/). 

Ortholog hit ratios were calculated using a modified version of the method of O’Neil et al. (O'Neil et 

al., 2010), based on the BLASTx output, analyzing only the contigs displaying identities >90%, in 

order to select only conserved orthologs, thus balancing for the evolutionary divergence and the low 

representation of mollusk sequences in public databases. 

 

Expression analysis by RNA-seq 

The filtered contigs were further processed prior to the expression analysis to generate a suitable 

reference set for the RNA-seq mapping of the reads originated from each of the six analyzed samples 

(T1 toxic, T1 non-toxic, T4 toxic, T4 non-toxic, T1 control and T4 control). Contigs displaying a 

global coverage lower than 5 (calculated by the mapping of all the sequencing reads from all the six 

samples) were discarded prior to the analysis, as they could be subject to expression fluctuations due 

to insufficient coverage (McIntyre et al., 2011). 

Raw counts from the six samples were used in the statistical analysis to identify differentially 

expressed transcripts with DEB (Yao and Yu, 2011), which simultaneously analyzes data with edgeR 

(Robinson et al., 2010) and DEseq (Anders and Huber, 2010b) and with the Baggerly’s test on 

proportions tool included in the CLC Genomic Wokbench (Baggerly et al., 2003). The analysis aimed 

at the identification of differentially expressed genes in response to PSP, independently from the 

mussel diet.  
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To this purpose, the two “standard diet” and the two AL1T strain-fed experimental samples were 

considered as controls whereas the two groups T1 toxic and T4 toxic were considered as treated 

samples. Differential expression was concluded with a FDR (False Discovery Rate) lower than 0.01. 

 

Quantitative PCR expression analysis 

Six transcripts among those identified as differentially regulated in response to PSP contamination 

by the edgeR, DEseq and Baggerly’s test analyses were selected to perform the expression analysis 

via real-time quantitative PCR. Namely, transcript of unknown function I and II, C1q domain-

containing protein I and II, hemicentin 1-like and retinol dehydrogenase were chosen. The complete 

list of primers used for the quantitative PCR analysis is provided in Table 5. Expression levels were 

monitored at all the available experimental time points (see Table 1) in the digestive gland samples 

of mussels fed with the AL1T and AL9T strains. 

All the PCR assays were performed using a Bio-Rad CFX96 

 ® Supermix (Bio-

step at 95°C, followed by 40 cycles at 95° for 20”, 60° for 15” and 72° for 20”. Amplification products 

were analyzed with a 65°/95°C melting curve. 

The expression levels of the selected transcripts were determined using the comparative Ct method 

(2- Livak and Schmittgen, 2001). Ct values used for quantification were corrected 

based on PCR efficiencies using LinRegPCR (Ramakers et al., 2003). The expression values were 

normalized using the elongation factor EF-1 as housekeeping gene (EF-1 primers are shown in Table 

5). Results are given as the mean with standard deviation of three technical replicates. 
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Tables 

 

 

day 
experimental time 

point 
feeding RNA-seq* 

Real Time 

PCR* 
phase 

0 T0 x   X 

in
to

x
ic

at
io

n
 p

h
as

e

 

1 T1 x x X 

2 T2 x  X 

3 T3 x  X 

4  x   

5 T4   x X 

6     

d
et

o
x
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7 T5   X 

8     

9 T6   X 

10     

11 T7     X 

 

Table 1: Experimental plan. Mussels were kept in 6 tanks and subjected to alternative feeding 

regimes (3 tanks with the A. minutum toxigenic strain AL1T vs 3 tanks with the non-toxigenic strain 

AL9T) and collected at 7 time points during the intoxication and detoxification phases. Three 

additional tanks were used as controls for the gene expression analysis by RNA-seq (mussels were 

fed with a “standard diet”, see the Methods section). *One mussel per aquarium was sacrificed at 

each time point before the feeding and analyses were performed on pools of 3 individuals. 
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Trimming statistics   

Number of reads before trimming 79,595,897 

Number of reads after trimming 74,341,390 

Paired reads after trimming 74,341,390 

Single reads after trimming 129,003 

Sequences discarded during trimming 5,125,504 (6.43%) 

Average length before trimming 95.24 bp 

Average lenth after trimming 97.75 bp 

Number of reads per sample   

T1 non-toxic 6,104,184 

T1 toxic 14,574,893 

T4 non-toxic 16,423,414 

T4 toxic 15,682,924 

control 1 12,996,171 

control 2 8,688,807 

Additional sequences used for the assembly   

Illumina (digestive gland) 28,186,684 

454 (various tissues) 115,557 

Sanger (various tissues, Mytibase collection) 18,788 

Assembly statistics   

Assembly size 27,094,215 bp 

Total number of contigs 39,289 

N50 814 bp 

N75 494 bp 

N90 349 bp 

Mean contig length 689 bp 

Median contig length 510 bp 

Longest contig 14,211 bp 

Number of contigs longer than 1 Kb 6,545 

GC content 37.42% 

 

Table 2: Trimming statistics of the Illumina sequencing output, number of reads per sample and de 

novo assembly statistics. 
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Transcript name 
EdgeR 

FDR 

DEseq 

FDR 

Baggerl

y's Test 

FDR 

expression level (RPKM) 

T1 

cont

rol 

T4 

control 

T1 non-

toxic 

T4 non-

toxic 

T1 

toxic 

T4 

toxic 

Transcript of unknown 

function (I)* 4.72e-06 1.66e-05 0 0 0 0 0 37,71 25,45 

Transcript of unknown 

function (II)* 2.20e-04 7.41e-05 

1.47e-

05 0 0 0 0 18,36 19,82 

Transcript of unknown 

function (III) 2.63e-04 1.40e-04 

4.49e-

05 0 0 0 0 22,33 24,11 

C1q domain containing 

protein* 3.69e-03 9.79e-03 

1.59e-

04 0 0 2,1 0 33,37 25,26 

IMAP family GTPase 3.00e-04 2.10e-04 0 0 2,65 0 0 82,42 47,86 

 

Table 3: List of the 5 differentially expressed genes identified by the edgeR, DEseq and the 

Baggerly’s test analyses. The related expression levels detected by RNA-seq in the control, AL1T 

and AL9T-fed mussels are also shown. RPKM = Reads Per Kilobase per Million reads mapped 

*These genes were also selected for validation via real-time quantitative PCR. 
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Interpro 

domain Description 

Digestive gland 

contigs 

Mytibase  

contigs 

 

Rate* 

IPR013783 Immunoglobulin-like fold 777 46  3,05 

IPR011042 Six-bladed beta-propeller, TolB-like 710 25  5,12 

IPR020683 Ankyrin repeat-containing domain 676 43  2,84 

IPR008983 Tumour necrosis factor-like 624 145  0,78 

IPR001073 Complement C1q protein 580 140  0,75 

IPR002110 Ankyrin repeat 558 39  2,58 

IPR007110 Immunoglobulin-like 453 33  2,48 

IPR000315 Zinc finger, B-box 392 46  1,54 

IPR007087 Zinc finger, C2H2 389 17  4,13 

IPR015943 WD40/YVTN repeat-like-containing domain 383 44  1,57 

IPR013032 EGF-like region, conserved site 363 26  2,52 

IPR000742 Epidermal growth factor-like, type 3 335 25  2,42 

IPR015880 Zinc finger, C2H2-like 323 11  5,30 

IPR013098 Immunoglobulin I-set 292 13  4,05 

IPR013087 Zinc finger, C2H2-type/integrase, DNA-binding 288 8  6,50 

IPR011009 Protein kinase-like domain 284 28  1,83 

IPR006210 Epidermal growth factor-like 275 19  2,61 

IPR006703 AIG1 265 23  2,08 

IPR003599 Immunoglobulin subtype 261 15  3,14 

IPR000719 Protein kinase, catalytic domain 250 24  1,88 

IPR002181 Fibrinogen, alpha/beta/gamma chain, C-terminal globular 234 58  0,73 

IPR016196 

Major facilitator superfamily domain, general substrate 

transporter 218 7 

 

5,62 

IPR003961 Fibronectin, type III 217 10  3,92 

IPR003598 Immunoglobulin subtype 2 212 15  2,55 

IPR013083 Zinc finger, RING/FYVE/PHD-type 208 38  0,99 

IPR014716 

Fibrinogen, alpha/beta/gamma chain, C-terminal 

globular, subdomain 1 207 52 

 

0,72 

IPR016187 C-type lectin fold 203 106  0,35 

IPR016186 C-type lectin-like 202 106  0,34 

 

Table 4: Most abundant IPR domains in the de novo assembly according to the Interproscan 

assignments. *This value represents the rate between the number of contigs observed and the number 

of contigs expected in the assembly; expected numbers were calculated based on the relative 

abundances observed in Mytibase . A rate > 1 means an enrichment in the digestive gland 

transcriptome, whereas a rate <1 means an over-representation of the domain in Mytibase. 
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transcript name FOR primer REV primer 

EF-1 cctcccaccatcaagaccta ggctggagcaaaggtaacaa 

transcript of unknown function I tcagcgtagcacctttacca ccatctggcaaagccttact 

transcript of unknown function II acagcttgaaacggaccttc tattcacgtgccttgtcctc 

C1q domain containing protein I gacaactcaaggcgcatgtt ttccaaaggtagacccgtca 

C1q domain containing protein II catacatcgccgaacatagc gataccaagacccaggagca 

retinol dehydrogenase aggagcaggcatagcgtagt aaagctcgttaccggtgtg 

hemicentin 1-like gagataccccagcacttcca aaccaatgaggcatctggac 

 

Table 5: Primers designed for the expression analysis via Real-Time quantitative PCR. EF-1 was 

used as a housekeeping gene for normalization. 
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Figures  

 

 

Fig. 1 

Contig length distribution, before and after the filtering procedures. The graph highlights a shift 

towards higher length ranges in the high quality set 
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Fig. 2 

Venn diagram summarizing the results of expression analysis. The numbers shown in the graph 

represent the number of differentially expressed genes identified by each of the three statistical tests 

used (EdgeR, DEseq and the Baggerly’s test on proportions) and the overlap between the results 
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Fig. 3 

Expression levels at the experimental time points T1 and T4 of six selected PSP-responsive genes 

(transcript of unknown function I and II, C1q domain-containing protein I and II, hemicentin 1-like 

and retinol dehydrogenase). Statistically significant differences between non-toxigenic (AL1T) and 

toxigenic (AL9T) strain-fed mussels are indicated by * (p < 0,01). NS = no significant difference. 

Expression data was collected as described in Methods. Expression values shown on the Y axis are 

relative to the housekeeping gene EF-1 
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Fig. 4 

Distribution of ortholog hit ratios obtained from the BLASTx of the M. galloprovincialis high quality 

contig set vs NCBI nr protein database. An ortholog hit ratio of 1 means that a transcript has been 

likely assembled to its full length. Ratios >1 (indicating insertions) were collapsed within the >95% 

category 
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Fig. 5 

Mapping of the digestive gland RNA-seq reads on the 7,112 Mytibase contigs. Most of the contigs 

originally present in Mytibase resulted to be highly covered by RNA-seq reads, whereas just a limited 

number of contigs was not expressed in the digestive gland 
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Figure S1: Top hit BLAST species in the NCBI non redundant protein database. 

 

 

Figure S2: BLAST homologies of the filtered contigs of M. galloprovincialis versus the total proteins 

L. gigantea predicted from genome assembly. 
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Figure S3: Gene Ontology (GO) terms assignments. A: molecular function. B: biological process. C: 

cellular component. 
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GO-id GO-term 

numer of 

contigs 

GO:0044238 primary metabolic process 2561 

GO:0044237 cellular metabolic process 1961 

GO:0043170 macromolecule metabolic process 1845 

GO:0050789 regulation of biological process 1071 

GO:0006807 nitrogen compound metabolic process 972 

GO:0051234 establishment of localization 947 

GO:0051716 cellular response to stimulus 945 

GO:0007154 cell communication 908 

GO:0009058 biosynthetic process 644 

GO:0055114 oxidation-reduction process 567 

GO:0044281 small molecule metabolic process 494 

GO:0009056 catabolic process 266 

GO:0007155 cell adhesion 251 

GO:0006950 response to stress 166 

GO:0033036 macromolecule localization 161 

GO:0008219 cell death 155 

GO:0051641 cellular localization 127 

GO:0007017 microtubule-based process 104 

GO:0006996 organelle organization 95 

GO:0007049 cell cycle 82 

GO:0006928 cellular component movement 80 

GO:0022607 cellular component assembly 61 

GO:0065008 regulation of biological quality 60 

GO:0042221 response to chemical stimulus 60 

GO:0019637 organophosphate metabolic process 56 

GO:0065009 regulation of molecular function 54 

GO:0006955 immune response 47 

GO:0043933 macromolecular complex subunit organization 42 

GO:0034621 

cellular macromolecular complex subunit 

organization 39 

 

Table S4: Top 30 most represented Gene Ontology (GO) at the level 3 of Biological Process. 
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Figure S5: typical toxin profile of the A. minutum AL9T strain, as determined by Jaime et al. 

(personal communication). 
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Abstract 

 

The key component of the classical complement pathway C1q is regarded as a major connecting link 

between innate and acquired immunity due to the highly adaptive binding properties of its trimeric 

globular domain gC1q. The gC1q domain also characterizes many non-complement proteins involved 

in a broad range of biological processes including apoptosis, inflammation, cell adhesion and cell 

differentiation. In molluscs and many other invertebrates lacking of adaptive immunity, C1q domain 

containing (C1qDC) proteins are abundant, they most probably emerged as lectins and subsequently 

evolved in a specialized class of pattern recognition molecules through the expanding interaction 

properties of gC1q. 

Here we report the identification of 168 C1qDC transcript sequences of Mytilus galloprovincialis. 

The remarkable abundance of C1qDC transcripts in the Mediterranean mussel suggests an 

evolutionary strategy of gene duplication, functional diversification and selection of many specific 

C1qDC variants. 

A comprehensive transcript sequence survey in Protostomia also revealed that the C1qDC family 

expansion observed in mussel could have occurred in some specific taxa independently from the 

events leading to the establishment of a large complement of C1qDC genes in the Chordates lineage. 

 

 

 

Keywords: M. galloprovincialis; MgC1q; Immune gene; Bacterial infection; Expression level 

 

Abbreviations: C1qDC, C1q domain containing;  PRPs, pattern recognition proteins; PAMPs,  

pathogen-associated molecular patterns; ghC1q, globular head C1q; sghC1q, secreted globular head 

C1q. 
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Introduction 

 

The gC1q is a globular domain which was first identified in the A, B and C chains of the C1q 

complement C1 complex subcomponent (Kishore and Reid, 2000). In addition to its fundamental role 

in the classical complement pathway, C1q provides a major link between innate and adaptive 

immunity, being involved in a wide range of immunological processes such as apoptotic cells 

clearance, bacteria and retrovirus recognition, cell adhesion and cell growth modulation (Kishore et 

al., 2004). Such an extreme versatility is granted by the ligand binding properties of the gC1q domain 

(Gaboriaud et al., 2003, Kishore and Reid, 1999). 

The remarkable similarity of the gC1q and tumor necrosis factor (TNF) domains supports a common 

evolutionary origin for these two gene families (Shapiro and Scherer, 1998). Decisive amino acid 

changes and association to other functional domains can explain the wide variety of non-complement 

proteins: globally referred to C1qDC proteins they consist of an optional leading signal peptide, a 

central collagen-like region of variable length, acting as oligomerization domain and sometimes 

missing, and a C-terminal C1q domain (Ghai et al., 2007). Depending on the presence or the absence 

of the collagen-like region, C1qDC proteins are classified as C1q-like proteins or ghC1q proteins, 

respectively (Carland and Gerwick, 2010). 

C1qDC proteins are probably essential in the innate immune system of early animals, as in the 

agnathan lamprey, having a still primitive adaptive immunity, C1q was shown to act as a lectin. 

Actually, lectin-like C1q proteins emerged before the immunoglobulins and expanded through the 

great flexibility and modulability of the gC1q domain in ligand binding (Fujita et al., 2004; Matsushita 

et al., 2004). Many C1qDC proteins can be regarded as specialized pattern recognition proteins 

(PRPs), able to bind pathogens directly through pathogen-associated molecular patterns (PAMPs) 

and to trigger phagocytosis (Bohlson et al., 2007; Medzhitov and Janeway, 2002). 

Despite widespread in animal species, both retention or loss of C1q genes have apparently occurred 

in the evolution of Metazoa. Seven C1q gene models have been identified in the sea urchin 

Strongylocentrotus purpuratus (Hibino et al., 2006), only two in the Ascidian Ciona intestinalis 

(Azumi et al., 2003) and their number starts growing in ancestral Chordates: 50 C1q gene models in 

the Cephalochordate Branchiostoma floridae which is considered as the most primitive extant of the 

chordate lineage (Huang et al., 2008; Yu et al., 2008), 52 gene models in zebrafish (Mei and Gui, 

2008) and 29 in humans (Tom Tang et al., 2005). On the contrary, C1qDC genes seem to be 

completely absent in Fungi and Plantae (Yuzaki, 2008). 

Some C1qDC proteins with specific ligand recognition properties have been described and 

characterized also in molluscs. In particular, a sialic acid-binding lectin has been identified in the 

snail Cepaea hortensis (Gerlach et al., 2004) and an LPS-binding protein has been described in the 

scallop Chlamys farreri (Zhang et al., 2008). Other two C1qDC proteins, the major extrapallial fluid 

protein of Mytilus edulis (Hattan et al., 2001; Yin et al., 2005) and a protein highly expressed in the 

mantle tissue of Pinctada fucata (Liu et al., 2007) may be somehow involved also in the process of 

nacre biomineralization. The role of C1qDC proteins in specific pathogen recognition has been 

investigated in molluscs only recently: up-regulation of C1qDC proteins has been linked to infections 

with bacterial and metazoan parasites in molluscs such as Ruditapes decussatus (Prado-Alvarez et 

al., 2009), Biomphalaria glabrata (Adema et al., 2010), Crassostrea gigas (Taris et al., 2009) and 

Mercenaria mercenaria (Perrigault et al., 2009). AiC1qDC-1, a novel C1q domain containing protein 

recently characterized in the scallop Argopecten irradians, displays a fungi-agglutinating activity, 

and highlights, once again, the surprising ability of the gC1q domain to interact with many different 

PAMPs (Kong et al., 2010). In Mytilus galloprovincialis, the expression of MgC1q has been 

thoroughly examined in different tissues and larval stages (Gestal et al., 2010): MgC1q RNAs are 

abundant in hemocytes and increase rapidly and strongly in response to the injection of Gram+ and 
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Gram- bacteria. Despite these facts point to an involvement of molluscan C1qDC proteins in pathogen 

recognition and innate immune response, to date the available data do not clarify the expansion and 

multifaceted functions of C1qDC proteins in this phylum and, more in general, in the Protostomia. 

Recently, Carland and Gerwick (2010) reviewed the distribution of C1qDC proteins in animals, 

revealing the ancient origin of the gC1q domain and concluding that ghC1q genes became prevalent 

starting with Protostomia and radiated in the vertebrate animals. Here, we report and discuss for the 

first time the presence of a large family of C1qDC sequences almost exclusively coding for ghC1q 

proteins in the transcriptome of a non-Chordate organism, M. galloprovincialis. Despite the lack of 

genomic sequences, such an abundance and diversity of transcripts is suggestive of a similar over-

representation of the C1qDC genes in the nuclear DNA. Mining publicly available transcriptomic and 

genomic data we also show that this astounding gene family expansion is restricted to Bivalvia and 

possibly to a few other unrelated Protostomia classes, and we raise the hypothesis that multiple events 

of C1qDC gene family expansion can have occurred in few taxonomic groups independently from 

the events leading to the acquisition of a large complement of C1qDC genes in the Chordates lineage. 

 

Materials and methods 

 

Sequence analysis 

We used Interproscan (Zdobnov and Apweiler, 2001) to identify the Interpro signature IPR001073 

for the C1q domain in the 7112 independent sequences of Mytibase, the annotated EST database of 

M. galloprovincialis (Venier et al., 2009). We selected consensus sequences having a significant score 

for at least one of the four PRINTS, PROFILE, SMART and PFAM signatures for complement C1q, 

and the related clustered ESTs were individually checked for possible sequencing errors. To provide 

a conservative estimate of the C1q gene models present in Mytibase, an ESTs collection derived from 

many mussels, we collapsed in a single consensus both highly similar clusters, possibly originated by 

noisy chromatograms or sequencing errors, and clusters coding for peptides with an identity 

percentage greater than 75%, assuming they could refer to the same gene. All the resulting clusters 

were translated in putative proteins using the Expasy Translate tool 

(http://www.expasy.ch/tools/dna.html) and only the full length sequences were retained for 

subsequent analysis. The combined tools for transmembrane topology and signal peptide prediction 

Phobius (Kall et al., 2004) and SPOCTOPUS (Viklund et al., 2008) were both used to avoid 

misclassification of these two classes of hydrophobic regions. Coiled coiled domains were predicted 

with COILS (Lupas et al., 1991) considering true only the cases predicted with a probability higher 

than 0.7 in at least two out of the three given window sizes. The coiled coil domain containing 

sequences were then scanned for the presence of leucine zipper motifs using 2ZIP (Bornberg-Bauer 

et al., 1998). Interproscan supported the identification of additional domains other than C1q in the 

same proteins. 

The full length mRNAs described in this manuscript have been submitted to the EMBL database 

under the accession numbers from FR715581 to FR715677. 

 

Mussel samples 

Mussels of 6.5-7 cm shell length were collected from a farming site of the Venice lagoon, Italy. To 

evaluate the tissue-specific expression of different C1qDC transcripts, total RNA was individually 

purified from hemolymph and from digestive gland, gill, gonads and posterior abductor muscle, 

previously homogenized in Tri reagent® (Sigma-Aldrich, St. Louis, MO). 

Bacterial challenges were performed on adult mussels from Riá de Vigo, Spain, kept in tanks under 

controlled conditions (filtered seawater at 15ºC with aeration) and fed daily with Isochrysis galbana, 

Tetraselmis suecica and Skeletonema costatum. After an acclimatization time of 10 days, three groups 
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of 60 mussels were challenged by injection into the adductor muscle with Vibrio anguillarum or 

Micrococcus lysodeikticus (100 µl of 107 live bacteria in filtered sea water). Controls were injected 

with 100 µl of filtered sea water. M. lysodeikticus was grown in LB medium at 37ºC and V. 

anguillarum in TSA supplemented with NaCl 1% at 20ºC. All individuals were maintained out of 

water for 20-30 min before and after the injection. At three, six and 24 hours post-injection, the 

hemolymph was collected and pooled from 20 mussels per sampling time and treatment. 

Following extraction, the RNA quality was assessed by electrophoresis on denaturing agarose gel and 

its quantity was estimated using a spectrophotometer. Complementary DNA was prepared by retro-

transcription with the iScript™cDNA Synthesis Kit (Bio-Rad) from the pooled RNA samples 

representing five or 20 individuals. 

 

Quantitative PCR expression analysis 

The expression levels of eight selected C1q transcripts, namely MGC1q1, MgC1q2, MgC1q3, 

MgC1q4, MgC1q5, MgC1q6, MgC1q7 and MgC1q8, were assessed in samples representing the 

hemocytes, digestive gland, gills, gonads and posterior abductor muscle of five adult mussels. Primer 

pairs were designed (Table 1) and used to obtain specific PCR amplicons, finally checking the 

reaction specificity by Sanger sequencing (ABI3130 Genetic Analyzer). 

The expression of transcripts classified as hemocyte-specific, according to their relative abundance 

in the selected tissues, was also analyzed in the hemolymph sampled at 3, 6 and 24 hours post-

challenge from mussels injected with Gram+ (Micrococcus lysodeikticus) or Gram- (Vibrio 

anguillarum) bacterial cells. 

All the PCR assays were performed using a Bio-Rad CFX96 system. The 15 L reaction mix included 

0.75 l of 20X EvaGreen™ (Biotium), 0.6 l of 10 M primer pairs and 5 L of a 1:20 cDNA 

dilution. The following thermal profile was used: an initial 3’ denaturation step at 95°C, followed by 

35 cycles at 95°  for 20”, 56° for 15” and 72° for 20”. Amplification products were analyzed with a 

65°/95°C melting curve. 

The expression levels of the selected transcripts were determined using the comparative Ct method 

(2-Ct method) (Livak and Schmittgen, 2001). Ct values used for quantification were corrected 

based on PCR efficiencies using LinRegPCR (Ramakers et al., 2003). The MgC1q expression values 

were normalized using the elongation factor EF-1 as housekeeping gene (EF-1 primers are shown in 

Table 1). Results are given as the mean with standard deviation of three technical replicates. The 

results were subjected to One-way Analysis of Variance (ANOVA) to determine significant 

differences in the mean values between the control and the the challenged groups. Significance was 

concluded at P<0.01. 

 

  

Transcriptomic and genomic data mining 

Transcriptomic data available for molluscan species with at least 10000 EST sequences were retrieved 

from the GenBank EST database (http://www.ncbi.nlm.nih.gov/nucest/) and from the SRA archive 

(http://www.ncbi.nlm.nih.gov/sra). Similarly, data were collected from the EST database for all the 

suitable Protostomia species, selecting up to three representative species per class. 

Globally, 15 Mollusca, five Annelida, 16 Arthropoda, four Nematoda and Platyhelminthes and a 

single Onychophora and Rothifera species were included in the survey. The full list of the species 

selected is summarized in Table 2. 

Sequence data were assembled with the CLC Genomic Workbench 4.02 (CLC Bio, Katrinebjerg, 

Denmark) to obtain a raw estimate of the total transcript number for the selected organisms. The 

longest ORF obtained for each sequence was then translated into the corresponding predicted protein 

and the resulting sequences were scanned for the presence of C1q profile with HMMER 
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(http://hmmer.wustl.edu/) in order to estimate the number of C1qDC transcripts and to calculate their 

relative abundance in the available transcriptome of each species analyzed. 

The C1q profile used for the HMMER scanning was created by alignment of the C1q domains 

defining the PROSITE C1q profile PS50871 together with the publicly available C1q domains of 

invertebrate C1qDC proteins. 

Selected Protostomia genomes available at the DOE Joint Genome Institute 

(http://www.jgi.doe.gov/), at Vectorbase (http://www.vectorbase.org/), at Wormbase 

(http://ws210.wormbase.org/) and at the Sanger Institute (http://www.sanger.ac.uk/) were also 

analyzed for the presence of C1qDC genes, scanning the predicted proteins with the same profile 

described above to verify the reliability of our transcriptomic approach on a genomic level.   

More in detail, we downloaded and screened the whole genome protein models of Helobdella robusta 

(http://genome.jgi-psf.org/Helro1/Helro1.home.html), Capitella teleta (http://genome.jgi-

psf.org/Capca1/Capca1.home.html), Lottia gigantea (http://genome.jgi-psf.org/Lotgi1/), Daphnia 

pulex (http://genome.jgi-psf.org/Dappu1/Dappu1.home.html), Caenorhabditis elegans 

(http://ws210.wormbase.org/), Aedes aegiptyi (http://aaegypti.vectorbase.org/), Culex 

quinquefasciatus (http://cquinquefasciatus.vectorbase.org/) and Schistosoma mansoni 

(http://www.genedb.org/Homepage/Smansoni). 

 

Results 

 

Sequence analysis 

The Interproscan analysis identified in Mytibase a total of 168 C1qDC sequences, 96 of them coding 

for a full length protein. Two additional partial transcripts (MgC1q97 and  MgC1q98) were elongated 

to the full length by Rapid Amplification of cDNA Ends (RACE). After virtual translation and 

conservative clustering of all the full-length sequences, we named them in a sequential order, starting 

from the first Mytilus galloprovincialis C1q transcript described in literature, MgC1q (Gestal et al., 

2010). Remarkably, the multiple alignment of the 98 virtually translated full-length C1qDC proteins 

made evident the high sequence variability of the mussel C1q domains which display just a few 

conserved residues (Figure 1). 

A signal peptide of 17-41 amino acid residues was identified in almost the totality of the M. 

galloprovincialis C1qDC proteins: more specifically a signal peptide was unambiguously predicted 

by Phobius in 91 out of 98 cases and, in two additional sequences the predicted signal was confirmed 

with SCOPTOPUS. Four out of the five remaining cases could be reasonably included within the 

false prediction rate reported to be 3,9% for Phobius (1,7% for SPOCTOPUS) and a trans-membrane 

domain was unambiguously predicted in a position incompatible with a signal peptide in the only 

sequence MgC1q98. 

According to COILS analysis, 32 C1qDC proteins (32% of the total) also present coiled-coil regions 

in the N-terminal region. A leucine-zipper motif associated with the coiled-coil domain was identified 

by 2ZIP analysis in nine of these proteins (9% of the total). No other domain was found associated 

with C1q with a significant score by Interproscan analysis, with the exception of a collagen-like 

domain detected in MgC1q98 which is, curiously, also the only protein where a trans-membrane 

domain was unambiguously detected. 

 

Tissue-specific expression 

According to their abundance in Mytibase, structural diversity and homology to other previously 

described proteins, we chose eight among the 98 full length C1qDC transcripts to ascertain their 

expression levels in the main mussel tissues. Bidirectional sequencing of the PCR products obtained 
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with specifically designed primer pairs confirmed the selective amplification of the 8 target sequences 

(non-specific amplification of similar mussel C1qDC transcripts was not observed). 

The expression data are summarized in Figure 2. Though at different levels, constitutive expression 

of MgC1q1, MgC1q2, MgC1q3, MgC1q4 and MgC1q5 occurred mainly in the mussel hemocytes 

whereas other MgC1q transcripts resulted more expressed in other tissues (MGg1q7 in the digestive 

gland, MgC1q6 in the posterior abductor muscle, MgC1q8 in the gills). Melting curve analysis of the 

real time PCRs was systematically performed to exclude the formation of primer dimers and 

secondary products: samples where no amplification was observed or whose melting peaks resulted 

to be given by primer dimers were considered as tissues where the expression of a given transcript 

was so low to be undetectable, hence marked by “ND” in Figure 2. 

 

C1q expression changes following microbial challenge 

The expression level of the ‘hemocyte-specific’ transcripts MgC1q1, MgC1q2, MgC1q3, MgC1q4 

and MgC1q5 was monitored also in mussels injected with a standard dose of live Vibrio anguillarum 

or Micrococcus lysodeikticus cells. Results are summarized in Figure 3. 

Not surprisingly, all the selected transcripts showed a time-dependent expression pattern similar to 

that described by Gestal et al., 2010) for MgC1q1: a rapid expression increase in the very first hours 

after the challenge, a progressive decrease in the following hours and a return to physiological levels 

within 24 hours. The expression levels observed in response to both Gram+ and Gram- bacteria after 

three hours, ranged from 2.5 up to 5.5 times depending on the transcript examined and the type of 

challenge (Figure 3). Transcriptional down-regulation was evident for all transcripts already at 6 

hours post-injection, with the only exception of MgC1q4 whose expression levels remained stable 

(and even showed an additional increase in the hemocytes of mussels injected with V. anguillarum). 

At 24 hours post-injection, the MgC1q transcripts returned at levels similar or just slightly higher 

than those of the control group, except MgC1q3 whose expression significantly increased in both the 

groups of injected mussels. In general, similar expression trends characterized the response to Gram+ 

and Gram- bacteria, without evidence of specific induction for any of the tested transcripts. 

 

Transcriptomic and genomic data mining 

The analysis of EST data available for Protostomia evidenced that C1qDC transcripts are usually 

limited in number, accounting for 0 to about 0,1% of the total number of predicted transcripts, in 

many classes of large taxonomic groups such as Nematodes, Platyhelminthes and most Arthropods 

(Table 2). 

Exceptions to such a rule of thumb can be found in Bivalvia, with proportions of C1qDC ESTs 

ranging from 2.36%, 0.87% and 0.543% and 0.34% in M. galloprovincialis, C. virginica and M. 

californianus, respectively, to values <0.1% in all the species considered for the two other major 

molluscan classes, Gastropoda and Cephalopoda. The only other case displaying a significant number 

of C1qDC transcripts resulted to be the crustacean genus Daphnia (0.17 to 0.36%). 

These proportions can be influenced by several factors, including tissue of origin, developmental 

stage and possible immunostimulation. Therefore it has to be taken into account that our estimates of 

the C1qDC transcripts could be not exactly representative of the whole-organism transcriptome in 

physiological conditions. Nevertheless, we have no reason to assume that a certain bias towards 

immune transcripts is present in any of the transcriptomes we analyzed. 

The search of predicted C1qDC gene models additionally performed in eight Protostomia genomes 

available at the DOE Joint Genome Institute (http://www.jgi.doe.gov/), at Vectorbase 

(http://www.vectorbase.org/), at Wormbase (http://ws210.wormbase.org/) and at the Sanger Institute 

(http://www.sanger.ac.uk/) confirmed the reliability of our transcriptomic approach and revealed a 

significant overall correlation (p<0.01) between the proportions of transcriptomic and genomic 
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C1qDC sequences of the selected species (see L. gigantea, C. teleta, H. robusta, A. aegiptyi, C. 

quinquefasciatus, D. pulex, S. mansoni and C. elegans in Table 2). 

 

Discussion 
 

Evolutionary overview 

The 168 C1qDC sequences identified in Mytibase indicate the abundance and molecular diversity of 

a specific class of molecules expressed in M. galloprovincialis. Since the Mytibase ESTs originated 

from mussels sampled in different locations and time periods, they cannot reveal the exact number of 

C1q genes present in the mussel genome. Furthermore, possible C1qDC genes expressed at low level 

are not likely to be present in Mytibase (yet to be discovered). Despite the lack of genomic data from 

M. galloprovincialis, the remarkable multiplicity of the mussel C1qDC sequences (see alignment of 

the C1q domains in Figure 1) and the specific amplification and sequencing of 8 exemplary C1q 

sequences also from the genomic DNA of a single mussel ) suggest that the majority of Mytibase 

C1qDC transcripts are the product of different genes. The gene redundancy hyphotesized in mussel 

is striking, especially considering the number of C1qDC genes found in Chordates, the evolutionary 

lineage where gC1q apparently became prominent. Actually, the 52, 50 and 29 C1q gene models 

identified in zebrafish, amphioxus and humans, respectively, would be less than a half of the number 

of C1qDC genes conservatively estimated in M. galloprovincialis. 

According to recent reviews, the evolution of C1q is still somehow obscure with unexplained 

“missing spots”: despite being broadly represented in the animal kingdom, C1qDC proteins seem to 

be completely missing in several major phyla whereas the presence of C1q in some Bacillus species 

is still not completely understood (Ghai et al., 2007). Nevertheless, we can now report the existence 

of single C1qDC gene in the recently sequenced genome of the marine choanoflagellate Monosiga 

brevicollis (Joint Genome Institute Monosiga brevicollis v1.0. I genome release v1.0, protein ID 

22872, King et al., 2008). As Choanozoa are the closest unicellular relatives of animals and fungi, 

this fact additionally supports the ancient origin of the C1q domain (Carland and Gerwick, 2010). 

Despite limited to the available ESTs of selected Protostomia species, our transcriptomic survey 

provided a comparative overview of the C1q domain abundance in the main classes of invertebrates 

and, in our opinion, shed some light on the evolution of C1q in Protostomia. 

C1qDC transcripts resulted to be infrequent (<0,1%) in many Invertebrate taxa including flat worms, 

Annelids, Insects, Arachnids and most crustaceans, and apparently completely absent in Nematoda, 

Rothifera and Onychophora (see Table 2). Owing to the incompleteness of transcriptome data and 

the low number of selected species, we cannot exclude the existence of C1qDC genes in the genomes 

of such species and organism classes. 

One of the few exceptions to the low representation of invertebrate C1qDC transcripts is represented 

by the class of Bivalves: besides M. galloprovincialis (2.36%) also other three species display a not 

negligible proportion of C1qDC transcripts (Mytilus californianus, 0.38%; Crassostrea gigas, 0.38%, 

Crassostrea viginica, 0.87%) whereas only 0.06% could be reported in the Antarctic clam Laternula 

elliptica, and the presence of C1qDC transcripts estimated in Gastropoda and Cephalopoda species 

was very scarce. The amazing multiplicity of C1qDC transcripts in most Bivalvia, compared to the 

other Mollusca classes, is suggestive of an expansion event of the C1qDC gene family restricted to 

this class. 

A similar event may have occurred also in the Crustacean genus Daphnia (C1qDC transcript 

estimated to be 0,36% in Daphnia pulex and 0,17% in Daphnia magna) in contrast to all the other 

selected crustacean species characterized by a negligible expression of C1qDC molecules. The 

driving forces leading to such an extremely specific and likely unrelated expansion of the C1qDC 

gene family in two distant groups as the Bivalvia class and the Daphnia genus are unknown. 
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Independent expansion of C1qDC genes may have also occurred in other Protostomia classes which 

have not been analyzed in our transcriptomic survey. 

The trends inferred from the transcriptomic survey find a strong support in some ongoing genome 

sequencing programs. To correlate the C1qDC representation in transcriptomes and the available 

corresponding genomes, we performed a statistical analysis to calculate the canonical correlation 

between the two independent variables; the finding of a strong linear combination of the two ratios 

(P<0.01) supports our experimental data also in organisms whose genome is not available yet. In fact, 

no C1qDC genes could be identified in the insects Aedes aegiptyi (http://aaegypti.vectorbase.org/) 

and Culex quinquefasciatus (http://cquinquefasciatus.vectorbase.org/) and in the nematode 

Caenorhabditis elegans (http://ws210.wormbase.org/), but we could identify two C1q gene models 

in the flatworm Schistosoma mansoni (http://www.genedb.org/Homepage/Smansoni), eight and 24 

gene models in the Annelida Helobdella robusta (http://genome.jgi-

psf.org/Helro1/Helro1.home.html) and Capitella teleta (http://genome.jgi-

psf.org/Capca1/Capca1.home.html) respectively and only 6 gene models in the limpet Lottia gigantea 

(http://genome.jgi-psf.org/Lotgi1/). In other words, the scarce evidence of independent C1qDC 

transcripts in these seven species is confirmed by an equally small number of predicted genes (the 

relative abundance of C1qDC transcript and gene models are shown in Table 2). Similarly, in the 

crustacean Daphnia pulex (http://genome.jgi-psf.org/Dappu1/Dappu1.home.html) a total of 70 

C1qDC transcripts and 144 gene models (accounting for 0,47% of the total and often organized in 

dense gene clusters) strongly support the multiplicity of these molecules. 

Overall, the relative abundance of C1qDC ESTs in the eight mentioned species reflects the actual 

abundance of C1qDC genes in their genomes, as supported by the strong canonical correlation 

observed between the two ratios. Accordingly, the great number of C1qDC transcripts in M. 

galloprovincialis suggests a similar remarkable abundance of C1qDC genes in its genome. 

 

Structural features of the M. galloprovincialis C1qDC proteins 

Almost all the 168 C1qDC proteins virtually identified in M. galloprovincialis show a N-terminal 

signal peptide, with the few exceptions likely being the result of mispredictions or sequencing errors 

and a single case unambiguously predicted as trans-membrane protein (MgC1q98). Hence, almost 

the entire complement of mussel C1qDC proteins seems to be destined to the secretory pathway. 

The usual structure of C1qDC proteins also includes a C-terminal C1q domain, currently regarded as 

the most widespread although not exclusive feature of this family of proteins, and a central collagen-

like region which may or may be not present. With no exception, the C1qDC proteins of M. 

galloprovincialis show a C-terminal C1q domain. On the contrary, the presence of a collagen-like 

glycine rich region is absolutely uncommon, as it was identified just in MgC1q98 which is also the 

only non-secreted C1qDC protein detected in mussel. Taken together, the absence of a collagen-like 

region and the presence of signal peptide classify the vast majority of mussel C1qDC proteins as 

sghC1q (secretory globular head C1q) proteins with the only exception of the C1q-like MgC1q98 

(Carland and Gerwick, 2010). 

As the collagen-like region has a stabilizing role on the heterotrimeric structure of C1q and supports 

the assembly of higher-order complexes, most mussel C1qDC proteins should merely rely on the 

interactions mediated by the C1q domains or other N-terminal structures. Interestingly, almost one 

third of mussel C1qDC proteins are characterized by the presence of coiled coil region N-terminal to 

C1q, occasionally embedding a leucine-zipper motif. Both coiled-coils and leucine zippers are known 

to act as multimerization domains (Lupas, 1996; Tadokoro et al., 1999) and such a role has been 

suggested for them in vertebrate C1qDC proteins such as emilins and multimerin (Doliana et al., 

1999; Hayward et al., 1995). Given the absence of collagen-like regions, the association of C1q with 

coiled-coil and leucine-zipper domains in Mollusca, and possibly in other Protostomia, could 
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reasonably represent an alternative strategy for the association of C1qDC proteins in multimeric 

complexes. 

Our transcriptomic survey also revealed several C1qDC proteins of Annelida and Crustacea 

associated to other N-terminal protein domains, especially chitin-binding domains in Annelida and 

fibrinogen or COLFI domains in Crustacea. Different from those usually found in vertebrates, the 

protein domains associated to C1q indicate the need of specific studies based on invertebrate models. 

Since we could not identify any unconventional N-terminal domain associated to C1q in M. 

galloprovincialis, such a feature could be completely missing in Mollusca or, more simply, in the 

C1qDC sequences of Mytibase. 

Table 3 and Figure 4 illustrate the main structural features of the C1qDC proteins deduced from the 

eight exemplary MgC1q sequences used in the tissue-specific expression analysis: MgC1q, 

M1gC1q2, MgC1q4, MgC1q5 and MgC1q8 show show N-terminal signal peptide and C-terminal 

C1q, hence typical sghC1q proteins, whereas MgC1q3, MgC1q6 and MgC1q7 also have a coiled-coil 

domain, which contains a leucine-zipper motif in MgC1q7. 

Furthermore, we report few cases of C1qDCs with multiple C1q domains, namely the Mytibase 

clusters MGC06942, MGC07609 and MGC07852. The complete mRNA of MGC07852 was 

achieved by RACE analysis and named MgC1q97; the deduced protein resulted to include a signal 

peptide and 3 consecutive C1q domains, with a total length of 441 amino acids. C1qDC proteins with 

multiple C1q domains have been described in vertebrates (Tom Tang et al., 2005). According to the 

analysis of the C1qDC genes of C. teleta (Joint Genome Institute Capitella teleta v1.0. I genome 

release, protein ID: 215797), we can now report the presence of C1qDC proteins with at least 4 C1q 

domains. As revealed by the transcriptome survey, proteins with multiple C1q domains can be also 

identified in the oysters C. virginica (EST accession numbers: CV089299, CV89256, CV89284, 

CV133085, CV0874141, CV132342 and CV132710) and C. gigas (EST accession numbers: 

CU987496, CU993590, CU682562, CU993633.1, CU683542, CU996256 and FP003470). 

 

Expression and response to bacterial challenges 

The Real-Time qPCR analyses revealed that 5 of the 8 selected MgC1q transcripts (MgC1q 1-5) are 

constitutively espressed at variable, often negligible, levels in the main mussel tissues except in 

hemocytes where their expression increases at significant levels, as previously reported for MgC1q 

(Gestal et al., 2010). The cells circulating in the hemolymph, and infiltrating tissues when alerted by 

specific signals, are currently regarded as the major players of the innate immunity system of mussels 

and, in general, invertebrate organisms. The present data confirm significant constitutive levels of 

C1qDC transcripts in the hemocytes of adult mussels, as expected from a specialized transcriptome 

rich of immune-related molecules (Gestal et al., 2010; Pallavicini et al., 2008; Venier et al., 2009). 

The expression of MgC1q, C1qDC transcript uniquely clustering 112 Mytibase ESTs, was confirmed 

about 6 fold higher than the elongation factor 1 in hemocytes. The expression of the other ‘hemocyte-

specific’ C1qDC transcripts ranged from about 0,3 fold (MgC1q5) to about 3 fold (MgC1q3) the level 

of the elongation factor-1. On the other hand, the expression of MgC1q7 and MgC1q8 was specific 

to the digestive gland and gills, respectively, whereas MgC1q6 the homologue of the Mytilus edulis 

major extrapallial fluid protein was specifically expressed, about 2.5 fold compared to EF-1, in the 

posterior abductor muscle. Taken together, these expression data suggest that the diversification 

which occurred within the C1q family may have led some of its members to carry out specialized 

functions, other than those of the innate immunity, in different tissues. 

As a matter of fact, increased versatility of the gC1q binding and association with different N-terminal 

domains have likely expanded the functional roles currently recognized in the C1qDC proteins of 

Chordates. Except for coiled/coil and leucin-zipper multimerization domains no other N-terminal 
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domain has been found associated with C1q molecules in M. galloprovincialis, and the search of 

additional functions is not feasible at the moment. 

The remarkable up-regulation observed for all the hemocyte-specific transcripts in response to the 

injection of both Gram+ and Gram- cells suggests once again the involvement of mussel C1qDC 

proteins in the innate immune responses and confirms the plasticity of the gC1q domain as potential 

PAMPs recognition receptor. The significant increase of expression observed at three hours post-

injection, already detected for MgC1q1 at one hour post-injection and with higher levels, as shown 

by Gestal et al. (2010), reinforces the idea of C1qDC proteins as PRPs involved in the early phases 

of defense and able to trigger later complex modulations of the hemocyte behavior. Overall, the 

multiplicity of the C1qDC transcripts identified in M. galloprovincialis suggests an evolutive strategy 

of gene duplication and diversification/specialization in response to potential pathogens and, 

possibly, to other signals; however, the expression levels of 8 exemplary MgC1q in the hemocytes of 

mussels injected with living bacteria did not reveal a specific pattern of response towards the Gram+ 

and Gram- cells. Common regulatory mechanisms leading to the up-regulation of similar gene sets in 

response to pathogens could explain these findings and do not exclude specific interaction under 

different experimental conditions. 

 

Conclusions 

 

To date, the C1qDC proteins have always been considered to be a family only sporadically 

represented in animals before the onset of the Chordates lineage. Here we report for the first time the 

existence of a large C1qDC protein family in a Prostostome. In fact, more than one hundred C1q 

domain containing proteins are likely to be encoded by the Mytilus galloprovincialis genome, mostly 

pertaining to the sghC1q group. Our experimental data support the possible involvement of many 

invertebrate C1qDC proteins as ancient innate immune response proteins, but the role of specific 

members of this highly diverse family in many different processes other than pathogen recognition 

needs additional study. A comparative transcriptomic survey performed on the C1qDC proteins in 

many different Protostomia phyla, suggested that expansion of the C1q genes family may have 

sporadically and independently occurred in a few specific classes, including Bivalvia, separately from 

the the emergence of a large consolidated C1qDC genes repertoire in the Chordate lineage. 
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Tables 

 
primer name primer sequence 

MGC1Q2_FOR gcaagacaaagtcggagtgga 

MGC1Q2_REV agcaccaacaatgccagacg 

MgC1q1_FOR cagggtcagattacagcgtcttca 

MgC1q1_REV cgatttttgtgctgcccatc 

MGC1Q3_FOR tgtgcctcaggaaaatcctcttgc 

MGC1Q3_REV ccgtctggtatctcggaatcg 

MGC1Q4_FOR aagcagcaagcattcccgta 

MGC1Q4_REV ccatcgctaggtgctgtgaa 

MGC1Q5_FOR taaagccggactgtacttggtgtc 

MGC1Q5_REV atctccctctgctgcctgta 

MGC1Q6_FOR ctggtgctgttttgcgttgtcag 

MGC1Q6_REV ttttcgatttcgtggtggat 

MGC1Q7_FOR aggtggcgttttatgctgcgttga 

MGC1Q7_REV ggagcagtaaacatgccatttaca 

MGC1Q8_FOR ccaattcgcagtgagttttgt 

MgC1q8_REV gtgtggcttgtaaagatcctgctg 

EF-1_FOR cctcccaccatcaagaccta 

EF-1_REV ggctggagcaaaggtaacaa 

 

Table 1: primers designed for assessing tissue-specific expression and up-regulation of the transcripts 

MgC1q1, MgC1q2, MgC1q3, MgC1q4, MgC1q5, MgC1q6, MgC1q7 and MgC1q8 in response to bacterial 

challenges. 
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Species Class 
Sequence 

type 
Number of 
sequences 

Number of 
assembled 

contigs 

Predicted 
C1q-DC 

transcripts 

Relative 
rapresentation of 
C1q transcripts in 
the transcriptome 

MOLLUSCA 

Mytilus 
Galloprovincialis 

Bivalvia Sanger 18788 7112 168 2,362 

Crassostrea gigas Bivalvia Sanger 57279 10031 38 0,379 

Mytilus 
californianus 

Bivalvia Sanger 42354 9570 52 0,543 

Crassostrea 
virginica 

Bivalvia Sanger 14560 1734 15 0,865 

Laternula elliptica Bivalvia 454 123135 6619 4 0,060 

Aplysia californica Gastropoda Sanger 255605 
376698 8 0,002 

Aplysia californica Gastropoda Illumina 58073706 

Lottia gigantea Gastropoda Sanger 252091 19996 3 0,015 
Biomphalaria 

glabrata 
Gastropoda Sanger 54309 

35687 13 0,036 
Biomphalaria 

glabrata 
Gastropoda 454 704022 

Lymnaea stagnalis Gastropoda Sanger 11697 2291 1 0,044 

Aplysia kurodai Gastropoda Sanger 11445 1290 0 0,000 

Ilyanassa obsoleta Gastropoda 454 1387166 127783 19 0,015 

Littorina saxatilis Gastropoda 454 298623 25832 9 0,035 

Crepidula fornicata Gastropoda 454 1297588 62835 12 0,019 

Strombus gigas Gastropoda 454 286933 26369 12 0,046 

Euprymna scolopes Cephalopoda Sanger 35420 7361 0 0,000 

ANNELIDA 

Alvinella pompejana Polychaeta Sanger 218454 20333 2 0,010 

Capitella teleta Polychaeta Sanger 138404 13694 9 0,066 

Helobdella robusta Citellata Sanger 101359 11754 8 0,068 

Hirudo medicinalis Citellata Sanger 26833 6426 4 0,062 

Lumbricus rubellus Citellata Sanger 20239 2567 2 0,078 

ARTHROPODA 

Aedes aegypti Insecta Sanger 301596 21424 0 0,000 

Culex 
quinquefasciatus 

Insecta Sanger 205275 7036 0 0,000 

Dendroctonus 
ponderosae 

Insecta Sanger 152724 10578 0 0,000 

Onychiurus arcticus Entognatha Sanger 16379 3106 0 0,000 

Litopenaeus 
vannamei 

Malacostraca Sanger 161091 13332 0 0,000 

Petrolisthes 
cinctipes Malacostraca Sanger 97806 13088 3 0,023 

Penaeus monodon Malacostraca Sanger 35396 3540 0 0,000 

Daphnia pulex Branchiopoda Sanger 152659 19264 70 0,363 

Artemia franciscana Branchiopoda Sanger 37590 2569 0 0,000 

Daphnia magna Branchiopoda Sanger 13400 1750 3 0,171 

Lepeophtheirus 
salmonis 

Maxillopoda Sanger 129250 16226 3 0,018 
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Caligus 
rogercresseyi 

Maxillopoda Sanger 32037 6917 4 0,058 

Lernaeocera 
branchialis 

Maxillopoda Sanger 14927 4048 1 0,025 

Tetranychus urticae Arachnida Sanger 80855 10918 3 0,027 

Rhipicephalus 
microplus 

Arachnida Sanger 52838 10968 0 0,000 

Rhipicephalus 
appendiculatus 

Arachnida Sanger 19123 2879 0 0,000 

ONYCHOPHORA 

Peripatopsis 
sedgwicki 

unassigned Sanger 10476 1081 0 0 

ROTHIFERA 

Brachionus plicatilis Monogononta Sanger 52771 8255 0 0 

PLATYHELMINTHES 

Schistosoma 
mansoni 

Trematoda Sanger 205892 14937 1 0,007 

Schistosoma 
japonicum 

Trematoda Sanger 103725 10507 0 0,000 

Schmidtea 
mediterranea 

Turbellaria Sanger 78333 10023 1 0,010 

Taenia solium Cestoda Sanger 30587 3079 0 0,000 

NEMATODA 

Caenorhabditis 
elegans 

Chromadorea Sanger 393714 23775 0 0 

Ancylostoma 
caninum 

Chromadorea Sanger 80905 10720 0 0 

Ascaris suum Chromadorea Sanger 56118 3886 0 0 
Trichinella 

pseudospiralis 
Enoplea Sanger 17330 2042 0 0 

 
Table2: Relative abundance of C1qDC transcripts in representative Protostomes. The 3 species with the most 

representative transcriptomes were selected for a single taxonomic class, with the exception of Mollusca, 

where all the suitable species with more than 10000 ESTs were analyzed. The number and type of sequences 

used for the assembly is indicated, and the percentage of C1qDC transcripts or genes is calculated on the 

total number of the predicted transcripts or genes. *-T: transcriptome sequencing; -G: genomic sequencing. 
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Transcript/Protein 

name 
ESTs in 

Mytibase 
Protein length 

(aa) 
Signal 

peptide 
Coiled-coil 

domain 
Leucine-

zipper 

domain 

C1q 

domain 

MgC1q1 112 169 YES NO NO C-terminal 

MgC1q2 26 194 YES NO NO C-terminal 

MgC1q3 18 274 YES YES NO C-terminal 

MgC1q4 22 182 YES NO NO C-terminal 

MgC1q5 10 186 YES NO NO C-terminal 

MgC1q6 10 231 YES YES NO C-terminal 

MgC1q7 10 231 YES YES YES C-terminal 

MgC1q8 17 199 YES NO NO C-terminal 

 

Table 3: Main structural features of the 8 Mytibase (M. galloprovincialis) transcript sequences selected for 

the evaluation of tissue-specific expression. 

 



 
 

75 
 

Figures 

 

  

Figure 1: Multiple alignment of c1q domains from the 10 selected Mytilus galloprovincialis C1qDC 

proteins MgC1q1, MgC1q2, MgC1q3, MgC1q4, MgC1q5, MgC1q6, MgC1q7, MgC1q8, MgC1q97 

and MgC1q98; all the 3 different MgC1q97 C1q domains are represented in the alignment. 

 

 

 

 
Figure 2: Tissue-specific expression of the mussel C1qDC transcripts MgC1q1, MgC1q2, MgC1q3, 

MgC1q4, MgC1q5, MgC1q6, MgC1q7 and MgC1q8. Bars depict the transcript expression relative 

to the elongation factor EF-1. Results are mean ± SD of 3 technical replicates. Y axis of each graph 

is scaled based on the highest level of expression. HEM: Hemocyte cells, DIG: digestive gland, GIL: 

gills, GON: gonads, POS: posterior abductor muscle. 
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Figure 3: Expression changes of the transcripts MgC1q1, MgC1q2, MgC1q3, MgC1q4 and MgC1q5 

in hemocytes sampled at 3, 6 and 24 hours post-injection from mussels challeged with Gram- (V. 

anguillarum, black bars) and Gram+ (M. lysodeikticus, white bars) bacteria; error bars represent fold 

change ± standard deviation of 3 technical replicates relative to the expression levels of untreated 

mussels, previously normalized to the elongation factor EF-1. Significant differences between 

challenged group and control group were indicated by an asterisk (P<0.01). 
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Figure 4: Structural organization of the selected M. galloprovincialis C1qDC proteins MgC1q1, 

MgC1q2, MgC1q3, MgC1q4, MgC1q5, MgC1q6, MgC1q7, MgC1q8, MgC1q97 and MgC1q98. 
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Abstract 

Antimicrobial peptides (AMPs) play a fundamental role in the innate immunity of invertebrates, 

preventing the invasion of potential pathogens. Mussels can express a surprising abundance of 

cysteine-rich AMPs pertaining to the defensin, myticin, mytilin and mytimycin families, particularly 

in the circulating hemocytes. 

Based on deep RNA sequencing of M. galloprovincialis, we describe the identification, molecular 

diversity and constitutive expression in different tissues of five novel transcripts pertaining to the 

macin family (named mytimacins) and eight novel transcripts pertaining to the big defensins family 

(named MgBDs). The predicted antimicrobial peptides exhibit a N-terminal signal peptide, a positive 

net charge and a high content in cysteines, allegedly organized in intramolecular disulfide bridges. 

Mytimacins and big defensins therefore represent two novel AMP families of M. galloprovincialis 

which extend the repertoire of cysteine-rich AMPs in this bivalve mollusk. 

 

Keywords: Mytilus galloprovincialis; innate immunity; antimicrobial peptides; big defensin; 

mytimacin. 

 

Abbreviations: AMPs, antimicrobial peptides; MgBDs, Mytilus galloprovincialis, big defensins. 
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Introduction 

 
Antimicrobial peptides (AMPs) are humoral components of the innate immunity, present in all 

metazoans and essential to the immediate defense reactions of invertebrate organisms lacking 

adaptive immunity. Antibacterial activity was first reported in mollusks in the ‘80s (Kubota et al., 

1985) whereas the isolation and characterization of true AMPs from the mussels Mytilus 

galloprovincialis (Hubert, 1996) and Mytilus edulis (Charlet et al., 1996) date back to 1996. 

In the Mediterranean mussel M. galloprovincialis, cysteine-rich antimicrobial peptides are produced 

as precursor molecules and processed into mature peptides within the hemocyte granules (Mitta et 

al., 2000c). All the four AMP classes described so far in mussels, namely defensins (Hubert, 1996; 

Mitta et al., 2000a; Mitta et al., 1999b), myticins (Mitta et al., 1999a; Pallavicini et al., 2008), mytilins 

(Mitta et al., 2000a; Mitta et al., 2000b; Roch et al., 2008) and the strictly antifungal mytimycins 

(Charlet et al., 1996; Sonthi et al., 2011), retain a cysteine array essential to stabilize the mature 

peptide in a highly compact, cationic and amphipatic structure (Mitta et al., 2000c; Yeaman and 

Yount, 2007). More in detail, eight cysteine residues defining four intra-molecular disulfide bridges 

are present in defensins, myticins and mytilins, whereas 12 cysteines and two additional disulfide 

bridge characterize mytimycins. The structures of mussel defensin (Yang et al., 2000) and mytilin 

(Roch et al., 2008) have been determined by NMR, confirming the expected pattern of intra-molecular 

disulfide bonds. 

Each of the above mentioned AMP classes comprises several members and the recent identification 

of 12 additional sequence transcripts sensibly extended the number of mussel AMPs in M. 

galloprovincialis (Venier et al., 2011). New massive sequencing of the M. galloprovincialis 

transcriptome allowed us to prepare a high-coverage transcript collection and to study identity and 

molecular variability of two classes of previously uncharacterized cysteine-rich mussel AMPs, 

namely big defensins (MgBDs) and mytimacins. 

Big defensins have been originally identified in the horseshoe crab Tachypleus tridentatus (Saito et 

al., 1995), specifically stored in granules within hemocytes (Kawabata and Iwanaga, 1997) likewise 

many molluscan AMPs (Mitta et al., 2000c). The structure of big defensins typically includes one N-

terminal highly hydrophobic region, one C-terminal cysteine-rich and positively charged region, and 

six cysteine residues arranged to form 1-5, 2-4, 3-6 disulfide bonds in the mature peptide (Saito et al., 

1995), in a similar fashion to mammalian -defensins (Kouno et al., 2008; Selsted et al., 1993; Zhao 

et al., 2010). The disulfide array is therefore different from the classic 1-4, 2-5, 3-6 cysteines 

arrangement of arthropod defensins (Dimarcq et al., 1998). Furthermore the cysteine-stabilized a-

helix and b-sheet (CS) motif characterizing many plant and invertebrate defensins (including those 

of mussel) (Cornet et al., 1995) cannot be observed in big defensins. 

The two terminal regions of the molecule display remarkable differences in antimicrobial properties, 

with the N-terminal fragment being more active towards Gram- bacteria and the C-terminal fragment 

being more effective against Gram+ bacteria (Saito et al., 1995). NMR-based studies indicated that a 

globular N-terminal hydrophobic domain plays a fundamental role in the dynamic interaction with 

target membranes (Kouno et al., 2009). To date only two other big defensins have been extensively 

studied: AiBD of the bay scallop Argopecten irradians and VpBD of the clam Ruditapes 

philippinarum were significantly up-regulated in the bivalve  hemocytes in response to bacterial 

challenges and both displayed a broad spectrum of antimicrobial activity (Zhao et al., 2010; Zhao et 

al., 2007). Transcripts encoding big defensins have been also identified in the mollusks Crassostrea 

gigas, Mytilus chilensis and Bathymodiolus azoricus and in the lancelets Branchiostoma belcheri 

tsingtauense and Branchiostoma floridae, suggesting a broader taxonomic distribution of this AMP 

class. 
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Macins are positively charged secreted peptides which have been first described in the annelids 

Theromyzon tessulatum (Tasiemski et al., 2004) and Hirudo medicinalis (Schikorski et al., 2008) and 

have been later identified in the cnidarian Hydra magnipapillata (Jung et al., 2009) and in the mollusk 

Hyriopsis cumingii (Xu et al., 2010). Macins are characterized by a disulfide array of 8 cysteines, 

with the optional presence of a fifth intra-molecular disulfide bridge involving a C-terminal sequence 

extension in theromacin. The structure of hydramacin has been determined by NMR, revealing a 

compact organization with an uneven distribution of positively charged residues which divide the 

molecular surface into two large hydrophobic hemispheres, characterized by the arrangement of 

cysteine bonds in a knottin fold, found in all the proteins pertaining the scorpion-toxin-like 

superfamily members, including mussel defensins (Jung et al., 2009). 

Contrary to the majority of cysteine-rich AMPs, macins are not specifically expressed in the 

circulating cells, being instead localized in the endodermal epithelium (Bosch et al., 2009) or 

peripheral Large Fat Cells (LFCs) functionally resembling the insect fat body and often in close 

contact with the coelomic cavity (Tasiemski et al., 2004) or, in the case of neuromacin, in the central 

nervous system (Schikorski et al., 2008). The only reported exception is represented by the freshwater 

pearl oyster H. cumingii theromacin-like protein, which was found to be preferentially expressed in 

hemocytes (Xu et al., 2010). Macin expression is induced after exposure to bacteria (Tasiemski et al., 

2004; Xu et al., 2010), and neuromacin localizes especially at the site of tissue injury (Schikorski et 

al., 2008). Increased expression of a theromacin-like transcript was also observed in response to both 

infection and tissue injury in the snail Biomphalaria glabrata (Ittiprasert et al., 2010). 

Macins display membrane aggregating and permeabilizing activity, effective against Gram+ bacteria 

in theromacin and neuromacin (Schikorski et al., 2008; Tasiemski et al., 2004) and against Gram- 

bacteria in hydramacin (Jung et al., 2009). On the basis of the tertiary structure of hydramacin 

determined by NMR, a mechanistic model postulates its interaction with the bacterial membranes, 

with cell aggregation and microbe morphology changes preceding full permeabilization and their 

effective killing (Jung et al., 2009). 

Although both macins and big defensins have already been reported in mollusks, the knowledge of 

these two AMP families is still extremely limited and their occurrence and evolutionary relationship 

in the animal kingdom have not been adequately studied. Here we report the identification in M. 

galloprovincialis, thanks to a whole-transcriptome sequencing approach, of novel transcripts 

pertaining to the macin family (named mytimacins) and to the big defensins family (named MgBDs) 

and discuss their molecular diversity and constitutive expression in different tissues. 

  

 

Materials and methods 

 

Identification of transcripts encoding macins and big defensins from M. galloprovincialis 

Using second generation sequencing systems (454 Life Sciences and Illumina platforms) we 

sequenced the transcriptome of Mediterranean mussels (M. galloprovincialis) from tissues 

(hemocytes, gills and digestive gland) of different individuals. Following accurate processing, we 

could locally assemble a transcript collection which updates and enrich the pre-existing Mytibase 

(http://mussel.cribi.unipd.it) (Venier et al., 2009). The predicted peptides originated from the 

assembly process were scanned with HMMER 3 (http://hmmer.janelia.org/) to find mussel transcripts 

matching the big defensin and macin profiles generated by multiple alignments of the GenBank 

sequences pertaining to these two AMP classes. Significant hits were cut-off at e-values <10-5. The 

search was re-iterated by including the new results into the alignment and by generating new profiles 

until no new hits were found. 
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dbEST data mining 

A similar iterative approach was applied to the NCBI dbEST database 

(http://www.ncbi.nlm.nih.gov/dbEST) in order to extend the search from Mytilus spp. to other 

organisms and to assess the taxonomic distribution of the two AMP classes. The EST sequences 

matching the above mentioned HMMER profiles were assembled into contigs with the CLC Genomic 

Workbench 4.5.1 (CLC Bio, Katrinebjerg, Denmark) to remove redundancy. Only complete 

sequences were considered for further analysis. 

 

Sequence analysis 

All transcript sequences related to macins and big defensins were translated with the Expasy Translate 

tool (http://expasy.org/tools/dna.html) to obtain the virtual encoded peptides: signal peptides were 

predicted using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP), isoelectric point and molecular 

weight were calculated with the Expasy Compute pI\MW tool (http://expasy.org/tools/pi_tool.html) 

and functional role was evaluated with the antimicrobial peptide predictor APD2 

(http://aps.unmc.edu/AP/prediction/prediction_main.php). Structural homology with the T. 

tridentatus big defensin (2RNG) and the H. magnipapillata hydramacin-1 (2K35) was evaluated by 

automated tridimensional modeling with Phyre2 (Kelley and Sternberg, 2009). 

An analysis of SNPs frequency in the transcript sequences of mytimacins and big defensins was 

performed with the CLC Genomic Workbench 4.5.1 (CLC Bio, Katrinebjerg, Denmark). To exclude 

potential sequencing errors, sites with low-coverage (less than 10 sequencing reads) were not 

analyzed and SNPs occurring with very low frequency (<2%) or not covered by at least 3 independent 

reads were not considered reliable. 

 

Phylogenetic analysis 

Multiple sequence alignments displayed in figures and those used for the generation of HMMER 

profiles and Bayesian phylogenetic analysis were produced with MEGA5.02 (Tamura et al., 2011) 

using the MUSCLE algorithm (Edgar, 2004), with gap opening and extension penalties of -2 and -1, 

respectively. 

Phylogenies of big defensins and macins were estimated with MrBayes 3.2 (Ronquist and 

Huelsenbeck, 2003) starting from an alignment of the entire mature predicted peptides. The GTR 

substitution model of molecular evolution with a proportion of invariable sites, and a Gamma-shaped 

distribution of rates across sites (GTR + γ + I), was chosen as the best-fitting model for our datasets 

with ProtTest  (Abascal et al., 2005). We ran two independent analyses with four chains each (one 

“cold, three “warm”) for 1,000,000 generations, sampling a single tree each 1,000 generations. The 

first 25% of the generated trees were discarded for the burn-in procedure and the remaining trees 

were used to calculate the posterior probability for each node in a 50% consensus trees. 

 

Mussel samples 

To evaluate the tissue-specific expression of Mytimacin-1, Mytimacin-2, Mytimacin-3, MgBD1, 

MgBD3 and MgBD6 transcripts, mussels of 6.5-7 cm shell length were collected from the Gulf of 

Trieste, Italy. Total RNA was individually purified from hemolymph and from digestive gland 

mantle, posterior abductor muscle, gill, and foot, previously homogenized in RNATidy G according 

to the manufacturer’s instructions (AppliChem, Darmstadt, Germany). Following extraction, the 

RNA quality was assessed by electrophoresis on denaturing agarose gel and its quantity was estimated 

by UV-spectrophotometry. Complementary DNA was prepared by retro-transcription with the 

iScript™cDNA Synthesis Kit (Bio-Rad) from pooled RNA samples representing five individuals. 

 

 



 
 

85 
 

Quantitative PCR expression analysis 

The expression levels of the Mytimacin-1, Mytimacin-2, Mytimacin-3, MgBD1, MgBD3 and 

MgBD6 transcripts were assessed in samples representing hemolymph, digestive gland, mantle, 

posterior abductor muscle, gills and foot of five adult mussels. Primer pairs were designed (Table 1) 

and used to obtain specific PCR amplicons. The primers for MgBD3 were specifically designed to 

co-amplify the three sequences MgBD3a, MgBD3b and MgBD3c. 

All the PCR assays were performed using a Bio-Rad CFX96 system. The 15 L reaction mix included 

7.5 l of 2X IQ™ SYBR Green® Supermix (Biorad), 0.3 l of each 10 M primer and 2 L of a 

1:10 cDNA dilution. The following thermal profile was used: an initial 3’ denaturation step at 95°C, 

followed by 40 cycles at 95°  for 20”, 60° for 15” and 72° for 20”. Amplification products were 

analyzed with a 65°/95°C melting curve. The expression levels of the selected transcripts were 

determined using the comparative Ct method (2-Ct method) (Livak, 2001). Ct values used for 

quantification were corrected based on PCR efficiencies using LinRegPCR (Ramakers et al., 2003). 

The expression values were normalized using the elongation factor EF-1 as housekeeping gene (EF-

1 primers are shown in Table 1). Results are given as the mean with standard deviation of three 

technical replicates. 

  

 

Results and discussion 

 

Big defensins 

 

Computational identification and sequence features of MgBDs 

The mussel transcriptomic collection, assembled starting from a total of 24901 Sanger, 150857 454 

Life Sciences and 108620377 Illumina sequencing reads, conprises110259 contigs (with an average 

length of 590 nucleotides; the N50 parameter of the assembly was 658). In this transcriptomic mussel 

collection we could identify 8 different sequences encoding big defensins, named MgBD 1-6 and 

deposited at EMBL under the accession IDs FR873266-FR873273. Three sequences showing 

remarkable similarity are indicated as MgBD3a, MgBD3b and MgBD3c. 

The 8 inter-related sequences differ quite widely for their representation in the transcript collection, 

with MgBD1 showing a very high coverage in respect with the average of mussel transcripts and 

MgBD3b and MgBD3c showing, in contrast, an extremely low relative abundance (Table 2). An open 

reading frame (ORF) encoding the full-length peptide precursor was identified in all the eight 

different nucleotidic sequences (the alignment of the full length precursor peptides is shown in Figure 

1). 

The virtual translation yielded aminoacid sequences ranging from 114 and 122 residues in lenght (the 

shortest being MgBD3b and the longest one being MgBD5). A short N-terminal signal peptide was 

predicted in all cases, and the alignment with the big defensin isolated from T. tridentatus revealed 

that MgBDs are produced as prepropeptides. Following the cleavage of the signal peptide, a second 

proteolytic cleavage could result in the mature peptides, whose molecular weight range from 8.64 to 

9.70 KDa. 

In the C-terminal region of all big defensin transcripts, six conserved cisteines define the motif C-

X6-C-X3-C-X13-C-X4-C-C, essential for the disulfide bridge formation (see Figure  1). Six out of 

the eight predicted mature peptides show a basic isoelectric point (8.3-9.6) meaning a a positive net 

charge at neutral pH whereas the isolectric point of MgBD1 and MgBD6 is closer to neutrality. As 

reported in Table 2, the prediction of antimicrobial features performed with the APD2 software also 
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revealed a rather high percentage of hydrophobic residues, comparable to those of mytilins and 

defensins (Roch et al., 2008). 

The tertiary structure modeling by Phyre 2 was successful for all the 8 MgBDs and a percentage of 

residues ranging from 88 (MgBD3a) to 96% (MgBD4) were modeled with >90% confidence based 

on the tertiary structure of the T. tridentatus big defensin (PDB accession: 2RNG), denoting a high 

structural conservation within this AMP family (see Figure 2). 

Overall, the analysis of the 8 MgBDs sequences highlights properties common to many AMPs, such 

as a basic isoelectric point and a high hydrophobicity ratio. Furthermore, the conserved cysteine array, 

N-terminal hydrophobic domain and high sequence and predicted structural similarity with big 

defensins previously characterized in other organism further suggest that they represent genuine big 

defensins of M. galloprovincialis. 

 

Constitutive tissue expression of MgBDs 

The expression analysis of MgBD1, MgBD3 (with primers co-amplifying the 3 isoforms MgBD3a, 

MgBD3b and MgBD3c) and MgBD6 revealed very low or negligible constitutive expression in most 

of the six tissues analyzed but each transcript resulted to be selectively expressed in a given tissue 

(Figure 3). MgBD1, the sequence represented with the highest sequence coverage in our collection 

(see Table 2) was expressed only in the digestive gland whereas MgBD3 and MgBD6 expression was 

mainly traced in gills and mantle, respectively (Figure 3). Almost no expression was evident in 

hemolymph for any MgBD. These data are somewhat surprising since the few big defensins described 

so far have been  isolated in hemocytes, likewise the other known mussel AMPs (defensins, mytilins, 

myticins and mytimycins). Nevertheless the knowledge about big defensins expression pattern in 

mollusks is still deficient, as it has only been investigated in AiBD (evidencing specificity to 

hemocytes and, to a lesser extent, to gills (Zhao et al., 2007)), whereas VpBD was isolated from 

hemocytes, but its expression in other tissues was not assessed (Zhao et al., 2010). The tissue-specific 

expression of MgBD1 and other MgBDs would indicate their involvement in localized protection 

towards invading pathogens. Further studies should point out whether any MgBDs display a positive 

regulation of expression in response to immune-stimulating challenges, likewise VpBD and AiBD 

(Zhao et al., 2010; Zhao et al., 2007). 

 

Evolution of big defensins in animals 

The Bayesian phylogenetic analysis (Figure 4) grouped the 8 MgBDs in a highly supported 

monophyletic clade together with a close relative to MgBD3a from M. chilensis and the 3 big 

defensins of C. gigas. This clade is well separated from the other molluscan big defensins from B. 

azoricus,  A. irradians and R. philippinarum. 

 The 3 MgBD subgroups MgBD1\4, MgBD2\6 and MgBD3a\b\c underline the close similarity of 

their amino acidic sequences. In particular, MgBD3a, MgBD3b and MgBD3c are almost identical in 

the N-terminal hydrophobic region and in the C-terminal region with the cysteine array (high 

similarity is also retained at nucleotidic level), but diverge substantially in the region bridging the two 

portions (see Figure 1) and, as expected, in the UTRs. 

The dbEST data mining revealed close relatives to MgBD2, MgBD5 and MgBD6 in M. californianus 

in addition to the M. chilensis MgBD3a ortholog (see Figure 5 for details), and several big defensin 

sequences in other bivalves (combined data from GenBank and dbEST permitted to identify big 

defensins in 11 different bivalve species besides M. galloprovincialis), but the overall taxonomic 

distribution of this AMP family seems to be strictly restricted to bivalve mollusks, horseshoe crabs, 

and amphioxus, whereas no big defensins were detected in many other large invertebrate classes. 

Such a distribution is quite unusual, as mollusks and horseshoe crabs (phylum Arthropoda, 

subphylum Chelicerata, class Merostomata) are distantly related and no big defensins could be 
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identified neither in other large Arthropoda subgroups (crustaceans, insects, etc.) or 

Lophotrocozoans. Nevertheless, the presence of big defensins in early chordates like amphioxus 

suggests a broader taxonomical distribution for this AMP class. 

As the search for homologous sequences was exclusively based on ESTs, one could argue that the 

absence of big defensins in the classes bridging mollusks, horsheshoe crabs and lancelets could be 

merely the result of a either very low or of a very specialized tissue expression (as the case of MgBD1, 

MgBD3 and MgBD6 in M. galloprovincialis, see section 3.1.2), not sufficient to guarantee an 

homogenous representation of these sequences in transcriptomic sequencing projects based on Sanger 

sequencing. In order to test this hypothesis, we used a similar approach to the genomic data available 

for any representative species of the main invertebrate families available, revealing that the lack of 

big defensin-like sequences in dbEST effectively depends on the absence of these gene models in 

most genomes. Therefore, such a taxonomic distribution would imply gene loss in some invertebrate 

classes and selective retention of big defensin genes in other classes. Retention and expansion of 

genes encoding big defensins in the Mediterranean mussel could explain the evidence of various 

MgBD transcripts as products of different genetic loci, likewise the previously characterized AMP 

families of defensins, mytilins, myticins and mytimycins. 

A lower-scale diversity at a SNP level is still detectable in our new sequencing data, since the 

processed transcript sequences derived from many individuals of M. galloprovincialis, although most 

SNPs are located in the UTR regions and therefore don’t cause amino acid substitutions. Only the 

availability of complete genomic data from mussel will reveal whether the diversity observed is the 

product of inter-individual variability or rather the result of highly similar paralogs, likewise other 

invertebrate AMPs, such as oyster and tick defensins (Schmitt et al., 2010; Wang and Zhu). 

 

Mytimacins 
 

Computational identification and sequence features of mytimacins 

Five different transcripts encoding macins, named mytimacin-1-5, were identified as reported for the 

MgBDs. Nucleotidic sequences were deposited at EMBL under the accession IDs FR873274-

FR873278. Sequence representation in the mussel transcript collection was variable, with mytimacin-

1 showing the highest coverage and mytimacin-5, displaying the lowest one (see Table 3). 

An open reading frame (ORF) encoding a full-length peptide was identified in four out of five 

nucleotidic sequences. Mytimacin-5 appears incomplete, since no stop codon was identified at the 

3’end of the sequence; its full length can nevertheless be predicted to be 105 amino acids by the 

comparison with the M. edulis homologue (EST AM879320.1, see Figure 5). The multiple alignment 

of the deduced amino acidic sequences of mytimacins is shown in Figure 1. 

The predicted mytimacins are characterized by a length of 85-101 residues (the complete sequence 

of mytimacin-5 is unavailable). A N-terminal signal peptide was predicted with high probability, 

suggesting that mytimacins are produced as precursors targeted to the secretory pathway. Predicted 

molecular weights of mature peptides range between 6.79 and 9.17 KDa. The eight cysteine residues, 

arranged in four intramolecular disulfide bridges characterizing all macins, are conserved also in 

mytimacins. The two additional cysteines engaged in the fifth, optional, disulfide bond typical of the 

longer, theromacin-like AMPs, can be identified only in mytimacin-1, -4 and -5, which present, 

indeed, a remarkable extension at their C-terminus, likewise the theromacins of the segmented worm 

T. tessulatum (Tasiemski et al., 2004) and of the mollusk H. cumingii (Xu et al., 2010). On the 

contrary, mytimacin-2 and -3 lack this portion, therefore more closely structurally resembling 

hydramacin (Jung et al., 2009) and neuromacin (Schikorski et al., 2008). The mytimacin-2 sequence 

is nevertheless substantially different from that of mytimacin-3, as it is characterized by a peculiar, 
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potentially highly flexible, glycine-rich stretch at the N-terminus of the mature peptide, which cannot 

be observed in any other macin reported so far. 

The predicted mature peptides of mytimacins are characterized by basic isoelectric points, thus 

carrying a positive net charge at neutral pH. Their analysis performed with the antimicrobial peptide 

predictor APD2 revealed additional typical AMPs characteristics, i.e. a positive net charge and a 

rather high percentage of hydrophobic residues, which is also in this case comparable to those of other 

mussel AMPs (Roch et al., 2008). The main features of mytimacins are detailed in Table 3. 

The tertiary structure modeling by Phyre 2 based on the tertiary structure of hydramacin-1 (Protein 

database accession: 2K35) was successful for all the 5 mytimacins and a high percentage of residues 

were modeled with >90% confidence (the lowest one being mytimacin-5, with 69%). In particular, 

the predicted tertiary structure of mytimacin-3 resulted highly similar to hydramacin-1, as 97% 

residues were modeled with high confidence and both molecules are characterized by the presence of 

8 cysteines. Figure 6 displays the highly conserved positions of lysine and arginine residues on the 

molecular surfaces of hydramacin-1 and mytimacin-3. The distribution of these residues, forming a 

positively charged “belt” dividing two hydrophobic hemispheres is postulated to be essential for the 

antimicrobial activity of hydramacin-1 (Jung et al., 2009), and the retention of this feature in 

mytimacin-3 suggests that this molecule may exert a similar mode of action. Given their cationic 

nature, the presence of a conserved knottin-like disulfide array and the highly significant predicted 

structural similarity with hidramacin-1, the 5 M. galloprovincialis mytimacins are likely to act as 

AMPs. 

 

Constitutive expression of mytimacins 

The expression analysis of mytimacin-1 highlighted its constitutive expression, at comparable levels, 

in all the tissues analyzed, with the exception of hemocytes where the transcript expression was much 

lower (Figure 3). Similarly, mytimacin-2 was not expressed at all in hemocytes, whereas it showed a 

rather specific localization to the gills and, to a lesser extent, to the foot. Mytimacyn-3 was almost 

exclusively detected in the mantel, although its expression level was particularly low also in this 

tissue. 

Our data therefore point out that mytimacins, unlike the vast majority of known molluscan AMPs, 

are not specifically synthesized and stored in circulating hemocytes. This is not surprising, 

considering that most macins are produced in highly specialized cells, called LFCs, located in tissues 

in contact with the coelomic cavity, with the intestinal epithelium and with the epidermis in 

segmented worms (Tasiemski et al., 2004),  or in the secondary endoderm in Hydra (Bosch et al., 

2009). The theromacin of the freshwater mussel H. cumingii represents the only reported  exception, 

as it is mainly expressed in hemocytes (Xu et al., 2010). The completely different expression pattern 

of mytimacin-1 in respect with Hc theromacin is consistent with the presence of specialized producing 

cells evenly distributed in the whole animal body, likewise segmented worms and Hydra. 

On the contrary, mytimacin-2 and -3 resulted to be expressed in specific tissues, and hypothesizing 

the reasons for such a specificity is particularly tricky, considering that they don’t show any striking 

similarity with other macins which have been described so far, although mytimacin-3 could be linked 

to neuromacin and hydramacin, considering its similar molecular organization. 

 

Evolution of macins in animals 

The Bayesian phylogenetic analysis revealed that macins are highly heterogeneous sequences (Figure 

7). Macins of segmented worms and cnidarians were grouped in highly supported clades, whereas 

molluscan macins couldn’t be grouped together, but instead formed several, distantly related, 

subgroups, reflecting the sequence diversity we observed in M. galloprovincialis. While no obvious 

hortologues to mytimacin-2, -3 and-5 could be identified in other organisms, mytimacin-1 and -4, 
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which share a high identity percentage at an amino acidic level (77%), are grouped in a strongly 

supported clade with the theromacin-like sequences of the freshwater mussels Alasmidonta heterodon 

and Alasmidonta varicosa, similarly characterized by C-terminal extensions and the presence of two 

additional cysteines in conserved positions. 

Our dbEST data mining strategy revealed orthologues sequences to mytimacin-3 and mytimacin-5 in 

M. edulis and M. californianus (for details, see Figure 5). More importantly, the data mining also 

evidenced that macins represent an ancient and widespread AMP family. Indeed, a 8-cysteines macin 

can be identified in the sponge Leucetta chagoensis, suggesting that macins were already exploited 

in antimicrobial defense in primitive multicellular animals. Globally, our analysis identified macins 

in more than 40 different species, pertaining to Cnidarians, to most of the major groups of 

protostomes, including Mollusca, Insecta, Arachnida, Crustacea, Nematoda, Annelida and 

Tardigrada, ranking up to the basal Deuterostomes Patiria miniata and Asterina pectinifera (phylum 

Echinodermata, class Asteroidea), although they seem to be more extensively represented in some 

groups (i.e. Cnidaria and Lophotrochozoa) and just sporadically in others (i.e.  Ecdysozoa). A 

phylogenetic analysis of the whole set of sequences evidenced extremely complex relationships 

between the macins of different organism and was not able to shed definitive light on this topic (data 

not shown). The picture is made even more complex by the main structural differences observed, 

which can, in turn, be helpful to categorize macins into four subclasses as follows: a) short macins 

with 4 disulfide bridges (8-Cys macins); b) short macins with 4 disulfide bridges and a N-terminal 

glycine-rich stretch (8-Cys + poly-Gly macins); d) long macins with 5 disulfide bridges (10-Cys 

macins); e) long macins with 6 disulfide bridges (12-Cys macins). 

The distribution of the four subclasses of macins in metazoans is exemplified in Figure 8. While all 

the four subclasses are represented in M. galloprovincialis, only 8-Cys and 10-Cys macins seem to 

be widespread in animals, whereas the diffusion of the previously uncharacterized 8-Cys + poly-Gly 

and 12-Cys macins seem to be restricted to a few classes only. The presence of four disulfide bonds 

combined with a poly-Glycine N-terminal stretch observed in mytimacin-2 has never been described 

before, although peptides with an astounding similarity can be detected in the distantly related phylum 

of Cnidaria (predicted peptides retrieved from EST data of Clitya hemisphaerica and Podocoryna 

carnea showed, respectively, 74% and 65% identity with mytimacin-2). The comparison of 

mytimacin-5 with its orthologues in M. edulis and Pinctada maxima was useful to reveal the presence 

of two additional cysteines in conserved position (the first one located immediately before the C4, 

the second one in the C-terminal extension), suggesting that they may be involved in the creation of 

an additional, 6th disulfide bond, adding even more structural complexity to this subclass of 12-Cys 

macins, which was only identified in Mollusca (see Figure 8). 

Our data are consistent enough to affirm that the five mytimacins are the product of different genetic 

loci, revealing for the first time macins as a multi-genic family within a single species. The presence 

of a minor inter-individual variability was evidenced by the SNP analysis performed with the CLC 

Genomic Workbench 4.5.1, although the variability observed was rather low. 
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Conclusions 

 

The advent of next generation sequencing technologies provided a valuable resource for the 

bioinformatic identification of previously uncharacterized protein families in non-model organisms 

on a transcriptomic or on a genomic scale (Patrzykat and Douglas, 2003). Such methodologies have 

also been successfully used also in the identification of potential AMPs in plants (Belarmino and 

Benko-Iseppon, 2010; Graham et al., 2008) and more recently also in invertebrate genomes (Tian et 

al., 2010; Wang and Zhu). 

We chose to use a similar approach in the identification of members of two previously 

uncharacterized mussel AMPs families, big defensins and macins. Our analysis revealed the presence 

of eight novel big defensins (MgBDs) and five novel macins (mytimacins) in the transcriptome of the 

Mediterranean mussel M. galloprovincialis, which further extend the rich and complex antimicrobial 

peptides repertoire of this organism (Venier et al., 2011). Our data point out that most of these 

sequences are the products of multi-genic families, suggesting that a strategy of gene expansion 

similar to the one described for oyster and thick defensins (Schmitt et al., 2010; Wang and Zhu) has 

been implied in MgBDs and mytimacins. Furthermore, the data mining analysis revealed a 

widespread distribution of macins in invertebrates and, on the contrary, a very restricted distribution 

of big defensins to a few taxonomic classes. 

Further studies should be focused on the investigation of the physiological role and the sites of 

synthesis and storage of these two newly discovered AMP families in mussel, as well as on their 

spectrum and mode of action against invading pathogens. 
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Tables 

 

Primer name Primer sequence 

EF-1 FOR cctcccaccatcaagaccta 

EF-1 REV ggctggagcaaaggtaacaa 

Mytimacin-1 FOR ctcctgcaaattcccacatc 

Mytimacin-1 REV atcttttgttccgccagaga 

Mytimacin-2 FOR gtggtggtggaagtggaagt 

Mytimacin-2 REV tccaagctctttgcatctgt 

Mytimacin-3 FOR acaatcaccaatgggaccac 

Mytimacin-3 REV tttgggcagcaaattctctc 

MgBD1 FOR gcgtagattccatatgcagca 

MgBD1  REV tgttgatactccctgctcag 

MgBD3 FOR ccgattctaggacgagttgtggca 

MgBD3 REV ggcaactttccaagcgccatatgc 

MgBD6 FOR agcatcatacgcaggattgtc 

MgBD6 REV tagctctacaccatcctctg 
 

 

 

Table 1: Primers designed for assessing the tissue-specific levels of Mytimacin-1, Mytimacin-2, Mytimacin-

3, MgBD1, MgBD3 and MgBD6 transcripts 
 

 

 

  

relative abundance* 

precursor/ 

mature 

peptide 
length (aa) 

disulfide 

bridges 

pI of the 

mature 

peptide 

MW of the 

mature 

peptide 

hydrophobicity 

ratio 

MgBD1 36.65 115/79 3 7.09 8.64 45% 
MgBD2 1.31 116/82 3 9.02 8.96 40% 
MgBD3a 0.05 119/85 3 9.61 9.70 40% 
MgBD3b <0.01 114/80 3 9.35 9.16 41% 
MgBD3c <0.01 118/84 3 9.47 9.66 39% 
MgBD4 0.15 115/79 3 8.30 8.78 44% 
MgBD5 5.65 122/87 3 8.87 9.73 42% 
MgBD6 0.92 116/82 3 6.02 8.85 42% 

 

 

Table 2: Sequence representation in the transcript collection and main predicted features of the big defensin 

peptides of M. galloprovincialis. * value representing the rate between the expression level of each transcript 

and the average expression value of all other transcripts in the whole transcript collection (measured in RPKM). 
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relative abundance* 

precursor/ 

mature 

peptide 
length (aa) 

disulfide 

bridges 

pI of the 

mature 

peptide 

MWof the 

mature peptide 
hydrophobicit

y ratio 

Mytimacin-1 4.87 101/78 5 9.10 9.11 38% 
Mytimacin-2 0.78 92/64 4 8.65 8.12 32% 
Mytimacin-3 1.00 85/61 4 9.06 6.79 34% 
Mytimacin-4 0.17 101/78 5 8.04 9.17 38% 
Mytimacin-5 0.03 100+/78+ 6? ? ? ? 

 

Table 3: summary of mytimacins sequence coverage in Mytibase and main features of the corresponding 

predicted peptides. * value representing the rate between the expression level of each transcript and the average 

expression value of all other transcripts in the whole transcript collection (measured in RPKM). 
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Figures 

 

 
 

Figure 1: Panel A: multiple alignment of deduced amino acid sequences of the 8 mussel big defensins. Panel 

B: multiple alignment of deduced amino acid sequences from the five mytimacins. 
Conserved residues are outlined, cysteine residues engaged in disulfide bridges are black boxed and the 

organization of the disulfide arrays are schematically shown. The signal peptide and propeptide regions are 

shown. The predicted secondary structure is shown below the sequence alignment (-sheet: arrow; -helix: 

helix). 
 

 

 
 

Figure 2: Predicted ribbon structures of mussel big defensins, obtained by Phyre2 modeling. A: MgBD1; B: 

MgBD2; C: MgBD3a; D: MgBD3b; E. MgBD3c; F: MgBD4; G: MgBD5; H: MgBD6. 
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Figure 3: Tissue-specific expression of the transcripts mytimacin-1, mytimacin-2, mytimacin-3, BD1, BD3 

and BD6. The expression values (bars) are relative to the elongation factor EF-1. Results are mean ± SD of 3 

technical replicates. The Y axis of each graph is scaled based on the highest level of expression. HEM: 

Hemolymph, DIG: digestive gland, MAN: mantle, PAM: posterior abductor muscle, GIL: gills, FOO: foot. 

ND: not detected (fluorescence did not reach threshold after 40 cycles of PCR or the melting peak analysis did 

not reveal any specific product). *: not quantifiable (fluorescence did not reach threshold after 40 cycles of 

PCR but the melting peak analysis revealed a limited production of the specific amplicon). 
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Figure 4: Bayesian phylogeny of big defensins inferred from the alignment of the predicted mature peptides. 

Posterior probabilities are shown for each branch. Entry IDs: T. tridentatus BD:  P80957.2; B. belcheri BD: 

Q86QN6.1; B. floridae BD: ADH03419.1; A. irradians AiBD: Q0H293.1; V. philippinarum BD: 

ADM25826.1); M. chilensis BD: AEE60906.1; B. azoricus BD: HM756150.1; C. gigas BD1, BD2 and BD3: 

AEE92785.1, AEE92787.1 and AEE92790.1. 
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Figure 5: Alignment of M. galloprovincialis big defensins and mytimacins and their orthologs in other Mytilus 

species. Peptides sequences were inferred from the following ESTs: Mytilus californianus BD2\6: 

GE761911.1, GE763207.1, GE764803.1, GE756683.1, GE749104.1, GE753537.1; Mytilus chilensis BD3a: 

AEE60906.1; Mytilus californianus BD5: ES398618.1, GE759807.1, GE760702.1; Mytilus californianus 

mytimacin-3a: GE754022.1, GE749772.1, GE747980.1, GE749598.1; Mytilus californianus mytimacin-3b: 

GE752669.1, GE750343.1; Mytilus edulis mytimacin-5: AM879320.1. 
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Figure 6: Ribbon structures and molecular surfaces of hydramacin-1 (panels A and C, PDB accession: 2K35) 

and mytimacin-3 (panels B and D, obtained by Phyre 2 modeling). Positive charges of lysine and arginine are 

colored, highlighting the high conservation of the positively charged residues distribution. 
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Figure 7: Bayesian phylogeny of macins inferred from the alignment of the predicted mature peptides. 

Posterior probabilities are shown for each branch. 
(Entry IDs: H. cumingii theromacin: ADK94899.1; A. varicosa theromacin-like: HP640944.1; A. heterodon 

theromacin-like: HP640617.1; H. medicinalis theromacin: ABV56207.1; T. tessulatum theromacin: 

Q6T6C2.1; A. californica neuromacin-like: A5GZY1.1; E. complanata neuromacin-like: HP640944.1; H. 

asinina neuromacin-like: EZ420620.1; E. timida neuromacin-like: HP157026.1; H. magnipapillata 

hydramacin: B3RFR8.1; H. magnipapillata hydramacin-like: XP_002163468.1; H. medicinalis neuromacin: 

A8V0B3.1; P. ocellatus neuromacin-like 1: HP232903.1; P. ocellatus neuromacin-like 2: HP231655.1). 
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Figure 8: taxonomic distribution of macins, inferred from the dbEST data mining analysis. 8-cys: short macins 

with 4 disulfide bridges; 8-Cys + poly-Gly: short macins with 4 disulfide bridges and a N-terminal glycine-

rich stretch; 10-Cys: long macins with 5 disulfide bridges; 12-Cys: long macins with 6 disulfide bridges. 
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Abstract 
 

Gene expression studies largely support the understanding of gene-environment interactions in 

humans and other living organisms but the lack of genomic and genetic information often complicates 

the analysis of functional responses in non-traditional model species. Nevertheless, the fast 

advancement of DNA microarray and sequencing technologies now makes global gene expression 

analysis possible in virtually any species of interest. As regards the Mytilus genus, tens of thousands 

Expressed Sequence Tags (ESTs) are currently available for M. californianus and M. 

galloprovincialis, and DNA microarrays have been developed. Among them, Immunochip 1.0 

specifically includes 1,820 probes of genes centrally involved or modulated in the innate immune 

responses of the Mediterranean mussel. This review recalls peculiarities and applications of the 

existing mussel DNA microarrays and finally summarizes facts concerning a variety of transcript 

sequences likely involved in the mussel immunity. Beside DNA microarrays, Next Generation 

Sequencing (NGS) technologies now offer new and broader research perspectives, from the whole 

transcriptome coverage to the Mytilus genome sequencing. 

 

Key Words: Mytilus; DNA microarray; innate immunity; ESTs; antimicrobial peptides; C1q 
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Introduction 
Global gene expression analyses in organisms selected to represent a given ecosystem currently 

support ecotoxicological investigations and create a conceptual bridge between the early organism 

responses and late population changes (Steinberg et al., 2008). The animal response to a variety of 

detrimental conditions usually starts with alarm signals followed by adjustment reactions aimed to 

neutralize the physiological unbalance, and may end up in a general decline of vital processes 

ultimately marked by disease and death. Depending on the stress type and exposure intensity, the 

expression of definite sets of genes makes available specific proteins and other molecules in cells and 

tissues. 

Appeared in the 1990s, the DNA microarray technology enables the simultaneous expression measure 

of thousands of genes represented in the microarray platform by unambiguous polynucleotide probes 

(Schena et al., 1995; Lockhart et al., 1996). The gene expression profiles emerging from suitable 

sampled cells or tissues can provide a dynamic view of biological processes and allow the correct 

sorting of different functional states. Based on the availability of sequence data, DNA microarrays 

can be used to solve a variety of biological questions: from the identification of molecular markers 

pathognomonic of disease and transcriptional signatures of various stress factors to the understanding 

of complex phenomena such as the epigenome in normality and disease (Martín- Subero and Esteller, 

2011). 

Specific microarray platforms and advanced deep sequencing technologies now support studies on 

the cellular functions of microRNAs and their role in human diseases (Thomas et al., 2010). Leading 

research institutions are currently using both the mRNA and miRNA expression profiling to examine 

the genomic responses to environmental stresses (NCT). Central to the toxicogenomics studies is the 

concept of ‘phenotypic anchoring’ which recalls the importance to correlate the observed gene 

expression changes to adverse effects defined by conventional parameters of toxicity and pathology. 

In the controlled vocabulary of the Natl. Library of Medicine, the term ‘DNA microarray’ is indexed 

under the following category which indicates the large application range of such innovative 

technology (MESH): Oligonucleotide Array Sequence Analysis- the hybridization of a nucleic acid 

sample to a very large set of oligonucleotide probes, which are attached to a solid support, to 

determine sequence or to detect variations in a gene sequence or expression or for gene mapping. 

Relevant to the gene expression profiling research area is Gene Expression Omnibus, a public 

repository that archives and freely distributes microarray, next-generation sequencing, and other 

forms of high-throughput functional genomics data submitted by the scientific community (GEO). 

To fulfil the current standards (Minimum Information About a Microarray Experiment) the contents 
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submitted to GEO should include the following: raw hybridization data; normalized data from which 

the main experimental findings can be outlined; description of the tested samples and whole 

experimental design, with details on the biological and technical replicates; identity and location of 

all probes and controls of the microarray platform, with external reference in the case of commercial 

all arrays; concise but precise description of laboratory and data processing protocols related to the 

experiment under submission. According to the aims of the Microarray Gene Expression Data 

Society, dating back to the late ‘90s, the compliance to the MIAME standards should assure the data 

comparability among different platforms and testing protocols while supporting common work 

criteria and the reduction of random data variation (Rogers and Cambrosio, 2007). 

Based on the comparative data analysis, the guidelines for standardization and reporting have been 

further refined (Chen et al., 2007; Shi et al., 2008). At present, GEO contains as much as 9,000 

platform records which can be accessed and browsed in full detail. 

Figure 1 illustrates the annual increase of PubMed records including the term "DNA-

microarray" or "Mytilus" (subject heading or title/abstract) and suggests that pioneering technologies 

open the way to new ideas more than an unconventional model organisms. In fact, the gene expression 

profiling field has substantially diversified: specialized equipments and various related software make 

today the DNA microarrays powerful tools for the study of gene sequence, structure and expression, 

particularly for the best known model organisms. Nonetheless, one must remember that transcription 

is just one step in gene expression, and post transcriptional events referred to maturation of the 

primary transcript, RNA editing and RNA silencing as well as various modifications of the translation 

products overall influence the final amounts and activity of cellular proteins. 

 

Mytilus DNA microarrays: preparation strategy and applications 

 

Six GEO records refer to mussel DNA microarrays at July 2011. 

MytArray 1.0 (GEO platform GPL1799, Oct 2006) is composed by 1,712 cDNA probes, univocally 

tagging the 3’-end region of transcripts from the main tissues of adult mussels (Mytilus 

galloprovincialis) and 46 unrelated cDNA control probes, all printed in duplicate and twice per slide 

(1.7 k mussel probes per array, 7.0 k total probes per slide). The probes were designed in the 3’-UTR, 

one among the least conserved gene regions, so that competition of different mRNAs from genes with 

similar coding sequence and cross-hybridization to the same microarray probe should be minimal. 
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Also, the probe size of 400 - 800 bp is expected to ensure comparable efficiency in the amplification 

and spotting of the cDNA inserts as well as uniform hybridization kinetics (Venier et al., 2006). 

MytArray 1.0 was first used to investigate the specificity of gene transcription in mussel tissues with 

different functional role and the transcriptional profiles of mussels treated with chemical mixtures or 

living wild in different sites of the Venice lagoon (Venier et al., 2006; GEO series GSE2176, 

GSE2183 and GSE2184). Sample pairs combined according to dye-swap labelling (reference and test 

samples labelled with Cy3/Cy5 cyanine dyes in alternate combinations) were competitively 

hybridized on the two equal arrays of cDNAs spotted on the same slide (Fig. 2). Gills, digestive gland, 

tissues involved in contraction/motility (foot, adductor muscles, ligaments) and reproduction (gonads 

and mantle) displayed specific transcriptional footprints, as expected. The results obtained in mussels 

treated with mixtures of inorganic metal salts or persistent organic chemicals guided the interpretation 

of the gene expression profiles of mussels living in the inner industrial canals or at the lagoon border 

open to the sea (this exercise yielded a provisional list of contamination marker probes). In this study, 

the evident transcriptional down-regulation detected in the reproductive tissues was consistent with 

the depleted status of the mussel gonads whereas the greatest variety and abundance of transcripts 

was found in the digestive gland. Additional analysis of these expression data is reported elsewhere 

(Pantzartzi et al., 2010). 

The same platform was then used to evaluate in a time-course study the gene expression changes in 

the digestive gland of mussels exposed to okadaic acid (OA) via food contamination for five weeks 

(Manfrin et al., 2010; GEO series GSE14885). One relevant purpose of the study was the 

identification of molecular biomarkers which could enable an easy and rapid detection of the 

Diarrhoeic Shellfish Poisoning biotoxins in marketable mussel stocks, i.e., novel reliable assays 

complementing the existing diagnostic methods. An unsaturated loop design, combining control and 

treated samples with different dye-labelling for the competitive hybridization on Mytarray 1.0, was 

adopted to take into account all the time points and the biological replicates, with some combinations 

only inferred (Kerr and Churchill, 2001). A considerable number of transcriptional changes was 

detected in the OA-exposed mussels, with a prevalence of up-regulated probes at 3 days and a 

subsequent progressive increase of down-regulated probes (from 58 % over-expressed to 76 % under- 

expressed genes, respectively detected at day 3 and day 35). The biphasic time-related trend of 

response observed in this study recalls the changes occurring in the mussel digestive gland along 

different phases of the mussel reaction to the experimental stimulus, from the early acute response to 

the late overall unbalance of the functional processes. Many candidate markers are now under study 

to evaluate their predictive value in the diagnosis of biotoxin-contaminated mussels. 
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MytArray 1.1 (GPL102699, March 2010) contains the same cDNA probes of MytArray 1.0 in 

a slightly modified platform geometry. It has been used to study the gene expression profiles of M. 

galloprovincialis with monthly samplings for one year, hence taking into account seasonal differences 

which are known to influence metabolism rates and gonad development among other vital functions 

(Banni et al., 2011; GEO series GSE22915, 

GSE23049- GSE23051). Mussels were collected from an anthropized and industrialized lagoon of 

the Southern Mediterranean Sea (Ben Said et al., 2009) and competitive hybridizations were 

performed with dye-swap-labelled samples (dual colour analysis). 

Following a loop design with 3-4 biological replicates and parallel histological evaluation of the 

gonad status, the authors could analyze the transcriptional profiles of digestive gland tissue of female 

mussels collected during 12 months, and those of digestive gland and mantle tissues from male and 

female individuals representing all four gonad maturation stages. In the examined annual period, the 

transcriptional profiles globally highlighted the higher expression of genes associated to mussel 

nutrition and digestion in May- August compared to the other months, and trends for gonad transcripts 

consistent with the reproductive mussel status. 

The same cDNA platform contributed to the toxicological evaluation of a neonicotinoid insecticide 

mixture (Dondero et al., 2010), an organophosphate compound (Canesi et al., 2011) and to the 

integrated measure of the functional mussel responses in the estuarine Tamar region in UK (Shaw et 

al., 2011). 

The Hofmann_UCSB_Mytilus_2.5K_v1.0 record (GPL5795, Mar 2008) describes a platform of 

nearly 2500 spotted cDNAs of Mytilus californianus consisting of both unsequenced and sequenced 

clones referring to gill and muscle of environmentally challenged mussels. The related GEO series 

GSE8935 include data on latitudinal gene expression changes. Five biological replicates from four 

populations of Californian mussels were compared to a common reference sample in dual colour 

analysis (dye-swap labelling). 

The HMS/SomeroLab-Mytilus-105K array-v1.0 (GPL9676, Jun 2010) and HMS/Somero-Mytilus- 

105K Agilent-v1.0 salinity stress (GPL11156, Jan 2011) are two successive versions of a platform 

composed by oligomer probes in-situ synthesized by Agilent Technologies (Santa Clara, CA, USA). 

These microarrays include probes of both M. californianus and M. galloprovincialis, and are intended 

for homologous and heterologous gene expression profiling. The processing and assembling of about 

26,000 ESTs from M. californianus (Gracey et al., 2008) and 3,984 ESTs from M. galloprovincialis 

(Venier et al., 2003) resulted in a total of 12,961 and 1,688 transcript clusters or singletons, 
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respectively. Long (60-mer) oligoprobes were designed against the M. californianus series and the 

resulting 43,969 total unique probes (2.6 probes per transcript sequence) were analyzed through 

BLAST searches against the M. galloprovincialis series to support selection and design of related 

probes (556 probe pairs matching transcripts of both species, with a mean number of 4.6 divergent 

nucleotide bases per probe). A total of 44,524 unique probes were duplicated or triplicated randomly 

to fill a microarray of 105,000 elements (105 k probes). 

These two platforms have been used to investigate the transcriptional responses to thermal and 

osmotic stresses in M. californianus, M. trossulus and M. galloprovincialis (Evans and Somero, 2010; 

Lockwood et al., 2010; Lockwood and Somero, 2011). To control the effects of sequence mismatches 

in the case of M. galloprovincialis probes included in the GPL9676 platform, only probes 

experimentally confirmed in the hybridization of 84 samples of both M. galloprovincialis and M. 

trossulus were used in the related data analysis. Following a large set of hybridization experiments 

and stringent quality control, misleading probes were removed from the dataset and the second 

platform version (GPL11156/Agilent 019153) was generated.  

In the central and southern coasts of California, M. galloprovincialis has largely displaced the native 

congener, M. trossulus, and such evidence could be explained by species differences in physiological 

traits related to the adaptation to warm habitats. To investigate the hypothesis, gene expression 

profiling was performed on gill RNA from mussels subjected to acute heat-stress (GEO series 

GSE19031). A total of 1,531 probes, out of 4,488 different genes represented on the microarray and 

recognizing mRNAs of both species, showed temperature- dependent expression changes highly 

similar in the two congeners whereas 96 probes denoting oxidative stress, proteolysis, energy 

metabolism, ion transport, cell signalling, and cytoskeleton reorganization outlined species-specific 

responses to the heat-stress. Among them, the one encoding the small heat shock protein 24 was 

highly induced in the Mediterranean mussel and showed only a small change in M. trossulus. Six 

biological replicates per mussel group were included in this study which exemplifies the use of a 

cross-species microarray as well as heterologous and homologous hybridization. According to the 

authors and published literature, M. trossulus and M. galloprovincialis are approximately 7.6 million 

years divergent from M. californianus, and only 3.5 million years divergent from each other: in other 

words, the heterologous hybridization of target sequences from M. trossulus should occur on 

microarray probes from M. galloprovincialis without inherent sequence bias and should provide a 

reliable comparison of their transcriptional responses. Though debated, prudent evaluations of the 

sequence divergence by in silico approaches and phylogenetic data could expand the use of cross-
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species hybridization as a compromise solution for investigating gene expression in species with 

unsequenced genomes (Costa et al., 2010; Nazar et al., 2010; Ptitsyn et al., 2010). 

Gene expression profiling was also performed on gill RNA from mussels subjected to salinity stress 

(GEO series GSE25111). A total of 117 probes, out of 6,777 genes represented on the microarray, 

showed significant changes similar between M. californianus and M. galloprovincialis whereas 12 

probes, denoting mRNA splicing, polyamine synthesis, exocytosis, translation, cell adhesion, and cell 

signaling, outlined species-specific responses. The study was based on AlexaFluor-labelling (555 and 

647 fluorescence dyes) of amplified RNA, pooled reference samples, six biological replicates, and 

competitive hybridization in agreement to the recommended Agilent protocols. In addition to the 

overall stringent processing of the fluorescence signals, the heterologous hybridization design 

suggested the elimination of data from probes with low signal intensity (signal intensity < 150 % of 

the local background and hybridized spot diameter < 30 % of the nominal spot diameter). 

The work performed at the A. Gracey’s and G.N. Somero’s laboratories (University of Southern 

California -Los Angeles, CA, U.S.A. and Stanford University -Palo Alto, CA, U.S.A., respectively) 

on Mytilus (GEO series GSE19031 and GSE25111) and other species is facing the fundamental 

aspects of the organism adaptation to fluctuating environments and global climate changes, and gene 

expression profiling has been essential to their findings. For instance, the study of gene-expression 

changes in the Californian mussels at different phases in the tidal cycle revealed at least four distinct 

physiological states, corresponding to metabolism and respiration phase, cell-division phase, and two 

stress-response signatures linked to moderate and severe heat-stress events. The metabolism and cell-

division phases appeared to be functionally linked and anti-correlated in time whereas magnitude and 

timing of the above states resulted to be influenced by the microhabitat conditions according to the 

vertical position on the shore (Gracey et al., 2008). Based on comparative physiology, a recent paper 

offers an overview on the expected consequences of global climate changes (Somero, 2011). 

Finally, the Mussel Immunochip 1.0 (GPL10758, April 2011) is a spotted oligonucleotide platform 

consisting of four-replicated 1820 oligomer probes plus unrelated controls prepared at CRIBI for the 

purposes of a recent European project (IMAQUANIM). Oligomers of 57 bases average length were 

designed at short distance from the 3’ end of transcript sequences selected previously in Mytibase, 

the interactive knowledgebase of M. galloprovincialis which includes most of the ESTs publicly 

available for this species (Venier et al., 2009). Based on multiple criteria, the subset of transcripts 

selected from Mytibase as putatively immune-related molecules should denote central “players” of 

the mussel innate immunity or genes whose expression is modulated during the mussel responses to 

immunostimulation (Venier et al., 2011). In the platform description, the probe ID is hyperlinked to 
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the relative Mytibase record: for instance the probe MGO_07346 relates to MGC07346, a mussel 

transcript featured by the protein domain IPR000098-Interleukin 10 and yet functionally unknown. 

The performance of Immunochip 1.0 was tested with hemolymph samples collected at 3 and 48 h 

from Vibrio- challenged mussels (GEO series GSE23535) according to competitive hybridization of 

dye-swap labelled amplified RNA samples. 

In agreement with the above descriptions, Figure 3 provides an updated summary of the nucleotide 

and protein sequences publicly available at July 2011 and highlights the importance of EST 

sequencing for the preparation of new DNA microarrays. More about the molecular “players” of the 

innate immunity and the immune responses of M. galloprovincialis is reported in the following 

paragraph. 

 

How much can simple sequences tell us about the mussel immune responses? 

 

Taking advantage of the continuous increase of the nucleotide and amino acid sequences in the public 

databases, the current methods of bioinformatics can extract instructive data from simple sequences: 

from the analysis of various gene/transcript regions to the evaluation of protein/peptide structure and 

to the comparative analysis of evolutionary differences across the tree of life. This procedural 

approach complements and integrates the data derived from long-standing disciplines such as 

measures of structural changes and protein amounts/activity, among others. 

The overall analysis of 18,788 high-quality ESTs rationally organized in 7,112 independent clusters 

or singletons (Mytibase transcript collection) highlighted some particularly abundant transcript 

groups: namely, transcripts featured by a complement component C1q-like domain, antimicrobial 

peptide (AMP) precursors of all four families known in the Mediterranean mussel and many 

heterogeneous lectins including fibrinogen- related molecules (Venier et al., 2011). To explain the 

abundance of immune-related molecules in Mytibase it is important to remember that such collection 

has been prepared by 16 primary (5 from hemocytes) and 1 normalized cDNA libraries from mussels 

subjected to various challenges, for instance mussels immune stimulated with preparations of Gram 

positive and Gram negative cells and viral-like molecules. 

Searches by protein domain revealed a total of 168 different Mytibase transcripts containing the C1q 

signature IPR001073, almost invariably associated with the overlapping TNF-like IPR008983 motif. 

Curiously, the C1q domain- containing proteins predicted from the transcript sequences, display a 
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short N-terminal signal peptide and a C-terminal globular domain but no central collagen-like repeats 

which are instead typical of vertebrate C1q domain-containing proteins. According to the current 

literature, these mussel proteins could represent secreted globular receptors, components of ancient 

complement pathways expected to mediate pathogen recognition and lysis (Dodds and Matsushita, 

2007). The modularity and versatility of binding mediated by the globular C1q domain explain the 

variety of roles currently attributed to this still expanding family of proteins, and also supports their 

involvement in pathogen pattern recognition (Carland and Gerwick, 2010). The abundance and 

variety of mussel C1q domain-containing transcripts are consistent with this view. 

One among these transcripts, named MgC1q, resulted to be expressed at detectable levels in the main 

tissues of naïve adult mussels, with the hemocytes showing the highest expression levels, and from 2 

h post-fertilization up to 3 months later. The MgC1q expression was significantly modulated after 

mussel infection with Gram positive or Gram negative bacteria, data which confirm MgC1q as an 

immune-related gene. The striking molecular diversity of MgC1q was confirmed at both the 

DNA and cDNA levels, hence posing mechanistic questions on the origin of such variation (Gestal 

et al., 2010). Experimental findings and sequence analyses support the hypothesis of 

gene duplication, functional diversification and positive selection of many C1qDC variants in selected 

taxa, including the mussel lineage (Gerdol et al., 2011). Defensins, mytilins, myticins and mytimycins 

are cationic antimicrobial peptides stabilized by 4 intrachain disulphide bonds (6 in mytimycin) in a 

typical 3-D motif (Yeaman and Yount, 2007). A remarkable diversity of a new group of myticins, 

with specific variant profiles detectable in single mussels, was reported in M. galloprovincialis 

(Pallavicini et al., 2008; Costa et al., 2009). Following the discovery of the myticin-C variants, their 

molecular diversity and evolution has been further discussed (Padhi and Verghese, 2008) and the 

most recent findings indicate myticin C as a chemotactic molecule with antiviral activity and 

immunoregulatory properties (Balseiro et al., 2011). Just one singleton and other four similar 

sequences denote the antifungal AMP mytimycin in Mytibase (rare transcript). Mytimycin is 

composed by 54 aminoacids (6.2 - 6.3 kDa, 12 cysteines) and two main precursor variants, both 

featured by a signal peptide and a C-terminal extension, are expressed in mussels from different 

European regions (Sonthi et al., 2011). The presence of a calcium binding (EF hand) motif in the C-

terminal extension suggests further characterization of such unusual AMP. 

The "effector" role of the mussel antimicrobial peptides (AMPs) is confirmed in many experimental 

studies and a comprehensive review have been recently provided (Li et al., 2011). Whether these 

effectors can modulate the mussel immune responses with mechanisms other than membrane 

disruption, as reported for mammalian AMPs, it is not clear. Based on deep amplicon sequencing, the 
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sequence diversity of mussel AMPs is now under study in natural mussel populations from different 

geographical regions and in mussels challenged with bacterial cells. 

Lectins are a rather heterogeneous protein family comprising 8 to 15 subgroups, depending on the 

scientist’s view (Dodd and Drickamer, 2001). 

Lectins typically possess carbohydrate binding domains and participate in many cell processes. 

Similarly to the mammalian C1q, the C-terminal fibrinogen-like domain IPR002181 of ficolins forms 

a tulip-like structure able to bind the carbohydrate residues of foreign and apoptotic cells (with 

consequent opsonization, phagocytosis and cell clearance) or triggering the proteolytic complement 

cascade and pathogen lysis. Fibrinogen-related lectin proteins (FREPs) are expressed also in mussels 

(Venier et al., 2011) and are codified by at least 2 (M. edulis) 4 (M. californianus) and 7 genes (M. 

galloprovincialis) (Gorbushin and Iakovleva, 2011). These molecules can be regarded as immune 

pattern-recognition receptors and their involvement in the native immunity is supported by the 

evidence of species-specific expansion of FREPs in the snail Biomphalaria glabrata and the mosquito 

Anopheles gambiae (Waterhouse et al., 2007; Zhang et al., 2008). In mussel, FREPs are significantly 

up-regulated after bacterial infection or PAMP treatment, and display opsonizing activity similar to 

that of mammalian ficolins; moreover, the different sets of FREP sequences detected among and 

within individuals further emphasize the great complexity of the invertebrate immune systems 

(Romero et al., 2011). Other lectin-like sequences expressed in mussels are commented in Venier et 

al. (2011). 

The cases reported above are a few examples of the many classes of transcripts specifically expressed 

or modulated during the mussel response to potential pathogens. Considering in a dynamic view the 

behaviour of one cell population only, the versatile mussel hemocytes, one can imagine that almost 

all cellular processes could be influenced by the contact with pathogen-associated molecular patterns: 

from the cytoskeleton remodelling supportive of chemotaxis, migration and phagocytosis to the 

intracellular signalling possibly shaping the inflammatory response and finely tuned expression of 

many regulatory and effector genes. Cross-talking signalling pathways have been traced in mussel 

and the Mytibase collection includes transcripts denoting the regulatory cytokine MIF (migration 

inhibiting factor) and cytokine-related molecules, consistent with the idea of an invertebrate cytokine 

network (Malagoli, 2010). The recent definition of a species-specific Immunochip aims to the 

experimental validation of a selected subset of transcripts: a synopsis of the main gene expression 

changes detected in mussels at 3 and 48 h after challenge with live bacterial cells is reported in Fig. 

4. The general AMP down-regulation observed in this particular laboratory treatment was confirmed 

by quantitative PCR data and is discussed also in Li et al. (2010). 
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Concluding remarks 

 

EST sequencing and DNA microarrays have substantially improved the identification of genes 

expressed in the Mytilus species. Compared to the first EST collection and the related cDNA 

microarray, Mytibase includes an interesting variety of immune-related molecules which can be 

further characterized with traditional and innovative approaches as exemplified by Romero et al. 

(2011). Nonetheless, in the Mytibase collection about half of the mussel transcripts are still unknown, 

devoid of functional annotation. Hence, much work remains to be done both in silico and in laboratory 

to provide a comprehensive view of the global gene transcription in mussels, particularly the part of 

the transcriptome mediating the response to potential invaders (immunome). 

Undoubtedly, the application of the available mussel DNA microarray platforms can further reveal 

expression trends of different gene categories and identify useful markers of functional state, if not 

global molecular signatures useful to disentangle the complex mussel physiology. Depending on the 

study design and on the type of microarray platform, independent validation of the expression data 

can be accomplished by quantitative PCR or with other experimental measures. All the steps of the 

DNA microarray testing could be used to strengthen the final data interpretation, from the microarray 

preparation strategy to the stringency of the hybridization reaction to the algorithms applied to data 

processing. 

The maintenance of the physical collection of the cDNAs, i.e., recombinant bacterial clones, is a 

prerequisite for the use of spotted cDNA microarrays (for instance, the current use of Mytarray 1.0 

slides, printed at the CRIBI facility depends on long work performed at the Department of Biology, 

University of Padua). Such work is not more affordable as long as the clustered ESTs increase in 

number, and external commercial services or deep sequencing become an attractive alternative. 

As a matter of fact, next-generation sequencing (NGS) technologies are now complementing and 

challenging the DNA microarrays as alternative tools for genome analysis and transcriptome 

sequencing (Hurd and Nelson, 2009; Morozova et al., 2009). For instance, the so called 454 

pyrosequencing has been already applied to the study of tissue-specific expression patterns in M. 

galloprovincialis (Craft et al., 2010) and many laboratories in the world are now investing in this kind 

of work.  
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Fig. 1 Number of PubMed publications including the terms "DNA-microarray" (blue line) or 

"Mytilus" (purple line) from 1995 to 2010. Has the DNA microarray revolution reached its peak? 
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Fig. 2 Work diagram referred to the competitive hybridization of two dye-swap-labelled samples on 

a cDNA microarray with two-channel detection of the fluorescence signals (modified from Gibson 

and Muse, 2004). 
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Fig. 3 Number of sequence records available for selected mollusc species at the Natl Center for 

Biotechnology Information at July 2011. DNA, RNA and protein sequences refer to Biomphalaria 

glabrata (Gastropoda) and bivalves belonging to the Veneroida, Unionoida, Mytiloida, Ostreoida, 

Pectinoida and Pterioida orders. 
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Fig. 4 Main transcriptional changes detected in mussels at 3 h and 48 h from the injection of live 

Vibrio cells (modified from Venier et al., 2011). Only relevant molecular "players" represented in the 

Immunochip of M. galloprovincialis are reported (framed). In each frame, the detected expression 

trends are indicated in red, green and yellow (up- and down-regulation and not homogeneous trends, 

respectively). Annotations based only on protein domains are reported in brackets. Overall, the figure 

draws the attention to a number of mussel genes, still not characterized, whose expression is 

modulated in response to immune stimulation. 

 

Abbreviation list (Fig. 4):  

AIF: Allograft Inflammatory Factor 

APAF1: Apoptotic Peptidase Activating Factor 1 BCL2: Baculoviral apoptosis regulator 2 

C1-C5: Complement component 1-5 CALR: Calreticulin 

CASP: Caspase 

CD63/LIMP: Tetraspanin-7 (lysosome membrane protein) CLR: C-type Lectin Receptor 

CLR: C-type Lectin Receptor 

DAMPs: damage-associated molecular patterns FADD: FAS (TNFRSF)-Associated via Death 

Domain 
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FNBP1: Formin-Binding Protein 1 

GRP 78/94: Glucose-Regulated Protein 78/94 HSC70: Heat Shock Cognate 70 

HSP70/90: Heast Shock Protein 70/90 IAP: Inhibitor of Apoptosis Proteins; 

IKBα: Inhibitor of nuclear factor Kappa-B kinase alpha 

IKK: Inhibitor of nuclear factor Kappa-B Kinase complex IL: InterLeukin 

IRAK4: Interleukin Receptor-Associated Kinase 4 

JAK: Janus kinase KLHL: Kelch-like protein 

LDLR: Low-Density Lipoprotein Receptor 

LITAF: LPS-Induced TNFAlpha Factor LPS: LipoPolySaccharide 

MAPKs: Mitogen-Activated Protein Kinases MBL: Mannose Binding Lectin 

MGD1/2: Mytilus galloprovincialis Defensin 1 /2 MIF: Migration Inhibitory Factor 

MNK: MAP kinase-interacting serine/threonine-protein kinase 

MR1: Mannose Receptor 1 

MyD88: Myeloid Differentiation primary response gene 88 NALPs: NATCH, LRR, and PYR 

containing proteins 

NFkB: Nuclear Factor of kappa light polypeptide gene enhancer in B-cells 

NLR: NOD-Like Receptor 

NOD: Nucleotide Binding Oligomerization Domain P13K: Phosphatidylinositol-4,5-bisphosphate 3-

Kinase 

PAC2: Proteasome Assembly Chaperone 2 PAMPs: Pathogen Associated Molecular Patterns PGRP: 

Peptidoglycan Recognition Protein 

PI31: Proteasome Inhibitor PI31 subunit 

Pim: proto-oncogene serine/threonine-protein kinase Pim PRR: Pathogen Recognition Receptors 

RAB: Ras-related gtp-Binding protein 

RIP: Receptor-Interacting serine-threonine kinase ROS: Reactive Oxygen Species 

SEC22: vesicle transport protein SEC22 
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SOD: SuperOxide Dismutase 

STAT: Signal Transducer and Activator of Transcription protein 

SRCR: Scavenger Receptor Cysteine-Rich protein precursor 

TAK: mitogen activated protein kinase kinase 

TIMP3: Tissue Inhibitors of MetalloProteinase 3 TNF: Tumour Necrosis Factor 

TNFR: Tumour Necrosis Factor Receptor 

TRAF6: TNF receptor-associated factor 6 Ub: Ubiquitin 

UBR5: Ubiquitin protein Ligase E3 (component n-recognin 5) 

α2: proteasome subunit alpha type 2 

β4, β5: Proteasome subunit beta type 4/5 
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Abstract 

 

Dinoflagellates and other microalgae can produce a wide spectrum of heterogeneous toxic molecules, 

which are the main responsible of shellfish poisoning syndromes. During seasonal harmful algal 

blooms (HABs), many filter-feeding marine invertebrates, including bivalve mollusks, can 

accumulate phycotoxins at extremely high levels, thus representing a serious threat to human health. 

Furthermore, HABs also have a severe impact on the aquaculture sector due to the forced prolonged 

closure of large harvesting areas. 

Although the targets and mechanism of action of many phycotoxins have been extensively studied 

on vertebrate model organisms, so far just a little attention has been focused on their effects on marine 

invertebrates. Here we provide an overview about the molecular response of marine bivalves to 

phycotoxins, with a particular focus on toxins produced by dinoflagellates. Even though large-scale 

genomic and proteomic approaches on mollusks are still hindered by the limited molecular knowledge 

of these organisms, a few studies exploiting the most recent technological advances provide 

promising perspectives for a better comprehension of the mechanisms involved in shellfish toxicity 

and for the identification of molecular markers of contamination. 

 

Abbreviations: ASP: Amnesic Shellfish Poisoning; AZA/AZT: Azaspiracid/ Azaspiracid Shellfish 

Poisoning; pBTx: Brevetoxin; DA: Domoic Acid; DSP/DST: Diarrhetic Shellfish Poisoning/Toxin; 

DTX: Dinophysistoxin; GYM: Gymnodimine; HAB: Harmful Algal Bloom; NSP: Neurotoxic 

Shellfish Poisoning; OA: Okadaic Acid; PLTX: Palytoxin; PSP/PST: Paralytic Shellfish 

Poisoning/Toxin, PTX: Pectenotoxin; SPX: Spirolides; STX: Saxitoxin; YTX: Yessotoxin. 
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Introduction 
 

The largest component of the large universe of algae, estimated to comprise between one and ten 

million different species, is represented by unicellular microalgae (Barsanti and Gualtieri, 2006). 

Some of them can produce, through complex and not completely understood biochemical processes, 

toxic compounds of various chemical composition and mode of action, collectively named 

phycotoxins. In response to favorable environmental conditions, toxic microalgae can proliferate 

and/or aggregate to form dense concentrations, called “Harmful Algal Blooms” (HABs). Phycotoxins 

are responsible of a number of human illnesses associated with the consumption of contaminated 

seafood and, in some cases, with respiratory exposure to aerosolized toxins. In fact, filter-feeding 

shellfish, zooplankton, and herbivorous fishes can ingest these algae and act as vectors to humans 

either directly (e.g. shellfish) or through further food web transfer to higher trophic levels (Van Dolah, 

2000).  

Although seasonal micro-algal blooms are considered as a natural phenomenon, their frequency of 

occurrence appears to have increased in the recent years. Certainly, the worsening of the hygienic 

characteristic of the aquaculture areas, the transportation of ship ballast water (Carlton and Geller, 

1993), water eutrophication (Reigman, 1998) and global climate changes (Richardson, 1997) are 

factors which altogether provide favorable conditions for the spreading and the growth of toxic algae, 

thus contributing to the increase of threats for human by the consumption of contaminated shellfish. 

Unfortunately, algal toxins are not detectable by sight or smell and contaminated seafood appears 

normal and in most cases they are heat stable and thereby largely unaffected by cooking (Sobel and 

Painter, 2005). 

The consumption of contaminated seafood often results in shellfish poisoning syndromes, which are 

classified according to symptoms and the chemical nature of the toxins involved. Fig. 1 summarizes 

the geographical occurrence of the six main poisoning syndromes; although some are endemic of 

specific areas, their altogether distribution clearly points out shellfish toxicity as a global problem for 

human health, which consequently have an important economic impact on aquaculture worldwide. 

International laws promoted by environmental monitoring agencies and food safety associations, 

impose the routinely control of the toxicity of seawater and market shellfish stocks. While these 

monitoring strategies prevent episodes of massive intoxication, the closure of aquaculture hatcheries, 

sometimes even for a very prolonged time, is responsible of severe economic losses in this sector. 

In the following section, we provide a brief overview of the main human syndromes associated with 

contaminated marine bivalves consumption. The causative algae, the toxin structure and the most 

characterizing symptoms are reported in Table 1. 
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Main classes of shellfish poisoning syndromes 

 

Amnesic Shellfish Poisoning (ASP) is caused by the consumption of domoic acid (DA) contaminated 

food. This phenomenon was first documented in 1987 in Canada, with 105 cases of acute human 

poisoning, including 3 casualties, related to the consumption of contaminated mussels (Hallegraeff, 

1993). DA, produced by marine diatoms belonging to the genus Pseudo-nitzschia, is a water-soluble 

tricarboxylic acid that acts as an analog of the neurotransmitter glutamate and is a potent glutamate 

receptor agonist. In mammals DA intoxication cause both gastrointestinal and neurological disorders 

as headache, disorientation, short-term memory loss, brain damage, and in severe cases it can also be 

fatal (Todd, 1993). 

Diarrhetic Shellfish Poisoning (DSP), a syndrome characterized by diarrhea, nausea, vomiting and 

abdominal cramps, is one of the most common pathologies associated to HABs worldwide. Diarrhetic 

toxins (DSTs) are lipophilic molecules such as okadaic acid (OA) and the structurally related 

dinophysistoxins (DTXs), produced by Dinophyis and Prorocentrum spp. (Yasumoto et al., 1985). 

OA selectively inhibits protein phophatases and modifies the phosphorylation state of many 

regulators of cellular processes involved in metabolism and various cell activities, causing diarrhea 

because of the impairment of the sodium secretion control by intestinal cells (Van Dolah, 2000). 

The marine biotoxins called azaspiracids (AZA) cause a syndrome similar to DSP (AZP), although 

they chemically differ from any previously known toxin found in shellfish (Satake et al., 1998). AZA 

accumulates in bivalve mollusks that feed on toxic microalgae of the genus Protoperidinium, 

previously considered to be toxicologically harmless. 

Another widespread syndrome caused by contaminated bivalve mollusks is the Paralytic Shellfish 

Poisoning (PSP), caused by saxitoxin (STX) and its analogues (GTXs), globally indicated as Paralytic 

Shellfish Toxins (PSTs). Dinoflagellates of the genus Alexandrium, in particular A. minutum, A. 

catenella, A. tamarense and A. fundyense, are the most numerous PST producers and are responsible 

for PSP blooms all around the world (Fig. 1). In fact, almost 2000 PSP cases are reported per year in 

human, with occasional fatal consequences (Hallegraeff, 1993). PSTs inhibit the voltage-dependent 

sodium channel conductance causing the blockade of neuronal activity. Symptoms include nausea, 

diarrhea, abdominal ache, shortness of breath, dry mouth, confused speech, tingling or burning 

sensations (Clark et al., 1999). 

Neurotoxic shellfish poisoning (NSP) is caused by brevetoxins (PbTx); the main symptoms are 

gastrointestinal and neurological, including nausea, loss of motor control and muscular ache. The 

formation of toxic aerosol by wave action produces respiratory asthma-like symptoms, even though 

no fatalities have been reported so far. PbTx is produced by Karenia brevis and binds with high 
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affinity to the voltage-dependent sodium channel, altering its sensitivity and inhibiting its inactivation 

(Wang, 2008). 

 

The sixth and last group of shellfish poisoning is the Ciguatera Fish Poisoning (CFP), an intoxication 

caused by a heterogeneous group of toxins, including ciguatoxin, maitotoxin, palytoxin (PLTX) and 

others. While the main concerns for human health derive from the consumption of contaminated fish 

(Lewis and Holmes, 1993), PLTX and its analogues, produced by species of the Ostreopsis genus, 

can also be accumulated in bivalves. Likewise ciguatoxin, PLTX also lowers the threshold for the 

opening of voltage-gated sodium channels in synapses of the nervous system, determining severe 

neurological disorders, including lethargy, muscle spasms, myalgia, cyanosis, respiratory distress, 

rhabdomyolysis and even death in severe cases (Ramos and Vasconcelos, 2010). 

Beside the toxins classifiable among the six large classes listed above, microalgae can produce an 

extremely broad spectrum of additional toxic compounds. Some species of dinoflagellates, such as 

Lingulodinium polyedrum, Gonyaulax spinifera and Protoceratium reticulatum produce yessotoxins 

(YTXs), structurally related to PbTx and ciguatoxins. YTXs cause diarrhea and therefore they were 

initially wrongly classified as DSTs, only to be later assigned to a novel independent group after the 

discovery of their different mechanism of action (Tubaro et al., 2010). Pectenotoxins (PTXs) belong 

to a group of polyether-lactone toxins that, like YTXs cause symptoms similar to DSP. They are 

exclusively produced by Dinophysis spp., which have a large distribution worldwide (Draisci et al., 

1996). Gymnodimines (GYMs) and spirolides (SPXs) produced by Karenia selliformis and 

Alexandrium ostefeldii, respectively (Miles et al., 2003; Roach et al., 2009) are emerging lipophilic 

marine toxins that belong to a heterogeneous group of macrocyclic compounds called cyclic imines. 

Since their discovery in the early 1990s, GYMs and SPXs are well known due their fast acting toxicity 

in mouse bioassay, by blocking the nicotinic receptors and causing neurological symptoms (Munday 

et al., 2004). 

Moreover, dinoflagellates are certainly capable of producing several harmful compounds which have 

not been fully characterized yet. As a matter of fact, the biochemical potential of microalgae is 

underestimated and many algal natural products, including toxins, remain yet to be discovered (Sasso 

et al., 2012). Therefore it is not surprising that the number of phycotoxins isolated from marine 

microalgae continues to increase exponentially. 

Nevertheless, dinoflagellates are not the only source of marine toxins, as certain diatoms (such as the 

DA producing Pseudo-nitzschia spp.) and several species of seawater Cyanobacteria produce 

compounds hazardous to human health. While these toxins are extremely diverse both by chemical 

composition and by physiological effects, these aspects will be not discussed in the present review, 

http://en.wikipedia.org/wiki/Lingulodinium_polyedrum
http://en.wikipedia.org/w/index.php?title=Gonyaulax_spinifera&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Protoceratium_reticulatum&action=edit&redlink=1


 
 

129 
 

which is mainly focused on the effects of toxic dinoflagellates. For a more comprehensive overview 

suggesting the reading of more specific literature on the topic (Ferrão-Filho and Kozlowsky-Suzuki, 

2011; Funari and Testai, 2008). 

 

Toxicological studies on human and other vertebrate model organisms 

 

The study of marine toxins has been historically connected with the hazard they represent to human 

health. Therefore, the large majority of toxicological studies performed so far have been focused on 

model vertebrates or human cell lines. Moreover, the most used method for marine algal toxins 

detection is the mouse bioassay developed by the Japanese Ministry of Health and Welfare 

(Yasumoto et al., 1978). Although this outworn method is currently being replaced by other more 

reliable tests, it has been used worldwide as the main tool for shellfish toxicity biomonitorning for 

several decades. 

In parallel to this test, routinely used for the detection of contamination, many research studies 

investigated more specific aspects of the toxic effects of marine drugs, unraveling their molecular 

targets, their mode of action and the kinetics of accumulation and detoxification in model organisms. 

Mice and other vertebrates have been repeatedly used as model organisms for in vivo studies to better 

understand the effects of several classes of phycotoxins, including AZA (Vilariño, 2008), OA (Le 

Hégarat et al., 2006), STX (Andrinolo et al., 1999), and YTX (Franchini et al., 2010), on human. 

Also cell lines provide useful models: a number of in vitro studies clarified the mode of action of 

diverse phycotoxins, including YTX (Bianchi et al., 2004; Franchini et al., 2010), PLTX (Sala et al., 

2009), OA (Sala et al., 2009; Valdiglesias et al., 2010), STX (Perez et al., 2011) and AZA (Twiner 

et al., 2012). Moreover, genomics and proteomics methods applied to vertebrate models contributed 

to elucidate the molecular pathways acting in response to shellfish poisoning (Ryan et al., 2010; Wang 

et al., 2012). 

 

 

Phycotoxin effects on bivalves 

 

A direct comparison between the widely documented molecular effects of phycotoxins on vertebrates 

and bivalves is definitely hindered by several obstacles. One of the key factors is the specificity of 

interaction of many toxins with their molecular targets, which are often membrane channels. The 

sequence divergence among species explains why bivalves are often completely insensible to many 

toxins having a lethal effect on human and other vertebrates and vice-versa. In fact, biotransformation 
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processes which likely reduce toxicity in bivalves, can sometimes produce analogues which are even 

more dangerous to human than the original compound (O’Driscoll et al., 2011). The specificity of 

interaction between phycotoxins and their molecular targets is refined to the point that polymorphisms 

to single ion channels can even lead to dramatic differences in sensitivity within bivalve populations 

(Bricelj et al., 2010). 

Nevertheless, over the past decades numerous studies have been carried out to explore the specific 

effects of phycotoxins on marine invertebrates, even though their focus has been mainly addressed 

on physiological adaptations and behavioral modifications. This bias on non-molecular studies is 

caused by the still limited genetic knowledge of these organisms. In fact, before the next generation 

sequencing era, the main pool of bivalve genetic knowledge came from large EST collections (Venier 

et al., 2009), but the recent technological advances have quickly led to the availability of many 

transcriptomes and even to the complete sequencing of the oyster genome (Zhang et al., 2012). 

 

 

Studies of physiological responses 

 

The rich literature documenting the behavioral, physiological and histo-pathological alterations in 

contaminated filter-feeding mollusks, despite not providing outright molecular data, represent an 

important base of knowledge both for a better planning of molecular biology experiments and for the 

interpretation of the results in their biological context.  

 

 

Hemocyte parameters 

 

Internal defense in bivalve mollusks, is characterized by a non-adaptive, non-specific, innate immune 

system (Loker et al., 2004), based on specialized circulating cells, the hemocytes, involved in 

pathogen recognition and elimination through the production of a broad spectrum of defense 

molecules (Venier et al., 2011). Therefore, the study of the effects of phycotoxins on bivalve 

immunity necessarily takes into account the monitoring of hemocyte parameters. 

The feeding on PSP dinoflagellate species determines an increase of hemocyte counts, accompanied 

by changes in the hemocyte subpopulations and alteration of the phagocytic activity in some species 

(Hégaret and Wikfors, 2005a; Hégaret and Wikfors, 2005b). On the contrary, some studies report 

non-significant effects on hemocyte number, morphology, or functions (Hégaret et al., 2007), while 

others evidenced a strong individual variability in the response (Bricelj et al., 2011). Histo-
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pathological studies on mussels exposed to A. fundyense and P. minimum detected an inflammatory 

response consisting of degranulation and diapedesis of hemocytes into the alimentary canal and, as 

the exposure continued, hemocyte migration into the connective tissue surrounding the gonadal 

follicles (Galimany et al., 2008a; Galimany et al., 2008b). 

Also other classes of toxins can trigger immune responses: experiments by Mello and collaborators 

(2010) showed the variation of various hemocyte parameters in different bivalve species affected by 

natural DSP blooms. Also in this case, a species-specific response was observed, demonstrating the 

presence of vulnerable (e.g. Perna perna) and unaffected (e.g. Crassostrea gigas) species. Moreover, 

also GYMs can induce the alteration of hemocyte parameters in Ruditapes philippinarum (da Silva 

et al., 2008), while YTX, PLTX and OA can increase the phagocytic activity of Mytilus 

galloprovincialis hemocytes (Malagoli et al., 2008; Malagoli et al., 2007).  

 

 

Valve activity and filtration rate 

 

The closure of the shells or the reduction of the filtration rate are well known mechanisms used by 

bivalves for isolating themselves from the external environment, in presence of negative conditions, 

such as pollutants or toxins (Gainey and Shumway, 1988). This mechanism has been extensively used 

to study the effects of phycotoxins on mussel physiology, even though sometimes passive valve 

closure can occur in response to PSTs, which notoriously cause adverse effects on some species, such 

as burrowing incapacitation (Bricelj et al., 2010). Different species display different valve activity 

modulation in response to paralytic dinoflagellates (Lassus et al., 1999; Shumway and Cucci, 1987), 

so the reduction of the filtration rate is a key parameter used for the classification of bivalves as 

susceptible or resistant to PSP (Bricelj and Shumway, 1998). 

Other negative effects on valve closure and filtration activity have been reported in various bivalve 

species in response to microalgae producing different toxin classes, such as Gymnodinium mikimotoi, 

Heterocapsa circularisquama, Pseudo-nitzschia and Azadinium spinosum (Basti et al., 2009; 

Jauffrais et al., 2012; Matsuyama, 1999; Thessen et al., 2010). 
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Feeding and excretion 

 

Pseudofaeces production is a particularly important pre-ingestive mechanism preventing the animal’s 

ingestive capacity from being exceeded, but it also facilitates the process of particle selection, 

whereby less nutritious particles can be rejected and the quality of the ingested material can be 

improved proportionally (Newell and Jordan, 1983). The most complete comparative study 

concerning the feeding behavior of bivalves on toxic dinoflagellates is provided by Hégaret and 

colleagues (2007). Clearance rates of five species of bivalve mollusks were assessed, following the 

exposure for one hour to three harmful-algal strains: Prorocentrum minimum (PSP and DSP), A. 

fundyense (PSP), and Heterosigma akashiwo (NSP). The analysis of faeces and pseudofaeces 

revealed species-specifc responses to the different harmful algae, indicating in most cases a 

preferential retention of harmful cells. The production of faeces and pseudofaeces varied appreciably 

between the different bivalve/algae pairs. 

 

 

Effects on juveniles 

 

The understanding of the physiological effects played by toxic algae on bivalve juvaniles is very 

important, especially for farmed species, in order to better understand how aquaculture activity is 

threatened by the HABs. Li and colleagues ( 2002) exposed juveniles of R. philippinarum and Perna 

viridis to A. tamarense (PSP), measuring the scope for growth (SFG), and the growth rate. SFG was 

significantly reduced in both clams and mussels while R. philippinarum resulted to be the most 

sensitive to PSP while considering the growth rate only.  

Leverone and collaborators (2007) reported the effects on the clearance rate of juvenile bivalves of 4 

different species in relation with a Karenia brevis exposure (PbTx). Both in a short and long-term 

exposure Argopecten irradians resulted to be the most sensitive species, C. virginica the least 

responsive and P. viridis and Mercenaria mercenaria displayed intermediated responses.  

On the contrary, DA did not have a significant effects on feeding rate and shell valve clatter on the 

juvenile king scallops Pecten maximus that, but registered a negative impact on their growth rate and 

survival (Liu et al., 2007).  
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Other effects 

 

Considering the different nature, composition and targets of marine toxins, it is likely that many 

additional effects, not described above, could be detected in different bivalve species. As an example, 

beside paralysis, PSTs can also produce increased mantel melanization and abnormal vitellogenesis 

in Nodipecten subnodosus and Argopecten ventricosus (Escobedo-Lozano et al., 2012; Estrada et al., 

2007; Estrada et al., 2010), production of white mucus and inhibition of byssus production in M. 

edulis and G. demissa (Shumway et al., 1987). 

Moreover, Landsberg (1996) hypothesized a possible connection between neoplasia in bivalves with 

the presence of micro-algal blooms, even though specific surveys on the topic are still lacking. Some 

phycotoxins such as OA (Florez-Barros et al., 2011) and DA (Dizer et al., 2001), certainly have a 

genotoxic effect on bivalves. Furthermore several classes of toxins (PTX, DSTs, PLTX) are known 

to be potent dysregulators of cytoskeleton dynamics in vertebrates and are likely to exert a similar 

action also in bivalves (Silvestre and Tosti, 2010) 

 

Studies at molecular level 

 

A summary of the main studies focused on the molecular responses of bivalves to phycotoxins is 

reported in Table 2 and discussed in detail below. 

Toxin metabolism and biotransformation 

Many species of bivalve mollusks are capable of biochemical transformation of the toxins 

accumulated by filtration, thus generating novel metabolites not found in the causative algal species, 

suggesting that extremely complex mechanisms of selective accumulation and chemical or enzymatic 

conversion might be involved in the development of shellfish toxicity (Asakawa et al., 2006). While, 

in some cases, this could be interpreted as a strategy specifically developed to decrease toxin potency, 

in other cases these toxin derivatives are likely just the by-products of normal metabolic pathways. 

The metabolism of many classes of phycotoxins has been documented in a large number of bivalve 

species, even though comparative studies demonstrated significant differences in the ability of 

biotransformation between species (Choi et al., 2003; Li et al., 2012; Sullivan et al., 1983), pointing 

out that different organisms might have adopted specific biochemical mechanisms as a defensive 

strategy to recurrent HAB events. 

Among the many bioconverting bivalves, the scallop Patinopecten yessoensis is definitely one of the 

most active, since it is able to metabolize YTX, DTX, PTX and OA (Suzuki et al., 2005; Suzuki et 

al., 1998; Suzuki et al., 1999). The mussels M. galloprovincialis and Mytilus edulis can metabolize 
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AZA (McCarron et al., 2009; O’Driscoll et al., 2011), OA (Rossignoli et al., 2011; Torgersen et al., 

2008) and, to some extent, also PSTs (Dell’Aversano et al., 2008). Episodes of PbTx conversion to 

less toxic analogues have been documented in many different bivalves, including the oyster 

Crassostrea virginica (Plakas et al., 2002; Plakas et al., 2004). 

Although toxin biotransformations in bivalves are well documented, their biological significance is 

often unclear, since the modifications do not always result in a decrease of toxin potency. One of the 

few exceptions is represented by the esterification of OA and DTX1, which has been studied in a 

number of different bivalves (Rossignoli et al., 2011; Torgersen et al., 2008; Vale and De M. 

Sampayo, 2002), which is thought to play a role in the sequestration in lipid rich tissues (Svensson 

and Förlin, 2004) and the conjugation to lipoproteins (Rossignoli and Blanco, 2010). 

While some of the toxin biotransformations are likely the effect of passive processes or enzymatic 

activities provided by symbiotic bacteria (Donovan et al., 2008; Smith et al., 2001), in many cases 

they have been shown to be active processes catalyzed by bivalves themselves. Nevertheless, despite 

the overwhelming evidence of phycotoxin transformation, just a few enzymes specifically involved 

in these processes have been isolated and described so far.  

An enzyme capable of hydrolyzing PTX and OA has been recently discovered in the digestive gland 

of the mussel Perna canaliculus (MacKenzie et al., 2012): the protein identified, an acidic serine 

esterase, did not show any similarity with known sequences and was active on a rather broad range 

of PTXs and OA esters. Furthermore, two enzymes involved in different PST modifications have 

been isolated in Peronidia venulosa and Mactra chinensis (Cho et al., 2008; Lin et al., 2004), even 

though only partial amino-acidic sequences have been characterized: carbamoylase I can hydrolyze 

the carbamoyl mojety in both carbamoyl and N-carbamoyl PSTs, whereas sulfocarbamoylase 

catalyzes the hydrolysis of the N-sulfocarbamoyl mojety of the weakly toxic C-PSTs. 

The digestive gland is the main site of accumulation of different toxin species, so this tissue is 

assumed to be the most active in the bioconversion processes (Blanco et al., 2007; Jauffrais et al., 

2012; Mafra et al., 2010; Medhioub et al., 2012). Therefore, not surprisingly, all the enzymes 

involved in toxin transformation so far identified have been isolated from this tissue and novel, yet 

unknown, enzymes are expected to be highly expressed and active in this tissue in response to HABs. 
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Toxin binding and accumulation 

Despite the important role of digestive gland, in some cases other tissues may play a role in the 

accumulation of phycotoxins. In fact, some bivalve species can retain toxins for an extremely 

prolonged time in specific non-visceral tissues, exploiting toxin accumulation as a chemical defense 

towards natural predators. 

The better known phenomenon of chemical defense by phycotoxin accumulation is certainly the 

butter clam Saxidomus giganteus (Smolowitz and Doucette, 1995), which selectively stores PSTs in 

its siphon epithelium (Kvitek and Beiter, 1991), thus discouraging predation by siphon-nipping fishes 

(Kvitek, 1991). As a matter of fact, the occurrence of HABs significantly influences the feeding 

behavior of many vertebrate predators, such as sea otters and shorebirds (Kvitek and Bretz, 2005; 

Kvitek et al., 1991). Although proteins involved in toxin-binding, transport and accumulation have 

been described in many organisms, so far the molecular mechanisms leading to this selective retention 

in bivalves are almost completely unknown. When tested for saxiphilin-like activity, both M. edulis 

and S. giganteus, capable of accumulating very high levels of PSTs in their tissues, resulted to be 

negative, likewise Spisula solidissima, Donax deltoides and Vepricardium multispinosum (Llewellyn 

et al., 1997). Nevertheless, a case of a PSP-binding protein has been reported in the Moroccan cockle 

Acanthocardia tuberculata; in this species, a 181 KDa protein named PSPBP contributes to the 

prolonged retention of PSTs in the foot (Takati et al., 2007). 

Beside PSTs, other classes of toxins can be conjugated to specific proteins produced by bivalves. 

Rossignoli and Blanco provided the first lines of evidence of a soluble cytoplasmatic component 

binding OA in mussel, which was identified as a high density lipoprotein (Rossignoli and Blanco, 

2010). Nzoughet and colleagues were able to identify a 45 KDa protein weakly binding AZA in the 

hepatopancreas of the blue mussel M. edulis and another unknown 22 KDa protein which was 

apparently highly expressed only in contaminated mussels (Nzoughet et al., 2008). 

Even though only a little is known about bivalves phycotoxin-binding proteins, these few studies 

suggest that they may be involved in selective retention or detoxification, depending on whether the 

toxins will be used in the frame of a chemical defense strategy or simply metabolized. 
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Metabolic activities 

 

Although relatively few bivalve proteins related to HABs have been identified so far, the alteration 

of a number of enzymatic activities, possibly related to both xenobiotic metabolism and stress 

response has been reported. Some classes of phycotoxins can affect the overall metabolic rates of 

bivalve organs in a time- and doses-dependent way (Haberkorn et al., 2010; Louzao et al., 2010). 

A multi biomarker approach by Gorbi and colleagues clearly showed that the activity of the Na+/K+-

ATPase, the target of PLTX, was strongly inhibited by Ostreopsis ovata blooms in M. 

galloprovincialis, which can therefore be considered as susceptible organisms. Consequently to this 

reduction, a significant alteration of other enzymatic activities was also observed 

(acetylcholinesterase in particular), while on the contrary no enzymatic activities typical of ROS 

(Reactive Oxygen Species) production were significantly altered, indicating that oxidative pathways 

are not involved in O. ovata toxicity (Gorbi et al., 2012). The cholinesterase activity was also 

monitored in M. edulis after intramuscular injection of DA, highlighting just a moderate reduction 

after 48h (Dizer et al., 2001). 

Other studies have been focused on the analysis of the effects of different toxins on the oxidative 

pathways; the monitoring of GST, GPx and SOD activities and of lipid peroxidation in the clam R. 

philippinarum contaminated with PSTs highlighted only a modest involvement of these enzymes 

(Choi et al., 2006). In a different species (the giant lions-paw scallop Nodipecten subnodosus) the 

same toxin class produced a significant alteration of both GPx (up-regulated) and SOD (down-

regulated) in gills, whereas no changes were observed in other tissues. Moreover, CAT activity and 

lipid peroxidation were not markedly altered in any tissue (Estrada et al., 2007; Estrada et al., 2010). 

On the other hand, other studies observed a stronger correlation between phycotoxins and oxidative 

damage: in fact, cyanobacteria were able to produce a significant alteration of the activity of the two 

antioxidant enzymes GST and GPx in M. galloprovincialis (Puerto et al., 2011) and of CAT in M. 

edulis (Kankaanpää et al., 2007). Moreover, Haberkorn and colleagues monitored ROS production 

in PSP-contaminated oysters, observing a linear correlation between PST accumulation and ROS 

production in haemocytes (Haberkorn et al., 2010). 

As we have reported in the previous sections, toxic microalgae can significantly alter the feeding of 

bivalves, with consequent effects on enzymatic activities linked to digestion. Fernandez-Reiriz and 

colleagues carefully examined the effects of a diet based on the toxic dinoflagellate A. catenella on 

Mytilus chilensis, showing that mussels are able to adapt mechanisms which allow the feeding with 

toxic algae. The authors were in fact able to observe a logarithmic relationship for the assimilatory 

balance and the carbohydrate metabolism of the digestive gland, by monitoring the enzymatic activity 
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of amylase, laminarinase and cellulase (Fernández-Reiriz et al., 2008). The amylase activity of oyster 

digestive gland is also affected by the exposure to A. minutum, even though the changes observed are 

also largely dependent on the physiological status of bivalves (Haberkorn et al., 2010). 

Finally, the monitoring of several hydrolytic enzymes revealed marked alterations in different tissues 

of N. subnodosus exposed to PSP. These enzymatic activities could be potentially used as molecular 

- -glucosidase and 

- -chymotrypsin in the gill, but 

other modifications were also observed in other tissues, including mantle and the adductor muscle 

(Estrada et al., 2007). 

 

Biomarkers of contamination: proteomic approaches 

 

Although there is no doubt that large-scale proteomic approaches can provide a tool of the utmost 

importance for the identification of molecular markers of aquatic pollution (Campos et al., 2012), to 

date just a very few studies have exploited this potential to explore the effects of phycotoxins on 

bivalves. 

So far proteomic approaches have been mainly used to study the expression of proteins regulated by 

known molecular targets of toxins, such as in the case of protein phosphatases, the upstream effectors 

of the p38 mitogen-activated protein kinase, selectively inhibited by OA. An increase in the 

phosphorylation/activation of p38 MAPK has been in fact observed in the heart of OA treated oysters 

(Talarmin et al., 2008) and contributes to the increased phagocytotic activity in the immunocytes of 

PLTX-treated mussels (Malagoli et al., 2008). 

One of the very few large-scale approaches concerned the identification of biomarkers of AZA 

contamination in Mytilus edulis; four proteins highly expressed in the digestive gland of toxic mussels 

were identified, namely cathepsin D, superoxide dismutase, glutathione S-transferase Pi and a 

flagellar protein of bacterial origin. This data seem to suggest the activation of xenobiotic defense 

response in bivalves following AZP blooms (Nzoughet et al., 2009). 

The negative effects of a toxic cyanobacteria, Cylindrospermopsis raciborskii, have been investigated 

using a similar approach on M. galloprovincialis (Puerto et al., 2011). The expression of several 

structural proteins was remarkably altered, indicating a situation of stress and cytoskeletal 

destabilization. At the same time, other important proteins such as the mitochondrial HSP60, the 

major extrapallial fluid protein and a triosephosphate isomerase were significantly down-regulated in 

the toxic strain-fed mussels, highlighting a complex response of mussel to cyanotoxins. 
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Although the efforts put so far in large-scale proteomic studies have been very scarce, the possibility 

to identify potential biomarkers of contamination demonstrates that this represents a valid approach 

for better understanding the molecular mechanisms involved in shellfish toxicity. 

 

Biomarkers of contamination: target genes focused approaches 

 

The number of proteomic studies exploring the effects of phycotoxins on marine bivalves is quite 

narrow, but even less efforts have been put in genomic researches. The few studies focused on gene 

expression have been mostly aimed at the monitoring of a limited number of target sequences. Mello 

and colleagues (Mello et al., 2012) selected a few genes and assessed their expression in C. gigas 

hemocytes subject to in vitro PbTx exposure. The early activation of HSP70, CYP365A1 and FABP, 

genes related to stress and detoxification, suggest that oyster hemocytes activate a defense response 

which protects them from cytotoxic damage, which does not involve immune and antioxidant 

processes, as the expression of BPI, IL-17, EcSOD, Prx6, GPx and SOD was not altered. 

Other studies based on gene expression, exploiting the knowledge gathered from previous 

experiments, have only been planned but not performed yet: an interesting OA biomonitoring 

approach based on the evaluation of the expression of genes critically important in OA-induced 

genotoxic damage has been in fact proposed (González-Romero et al., 2012). In particular, the 

authors claim that the expression of several histone variants, such as the histone H2A.Z, is strongly 

down-regulated in response to harmful levels of OA, basing their hypothesis on preliminary data 

which will be published in an upcoming manuscript. 

 

 

Biomarkers of contamination: whole-transcriptome scale approaches 

 

To the best of our knowledge, only two studies have so far tried to tackle the issue of marine toxin 

effect on bivalves from a genomic perspective. The two studies, both performed on the Mediterranean 

mussel M. galloprovincialis, investigated the effects of toxins on the gene expression of the main 

tissue of accumulation, the digestive gland, by using two different techniques. 

In the first study, focused on DSP, Manfrin et al. (2010) assessed the effects of OA accumulation 

over 35 days of exposure by cDNA microarray, identifying several transcripts candidates as OA-

stress markers. Although most of the sequences could not be linked to known metabolic pathways 

correlated to biotransformation, the up-regulation of several stress-related proteins, mainly linked to 
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apoptosis, proteolysis and cytoskeleton destabilization, denoted a possible sufferance of OA exposed 

mussels. 

The preliminary observations collected from this experiment were further validated on the digestive 

gland of mussels subject to naturally occurring HABs (unpublished data). The expression of 14 

selected up-regulated genes was monitored by real-time PCR in samples collected during 2 DSP 

events occurred in the Gulf of Trieste. The analysis permitted to confirm 11 out of 14 genes as OA-

responsive, highlighting that the results of experimental contaminations can be applied also on 

naturally occurring DSP events (Fig. 2). 

The second and more recent study exploited the recent advances offered by the application of next 

generation sequencing technologies to RNA-sequencing. The study was aimed at the investigation of 

the possible molecular mechanisms activated or repressed in the digestive gland in response to the 

accumulation of PSTs (Gerdol et al., 2012) produced by the toxigenic dinoflagellate A. minutum strain 

AL9T over a time course of 5 days. The contamination with these toxins apparently only led to 

negligible effects on gene expression in mussel, which is an organism insensible to the paralytic 

effects of STX-like toxins, due to the resistance of its nerve voltage-gated sodium channel (Twarog 

et al., 1972). Therefore, the RNA-seq experiment results seem to disprove the sporadic reports of 

negative effects of paralytic HABs in mussel (Galimany et al., 2008a; Shumway et al., 1987) and 

support their classification as organisms refractory to PSP (Bricelj and Shumway, 1998). 

Although preliminary, the two above mentioned studies were certainly able to give a better overview 

about the possible molecular effects of marine phycotoxins on bivalve mollusks and represent the 

first steps in moving the focus of dinoflagellate toxicity from a human-centered to a bivalve-centered 

point of view. 

There is no doubt that, thanks to the technological advancements and the increasing availability of 

bivalve sequence data, including fully sequence genomes (Zhang et al., 2012), the design of similar 

studies performed on large panels of toxins will be much easier in the near future. 
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Conclusion 
 

HABs represent a serious and emerging issue for human health, so considerable research efforts have 

been put in the study of their toxicological effects on vertebrate model organisms, useful for a better 

comprehension of the dynamics of shellfish poisoning in human. Comparatively, only limited data 

are available about the effects on bivalves, and the large majority of them concerns physiological 

aspects. While the lack of molecular studies is mainly caused by the still limited genetic knowledge 

of these organisms, there is an urge for further research in this field, as highlighted by the promising 

findings provided by the handful of molecular studies documented in this review. 

Certainly, there is the need for combining large scale approaches (both on a proteomic and on a 

genomic level) for the identification of trustworthy biomarkers of contamination for a more effective 

biomonitoring of HABs, also contributing to a better comprehension of the molecular mechanisms 

adapted by bivalve mollusks to deal with phycotoxin toxicity. 
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Tables 

 

Toxic 
syndrome 

Toxins Molecular structure Toxic Algae Symptoms in 

human 

 
ASP – 
Amnesic 
Shellfish 
Poisoning 

 
Domoic acid 
(DA) and 
analogues 
 

 
 
 
 
 
 
 
 
 

 

Pseudo-nitzschia 

spp. 

 

gastrointestinal 

disorders, 

headache, 

disorientation, 

short-term memory 

loss, brain damage, 

death in severe 

cases (Todd et al., 

1993) 

 
AZP – 
Azaspiracid 
Shellfish 
Poisoning  

 
Azaspiracids 
(AZA) and 
analogues 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Protoperidinium 

crassipes, 

Azadinium 

spinosum. 

 

diarrhea, nausea, 

vomiting, 

abdominal cramps 

(Satake et al., 

1998). 

 
DSP – 
Diarrhetic 
Shellfish 
Poisoning 

 
Okadaic acid 
(OA) and 
Dinophysistoxi
ns (DTXs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Dinophysis spp., 

Prorocentrum spp. 

 

diarrhea, nausea, 

vomiting, 

abdominal cramps 

(Hallegraeff, 1995). 

 
NSP – 
Neurotoxic 
Shellfish 
Poisoning 

 
Brevetoxins 
(PbTx) 

 
 

 

Karenia brevis 

(formerly 

Gymnodinium breve 

and Ptychodiscus 

brevis) 

 

nausea, loss of 

motor control, 

muscular ache, 

asthma (Wang, 

2008). 

 
PSP – 
Paralytic 
Shellfish 
Poisoning 

 
Saxitoxin (STX) 
and analogues 
(GTXs) 

 

 

Alexandrium spp., 

Gymnodinium spp. 

 

nausea, diarrhea, 

abdominal ache, 

shortness of breath, 

dry mouth, 

confused speech, 

tingling lips, 

tongue, neck, face, 

arms, legs and toes 

(Clark et al., 1999). 
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CFP – 
Ciguatera 
Fish 
Poisoning 

 
Only palytoxin 
(PLTX) and 
analogues in 
bivalves, other 
toxins are 
responsible of 
CFP in fishes 
(ciguatoxin, 
maitotoxin, 
etc.) 

 

 

Ostreopsis spp. 

(PLTX, ovatoxin 

and analogues) 

 

lethargy, muscle 

spasms, tremor 

myalgia, cyanosis, 

respiratory distress, 

rhabdomyolysis, 

death in severe 

cases (Ramos and 

Vasconcelos, 2010) 

Others Yessotoxins 
(YTXs) 

 

Lingolodinium 

polyedrum, 

Gonyaulax 

spinifera, 

Prorocentrum 

reticulatum. 

 

diarrhea (Tubaro et 

al., 2010) 

Others Pectenotoxins 
(PTXs) 

 Dinophysis spp. 

 

diarrhea (Draisci et 

al., 1996) 

Others Spirolides 
(SPXs) and 
Gymnodimine 
(GYMs) 

 Karenia selliformis 

(GYMs) 

Alexandrium 

ostenfeldii (SPXs) 

neurological 

symptoms (Munday 

et al., 2004) 

 

 

Table 1: Main shellfish poisoning syndromes: summary of the toxins involved, causative algal species and 

symptoms in human. 
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Study 
Toxin 
class Bivalve species Strategy 

Llewellyn et al., 1997 PSTs (STX) Mytilus edulis, 
Saximodus giganteus, 
Spisula solidissima, 
Donax deltoides and 
Vepricardium 
multispinosum 

screening for saxiphin-like activity 

Dizer et al., 2001 DA Mytilus edulis  Monitoring of the cholinesterase activity following intramuscolar 
DA injection 

Lin et al., 2004 PSTs Mactra chinensis enzyme purification from the digestive gland (sulfocarbamoylase I) 

Choi et al., 2006 PSTs Ruditapes 
philippinarum 

Monitoring of oxydative stress related enzymatic activities 

Estrada et al., 2007 PSTs  Nodipecten 
subnodosus 

Monitoring of antioxidant and hydrolitic enzymes in different 
tissues 

Takati et al., 2007 PSTs Acanthocardia 
tuberculata 

protein purification from the foot (PSPBP) 

Nzoughet at al., 2007 AZA Mytilus edulis  isoelectric focusing and SEC 

Fernandez-Reiriz et 
al., 2008 

PSTs Mytilus chilensis Monitoring of the activity of amylase, laminarinase and cellulase 

Talarmin et al., 2008 DSTs (OA) Crassostrea gigas  Western blot 

Malagoli et al., 2008 PLT Mytilus 
galloprovincialis  

Immunoblot 

Cho et al., 2008 PSTs Peronidia venulosa  enzyme purification from the digestive gland (sulfocarbamoylase I) 

Nzoughet et al., 2009 AZA Mytilus edulis  SDS-page and de novo sequencing; comparative analysis between 
control and contaminated bivalves 

Haberkorn et al., 2010 PSTs Crassostrea gigas Monitoring of prophenoloxidase, amylase activity and ROS 
production in contaminated oyster hemocytes 

Estrada et al., 2010 PSTs Nodipecten 
subnodosus 

Monitoring of antioxidant and hydrolitic enzymes in different 
tissues, with a particular emphasis on hemocytes 

Manfrin et al., 2010 DSP (OA) Mytilus 
galloprovincialis 

microarray and real-time PCR on digestive glands of 
experimentally and naturally contaminated mussels 

Rossignoli and Blanco, 
2010 

DSTs (OA) Mytilus 
galloprovincialis 

fractionation and enzymatic digestion of cellular fractions 

MacKenzie et al., 2012 PTX and 
OA 

Perna canaliculus  enzyme purification from the digestive gland 

Gorbi et al., 2012 PLT and 
ovatoxin  

Mytilus 
galloprovincialis 

Multibiomarker approach, assessment of several physiological 
parameters, including enzymatic activities 

Mello et al., 2012 brevetoxin Crassostrea gigas  real-time PCR on selected genes following heamocytes exposure 
to brevetoxin 

Gerdol et al., 2012 PSP  Mytilus 
galloprovincialis  

RNA-seq on digestive glands of experimentally contaminated 
mussels 

Gonzales et al., in 
preparation 

DSTs (OA) Mytilus 
galloprovincialis 

monitoring of histones gene expression levels 

 

Table 2: Main molecular studies related to shellfish poisoning in bivalve mollusks. 
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Figures 

 

 

Fig. 1: Geographical occurrence of shellfish poisoning syndromes. ASP: Amnesic Shellfish 

Poisoning; AZP: Azaspiracid Shellfish Poisoning; CFP: Ciguatera Shellfish Poisoning; DSP: 

Diarrhetic Shellfish Poisoning; NSP: Neurotoxic Shellfish Poisoning; PSP: Paralytic Shellfish 

Poisoning 
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Fig. 2: Validation of potential DSP-biomarkers in mussels digestive gland by quantitative RT-PCR. 

The expression of fourteen genes identified as differentially expressed in Manfrin et al., 2010 were 

monitored in two samples collected during naturally occurring DSP-HAB in the Gulf of Trieste 

(TS_09+ and TS_10+). The normalized fold expression values are shown in a log2 scale, significant 

.upregulation is indicated by *. 
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Latimeria menadoensis: 

 

I dati trascrittomici in questo organismo, ottenuti da studi di RNA-seq eseguiti con tecnologia 

Illumina, provengono da campioni di fegato e testicoli e sono il frutto di una collaborazione tra 

l'Università di Trieste, Ancona e Viterbo. 

Questa lavoro ci ha inoltre offerto l'opportunità di collaborare anche con il Broad Institute  e di entrare 

a far parte del progetto di sequenziamento del genoma di Latimeria chalumnae. 

Data l'eccezionalità dell'organismo, il nostro è stato il quinto esemplare mai pescato di questa specie, 

i dati trascrittomici sono derivati da un unico individuo. 

Lo studio, inoltre, a differenza degli altri, è stato esplicitamente pensato per creare il trascrittoma di 

questo organismo i cui campioni disponibili sono così rari. 

Il sequenziamento dei due tessuti di L. menadoensis ha permesso di ottenere 145.435.156 reads 

paired-end. 

Oltre ad essere state rimosse le sequenze originate dall’RNA ribosomale, anche in questo caso le 

sequenze sono state filtrate per eliminare adattatori e basi a bassa qualità Il set di sequenze è stato 

così ridotto a un totale di 88.872.414 reads. 

Il Broad Instituite, grazie alla collaborazione in corso, ci ha offerto la possibilità di assemblare le 

nostre reads con Trinity, software di assemblaggio da loro sviluppato, permettendoci così di elaborare 

dati provenienti da diversi metodi di assemblaggio. 

La combinazione di differenti metodi e algoritmi di assemblaggio può essere considerata come la 

strategia migliore per l'ottenimento di trascritti di alta qualità. 

Poiché i contig ottenibili con Trinity presentano spesso un elevata ridondanza, a causa della tendenza 

del software di creare contig diversi per ogni splicing alternativo, abbiamo cercato di limitare questa 

ridondanza utilizzando l'assembler MIRA e il software CLC Genomic Workbench. 

Innanzitutto le sequenze sono state assemblate con Trinity creando, così, 306.882 contig che sono 

stati successivamente utilizzati come sequenze di input per il programma di assemblaggio MIRA. 

Questo programma si basa sull'uso interattivo di strategie multipass, utilizzando regioni ad alta 

similarità e strategie fallback per usare regioni a bassa similarità. 
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Questo metodo di assemblaggio nonostante richieda molta più RAM e tempi più lunghi rispetto a 

programmi di assemblaggio che utilizzano l'algoritmo de Brujin, permette di assemblare tra loro 

sequenze che altri assembler non riescono ad allineare. 

Le sequenze ottenute sono state filtrate per lunghezza, mantenendo un cut-off di 250 pb, riducendo 

l'assemblaggio a 105.653 trascritti, riducendo così del 19.21% la ridondanza nei contig creati da 

Trinity. 

Contemporaneamente le reads sono state assemblate utilizzando il CLC Genomic Workbench, 

generando 149.339 contig. 

All'interno delle sequenze contigue create sono state ricercate le open reading frame (ORF) e 

solamente quelle che presentavano almeno una ORF di almeno 70 codoni sono stati mantenute. 

I trascritti derivanti dai diversi assemblaggi sono stati quindi allineati tramite BLASTn utilizzando 

parametri molto restrittivi. 

Mediamente Trinity utilizza per l'assemblaggio un maggior numero di reads rispetto al CLC Genomic 

Workbench. Per questo motivo, nel caso in cui fossero presenti sequenze molto simili  tra quelle create 

dalla coppia Trinity/MIRA e CLC Genomic Workbench, si è preferito scartare i contig creati da 

quest'ultimo. Sono stati, infine, mantenuti i contig generati da CLC solo nel caso in cui non ci fosse 

similarità di sequenza oppure, nel caso ci fosse una similarità significativa, questi fossero di almeno 

200pb più lunghi. 

Anche in questo caso, l'opera di filtraggio e selezione è stata fatta utilizzando uno script  in Python 

creato appositamente. I contig risultanti sono stati filtrati per lunghezza e i trascritti con bassa 

copertura sono stati scartati ottenendo un set di 66.308 sequenze di alta qualità. 

Anche in questo caso è stata effettuata l'analisi per il calcolo dell' Ortholog Hit Ratio utilizzando il 

BLASTx contro NR.  Le successive fasi di annotazione sono state effettuate utilizzando il software 

di annotazione BLAST2GO (Conesa et al., 2005) che ha permesso di annotare le sequenze con Gene 

Ontology, BLASTx ed Interpro. 

Un’ulteriore analisi è stata fatta per ricercare eventuali elementi trasponibili utilizzando il software 

Repeatmasker. (http://www.repeatmasker.org) 

Avendo a disposizione sequenze provenienti da due tessuti diversi è stata effettuata un'analisi di RNA-

seq utilizzando le metodiche descritte precedentemente per M. galloprovincialis per identificare i 

trascritti maggiormente espressi nei due tessuti.  
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I contig creati sono stati inoltre confrontati con i trascritti ottenuti dal Broad Institute 

dall'assemblaggio di sequenze trascrittomiche di muscolo di L. chalumnae. 

Il muscolo è un tessuto molto specializzato che esprime un numero di geni molto minore rispetto ai 

nostri tessuti ed infatti il 50% dell'espressione genica totale in muscolo è data da solo 12 geni. 

Dal confronto è emerso come i tessuti da noi analizzati esprimano un range di trascritti molto 

maggiore, e ha permesso di valutare quanto divergente sia il contributo nell'espressione genica dei tre 

tessuti. 

Facendo parte del progetto di sequenziamento del genoma abbiamo potuto anche mappare, a livello 

nucleotidico, le reads di L. menadoensis a nostra disposizione all’interno delle regioni codificanti del 

genoma annotato da Ensembl di L. chalumnae. 

Questa analisi è stata svolta utilizzando il programma CLC Genomic Workbench. 

Questo ha permesso a noi di avere delle statistiche sulla profondità di sequenziamento e a loro di 

testare la qualità delle annotazioni. 

I risultati hanno dimostrato che la profondità dei dati di RNA-seq di liver e testis a nostra disposizione 

può essere considerata un fondamentale strumento per l'identificazione di nuovi geni e in particolare 

dei trascritti non codificati non annotati. 

Inoltre, grazie a questo confronto, è stato possibile stimare a 99,73% la similarità tra L. menadoensis 

e L. chalumnae. 

Per avere una stima della divergenza evolutiva tra le due specie, inoltre, abbiamo selezionato un set 

di 25 geni ortologhi altamente conservati, con identità di sequenza superiore all'80%, le cui sequenze 

fossero disponibili per L. menadoensis, L. chalumnae, Takifugu rubripes e Tetraodon nigroviridis. 

Il tasso di sostituzione nelle due specie di Latimeria è risultato essere parti a 0.49/100pb mentre è 

risultato essere circa 16 volta più alta nella coppia Takifugu/Tetraodon (8,25/100). 

Poiché il tempo stimato di divergenza tra Tetraodon e Takifugu, basato su evidenze paleolitiche, è tra 

i 32,25 e i 56 milioni di anni (Benton and Donoghue, 2007), abbiamo ipotizzato che  la datazione 

della divergenza tra il celacanto africano e indonesiano potrebbe essere stimata tra 1,9 e 3,3 milioni 

di anni. 

Questo lavoro ha portato alla scrittura di diversi pubblicazioni derivanti direttamente dal lavoro di 

analisi e assemblaggio dei dati trascrittomici e ha posto le basi per eventuali lavori futuri. 
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Abstract 
 

Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of 

distance from its African congener. In the present work we describe the de novo transcriptome 

assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this 

species. 

The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end 

reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC 

combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, 

whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the 

African congener Latimeria chalumnae and with the available genomic resources of other vertebrates 

revealed a good reconstruction of full length transcripts and a high coverage of the predicted full 

coelacanth transcriptome. 

The RNA-seq analysis revealed remarkable differences in the expression profiles between the two 

tissues, allowing the identification of liver- and testis-specific transcripts which may play a 

fundamental role in important biological processes carried out by these two organs. 

Given the high genomic affinity between the two coelacanth species, the here described de novo 

transcriptome assembly can be considered an unmatchable support tool for the improvement of gene 

prediction within the genome of L. chalumnae and a valuable resource for investigation of many 

aspects of tetrapod evolution. 
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Introduction 
 

One of the most important transitions in vertebrate evolution was the arising of terrestrial vertebrates, 

which entailed considerable morphological changes related to the acquisition of novel functions by 

pre-existing and, in several cases, pre-adapted structures, like the evolution of lobe fins into tetrapod 

limbs. The terrestrial vertebrates would have derived from fossil forms of lobe-finned fishes, a highly 

successful group in the Devonian (400 Mya), with hundred species populating the Gondwana 

supercontinent’s oceans and river systems (Maisey 1996; Cloutier and Ahlberg 1997). 

Until 1938 only two sarcopterygian taxa were considered to have survived post-Devonian extinction: 

the dipnoi (lungfish), with three extant genera, and the tetrapods, with ~23,500 species. Hence the 

clamour when the first living coelacanth (Latimeria chalumnae), a fish considered extinct, was found 

off the estuary of river Chalumna, in South Africa (Smith 1939; Smith 1989). In 1997 a specimen of 

another Latimeria population was identified by Mark V. Erdmann in a fish market in Manado Tua 

(Sulawesi, Indonesia) (Erdmann et al. 1999). The distance between the two sites (more than 10,000 

Km) and the early molecular findings (Holder et al. 1999; Pouyaud et al. 1999) led to the identification 

of the latter specimen as belonging to a distinct species, called L. menadoensis. Several individuals 

of L. chalumnae have been fished to date, as opposed to only six individuals of L. menadoensis. 

Specimens of Indonesian coelacanth are therefore very rare and constitute a valuable scientific 

resource and a mine of precious genetic information. 

The main molecular and morphological studies of the genus Latimeria have addressed the 

evolutionary relationships linking lungfishes, coelacanths and tetrapods. Their results have however 

been discordant, since different datasets have sustained different hypotheses (Gorr et al. 1991a; Gorr 

et al. 1991b; Meyer and Dolven 1992; Yokobori et al. 1994; Meyer 1995; Zardoya and Meyer 1996; 

Zardoya et al. 1998; Holder et al. 1999; Pouyaud et al. 1999; Tohyama et al. 2000; Venkatesh et al. 

2001; Brinkmann et al. 2004; Takezaki et al. 2004; Inoue et al. 2005; Shan and Gras 2011). 

L. menadoensis has also been the subject of other molecular investigations aimed at characterizing 

some genes of evolutionary interest: Hox genes (Koh et al. 2003; Shashikant et al. 2004; Amemiya 

et al. 2010), ParaHox genes (Mulley and Holland 2010), the Protocadherine cluster (Noonan et al. 

2004), the RAG1 and RAG2 genes (Brinkmann et al. 2004), Sonic hedgehog gene and its enhancers 

(Hadzhiev et al. 2007), visual pigments (Yokoyama and Tada 2000), a Heat Shock Protein 70 

(Modisakeng et al. 2009), neurohypophyseal hormones (Gwee et al. 2008), and vitellogenins  (Canapa 

et al. 2012). Furthermore some transposable elements were characterized in this species (Bejerano et 

al. 2006; Nishihara et al. 2006; Xie et al. 2006; Smith et al. 2012). The importance of L. menadoensis 
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has led to the study of its whole mitochondrial genome (Inoue et al. 2005; Sudarto et al. 2010) as well 

as to partial sequencing of a BAC library, which has made ~5 Mb of genomic sequences available to 

databases (Danke et al. 2004). Furthermore, correlations between quantitative and compositional 

characteristics of the genome of L. menadoensis were considered in Makapedua et al. (2011). 

Over the last few years next generation sequencing technologies (NGS) have revolutionized the fields 

of genomics and transcriptomics, providing the opportunity to analyze genomes and transcriptomes 

with high sequencing depth in a relatively short time in comparison with Sanger sequencing. The 

molecular data obtained with such technologies, applied to a rising number of organisms, are proving 

steadily important to study their relationships at the macro- and micro-evolutionary levels. In this 

respect, having in mind that genes are targets of evolution-driven changes that lead to the different 

morphology of animals, in the framework of studies of genomic features of coelacanths (Amemiya 

et al. 2012), we examined the L. menadoensis transcriptomes of liver and testis using deep-sequencing 

techniques. 

The liver is one of the most suitable tissues in that it participates more than other organs in a range of 

physiological processes and contains cell types endowed with distinct roles and functions. 

Considering the different sex determination mechanisms occurring across vertebrates, the expression 

in testis is interesting to better understand the genes involved in these processes and their evolution 

since the systematic position of Latimeria. Furthermore, this tissue proved to be particularly suitable 

and useful for deep RNA-seq, as it expresses a broad range of different transcripts, permitting the 

assembly of a high number of full length sequences. In fact, about a half of the sequences included in 

the high quality set of 66,308 contigs was estimated to have been correctly assembled to the full 

length. 

The de novo transcriptome assembly was able to significantly enhance the global view of the 

sequences expressed in coelacanth, overcoming the limitations linked to the automated and 

conservative, protein coding gene-focused, prediction by Ensembl, and providing a remarkable 

amount of information concerning expressed sequences produced by non-annotated genes. This 

knowledge provided significant information not only to investigate important biological processes 

and metabolic pathways  in Latimeria, but also to acquire information on the origin of tetrapods and 

on the possible evolutionary dynamics relative to the genes involved in the transition from aquatic to 

terrestrial vertebrates.  
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Results 

 

Latimeria menadoensis transcriptome sequencing 

The Illumina sequencing procedure generated 145,435,156 raw nucleotide paired-end reads 

(76,932,818 and 68,502,338 reads from liver and testis, respectively). The average read length for 

liver was 97.28 bp, corresponding to a complete dataset of 7.48 GB of sequence data. Deep RNA-seq 

of testis produced reads slightly shorter, with an average length of 96.22 bp, accounting to 6.59 GB 

of sequence data. 

Following the processing steps involving the trimming of adapters and low quality bases, and the 

removal of short reads and of reads originated by ribosomal RNA, the two sequence sets were 

significantly reduced. 47,470,578 and 41,401,836 high quality sequencing reads were selected from 

liver and testis, respectively. Therefore a total of 88,872,414 sequencing reads were used for the de 

novo assembly. A summary of the trimming step statistics is reported in Table 1. A detailed report of 

quality and statistics for the reads used for the de novo transcriptome assembly is presented in 

Supplementary file S1. 

 

De novo assembly 

The de novo transcriptome assembly performed with Trinity (Grabherr et al. 2011) by using both liver 

and testis reads generated a total of 306,882 contigs. The filtering step used to select only the longest 

transcript per gene produced 223,365 contigs, and the additional step applied to remove redundant 

sequences by MIRA 3.4.0 (Chevreux et al. 2004)  and to filter sequences shorter than 250 bp, further 

reduced the Trinity assembly to a set of 105,653 transcripts. 

The de novo assembly produced with the CLC Genomic Workbench 4.5.1 (CLC Bio, Katrinebjerg, 

Denmark) generated 149,339 raw contigs. The high quality subset of protein-coding sequences 

selected to integrate the Trinity assembly, as described in the materials and methods section, 

comprised 48,846 sequences. A total of 8,496 CLC contigs were detected by BLASTn as matching 

existing Trinity contigs and significantly longer than them. The corresponding Trinity contigs were 

therefore replaced. The remaining 40,350 CLC contigs were discarded, as they could not significantly 

improve the Trinity assembly. 

A total of 105,653 contigs was obtained following the combining of the data generated by the two de 

novo assemblers. Finally, the filtering step applied to remove poorly covered sequences, resulting 

from the fragmentation of transcripts expressed at particularly low levels, reduced the contig number 
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to a final high quality set of 66,308 sequences. A detailed graphical summary of the strategy used and 

of the results obtained by the de novo assembly of L. menadoensis transcriptome is shown in Figure 

1. 

 

Assembly quality assessment 

The goal of these assembly processing steps was to reduce redundancy without losing any valuable 

sequence data (Figure 2). Despite making use of a large fraction of the original sequencing reads 

(65.41% of the intact sequence pairs -fragments- could be mapped to the contigs), the raw Trinity 

assembly was largely redundant. Moreover, the mapping of the reads on the assembled contigs 

revealed 75% of non-specific matches. On the contrary the raw CLC assembly showed virtually no 

redundancy (~0.01%) but only 33% of sequenced fragments were used to produce the assembly. 

The sequence redundancy was drastically reduced to 19.21% after the removal of Trinity redundant 

contigs by MIRA. Furthermore, no sequence data were lost, as the total number of reads mapped on 

the updated assembly slightly increased (+1.19%): this was due to the elongation of 8,496 Trinity 

contigs by CLC. 

Although a large portion of contigs with low expression was discarded (39,342 contigs, accounting 

for 37.24% of the 105,653 contigs), this did not significantly affect the total number of mapped reads 

(which only decreased by 0.34%) and contributed to a further reduction of sequence redundancy 

(which dropped to 17.39%). 

The comparison between sequence length categories based on average coverage, before and after the 

contig filtering step (Figure 3), revealed that this procedure was able to sensibly reduce the amount 

of short sequences, especially those shorter than 500 bp, moving the distribution of contig length 

towards longer and more reliable sequences. 

Transcript fragmentation was assessed with the Ortholog Hit Ratio method (O'Neil et al. 2010), which 

relies on the comparison between the observed length of contigs and the full length of known ortholog 

sequences of other species, detected by BLASTx. This method is strongly influenced by inter-species 

divergence and by the different substitution rates observed among genes and can often lead to an 

under-estimation of transcript integrity (Ewen-Campen et al. 2011). To overcome this imperfection 

of the method, we applied a correction, by only considering in the analysis highly conserved genes 

(characterized by a BLAST identity higher than 90%, independently from the hit length). By these 
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means, a sufficiently large set of sequences was analyzed (6,024 coelacanth contigs), permitting to 

obtain a reliable estimate of fragmentation within the high quality liver and testis transcripts. 

About a half of the contigs resulted to be assembled to their full length, when compared with known 

ortholog sequences (Figure 4). The mean and median ratios resulted to be 0.72 and 0.86, respectively. 

Approximately a quarter of the high quality transcript set is expected to be composed by highly 

fragmented contigs (covering less than 50% of the expected length).  

The average length of the contigs obtained, ranging from 250 (the minimum length allowed) to 20,815 

bp, was 1,080 bp. The N50 statistic of the assembly was 1,761 and 1,081 contigs longer than 5 Kb 

were obtained (80 contigs were longer than 10 Kb). A summary of the final assembly statistics is 

shown in Table 2. 

 

Transcript annotation 

The annotation performed with BLASTx to the NCBI non-redundant (nr) protein database revealed 

that 23,564 of the assembled contigs (35.54%) had at least one positive hit. 42,744 contigs did not 

give any BLAST hit by the cutoff of 1e-6. The BLAST top hit species distribution is shown in Figure 

5. 

The BLAST2GO annotation, directly performed on the high quality set of transcripts translated into 

the six possible reading frames, revealed 42,667 out of 66,308 total sequences bearing at least one 

Interpro domain, accounting for 64.35% of annotated transcripts. The list of the 25 most abundant 

Interpro domains is displayed in Table 3. 

The assembled sequences were also annotated with Gene Ontology (GO) terms as described in the 

materials and methods section, according to the three major GO categories: Cell Component, 

Molecular Function, and Biological Process. A total of 28,502 transcripts (42.98%) were associated 

with at least one GO term; concerning the second level of ontology, 6,698 were assigned to a Cell 

Component category, 13,061 to a Molecular Function category, and 13,030 to a Biological Process 

category. The summary of Gene Ontology mappings is reported in Figure 6. 
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TE elements in the coelacanth transcriptome 

The analysis carried out with RepeatMasker (Smit 1996-2012) to identify transcribed repetitive 

elements of L. menadoensis revealed that 11.17% of the assembled contigs harbors at least one repeat 

and that 1.87% of sequenced bases matches to a RepeatMasker entry. The major part of matching 

contigs harbors a transposable element (98.9%): SINEs (79.9%), LINEs (12.0%), LTR 

retrotransposon families (0.5%), and DNA transposons (6.5%). The types of repetitive elements less 

represented are small RNAs (0.9%) such as tRNAs, srpRNAs, snRNAs, and 7SK RNAs; Unknown 

and Satellite elements (0.2%) (Figure 7). 

Furthermore the Interpro domain analysis on the 66,308 high quality contigs allowed to identify 119 

transcripts containing the IPR000477 domain (Reverse transcriptase), 72 contigs with IPR004244 

domain (Transposase, L1), and 17 sequences harboring IPR001584 domain (Integrase, catalytic 

core). 

 

RNA-seq mapping on the African coelacanth genome 

Globally, the 61.64% of the sequence data generated by the Illumina paired-end sequencing of liver 

and testis RNA could map to the genes annotated of L. chalumnae. The 93.03% of the counted 

fragments mapped within exons (51.63% were mapped on exon-exon junctions), whereas just 6.97% 

of the counted fragments mapped within introns (2.98% mapped on exon-intron junctions). The 

observed redundancy was very low, highlighted by a match specificity of 98.1%. 17,129 out of the 

22,819 annotated gene models were found to have a positive mapping, meaning that the 75.06% of 

the coelacanth predicted genes were expressed in liver or in testis. 

A larger proportion of reads could map to the full assembled genome (85,682,920), revealing that 

34.77% of the reads generated by the RNA-seq of liver and testis account for the expression of genes 

which are still not annotated. Overall, 3,189,494 reads (3.59% out of the total) could not be mapped 

to the L. chalumnae genomic scaffolds. The summary of the RNA-seq data mapping on the African 

coelacanth genome is presented in Table 4. 

 

RNA-seq mapping on L. menadoensis transcriptome 

The RNA-seq mapping performed to calculate the expression levels of the assembled transcripts in 

both analyzed organs mapped the majority of paired-end reads to the assembled contigs (Table 5). In 

fact, the percentage of counted fragments was 67.20% in liver and slightly lower in testis, 64.57%. 



 
 

166 
 

The fraction of mapping reads was very similar in the two organs, being 78.12% in liver and 76.90% 

in testis, indicating that slightly more than 20% of the sequence data generated by the NGS 

sequencing could not be mapped to the final set of assembled contigs. Furthermore, it was possible 

to estimate the number of fragments which were not used at all by the assembly procedure, by 

comparing the number of paired-end reads mapping in broken pairs with the number of uncounted 

fragments. Only about 5.5% out of the total number of fragments produced by sequencing did not 

show any mapping on the assembled contigs, neither as intact nor as broken pairs (5.47% in liver and 

5.38% in testis). 

The RNA-seq mapping revealed that a higher number of transcripts were expressed in testis in respect 

to liver. In fact the expression of 55,975 contigs (84.42%) was found in liver, whereas the expression 

of 61,633 sequences (92.95%) was detected in testis. The comparison between the two organs 

highlighted that 51,302 contigs (77.37%) were expressed in both. Nevertheless, the two 

transcriptomes resulted to be remarkably divergent when comparing expression levels, which for 

most genes were largely divergent as shown by the expression scatter plot in Figure 8. 

The list of the 20 most expressed transcripts in liver and testis is reported in Table 6 and 7 

respectively. The majority of the most expressed genes in both samples likely play important tissue-

specific functions. With a few exceptions (most notably the elongation factor 1 α and the subunit 6 

of ATP synthase F0, whose expression is important for the correct maintenance of all cell types) the 

20 genes characterizing the two tissues show great differences in expression. 

The transcriptome richness was further graphically inspected in Figure 9 comparing L. menadoensis 

liver and testis transcriptomes to the RNA-seq of L. chalumnae muscle. A steep curve, reaching 

quickly the asymptote (corresponding to the 100% of the transcription observed in each tissue), means 

that a low number of genes are expressed at high levels in that tissue. On the contrary, the later the 

curve approaches the asymptote, the more genes are expressed, indicating higher transcriptome 

richness. Among the 3 tissues, muscle is definitely the one characterized by the steepest curve. In fact 

the 50% of the total gene expression in muscle is given by 12 genes, whereas the 80% is given by 

206 genes. These data are consistent with observations previously collected in other organisms 

(Lanfranchi et al. 1996). 

The two tissues used for the deep RNA-seq of L. menadoensis were both richer than muscle, although 

testis resulted to be, by far, the one expressing a broader range of transcripts. In testis 321 genes 

contribute to the 50% of gene expression, while in liver the same number of genes accounts for almost 

the 75%. The 1,000 most expressed genes in liver contribute to the 83% of total transcription (88% 

in muscle), whereas the same number of genes in testis contribute to the 65%.  



 
 

167 
 

The overlap between liver, testis and muscle transcriptomes was further investigated by analyzing 

how many common genes were found among the 1,000 most expressed in each tissue. A schematic 

representation of transcriptomes overlap is given in the Venn diagram in Figure 10. 172 sequences, 

likely representing housekeeping genes, whose expression at rather elevated levels is important in all 

tissues, were found in all the 3 sets. In all the three organs analyzed, about 2/3 of the transcripts were 

identified as tissue specific, highlighting once again the strong link between the biological function 

of different tissues and gene expression.  

 

Discussion 

 

De novo transcriptome assembly 

The advent of NGS technologies has had an outstanding impact on many fields of biology, including 

genetics (Mardis 2008), functional and comparative genomics (Morozova and Marra 2008; Zhang et 

al. 2011) and molecular ecology (Ekblom and Galindo 2011). The remarkable potential range of 

application of these techniques will likely move the focus of high throughput sequencing in the near 

future from genome and transcriptome sequencing to the use in clinical medicine and diagnostics 

(Meyerson et al. 2010; Pallen et al. 2010; Majewski et al. 2011). Due to its potential application to 

deep RNA-seq, NGS has been praised as a cost-effective and revolutionary tool for transcriptomics 

since the very early stages of its development (Wang et al. 2009).  

Although great technical advances have been made in a relatively short lapse of time in the 

improvement of both sequencing technologies and sequencing data management, significant 

challenges linked with RNA-seq still remain unsolved. The major computational issues in the 

management of NGS data is represented by the reliable de novo assembly of transcriptomes (Martin 

and Wang 2011; Cahais et al. 2012). This is a complex task, due to presence of alternatively spliced 

transcript variants, gene duplications, allelic polymorphisms and noise due to suboptimal sequence 

quality, which often leads to the generation of a high number of short and poorly assembled contigs 

(Feldmeyer et al. 2011).  

The massive amount of sequencing reads obtained from L. menadoensis liver and testis allowed us to 

apply stringent filtering criteria, both in the processing of raw sequencing reads and in the filtering of 

assembled contigs, in order to achieve a final set of high quality transcripts and to overcome the most 

common pitfalls of NGS assemblies.  
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Many different algorithms for de novo assembly have been developed, but so far none of them has 

conclusively proved to be most effective than the others. The accuracy and speed of the assembly, as 

well as the ability to detect and efficiently reconstruct alternatively spliced transcripts and to avoid 

sequence redundancy, are all factors which have to be taken into account while considering the 

assembly algorithm to be used. As a rule of thumb, the performance of different assemblers may 

significantly vary depending on the size and the quality of the sequence set to be assembled 

(Feldmeyer et al. 2011). The combination of different assemblies should be considered as the best 

strategy to obtain a more credible final product (Kumar and Blaxter 2010). 

We chose to use the Trinity assembler, able to efficiently recover full length transcripts across a broad 

range of expression levels but somewhat redundant because of the inclusion of alternatively spliced 

variants (Grabherr et al. 2011). The Trinity assembly was used as a reference sequence set to be 

appropriately refined and enriched, whenever possible, by a second de novo assembly performed with 

the assembler included in the CLC Genomic Workbench. The choice of integrating the Trinity output 

with the CLC assembly was made because of the empirical observation of a more effective 

reconstruction of full length transcripts and because of the operational speed of its assembly 

algorithm, based on de Bruijn graph instead of the Overlap-Layout-Consensus (OLC). As this 

method, although extremely fast, is known to produce assemblies which are quite fragmented in 

comparison with other assemblers (Kumar and Blaxter 2010), only a selected set of assembled contigs 

was used to improve the Trinity assembly, with a particular emphasis on protein-coding transcripts. 

 

De novo assembly quality assessment 

One of the problems most commonly arising from the de novo assembly of RNA-seq data is 

represented by sequence fragmentation (Feldmeyer et al. 2011). This issue can be, in the first place, 

the direct consequence of regions poorly covered by sequencing because of a low expression level or 

because of an insufficient sequencing depth applied.  

In order to minimize this problem, as described in the methods section, all the contigs, whose average 

coverage resulted to be lower than 5, were removed prior to further analysis, reducing the number of 

contigs from 105,653 to a final set of 66,308 high quality contigs. This processing step reduced the 

fraction of short sequences with a proportional enrichment in longer transcripts (Figure 3). 

Furthermore, the contig processing strategy we used, graphically summarized in Figure 1, 

contributed to significantly reduce the sequence redundancy of the assembly, in the final set of contigs 

(which was calculated to be 17.39%) in respect with the Trinity output (Figure 2). Nevertheless, 
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several factors can negatively influence the outcome of a de novo transcriptome assembly, affecting 

the reconstruction of full length sequences. The presence of highly similar paralog genes resulting 

from recent gene duplication and the existence of allelic variants, combined with the possible 

presence of repetitive nucleotide stretches and low quality reads, can result in local mis-assemblies 

and breaking points in contigs construction. Therefore, a certain amount of fragmented contigs was 

expected, despite the good quality of the reads generated by Illumina sequencing and the stringent 

parameters used both in the raw sequencing reads processing and in the assembled contigs filtering. 

The ortholog hit ratio analysis highlighted good mean and median ratio values and a high proportion 

of transcripts assembled to their full length (Figure 4). Therefore, despite the inevitable presence of 

broken transcripts, the results of the de novo assembly were extremely satisfying, highlighting that 

about half of the sequences, contained in the final set of transcripts, was assembled to the full length 

or very close to it and that just about a quarter of the contigs were resulting from highly fragmented 

transcripts. 

 

Transcript annotation 

The analysis of the top hit species distribution resulting from BLAST (Figure 5) reveals Gallus gallus 

as the first species, followed by Xenopus tropicalis. The first teleost fish of the list, zebrafish, ranked 

at the sixth place of the list, after the mammal Monodelphis domestica. These results clearly show 

that organisms, whose genome has been largely and deeply studied and annotated, are ranked quite 

high in the list, mainly because of the higher quality of genome assemblies, of the more accurate 

prediction of genes and of the higher number of protein sequences deposited in public sequence 

databases. 

Almost the double number of contigs were annotated by Interproscan (42,667 contigs). Since the 

presence of Interpro domains is a strong indication of coding sequences, these data point out that 

64.35% of the coelacanth de novo assembled contigs are coding for proteins characterized by known 

Interpro domains. 

The most abundant Interpro domains (Table 3) are all extremely common in metazoans, with 

IPR000719 (Protein kinase, catalytic domain) being the most abundant one, with 2,041 annotated 

transcripts, followed by IPR007087 (Zinc finger, C2H2) and IPR002290 (Serine/threonine- / dual-

specificity protein kinase, catalytic domain). 
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Moreover, slightly less than a half of the high quality contigs was assigned to at least one Cell 

Component, Molecular Function or Biological Process by the Gene Ontology mapping (Figure 6). 

Concerning the cellular localization, the majority of annotated transcripts was assigned to cell 

(GO:0005623), followed by organelle (GO:0043226) and macromolecular complex (GO:0032991). 

The largely predominant molecular functions resulted to be binding (GO:0005488) and catalytic 

activity (GO:0003824). Finally, concerning biological processes, cellular process (GO:0009987) and 

metabolic process (GO:0008152) were the two GO terms most represented. 

 

TE discussion  

In metazoans repeat elements cover a considerable part of genomes. Moreover, the transcriptome 

analysis allowed the evaluation of the transcriptional activity of transposable elements (TE) which 

play a key role in gene evolution and genome plasticity. TE are divided in two classes: Class I is 

composed of Long Terminal Repeat retrotransposons (LTRs) and Non-LTRs (subdivided in LINEs 

and SINEs); Class II is composed of DNA transposons. 

The RepeatMasker analysis revealed that 11.17% of contigs harbors a repeat and the most represented 

elements belong to SINE families. The latter result is in line with the studies performed in the 

Indonesian coelacanth genome (Bejerano et al. 2006; Nishihara et al. 2006; Xie et al. 2006), in which 

the activity of SINE elements in Latimeria was inferred. The identification of LF-SINE and DeuSINE 

in L. menadoensis transcriptome might confirm that these elements are actually active. Moreover, 

since their conservation in higher vertebrates, this movement might predate the common ancestor of 

crossopterygians, for more than 400 Myr. 

On the other hand the occurrence of complete SINEs in contigs bearing protein-coding sequence 

might reveal the gain of new functional roles (exaptation) (Gould and Vrba 1982), as previously 

described in tetrapod genomes. 

Concerning the activity of LINEs, the second most represented interspersed elements, the 

Interproscan analysis identified amino acidic domains linked to these autonomous retrotransposons. 

Chicken Repeat 1 (CR1) are the most abundant elements among LINEs. In contrast to the Gallus 

gallus genome where these elements are predominant but, with very few exceptions, nonfunctional 

(Wicker et al. 2005), in Latimeria  they seem to be active. 
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Fragmented LTRs and ERVs were identified in the transcriptome. This result is in agreement with 

the analyses on Foamy-like retroviral elements recently discovered in L. chalumnae genome by Han 

and Worobey (2012) showing many frame-shifts and stop codons. 

The abundance of the Harbinger DNA transposons in L. menadoensis genome (Smith et al. 2012) 

suggests that Class II elements represent a remarkable fraction of the coelacanth TEs, however our 

analysis indicates that few DNA elements are expressed. This discordance may be related to the lack 

of coelacanth specific sequences belonging to this class in the RM database or to their propagation 

mode. 

The identification of mobile elements in transcriptomes sheds light on an unexpected genome 

dynamicity in an organism considered to be a living fossil even from a molecular point of view. 

RNA-seq mapping on the African coelacanth genome 

More than half of the sequence data generated by the RNA-seq of L. menadoensis liver and testis 

mapped on the genes annotated by Ensembl on the L. chalumnae genome (Table 4). This data 

revealed an overall good annotation of the African coelacanth transcripts, even though in some cases 

the RNA-seq data produced in this study could provide some evidence of additional exons, given that 

the 6.97% of the reads corresponded to regions annotated as introns. 

Nevertheless, a rather high proportion of reads, close to 40%, could not be mapped on the genes 

annotated by Ensembl. This sticks with the strategy adopted by Ensembl for the annotation pipeline, 

which is automated and is mainly focused on protein-coding gene models. In fact, almost the 35% of 

the sequencing reads could map on the assembled genomic scaffolds outside from the annotated gene 

boundaries, revealing that a relevant portion of the transcripts expressed in the Indonesian coelacanth 

liver and testis might correspond to genes which were not annotated by the Ensembl RNA-seq 

annotation pipeline (Table 4). Therefore, the deep RNA-seq of liver and testis can be considered as 

a fundamental tool for the discovery of novel genes, and in particular, of many not yet annotated non-

coding transcripts. 

Slightly more than 3 million reads did not map on the genomic scaffolds. These sequence data could 

either correspond to mitochondrial RNA (which was esteemed to account for 3.03% and 2.08% of 

the reads in liver and testis, respectively) or to coding genes harbored in L. chalumnae genomic 

regions which were not successfully assembled. 
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Liver and testis transcriptomes comparison 

The expression profile of the two organs analyzed was expected to be quite different, considering the 

largely different tasks they perform and the highly specialized cellular types involved. This difference 

was immediately evident by the graphical representation of the expression scatter plot (Figure 8). 

Among the 20 most expressed transcripts in liver, a large fraction is constituted by plasma proteins, 

whose synthesis is carried out by liver (such as the three chains constituting fibrinogen, α-2 

macroglobulins, apolipoproteins, hemopexin, vitronectin, lipocalin, serum amyloid P and serum 

albumin), constitute the core of the highly expressed genes in this tissue (Table 6).  

On the other hand testis invests a significant portion of transcription in genes involved in chromatin 

and cytoskeletal rearrangements. In particular, a testis-specific histone results to be expressed almost 

25 times more than the second most expressed gene, prostaglandin H2D isomerase, and accounts for 

about 18% of the global testis transcription. A significant amount of the total gene expression is 

derived from the synthesis of messengers of protamines, used for the replacement of histones and the 

effective packaging of DNA in the sperm acrosome (Balhorn 2007). 

The expression of genes involved in chromatin rearrangement is strictly regulated, as testis-specific 

histones are transiently and selectively expressed only during specific phases of spermiogenesis 

(Martianov et al. 2005). In fact, also sperm nuclear basic protein PL-I and histone H1x-like figure 

among the most representative testis genes. Furthermore a relevant number of other testis-specific 

genes can be linked to the meiotic process carried out in the testicular germinal cells and to the 

cytoskeletal rearrangements consequently required (tubulin α chain testis-specific, tubulin β 2-C and 

centrin-1). Moreover, specific types of microtubules are required for the correct assembly of mitotic 

and meiotic spindles and of the flagellar axoneme of spermatozoa (Kemphues et al. 1982; Villasante 

et al. 1986). The tubulin genes specifically expressed in testis are likely linked to these functions. 

Although the expression of a large fraction of genes was clearly strictly tissue-specific, thanks to the 

sequencing depth applied a relevant overlap between the two transcriptomes (77.37%) was observed. 

The issue of transcriptome richness was addressed by analyzing the relative contributions of the 

expression of each contig to the total observed transcription in the two tissues, and in RNA-seq data 

of L. chalumnae muscle (Figure 9). Highly specialized tissues are expected to invest the most gene 

expression in a selected set of genes, thus being transcriptionally poor, whereas tissues involved in 

many different biological functions, characterized by the coexistence of many different cell types are 

expected to be transcriptionally rich, as they express a broader range of transcripts. Within this 

picture, muscle is a classic example of a highly specialized tissue, expressing at particularly high 
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levels a limited set of genes involved in the structural organization of muscle fibers and responsible 

of contraction. 

Testis expresses a broader range of transcripts, which is in agreement with the assumption that cells 

in this organ are characterized by drastic morphological and functional changes linked to gamete 

generation: in this scenario chromatin structure is constantly rearranged and gene expression may 

therefore be substantially variable during the different stages of spermatogenesis (Tanaka and Baba 

2005).  

Despite being transcriptionally poorer than testis, the RNA-seq of liver likely brought a remarkable 

amount of additional data as pointed out by the extent of the overlap between the two transcriptomes 

(Figure 10). Therefore, although the RNA-seq of two different organs like testis and liver was 

particularly effective to approach the coverage of a complete transcriptome, the scarce overlap 

observed between the two L. menadoensis transcriptomes and the L. chalumnae muscle suggests that 

the sequencing of RNAs obtained from additional samples would be useful in order to effectively 

describe the complete transcriptome of this organism. 

 

Conclusion 

 

The de novo assembly of the Indonesian coelacanth L. menadoensis liver and testis transcriptomes 

here described contains complete information concerning the expressed sequences involved in the 

important biological processes held by liver and testis tissues, such as metabolism and reproduction 

(Canapa et al. 2012). Furthermore, thanks to the high sequencing depth applied and to the broad range 

of transcripts expressed, the assembly also contains a great amount of sequence data originated from 

genes which are not directly linked to liver and testis, permitting to obtain a good overview of the 

overall coelacanth transcriptome. 

In addition, the RNA-seq data generated in the present work provided a valuable resource for the 

Ensembl annotation of the recently sequenced genome of the African coelacanth L. chalumnae. In 

fact, the paired-end sequence data from liver and testis were processed through the Ensembl RNA-

seq pipeline, generating 9,364 high confidence gene models, which permitted to improve the genome 

annotation by the addition of 547 new genes and 1,782 related transcripts (Amemiya et al. 2012). 

This was a considerable improvement with respect to the previous annotation, based both on sequence 

similarity and on the data provided by the RNA-seq of L. chalumnae muscle, a tissue transcriptionally 

poor if compared with liver and testis. Nevertheless, the mapping performed on the genomic scaffolds 
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revealed that a remarkable amount of sequence data remained not used for the gene predictions. These 

data likely include valuable information about non-coding transcripts and genes whose prediction by 

automated pipelines is particularly difficult. 

The importance of the obtained results mainly regards the origin of terrestrial vertebrates since the 

key position of Latimeria as the unique extant representative of the lineage from which tetrapods 

should have arisen. The transcriptome data indicate a higher affinity of this species to several 

terrestrial vertebrates, even if only in few species the genome and transcriptome have been 

exhaustively analyzed. 

Therefore, the de novo transcriptome assembly, for the quality of information it generated, may 

certainly be considered a step ahead in helping to understand the biology of this living fossil. 
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Methods 

 

Samples collection 

On 16th September 2009 a coelacanth was found in a shark net near Talise Island, Indonesia. This 

male, weighing 27 kg with a total length of 116 cm, was the fifth specimen of L. menadoensis ever 

caught since the discovery of this species in 1997. The animal was moved to the Faculty of Fisheries 

and Marine Science, University of Sam Ratulangi, Manado (Indonesia), where the liver and testis 

tissues used in this study were collected immediately after death and directly fixed in RNAlater 

(Applied Biosystems, Warrington, UK). Tissue samples were shipped to the Science Faculty, 

Università Politecnica delle Marche, Ancona, Italy, under the Convention on International Trade in 

Endangered Species (CITES; permit no. IT/IM/2009/MCE/01585-2009/19713). 

 

RNA extraction 

Total RNA was isolated from liver and testis using TRIzol reagent (Invitrogen, Carlsbad, CA). 

Following the treatment with DNase I Amplification Grade (Sigma, Steinheim, Germany), an aliquot 

of the extracts was used to assess the quality and quantity of RNA by spectrophotometric and capillary 

electrophoretic analysis. The liver RNA sample resulted to have a 260/280 nm absorbance ratio of 

1.74, a 260/230 nm absorbance ratio of 0.94 and a RNA integrity number (RIN, estimated with an 

Agilent2100 Bioanalyzer) of 6.6. The testis RNA sample resulted to have a 260/280 and a 260/230 

nm absorbance ratios of 1.89 and 1.23, respectively, with a RIN of 7. 

 

Sequencing of the liver and testis transcriptomes 

Messenger RNA selection and cDNA library preparation were performed by the Istituto di Genomica 

Applicata (IGA, Udine, Italy). The sequencing of the libraries was performed on an Illumina Genome 

Analyzer II platform (San Diego, California).  

Briefly, the poly-A mRNAs were selected using magnetic beads-linked oligo (dT) probes. The 

fragmentation was obtained with divalent cations. cDNA was synthetized and Illumina sequencing 

adapters were then ligated to the fragments, according to the manufacturer’s protocol. A smear of 

ligated fragments of 150 to 400 bp of length was selected by size and excised from an agarose gel. 

The sequencing of the cDNA libraries was performed on a flow cell using a 100-cycles paired-end 

strategy. 
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Data processing and de novo assembly of Latimeria menadoensis transcriptome 

The raw sequencing reads were trimmed by removing Illumina adapter sequences and low quality 

bases (the quality limit was set to 0.05). The resulting trimmed sequences shorter than 75 bp were 

discarded. All the reads originated from ribosomal RNA were also removed prior to the assembly 

step. 

The de novo assembly of the processed reads was performed with a combined approach, by 

integrating the outputs of two different methods, which have been specifically developed for de novo 

assembly of short reads: Trinity (Grabherr et al. 2011) and the commercially available CLC Genomic 

Workbench 4.5.1 (CLC Bio, Katrinebjerg, Denmark). At first, the two assemblies were performed 

separately using as input the same sequence set, comprising both liver and testis sequence data. 

The de novo Trinity assembly was completed using the November 2011 version of Trinity. It was run 

using the strand-specific data option which was set to RF. All other options were set to their default 

values.Only the longest transcripts per each gene were selected for further analysis. Redundant 

contigs created by Trinity were collapsed by a MIRA 3.4.0 assembly (Chevreux et al. 2004). 

The de novo CLC assembly was performed assuming a paired-end read distance comprised between 

100 and 350 bp and the penalties for mismatches, insertions, and deletions were set at 2\3\3, whereas 

the parameters for the length fraction and similarity were set to 0.5 and 0.9, respectively. The paired-

end read distance was empirically determined after several preliminary de novo assemblies followed 

by analysis of paired-end read mapping, which showed this range to be normally distributed with the 

highest frequency at 240 bp. The minimum allowed assembled contig length was set at 250 bp. Only 

contigs assembled with high confidence were kept and used for the implementation of the Trinity 

assembly whenever possible. A particular emphasis was put on protein-coding transcripts, as only 

contigs displaying an open reading frame (ORF) of a minimum of 70 codons were selected. The ORF 

prediction was carried out with the “Find Open Reading Frames” tool included in the CLC Genomic 

Workbench, considering AUG as a start codon and selecting the “open-ended sequence” option. 

Identical or highly similar contigs generated by the two different de novo assemblers were detected 

by BLASTn, setting the cutoff to an e-value of 1e-100 and to an identity of 98%. Contigs generated 

by the CLC assembler identical to those created by Trinity were discarded, unless they were extending 

the Trinity contigs by at least 200 bp. In the latter case, Trinity contigs were replaced by their CLC 

counterparts. The schematic summary of the procedure used for integrating the outputs of the two 

assemblers is shown in Figure 1. 



 
 

177 
 

Finally, to ensure the creation of a highly reliable set of assembled transcripts, contigs covered by a 

low number of reads were discarded, following a global mapping of the complete set of both liver 

and testis filtered reads (CLC Genomic Workbench, mismatch/insertion/deletion costs set at 2/3/3, 

length fraction/similarity set to 0.75/0.95). All the transcripts showing an average coverage <5 were 

considered as possible fragments of longer transcripts, not reliable enough to be included in the high 

quality coelacanth transcript collection, and were therefore discarded. Only transcripts longer than 

249 bp were kept. 

 

Assembly quality assessment 

In order to assess the quality of the contigs obtained with the filtering procedure in respect with the 

non-filtered set, the sequences were grouped into categories according to their sizes (intervals of 100 

bp) and the relative abundance of each category was plotted in a histogram. The distributions of 

transcript lengths pre- and post-filtering were compared (Figure 3). 

The sequence redundancy was estimated by the RNA-seq mapping of the reads from both tissues on 

the contigs created by the original Trinity assembly and to the filtered and non-filtered sets of contigs 

obtained with the Trinity and CLC combined approach. The RNA-seq analysis tool included in the 

CLC Genomic Workbench was used for this purpose (minimum length fraction and minimum 

similarity fraction were set at 0.75 and 0.95, respectively). The total number of reads mapped and the 

set of reads mapping non-specifically (matching on more than 1 contig) were compared, in order to 

evaluate the improvement of the assembly quality obtained with the processing steps. Sequence 

redundancy was calculated as the number of reads mapping not-specifically normalized on the total 

number of mapped reads (Figure 2). 

The total number of reads originated from mitochondrial RNA was assessed by the mapping of the 

filtered reads set to the deposited mitochondrial DNA sequence of L. menadoensis (Genebank 

accession: NC_006921.2). The mapping was performed with the CLC Genomic Workbench, using 

the same settings described above to estimate sequence redundancy. 

The approximate abundance of full length transcripts and the fragmentation in the collection were 

also estimated using the Ortholog Hit Ratio method (O'Neil et al. 2010), using the NCBI non-

redundant (nr) protein database for the determination of the hit length regions through BLASTx. A 

correction was applied to the standard method in order to remove the bias given by inter-species 

divergence, as only contigs displaying BLASTx identity higher than 90%, independently from the 

alignment length, were considered as “true orthologs and selected for the analysis (Figure 4). 
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Transcript functional annotation 

The filtered transcripts were annotated with Blast2GO (version 2.4.4, http://www.blast2go.com/), a 

tool specifically developed for the annotation of novel sequence sets (Conesa et al. 2005). Sequence 

similarity was evaluated with BLASTx (Altschul et al. 1990) against the NCBI non-redundant (nr) 

protein database using an e-value cutoff of 1e-6. 

The presence of conserved domains was researched and annotated using Interproscan (Zdobnov and 

Apweiler 2001) on the six possible translation frames of each contig. 

Contigs were functionally annotated according to the Gene Ontology (http://www.geneontology.org/) 

nomenclature. GO terms were assigned to each transcript and annotated according to the level 2 of 

the Cell Component, Molecular Function, and Biological Process categories. 

Furthermore, in order to identify by homology transposable elements and repeated sequences from a 

database of vertebrate repeats, the contigs were analysed with RepeatMasker (Smit 1996-2012). 

 

Mapping on L. chalumnae genome 

The liver and testis sets of filtered reads were mapped on the annotated L. chalumnae genome 

Ensembl release e!67 using the Genomic Workbench 4.5.1 RNA-seq tool, assuming a minimum 

length fraction of 0.75 and a minimum similarity fraction allowed of 0.95. As the sequence similarity 

between L. menadoensis and L. chalumnae was estimated to be 99.73%, the mapping parameters used 

were supposed not to significantly influence the mapping outcome. The allowed paired-end read 

distance was set between 100 and 350 bp. Based on gene annotations, it was possible to categorize 

the fragments as mapping within exons, within introns and on exon-exon or exon-intron junctions. 

Furthermore, the number of reads mapping on non-annotated genomic regions was also calculated, 

to assess the amount of sequence data accounting for the expression of non-annotated genes. 

 

RNA-seq analysis 

The liver and testis filtered reads were separately mapped to the high quality set of the assembled 

contigs to assess the expression values in the two tissues. The mapping was carried out with the 

Genomic Workbench 4.5.1 RNA-seq tool, with a minimum length fraction allowed of 0.75 and a 

minimum similarity fraction allowed of 0.95. Paired-end read distance was considered to be 

comprised between 100 and 350 bp. Only intact sequence pairs (fragments) mapping were counted 
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and expression values were calculated as FPKM (Fragments Per Kilobase per Million fragments 

mapped). 

Besides liver and testis, also RNA-seq data obtained from the African congener L. chalumnae muscle 

(Sequence Read Archive sample ID: SRS283232) were used for comparison purpose (the muscle 

transcriptome was de novo assembled with Trinity and processed to remove redundancy exactly as 

previously described for the liver and testis assembly). 

The transcriptome richness was graphically inspected by plotting the cumulative number of reads 

mapped on each of the 1,000 most expressed transcripts in each tissue, normalized on the total number 

of reads mapped (Figure 9). 

The overlap between liver and testis transcriptomes was estimated by the comparison of the sets 

comprising the 1,000 most expressed genes per tissue. The comparison was also extended to the L. 

chalumnae muscle transcript set generated in the frame of the African coelacanth genome sequencing 

project (Amemiya et al. 2012) (Figure 10). 

 

Data Access 

The raw sequence data generated by Illumina sequencing of L. menadoensis liver and testis samples 

were deposited at the NCBI Sequence Read Archive and are accessible at the study ID  SRS362269-

70. 
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Figures 

 

 

Figure 1: Graphic summary of the combined de novo assembly strategy and filtering steps applied to 

generate the final high quality transcripts set comprising 66,308 sequences. 
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Figure 2: Sequencing read usage in the assemblies and assembly redundancy estimated by RNA-seq 

mapping. Redundancy is calculated as the number of fragments mapping non-specifically on multiple 

contigs. Fragments mapping on contigs as broken read pairs were not counted. 

 

 



 
 

182 
 

 

 

Figure 3: Comparison of contig length distribution before (red) and after (blue) the filtering step 

based on average sequence coverage. The reduction of the fraction of short contigs is represented by 

the shift of distribution towards the right side of the graph. X: Length categories, organized in 100 bp 

intervals. Y: number of contigs observed per category, normalized on the total number of contigs 

assembled. 
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Figure 4: Ortholog Hit Ratio, calculated on the high quality set of liver and testis transcripts. The 

ratio of length between assembled contigs and the full length orthologs is reported on the X axis, the 

number of contigs observed in each ratio category, normalized on the total number of contigs used in 

the analysis is shown on the Y axis. 

 

 

Figure 5: Top BLAST hit species distribution, obtained by BLASTx against the NCBI non-redundant 

(nr) protein database. Only the 15 most represented species are shown. The complete number of top 

hits of other organisms is 7,572. 
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Figure 6: Gene Ontology mapping performed on the high quality transcript set. The mapping 

summary takes into account annotations at Level 2 of Cell Component, Molecular Function and 

Biological Process. 
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Figure 7: Contigs harbouring a repeat element identified by RepeatMasker. SINEs (Short 

interspersed elements); LINEs (Long interspersed elements); Class II (DNA transposons); small 

RNAs (non-coding RNAs: tRNAs, srpRNAs, snRNAs, 7SK RNAs); LTRs (Long terminal repeats); 

Others (Unknown and Satellite elements). 
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Others (0.2%)



 
 

186 
 

 

Figure 8: Scatter plot depicting the expression levels (calculated as FPKM, Fragments Per Kilobase 

per Million fragments mapped) in liver and testis. Genes whose expression levels are identical in the 

two organs are located on the bisector. For graphical representation convenience, only genes whose 

expression was lower than 1,000 FPKM in both tissues are shown (therefore only 79 genes are not 

shown in the graph). 
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Figure 9: Transcriptomic richness of L. menadoensis liver and testis and of L. chalumnae muscle, 

shown as the cumulative number of reads mapping on the 1,000 most expressed transcripts per each 

tissue, normalized on the total number of reads mapped on all transcripts (Y axis).

 

Figure 10: Venn diagram depicting the overlap between liver, testis and muscle transcriptomes 

evaluated on the 1,000 most expressed transcripts in each tissue. 
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Tables 

 

Table 1: Trimming report Liver Testis 

Number of reads before trimming 76,932,818 68,502,338 

Reads kept after trimming 64,099,318 55,326,118 

Percentage of discared reads 10.96% 13.69% 

Reads average length before trimming 97,28 96,22 

Reads average length after trimming 103,4 102,9 

Ribosomal RNA reads 16,628,740 13,924,282 

Percentage of ribosomal RNA reads 21.61% 20,33% 

Number of high quality reads 47,470,578 41,401,836 

 

 

  

Table 2: Assembly statistics 

Total number of high quality assembled reads 88,872,414 

Number of created contigs  66,308 

Number of bases in contigs 71,621,287 

Average length (bp) 1,080 

Median length (bp) 626 

N50 1,761 

N80 662 

N90 438 

Longest contig (bp) 20,815 

Number of contigs > 5 Kb 1,081 

Number of contigs > 10 Kb 80 
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Table 3: the 25 most abundant Interpro domains revealed by the Interproscan annotation of 

the high quality coelacanth transcript set. 

Interpro 

domain Description 

Number of detected 

contigs 

IPR000719 Protein kinase, catalytic domain 2041 

IPR007087 Zinc finger, C2H2 1778 

IPR002290 

Serine/threonine- / dual-specificity protein kinase, 

catalytic domain 1472 

IPR013783 Immunoglobulin-like fold 1130 

IPR015880 Zinc finger, C2H2-like 1056 

IPR020635 Tyrosine-protein kinase, catalytic domain 981 

IPR011009 Protein kinase-like domain 946 

IPR020683 Ankyrin repeat-containing domain 927 

IPR001680 WD40 repeat 845 

IPR001849 Pleckstrin homology domain 834 

IPR003961 Fibronectin, type III 822 

IPR001452 Src homology-3 domain 792 

IPR008271 Serine/threonine-protein kinase, active site 696 

IPR001841 Zinc finger, RING-type 687 

IPR007110 Immunoglobulin-like 684 

IPR017986 WD40-repeat-containing domain 675 

IPR020849 Small GTPase superfamily, Ras type 674 

IPR013087 Zinc finger C2H2-type/integrase DNA-binding domain 662 

IPR000504 RNA recognition motif domain 661 

IPR002110 Ankyrin repeat 659 
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IPR013083 Zinc finger, RING/FYVE/PHD-type 614 

IPR001478 PDZ domain 600 

IPR015943 WD40/YVTN repeat-like-containing domain 600 

IPR001650 Helicase, C-terminal 575 

IPR016024 Armadillo-type fold 564 

 

 

Table 4: RNA-seq mapping on L. chalumnae genome statistics 

Mapping on annotated genes   

Counted fragments 
21,589,809 

(48.59%) 

Uncounted fragments 
22,846,398 

(51.41%) 

Match specificity 98.1% 

Reads mapped in pairs 
43,179,618 

(48.59%) 

Reads mapped in broken pairs 
11,603,481 

(13.06%) 

Unmapped reads 
34,089,315 

(38.36%) 

Fragments mapped on exon-exon junctions 
11,147,648 

(51.63%) 

Fragments mapped on exon-intron junctions 642,299 (2.98%) 

Total fragments mapped on exons 
20,084,744 

(93,03%) 

Total fragments mapped on introns 1,505,065 (6,97%) 
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Mapping on genomic scaffolds   

Total number of reads mapping on genomic 

scaffolds 

85,682,920 

(96.41%) 

Reads mapped on non-annotated genes 
30,899,821 

(34.77%) 

Unmapped reads 3,189,494 (3.59%) 

 

Table 5: RNA-seq statistics   

Liver Liver Testis 

Counted fragments 15,949,179 13,363,810 

Percentage of counted fragments 67,20% 64.57% 

-uniquely 13,479,204 10,734,166 

-non-specifically 2,469975 2,629,644 

Uncounted fragments 7,786,110 7,337,108 

Reads mapped in pairs 31,898,358 26,727,620 

Reads mapped in broken pairs 5,187,130 5,111,602 

Percentage of mapped reads 78.12% 76.9% 

Reads not mapped 10,385,090 9,562,614 
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Table 6: List of the 20 most expressed genes in liver and testis 

Gene name 

Liver expression level 

(FPKM*) 

Testis expression level 

(FPKM) 

α-2-macroglobulin like 1 20,842.949 4.422 

Apolipoprotein AIV-like 13,160.855 0.678 

Inner centromere protein A 12,979.576 29.031 

Vitellin layer outer membrane 1 11,014.570 1.324 

Fibrinogen α chain 8,185.427 0.045 

Fibrinogen β chain 7,773.433 1.786 

Hemopexin 7,131.137 0.832 

Elongation factor 1-α 6,729.351 2,516.552 

Serine proteinase inhibitor 

Kazal type 2 5,697.525 0.439 

Ferritin H 5,000.387 613.380 

ATP synthase F0 subunit 6 4,647.673 1,680.129 

Lipocalin 4,278.524 314.124 

Apolipoprotein E 4,210.166 46.594 

Ferritin heavy polypeptide 1 3,826.063 339.725 

Riboflavin-binding protein 3,675.538 12.429 

Serum albumin 3,601.101 0.400 

α-2 macroglobulin 3,547.877 0.136 

Fibrinogen gamma polypeptide 3,482.420 13.593 

Vitronectin 3,481.011 0.111 

Serum amyloid P 3,344.509 15.287 

*Fragments Per Kilobase per Million fragments mapped. 
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Table 7: List of the 20 most expressed genes in testis and liver 

Gene name 

Testis expression level 

(FPKM*) 

Liver expression level 

(FPKM) 

Testis-specific histone 156,927.735 38.907 

Prostaglandin H2D isomerase 6,494.277 4.650 

Y-box transcription factor 4,264.142 358.797 

Sjogren syndrome nuclear 

autoantigen 1 3,898.979 0.000 

Tubulin α chain, testis-specific 3,317.532 25.942 

Elongation factor 1-α 2,516.552 6729.351 

Histone H1x-like 2,033.078 7.469 

H\ACA ribonucleoprotein complex, 

subunit 2 1,992.342 3.647 

Unknown 1,952.952 1.078 

Tubulin β 2-C 1,757.980 8.536 

ATP synthase F0 subunit 6 1,680.129 4647.673 

Sperm nuclear basic protein PL-I 1,438.904 0.573 

Centrin-1 1,346.417 4.526 

Ferritin heavy chain 1,223.551 649.598 

HSP90-β 1,213.755 507.986 

Ubiquitin 1,211.773 424.873 

Cra-B 1,151.852 0.838 

TP-53 target gene protein-like 1,139.390 0.400 

Ribosomal protein S6 1,012.800 1,690.661 

High mobility group protein B2 975.940 615.996 

 *Fragments Per Kilobase per Million fragments mapped. 
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Abstract 

 
It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, 

as this lineage of lobe finned fish was thought to have gone extinct 70 million years ago. The 

modern coelacanth looks remarkably similar to many of its ancient relatives from the Mesozoic era 

and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first 

walked on land. Here we report the 2.9 Gb genome sequence of the African coelacanth, Latimeria 

chalumnae. Through a phylogenomic analysis, including RNA-Seq data from the lungfish, we 

conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. 

Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, 

whereas other genomic features such as abundance of transposable elements and the rate of 

genomic rearrangements do not indicate fewer overall genomic changes. Analyses of changes in 

genes, and their associated regulatory elements, during the vertebrate adaptation to land, highlight 

important gene families and functions. These include genes involved in immunity, nitrogen 

excretion and the development of fins, tail, ear, eye, brain, and smell. Functional assays of 

enhancers suspected to be involved in the fin-to-limb transition and in the emergence of extra-

embryonic placental tissues demonstrate the importance of the coelacanth genome as a blueprint for 

understanding tetrapod evolution.  
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Introduction 
 

It was just before Christmas 1938 when Ms. Marjorie Courtenay-Latimer, the curator of a small 

natural history museum in East London, South Africa, discovered a large, peculiar looking fish 

among the myriad specimens delivered to her by a local fish trawler.  Unbeknownst to her, she was 

to become part of the biggest fish story in 70 million years. Latimeria chalumnae, named after its 

discoverer1, was over one meter long, bluish in coloration, and had conspicuously fleshy fins that 

resembled the limbs of terrestrial vertebrates.  This discovery turned out to be a biological sensation 

and is considered one of the greatest zoological finds of the 20th century. Latimeria is the only living 

member of an ancient group of lobe-finned fishes previously known only from fossils and believed 

to have been extinct since the Late Cretaceous period, about 70 million years ago (MYA)1.  It took 

almost 15 years before a second specimen of this elusive species was discovered in the Comoros 

Islands in the Indian Ocean, and only a total of 309 individuals, that are known to science, have 

been found in the past 75 years (Rik Nulens, personal communication)2.  The recent discovery in 

1997 of a second coelacanth species in Indonesia, L. menadoensis, was equally surprising, as it had 

been assumed that living coelacanths were confined to small populations off the East African 

coast34,5.  Fascination with these fish is partly due to their prehistoric appearance – remarkably, their 

morphology is very similar to that of fossils that date back at least 300 million years, leading to the 

supposition that this lineage is especially slow-evolving among vertebrates1,6. Latimeria has also 

been of particular interest to evolutionary biologists due to its hotly debated relationship to our last 

fish ancestor – the fish that first crawled up on land7. In the past 15 years, targeted sequencing 

efforts have yielded the sequences of the coelacanth mitochondrial genomes8, HOX clusters9, and 

certain gene families such as protocadherins10 and neuropeptides11, but still, coelacanth research has 

felt the lack of large-scale sequencing data.  

Here we describe the sequencing and analysis of the genome of L. chalumnae, the African 

coelacanth. Findings include a definitive placement of both the coelacanth and the lungfish in the 

vertebrate phylogeny, a conclusive demonstration that the gene content of the coelacanth is indeed 

slowly evolving, and a delineation of genes and regulatory elements associated with the vertebrate 

land transition.  
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Genome Assembly and Annotation  

The African coelacanth genome was sequenced and assembled (LatCha1.0) using DNA from a 

Latimeria chalumnae specimen originating from the Comoros Islands (Supplementary Figure 1). It 

was sequenced by Illumina sequencing technology and assembled via ALLPATHS-LG12. The L. 

chalumnae genome has previously been reported to have a karyotype of 48 chromosomes13. The 

draft assembly is 2.86 Gb in size and is composed of 2.18 Gb of sequence plus gaps between 

contigs.  The coelacanth genome assembly has a contig N50 size of 12.7 kb and a scaffold N50 size 

of 924 kb and quality metrics comparable to other Illumina genomes (See Methods and 

Supplementary Note 1, Supplementary Tables 1,2). 

The genome assembly was annotated separately by both the Ensembl gene annotation pipeline 

(Ensembl release 66, February 2012) and by MAKER14. The Ensembl gene annotation pipeline 

created gene models using Uniprot protein alignments, limited coelacanth cDNA data, RNA-seq 

data generated from L. chalumnae muscle (18 Gb of paired end reads were assembled by Trinity15, 

Supplementary Figure 2) as well as orthology with other vertebrates.  This pipeline produced 

19,033 protein coding genes containing 21,817 transcripts.  The MAKER pipeline used the L. 

chalumnae Ensembl gene set, Uniprot protein alignments, and L. chalumnae (muscle) and L. 

menadoensis  (liver and testis)16 RNA-seq to create gene models, yielding 29,237 protein coding 

gene annotations.  As Ensembl’s gene predictions are more conservative and MAKER’s are more 

generous, we believe that the actual number of genes lies in-between these two estimates. In 

addition, 2,894 short non-coding RNAs, 1,214 lncRNAs and more than 24,000 conserved RNA 

secondary structures were identified (Supplementary Note 2, Supplementary Tables 3-4, Supp Data 

1-3, Supplementary Figure 3).  336 genes were inferred to have undergone specific duplications in 

the coelacanth lineage (Supplementary Note 3, Supplementary Tables 5-6, Supp Data 4). 

 

Determining the closest living fish relative of the tetrapod ancestor 

The question of which living fish is the closest relative to ‘the fish that first crawled up on land’ has 

also long captured our imagination: between comparative morphologists and paleontologists the 

odds have been placed on either the lungfish or the coelacanth17,18. Analyses of small amounts of 

sequence data for this important phylogenetic question (ranging from 1 to 43 genes) has tended to 

favor the lungfishes as the extant sister group to the land vertebrates19,20, however, the alternative 

hypothesis that lungfish and coelacanth are equally closely related to the tetrapods could not be 

rejected with previous data sets21.  
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To seek a comprehensive answer we generated RNA-seq data from three samples (brain, 

gonad/kidney, gut/liver) from the West African lungfish, Protopterus annectens, and compared it to 

gene sets from 21 strategically chosen jawed vertebrate species.  To perform a reliable analysis we 

selected 251 genes where 1-1 orthology was clear and used CAT-GTR, a complex site-

heterogeneous model of sequence evolution known to reduce tree reconstruction artefacts22,23 (see 

Methods). The resulting phylogeny (Figure 1, PP=1.0 for the lungfish-tetrapod node) is fully 

resolved except for the relative positions of armadillo and elephant. It corroborates known 

vertebrate phylogenetic relationships and strongly supports the conclusion that tetrapods are more 

closely related to lungfish than to the coelacanth (Supplementary Note 4, Supplementary Figure 4). 

 

How slowly evolving is the coelacanth? 

The morphological resemblance of the modern coelacanth to its fossil ancestors has resulted in it 

being nicknamed ‘the living fossil’1,24. This begs the interesting question: Is the genome of the 

coelacanth as slowly evolving as its outward appearance? Earlier work found that a few gene 

families, such as Hox and protocadherins, showed comparatively slower protein-coding evolution in 

coelacanth than in other vertebrate lineages9,10. However, these genes may not be representative as 

the Hox genes are known to be highly conserved.  

To address this question, we examined several types of genomic changes in the coelacanth 

compared to other vertebrates. Protein-coding gene evolution was examined using the 251 

concatenated protein phylogenomics dataset (Figure 1). Pair-wise distances between taxa were 

calculated from the branch lengths of the tree using the Two-Cluster test proposed by Takezaki et 

al.25 to test for equality of average substitution rates. Then, for each of the following species and 

species clusters (coelacanth, lungfish, chicken and mammals), we ascertained their respective mean 

distance to an outgroup consisting of three cartilaginous fishes (elephant shark, little skate and 

spotted catshark). Finally, we tested whether there was any significant difference in distance to the 

outgroup of cartilaginous fish for every pair of species and species clusters, using a Z-statistic. 

When these distances to the outgroup of cartilaginous fish were compared, we found that the 

coelacanth proteins tested were significantly more slowly evolving (0.890 substitutions/site) than 

the lungfish (1.05 substitutions/site), chicken (1.09 substitutions/site) and mammalian (1.21 

substitutions/site) orthologues (Supp Data 5), in all cases with p-values <10-6.  And as can be seen 

in Figure 1, the substitution rate in coelacanth is approximately half that in tetrapods since the two 

lineages diverged.  In addition, lungfish is also significantly more slowly evolving than the chicken 

and mammals, with p-values <0.0001. A Tajima relative rate test26 confirmed the coelacanth’s 
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significantly slower rate of protein evolution (Supp Data 6). As can be seen in Figure 1, the 

substitution rate observed on the coelacanth lineage is approximately half that of tetrapods. Because 

branch lengths may be underestimated in regions of a tree that have few species, here potentially 

confounding the analysis of the coelacanth branch, we examined the node-density effect27,28 in each 

tree of the Bayesian posterior distribution but found no evidence for this artifact. 

Secondly, we examined the abundance of transposable elements (TEs) in the coelacanth genome. 

Theoretically, TEs might contribute most significantly to the evolution of a species by generating 

templates for exaptation to form novel regulatory elements and exons, and by acting as substrates 

for genomic rearrangement29. We found that the coelacanth genome contains a wide variety of TE 

superfamilies and has a relatively high TE content (25%); this number is likely an underestimate 

due to the draft nature of the assembly (Supplementary Note 5, Supplementary Tables 7-10). 

Analysis of RNA-seq data and of the divergence of individual TE copies from consensus sequences 

show that 14 coelacanth TE super-families are currently active (Supplementary Note 6, 

Supplementary Table 10, Supplementary Figure 5). We conclude that the current coelacanth 

genome shows both an abundance and activity of TEs similar to many other genomes. This is in 

contrast to the slow protein evolution observed.  

Analyses of chromosomal breakpoints in coelacanth genome and tetrapod genomes reveal extensive 

conservation of synteny and indicate that large-scale rearrangements have occurred at a generally 

low rate in the coelacanth lineage.  (The coelacanth assembly provides the sensitivity necessary to 

detect fusions and other intrachromosomal rearrangements in the coelacanth lineage, and fissions in 

the other tetrapod lineages, but is less sensitive to other types of rearrangement (Supplementary 

Methods). Analyses of these rearrangement classes detected several previously published fission 

events that are known to have occurred in tetrapod lineages and at least 31 interchromosomal 

rearrangements that occurred in the coelacanth lineage or the early tetrapod lineage (0.063 

fusions/million years), compared to 20 events (0.054 fusions/million years) in the salamander 

lineage and 21 events (0.057 fusions/million years) in the Xenopus lineage30 (Supplementary Note 

7, Supplementary Figure 6). Overall, these analyses indicate that karyotypic evolution in the 

coelacanth lineage has occurred at a relatively slow rate, similar to that of non-mammalian 

tetrapods31. 

In a separate analysis we also examined the evolutionary divergence between the two species of 

coelacanth, L. chalumnae and L. menadoensis, found in African and Indonesian waters respectively. 

Previous analysis of mitochondrial DNA showed a sequence identity of 96%, but estimated 

divergence times range widely from 6 to 40 million years32,33. When we compared the liver and 
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testis transcriptomes of L. menadoensis34 to the L. chalumnae genome, we found an identity of 

99.73% (Supplementary Note 8, Supplementary Figure 7), whereas alignments between 20 

sequenced L. menadoensis BACs and the L. chalumnae genome showed an identity of 98.7% 

(Supplementary Table 11, Supplementary Figure 8). Both the genic and genomic divergence rates 

are similar to those seen between the human and chimpanzee genomes (99.5% and 98.8% 

respectively, divergence time 6-8 million years ago)35, while the rates of molecular evolution in 

Latimeria are likely affected by multiple factors including the slower substitution rate seen in 

coelacanth, thereby suggesting a slightly larger divergence time for the two coelacanth species.  

 

Vertebrate adaptation to land: clues from the coelacanth genome 

As the sequenced genome closest to our most recent aquatic ancestor, the coelacanth provides a 

unique opportunity to identify genomic changes that were associated with the successful adaptation 

of vertebrates to an important new environment – land. However, given the draft status of the 

coelacanth genome assembly, it is most informative for detecting gene loss events associated with 

this transition, though both gene gain and loss in the tetrapod lineage are equally interesting. 

Therefore, here we examine which genes were lost and which conserved non-coding elements 

(CNEs) were gained in the tetrapod lineage, and discuss a specific adaptation: the emergence of the 

autopod (hand and wrist) from the fish fin.  

Over the 400 MY interval that vertebrates have lived on land, genes that are unnecessary for 

existence in their new environment would have been eliminated. To understand this aspect of the 

water-to-land transition, we surveyed the Latimeria genome annotations to identify genes that were 

present in the last common ancestor of all bony fish (including coelacanth) but that are missing 

from tetrapod genomes. More than 50 such genes including components of the Fgf signaling, TGF-

beta/Bmp signaling, and Wnt signaling pathways, as well as many transcription factor genes, were 

determined to be lost (Supp Data 7, Supplementary Figure 9). Previous studies of genes lost in this 

transition could only compare teleost fish to tetrapods, meaning that differences in gene content 

could have been due to loss in the tetrapod or in the lobe-finned fish lineages. We were able to 

confirm that four genes previously shown to be absent in tetrapods (Actinodin genes36, Fgf2437, 

Asip238), were indeed present and intact in Latimeria, supporting their loss in the tetrapod lineage. 

However, for 85% of the lost genes at least one other vertebrate paralog has been retained in 

tetrapods, potentially compensating for the gene losses. 
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We functionally annotated the >50 genes lost in tetrapods using zebrafish data (gene expression, 

knock-downs and knock-outs). Many genes were classified in important developmental categories: 

Fin development (13 genes), otolith and ear development (8 genes), kidney development (7 genes), 

trunk/somite/tail development (11 genes), eye (13 genes), and brain development (23 genes). This 

implies that critical characters in the morphological transition from water to land (fin-to-limb 

transition, remodelling of the ear, etc.) are reflected in the loss of specific genes along the 

phylogenetic branch leading to tetrapods. However, homeobox genes, which are responsible for the 

development of an organism’s basic body plan, show only slight differences between Latimeria, 

ray-finned fish and tetrapods; it would appear that the protein-coding portion of this gene family, 

along with several others (Supplementary Note 9, Supplementary Tables 12-16, Supplementary 

Figure 10), have remained largely conserved during the vertebrate land transition. Although some 

of the lost genes are found in close proximity with each other in the genomes of coelacanth and 

zebrafish, most of the genes lost in tetrapods appear to have been lost individually rather than in 

large contiguous blocks (Supplementary Figure 11).  

As vertebrates transitioned to a new land environment, changes occurred not only in gene content, 

but also in the regulation of existing genes.  Regulatory changes have been shown to predominate in 

parallel adaptation in other vertebrates, such as sticklebacks39 and are widely implicated as major 

facilitators of evolutionary change in a broader context. Conserved non-coding elements (CNEs) are 

strong candidates for gene regulatory elements and can act as promoters, enhancers, repressors and 

insulators40,41. They can be computationally predicted by comparing related genome sequences. To 

identify CNEs that originated in the most recent common ancestor of tetrapods, we predicted CNEs 

that evolved in various bony vertebrate (i.e., ray-finned fish, coelacanth and tetrapod) lineages and 

assigned them to their likely branch points of origin. To detect CNEs, conserved sequences in the 

human genome were identified using MULTIZ alignments of bony vertebrate genomes, and then 

known protein-coding sequences, UTRs and known RNA genes were excluded. Our analysis 

identified 44,200 ancestral tetrapod CNEs that originated after the divergence of the coelacanth 

lineage. They represent 6% of CNEs that are under constraint in the bony vertebrate lineage.  We 

compared the ancestral tetrapod CNEs to mouse embryo ChIP-seq data obtained using antibodies 

against p300, a transcriptional co-activator. This resulted in a 7-fold enrichment in the p300 binding 

sites for our candidate CNEs and confirmed that these CNEs are indeed enriched for gene 

regulatory elements. 

Each tetrapod CNE was assigned to the gene it was physically closest to in the human genome and 

GO category enrichment was calculated for those genes. The most enriched categories were 

involved with smell perception (sensory perception of smell, detection of chemical stimulus, 
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olfactory receptor activity etc.). This is consistent with the notable expansion of olfactory receptor 

family genes in tetrapods compared with teleosts, and may reflect the necessity of a more tightly 

regulated, larger and more diverse repertoire of olfactory receptors for detecting airborne odorants 

as part of the terrestrial lifestyle. Other significant categories include morphogenesis (i. e., radial 

pattern formation, hind limb morphogenesis, kidney morphogenesis) and cell differentiation 

(including endothelial cell fate commitment and epithelial cell fate commitment), which is 

consistent with the body plan changes required for land transition, as well as immunoglobulin VDJ 

recombination, which reflects the presumed response differences required to address the novel 

pathogens that vertebrates would encounter on land (Supplementary Note  10, Supplementary 

Tables 17-24).  

A major innovation of tetrapods is the evolution of limbs characterised by digits. The limb skeleton 

consists of a stylopod (humerus or femur), the zeugopod (radius/ulna and tibia/fibula), and an autopod 

(wrist/ankle and digits). There are two major hypotheses about the origins of the autopod – either it 

was a novel feature of tetrapods, or it has antecedents in the fins of fish42,43 (Supplementary Note 11, 

Supplementary Figure 12). We examine here the Hox regulation of limb development in ray-finned 

fish, coelacanth, and tetrapods to address these hypotheses.  

In mouse, late phase digit enhancers are located in a gene desert located proximal to the HoxD 

cluster44. Here we provide an alignment of the HoxD centromeric gene desert of coelacanth with 

tetrapods and ray-finned fishes (Figure 2a). Among the six cis-regulatory sequences previously 

identified in this gene desert44, three sequences show sequence conservation restricted to tetrapods 

(Supplementary Figure 13). However, one regulatory sequence (Island 1) is shared between 

tetrapods and coelacanth, but not with ray-finned fish (Figure 2bc). When tested in a transient 

transgenic assay in mouse, the coelacanth sequence of Island 1 was able to drive reporter expression 

in a limb specific pattern (Figure 2d), making it likely that Island 1 was a lobe-fin developmental 

enhancer in the fish ancestor of tetrapods, that was then coopted into the autopod enhancer of 

modern tetrapods. In this case, the autopod developmental regulation was derived from an ancestral 

lobe-finned fish regulatory element. Further functional studies of Island 1 and other potential 

coelacanth cis-regulatory elements in this gene desert may provide insight into the evolution of 

HoxD regulation in appendages and the evolution of digits in tetrapods. 
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Evidence for selection in the urea cycle during the evolution of tetrapods 

Changes in the urea cycle constitute an illuminating example of the adaptations associated with 

transition to land. Excretion of nitrogen is a major physiological challenge for terrestrial vertebrates. 

In aquatic environments, the primary nitrogenous waste product is ammonia, which is readily 

diluted by surrounding water before it reaches toxic levels, but on land, less toxic substances such 

as urea or uric acid must be produced instead (Supplementary Figure 14). The widespread and 

almost exclusive occurrence of urea excretion in amphibians, some turtles and mammals has led to 

the hypothesis that the use of urea as the main nitrogenous waste product was a key innovation in 

the vertebrate transition from water to land45. 

With the availability of gene sequences from coelacanth and lungfish, it becomes possible to test 

this hypothesis. We used a branch-site model in the HYPHY package46, which estimates dN/dS (ω) 

values among different branches and among different sites (codons) across a multiple species 

sequence alignment. For the rate-limiting enzyme of the hepatic urea cycle, carbamoyl phosphate 

synthase I (CPS1), only one branch of the tree shows a strong signature of selection (p = 0.02), 

namely the branch leading to tetrapods and the branch leading to amniotes (Figure 3); no other 

enzymes in this cycle showed a signature of selection. Conversely, mitochondrial arginase  (ARG2), 

which produces extrahepatic urea as a byproduct of arginine metabolism but which is not involved 

in the production of urea for nitrogenous waste disposal, did not show any evidence of selection in 

vertebrates (Supplementary Figure 15). This leads us to conclude that adaptive evolution occurred 

in the hepatic urea cycle during the vertebrate land transition. In addition, it is interesting to note 

that of the five amino acids of CPS1 that changed between coelacanth and tetrapods, three are in 

important domains (ATP-A site, ATP-B site, subunit interaction domain) and a fourth is known to 

cause a malfunctioning enzyme in human patients if mutated47. 

 

The coelacanth and placental evolution 

The adaptation to a terrestrial lifestyle necessitated major changes in the physiological milieu of the 

developing embryo and fetus, resulting in the evolution and specialization of extraembryonic 

membranes of the amniote mammals48. This acquisition is considered to be a major evolutionary 

innovation. The placenta, in particular, is a complex structure that develops from fusion of the 

allantois and chorion and is critical for providing gas and nutrient exchange between mother and 

fetus throughout the extended gestation of eutherian mammals, and is also a major site of 

hematopoiesis49.        
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We have identified a region of the coelacanth HOX-A cluster that may have been involved in the 

evolution of extraembryonic structures in tetrapods, including the eutherian placenta.  Global 

alignment of the coelacanth Hoxa14-a13 region with the homologous regions of the horn shark, 

chicken, human and mouse yielded a potential conserved noncoding element (CNE) just upstream 

of the coelacanth Hoxa14 gene (Supplementary Figure 16a, arrow).  This conserved stretch is not 

found in teleost fishes but is highly conserved among horn shark, chicken, human and mouse 

despite the fact that the latter three have no Hoxa14 orthologues, whereas the horn shark Hoxa14 

gene has become a pseudogene. This conserved region, HA14E1, corresponds to the proximal 

promoter-enhancer region of the Hoxa14 gene in Latimeria. HA14E1 is >99% identical between 

mouse and human and all other sequenced mammals, and would thus be considered an 

ultraconserved element50. The high level of conservation suggests that this element, which already 

possessed promoter activity, may have been coopted for other functions despite the loss of the 

Hoxa14 gene in amniotes. The genomic landscape of the HA14E1 region confirms its conservation 

and inferred transcriptional activity (Supplementary Figure 16bc). Surprisingly, expression of 

human HA14E1 in a mouse transient transgenic assay did not give notable expression in the embryo 

proper at day 11.551, which was unexpected since its location would predict that it would regulate 

axial structures caudally52.  To validate this result, the chicken HA14E1 was used in similar 

enhancer expression assays in chick embryos. This experiment confirmed the lack of activity in the 

AP-axis; however, stunning expression was observed in the regions peripheral to the embryo 

proper, i.e., in the embryonically-derived area vasculosa of the chick embryo (Figure 4a).  This 

extraembryonic region is where blood islands emerge that contribute to the developing vasculature 

of the chick embryo53. Examination of a Latimeria BAC Hoxa14-reporter transgene in mouse 

embryos showed that the Hoxa14 gene is specifically expressed in a subset of cells in an 

extraembryonic region at E8.5 (Figure 4b).  

These findings suggest that the HA14E1 region may have been evolutionarily recruited to 

coordinate regulation of posterior HoxA genes (Hoxa13, Hoxa11 and Hoxa10), which are known to 

be expressed in the mouse allantois and are critical for early formation of the mammalian 

placenta54. Although Latimeria does not possess a placenta, it is a livebearer and has very large, 

vascularised eggs, but the relationship of Hoxa14, the HA14E1 enhancer, and blood island 

formation in the coelacanth remains unknown. Once again, the coelacanth genome has provided us 

a window into the formation of evolutionary innovations in the tetrapods. 
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Coelacanth lacks IgM  

Immunoglobulin M (IgM), a class of antibodies, has been reported in all vertebrate species thus far 

characterised and is considered to be indispensable for adaptive immunity55. Interestingly, IgM 

genes cannot be found in coelacanth despite an exhaustive search of the coelacanth sequence data, 

and even though all other major components of the immune system are present (Supplementary 

Note 12, Supplementary Figure 17). Instead, we found two IgW genes (Supplementary Figures 18-

20), immunoglobulin genes only found in lungfish and cartilaginous fish and which are believed to 

have originated in the ancestor of jawed vertebrates56 and to have been subsequently lost in teleosts 

and tetrapods. IgM was similarly absent from the Latimeria RNA-seq data, although both IgW 

genes were found as transcripts. To further characterise the apparent absence of IgM, we 

exhaustively screened large genomic L. menadoensis libraries using numerous strategies and probes 

and also performed PCR with degenerate primers that should universally amplify IgM sequences.  

The lack of IgM in Latimeria raises questions as to how coelacanth B cells respond to microbial 

pathogens and whether the IgW molecules can serve a compensatory function, even though there is 

no indication that the coelacanth IgW was derived from vertebrate IgM genes. 

 

Discussion 
Ever since its discovery, the coelacanth has been referred to as a ‘living fossil’ due to its 

morphological similarities to its fossil ancestors1. However, questions have remained as to whether 

it truly is slowly evolving, as morphological stasis does not necessarily imply genomic stasis. In this 

study, we determined that L. chalumnae’s protein-coding genes are significantly more slowly 

evolving than those of other sequenced vertebrates. Nevertheless, its genome as a whole does not 

show evidence of unusually low rates of evolution – as evidenced by our analysis of TEs and of 

large-scale genomic rearrangement. The L. chalumnae genome has not shown a lower overall rate 

of evolution despite its decreased substitution rate in protein-coding genes. The reason for this 

lower substitution rate is still unknown, although a static habitat and a lack of predation over 

evolutionary timescales could be contributing factors to a lower need for adaptation.  

A closer examination of gene families that show either unusually high or low levels of directional 

selection indicative of adaptation in the coelacanth, could tell us a great deal about which selective 

pressures, or lack thereof, shaped this evolutionary relict (Supplementary Note 13, Supplementary 

Figure 21).  
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The vertebrate land transition is one of the most important steps in our evolutionary history. The 

analysis presented here shows conclusively that the closest living fish to the tetrapod ancestor is the 

lungfish, not the coelacanth. However, the coelacanth is critical for our understanding of this 

transition, as the lungfish have intractable genome sizes (estimated at 50-100 Gb)57. We have 

already learned a great deal about our adaptation to land through coelacanth whole genome 

analysis, and we have shown the promise of focused analysis of specific gene families involved in 

this process. Still, further study of the changes in limb morphology and locomotion, breathing, renal 

physiology, respiration and immunity between tetrapods and the coelacanth will undoubtedly yield 

important insights as to how a complex organism like a vertebrate can so drastically change its way 

of life.  

 

Methods: Appear in the online supplement. 
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Figure  

 

 

 

Figure 1. A phylogenetic tree of a broad selection of jawed vertebrates shows that lungfish, not 

coelacanth, is the closest relative of tetrapods. Multiple sequence alignments of 251 genes present as 1-to-

1 orthologs in 22 vertebrates and with a full sequence coverage for both lungfish and coelacanth were used to 

generate a concatenated matrix of 100,583 unambiguously aligned amino acid positions. The Bayesian tree 

was inferred using PhyloBayes under the CAT+GTR+ 4 model with confidence estimates derived from 100 

jackknife tests (1.0 posterior probability) 58. The tree was rooted on cartilaginous fish, which are considered 

to be the outgroup to bony fish and tetrapods. It shows both that lungfish is more closely related to tetrapods 

than coelacanth and that the protein sequence of coelacanth is slowly evolving. 
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Figure 2. Alignment of the HoxD locus and upstream gene desert identifies conserved limb enhancers. 

(a) Organization of the mouse HoxD locus and centromeric gene desert, flanked by the ATF2 and MTX2 

genes. Limb regulatory sequences (I1, I2, I3, I4, CsB and CsC) are noted. Using the mouse locus as a 

reference, corresponding sequences from human, chicken, frog, coelacanth, pufferfish, medaka, stickleback, 

zebrafish and elephant shark were aligned. Alignment (mVISTA program, homology threshold 70%) shows 

regions of homology between tetrapod, coelacanth and ray-finned fishes. (b) Alignment of vertebrate cis-

regulatory elements I1, I2, I3, I4, CsB and CsC. (c) Expression patterns driven by each regulatory element 

assayed via mouse transgenesis. (d) Expression patterns of coelacanth Island I in a transgenic mouse. Limb 

buds indicated by arrowheads in the first two panels. The third panel shows a close-up of a limb bud. 
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Figure 3. Phylogeny of CPS1 coding sequences used to determine positive selection within the urea 

cycle. Branch lengths are scaled to the expected number of substitutions/nucleotide and branch color 

indicates the strength of selection (dN/dS or ω) with red corresponding to positive or diversifying selection 

(ω > 5), blue to purifying selection (ω = 0), and yellow to neutral evolution (ω = 1). Thick branches indicate 

statistical support for evolution under episodic diversifying selection. The proportion of each color represents 

the fraction of the sequence undergoing the corresponding class of selection (shown as percentages for 

tetrapods and amniotes). 
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Figure 4. 

Transgenic analysis implicates involvement of Hox CNE HA14E1 in extraembryonic activities in the 

chick and mouse.  (A) Chicken HA14E1 drives reporter expression in blood islands in chick embryos. A 

construct containing chicken HA14E1 upstream of a minimal (TK) promoter driving eGFP was linearized 

and injected and electroporated in HH4 stage chick embryos together with a nuclear mCherry construct. GFP 

expression was analyzed at stage ~ HH11.  The green aggregations and punctate staining are observed in the 

blood islands and developing vasculature.  (B) Expression of Latimeria Hoxa14 reporter transgene in the 

developing placental labyrinth of a mouse embryo.  A field of cells from the labyrinth region of an E8.5 

embryo from a BAC transgenic line containing coelacanth Hoxa14-Hoxa9 59 in which the Hoxa14 gene had 

been supplanted with the gene for red fluorescence protein (RFP).  Immunohistochemistry was used to detect 

RFP (brown staining in a small number of cells).     
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Abstract  
 

Genes involved in sex determination and differentiation have been found in mouse, human, chicken, 

reptiles, amphibians and teleost fish. However, the conservation of their functions is yet largely 

unexplored and is not clear if there is a common set of genes to all vertebrates. The coelacanths as 

representatives of basal Sarcopterygians could help to delineate an ancestral inventory of genes 

involved in this important developmental process and should also give some first insights about 

components of the sex determination cascade and testes differentiation genes in these unique 

organisms, representing “living fossils”. 

In this study we have identified and characterized 33 genes implicated in sex determination and 

differentiation from the L. chalumnae genome and from liver and testis transcriptomes of Latimeria 

menadoensis, assessing their expression levels in these tissues. 

Among the analyzed genes higher interest is covered by GSDF, a gene so far known only from teleosts 

and here for the first time characterized in the sarcopterygian lineage; FGF9, a missing gene in 

teleosts; and DMRT1 a gene whose expression has recently been linked to sexual identity maintenance 

in adult gonads. 

The gene repertoire and testis specific expression signature of the coelacanth indicate more conserved 

features with modern fishes and point to unexpected changes in the gene regulatory network 

governing sexual development. 
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Introduction  
 

In sexual development two processes can be distinguished: sex determination and sex differentiation. 

The first is defined as the process that determines whether the primordium of the bipotential gonad 

will develop into testis or ovary and thus decides over the sexual fate, while the latter takes place 

once the sex determination decision has been made and comprises the actual development of testes 

or ovaries from the undifferentiated gonad [1]. Sex determination is considered to be either a default 

pathway or a suppression of this default development and initiation of the opposite sexual 

development, while sex differentiation apparently results from the antagonistic relationship among 

genes influencing testis or ovary development [2,3]. Recently, it emerged that sex specific 

mechanisms, instrumental to maintain the male or female identity of the testis and ovary, operate even 

in the adult gonads of mammals [4-6]. 

In addition to a male- and female-specific development of the gonads, other organs can assume 

sometimes very elaborate differences as well. In vertebrates these secondary sex characters are 

generally believed to be exclusively instructed by the developing testes or ovary through sex steroids 

(with possible exceptions in birds, [7]), whereas in invertebrates it appears as a common rule that 

each somatic cell has its inherent sexual identity [8]. 

While in mammals sex steroids play a later role in development, in fish, amphibians, reptiles, birds, 

and marsupials early sex differentiation is influenced by sex steroids and the proteins involved in 

their metabolism and binding [9-20]. 

In vertebrates sex can be determined mainly by two different mechanisms: either sexual development 

is determined by the genetic constitution of the individuum or by the environment e.g. due to the 

influence of temperature during development, nutrients or pH [21-23]. 

Many studies on sexual development of mammals have revealed that the consecutive processes of 

sex determination, gonad differentiation and identity maintenance are brought about by an elaborate 

network of transcription factor interactions and signalling molecules; a master regulator at the top 

then triggers the network towards male or female [24]. In most mammals, the Y-chromosomal SRY 

gene is the male determining gene, but this gene has not been detected outside the placental mammals 

[25]. In chicken (and possibly all birds), Dmrt1, and its homologs, dmrt1bY (or DMY) in the Japanese 

ricefish (medaka, Oryzias latipes) [26, 27] and DM-W in the frog Xenopus laevis [28] are the master 

regulators of sexual development, while Gonadal soma derived factor (GSDF) [29], Anti-Müllerian 

hormone (AMH) [30] the Anti-Müllerian hormone receptor (AMHR2) [31] or other genes have this 

function in several other fish species. 
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In contrast to this diversity of genetic sex determinants at the top, genome-wide searches and 

homology cloning in teleost fishes, amphibians, reptiles and birds revealed that the “downstream” 

components of the network are present and -based on spot-check expression studies- appear to have 

a conserved function. This led to the paradigm that for sex determination during evolution “masters 

change, slaves remain” [32-34]. It is, however, totally unclear how far back in evolutionary history 

this holds true; in particular when and how the vertebrate sex regulatory network evolved and whether 

the genes were repeatedly and independently recruited to this process or represent a conserved ancient 

mechanism. The unique opportunity to obtain high quality RNA for transcriptome analysis of testis 

and liver tissues from the Indonesian coelacanth Latimeria menadoensis, in combination with the 

availability of the whole genome sequence of the African coelacanth L. chalumnae, allows to get 

insights from an organism that is considered a nearest living relative of tetrapods. 

The genes that emerged from many studies as the key components of the regulatory network of sexual 

development can be functionally grouped into (1) genes required for the development of the 

bipotential gonad (Wilm’s tumor suppressor-1 (WT1), Steroidogenic factor-1 (SF-1), and GATA-

binding protein 4 (GATA-4)); (2) genes involved in male sex determination (Double sex and mab-3 

related transcription factor 1 (DMRT1), SRY-related box 9 (SOX9), Dosage sensitive sex-reversal-

adrenal hypoplasia congenital-critical region of X chromosome, gene 1 (DAX1), Fibroblast growth 

factor 9 (FGF9), Desert hedgehog (DHH)); (3) genes involved in male sex differentiation (Anti-

Müllerian hormone (AMH), AMH-receptor2 (AMHR2), Androgen receptor (AR)); (4) genes involved 

in female sex determination (Wingless-type MMTV integration site family member 4 (WNT4), R-

spondin-1 (RSPO-1), Catenin β-1 (CTNNB1), Forkhead box transcription factor L2 (FOXL2), 

Follistatin (FST)); (5) genes involved in female sex differentiation (Aromatase (also named Cyp19A1 

or P450arom), Estrogen receptor α (ERα), Estrogen receptor β (ERβ)) (Figure 1). 

The above mentioned genes and eleven others (DMRT3, DMRT6, GSDF, Platelet-derived growth 

factors (PDGF) α and β and their receptors (PDGFRα, PDGFRβ), 11β-hydroxylase (CYP11B), and 

5α-reductase 1, 2, and 3 (SRD5A1, SRD5A2, SRD5A3), where evidence of involvement in sex 

development in a specific group of organisms has been obtained [35-47], were searched in the L. 

chalumnae genome and in the transcriptome of L. menadoensis. Further on their expression levels 

were evaluated in the liver and testis of the adult specimen of the Indonesian coelacanth. 

We find that the repertoire and expression profiles of the sex determination and sex differentiation 

genes in coelacanths are much more similar to that of the modern fish rather than to tetrapods, or even 

representing an intermediate situation, suggesting that unexpectedly also for gonad development 

major evolutionary novelties that accompanied the transition to terrestrial life were required. 
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Methods  
 

The genome of the African coelacanth L. chalumnae has recently been sequenced (project accession 

PRJNA56111) [48] and is available as WGS scaffolds at http://www.ncbi.nlm.nih.gov and 

http://www.ensembl.org. The transcriptome of its Indonesian congener, L. menadoensis, is described 

in the work of Pallavicini and colleagues [49] and in Canapa and colleagues [50]. 

Briefly, a good quality RNA sample was used to generate a cDNA library for transcriptome 

sequencing on an Illumina Genome Analyzer II platform. After the filtering of high-quality reads, 

removal of reads containing primer/adaptor sequences, and trimming of read length, the assembly of 

the Illumina 100 bp paired-end reads was performed on a 4 cores server (72GB RAM). The 

commercially available CLC Genomics workbench (version 3.7.1, CLC bio, Aarhus, Denmark) and 

Trinity [51] were used for the de novo assembly of short reads. Contigs confirmed and improved by 

both methods were pooled in a high quality set. 

Sampling location, CITES and other information on the Indonesian coelacanth specimen analysed 

are reported in Makapedua et al. [52]. 

To identify the coelacanth homologs of genes involved in sexual development, the corresponding 

Xenopus tropicalis, Gallus gallus, Danio rerio and Homo sapiens sequences were BLASTed on the 

L. menadoensis transcript dataset. The identity of each retrieved putative transcript was confirmed 

through NCBI BLAST by homology. BLASTx analyses allowed to define the completeness of the 

transcripts (Coding sequences, CDS). 

The Indonesian coelacanth sequences were then BLASTed against the WGS dataset of L. chalumnae, 

in order to define the genomic scaffolds of the African coelacanth containing those genes. Divergence 

across the two species was calculated with PAUP on the matching sequences as p-distance percentage 

and Ka/Ks ratio was calculated with KaKs_calculator [53] using the Nei and Gojobori method [54]. 

The synonymous distance was calculated by MEGA5 [55] applying the uncorrected modified Nei 

and Gojobori method [56] on the concatenated coding sequences aligned with ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/; [57]). 

Predicted transcripts of L. chalumnae were collected from ENSEMBL 

(http://www.ensembl.org/Latimeria_chalumnae/Info/Index). GSDF CDS was manually obtained 

from the alignment of L. menadoensis transcripts to the African coelacanth genome; FGF9, not 

present in the transcriptome and not annotated in ENSEMBL, was manually obtained by BLASTing 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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annotated amino acidic sequences of other species to the African coelacanth WGS. The two putative 

L. chalumnae transcripts were confirmed by homology through NCBI BLAST. 

L. chalumnae and L. menadoensis transcripts were compared by ClustalW2 alignment and a graphical 

representation of each sequence pair is supplied in Figure S1A and Figure S1B. 

Gene Ontology (GO) terms concerning sex determination and sex differentiation (GO0007530 and 

GO0007548, respectively) were selected and L. menadoensis orthologs to D. rerio, X. tropicalis, G. 

gallus, Canis familiaris, Bos taurus, Sus scrofa, Mus musculus, Rattus norvegicus and H. sapiens 

counterparts were counted. 

Gene expression levels in L. menadoensis liver and testis were calculated using the CLC Genomic 

Workbench 4.5.1 (CLC Bio, Katrinebjerg, Denmark) on the basis of mapping paired reads from the 

transcriptome and are given in Fragments Per Kilobase of exon per Million sequenced fragments 

(FPKM). The lack of some transcripts in the assembled transcriptome might depend on a scarce 

expression of genes and thus on the limited number of reads not allowing the assembly of a contig. 

To determine the absence or the low expression levels of some transcripts in question in the L. 

menadoensis transcriptome, assessment of the FPKM of ENSEMBL transcript predictions was 

performed on DMRT3, FOXL2, Aromatase, WNT4, and CYP11B. The FPKM of the inferred sequence 

of L. chalumnae FGF9 was also calculated. 

Besides genes expected to be involved in sexual development, expression levels of some house-

keeping (HK) genes, chosen according to Eisenberg and Levanon [58], were also evaluated. These 

include phosphoglycerate kinase, the ribosomal proteins S27, RPL19, RPL11, RPL32, and HSPCB. 

Phylogenetic analyses were performed in order to check the proper assignment to evolutionary related 

gene groups. Sequences of SOXE, FGF9/16/20, and TGF-β groups of other vertebrates were retrieved 

from NCBI protein database and ENSEMBL. Multiple alignments were performed with ClustalW2 

using default parameters. Bayesian Inference and Maximum Parsimony were used to build 

phylogenetic trees. Bayesian Inferences were performed by MrBayes-3.1.2 [59], the amino acidic 

model applied were Dayhoff [60] for the SOXE and for TGF-β groups, and Jones [61] for FGF9/16/20 

group. In the analyses parameters were fixed to 1,000,000 generations, sampling every 100, burn-in 

was set as 2,500 and the stationarity defined when the average split of standard deviation reached a 

value lower than 0.009. 

Maximum Parsimony analyses were performed using PAUP [62], applying heuristic search with tree 

bisection-reconnection (TBR) branch swapping and random stepwise additions with 100 replications. 

1,000 bootstrap replicates were calculated. Only minimal trees were retained. 
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In each tree capture the designated outgroup, accession numbers, constant, parsimony informative, 

and non-informative sites are specified. 

Conserved syntenic blocks were inferred from ENSEMBL annotation of putative CYP11B (Figure 

S2), DMRT1, FGF9, FGF16, and FGF20 flanking regions in some sequenced vertebrate genomes. 

Sizes and distances of genes were calculated on the basis of annotated coordinates of each element. 

The scaffolds containing FGF9 and flanking genes (EFHA1 and ZDHHC20) conserved in tetrapods 

were identified by homology through tBlastN on L. chalumnae WGS data. 

Results  
 

The GO analyses of ‘sex determination’ and ‘sex differentiation’ term annotations to the 

transcriptome of L. menadoensis were conducted and compared to selected other vertebrate genomes 

(Table S1 and Table S2). 25 contigs were identified to be orthologs of a GO0007530 (Sex 

determination) annotation and 297 contigs were orthologs of GO0007544 (Sex differentiation) 

annotation. 

In this study, thirty-three genes for which substantial evidence of being involved in sex determination 

and differentiation is available (Supplementary notes) were further analysed in more depth. CDSs 

were retrieved from the genome of L. chalumnae and from both testis and liver transcriptomes of L. 

menadoensis (Table 1 and Table 2), and their expression levels were assessed in these tissues. To 

confirm the putative orthology status for closely related genes, phylogenetic analyses were 

performed, and evolutionary relationships were inferred from the topology of the trees. Furthermore 

the micro-syntenic conservations previously described in other vertebrates for DMRT1 [36] and 

FGF9/16/20 [63, 64] were analyzed in Latimeria. 

To evaluate whether sequence information from L. menadoensis and L. chalumnae can be combined, 

the genetic distance between the two coelacanths was determined comparing the transcripts of L. 

menadoensis to the genomic sequences of L. chalumnae. The value, calculated over all matching 

sequences, ranged between 0% and 0.826%. The divergence is mainly due to mutations, insertions or 

deletions in untranslated regions (UTRs). Point mutations affecting the coding region of transcripts 

are in most cases synonymous (Table 1 and Table 2). The synonymous distance calculated over the 

whole gene set was 0.0019 (standard error 0.0005). These findings allow to combine and investigate 

data from the two species together. 
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Genes in male sexual development 

Twenty-five genes involved in male sexual development were analysed in Latimeria: three containing 

a Double sex and mab-3 (DM) Domain (DMRT1, DMRT3, and DMRT6); three belonging to the SOXE 

subfamily (SOX8, SOX9, and SOX10) of SRY-related HMG box transcription factors; other 

transcription factors including WT1, DAX1, GATA-4, DHH, SF-1; the signalling molecules PDGFα 

and β, GSDF, AMH, FGF9, and FGF20; four receptors comprising AR, AMHR2, and PDGFRα and 

β; and the steroidogenic enzymes SRD5A1, SRD5A2, SRD5A3 and CYP11B (Table 1).  

ENSEMBL prediction recovered in the L. chalumnae genome annotation twenty-three of the twenty-

five genes. The two missing sequences were inferred manually from the genome assembly: FGF9 

was identified through comparison with orthologous sequences of other species and GSDF was 

identified through the alignment of a L. menadoensis transcript to whole genome shotgun (WGS) 

contigs of L. chalumnae. Fifteen of twenty-three L. chalumnae predicted transcripts comprised the 

complete CDS, while eight were partial. The manually inferred L. chalumnae FGF9 covers the 

complete CDS while the L. chalumnae GSDF homolog is incomplete (about 75% of the CDS). 

The testis and liver transcriptomes of L. menadoensis contained twenty-two transcripts. Half of the 

contigs of the Indonesian coelacanth carried a complete CDS, while the other half was partial or 

fragmented. Transcripts of three genes, FGF9, CYP11B, and DMRT3, were absent from both analysed 

tissues (Table 1). The comparison of L. menadoensis and L. chalumnae male sex development 

analysed sequences is depicted in Figure S1A. 

Thirteen male sex development transcripts showed an expression value lower than one FPKM unit in 

testis and were considered as not expressed above background (Figure 2A).  

With the exception of AR, eleven genes (DMRT6, DMRT1, SOX9, WT1, GSDF, AMH, SRD5A1, 

DHH, SF-1, SRD5A3, and SOX10) are higher expressed in testis than liver, but only three of them 

(DMRT1, DMRT6, and SOX9) have a marked differential expression between the two tissues 

presenting a FPKM difference higher than 10. In liver seven genes were found to be expressed above 

background: SOX9, SRD5A1, AR, DAX1, PDGFα, GATA-4, and SRD5A2. 

The most highly expressed transcript among the twenty-five analysed male sex development genes is 

DMRT6, reaching in testis a value of 37.79 FPKM and ranking among the 2,000 most abundant 

transcripts of the over 61,000 contigs recorded in testis. In liver DMRT6 expression is absent. 

DMRT1, one of the most important genes in male development, plays a key function in fish [65, 66], 

chicken [67, 68], and reptiles [69]. The alignment of the Indonesian coelacanth transcripts to the 



 
 

229 
 

African congener genome (Figure 3A) identified the presence of 5 exons, exceeding the ENSEMBL 

predicted transcript of 1,572 bp at the 3’ end (Figure 3B). The DM domain is encoded in the first 

annotated exon. The long 3’UTR harbours a region of 320 bp containing a low-copy interspersed 

repeat.  

The size of the DMRT1 gene in the L. chalumnae genome covers over 152 Kb (Figure 3A), close to 

127 Kb gene in H. sapiens (ENSEMBL annotation), but spans a really long range if compared to the 

3 Kb gene in Crocodylus palustris [70], to the 45 Kb gene in D. rerio [71], and 53-58 Kb gene in G. 

gallus ([72], ENSEMBL). Moreover, because of the lack of a 5’ UTR (Figure 3B), which is encoded 

in other fish in the so-called exon 0 [73], in both sequences obtained from the transcriptome and the 

ENSEMBL prediction, the existence of another exon (which would elongate even more this genomic 

locus) is likely. 

Brunner and colleagues [36] first identified a strict conservation in gene order surrounding the 

DMRT1 gene, involving two other DM domain genes, DMRT2 and DMRT3, and the gene KANK1 

(KIAA0172). We found that this conserved micro-synteny is also present in the L. chalumnae genome 

by comparing the genomic scaffold JH127237 (1,057,921 bp), from position 608,000 to 941,000, to 

other vertebrate chromosomes (Figure 3C). Interestingly, this region in G. gallus (where DMRT1 is 

pivotal in male development) and in Ornithorhynchus anatinus is linked to a gonosome (Z and X5, 

respectively), while in other species of actinopterygian and sarcopterygian lineages it is located on an 

autosome. To date it was not yet possible to identify the presence of sex chromosomes in the 

Latimeria karyotype [74], nor anchoring the scaffold containing DMRT1 to a chromosome. 

Among the genes analysed, DMRT1 is the second most highest expressed in testis with 11.84 FPKM 

units and belongs to the top 10% most expressed transcripts (Figure 2A).  

SOX9 is a transcription factor activating AMH and together with DMRT1 inhibiting WNT4 and 

FOXL2. In mammals it is activated by another SOX family protein, SRY, while in other vertebrates 

it is regulated mainly by SF-1 and DMRT1. SOX9 belongs to subgroup E of SOX proteins together 

with SOX8 and SOX10. A phylogenetic analysis (Figure 4) of SOX E group proteins, carried out on 

several vertebrates, resulted in a tree topology that displays three major clades corresponding to the 

three different genes. In the SOX9 and SOX10 clades Latimeria sequences comprise a sister group 

of tetrapods, while the relationships of the coelacanth SOX8 were not clearly resolved according to 

its phylogenetic position. SOX9 and SOX10 are much higher expressed in testis than liver but SOX8 

shows only a low expression in liver of L. menadoensis (Figure 2A; FPKM: 11.60 and 1.38 for SOX9, 

FPKM: 2.25 and 0.04 for SOX10). 
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In mammals FGF9 has an important function in male development creating a positive feedback cycle 

with SOX9 and inhibiting the WNT4 pathway in testis [75]. In teleosts FGF9 was not detected so far 

but FGF20b was proposed to display the same function as the missing gene FGF9 [63, 64] and 

therefore to substitute the FGF9 action in sexual development. Interestingly, we found a FGF9-like 

sequence in coelacanths. In order to confirm the orthology relationships of the putative Latimeria 

FGF9, FGF16, and FGF20, sequence comparisons and conserved synteny arrangements of the 

flanking regions were investigated (Figure 5). In tetrapods both blocks harbouring either FGF9 or 

FGF20 are characterized by an EFHA and a ZDHHC gene upstream of the FGF genes. Downstream 

of FGF9, 16 and 20 different extended gene-deserted regions are noticed. In teleosts, where FGF9 is 

absent, the other genes forming the micro-syntenic cluster are distributed over different 

chromosomes. In L. chalumnae the FGF9 cluster is split on two scaffolds whose co-localization on 

the same chromosome is not yet possible to define. However, the proximity of a putative coding 

fragment of EFHA1 upstream the 5’ end of FGF9 suggests that the coelacanth FGF9 follows the 

tetrapod pattern.  

The phylogenetic analysis of the FGF9/16/20 group (Figure 6) uncovers three major clades 

corresponding to the three different genes. The exact position of L. chalumnae FGF20 is unsolved. It 

is, like the X. laevis ortholog, paraphyletic to teleosts and tetrapods. FGF16 of coelacanth is basal to 

the tetrapods as expected. However, the placement of Latimeria FGF9, even if firmly nested within 

the FGF9 tetrapod clade, does not reflect the phylogenetic position in the taxonomic group. 

Unexpectedly, neither FGF9 nor FGF20 were expressed in testis of L. menadoensis. 

GSDF is a recently described gene that appears to be critically involved in teleost male development 

[29, 39, 40, 45]. It has not been found in tetrapods and no sarcopterygian homolog has been described 

so far. However, our BLAST analyses of teleost GSDFs on the L. menadoensis transcript database 

suggested the presence of a putative GSDF gene. A confirmation of its identity was performed 

through BLASTx analysis. Despite low similarity values (29% identity, 49% positive matching with 

Oncorhynchus mykiss GSDF NP_001118051.1, and 28% identity and 50% positive matching with O. 

latipes GSDF NP_001171213.1), Bayesian Inference and Maximum Parsimony reliably assigned the 

sequence to the GSDF clade of teleosts (Figure 7). For the phylogenetic analysis we included, besides 

GSDF, two other proteins of the TGF-β family chosen on the basis of their close relationships to 

GSDF, namely AMH and Inhibin-α [39]. A multiple alignment of the conserved TGF-β domain of 

the three genes revealed that L. menadoensis GSDF is a sister group of teleost GSDFs, with a posterior 

probability of 100 in the Bayesian Inference analysis and a bootstrap value of 97 in the Maximum 

Parsimony tree (Figure 8). The lack of a glycine in a cysteine knot, a diagnostic amino acid missing 
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in the GSDF protein as noticed by Shibata and colleagues [45], further confirms the inclusion of the 

L. menadoensis sequence to the GSDF group, being the first homolog described in the sarcopterygian 

lineage. 

The Indonesian coelacanth GSDF was BLASTed on the L. chalumnae genome and identified a 

genomic counterpart partially on contig AFYH01270444 and partially on scaffold JH127632 with a 

gap of 171 bp among them. 

GSDF in L. menadoensis is characterized by a remarkably high testis expression but no expression in 

liver (Figure 2A). 

Genes in female sexual development  

Eight female determining/differentiation genes were scrutinized in Latimeria (Table 2): three 

belonging to the WNT signalling pathway (WNT4, RSPO-1, and CTNNB1), a transcription factor 

(FOXL2), two estrogen receptors (ERα and ERβ), a steroidogenic enzyme (Aromatase), and an activin 

binding protein (FST). 

ENSEMBL prediction recovered all eight gene sequences in the L. chalumnae genome. Four 

transcripts (ERβ, CTNNB1, WNT4, and FOXL2) have a complete CDS; for FST only two codons are 

missing at the 5’ end; RSPO-1 and Aromatase are partially complete while ERα could be only partially 

identified, being broken in 4 different scaffolds in the WGS. 

The transcriptome analysis allowed to obtain 3 complete CDS sequences of L. menadoensis 

(CTNNB1, ERβ, and FST), 2 mRNAs revealed fragmented (RSPO-1 and ERα) and 3 transcripts were 

missing (FOXL2, WNT4, and Aromatase). 

The comparison of L. menadoensis and L. chalumnae female sex development analysed sequences is 

depicted in Figure S1B. 

Expression values in testis and liver of L. menadoensis are shown in Figure 9. WNT4, FOXL2 and 

Aromatase (considered to be responsible for female development and pathway maintenance), as 

expected, did not show any expression in testis. Moreover CTNNB1, FST, and ERβ show a remarkably 

high liver expression (56.08, 27.33, 12.93 FPKM, respectively). While hepatic expression of FST and 

CTNNB1 was expected because these genes are described as ubiquitously expressed [76], the 

expression of ERβ in liver of the male specimen was unexpected. 
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Discussion  
 

In this study for the first time the basic set of genes that are generally believed to be critically involved 

in sexual development was isolated and characterized from coelacanths. Comparison of the genes 

between Latimeria species confirmed the very slow rate of evolution noted recently for the example 

of HOX genes [77], which are, however, known to evolve slowly by themselves. The genes studied 

here belong to very different gene families and thus give a more representative view on the aspect. 

We are aware that many further interpretations, which can be made on the basis of the data reported 

here, are limited by the fact that only a single individual was studied. However, given the importance 

of this living fossil for understanding the evolution of tetrapods and fish and considering the 

exceptional opportunity to obtain RNA of suitable quality from an organism that is rare and listed as 

one of the most endangered species, some conclusions with the appropriate note of caution are 

nevertheless made here. 

Based on different methods to calculate Ka/Ks values it can be concluded that none of the set of genes 

studied here is under positive selection in coelacanths. 

A totally unexpected finding was the very high expression of DMRT6 in testis, which in fact was the 

most abundant of all male-specific transcripts analyzed. DMRT6 thus far was only known from 

amniotes and is absent in Xenopus and all fish genomes. This phylogenetic pattern could be explained 

by DMRT6 being a newly arisen paralog of the DMRT gene family at the base of the amniote 

vertebrates. The presence of a bona fide DMRT6 homolog in Latimeria speaks for a much earlier 

origin of this gene and supports a possible origin from the 1R/2R whole genome duplication events 

in the ancestral vertebrates [78]. Consequently, it was lost repeatedly in the teleost fish and the 

amphibian lineages, and even in the basal chordates. We can only speculate about some explanations, 

as only scarce data are available on expression of DMRT6. In mouse embryo the gene is expressed in 

the developing brain, but not in gonad [43]. In the human microarray database 

(https://www.genevestigator.com) an exclusive and high expression is recorded for ovary and testis 

while studies using mouse organs revealed a different picture. In fact only erythroblast and oocytes 

showed some elevated expression. Whatever the ancestral function of DMRT6 was, it is reasonable 

to assume that this was taken over by other members of the gene family or is not required anymore 

in those lineages where it was lost. The persistence of the gene in Latimeria could be explained by an 

important function in male (and eventually also in female?) development, which, according to the 

current state of knowledge, was then at least partially conserved in the amniotes. Our findings in the 
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coelacanth certainly motivate to put now emphasis on DMRT6 as a putative novel gene in the gene 

regulatory network governing gonad development. 

The high expression of DMRT1 in Latimeria testis and no expression in liver is in line with the known 

expression pattern and its important function for testes development and male gonad identity 

maintenance in vertebrates, from fish to mammals [65, 66]. In telelost fishes DMRT1 in the adult 

testes is found in germ cells or somatic cell types or in both (for review see ref 65). Unfortunately, 

the RNA-Seq transcriptome data give no information on the cell type in coelacanth testis that express 

DMRT1. In medaka, a duplicated version of DMRT1 on the Y-chromosome, designated dmrt1bY, is 

the master male sex determining gene (ref 26, ref 27)). Its major function appears to be the 

suppression of germ cell proliferation at the critical sex determining stage in males (Herpin et al. , 

BMC Dev. Biol 7: 99, 2007). In adult testes the expression is strongly downregulated (Hornung et al. 

Sex Dev 1:197, 2007) and only the autosomal DMRT1 (designated dmrt1a in medaka) seems to 

operate in the mature testis because of its high expression. In L. menadoensis like for all other teleosts 

studied so far, only one copy of DMRT1 was found. Thus, most likely DMRT1 in coelacanths does 

not have a major role in primary sex determination but more in testis differentiation and adult testis 

function. 

However, contrary to all other vertebrates studied [38, 43, 79-81] there was no expression of DMRT3 

in the male gonad of L. menadoensis. 

The TGF-β family member GSDF is an important factor in gonad development of teleost fish with 

much higher expression in testis than ovary [39, 40]. In one species a duplicate of GSDF most likely 

became even the master male sex determination gene [29]. In medaka there is strong evidence that 

the master male sex determining gene dmrt1bY upregulates GSDF and that this is correlated with 

early testicular differentiation (Shibata et al. Gene Expr. Patterns 10:283, 2010). No homologue of 

GSDF has so far been identified outside teleosts. Our identification of a bona-fide GSDF sequence in 

coelacanths and its high expression in testis pointing to functional conservation as well, leads to the 

conclusion that this gene already arose at the base of the fish lineage, but was later lost during 

evolution of the tetrapods. GSDF thus appears to be an ancient male sex determining gene. Whether 

another TGF-β family member has taken over the function from GSDF in teleosts and coelacanths in 

testis development of tetrapods remains unclear in the absence of functional data on GSDF function 

in fish. 

The high expression (at least compared to liver) of SOX9, SOX10, WT1, AMH, DHH, SF-1 and 

SDR5A1 and 3 as well as the low but testis-specific expression of AMHR2 and the absence of the 

female factors FST, RSPO-1, WNT4, FOXL2, Aromatase, and estrogen receptor transcripts in the 
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testis transcriptome of L. menadoensis, are in line with the expression pattern of these genes known 

from many vertebrate species and their proposed function in sexual development.  

In particular, the AMH/AMH-receptor system is of interest for sexual development in Latimeria. In 

mammals and most likely in all tetrapods AMH induces the regression of the Müllerian duct. Teleosts 

do not have Müllerian ducts, but Lungfish and Latimeria possess oviducts that are homologous to 

those of the tetrapods (Kapoor, BG, Khanna, B: Ichthyology Handbook, p 487,  Springer 2004). 

Despite the absence of Müllerian ducts an important function for AMH/AMH-receptor in the 

manifestation of gonadal sex in teleosts has been shown, because in medaka AMH signalling is 

crucial for regulation of germ cell proliferation  during early gonad differentiation (Nakamura et al. 

Development 139:2283, 2012). In adult teleosts the AMH signalling system is present and probably 

active in testis and ovary (Klüver et al, Dev Dyn 236:271, 2007, Pala et al, Gene 410: 249, 2008, 

Halm et al. Gene 388:148, 2006), while in mouse testis this system is downregulated before sexual 

maturity (Beau et al. Mol. Reprod. Dev. 56: 124, 2000). Given the robust expression of AMH and 

AMH-receptor in adult testis of L. menadoensis, which is more alike the situation in teleosts it will 

be interesting to know the expression patterns of both genes during the period of sex determination 

and early gonad formation in coelacanths and to compare this to the situation found in tetraopods or 

in teleosts. 

In the liver transcriptome, several of the tested genes with reported function in sex determination and 

differentiation were found to be quite abundantly expressed. The high levels of CTNNB1 are expected 

due to the ubiquitous function of this signal transducer of the WNT pathway. The high FST expression 

is in line with a generally broad expression profile observed in all vertebrates and with a finding in 

mice where this gene is required for homeostasis of liver cell growth [82]. This non-gonadal function 

of FST may be conserved in coelacanths. Similarly, the transcription factor GATA-4 is besides its 

importance for regulating genes in testis development [83] also involved in the control of a number 

of liver genes, explaining why transcripts of the coelacanth homolog were found in both tissues. 

Contrary to coelacanth, where 5α-reductase 2 is highly expressed in liver, in rat the type 1 isoform is 

differentially regulated by androgens and glucocorticoids in the liver resulting in high expression in 

this tissue, while type 2 is preferentially expressed in gonads [84]. This may indicate lineage specific 

sub-functionalization of these isozymes during evolution. 

The absence of SOX8 expression in Latimeria testis was unexpected. In other vertebrates, including 

teleost fish, SOX8 expression is readily detected in this organ and has been assigned in mammals an 

important function in the FGF9/SOX9 interaction loop to maintain Sertoli cell identity by acting 

redundantly to SOX9 [6, 85]. It appears that such a back-up function is not required in Latimeria 
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testis maintenance or that the redundant function has been lost in the extant coelacanth lineage. In 

medaka it was shown that SOX9 is required for germ cell proliferation and survival, but not for testis 

determination (Nakamura et al.2012, PLoSONE). Together with our findings in L. menadoensis this 

may indicate that the sex determining role is a function that was acquired later in vertebrate evolution 

in the tetrapod lineage after the split of the teleost and coelacanth lineages. 

An intriguing situation was found for FGF9 and 20, which constitute together with FGF16 a 

subfamily of the paracrine FGFs. The critical role for FGF9 in testis development is firmly 

established in mammals and appears to be well conserved in all tetrapods. On the other hand, this 

gene is absent from all teleost genomes ([63, 64], ENSEMBL), while FGF16 and 20, the latter being 

duplicated due to the teleost genome duplication, are present. In amphioxus there is one FGF gene 

that is basal to all three FGFs in tetrapods [86]. Thus FGF9 could be a later duplicate of either FGF16 

or 20 and its role in testis development could be interpreted as a tetrapod innovation. The here reported 

presence of FGF9 in Latimeria, however, supports an origin during the 1R/2R whole genome 

duplications in the ancestral chordates and a specific loss in the lineage leading to the teleosts. In the 

teleost Oreochromis niloticus (Tilapia) FGF20b and FGF16 are both expressed in ovary and only a 

lower expression of FGF16 was recorded in testis [64]. Together with the total absence of expression 

of FGF9, FGF20 and FGF16 in L. menadoensis, this indicates that the testis function of FGF 

signaling, in particular the central role of FGF9, was acquired later during evolution of the tetrapods. 

Surprisingly, the ERβ gene was found to be expressed in the liver of the male coelacanth. Previously, 

it was noted that in the same individual the vitellogenin genes vtgABI, II and III were expressed [50]. 

Vitellogenins are yolk proteins that are physiologically expressed in the liver of reproductive females 

upon induction by estrogens. Thus expression of vitellogenins and estrogen receptor indicates the 

presence of estrogens in this male individual. Such estrogens could be derived from the environment 

pollutants as reported from a number of instances for fish from polluted waters. The fish analyzed 

here lived in Bunaken Marine Park in submarine caves at depths of 100 to 200 m, which can be 

considered a relatively protected environment. Alternatively, the ERβ expression could be the 

consequence of a pathological condition in the male, hormonal imbalance due to aging or a specific 

physiological feature of coelacanths. 
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Conclusions  
 

In summary, this first analysis of a coelacanth testis transcriptome already revealed some information 

with respect to the question, how sexual development and testis differentiation may be regulated in 

this living fossil, and also gave new information about the evolution of this process in vertebrates. 

Interestingly, some genes that are generally considered as indispensable for testis development in all 

vertebrates, like SOX8 or a fibroblast growth factor gene from the FGF9/16/20 subfamily, are 

obviously not playing such a role in Latimeria. Together with the high GSDF expression the transcript 

profile is more alike that of the modern fish. The coelacanth testis transcriptome will help to 

reconstruct the ancestral tetrapod situation and gives hints, which evolutionary innovations for sexual 

development had occurred during the process of transition from water to land. 
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Figures  

 

 

 

Figure 1. Genes involved in sexual development 



 
 

238 
 

 

Figure 2. Male development gene expressions 

Expression levels of male sex determining/differentiation genes in liver and testis transcriptomes of 

L. menadoensis. Values are expressed in FPKM (Fragments Per Kilobase of exon per Million 

sequenced fragments). A) genes highly expressed in testis B) genes poorly expressed in testis. The 

expression levels of some housekeeping genes (not represented) were also analysed: 

phosphoglycerate kinase 96.95 (liver), 342.41 (testis); ribosomal protein S27a 152.59 (liver), 128.43 

(testis); RPL19 744.01 (liver) 64.89 (testis); RPL11 457.35 (liver), 282.59 (testis); RPL32 629.83 

(liver), 373.75 (testis); HSPCB 507.99 (liver), 1213.75 (testis). 

Threshold value= 1. * Expression level assessed on L. chalumnae ortholog. 
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Figure 3. Conserved micro-synteny and structure of the DMRT1 genomic locus and transcripts 

A) Genomic representation of DMRT1 on scaffold JH127237 of L. chalumnae. Grey box corresponds to gene. Small 

boxes and V signs represent the intron/exon map. 

B) Transcript representation of DMRT1 in L. menadoensis and in L. chalumnae. Boxes are the exons and V-signs are the 

introns. White box is the DM domain, light grey box is the 3’UTR. Dashed box is a putative transposable element 

contained in the 3’UTR, dotted boxes represent the missing exons in Ensembl transcript prediction.  

C) Micro-syntenic conservation of genomic blocks containing the DMRT1 gene. White pentagons represent DMRT1 

genes. The tip on the line indicates the relative orientation of the genes. Numbers near the pentagons are the gene size 

expressed in kb, numbers on lines represent inter-gene distances expressed in Kb. 

Data from Ensembl: H. sa (Homo sapiens), M. mu (Mus musculus), O. an (Ornithorhynchus anatinus), G. ga (Gallus 

gallus), A. ca (Anolis carolinensis), L. ch (Latimeria chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes). L. 

chalumnae DMRT1 position was defined through L. menadoensis transcript, elongating ENSLACT00000015034 

coordinates. 

*In O. anatinus DMRT1 gene size was defined from comparison with other species. 

**Values obtained in G. gallus from the annotation of NC_006127.3 accession. 
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Figure 4. Phylogenetic tree of SOX8, SOX9, and SOX10 

Phylogenetic analyses of vertebrate SoxE amino acidic sequences. Midpoint rooting. Total characters: 599, constant: 179, 

parsimony non-informative: 78, parsimony informative: 342. Numbers close to the nodes represents posterior probability 

in Bayesian Inference/bootstrap percentage in Maximum Parsimony. 

Danio rerio (SOX8: AAX73357.1; SOX9a: NP_571718.1; SOX9b: NP_571719.1; SOX10: AAK84872.1); 

Dicentrarchus labrax (SOX8: CBN81184.1; SOX9: CBN81190.1); Gallus gallus (SOX8: AAF73917.1; SOX9: 

BAA25296.1; SOX10: AAD38050.2); Homo sapiens (SOX8: AAH31797.1; SOX9: CAA86598.1; SOX10: 

CAG30470.1); Latimeria chalumnae (SOX8: ENSLACP00000018883; SOX9: ENSLACP00000021343; SOX10: 

ENSLACP00000004990); Latimeria menadoensis (SOX9, SOX10: this study); Mus musculus (SOX8: AAF35837.1; 

SOX9: AAH23953.1; SOX10: NP_035567.1); Oryzias latipes (SOX8: NP_001158342.1; SOX9: BAC02947.1); Salmo 

salar (SOX8: ABC24688.1; SOX9: ACN10975.1); Scyliorhinus canicula (SOX8: ABA10785.1; SOX9: ABY71239.1); 

Trachemys scripta (SOX8: AAP59791.1; SOX9: ACG70782.1; SOX10: ENSLACP00000004990); Xenopus laevis 

(SOX8: AAI69525.1; SOX9: NP_001084276; SOX10: NP_001082358.1). 

*Only a partial SOX8 sequence was retrieved in the transcriptome assembly of L. menadoensis, perfectly matching to the 

prediction of ENSEMBL for SOX8 gene in L.chalumnae. 



 
 

241 
 

 

Figure 5. Analysis of micro-syntenic conservation in FGF9, FGF16 and FGF20 blocks 

Micro-syntenic conservation of genomic regions containing FGF9, FGF20 and FGF16 genes. White pentagons represent 

FGF genes. The tip on the line indicates the relative orientation. Gray shape indicate putative sequences. Numbers near 

the pentagons are the gene size expressed in Kb, numbers on lines represent intergene distances expressed in Kb. 

Data from Ensembl: H. sa (Homo sapiens), G. ga (Gallus gallus), A. ca (Anolis carolinensis), X. tr (Xenopus tropicalis), 

L. ch (Latimeria chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes). 

Syntenic blocks for FGF20 on L. chalumnae and X. tropicalis, and FGF16 in A. carolinensis are broken on two different 

scaffolds. The ZDHHC15 genes belonging to the syntenic block of FGF16 in H. sapiens and X. tropicalis are maintained 

on the same chromosome or scaffold, but they are situated far from the genomic locus of FGF16 and ATRX. *Genes 

missing in ENSEMBL prediction. 
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Figure 6. Phylogenetic tree OF FGF9, FGF16, and FGF20 

Phylogenetic analysis of amino acid sequences of the vertebrate FGF9/16/20. Midpoint rooting. Total characters: 237, 

constant: 91, parsimony non-informative: 35, parsimony informative: 111. Numbers close to the nodes represents 

posterior probability in Bayesian Inference/bootstrap percentage in Maximum Parsimony. 

Danio rerio (FGF16: ENSDART00000061928; FGF20a: NP_001032180.1; FGF20b: NP_001034261.1;); Gallus gallus 

(FGF9: NP_989730.1; FGF16; NP_001038115.1; FGF20: XP_426335.2); Homo sapiens (FGF9: NP_002001.1; FGF16: 

NP_003859.1; FGF20: NP_062825.1;); Latimeria chalumnae (FGF9: manually inferred on JH128123; FGF16: 

ENSLACT00000011509; FGF20: ENSLACT00000014939); Mus musculus (FGF9: ADL60500.1; FGF16: BAB16405.1; 

FGF20: NP_085113.2); Oryzias latipes (FGF16: ENSORLT00000007651; FGF20a: ENSORLT00000012578; FGF20b: 

ENSORLT00000025767); Takifugu rubripes (FGF16: ENSTRUT00000021181; FGF20(1): ENSTRUT00000008788; 

FGF20(2): ENSTRUT00000039390); Xenopus tropicalis (FGF9: XP_002938621.1; FGF16: ENSXETT00000009790; 

FGF20: NP_001137399.1 ). Latimeria menadoensis is missing in this analysis because FGF9 and FGF20 are low or not 

expressed in the transcriptomes. 
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Figure 7. Phylogenetic tree of GSDF, AMH, and INHIBIN α 

Phylogenetic analysis of amino acidic sequences of vertebrate GSDF, inhibin α and AMH. Total characters: 849, constant: 

84, parsimony non-informative: 225, parsimony informative: 540. 

Outgroup: human Glial-Derived Nerve growth Factor (GDNF). Numbers close to the nodes represent posterior 

probabilities in Bayesian Inference/bootstrap percentage in Maximum Parsimony. Anolis carolinensis (inhibin α: 

ENSACAT00000014331); Danio rerio (GSDFa: AEL99890.1; GSDFb: AEL99889.1; AMH: NP_001007780.1; inhibin 

α: ENSDART00000057348); Gallus gallus (AMH: NP_990361.1; inhibin α: NP_001026428.1); Gasterosteus aculeatus 

(GSDF: ENSGACT00000021595; inhibin α: ENSGACT00000018909); Homo sapiens (AMH AAC25614.1; GDNF: 

NP_000505.1); Latimeria chalumnae (inhibin α: ENSLACT00000017535); Latimeria menadoensis (GSDF, AMH this 

study); Mus musculus (AMH: AAI50478.1; inhibin α: AAH56627.1); Oreochromis niloticus (GSDF: BAJ78985.1); 

Oryzias latipes (GSDF: NP_001171213.1); Oncorhynchus mykiss (GSDF: ABF48201.1); Takifugu rubripes (GSDF: 

ENSTRUT00000036269; AMH: ENSTRUT00000045919); Xenopus laevis (inhibin α: NP_001106349.1). The reliability 

of the CDS in L. menadoensis is sustained by the two different assembly procedures applied resulting in the same 

sequence. 
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Figure 8. Multiple alignment of TGF-β domain in GSDF, AMH, and INHIBIN α 

Conserved amino acids of the cysteine knot are boxed. Anolis carolinensis (inhibin α: ENSACAT00000014331); Danio 

rerio (GSDFa: AEL99890.1, GSDFb: AEL99889.1; AMH: NP_001007780.1; inhibin α: ENSDART00000057348); 

Gallus gallus (AMH: NP_990361.1; inhibin α: NP_001026428.1); Gasterosteus aculeatus (GSDF: 

ENSGACT00000021595; inhibin α: ENSGACT00000018909); Homo sapiens (AMH: AAC25614.1; GDNF: 

NP_000505.1); Latimeria chalumnae (inhibin α: ENSLACT00000017535); Latimeria menadoensis (this study); Mus 

musculus (AMH: AAI50478.1; inhibin α: AAH56627.1); Oreochromis niloticus (GSDF: BAJ78985.1); Oryzias latipes 

(GSDF: NP_001171213.1); Oncorhynchus mykiss (GSDF: ABF48201.1); Takifugu rubripes (GSDF: 

ENSTRUT00000036269; AMH: ENSTRUT00000045919); Xenopus laevis (inhibin α: NP_001106349.1). 

The reliability of the CDS in L. menadoensis is supported by the two different assembly procedures applied in this study 

resulting in the same sequence. 
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Figure 9. Female development gene expressions 

Expression of female determining/differentiation genes in liver and testis transcriptomes of L. 

menadoensis. Expression levels are reported in FPKM (Fragments Per Kilobase of exon per Million 

sequenced fragments). The expression levels of some housekeeping genes were also analysed: 

phosphoglycerate kinase 96.95 (liver), 342.41 (testis); ribosomal protein S27a 152.59 (liver), 128.43 

(testis); RPL19 744.01 (liver) 64.89 (testis); RPL11 457.35 (liver), 282.59 (testis); RPL32 629.83 

(liver), 373.75 (testis); HSPCB 507.99 (liver), 1213.75 (testis). Threshold value= 1. 

* Expression level assessed on L. chalumnae ortholog. 
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Supporting information 
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SRD5A1 
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SRD5A3 

SRD5A2 

ENSLACT00000014423 

ENSLACT00000025936 

WT1 

 

 1000 bp 

ENSLACT00000018732 

Figure S1A 

Sequence pair comparison of male sex development genes. 

Sequence pair comparison of male and female sex determining/differentiation transcripts in L. 

menadoensis transcriptome and L. chalumnae ENSEMBL predictions. Male sex development 

genes. Boxes represent CDS. Lines represent UTR. Dashed boxes represent a missing part in the 

CDS. Green lines/boxes represent an imprecise gene prediction or mismatch among L. chalumnae 

and L. menadoensis sequences. Scale dimension are maintained. 
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Figure S1B 

Sequence pair comparison of female sex development genes. 

Sequence pair comparison of male and female sex determining/differentiation transcripts in L. 

menadoensis transcriptome and L. chalumnae ENSEMBL predictions. Female sex development 

genes. Boxes represent CDS. Lines represent UTR. Dashed boxes represent a missing part in the 

CDS. Green lines/boxes represent an imprecise gene prediction or mismatch among L. chalumnae 

and L. menadoensis sequences. Scale dimension are maintained. 
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H.sa M. mu B. ta L. ch D. re T. ru 

Ch. 8 Ch. 1 Ch. 15 Ch. 3 Ch. 14 Ch. 3 JH127279 Ch. 16 Ch. 19 Sca_288 Sca_37 

 

 

Figure S2 

Micro-syntenic conservation of CYP11B. 

Micro-syntenic conservation of genomic regions containing CYP11B genes. Black pentagons 

represent CYP11B genes. The tip on the line indicates the relative orientation. 

Data from Ensembl: H. sa (Homo sapiens), M. mu (Mus musculus), B. ta (Bos Taurus), L. ch 

(Latimeria chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes). 
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Tables 

 

  Transcript in L. menadoensis Gene Location in L. chalumnae Transcript prediction in L. chalumnae 

Gene Accession length CDS Scaffold 
N° 

exons3 

Diver

gence4 
Ka/Ks ENSEMBL accession length CDS 

AMH   1312+10391 1312+6702 JH126742 >5 0.046 0.000 ENSLACT00000009808 1689 16892 

AMHR2   693 6932 JH126659 >9 0.289 0.343 ENSLACT00000020587 921 9212 

AR   2590 21332 JH126641 >8 0.165 0.000 ENSLACT00000017177 2235 12392 

CYP11B - - - JH127279 - - - ENSLACT00000015536 1422 4742 

DAX1   966 786 JH128268 2 0.207 0.309 ENSLACT00000007979 786 786 

DHH   926 9262 JH126563 2 0.540 0.649 ENSLACT00000021749 1275 1275 

DMRT1  2244 9982 JH127237 5 0.134 0.000 ENSLACT00000015034 798 7982 

DMRT3 - - - JH127237 - - - ENSLACT00000013757 1455 1455 

DMRT6   3121 957 JH130928 4 0.129 NA ENSLACT00000003773 798 7982 

FGF9 - - - JH128123 - - - Manually identified 

FGF20   370 3702 JH127134 3 0.270 NA ENSLACT00000014939 627 627 

           

GATA-4   1655 1200 JH128461 >6 0.064 NA ENSLACT00000007000 1209 1209 

GSDF   1258 693 
JH127632

5 
>3 0.826 0.470 - - - 

PDGFα   968 594 JH126909 6 0.000 NA ENSLACT00000025036 1892 594 

PDGFβ   664 4832 JH128946 >4 0.000 NA ENSLACT00000002931 630 630 

PDGFRα  823 8232 JH128279 >7 0.243 NA ENSLACT00000010417 3285 32852 

PDGFRβ  995+10551 995+10552 JH126585 >17 0.195 0.954 ENSLACT00000016664 3312 3312 

SF-1   1686 1401 
JH126572

6 
7 0.000 NA ENSLACT00000021404 591 5912 

http://www.ensembl.org/Latimeria_chalumnae/Location/View?r=JH126659.1:2555924-2566631:-1;g=ENSLACG00000017970
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SOX8   735 7352 JH126713 >3 0.000 NA ENSLACT00000019016 1434 1410 

SOX9   3306 1428 JH126581 3 0.185 0.000 ENSLACT00000021484 1908 1428 

SOX10   1403 13532 JH127309 3 0.359 0.199 ENSLACT00000005034 4571 1356 

SRD5A1  3664 786 JH129903 5 0.164 NA ENSLACT00000002047 6104 684 

SRD5A2  2711 765 JH126700 5 0.112 NA ENSLACT00000025936 2918 765 

SRD5A3   1244 945 JH127256 5 0.000 NA ENSLACT00000014423 2733 945 

WT1   2260 1257 JH126652 9 0.134 0.000 ENSLACT00000018732 1260 1257 

 

Table 1. Male sex determining/differentiation gene inventory. 

1Fragmented contig. 2Partial CDS. 3Number of exons from the alignment of L. menadoensis 

transcripts to the L. chalumnae genome. Where the transcript is carrying only a partial CDS, the 

number of exon is partial. 4Divergence between the two coelacanths sequences calculated as p 

distance x100. 5SF-1 gene in L. chalumnae is split in scaffold JH126572 and contig AFYH01271535. 

6GSDF gene on L. chalumnae is split in scaffold JH127632 and contig AFYH01270444. 
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 Transcript in L. menadoensis Gene Location in L. chalumnae 
Transcript prediction in L. 

chalumnae 

Gene Accession length CDS Scaffold 
N° 

exons3 

Diverge

nce4 

Ka/

Ks 
ENSEMBL accession 

lengt

h 
CDS 

Aromatase - - - JH127307 - - - ENSLACT00000010703 1329 
1329

2 

CTNNB1  3325 2346 JH127054 15 0.702 
0.00

0 
ENSLACT00000017335 3458 2346 

ERα  2002 15412 JH1292275 >8 0.352 NA ENSLACT00000005056 396 3962 

ERβ  3184 1689 JH126564 9 0.159 
0.00

0 
ENSLACT00000019235 2465 1689 

FOXL2 - - - JH127245 - - - ENSLACT00000012991 915 915 

FST  2381 1044 JH127291 6 0.221 
0.00

0 
ENSLACT00000014112 2027 

1032

2 

RSPO-1  474+4851 
425+2

692 
JH126592 >5 0.626 NA ENSLACT00000019383 747 7472 

WNT4 - - - JH126950 - - - ENSLACT00000017139 1068 1068 

Table 2. Female sex determining/differentiation gene inventory. 

1Fragmented contig. 2Partial CDS. 3Number of exons from the alignment of L. menadoensis 

transcripts to the L. chalumnae genome. Where the transcript is carrying only a partial CDS, the 

number of exon is partial. 4Divergence between the two coelacanths sequences calculated as p 

distance x100. 5ERα gene in L. chalumnae genome is split in scaffold JH129227, JH129408, 

JH129637, and JH133026. 
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GO0007530  

 (Sex determination)  
Total  annotations  Matching 

annotations  
L. menadoensis 

orthologs  

Danio rerio   2  2  2  

Xenopus laevis  3  3  2  

Gallus gallus  27  27  13  

Canis familiaris  19  4  4  

Sus scrofa  17  19  15  

Bos taurus  12  12  11  

Mus musculus  21  3  3  

Rattus norvegicus  26  25  18  

Homo sapiens  33  31  20  

  

Table S1 

Gene Ontology analysis for “sex determination” term. 

 

GO0007548   

(Sex differentiation)  

Total  annotations  Matching 

annotations  
L. menadoensis 

orthologs  

Danio rerio  43  43  24  

Xenopus laevis  4  4  3  

Gallus gallus  187  187  124  

Canis familiaris  172  33  28  

Sus scrofa  144  143  117  

Bos taurus  151  147  118  

Mus musculus  203  32  30  

Rattus norvegicus  299  291  240  

Homo sapiens  373  363  221  

  

 

Table S2 

Gene Ontology analysis for “sex differentiation” term.
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Characterization of purine catabolic pathway genes in coelacanths 
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Schartl4, Ettore Olmo1, Adriana Canapa1 

 

Abstract  

 

Coelacanths are an extremely precious source for understanding dynamics underlying genetic 

changes in the transition from aquatic to terrestrial life. One of the many interesting and biologically 

relevant features of the genus Latimeria is its ureotelic mode of eliminating waste nitrogen from the 

metabolism. Urea is, however, not excreted from the body but high concentrations are retained in the 

plasma and used as an osmoregulatory system. The purine catabolism pathway, which leads to urea 

production in Latimeria, has undergone a progressive step reduction indicating an enzyme loss during 

diversification of terrestrial species. 

In the work presented here, analyses were performed on liver and testis transcriptomes of the 

Indonesian coelacanth L. menadoensis and on the recently fully sequenced genome of L. chalumnae 

in the framework of the ongoing coelacanth genome project. Besides uricase, 5-hydroxyisourate 

hydrolase, parahox neighbour B, allantoinase, and allantoicase genes, coding respectively for the 

five enzymes involved in the urate degradation to urea, we report the identification of a putative 

second form of 5-hydroxyisourate hydrolase, which is characteristic for the genus Latimeria. 

Moreover the results of this work highlight the activity of this complete pathway in coelacanth liver 

and suggest its involvement in the maintenance of the high urea concentration in plasma.  
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Pontastacus leptodactylus: 

 

I dati di sequenziamento Illumina di Pontastacus leptodactylus derivano da uno studio volto ad 

indagare i cambiamenti nei livelli d'espressione genica nell'epatopancreas di organismi privati del 

peduncolo oculare causati dall'applicazione dei due esomeri dell’ormone iperglicemico dei crostacei 

(cHH) 

L'RNA è stato estratto da tessuto epato-pancreatico di 12 esemplari di femmine di P. leptodactlus 

divise in quattro gruppi: ai primi due gruppi è stato iniettato, rispettivamente, l'esomero D e L-cHH 

in PBS, ad un terzo gruppo è stato iniettato solo PBS e gli esemplari del quarto gruppo, a cui non è 

stato esportato il peduncolo oculare, sono stati mantenuti come controllo. 

Inizialmente i dati trascrittomici provenienti dall'estrazione sono stati assemblati con il software CLC 

Genomic Workbench. 

Le 296.112.296 reads paired-end sono state ridotte a 289.731.590 dall'eliminazione di basi a bassa 

qualità. 

L'assemblaggio ha prodotto 42.187 contig con una lunghezza media di 802 paia di basi. 

Gli output delle annotazioni di Gene Ontology ed Interpro sono stati elaborati con uno script in Python 

in modo da poter essere importati in CLC Genomics Workbench per implementare il test 

ipergeometrico nelle annotazioni. 

Successivamente è stato effettuato il mapping e l'analisi statistica dei campioni provenienti dai 12 

esemplari per valutare i cambiamenti nei livelli d'espressione. 

Come trascritti di riferimento per il mapping è stato scelto di mantenere solo contig con alta copertura 

(maggiore di 25) per evitare i potenziali problemi causati dall'eventuale presenza di frammenti poco 

espressi non direttamente correlati all'epatopancreas. 

I 6.860 contig scelti corrispondevano al 96% dell'espressione totale di questo organo. 

Anche in questo caso il mapping è stato fatto usando il CLC Genomic Workbench e ha dimostrato 

come vi sia una notevole variazione nell'espressione genica tra i gruppi in analisi. 

In particolare 214 trascritti si sono dimostrati differenzialmente espressi negli individui a cui era stato 

solo esportato il peduncolo oculare. E' stato possibile così valutare come l'attività metabolica dei 
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carboidrati è stata repressa, come ci si aspettava dall'eliminazione dell'ormone inducente un aumento 

della glicemia. 

Una notevole variazione è stata osservata anche tra gli individui a cui è stato iniettato il D-cHH. 

Questi, infatti, hanno avuto una risposta molto rapida nella quale 917 trascritti hanno avuto una 

modificazione nei loro livelli d'espressione. 

Gli organismi a cui è stato iniettato l'isomero L-chh, invece, hanno mostrato avere un effetto meno 

pronunciato con solo 45 geni differenzialmente espressi. 

In un secondo momento da questo organismo sono stati estratti campioni di RNA proveniente 

dall'organo Y, organo secretore dell'ormone stimolatore di muta ecdisone, e dal vicino tessuto 

ipodermico. 

Questi dati trascrittomici provengono da un lavoro che si propone di studiare le proteine partecipanti 

al processo di muta. 

Le 155.534.379 reads così ottenute sono state come prima cosa assemblate con CLC Genomic 

Workbench per ottenere 76.405 contig. 

Anche in questo le sequenze risultanti sono state annotate con Blast2Go. 

Durante questo lavoro di assemblaggio si è riusciti ad ottenere l'account presso il cluster grid DIAG. 

Grazie a questo account abbiamo potuto utilizzare l'assembler Trinity per un ulteriore assemblaggio 

che mettesse insieme i dati proveniente sia dal tessuto epato-pancreatico che da Y organ,. 

I dati risultanti dall'assemblaggio sono stati successivamente elaborati con una versione locale di  CD-

HIT (Huang et al., 2010) per eliminare i contig ridondanti ottenuti, passando così da 110.406 a 

100.737 contig. 

Per eliminare la ridondanza e per valutare quale assembler svolgesse questo compito le sequenze 

output del CD-HIT sono state ulteriormente assemblate tra loro con diversi software di assemblaggio. 

Alla fine si è scelto di utilizzare CAP3 (Huang et al., 2010) che, nonostante sia un software sviluppato 

da diversi anni, ha dimostrato, in questo caso, essere la scelta migliorels producendo meno errori degli 

altri. 

Dopo aver elaborato le sequenze con CAP3 siamo riusciti ad ottenere 94.482 contig che sono al 

momento alla base dei nuovi studi sul trascrittoma di L. leptodactylus. 
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Hepatopancreatic transcriptome in the crayfish Pontastacus 

leptodactylus reveals peptidase activation and glycolysis suppression 

following injection of D-crustacean Hyperglycemic Hormone. 

Chiara Manfrin1°, Moshe Tom2°, Gianluca De Moro1, Marco Gerdol1, Alessandro Mosco1, Alberto 

Pallavicini1, Piero Giulio Giulianini1* 

 

Abstract 
 

The crustacean Hyperglycemic Hormone (cHH) is a neuropeptide present in many decapods. Two 

different chiral isomers are simultaneously present in Astacid crayfish and their specific biological 

functions are still poorly understood. The present study is aimed at better understanding the 

potentially different effect of each of the isomers on the hepatopancreatic gene expression profile in 

the crayfish Pontastacus leptodactylus, in the context of short term hyperglycemia. Hence, two 

different chemically synthesized cHH enantiomers, containing either L- or D-Phe3, were injected to 

the circulation of intermolt females following removal of their X organ-Sinus gland complex. The 

effects triggered by the injection of the two alternate isomers were detected after one hour through 

measurement of circulating glucose levels. Triggered changes of the transcriptome expression profile 

in the hepatopancreas were analyzed by RNA-seq analysis. A whole transcriptome shotgun sequence 

assembly provided the assumedly complete transcriptome of P. leptodactylus hepatopancreas, 

followed by RNA-seq analysis of changes in the expression level of many genes caused by the 

application of each of the hormone isomers. The hemolymph measurements revealed a much higher 

hyperglycemic activity in response to the D-isoform than to the L-isoform injection. Similarly, the 

RNA-seq analysis confirmed a stronger effect on gene expression following the administration of D-

cHH, and just limited alterations were caused by the L-isomer. These findings demonstrated a more 

prominent short term effect of the D-cHH on the transcription profile and shed light on the effect of 

the D-isomer on specific functional gene groups. Another contribution of the study is the construction 

of a de novo assembly of the hepatopancreas transcriptome, consisting of 42,144 contigs, that 

dramatically increases the molecular information available for this species and provides an efficient 

tool, which enables gene expression experiments in this organ. 

 

Keywords: Pontastacus leptodactylus, cHH chirality, hepatopancreas, transcriptome, RNA-seq 

analysis, Illumina sequencing 



 
 

264 
 

Introduction 
 

The freshwater astacid Pontastacus leptodactylus, commonly called narrow-clawed crayfish, inhabits 

Western Asian and Eastern European lakes and watercourses. Its reproductive season includes mating 

from December to January and spawning in January. Eggs are incubated glued to the female pleopods 

till July [1]. Ovarian development takes place from June to November [2]. Induced molt through 

chirurgical intervention in P. leptodactylus maintained at 19ºC, led to a premolt period of 17 days 

ending with ecdysis (personal observations of the present authors). Adults naturally shed their 

exoskeleton in summer just after hatching, even though some of them molt also in autumn [3].  

Crustacean hyperglycemic hormones (cHHs) are a pleiotropic crustacean-specific neuropeptide 

family, functioning in a variety of physiological processes, recently reviewed by several authors 

[4,5,6,7,8]. The cHH family is divided into two subfamilies on the basis of their primary structure: 

(a) the cHH subfamily and (b) the molt-inhibiting hormone (MIH), the mandibular organ inhibiting 

hormone (MOIH) and the vitellogenesis/ gonad-inhibiting hormone (V/GIH) subfamily. The 

translated neuropeptides in the tissues as well as their isoforms derived from post-translational 

modifications and their modes of action were described only partially. Hence, a neurohormone name 

does not necessarily imply its entire range of functions. Several cHH variants are occasionally co-

existing in a single species. The variability can emerge from both different primary sequence and 

different post-translational modifications [9,10]. Recently, chirality was observed also in a lobster 

VIH due to L to D alteration in the fourth N terminal amino acid, a tryptophan residue [11] 

demonstrating larger extent of the phenomenon in crustaceans. cHHs are produced in the 

neurosecretory perikarya sited in the medulla terminalis of the optic ganglion, located in the 

crustacean eyestalk and named X-organ. The X-organ secretes the neuropeptides into the hemal sinus 

gland and the entire neuroendocrine complex is abbreviated XOSG. Structurally, the cHH 

prepropeptide is composed of a signal peptide, a cHH precursor related peptide (CPRP) and a mature 

peptide of 72 amino acids. The role of the CPRP is still unknown, but CPRP structures, post-

translational modifications and individual-related distribution have already been described [12,13]. 

The mature cHH contains six cysteine residues that form three disulfide bridges and potentially 

possesses an amidated C-terminus and a pyroglutamate blocked N-terminus [6]. Documented 

physiological processes influenced by the eyestalk ablation are vitellogenesis [14], food intake, 

digestion, and nutrient transport [15], molting [16], metabolism of lipids [17,18], regulation of 

glucose and proteins in hemolymph [17,19], hydromineral balance, regeneration and pigment 

regulation [20]. Several cHH members generally have an inhibitory effect, as the removal of the 

XOSG causes induction of both molt and reproduction. cHHs are produced also in other tissues: the 
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pericardial organ, the subesophageal ganglia, and the fore- and hindguts. The more comprehensively 

studied action of the cHH is to regulate carbohydrate metabolism. Its secretion follows a circadian 

rhythm, with a low concentration during the day which increases in the first hours of the night, and it 

is correlated to a similar daily pattern of the glycemia [21]. The injection of cHH induces a quick 

hyperglycemic response in treated animals. Apart from glucose metabolism, cHH mediates other 

metabolic functions of the hepatopancreas that represents the site of synthesis and secretion of 

digestive enzymes (amylases, proteases, lipases, and others) [22,23,24]. It is also involved in 

metabolism of proteins, lipids, and carbohydrates [25], as well as in the catabolism of organic 

compounds and in detoxification [26,27]. Indeed, cHH stimulates amylase secretion [28], and the 

release of free fatty acids and phospholipids [29] from the midgut gland. D-cHH is also involved in 

the control of molt, exerting its function by inhibiting the synthesis of ecdysone in the Y-organ and 

having an activity 10 times higher than L-cHH [30]. Contrasting activities were reported for the 

CHH’s regulation of reproduction, probably due to species specificity [31,32,33,34].  

The structure of the genes, the derived precursors and peptides have been recently reviewed by 

Webster and colleagues [7], while the dynamics of biosynthesis and release of cHH isoformes in 

Orconectes limosus have been clarified by Ollivaux and Soyez [35]. cHH peptide sequences were de 

novo sequenced through a multifaceted mass spectrometry approach by Jia and colleagues [36].  

Although P. leptodactylus is not considered a model organism, among decapods, it is one of the most 

studied species with about 143 published papers regarding its physiology [1,37,38,39], its resistance 

to different types of pollution and stress conditions [40,41,42] and concerning the cHH and its variety 

of functions [43,44,45,46]. Unfortunately this variety of studies does not reflect the fast progress of 

genomics and transcriptomics. Already in 1988 Sedlmeier [28] demonstrated that eyestalk factors 

have a direct effect on the digestive gland and the present study was aimed at the definition of the 

transcriptome of the hepatopancreas.  

The effect of the two isomers of cHH on gene expression in relation to their variety of assigned 

functions in the relevant tissues is still lacking. In this study we evaluated the effect of the two cHHs 

isoforms after an hour post-injection both by measuring the circulating glucose levels and by studying 

the hormonal effect on gene expression in the hepatopancreas with a digestive gland whole 

transcriptome analysis. Beside this gene expression experiment, the construction of a de novo 

assembly of the hepatopancreas transcriptome, dramatically increased the molecular information 

available for this species and undoubtedly provides an useful tool for further gene expression 

experiments in this organ. 
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Materials and Methods 

 

Crayfish maintenance and experimental design 

Adult P. leptodactylus specimens were obtained alive from an Armenian freshwater source on July, 

2011. They were kept for two weeks before the experiment in 120 L tanks provided with closed circuit 

filtered and thoroughly aerated tap water at ~18°C and were fed by fish pellets (Sera granular, 

Heisenberg, Germany) three times per week. Only females with no abdominally incubated ova were 

taken for the induction experiment. The females were at the end of the ova incubation period. 

The chemical synthesis of the peptides and the glucose level induction protocol were accomplished 

according to Mosco et al. [43] with a few modifications detailed below. The two synthetic cHH 

hormone isomers, D-cHH and L-cHH, were injected to the circulation. Thirty-two P. leptodactylus 

females were divided into four groups each composed of 8 females. Two of the groups were injected 

with D- and L-cHH, respectively (0.5 µg/female in 100 µl PBS). A control group was sham-injected 

by the hormone carrier (S). Bilateral ablation of the XO-SG, aimed at prevention of any possible 

interference due to endogenous cHH was performed 48 hours before the injections, and a fourth group 

of naïve females (N) was added to the experiment as control just before injections. All 32 females 

were sacrificed one hour post-injection. The incubation period included ten minutes of anesthesia in 

ice before sacrifice and all efforts were made to minimize animal’s suffering. Immediately prior to 

the hormonal injection the females were bled for the evaluation of the pre-induction hemolymphatic 

glucose level. A second bleeding was performed just before sacrifice. Hemocytes were pelleted from 

the sampled hemolymph and the serum was kept on ice for later glucose measurement, which was 

performed using a glucose oxidase method (glucose liquid mono reagent, Hospitex diagnostics, Italy). 

The statistical analyses of glucose levels  recorded in the four groups were performed using R, version 

2.14.1 software [47] as follows:  the normality of data was checked with a Shapiro-Wilk test and 

homogeneity of variance across groups was checked with a Bartlett test. The null hypotheses of both 

tests could not be rejected, hence, differences of glucose levels among the experimental groups were 

tested using non-parametric statistics, Kruskal-Wallis rank sum test with post-hoc Wilcoxon rank 

sum test pairwise comparisons with Bonferroni correction. Box and whiskers plots were drawn with 

the boxplot command of R. Glucose levels are expressed throughout as mean ± standard error. 

Carapax length was measured from its posterior edge to the base of the eye cavity just before sacrifice 

and a sample of hepatopancreatic tissue of ~5x5x5 mm was dissected out and immediately snap-

frozen in liquid nitrogen. The gastroliths were also taken for molt stage evaluation according to 
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Shechter et al. [48] using the molt mineralization index (MMI) (gastrolith width/crayfish carapace 

length).  

 

RNA extraction and sequencing 

Twelve females among the 32 were randomly chosen for the RNA sequencing. RNA was extracted 

from frozen tissues, homogenized in TriReagent RNA isolation solution (Sigma-Aldrich, Cat 

UN2821) following the manufacturer’s instructions. The resulted RNAs were further purified using 

the RNeasy kit (Qiagen, manufacturer's instructions). The RNA level was quantified by 

spectrophotometer and its quality was examined using capillary electrophoresis (BioAnalyzer 2100, 

Agilent).  

RNA sequencing was carried out at the Applied Genomics Institute (IGA, Udine, Italy), on an 

Illumina sequencer HiSeq2000. The hepatopancreas reference transcriptome assembly was derived 

from a 2X100 bp paired-end sequencing performed on a cDNA library obtained from equimolar 

amounts of RNA taken from all experimental females. Gene expression was evaluated using the one-

sided 50 bp Illumina sequencing from the 12 distinct RNAs.  

 

Sequences analysis 

The processing and analysis of the obtained raw sequences was carried out using the CLC Genomics 

Workbench 4.5 software (CLC Bio, Aarhus, Denmark). Raw sequence reads were trimmed according 

to base calling quality. The resulting 2X100 bp sequence reads were assembled assuming a paired 

reads distance comprised between 100 and 600 base pairs, and setting the penalties for mismatches 

to 2, insertions and deletions to 3 and similarity and length fraction to 0.9 and 0.5, respectively. The 

minimum allowed assembled contig length was set to 200 bp. The obtained contig assembly served 

as a comprehensive reference for the functional genomics RNA-seq analysis [49] of the P. 

leptodactylus hepatopancreas. We determined the presumptive amount of conceptual full length 

transcripts by using the Full-lengther Next webtool [50] considering alignments starting before the 

10th aa and with an e-value below 1e-04. Interspersed repeats and low complexity DNA sequences 

were detected with RepeatMasker version open-3.3.0 (default mode). Filtered contigs displaying an 

average coverage less than 25X of mapped 50bp reads were discarded prior to the RNA-seq analysis 

for creating a robust set of contigs not subjected to random expression fluctuations, corresponding to 

the 95th percentile of the genes expressed in the hepatopancreas.  
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The 50 bp sequencing reads from the 12 different samples (namely, N1, N2, N3, S1, S2, S3, L1, L2, 

L3, D1, D2 and D3) were individually mapped on the filtered reference set, considering a maximum 

number of mismatches cost of 3, a maximum of 10 hits for a read and expression values were 

calculated based on unique gene reads. The Baggerly’s test [51] was used to identify statistically 

significant differential expression using S as reference group; a FDR corrected p-value <0.01 was set 

as threshold of significant differential expression [52] and an additional threshold of minimum fold 

change of 2 was also implemented. The similarity among the profiles obtained from this study was 

examined by hierarchical clustering (complete linkage, average linkage and single linkage) using the 

Pearson correlation coefficient as a distance measure. An alternative clustering was performed by 

Principal Component Analysis (PCA).  

 

Transcripts annotation and their expression pattern  

Differentially expressed transcripts were characterized with the Blast2Go platform [53,54]. The 

characterized parameters were resemblance to genes with known function using BLASTx algorithm 

[55] against the NCBI non-redundant protein databases with an e-value cut-off of 10-6. The default 

Blast2Go resemblance annotations were also checked manually against the list of resemblances 

obtained for each contig by BLASTx, to conform to the UniProt nomenclature guidelines and to 

select the annotations in a more educated manner, based on the below described GO terms and domain 

characterization.  Blast2Go was used also to annotate the contigs assigning Gene Ontology (GO) 

functional terms [56] and Interpro domains annotations [57] with default settings. The GO and 

Interpro annotation outputs were modified with scripts developed in-house and imported into the CLC 

Genomics Workbench 4.5 environment for implementing the hypergeometric test [58] on the 

annotations. Significantly altered GO terms and Interpro domains were detected with this test 

considering a p-value threshold of 0.01 and a difference between observed and expected >1.  

 

 

 

 

Results and Discussion 

 

Morphological and physiological state of the animals 
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The morphometric characteristics and the molt stage of the experimental females as well as their 

hemolymphatic glucose levels before injection and at their sacrifice are presented in Table 1. The 

glucose level of all the 3 groups of eyestalk-less females was highly significantly lower than the 

native ones (Wilcoxon rank sum test: p<0.01; Figure 1A), but after an hour the injection of both 

cHHs was able to restore glycemia to almost normal levels (D-cHH and L-cHH injected animals vs 

native animals, Wilcoxon rank sum test: p=1; Figure 1B). On the contrary, the sham-injected animals 

still presented a significantly lower glycemia compared to all other groups (Wilcoxon rank sum test: 

p<0.02). The carapax length was similar among the four experimental groups, namely N, S, L and D 

(ANOVA and post hoc tests, p<0.05). All females were at intermolt with MMI<0.01 and all ovaries 

were immature according to Hubenova et al.[2].  

 

De novo assembly of the P. leptodactylus hepatopancreas transcriptome 

The Illumina 2X100 bp sequencing of the hepatopancreas of adult P. leptodactylus females, generated 

296,112,296 nucleotide reads. The number was reduced to 289,731,590 after quality trimming. The 

de novo assembly by the CLC Genomic Workbench produced 42,144 contigs with an average length 

of 802 bp. This assembly was used as a reference transcript library for subsequent analyses. A total 

of 9,474 contigs longer than 1Kb was obtained, while the longest contig almost reached 15 Kb in 

length. Table 2 summaries the trimming and assembly statistics. The raw Illumina reads were stored 

at the NCBI Sequence Read Archive (SRA: SRR650486), whereas 42,144 assembled contigs were 

deposited at NCBI Transcriptome Shotgun Assembly (TSAXXXX). Through the Full-Lenghter Next 

webtool [50] we determined the presumptive percentage of the full length transcripts present in our 

library. Hence, 1/3rd (32.2%) of the transcripts were putatively assembled to their full length, 1/3rd 

(32.6%) covered either the N-terminal or the C-terminal region, whereas the remaining 35.2% 

consisted of internal fragments.  

From the output of Blast2Go we checked the fifteen Top-hits species sharing similarity with the P. 

leptodactylus reference library. The three most represented species were Nematostella vectensis 

(Cnidaria), Daphnia pulex (Crustacea) and Tribolium castaneum (Insecta). Interestingly, a higher 

similarity was observed with the coelenterate in respect to the two arthropods, reasonably explained 

by the high amount of nucleodide sequences belonging to N. vectensis (47,065) stored at NCBI, in 

comparison to those of D. pulex (7,309) and of T. castaneum (16,790). The first fifteen BLAST top-

hits species are reported in the Supporting Information section (Figure S 1). To date, the only 

crustacean whose genome has been fully sequenced is the branchiopod Daphnia pulex [59]. Even 

though a few deep transcriptome sequencing approaches were applied to decapods [60,61], no study 
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has ever targeted Astacidae.  An astacoid epithelial assembly from Cherax quadricarinatus, 

performed by 454 was simultaneously prepared by the present co-authors and their collaborators and 

will be soon released for the public (Acc. Number GADE00000000). At present, only 275 nucleotide 

sequences belonging to the genus Pontastacus are stored at NCBI, while only 67 originated from 

Pontastacus leptodactylus. Next generation sequencing greatly simplifies large-scale molecular 

studies of non-model organisms, and this transcriptome sequencing with the assembly of 42,144 

contigs, represents the first large-scale sequencing approach in this genus, as well as a remarkable 

contribution to the genetic knowledge of decapods, paving the way to straightforward comparative 

molecular studies on non-model crustaceans. 

 

RNA-seq analysis of cHH isomer effects 

An average of 12.7±5.2 million short reads were obtained from the sequencing of RNAs extracted 

from the hepatopancreas of each sampled female. An average of 50.8±6.9 % reads were mapped to 

the reference transcriptome. Table 3 reports in detail the number of reads obtained from each adult 

female. The RNA-seq mappings of the 12 sequenced samples (N1, N2, N3, S1, S2, S3, L1, L2, L3, 

D1, D2 and D3) were used for the gene expression analysis. Only a selected set of 6,860 contigs with 

an average coverage >25X was used for the analysis, reducing the noise potentially caused by the 

high number of fragmented or poorly expressed transcripts, not strictly related to the hepatopancreas, 

as highlighted by the Full-lengther analysis. This selected set of transcripts accounts for about 96% 

of the total expression in this organ. The stringency applied to the contigs selection (FDR corrected 

p-value <0.01 and a weighted fold change at least of 2), identified the prominently differentially 

expressed transcripts in the pairwise comparisons, by using the S group as reference for all the 

analyses. Table 4 summarizes the numbers of differentially expressed genes while the complete list 

of differentially expressed genes is available in the Supporting Information (Table S 1). The 

expression profiles of the various females, namely the list of mapped reads per each gene in each 

sample were clustered by two methods, hierarchical clustering (Figure S 2A) and a principal 

component analysis (Figure S 2B), which highlighted a large difference between D-cHH-injected 

animals and all the other groups, which in turn clustered together and did not display detectable 

differences in this preliminary analysis. 

Effects of XOSG removal on the hepatopancreas gene expression 

The comparison between the S and N groups was useful to depict the effects derived solely from the 

XOSG removal procedure. XOSG extirpation resulted in the differential expression of 214 
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transcripts, with up-regulation (147 sequences, 68.7%) exceeding down-regulation (67 sequences, 

31.3%). It is likely that the transcripts characterized by an increase of expression in respect to the 

naïve state are connected to two main events, the injury and the reduced production of several 

hormones caused by the XOSG removal. 63% of the up-regulated and 67% of the down-regulated 

genes showed no resemblance to known sequences. Among the genes which demonstrated similarity 

we identified in particular some transcripts connected to glycolysis process, such as transcript 

containing enolase domain (IPR000941), probably connected to the removal of cHHs production 

sites. 

The hypergeometric test highlighted the carbohydrate metabolism (GO:0005975) and the chitinase 

activity (GO:0004568) as the most relevant GO terms repressed by XOSG extirpation; and many 

associated Interpro domains, e.g. glycoside hydrolase, family 9 (IPR001701), six-hairpin glycosidase 

(IPR012341) and chitinase II (IPR011583) were significantly repressed. Many other GO terms and 

Interpro signatures were found to be up-regulated, even though most of them could not be easily 

linked to any reported physiological effect of the extirpation. The most studied process in many 

crustacean species triggered by XOSG extirpation is undoubtedly vitellogenesis [62,63,64], but there 

is no uniform vitellogenesis-related physiological response to the extirpation.  

As for other genes, in pandalid shrimp, eyestalk ablation down-regulated the hepatopancreatic 

chitinase expression and also in P. leptodactylus we observed a significant repression of the IPR 

domain of the chitinase II (IPR011583) within the S group. This transcript pertains to the group 1 

reported in Salma et al. [65] that represent chitinases produced in hepatopancreatic tissues that may 

function in the digestion of ingested chitin and the modification of peritrophic membrane in the 

intestine. Other studies [15,66] showed that XOSG extirpation caused an increase in respiratory rate 

and a decrease in metabolic activity with respect to intact shrimps. Similarly, in P. leptodactylus the 

repression of three transcripts associated to metabolic process (GO:0008152) was observed in the S 

group, differently to Marsupenaeus japonicus [67] in which fructose-1,6-bisphosphatase was not 

significantly changed after XOSG removal, we observed an up-regulation of a transcript containing 

the fructose-1,6-bisphosphatase domain (IPR000146). This gene is involved in gluconeogenesis and 

cHH could affect also this metabolic pathway. XOSG removal affects also the circulating levels of 

hormones other than the cHH. These include the cHH type II hormones [7], the Molt Inhibiting 

Hormone (MIH), the Gonad/Vitellogenesis Inhibitng Hormone (GIH/VIH) and the Mandibular 

Organ-Inhibiting Hormone (MOIH). Hence, pathways controlled by these hormones may potentially 

be affected by the extirpation, an effect that would be  difficult to discriminate due to the pleiotropic 

nature of the cHH members, affecting multiple processes [68]. 
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Differential effects of the two cHH-isomers on gene expression. 

The injection of the two cHHs, distinguished only by chirality, showed different effects on gene 

expression. The comparison with the S group revealed only 45 differentially expressed transcripts in 

response to the administration of the L-isomer, whereas 917 transcripts were responsive to the D-

isomer. Among the transcripts differentially up-regulated after L-cHH injection we depicted an 

increase of aminopeptidase n-like and trypsin 4, both correlated to proteolytic activity (GO:0006508), 

while all the down-regulated ones were without similarity. Moreover no functional or structural 

feature (GO term or domain) could be significantly linked to L-cHH injection by the hypergeometric 

test.  

To examine a possible overlap in the effects exerted by L- and D-cHH we identified differentially 

expressed transcripts shared by the two treatments. Six transcripts elucidated differential expression 

cause by both treatments, but the majority of them had different trend of expression. No transcripts 

shared up-regulation caused by both treatments, while 2 non-annotated transcripts were mutually  

down-regulated (Pastle_hepa_c8804 and Pastle_hepa_c22565). Three transcripts were up-regulated 

after L-cHH, but down-regulated following D-cHH injection; among them a trypsin 4, a transcript 

containing chitinase II domain (IPR011583) and a non-annotated one. Only one non annotated 

transcript resulted to be up-regulated in D and down-regulated in L group. 

In the light of the above results, the analysis was mainly focused on the variations between the S and 

the D groups. 

Table 5 presents the Interpro domains and the GO terms altered in the in D group in comparison to 

the S group as revealed by the hypergeometric test. 

As previously shown by the PCA analysis, the D-cHH administration caused pronounced alterations 

in comparison to the sham injected females, dominated by down-regulated genes (857 transcripts, 

accounting for 93.5%). The hypergeometric test elucidated a few D-cHH up-regulated functions, and 

in particular several GO terms related to peptidases, including cysteine-type peptidase (GO:0008234) 

and endopeptidase activity (GO:0004197), the papain domain of peptidase C1A, (IPR013128) and 

the cathepsin propeptide domain of proteinase inhibitor I29 (IPR013201), which is usually found in 

the N-terminus of many proteinases.  

On the contrary, glycolysis (GO:0006096) appeared to be the GO term most significantly repressed 

in the D-cHH-injected female crayfish, which may be related to the return of the glycemic level to 
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the native state, and suggests a modulation activity of the D-cHH on the glucose and energy 

metabolism in the hepatopancreas. 

Given the absence of the source of endogenous cHH, it was of interest to assess whether the injection 

of exogenous hormone was able to restore, even partially, the native conditions. Obviously, XOSG-

ablation does not only remove the primary organ of cHH synthesis (cHH type I), but also prevents 

the secretion of other cHH superfamily hormones (cHH type II), possibly causing a series of gene 

expression changes not solely related to the deprivation of cHH. Therefore, the administration of 

synthetic cHH was only expected to partially restore the gene expression profile observed prior to 

XOSG ablation. In fact, about 1/3th (50 out of 147) of the transcripts up-regulated in the S group were 

restored at lower level following the D-cHH injection (Figure 2A). Among them we identified 

transcripts related to several different cellular processes and molecular functions, including cellular 

organization (i. e. actin and tubulin beta 2), transcripts related to RNA processing and protein 

synthesis, (i.e, mRNA turnover protein 4-like protein), a transcript containing Fibrillarin domain 

(IPR000692) that plays a role in ribosomal RNA processing and lysyl-tRNA synthetase. Two cuticle 

proteins were also detected, playing a role in calcium ion binding; an armet-like protein precursor 

containing EF-Hand 1, calcium-binding site domain (IPR018247) and crustin 1 antimicrobial peptide 

were also restored by the D-cHH injection. Figure 2A shows two transcripts with an expression fold-

change higher than the others, one encoding a C-reactive protein (CRP) containing a pentaxin domain 

(IPR001759) and the other transcript coding for a cuticle protein which contains the Reberse and 

Riddiford arthropod chitin binding domain (IPR000618). CPR is a fundamental player in the 

inflammatory response, in particular binding to the phosphocholine expressed on the surface of dead 

or dying cells in order to activate the complement system via the C1Q complex. Eyestalk ablation did 

not cause an increase  inthe level of CPR mRNA In M. japonicus [69]. In the present study and in a 

different tissue an up-regulation of about 9.5-fold was depicted following the XOSG-ablation, 

subsequently restored by the D-cHH administration. But most notably, the expression of four 

transcripts crucially involved in glycolysis, which were increased in the S group, returned to lower 

levels after the D-cHH administration. Namely, phosphoglycerate mutase 1, two highly similar 

enolases catalyzing the eighth and ninth steps of glycolysis respectively, and fructose-1,6-

bisphosphatase, an allosteric regulator of pyruvate kinase, the final step of glycolysis, all followed 

the same expression trends. This supports the hypothesis that D-cHH could have mainly an inhibitory 

effect on transcripts up-regulated following XOSG ablation and a minor effect on those silenced by 

the ablation, that probably required other molecules and centers of control located in the removed 

eyestalk. Hence,  only 5% of the repressed genes upon ablation (3 out of 60) changed their trend of 

expression after D-cHH administration (Figure 2B). One of them resembles the 3-hydroxybutyrate 
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dehydrogenase, related to oxydoreductase and metabolic processes and the two remaining transcripts 

do not have an annotated function. 

The L-configuration provides the peptide with a strictly hyperglycemic activity whereas the D-cHH 

may exhibit, in addition to a strong hyperglycemic potency. The finding of several transcripts 

containing a sodium symporter domain (IPR002657) suggests that D-cHH may also regulate glucose 

absorption by the hepatopancreas, a process that occurs through a Na+/D-glucose co-transport [70]. 

These data all together suggest that, despite being apparently able to restore glycemia to almost 

normal levels in eye-ablated animals one hour post injection (see Table 1), L-cHH does not 

significantly influence gene expression in the hepatopancreas. Therefore the apparent positive effect 

of the two neuropeptides on glycemia, at least after a short period, is either provided by a specific 

action of different tissues, or more likely still on the hepatopancreas, but through different 

mechanisms, one involving gene expression and the other one involves post transcriptional enzyme 

activation. It is also possible that the effect of L-cHH on gene expression would be only visible at 

longer periods from its injection, after more than one hour. An additional experiment, similar to the 

one described here, but implementing a prolonged time-course and sampling of additional tissues has 

already been performed in our laboratory, and is currently being analyzed to provide better insight to 

the presented alternative hypotheses. 

 

 

 

 

 

 

 

 

Conclusions 
 

The effects of two cHH enantiomers on a multi-gene expression profile of P. leptodactylus were 

examined here. The presence of both cHH isomers has been demonstrated only in Astacoidea [71]. 

The scarcity of P. leptodactylus sequenced transcripts required the construction of a comprehensive 
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transcriptomic library of its hepatopancreas of 42,144 contigs obtained through Illumina sequencing. 

This library was used as a reference gene assembly in a RNA-seq experiment. A short term effect of 

two enantiomers of the peptidic hyperglycemic hormone (D-cHH and L-cHH) of P. leptodactylus on 

hepatopancreatic gene expression was examined at two levels, the specific gene level and the 

functional group level. 

The overall effect of the different treatments was demonstrated by the clustering of the 12 individual 

transcript profiles, which resulted in the independent clusterization of D-cHH treated females in 

respect with all the other samples.  

The XOSG synthesizes and secretes multiple peptidic hormones, including D- and L-cHH. The effect 

of its removal on gene expression profiles revealed the differential expression of 214 transcripts, 147 

up-regulated and 67 down-regulated. The carbohydrate metabolic activity was repressed as expected 

from the elimination of the glycemia inducing hormone.  

The L-cHH injected individuals revealed an expression profile similar to sham injected individuals 

and to the native non- treated ones. Moreover, D-cHH caused a considerable short term change in the 

hepatopancreatic gene expression profile. 917 transcripts were responsive to this isomer: 857 out of 

them were down regulated and only 60 were up-regulated. The functions mainly affected were the 

up-regulated proteolytic activity and down-regulated glycolysis. L-cHH caused much less 

pronounced effect, with only 45 differentially expressed genes (30 up-regulated and 15 down-

regulated), without the detectable alteration of any specific function. 

Hypothesized glycemia-related mechanisms of L- and D- cHH may involve protein activation with 

no changes in gene expression for both isomers and an additional D-cHH mechanism which involves 

changes in gene expression, which may be related or not to the increase of glucose levels in the 

circulation. 

D-cHH undoubtedly acted on the molecular patterns of gene expression of the digestive gland, as 

clearly highlighted by the number of differentially expressed transcripts triggered after the hormone 

injection and by the marked functional alterations identified by the hypergeometric test. This latter 

test, distinguished an opposite trend related to the glycolysis in the XOSG ablated group (S) 

characterized by the up regulation of the enolase (IPR000941) that resulted to be significantly 

repressed after the D-cHH administration. Moreover, this short-time study showed that D-cHH was 

apparently able to restore the expression of a certain number of transcripts to the level of the naïve 

state, and it was also able to affect molecular pathways not altered by the XOSG ablation. 
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Figures 

 

Figure 1: Box plot of the glycemia values obtained in the four groups S – sham injected, N – intact, 

L – L-cHH-injected, D- D-cHH-injected at the beginning of the experiment and one hour post-

injection. 
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Figure 2: A Expression trend of the transcripts which were up-regulated after XOSG ablation and 

restored their original level following D-cHH injection. 

B Expression trend of the transcripts which were down-regulated after XOSG ablation and up-

regulated following D-cHH injection. 
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Supporting Information Figure captions 

 

Figure S 1: The distribution of BLAST 15 Top Hit Species matching P. leptodactylus contigs.  
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Figure S 2 A: Hierarchical clustering of the 12 mapping profiles. S – sham injected, N – intact, L – 

L-cHH-injected, D- D-cHH-injected. B: principal component analysis of the 12 mapping profiles. 

Green – native, Red – sham, Blue – L-cHH-injected and Yellow – D-cHH-injected.  
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Tables 
 

Experimental group 

[n=8 in each group] 

Carapax 

length [mm] 

*MMI - Gastrolith 

width/Carapax 

length [mm/mm] 

Glucose levels 

[mg/dL] 

0 min. 00 min 

Native 4..3±2.1  0.0000±0.0030  

..23±0.0

5 23.00±2..4  

Sham-injected 4..3±1.3  0.00.3±0.0000  

2..3±0.4

4 2.02±0.5.  

L-cHH-injected 32.5±1.0  0.0002±0.0005  

1.40±2.2

0 24.03±4.24  

D-cHH-injected 4...±2.0  0.0015±0.0002  

1.3.±0.0

4 22.35±1.41  

 

Table 1: Morphometric characteristics, molt stage of the experimental females, their hemolymphatic 

glucose levels before injection and at their sacrifice. *MMI – molt mineralization index. 

 

 

 

Trimming statistics  

Number of reads before trimming 1.0,221,1.0 

Number of reads after trimming 10.,042,5.0 

Paired-end reads after trimming 104,050,300 

Single reads after trimming 5,003,220 

Sequences discarded during 

trimming 

0,400,000 

Average length before trimming 202.0 

Average length after trimming .0.1 

Assembly statistics  

Assembly size [bps] 44,040,04. 

Total number of contigs 31,200 

N50 2100 

N80 353 

N90 420 

Mean contig length 001 

Median contig length 33. 

Longest contig 23,.20 

Number of contigs longer than 1 Kb .,303 

GC content 30.33%  
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Table 2: Trimming statistics and assembly summary of the Reference dataset. N50, 80 and 90 are the 

quantiles corresponding to the 50, 80 and 90 percentiles, respectively. 

 

Sample Total number of reads Mapped reads (%) 

N1 23,784,636 13,086,802 (55.0%) 

N2 10,985,623 5,738,820 (52.2%) 

N3 17,933,507 9,093,453 (50.7%) 

S1 8,589,134 4,239,139 (49.4%) 

S2 12,303,830 5,904,274 (48.0%) 

S3 14,403,132 6,722,862 (46.7%) 

L1 10,579,155 6,740,537 (63.7%) 

L2 13,929,531 7,154,589 (51.4%) 

L3 11,168,774 6,111,228 (54.7%) 

D1 6,239,023 2,596,219 (41.6%) 

D2 12,781,748 4,431,787 (34.7%) 

D3 7,379,961 3,173,378 (43.0%) 

 

Table 3: Total number of sequencing reads obtained per animal and the number of the reads mapped 

and the corresponding percentage, N= native group, S= sham-injected, L= L-cHH injected and D= 

D-cHH injected 

 

 

 

Group Number of differentially 

expressed transcripts 

Up 

regulated 

Down 

regulated 

S vs N 214 147 67 

L vs S 45 30 15 

D vs S 917 60 857 
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Table 4: Number of differentially expressed transcripts in each of the experimental groups. FDR 

corrected p-value <0.01, minimum difference in fold change = 2. S= sham-injected, L= L-cHH 

injected and D= D-cHH injected. 

 

Group Trend Annotation p-value Description 

S vs N + IPR006195 0.000220 
Aminoacyl-tRNA synthetase, class 

II 

S vs N + IPR002930 0.000.0. Glycine cleavage H-protein 

S vs N + IPR004365 0.000.0. 
Nucleic acid binding, OB-fold, 

tRNA/helicase-type 

S vs N + IPR020809 0.000.0. Enolase, conserved site 

S vs N + IPR020810 0.000.0. Enolase, C-terminal 

S vs N + IPR000537 0.00100 UbiA prenyltransferase family 

S vs N + IPR000941 0.00100 Enolase 

S vs N + IPR004364 0.00100 
Aminoacyl-tRNA synthetase, class 

II (D/K/N) 

S vs N + IPR003604 0.00100 Zinc finger, U1-type 

S vs N + IPR018150 1000.00  
Aminoacyl-tRNA synthetase, class 

II (D/K/N)-like 

S vs N + IPR011053 0.00100 Single hybrid motif 

S vs N + IPR001790 0.00503 Ribosomal protein L10/acidic P0 

S vs N + IPR016027 0.00002 Nucleic acid-binding, OB-fold-like 

S vs N + IPR012340 0.00002 Nucleic acid-binding, OB-fold 

S vs N + IPR012675 0.00.12 Beta-grasp domain 

S vs N + GO:0005960 0.000.0. Glycine cleavage compleX 

S vs N + GO:0004659 0.000.0. Prenyltransferase activity 

S vs N + GO:0030414 0.00100 Peptidase inhibitor activity 

S vs N + GO:0000287 0.00030 Magnesium ion binding 

S vs N + GO:0004634 0.00.12 Phosphopyruvate hydratase activity 

S vs N + GO:0004867 0.00.12 
Serine-type endopeptidase inhibitor 

activity 

S vs N - IPR001701 2.40E-05 Glycoside hydrolase, family 9 

S vs N - IPR012341 0..2 E-05 Six-hairpin glycosidase 

S vs N - IPR008928 2.0.E-05 Six-hairpin glycosidase-like 

S vs N - IPR017853 0.000354 Glycoside hydrolase, superfamily 
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S vs N - IPR011583 0.0014 Chitinase II 

S vs N - IPR001223 0.0014 
Glycoside hydrolase, family 18, 

catalytic domain 

S vs N - IPR013781 0.00423 
Glycoside hydrolase, catalytic 

domain 

S vs N - GO:0005975 0.0003.0 Carbohydrate metabolic process 

S vs N - GO:0043169 0.000503 Cation binding 

S vs N - GO:0003824 0.000050 Catalytic activity 

S vs N - GO:0004568 0140.0  Chitinase activity 

vs S D + IPR013128 0.0000530 Peptidase C1A, papain 

vs S D + IPR013201 0.000000 
Proteinase inhibitor I29, cathepsin 

propeptide 

vs S D + IPR000668 0.0013 Peptidase C1A, papain C-terminal 

vs S D + GO:0008234 0.000224 Cysteine-type peptidase activity 

vs S D + GO:0004197 0.00533 
Cysteine-type endopeptidase 

activity 

vs S D - IPR000941 0.0050 Enolase 

D vs S - IPR011042 0.0050 Six-bladed beta-propeller, TolB-like 

vs S D - GO:0006096 0.000020 Glycolysis 

vs S D - GO:0030234 0.00333 Enzyme regulator activity 

 

Table 5: List of the Interpro domains and GO terms differentially regulated by XOSG removal (S) 

or by D-cHH-injection (D), detected by the Hypergeometric test. + designates up-regulation and – 

down-regulation. 
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Altri organsmi: 

 

Nel corso di questo dottorato ho avuto la possibilità di lavorare con dati trascrittomici anche di altre 

specie. 

I manoscritti derivanti dall'analisi di questi dati, però, non sono ancora in fase sufficientemente 

avanzata per la pubblicazione in questa tesi. 

Assieme a M. galloprovincialis nei primi anni della tesi ho avuto modo di elaborare dati di 

sequenziamento trascrittomico 454 di Ruditapes philippinarum che ha fornito 1.288.514 sequenze. 

A causa delle caratteristiche intrinseche di questo tipo di sequenze, che le differenziano dalle sequenze 

Illumina essendo più lunghe e con una possibilità di avere al loro interno un maggior numero di errori 

di sequenziamento, si è reso necessario modificare la  pipeline di analisi. 

In questo caso in alternativa al CLC Genomic Workbench, non particolarmente adatto per 

l'elaborazione di dati 454, è stato utilizzato Newbler, un software prodotto dalla 454 Life Sciences 

appositamente sviluppato per la gestione di dati proveniente da sequenziamento 454. 

Questo assemblaggio ha prodotto 81.410 contig. 

L'aver assemblato anche il trascrittoma di R. philippinarum ci ha permesso, tra le altre cose, di 

effettuare uno studio comparativo dei trascritti codificanti peptidi antimicrobici tra questo 

trascrittoma e il trascrittoma di Mytilus galloprovincialis. 

Un altro organismo di cui abbiamo assemblato e analizzato il trascrittoma è il gambero della Luisiana 

Procambarus clarkii. 

Dal peduncolo oculare di 4 esemplari di sesso misto è stato possibile ottenere  83.170.732 reads 

paired-end mediante sequenziamento Illumina (Hiseq 2000). 

L'assemblaggio è stato elaborato con Trinity e i contig risultanti sono stati processati nello stesso 

modo dei contig di Pontastacus leptodactilus, ossia con una pipeline comprendente CD-HIT e 

successivamente CAP3. 

Da questo assemblaggio è stato possibile ottenere 81.231 contig con una lunghezza media di ben 1036 

pb e un N50 di 1860pb. 

I dati ottenuti al momento sono in fase di analisi ed è in scrittura un articolo descrittivo del trascrittoma 

di questo organismo. 
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