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Chapter 1 

Introduction 

The development of Digital Signal Processing during the last thirty years 
is comparable only with the development of high-speed computers, micro-
electronics and fabrication technologies for integrated circuits. Indeed, 
the rapid development of Digital Signal Processing has parallelled in time 
the development of all those electronic technologies that have made phys-
ically realizable the algorithms of signal treatment. At the same time, 
the necessity for implementing more and more complex and powerful sig-
nal processing algorithms has been one of the most important stimuli for 
the development of those technologies. 

The concept of signal is extremely general. A signal is any physical 
quantity that is a function of one or more independent variables such 
as time, distance, temperature or pressure. A signal is the voice, the 
music, a single image or a video, is the pression, temperature or the 
cardiac rhythm of a body, are the electrical impulses of brain, is the level 
of a tide or the flux of a ocean current, is a seismic waveform or the 
spectrum of a star, is the oscillation or vibration of a ship, a car, an 
airplane or any other engine, is the electromagnetic waveform by which 
data are transferred both on a wired or wireless transmission system, is 
the magnetic or optical or mechanical pattern by which data are storaged 
in any physical medium, is the N-tupla of electric signals that comes 
from an array of antennas or microphones, is the text of a book or of an 
handwritten sentence, etc. All these signals are the object of interest of 
Digital Signal Processing. Signal processing algorithms operate on these 
signals in order to extract information, to enhance some characteristics 
of the signal, to equalize the signal by compensating for both linear 
and nonlinear distortions, to compress data by removing redundancy, to 
regenerate the signal after its acquisition, to cite but a few applications. 

For severa! years linear filters have played a crucial role in the de-
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velopment of digital signal processing techniques. The success of linear 
filters is due to their inherent simplicity. Design, analysis and imple-
mentations of these filters are relatively straightforward in many applica-
tions. However, there are several situations in which linear filters perform 
poorly. In fact many real world systems present nonlinear characteris-
tics. In order to cope with nonlinear systems different nonlinear filters 
have been developed. The most important nonlinear filters families are 
homomorphic filters, morphological filters, nonlinear mean filters, order 
statistics filters and polynomial (or Volterra) filters. The class of poly-
nomial filters in particular has focused the attention of researchers for 
its simplicity. Volterra filter input-output relationship derives from the 
truncation of the discrete Volterra series. A brief review of the Volterra 
filter theory is presented in Appendix LA. Several researchers have used 
the Volterra series representation of nonlinear systems in order to cope 
with the nonlinearities that are present in digital satellite links [10, 11], 
in high density magnetic recordings [16], in voiceband data transmission 
systems [13], in high density optical systems [1], in biologica! phenom-
ena [63, 74], in semiconductor devices [64, 99, 100], in image processing 
[112], in drift oscillations in random seas [71], in human voi ce [96] and in 
loudspeakers [49, 53, 69]. 

One of the most active research areas of Signal Processing is that of 
Adaptive Filtering. Adaptive filters have the remarkable ability of opti-
mizing their own performances through recursive modification of internal 
parameters. This characteristic is particularly advantageous when the 
application environment in which they operate is not accurately known 
a priori by the designer. Moreover, this self adjustment capability allows 
the adaptive filters to operate optimally also in presence of signals with 
time varying statistics. As a matter of fact adaptive filters have found ap-
plications in areas as diverse as voiceband data modems, antenna arrays, 
radar, sonar, digital satellite transmission, mobile telephony, speech com-
pression, voice echo cancellation and spectral estimation, to name but a 
few. In Figure 1.1 the typical structure of an adaptive filter is repre-
sented. The adaptive filter coefficients are adapted at each time in order 
to minimize a cost function of the error e( n) between the output of the 
adaptive filter and a desired signal d(n). 

This is the scenario where the research work of this thesis takes place. 
The Ph.D. candidate has made research on two main fields of Digital 
Signal Processing: on linear and nonlinear adaptive filtering and on the 
emerging problem of nonlinear channel equalization or linearization by 
means of both recursive and non recursive polynomial filters. The re-
search work was started by the development of some novel fast and nu-
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x(n) ADAPTIVE 
FILTER 

y(n) - + d(n) 
i--~~~--=-+~~~~~-

e(n) 

Figure 1.1: The adaptive filter. 

3 

merically stable square root RLS algorithms for linear filters. A very 
common and fast converging approach to adaptive filtering is the Recur-
sive Least Square (RLS) technique. In this technique at each time the 
following exponentially windowed cost function is minimized 

n 
Jn = L Àn-k[d(k) - dn(k)] 2 (1.1) 

k=O 

where À is an exponential weight called "forgetting factor" that controls 
the rate of tracking time varying signals, d( k) is the desired adaptive filter 
output and dn(k) is the adaptive filter output at time k. In particular in 
the case of linear adaptive filters we have 

(1.2) 

where Xk is the input data vector and Wn is the optimal vector coefficient 
at time n. The classica! solution of the RLS problem requires an order 
N 2 of multiplications (where N is the linear filter memory length) and 
suffers long term numerica! instability in a limited precision environment. 
Several algorithms have appeared in literature in order to solve the RLS 
problem in a fast manner (i.e. with computational complexity of order 
N). Many of these algorithms suffer severe numerica! stability problems 
[29, 29, 41, 60, 134). The most successful fast and numerically stable 
classes of algorithms are the Stabilized Fast Transversal Filter [135], the 
Lattice RLS [60] and Fast Lattice QR algorithms [110, 111, 115, 121]. 
In particular, the latter class has focused the interest of researchers in 
recent years for its numerica! robustness. The student has developed 
some novel fast and numerically stable RLS algorithms based on two 
different square root factorizations of the inverse autocorrelation matrix. 
The novel algorithms belong to the class of Fast Lattice QR algorithms, 
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but the derivation of the algorithms is algebraic, rather than geometrical 
as in most of Fast QR algorithms. 

Successively, the student has involved himself in extending these al-
gorithms to the general class of Volterra filters. In particular, a novel 
algebra called V-vector Algebra has been developed. This is a formal 
basis that allows the development of Volterra adaptive filter algorithms 
as an extension of linear adaptive techniques. Particularly, the vectors of 
linear algebra are here substituted by a novel entity, the V-vector, which 
can be viewed as a non rectangular matrix. Despite V-vector algebra was 
initially derived in order to develop Volterra adaptive filters, it can be 
applied also for the development of multichannel linear adaptive filters 
with channels of different memory lengths. 

Another field of adaptive filtering that was studied by the candidate is 
the adaptive infinite impulse response (IIR) filtering. Adaptive IIR filters 
have been the subject of active research for several years. In spite of the 
large amount of work that has been clone some open issues still remain. 
One of these issues is that of ensuring the stability of the time-varying 
IIR filter that results from the identification process. The candidate has 
contributed to this research area by developing a sufficient time-varying 
bound on the maximum variation of the coefficients of an exponentially 
stable time-varying direct-form homogeneous linear recursive filter. The 
stability bound is less conservative than all previously derived bounds 
for time-varying IIR systems. The bound is then applied to control the 
step size of output-error adaptive IIR filters to achieve bounded-input 
bounded-output stability of the adaptive filter. 

The second part of the doctorate research work was devoted to the 
emerging problem of nonlinear equalization or linearization. This re-
search started with the development of some theorems for the exact in-
version and pth order inversion of a large class of nonlinear filters. This 
class includes most causal polynomial systems with finite order as well 
as many nonlinear filters with nonpolynomial input-output relationship. 
In particular, it was proved that the inverse of many Volterra filters 
is a recursive polynomial filter. Recursive polynomial filters are inher-
ently unstable in the sense that it is always possible to find bounded 
input signals which drive the filter to instability. lndeed, the stability 
of many polynomial filters is input dependent: if the linear part of the 
filter is stable and the input signal is sufficiently small the filter is stable 
(21, 68, 7.5, 84, 86, 87, 88, 97, 98]. A first sufficient stability condition 
for recursive quadratic filters was derived by the student at the time of 
the Laurea thesis. During the Ph.D. studies, this condition has been ex-
tended to the most general case of recursive Volterra filters of any finite 
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order. 
By exploiting the expression of the exact inverse of recursive or non-

recursive polynomial filters that was recently derived, a theory for the 
exact and pth order equalization or linearization of nonlinear systems 
with known recursive or nonrecursive polynomial input-output relation-
ship was developed. The theory is an extension of the standard equal-
ization technique for linear systems. Moreover, the proposed pth order 
linearizers/equalizers can be implemented by cascading modular and sta-
ble components. Thus, these filters can be easily realized using VLSI 
circuits. By using the above mentioned theory of pth order equaliza-
tion/linearization a subband pth order prelinearizer for loudspeakers was 
designed and successfully tested in a synthetic environment. 

The dissertation is organized as follows. In Chapter 2, the novel fast 
square-root RLS adaptive filtering algorithms for linear filters are pre-
sented. In Chapter 3 the extension by means of V-vector algebra of linear 
adaptive filters to Volterra and linear multichannel filters is discussed. 
The sufficient stability bounds for slowly-varying direct-form recursive 
linear filters and their applications in adaptive IIR filters are presented 
in Chapter 4. The stability of discrete time recursive polynomial filter is 
discussed in Chapter 5. In Chapter 6, the theorems we mentioned ear-
lier about the inversion of a wide class of nonlinear systems are derived. 
Chapter 7 presents the theory for the equalization and linearization of 
nonlinear systems. Final conclusions and recommendations for future 
work are made in Chapter 8. 



Appendices 

1.A Discrete Volterra Filters 
A single input single output discrete system can be defined as an operator 
that maps input sequences x(n) of R 1 or e into output sequences y(n) 
of R or C, where the discrete index n belongs to Z or N, such that 

y(n) = S[x(n)]. (1.3) 

It is well known that time-invariant (TI) systems are characterized by 
the property 

y(n + m) = S[x(n + m)] (1.4) 
and that the output of a linear time-invariant system (LTI) is given by 
the convolutional sum 

+oo 
y(n) = L h(m)x(n - m), (1.5) 

m=-oo 

where h( m) is the impulse response of the discrete system and completely 
characterizes the LTI system. 

A system is defined causa[ if the output at any given time does not 
depend on the future values of the input. An LTI system is causal if and 
only if 

h(m)=O Vm<O. (1.6) 
In a very similar manner, a discrete nonlinear time invariant system 
(NTI), with certain restrictions, can be represented with the following 
input-output relationship called Volterra series. 

+oo 
y(n) = ho+ L h1(m1)x(n - m1) + 

m1=-oo 

1 N, z, n, e represent the sets of natural, integer, real, complex numbers, 
respectively 
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+oo +oo 

L L h2(mi, m2)x(n - mi)x(n - m2) + ... + 
+oo +oo 
L ... L hp(m1, ... ,mp)x(n-m1) ... x(n-mp)+ ... 

m1 =-oo mp=-oo 

(1. 7) 

Another way of expressing the input-output relationship in ( 1. 7) is 

y(n) = Ho[x(n)] + H1[x(n)] + H2[x(n)] + ... + Hp[x(n)] +... (1.8) 
in which 

Ho[x( n )] = ho (1.9) 
and 

+oo L hp(mi, ... , mp)x(n - mi) ... x(n - mp)· 
m1 =-oo mp=-oo 

(1.10) 
Note the analogy with linear filters: the input-output relationship in 
(1. 7) is a sum of convolutional series of different order and the term of 
order 1 is the input-output relation of a discrete linear filter. The terms 
hp(m1, m 2 , ••• , mp) are called Volterra kernels and fully characterize the 
nonlinear system response. In particular we can always assume these 
kernels symmetric, i.e. by considering any permutation (ii, i2 , ••• , ip) of 
the indexes (mi, m 2, ... , mp) we can always assume 

(1.ll) 

In fact, if the Volterra kernel hp( mi, m 2, ••• , mp) is not symmetric we can 
compute the kernel 

L hp(ni, n2 , ••• , np)· 
a.Il possible 

permuta.tions of 
(m1, ... ,mp) 

(1.12) 

By substitution in (1.10) it is trivial to prove that hp(mi, ... , mp) and 
h~ ( m 1 , ... , mp) define the same operator. 

A nonlinear time-invariant system is causal if and only if 

hp(mi, m 2 , ••• , mp) =O Vmi <O i= 1, ... ,p and Vp. (1.13) 

The causal operator Hp[x(n)] can also be written as 
+oo 
I: ... 

(1.14) 
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where we have summed together all the terms hp(m1 , ... , mp) that differ 
only for an index permutation. 

The Volterra series is a power series with memory. This can be seen 
by changing the input by a gain factor a such that the new input is ax(n). 
The output y(n) is then 

+oo +oo 
y(n) =:= L Hp[ax(n)] = L anHp[x(n)]. (1.15) 

p=O p=O 

Indeed the Volterra series is considered as a Taylor series with memory. 
As a consequence of this power seri es character, convergence difficulties 
arise w hen nonlinear systems including saturating elements are modelled. 
In fact, the same problem exists also for the Taylor series representation 
of strongly nonlinear functions. 

Discrete Volterra filters are originateci from the discrete Volterra se-
ries with a double truncation. They are obtained by limiting the mem-
ory of the Volterra series to a memory length N (time truncation) and 
by limiting the maximum order of the nonlinearity ( order truncation). 
The input-output relationship of a Volterra filter of order p and memory 
length N is given by 

N-1 

y(n) = ho+ L h1 (m1)x(n - mi)+ 

N-1 N-1 

L L h2(mi,m2)x(n-m1)x(n-m2)+ ... + 
N-1 N-1 

L ... L hp(mi, ... ,mp)x(n-m1 ) •.. x(n-mp) 

(1.16) 

It is costume to drop the constant term h0 from the expression (1.16). 
Thus, in the next chapters we will not consider anymore this term. 

Volterra filters can be represented by means of multidimensional lin-
ear transforms. In fact, it is possible to consider for example the relation 
that defines the second order homogeneous Volterra filter 

N-1 N-1 

y(n) = L L h2(mi, m2)x(n - ml)x(n - m2) 

as a particular form of 2-D filtering 
N-1 N-1 

w(ni, n2) = L L h2(mi, m2)v(n1 - mi, n2 - m2) 
m1=0 m2=0 

( 1.17) 

(1.18) 
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where v(n1 - mi, n2 - m2) = x(n1 - m1)x(n2 - m 2) and n1 = n2 = n, 
such that y(n) = w(n, n). In order to characterize the quadratic kernel 
it is possible to use the 2-D z-transform of h2(m1, m2) 

N-1 N-1 

H2(z1, z2) = L L h2(m1, m2)z1m1 z2m2 (1.19) 
m1=0 m2=0 

or its Fourier transform. We can deal in a similar manner also with 
higher order homogeneous Volterra filters. 

Another interesting interpretation of Volterra filters is that of consid-
ering the Volterra filter as a linear multichannel filter bank with channels 
of different memory length and input given by a product of samples. Let 
us consider for instance the second order homogeneous filter in (1.17). 
This is also gi ven by 

N-1 

y(n) = I: Li[x(n)x(n - i)] (1.20) 
i=O 

where the linear filter Li is 

N-1-i 

Li[u(n)] = L h2(j,j + i)u(n - j). (1.21) 
j=O 

This interpretation of Volterra filters has inspired the development of the 
V-vector Algebra presented in Chapter 3. 



Chapter 2 

Fast Square-Root RLS 
Adaptive Filtering 
Algorithms 

2.1 Introduction 
Many real-time signal processing problems, such as adaptive filtering and 
prediction as well as system identification, can be solved by means of re-
cursive least squares (RLS) algorithms [12, 60]. However, sometimes RLS 
algorithms exhibit unacceptable numerica! performances in limited pre-
cision environments. N umerical problems during recursion can be partic-
ularly experienced in 'fast' RLS algorithms. Fast RLS algorithms require 
a complexity that grows linearly with the filter order. A number of al-
gorithms which overcome the numerical instability problem of fast RLS 
algorithms have appeared in the literature [89, 90, 110, 111, 115, 135]. 
Popular fast and stable RLS algorithms such as the numerically stable 
fast transversal filter (SFTF) [135] and the fast lattice QR decomposi-
tion algorithms [110, 111, 115, 121] reduce the computational complexity 
to O( N) operations per time instant. Other stable algorithms, such as 
the QR decomposition based algorithms [4, 51] or the square-root Schur 
RLS adaptive filters [143, 144] require, for their fast implementation, a 
systolic array of processing elements. 

Part of the content of this chapter was presented in 
Alberto Carini, "A Novel Givens Rotation Based Fast SQR-RLS Algorithm," Proc. 
of E USIPC0-96, VIII European Signa[ Processing Conference, Trieste, Italy, Septem-
ber 10-13 1996, pp. 1235-1238 
Alberto Carini and Enzo Mumolo, "Fast square-root RLS Adaptive Filtering Algo-
rithms," Signa[ Processing, Vol. 57, No. 3, Mar. 1997, pp. 233-250 
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In this chapter we present some novel fast and numerically stable 
RLS algorithms. These algorithms are based on the derivation of two 
different Cholesky or U DUT square-root factorizations of the autocor-
relation matrix !1n. Actually, in classica! RLS algorithms, numerica! 
instabilities arise because, due to the finite precision of processors and 
to error propagation, the autocorrelation matrix looses its properties, 
namely symmetry and positive definitiveness. In fast RLS algorithms, 
instabilities may appear because the Kalman Gain vector, directly de-
rived from !Jn, at a certain point cannot be associateci to any positive 
definite autocorrelation matrix. In square-root algorithms, however, this 
problem is avoided by directly updating a square-root factor of !Jn or a 
quantity relateci to this factor. In this way, in fact, we implicitly impose 
the symmetry and positive definitiveness of the autocorrelation matrix. 
However, the square-root technique by itself is not sufficient to achieve 
the numerica! stability of the algorithm, which depends also on the nu-
merically robust computation of each parameter of the algorithm. Ex-
tensive experimentation has shown that the proposed algorithms exhibit 
excellent robustness in limited precision environments, and adaptive fil-
tering with the mantissa rounded to 4 bits have been performed for over 4 
million samples without any instability. Furthermore, a comparison with 
the SFTF adaptive algorithm shows a much better numerica! behaviour 
in low precision environments. 

The proposed algorithms are closely connected with the classica! Fast 
QR and Lattice QR algorithms [4, 9, 31, 51, 60, 89, 90, llO, lll, ll5, 
121, 149]. Like these algorithms, they are based on the exploitation 
of a Cholesky or U DUT factor of the autocorrelation matrix and this 
fact leads to the coincidence of the joint process part, which estimates 
the desired signal. Unlike Fast QR and Lattice filters, however, their 
derivation is not geometrica! but rather algebraic and it is based on 
the identity between two Cholesky or U DUT factorization forms of the 
autocorrelation matrix. 

It is worth stressing that the proposed algorithms do not determine 
the filter coefficients of a transversal filter but the coefficients of a lattice 
realization. Thus, the algorithms can be applied to system identification 
as well as to adaptive filtering and prediction applications. 

Finally, a direct dependency of the prediction error from the input 
signal makes these algorithms suitable for ADPCM applications in signal 
coding. 

The outline of this chapter is the following. In Section 2.2 we review 
the RLS adaptive problem and we recall some quantities which are very 
important for the development of fast algorithms and which are also 
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used in our algorithms. In Section 2.3, different forms of upper triangular 
square-root factorizations of the autocorrelation matrix, which constitute 
the base of the proposed algorithms, are derived. Section 2.4 is devoted 
to the description of the fast, O(N), RLS algorithms and in Section 2.5 
some experimental results, including a comparison with the algorithm 
reported in [135], will be given. Finally, in Section 2.6, some concluding 
remar ks are reported. 

2.2 Review of RLS Adaptive Filtering 
The output of a time-varying FIR filter of order N is given by 

dn(k) = W~Xk, 
where 

w~ = [ wo(n), w1(n), ... , WN-1(n) ] 
is the impulse response at time instant n and 

xr = [ x(k),x(k -1), ... ,x(k - N + 1) ] 

(2.1) 

(2.2) 

(2.3) 

is the input vector at time instant k. Let d( k) be the desired response 
signal. The objective is to compute the coefficient vector Wn in such a 
way that the filter output is as dose as possible to the desired response 
signal. This leads to a minimization of the exponentially weighted cost 
function 

n 

Jn = L Àn-kld(k) - w~xkl 2 (2.4) 
k=O 

at each time instant n, where ,\ is a forgetting factor that controls the 
speed of tracking time-varying signals. The solution of the minimization 
problem is given by 

n-1 
Wn = il~n Pn, (2.5) 

where 
n n 

On= L Àn-kxkxf, and Pn = L Àn-kxkd(k) (2.6) 
k=O k=O 

are the autocorrelation and crosscorrelation matrices respectively. The 
problem is to develop a recursive version of (2.5) such that the number 
of operations per time instant is minimum and such that the recursion 
is numerically stable. For notational convenience, let us define rk-l = 
x(k - N) and Vk = x(k). One can note that the input vector at time k, 
Xk, can be formed discarding the rk-l element contained in the vector 
Xk-1 and adding the new Vk element. 
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The forward predictor an is defined as the filter which estimates Vn 
from Xn-1· Similarly, the backward predictor bn estimates rn-1 from Xn· 
The forward and backward prediction errors are respectively given by 

fn(k) = Vk + a~Xk-1' 
bn(k) = rk-1 + b~xk. 

(2.7) 

(2.8) 
The Kalman gain vector Cn plays a fundamental role in the develop-

ment of classica! fast algorithms [60]. The definition of the Kalman gain 
vector is the following 

n-1 
Cn = .J~n Xn· (2.9) 

From (2.5), the gain vector can be viewed as a predictor which esti-
mates the pinning sequence from Xk [60]. The corresponding prediction 
error, called likelihood variable, is reported in (2.10): 

Ìn = 1 - C~Xn· (2.10) 

The likelihood variable assumes a great importance in all Fast Transver-
sal Filter algorithms. In fact it monitors the numerica! stability of the 
algorithm itself. According to [60], ìn is a real value bounded by zero 
and one, O ~ Ìn ~ 1, and instability arises when Ìn exceeds these bounds 
due to finite precision of processors and to error propagation. 

It is worth recalling that the forward and backward predictors can 
be recursively estimateci as: 

(2.11) 

(2.12) 

The terms Vk and rk-l are used in the definition of the augmented 
(extended) input vector Xk where 

(2.13) 

Finally, the autocorrelation of the forward and backward prediction 
errors are given by: 

n n 

O'.n = L Àn-k J~(k); f3n = L Àn-kb~(k). (2.14) 
k=O k=O 

Fast RLS algorithms are usually based on the exploitation of the 
relationships between the quantities described above. 
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2.3 Preliminary Results 
In this section we first derive some basic relations that involve the quan-
tities defined in the previous paragraph. These relations are then used 
to develop different factorizations of the autocorrelation matrix. A brief 
review of the Givens rotations follows at the end of the section. 

2.3.1 Some Useful Relations 
Proposition 2.3.1 Let fn(k), bn(k) and Xk-l be the forward, backward 
errors and input vector respectively, as defined in (2. 7), {2.8) and {2.3). 
Then the following two relations hold: 

n L Àn-kXk-lfn(k) =O (2.15) 
k=O 

and 
n L Àn-kxkbn(k) =O. (2.16) 

k=O 

Proof First, using (2.5), let us give the following formulation of the 
forward predictor coefficient vector: 

(2.17) 

Let us now consider the term 
n 

a~ L Àn-kXk-1fn(k), (2.18) 
k=O 

which, using (2.17), becomes 

-(t Àn-kxf-1vk) (t Àn-kXk-1XL1)-l (t Àn-kXk-lfn(k)) · 
k=O k=O k=O 

(2.19) 
Substituting Vk from (2. 7) in (2.19) it follows that 

(t Àn-kxf_1Jn(k)) n;;!:.1 (t Àn-kxk-1fn(k)) =O. 
k=O k=O 

(2.20) 

Since .n;;~ 1 is positive definite, the first equation claimed in this 
Proposition follows immediately from (2.20). The derivation of the sec-
ond equation can be readily obtained in the same way. D 
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Alternatively, equations (2.15) and (2.16) can also be proved by 
means of the principle of orthogonality that states the following [60]: 

"The necessary and sufficient condition for the cost func-
tion Jn to attain its minimum value is that the corresponding 
value of the estimation error is orthogonal to each input sam-
ple that enters into the estimation of the desired response at 
time n." 

Proposition 2.3.2 Let fln be the autocorrelation matrix, an, f3n be the 
autocorrelations of the forward and backward prediction errors and an, 
bn the corresponding predictors, as defined in Section 2.2. Then the 
following two relations hold: 

(2.21) 

and 
n L Àn-krL1 = /3n + b~ flnbn. (2.22) 

k=O 

Proof Let us prove the first expression. Using (2.7), we obtain 

n n n 
= L Àn-k f~(k) +a~ L Àn-kXk-1xL1an - 2a~ L Àn-k fn(k)xk-1· 

k=O k=O k=O 
From Proposition 2.3.1 and using (2.14), the first expression claimed 

in this Proposi ti on follows immediately. The second expression is proved 
very similarly. D 

Proposition 2.3.3 Let fln, Xk and an, bn be the autocorrelation matrix, 
the input vector and the forward, backward predictors respectively, as 
defined in Section 2.2. Then the following two relations hold: 

and 

n L Àn-kXk-tVk = -fln-lan 
k=O 

n 
'"""' \n-k T bT n L...t A Xk rk-1 = - n il~n· 
k=O 

(2.23) 

(2.24) 



2.3 Prelin1inary Results 16 

Proof Using (2.7), substitute Vk in the first term of the first expression. 
Then the following relation is obtained: 

Therefore, using Proposition 2.3.1 the first relation is proved. The 
second expression can be derived in a similar way . D 

2.3.2 Factorizations of the Autocorrelation Matrix 
The fast algorithms described in this chapter are based on the develop-
ment of different factorization forms of the augmented autocorrelation 
matrix nn, where 

(2.25) 

and Xk is defined in (2.13). In this section, we will describe different 
types of factorization, which will lead to different developments. 

Square-Root factorization 

It is worth recalling that, if a matrix can be factorized as follows 

(2.26) 

then Sn is said a square-root of n:1
. Similarly 

(2.27) 

where Sn is the square-root of n;;,1 • The algorithms we propose are based 
on the derivation of two factorizations of the inverse autocorrelation ma-
trix. Note that these square-root matrices of n;;,1 coincide only if they 
are both upper (or lower) triangular with positive diagonal ( Cholesky 
factorization). If this condition is not met the square-root matrices differ 
for a rotation matrix Q (QQT = I). It is important to point out that, 
in this chapter, we always assume Sn an upper triangular with positive 
diagonal matrix in order to ensure the uniqueness of the square-root 
factorization. The following Lemma describes a possible form for the 
extended square-root matrices. 
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Lemma 2.3.1 Let us consider the square-root factorization of the in-
verse augmented autocorrelation matrix described in (2.26). Then Sn 
and its inverse s:1 can be computed as 

(2.28) 

and 

s = 1 
--1 [ S;;1 

-Yn ] 
n oT f3"fi (2.29) 

where O is a vector with N zero elements, bn, f3n are defined in Section 
2.2, Sn is the square-root of 0:;;1 as reported in (2.27) and y n = S;;1 bn. 

Proof From (2.25) and (2.13) it turns out that 

(2.30) 

Using (2.27) and Propositions 2.3.2-2.3.3, (2.30) can be written as 1 : 

- [ s-Ts-1 -s-Ts-1h ] (}- n n n n n 
n - -bT5-T5-1 f3 + bT5-T5-1b ' nn n n nn n n 

(2.31) 

Let us now consider the following partitioned form of the s:1 matrix: 

--1 [ p () ] 
Sn = 1/JT ç ' (2.32) 

where P is N by N, () and 1/J are column vectors of N elements and ç is 
a scalar. Therefore, from (2.26) and (2.32), we have 

(2.33) 

Equating (2.31) and (2.33) we obtain: 

tf>T '1> + 1/11/JT = s:;;Ts:;;1, (2.34) 
1 Note that s-T indicates the inverse transposed of matrix s. 
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(2.35) 

(2.36) 

If we impose 'ljJ = O, (2.32) becomes upper triangular. Its elements are 
readily obtained as: 

~ = s~1, 
(} = -S~1 bn = -yn, 

1 ç = {3~. 

(2.37) 

(2.38) 

(2.39) 

This proves equation (2.29). The partitioned matrix (2.29) can be easily 
inverted, since one of the submatrices is zero. Equation (2.28) comes by 
inverting (2.29). D 

In the following Lemma, two non upper-triangular square-root ma-
trices for the autocorrelation and inverse autocorrelation augmented ma-
trices are obtained. 

Lemma 2.3.2 Let us consider a factorization of the inverse augmented 
autoforrelation matrix, that is 0:1 = SnS~. Then, a possible form of 
the Sn matrix is the following: 

(2.40) 

and the corresponding inverse matrix §;1 is: 

5-1 = n (2.41) 

where an is the autocorrelation of the forward prediction error, an is the 
forward predictor, Sn is described in (2.27) and Zn = s;~l an. 

Proof Similarly to Lemma 2.3.1, we can write 

[ 
+ Tg-T s-1 Tg-T s-1 ] - c:Yn an n-1 n-1 an -an n-1 n-1 

- s-r s-1 s-r s-1 , 
- n-1 n-1 an n-1 n-1 

(2.42) 
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where Propositions 2.3.2-2.3.3 have been used. From (2.42), it turns out 
that s;1 can be partitioned as follows: 

§-1 = [ ç (}T ] 
n 1/J cp ' (2.43) 

where ç, 8, 1/J and 4> are sized as in Lemma 2.3.1. By computing the 
product §;T§n we have: 

_ [ ç2 + 1/JT 1/J ç(}T + 1/JT cp ] 
On = ço + .pT 1/J 88 r + .pT 4> · (2.44) 

Hence, setting (} = O and equating (2.42) with (2.44), we obtain: 

(2.45) 

This proves equation (2.41 ). By inverting (2.41) we obtain immediately 
(2.40). D 

Till now, two different factorizations of the autocorrelation matrix 
have been derived. In the following Lemma, we will describe another 
form of the upper triangular square-root factorization for 0:1 which, 
due to the uniqueness of the upper triangular with positive diagonal 
factorization, can be equated to that derived in Lemma 2.3.1. 

Lemma 2.3.3 Let us consider the square-root factorization of the in-
verse extended autocorrelation matrix given in {2.26). Then, the upper 
triangular square-root matrix Sn is the following: 

(2.46) 
o 

where Zn is defined as: 
S-1 

Zn = n-1an (2.4 7) 

and Ln is the following upper triangular factorization matrix: 

(I+ a~ 1 znz~) = LnL~. (2.48) 

Proof Using the factorization derived in Lemma 2.3.2, we obtain the 
following expression of the inverse autocorrelation matrix: 

(2.49) 
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Consider now (2.26), and assume that the square-root matrix is upper 
triangular: 

Sn = [ ~ ~]. 
From (2.26) and (2.50), we obtain 

n-1 = [ ç2 + (JT(J (JT<PT] 
iJ ~ n <PO <P<PT · 

Hence, equating (2.49) and (2.51): 

It is easy to show that, using (2.4 7), (2.54) can be written as 

From (2.55) and (2.48), <P can be represented as: 

and, from (2.53), (2.56) and (2.47), we get: 

() -1L-1 = an n Zn· 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

Moreover, pre-multiplying the right term of (2.57) by L~L;T and using 
(2.48), the 8 matrix can be represented as: 

(2.58) 

On the other hand, using the matrix inversion lemma, we obtain 

(2.59) 

Therefore, the final form of 8 is: 

-1 
(J = LT Zn an 

n 1 + a-lzTz n n n 
(2.60) 



2.3 Preliminary Results 21 

By computing (}T (} and using (2.52), finally, the scalar term ç can be 
computed. Using (2.60) and (2.48) we obtain: 

T 
(}T(} = a-2 ZnZn 

n 1 + a-lzTz n n n 

Hence, from (2.52) it follows that 

Therefore: 

e= 1 + a-lzTz · n n n 
(2.61) 

Thus, equations (2.61), (2.60) and (2.56) complete the proof. D 

UD-factorization 

Let us now consider another type of square-root factorization, the so 
called UD-factorization [12, 60]. According to the UD-factorization, the 
standard and extended inverse autocorrelation matrices can be factorized 
as follows: 

0~1 = UnDnU~; n:1 = UnDnU~, (2.62) 
with Un, Un upper triangular with unit diagonal and Dn, Dn posi-
tive diagonal matrices. Clearly, the UD-factorization is itself a form of 
square-root factorization but, due to its structure, square-roots free fast 
algorithms will be obtained. We now derive different forms of the Un 
and Dn matrices. 

Lemma 2.3.4 Let us consider the UD-factorization of the augmented 
autocorrelation matrix described in (2.62). Then, the Un and Dn matri-
ces are given by: 

U [Un bn] 
n = 0T 1 ' (2.63) 

--1 --1 
the Un and Dn matrices are 

u-1 = [ u~ 1 - Iln ] 
n 0T 1 ' (2.64) 

where O is a vector of N zero elements, f3n is the autocorrelation of the 
backward prediction error, bn is the backward prediction filter and Iln = 
U~1 bn. 
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Proof VVe start observing that 

[ 
u-Tn-1u-1 -u-rn-1u-1h ] 

n n n n n n n (2 65) -bTu-rn-1u-1 a + bru-rn-1u-1h · · n n n n {Jn n n n n n 

where (2.13), (2.6), (2.62) and Proposition 2.3.2-2.3.3 have been used. 
Due to their internal structure, the u:1 and n:1 matrices in (2.62) can 
be partitioned as follows: 

--1 [ ~ ,,µ ] 
Un = 0T 1 ' 

--1 [e o] 
Dn = oT ç ' (2.66) 

where the N by N sized ~ matrix is upper triangular with unit diagonal 
and ,,P is a column vector. Moreover, e is a N by N positive diagonal 
matrix and ç is a scalar. Hence: 

(2.67) 

The matrices reported in (2.64) can be readily derived by realizing 
that, by equating (2.65) and (2.67), one can obtain: 

~ = u-1 
n ' (. = f3n· 

Thus, the derivation of (2.64) is concluded. The matrices in (2.63) can 
be found by inverting (2.64). O 

Lemma 2.3.5 A non upper triangular U DUT factorization of the ex-
tended autocorrelation matrix {}n = u;rn;1 u;1 is given by: 

- [ 1 QT ] u~1 = - u-1 , 
mn n-1 

0-1 = [ CYn 0T ] 
n o n-1 ' n-1 

(2.68) 

where O is a vector of N zero elements, an is the autocorrelation of the 
forward prediction error and mn = u;:.1 an. 

Proof From (2.13), (2.6) and Proposition 2.3.2-2.3.3 we have 

n 
n """°' 'n-k- -T 
il~n = L..J A XkXk = 

k=O 
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[ 
+ Tu-T n-1 u-1 Tu-T D-1 u-1 ] _ O'.n an n-1 n-1 n-1 an -an n-1 n-1 n-1 

- u-T n-1 u-1 u-r n-1 u-1 . 
- n-1 n-1 n-1 an n-1 n-1 n-1 

(2.69) 

'\'e are looking for a factorization fln = U~TD~1 U~1 with 

u-1 = [ i or] 
n 1/J tP ' 

- -1 [ ç o ] Dn = oT e ' (2.70) 

where the N by N sized tP matrix is upper triangular with unit diagonal, 
,,P is a column vector of N elements, e is a N by N positive diagonal 
matrix and ç is a scalar. Hence: 

(2. 71) 

By equating equations (2.71) and (2.69) we obtain: 

This concludes the proof. D 

A different derivation of the Un and Dn matrices given in Lemma 
2.3.4 and of their inverses can however be obtained, as shown in the 
following lemma. 

Lemma 2.3.6 Let us consider the U DUT factorization of the inverse 
extended autocorrelation matrix given in {2.62). The upper triangular 
factorization is described as follows 

(2. 72) 

where mn = U~~1 an. Moreover, Ln is an upper triangular with unit diag-
onal matrix and W n is a positive diagonal matrix such that Ln W nL~ = 
D + -1 T 

n-1 O'.n ffinllln. 

Proof Using (2.49) and (2.62) we can write: 

(2.73) 
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Let us define now the following partitioning of the UD factorization ma-
trices: 

_ [ 1 1/JT ] Un= 0 ~ , [ 
ç OT] 
o e · (2.74) 

From (2.73) and (2.74) it turns out that 

ç + 1/JT <91/J = a~1 , ~<91/J = a~1 an, 

and 

~e~T = a~ 1 ana~ + Vn-1Dn-1 U~_1 = Vn-1(Dn-1 + a~ 1mnm~)U~_1 , 

where mn = U~!.1 an. Hence, introducing the factorization Dn-l + 
a~ 1 mnm~ = Ln W nL~ we immediately obtain 

and, by the matrix inversion lemma, we finally obtain 

and 
-1 

é an 
':. - 1 1 TD-1 +a~ mn n-1mn 

which concludes the derivation of (2. 72). D 

2.3.3 Review of Givens Rotations 
Givens rotations are widely used in QR-RLS and Fast QR-RLS algo-
rithms. Their success is due to the simplicity and the numerica! robust-
ness of the computations they perform. 

We want to find a matrix rotation Q such that 

[ 

;: ~~+t l 
Q . . ' . . . . 

XN 0 

(2. 75) 

where QQT = 1, çN+i 
restriction that 6 > O. 

Jr./:'=1 Xf +a and We assume without any 
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Proposition 2.3.4 The matrix Q of equation (2. 15) can be decomposed 
into N Givens rotation matrices Qi. That is Q = QNQN-I ... QI, where 
{60} 

~ row 1 
1 o 

~ row N + 2- i (2. 76) 1 

1 

o 
1 

and 

çi (2. 77) Ci -
çi+I ' 
XN+I-i (2.78) Si 

çi+I ' 

çi+I = J a + X~{+ I-i· (2. 79) 

Proof The passage from the vector x = [6, XI, ... , xN]T to the pin-
ning vector [çNH, o, ... ' of is obtained iteratively. At each iteration we 
annihilate an element Xi of x against the first element (the "pivot") of 
the same vector. On the i-th iteration the Givens rotation matrix Qi has 
to perform the rotation: 

Ci Si çi çi+I 
1 o X1 XI 

1 Xi-I Xi-I (2.80) 
-Si c· Xi o i 

1 o o 
o 

1 o o 
That is 

[ e -~i s; ] [ ç; ] 
Ci XN+I-i 

[ ç;;1 ] . (2.81) 

The Proposition is proved by solving (2.81) for Ci and Si. D 
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The Givens rotations are used in particular for matrix triangulariza-
tion. Note, for instance, that we can triangulize the matrix in (2.40) by 

1 

means of N Givens rotations. If we chose a~ as pivot and we annihilate 
the elements of -Zn from the last to the first against the pivot, we can 
set to zero all off-diagonal elements of the first column preserving the 
upper triangular structure of the remaining columns. For the uniqueness 
of the upper triangular factorization, the resulting matrix coincides with 
that of equation (2.28). 

A similar procedure can be followed also to pass from the non upper 
triangular U DUT factorization of the autocorrelation matrix in equation 
(2.68) to the upper triangular U DUT factorization of equation (2.46). In 
this case we want to triangulize the matrix Un and, at the same time, 
we want to compute the diagonal matrix Dn. Again we can proceed 
iteratively by means of the Givens rotations. At each iteration we have 
to find the rotation matrix Qi and the diagonal matrix D = diag[D0 , Di] 
such that 2 

(2.82) 

Alternatively, in order to avoid square-roots we can directly derive the 
matrix D and the pseudo-rotation matrix Qi such that 

- .. [ 1 o l = [ 1 · ] Qi Xi 1 Q 1 (2.83) 

and 

(2.84) 

where Qi is a rotation matrix, i. e. QiQf = I 

Proposition 2.3.5 The matrix Qi that solves the problem of equations 
(2.83) and (2.84) is 

fui.] Do , 
1 

(2.85) 

where 
(2.86) 

2The · element is a don't care element. 
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and 
D· _ DoDi 

i - Do . (2.87) 

Moreover, the inverse transpose of matrix Qi is 

[ 
1 x· ] ---T - _; 

Qi = - DiXj !2.u . 
Do Do 

(2.88) 

Proof Let us consider 

Qi = [ e s ] . -s e 
(2.89) 

Form (2.84) and from the norm preserving property of square-root ma-
trices we prove immediately equation (2.86) and we derive 

(2.90) 

From Proposition 2.3.4 it is 

-1 

DJ 
c=-1 (2.91) 

DJ 
and 

-1 
D6xi s = -1 • (2.92) 
DJ 

By substituting the expression in (2.91) in equation (2.90) we obtain 
equation (2.87). The expressions of the matrix Qi and QiT can be 
derived by directly computing the products 

[ 
Do O ]- t . [ e s ] . [ Do ~ ] t 
O Di -s e O Di (2.93) 

and 

] [ l [-_!. ] O e s D 0 
2 O 

1 • • - 1 • Dl -s e O D;2 (2.94) 

This completes the proof. D 
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2.4 Fast Square-Root RLS Algorithms 
The use of a square-root factorization of the autocorrelation matrix is a 
classica! approach to improve the numerica! behaviour of RLS algorithms 
[60). The inverse autocorrelation matrix, in this case, is factorized as 
described in (2.27). If the recursive equations are expressed in terms of 
the Sn matrix the positive definiteness of a;;,1 is guaranteed. Let us now 
consider the vector 

(2.95) 

where Xn is the input vector. Clearly, the positive definiteness of n;;,1 is 
implicitly ensured if we recursively update dn. As suggested above, such 
updating relations can be easily obtained using the factorizations derived 
in Lemma 2.3.1 and Lemma 2.3.3 or Lemma 2.3.1 and Lemma 2.3.2. 

2.4.1 Fast RLS Based upon Square-Root Factor-
ization 

We are now ready to derive some algorithms for performing fast and 
numerically stable RLS prediction and filtering. 

Fast SQR-RLS Based on ldentity 

Theorem 2.4.1 Given the linear filter described in (2.1), a numerically 
stable algorithm to perform the recursive minimization of (2.4) in O(N) 
operations, is described in the following table, where the operation count 
is also shown 

ref. equation X v 
A.1 fn-l (n) = Vn + d~-1 (\/~T;;:~l Zn-1) 6N 2N N 
A.2 fn(n) = /n-1fn-1(n) 
A.3 Zn = V-\T~:1Zn-l - dn-1fn-1(n) N 
A.4 O'.n = Àan-l + fn( n )fn-l ( n) 
A.5 O"n = ÀO"n-l + V~ 
A.6 d = 1 = n n - [ dn ] [ V ~ -t l 

n j3;; 2 bn(n) · L~ (vna~1 Zn + dn-1) 
5N 2N N 

A.7 In= /n-l - a~1 f~(n) + /3~ 1 b~(n) 
A.8 en(n) = /nen-1(n) 
A.9 en-l (n) = d(n) - d~( ~T~1 hn_t) 4N N 

A.10 hn = V-\T~ 1 hn-1 + dnen-1(n) N 
- tot al 17N 5N 2N 
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In this table T n indicates an up per triangular matrix with positive diag-
onal such that 

T~Tn =I - dnd~, (2.96) 
and Ln is an upper triangular matrix such that 

(2.97) 

Proof Equations (A.2), (A.4) and (A.8) can be found in severa! refer-
ences, for example in [60). 

Let us start with (A.1). Using the definition of {}n given in (2.6) and 
the factorization (2.27), the following relation can be derived: 

S-Tg-1 's-T s-1 + T n n =A n-1 n-1 XnXn. (2.98) 
Let us now introduce the following factorization 

I- dnd~ = T~Tn (2.99) 

with Tn upper triangular. It is worth noting that, by inverting (2.99) 
and applying the matrix inversion lemma, we can write 

In other words, a form similar to (2.99) is obtained for the inverse fac-
torization. Some issues concerning these forms of factorizations are de-
scribed in Section 2.4.3, where efficient algorithms are also given. 

Using (2.95) and (2.99), equation (2.98) becomes 

(2.100) 

From this last equation, we can state that 

(2.101) 

which leads to the following expression: 

s-1 = v'>:"T-1s-1 n n n-1' (2.102) 

Moreover, from (2.7) we have 

(2.103) 

Pre-multiplying an-1 by Sn_1 S;~1 and using (2.95), (2.102) and (2.47), 
the equation referenced to as (A. l) is obtained. 
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Since, from (2.11), an = an-1 - Sn-1dn-1fn-1(n), the Zn vector can 
be expressed as 

Zn = S~~l an-1 - dn-lfn-1 ( n) (2.104) 
and, using (2.102), this last equation becomes (A.3). 

Using the definition of dn and using Lemma 2.3.1 and (2.8) we obtain 

dn = S = 1 • - -T [ Xn ] [ dn ] 
n rn-1 13-; 2 bn( n) 

(2.105) 

By the way, from this last equation, we can see that dn is the "normalized 
a posteriori backward prediction error vector" [60] whose elements are 
the normalized backward errors for different filter orders. 

However, using Lemma 2.3.3, the dn vector can also be expressed as 
follows: 

(2.106) 

Due to the uniqueness of the upper triangular square-root factorization, 
(2.105) and (2.106) are equal. 

Equation (2.106) can be simplified by realizing that the first coeffi-
cient of dn is the normalized backward prediction error of a zero-th order 
predictor or, in other words, the sample Vn itself divided by the backward 
error energy F.,, where 

which is reported in (A.5). Therefore, with (2.106) we can now state that 

cc1 
n 

1 

Therefore, the update relation ( A.6) for dn and 13-; 2 bn( n) is immediately 
obtained. 

As regards the likelihood variable, moreover, from (2.10), (2.9) and 
(2.95) we obtain: 

(2.107) 

Hence: 
(2.108) 
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Using (2.105), expression (2.108) can be written as follows: 

"tn = 1- d~dn - ,8; 1 b~(n). 

and, combining (2.107) and (2.109), it turns out that 

In= "tn + ,8; 1 b~(n) 

31 

(2.109) 

(2.110) 

Thus, since "tn = ln-l - a;;1 f~(n) as reported, for instance, in [60], we 
get (A. 7). It is important to note that (A. 7) might not be sufficient 
to achieve numerical stability especially in particular conditions such as 
limited precision environment or long input sequences (in the latter case 
we can referto a long term instability problem). The problem arises from 
a slow error accumulati on effect that (A. 7) introduces. One approach to 
overcome this problem is to monitor the value of In, which must lay in 
the [0-1] range, and to recompute its value using relation (2.107) which 
is not recursive and therefore doesn't lead to the long term instability 
problem. 

However, the error accumulation eff ect becomes relevant only on a 
long term scale; therefore, in another approach we can correct every L 
samples the value of In by means of (2.107). In this way, the additional 
computational burden is reduced to L / N multiplications per input sam-
ple. For example, since (2.107) requires N multiplications per input 
sample, a reasonable choice can be L = N, such that the correction of 
the error accumulation effect requires only 1 multiplication for sample. 
However, computer simulations have shown that, on the average, the 
former approach is the best one. More on this topic is given in Section 
2.5. 

Equations (A.l) to (A.7) describe the prediction part of the algo-
rithm. Let us now derive the filtering part, which pertains to the recon-
struction error defined as 

en(k) = d(k) - dn(k) = d(k) - W~Xk. 

It can be easily shown that 

Wn = Wn-1 + Sndnen-1(n) 
and 

en-1(n) = d(n) - W~_ 1 Xn = d(n) - d~S~1 Wn-1· 
By defining 

(2.111) 

(2.112) 

(2.113) 

(2.114) 
and using (2.102) and (2.26), from (2.113) we can obtain (A.9). Using 
(2.114) and (2.112), finally, we obtain (A.10). D 
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Fast SQR-RLS Based on Givens Rotations 

Theorem 2.4.2 Given the linear filter described in {2.1), a numerically 
stable algorithm to perform the recursive minimization of {2.4) in O(N) 
operations, is described in the following table, where the operation count 
is also shown 

ref. equation X v 
B.1 fn-1(n) = Vn + d;_1(vf.\T~.:1Zn-1) 6N 2N N 
B.2 fn(n) = /n-1fn-1(n) 
B.3 Zn = JXT~.:1Zn-l - dn-1fn-1(n) N 
B.4 O'.n = ÀO:n-1 + fn( n )fn-1 ( n) 

B.5 Tii Qi : [ O ] [ a~ ] ~ = ll;Q; _;n N 2N N 

B.6 _l n = Tii Qi O'.n 2 fn(n) [ d ] [ _l ] 
/3n 2 bn ( n) dn-1 

4N 

B.7 /n = /n-1 - o:-;;1 f~(n) + /3~ 1 b~(n) 
B.8 en(n) = /nen-1(n) 
B.9 en-1(n) = d(n) - d~(JXT-;; 1 hn-1) 4N N 

B.10 hn = -/XT-;;1hn-l + dnen-1(n) N 
- tot al 17N 5N 2N 

In this table T n indicates an up per triangular matrix with positive diag-
onal such that 

(2.115) 

Proof This algorithm differs from the previous one only in equations 
(B.5) and (B.6). The basis for these equations comes from the observa-
tion that the two matrices s:1 and s-;;1 in equations (2.29) and (2.41) 
differ only for a rotation matrix Q. This rotation matrix can be de-
composed in N Givens rotation matrices Qi as shown in Section 2.3.3. 
Moreover, the identification of these rotati on matrices requires only the 

- 1 
knowledge of the first column of matrix s-;;1, i.e. of [a~, -z;f. This 
justifies equation (B.5). 

Since it is 
(2.116) 

then it is also 
(2.117) 
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and 
(2.118) 

By substituting equations (2.13), (2.28), (2.40) in equation (2.118) we 
immediately derive (B.6). This completes the proof of the theorem. D 

The following remarks apply to both the algorithms of this subsec-
tion. 

Remark 2.4.1 The number of additions of the algorithms is comparable 
to the number of multiplications and, hence, it has not been included in 
the operations count. 

Remark 2.4.2 The algorithms can be initialized as follows: the vectors 
h and d are set to zero, I = 1, a can be set to a small positive constant 
and a= O. 

Remark 2.4.3 It is important to note that the hn vector is the same 
vector computed by QR and Lattice algorithms based on the normalized 
a posteriori prediction error vector [60]. Moreover, it is the vector used 
in the joint process for the estimation of the desired signal. 

Remark 2.4.4 As explained in the proof of Theorem 2.4.1, the equation 
referred to as (A. 7) or (B. 7) for the computation of the likelihood variable 
can lead to a long term instability which can be avoided by computing 
the likelihood variable as In = 1 - d~ dn, when it becomes necessary. 
Furthermore, this correction becomes particularly necessary when the 
algorithm is implemented in a limited precision environment. Therefore, 
the step (A.7)-(B.7) of the algorithm introduced in Theorems 2.4.1 and 
2.4.2 can be Yiewed as suitable for a standard floating point precision 
environment. 

Remark 2.4.5 Equation (A.1)-(B.l) shows that the predicted signal is 
the first signal computed by the algorithm. The reader should note the 
direct dependency of the prediction error from the input signal Vn. Thus, 
equations (A.1)-(B.l) to (A.7)-(B.7) can be used in applications which 
require the computation of the predicted signal, such as ADPCM-like 
coding algorithms. 

Remark 2.4.6 It is important to note that the recursive relations of 
Theorems 2.4.1 and 2.4.2 use many upper triangular matrix factoriza-
tions - such as the ones referred to as relations (2.48) and (2.99) - and 
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that the total operation count greatly depend upon these factorizations. 
Therefore, efficient factorization algorithms have been derived and are 
reported in Section 2.4.3. In fact, the operation count of (A. l )-(B. l), 
(A.3)-(B.3) and (A.6) reported in Theorems 2.4.1 and 2.4.2 takes into 
account the complexity of the factorization algorithms described in Sec-
tion 2.4.3. 

2.4.2 Fast RLS Based upon UD-Factorization 

In this Subsection, a derivation of the fast RLS recursive relations on the 
basis of the UD-factorization is described. In this case, we consider the 
recursive updating of the 

(2.119) 

vector which takes the place of (2.95). The UD-RLS equations are some-
how similar to the SQR-RLS ones described in Theorems 2.4.l and 2.4.2, 
the main difference being the absence of square-root operations. 

Fast UD-RLS Based on ldentity 

Theorem 2.4.3 Given the linear filter described in (2.1), a square-roots 
free and numerically stable algorithm to perform the recursive minimiza-
tion of (2.4) in O(N) operations, is described in the following table, where 
the operation count is also shown 

ref. equation X 

C.1 fn-1 ( n) = Vn + g~-1 (T;;~l IDn-1) 5N 3N 
C.2 fn(n) = /n-1fn-1(n) 
C.3 mn = T;;.:1 IDn-1 - Dn-1 gn-1 f n-1 ( n) N 
c.4 O'.n = ÀO'.n-1 + fn(n)fn-1(n) 
C.5 an = Àan-1 + V~ 
C.6 

[ t(n) ] = [ L~ lu;1D;i:1mn + gn-1) ] 7N 2N 

C.7 [ D o [ u-1 or ] 
oTn /3";; 1 = ò Wn 

C.8 In= /n-1 - a;;1 f~(n) + /3;; 1 b~(n) 
C.9 en(n) = /nCn-1(n) 
C.10 en-1(n) = d(n) - g~(T;; 1 kn-1) 3N 
C.11 kn = T;;1kn-1 + Dngnen-1(n) N 

- tot al 17N 5N 
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In this table T n is an up per triangular with unit diagonal matrix such 
that 

(2.120) 
and V n is a positive diagonal matrix. Moreover, Ln is an upper triangular 
with unit diagonal matrix and W n is a diagonal matrix such that 

(2.121) 

Proof First, we will prove (C.l). From (2.7) and (2.119), we have 

f n-1 ( n) = Vn + g~-1 U;21 an-1' 

The UD counterpart of (2.101) is 

.\u-T n-1 u-1 = u-Tn-1u-1 - x xT -n-1 n-1 n-1 n n n n n 

U-T(n-1 T)u-1 = n n - gngn n · 

The expression between brackets can be factorized as 

T~VnTn = D;1 
- gng~, 

(2.122) 

(2.123) 

(2.124) 

where T n is an upper triangular with unit diagonal matrix and V n is a 
positive diagonal matrix. From (2.123) it evinces that U;21 = T n V;1 

and .\D;;:-21 = V n· Hence 

u-1 = T-1u-1 
n n n-1 · (2.125) 

Combining (2.125) and (2.122) we obtain (C.l). 
This last equation leads to the problem of computing the factorization 

matrix T;;:-1 . This problem, which is similar to the one introduced in 
Theorem 2.4.1 with relation (2.99), is addressed in the next section. For 
now, let us just note that, using the matrix inversion lemma, the inversion 
of (2.124) leads to 

(2.126) 

Equation ( C.3) can be easily obtained considering that mn = u;~1 an 

and recalling that, from (2.11 ), (2.9) and (2.62): 

(2.127) 

As in Theorem 2.4.1, the updating equations for the gn vector is 
obtained by equating the factorization forms derived in Lemma 2.3.4 
and Lemma 2.3.6. In fact, from Lemma 2.3.4 we have that 

(2.128) 
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On the other hand, from (2.13) and Lemma 2.3.6 we obtain: 

p n = [ a;;'L'!;~;;:,m. T OTT ] [ Vn ] 
I+a;1m;;o;_:1 mn Ln U n-1 Xn-1 

= [ T [ a;1 vnD;~:mn ) ] . 
Ln i+a;1m;;n;_:1mn + gn-1 

(2.129) 

From (2.128) we have that gn is the backward prediction error vector. 
Moreover from Lemma 2.3.4 and Lemma 2.3.6 we have: 

(2.130) 

It is worth recalling from Lemma 2.3.5 that 

(2.131) 

The above expressions can be simplified if we realize that the diagonal 
of D~1 is the backward error energy and then 

(2.132) 

where O'n is the signal energy computed with (C.5). 
By the uniqueness of the UD-factorization, the extended vectors in 

(2.128) and (2.129) are equal. From this equality, and with (2.130), we 
obtain the updating relations for Dn, gn and bn( n) reported in ( C.6) and 
(C.7). 

Clearly, the same error accumulation problem introduced by ( C.8) 
takes piace in this algorithm. Also in this case we can monitor the 
likelihood variable and recompute its value, if necessary, with the UD-
counterpart of (2.107) which is /n = 1 - g;Dngn. 

The filtering error, finally, can be computed as en(n) = /nen-1(n) 
where 

(2.133) 

By defining kn = U~1wn, (2.133) reduces to (C.10). On the other 
hand, since 

Wn = Wn-1 + UnDnU~xnen-1(n), 
equation ( C.11) is immediately obtained. 

(2.134) 

D 
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Fast UD-RLS based on Givens rotations 

Theorem 2.4.4 Given the linear filter described in (2.1), a square-roots 
free and numerically stable algorithm to perform the recursive minimiza-
tion of (2.4) in O(N) operations, is described in the following table, where 
the operation count is also shown 

ref. equation X 

D.1 J n-1 ( n) == Vn + g~-1 (T;~l ffin_i) 5N 3N 
D.2 fn(n) = ìn~1fn-1(n) 
D.3 IDn == T;.:1 IDn-1 - Dn-1 gn-1 f n-1 ( n) N 
D.4 O'.n == Àan-1 + fn(n)fn-1(n) 

--
[ ~ ] = IT; Q; [ - ~n ] D.5 Ili Qi: 2N 2N 

D.6 [ a-
1 oT ] [ D o ] N O Dn-1 -t O; /3-;; 1 

D.7 [ gn ] = rr,Q;-1 [ fn(n)] 3N 
bn(n) gn-1 

D.8 In== /n-1 - a;1 J~(n) + /3-;; 1 b~(n) 
D.9 en(n) == /nen-1(n) 

D.10 en-1(n) == d(n) - g~(T;;1 kn-1) 3N 
D.11 kn == T;;1kn-1 + Dngnen-1(n) N 

- tota[ 16N 5N 

In this table T n is an up per triangular with unit diagonal matrix such 
that 

T~VnTn == D;1 - gng~ 

and V n is a positive diagonal matrix. 

(2.135) 

Proof This algorithm differs from the previous one only in equations 
(D.5)-(D.7). 

Note that both the matrices D~;}u~1 and D~tUj\;? provide a square-
root factorization of the extended autocorrelation matrix. This means 

--!.--1 --1-
that DN2 UN and DN2 Uj/ differ fora rotation matrix Q. For the partic-
ular structure of this matrices, the rotation matrix Q can be decomposed 
in N Givens rotation matrices. As we proved in Subsection 2.3.3 with 
simple manipulations and with the introduction of the pseudo-rotation 
matrices Qi we can easily compute D ~1 and U~1 from Dj\r1 and UjV1 

without the use of square-roots. Moreover, the computation of D~1 and 
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U~1 requires the knowledge of the diagonal matrix D~/ and of the only 
first column of UA,.1, i.e. [1, -m~]T. This justifies the computations of 
equations (D.5) and (D.6). Furthermore, since it is 

(2.136) 

we have that 
UT = rr-Q:--TuT n i n (2.137) 

i 

and also 
- ur- II-Q-rur-gn = n Xn = i n Xn (2.138) 

i 

By substituting equations (2.13), (2.64), (2.68) in (2.138) we obtain 
(D.7). D 

The following remark apply to both the algorithms of this subsection. 

Remark 2.4. 7 Basically, the same observations already remarked at the 
end of Theorems 2.4.1 and 2.4.2 can be repeated at this point. First, 
also in this case, the joint process coincides with that of QR and Lattice 
algorithms based on a posteriori backward prediction error vector. 

Moreover, it is worth noting that also in this case the efficient algo-
rithms described in Section 2.4.3 play a fundamental role in limiting the 
operation count. 

Finally, we can note that the recursive algorithms described in The-
orems 2.4.3 and 2.4.4 require a number of multiplications and division 
that is equal or lower than that of the algorithms of Theorems 2.4.1 and 
2.4.2. However they do not require square-root operations at ali. 

2.4.3 Efficient Factorization Algorithms 
As it has been shown in the previous sections, n x n matrices of the form 

(2.139) 

where c is a positive cons.tant and dn is a n-dimensional vector, are widely 
used in the adaptive filtering algorithms. Thus, the determination of 
square-root factorization matrices of II n, namely II n = I' nI'~ with I' 
upper triangular, plays a fundamental role. In order to avoid confusion, 
the reader should note that, in this section, the subscripts 'n' indicate 
the matrix (or vector) dimension. 
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As shown in (A.1)-(B.l)-(C.l)-(D.l), (A.6)-(C.6) and (A.9)-(B.9)-
(C.10)-(D.10), rather than the computation of I', we need to compute 
the I'T X and I'x products, where X is a given vector. 

According to the Agee-Turner algorithm [12, 60], consider the quadratic 
form xT II nX. The following relation can thus be obtained: 

x~I'I'T Xn = x~(In + cndnd~)xn = 

= Y~ + [x~-1 (In-1 + Cn-1 dn-1 d~-1) Xn-1], (2.140) 

where In is a n X n identity matrix, Xn and dn are n-dimensional vectors: 

d~ = [ dl d2 dn ] , 

and Cn =e, Cn-1 = t where en = 1 +end~. Moreover 

(2.141) 

Therefore, if we recursively apply (2.140), we obtain that 
TrrT 2 2 2 xn Xn = Yn + Yn-1 + ... + Y1' 

where Yi is given by (2.141). If we define V= rTx = [v1V2 ... Vn], hence, 
from (2.140) we have Vi = Yi· 

As regards the I'x product it can be noted from (2.141) that the I' 
matrix is given by the sum of a upper triangular matrix, whose generic 

1 

element is given by T(i,j) = didjCjej 2 and a diagonal matrix whose 
diagonal elements are 

Therefore, the product u= I'x = [u1u2 ... un] is given by: 
1 n 1 

Ui = e~ 2 Xi+ di L ckdke; 2 Xk· 
k=i 

The above results can be summarized in the following two algorithms. 

Algorithm 2.4.1 Let us consider the following square-root factoriza-
tion: r rT = I+ cddT where r is upper triangular, e a positive constant 
and d is a given N dimensionai vector, whose generic eiement is di. 
Furthermore, let x be a given N dimensionai vector, and Xi its generic 
eiement. A n efficient aigorithm for the V= rT X produci which requires 
4N multipiications, 2N divisions and N square-roots, is the following: 



2.4 Fast Square-Root RLS Algorithms 

Initialize CN = e and zo = O; 
For i=l to N 

Zi = Zi-1 + Xidi 
End For; 
For i=N Downto 1 

ei = 1 + ( Cidi)di; 
1 

Vi = e; 2 [xi+ ( Cidi)Zi]; 
e· - fi.. i-1 - ei' 

End For 
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Algorithm 2.4.2 In the same conditions as the previous Lemma, the 
u= I'x produci can be computed using 4N multiplications, 2N divisions 
and N square-roots, with the following algorithm: 

ZN+1 = O; CN =e; 
For i=N Downto 1 

ei = 1 + (Ci di) di; 
1 

Zi = (cidi)(xie; 2 ) + Zi+i; 
e· 

Ci-1 = ~; 
i 1 

Ui = Xie; 2 + dizi; 
End For; 

Let us now extend the last results to the UD factorization 

(2.142) 

where r is an upper triangular matrix with unit diagonal, e and q; 
are diagonal matrices, d is a vector and e is a positive number. Using 
similar developments as above, one can derive the results described in 
the following two Algorithms. 

Algorithm 2.4.3 The efficient computation {6N multiplications and N 
divisions} of e and of the produci V= rT x, where r and e are the UD 
factorization matrices shown in {2.142) and d, x are given vectors, can 
be performed as follows: 

lnitialize CN = e and z0 = O; 
For i=l to N 

Zi = Zi-1 + Xidi 
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End For; 
For i=N Downto 1 

Ei = </>i + (Ci di )di j 
e· 

Vi = Xi + ~diZi-1 
C . - fi.A.. .• 
i-1 - €ii.pi, 

End For 
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Algorithm 2.4.4 The efficient computation {3N multiplications and 3N 
divisions) of the product U= rx on its own, where r is the UD factoriza-
tion matrix described in (2.142} and d, x are given vectors, is described 
by the following pseudocode: 

lnitialize CN =e and ZN+i =O; 
For i=N Downto 1 

a· = 1!i + d~ · 
i Ci iJ 

C . - 1!i. 
i-1 - a·, 

i 
Zi =Xi~+ Zi+Jj 

Ui = Xi + diZi+I 
End For 

Remark 2.4.8 In this section, we have described efficient algorithms 
for the determination of upper-triangular factorization of matrices of the 
form I+ cddT inspired to the Agee-Turner factorization algorithm [12]. 
With respect to the Agee-Turner algorithm, however, the e constant is 
always positive, thus leading to more stable factorization algorithms. 

Remark 2.4.9 It is worth noting that rearranging the expressions of 
the algorithms described in this section, we can somehow trade divisions 
with multiplications. Since the operation count of the fast adaptive algo-
rithms heavily depends on the operations required by these factorization 
algorithms, we can simply obtain slightly different derivations with a dif-
ferent number of products and divisions. This can be very useful from 
an implementation point of view. 

2.5 Computer Simulations 
The algorithms described above have been implemented and widely tested 
in different experimental conditions. In order to assess their numerica! 
performances, some results are described in this section. The simulations 
reported here were performed using the same conditions as described in 
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[111]. N amely, we performed an identification of a 3rd-order FIR filter 
described by the following difference equation: 

z(n) = 2x(n) + x(n - 1) - 0.5x(n - 2), (2.143) 

where the input x( n) was a non-white noise sequence generated by means 
of the equation 

x(n) = 0.9x(n - 1) + u(n), (2.144) 

where u( n) is a white unit-variance Gaussian noise. An error signal 
which was a white unit variance Gaussian noise was also added. All 
the simulations presented in this section were performed using limited 
precision floating point arithmetic, which was implemented, as in [110, 
111], by performing each arithmetic operation to the natural 32 bits 
floating point precision of the computer (sign + 24 bit mantissa + 8 
bit exponent) and then immediately rounding the mantissa value of the 
result to reflect the required simulated precision. Only the number of 
bits in the mantissa are affected in the experiments, and the number of 
bits in the exponent is fixed at eight. 

Figure 2.1 illustrates the initial convergence behaviour of the two fast 
algorithms described in Theorem 2.4.1 and Theorem 2.4.3 at different 
wordlengths, namely with 4, 8 and 16 bits. The two algorithms appear 
to perform quite similarly. The results shown in Figure 2.1 are ensem-
ble averages taken over 1000 independent realizations of the experiment. 
Figure 2.2 illustrates the initial convergence behaviour of the two fast 
algorithms, described in Theorem 2.4.2 and Theorem 2.4.4, in the same 
experimental conditions. By comparing Figures 2.1 and 2.2 we see that 
the Fast SQR-RLS or UD-RLS algorithms of Theorems 2.4.l and 2.4.3 
are computationally more robust than the algorithms of Theorems 2.4.2 
and 2.4.4 in a low mantissa precision environment. The two couples of 
algorithms differ only in the update of vector dn or gn. Thus, the vector 
dn (gn) update based on the identity of two square-root autocorrelation 
matrices is more robust than the update based on the passage between 
two square-root factorizations of the autocorrelation matrix realized by 
means of Givens rotations. However, even with a 4 bit mantissa precision 
all four algorithms are long term numerically stable. 

In Figure 2.3 we describe the long term (0.5 million samples) a pn:-
ori standard deviation of the identification error obtained with the UD 
algorithms described in Theorem 2.4.3 and plotted for two quantization 
levels, namely 4 and 16 bits. These two levels were chosen for the fol-
lowing reasons: at 16 bit mantissa the results are comparable to floating 
point while at 4 bit the possible error accumulation effects appear sooner. 
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10-1 ...__ _ __._ _ ___..__ _ _.__ _ ___._ __ ....__ _ _.._ ____ _.._ _ ___..___ ....... 

o 200 400 600 800 1000 1200 1400 1600 1800 2000 
time 

Figure 2.1: Initial convergence behaviour of the algorithms of Theorems 
2.4.l and 2.4.3 using 4, 8 and 16 bit mantissa. The square-root and UD 
algorithms are represented by solid and dotted lines respectively. 
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16 bit 

10-1 --~-~.___ _ _.__ _ _.... __ _.__ _ __._ __ ~-~--~--

o 200 400 600 800 1000 1200 1400 1600 1800 2000 
time 

Figure 2.2: Initial convergence behaviour of the algorithms of Theorems 
2.4.2 and 2.4.4 using 4, 8 and 16 bit mantissa. The square-root and UD 
algorithms are represented by solid and dotted lines respectively. 
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Figure 2.3: Long term (0.5 million samples) a priori standard deviation 
of the identification error for the UD algorithm described in Theorem 
2.4.3. 
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16 bit 

QL--~-'-~~..__~--'-~~..__~_._~~L..-~-'-~~.__~_._~__, 

o 0.5 1.5 2 2.5 
time 

3 3.5 4 4.5 5 
X 105 

46 

Figure 2.4: Long term (0.5 million samples) a priori standard deviation 
of the identification error for the SFTF algorithm reported in [135]. 

In Figure 2.4, the long term behaviour of the SFTF algorithm [135] 
is shown for comparison. The results shown in Figure 2.3 and Figure 
2.4 are ensemble averages taken over 10 independent realizations of the 
experiment. The standard deviation was computed over blocks of 100 
samples. 

The first general observation is that, as it can be seen from Figure 2.3 
and Figure 2.4, reducing the wordlength from 16 to 4 bits the variance of 
the identification error is increased, obviously because the roundoff noise 
propagation increases. Moreover, at 16 bits the behaviour of the two 
algorithms is identica!. However, the UD-based fast algorithm described 
in Figure 2.4 is much more robust and much less biased than STFT at 
4 bit precision, as the mean and variance are smaller. Therefore, the 
algorithms described in Theorems 2.4.1 and 2.4.3 appear suitable for a 
limited precision environment. 
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2.6 Final Remarks and Conclusions 
Some fast square-root type algorithms which can be used in system iden-
tification applications as well as for adaptive prediction and filtering have 
been described in this dissertation These algorithms compute the filter 
coefficients in the form of a lattice filter based on the normalized or un-
normalized a posteriori backward prediction error. The dual algorithms 
based on the a priori backward prediction error vector have been derived 
and they have computational and numerica! properties that are very sim-
ilar to those of the algorithms presented in this chapter. For this reasons 
they have not been included in the thesis. 

The computational complexity of the algorithms presented in this 
chapter is O(N), where N is the filter order. The fast RLS algorithms 
are numerically robust, and over 4 million samples long sequences have 
been analyzed with 4 bit mantissa without noticing any instability while 
maintaining notable accuracy. The algorithms have similar performances 
and a slight difference in computational complexity. A comparison with 
the algorithm described in [135] has been performed and a better ac-
curacy in very low precision environment has been shown. Moreover, 
the numerica! performances of the algorithms have been experimentally 
verified for several types of diff erent signals such as speech and noise 
data. An application of the algorithm described in Theorem 2.4.2 for 
ADPCM coding of speech with RLS prediction has been developed on a 
DSP processor. These algorithms are particularly suited for such appli-
cation because of the direct dependency of the forward prediction error 
from the input data Vn· To the authors knowledge, the only other RLS 
numerically stable algorithm that presents this property is the SFTF fil-
ter of [135]. Unfortunately this algorithm is numerically stable only for 
stationary input data. Input signals with fast changing statistic, like the 
human voice, can easily drive the adaptive SFTF filter into instability. 
On the contrary, the algorithms presented in this thesis maintains the 
numerica! stability even in the presence of highly unstationary signals 
like the human voice. 



Chapter 3 

V-vector Algebra and its 
Application to Volterra 
Adaptive Filtering 

3.1 Introduction 
Adaptive Volterra filters are gaining importance both in signal processing 
theory and applications [92, 127, 132]. However, in spite of the numerous 
recent literature available on this topic several issues, such as the devel-
opment of fast and numerically stable adaptive algorithms, need further 
research results. 

Generally, adaptive algorithms for Volterra filters are obtained by 
extending classica! algorithms for linear filters with a multichannel ap-
proach (85, 92, 121, 14 7, 146]. In the multichannel approach, the Volterra 
filter is realized by means of a linear filter bank, where each filter pro-
cesses a product of samples of the input signal. The extension of the 
techniques for linear filters is straightforward in most of "slow" adaptive 
algorithms: we do referto classica! RLS, SQR-RLS, QR and Inverse QR 
algorithms (4, 60, 91] where the extension is achieved by simply substi-
tuting the linear filter input data vector with the corresponding Volterra 
filter input data vector. However, fast adaptive algorithms such as Fast 
RLS, FTF, Lattice RLS, Lattice QR, etc. (9, 23, 29, 31, 60, 89, 90, 

Part of the content of this chapter was presented in 
Alberto Carini and Enzo Mumolo, "A Novel Algebraic Formulation for the Develop-
ment of Adaptive Volterra Filtering Algorithms," Proceedings of 1995 IEEE Work-
shop on Nonlinear Signa/ and Image Processing, June 20-22 1995, Neos Marmaras, 
Halkidiki, Greece, pp. 943-946 
and submitted to IEEE Trans. on Circuits and Systems II in 1996 
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110, 115, 135, 149], use ad hoc studied derivations in order to achieve 
a fast implementation; these derivations generally can not be trivially 
extended to the Volterra filter. For example, Fast RLS and FTF make 
use of the concept of extended input data vector, which in the linear case 
is unique. However, in the non-linear case two different augmented input 
data vectors have to be defined [85]. Moreover, linear lattice algorithms 
use a filter order recursion for fast updating but with the multichan-
nel Volterra formulation a contemporary filter order and channel order 
recursion has to be considered [147]. 

What makes it difficult to extend to the Volterra case the algorithms 
for linear filters is the loss of the time shift property in the input data 
vector. In the linear case, in order to pass form the input data vector 
at time n to that for time n + 1 we have to discard the last element of 
the vector and we have to add the novel input at the beginning of the 
vector. This property does not apply to the input data vector of Volterra 
filters, which is constituted by different products of input samples. In 
this chapter we propose a novel approach that preserves the time shift 
property of linear data vectors. We derive a novel algebraic structure, 
called V-vector algebra. The V-vector algebra is a simple formalism which 
is suitable for the development of Volterra adaptive filter algorithms as 
an extension of linear adaptive techniques. In particular, the vectors 
of linear algebra are here substituted by a novel entity, the V-vector, 
which can be viewed as a non rectangular matrix. By the use of the V-
vector formalism fast and numerically stable adaptive Volterra filtering 
algorithms can be easily derived from the known linear theory. Moreover, 
V-vector algebra can be applied also to the development of multichannel 
linear adaptive filters with channels of different memory lengths. 

The novel algebra described in this chapter opens to new results and 
developments in the area of nonlinear adaptive filtering. In order to 
illustrate the merits of such a formalism, we first use V-vector algebra 
to reformulate the Lee-Mathe\vs Fast RLS algorithm described in [85]. 
Thereafter, a new fast and stable Givens Rotation Based Square-Root 
RLS algorithm is worked out. This algorithm is the extension to the 
Volterra filter of the algorithm described in Theorem 2.4.2. The Fast 
RLS algorithm in [85] has a rather low computational complexity (in 
case of a second order homogeneous Volterra filter it requires O( 6N2Nr) 
multiplications per sample, where N2 is the memory length of the filter 
and Nr is the global number of coefficients of Volterra filter) but stability 
problems may occur. On the contrary, the fast SQR algorithm presented 
in this chapter shows very good stability properties, even with a modest 
word length precision, at the expense of a slightly higher computational 
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complexity ( (10 + !)N2Nr multiplications, (3 + !)N2Nr divisions, (1 + 
~)N2NT square-roots). 

In Section 3.2, after illustrating the motivations for the development 
of this novel algebraic structure, the V-vector algebra itself is presented 
with regard to a second order homogeneous Volterra filter: we first in-
troduce the concepts of V-vector and V-matrix (which are the equivalent 
of the vector and the matrix of linear algebra), then the basic operations 
between V-vectors and V-matrices are defined; finally the linear algebra 
concepts of the inverse, transposed and triangular matrices are adapted 
to the V-vector algebra. In Section 3.3, the V-vectors for Volterra fil-
ters of any order and for multichannel linear filters are presented and, in 
particular, a recursive rule for the development of an N-th order homo-
geneous input data V-vector is given. In Section 3.4, the reformulation 
of the Lee-Mathews Fast RLS algorithm is worked out, while in Section 
3.5 the novel Fast SQR RLS algorithm is developed. Conclusions follow 
in Section 3.6. 

3.2 The V-vector Algebra 

Let us first introduce the notation used in this chapter and some basic 
definitions. Vectors and V-vectors will be indicateci with bold lower case 
letters, while matrices and V-matrices will be labelled with bold capitai 
letters. A linear filter is defined by a N-th order coefficient vector w. 
The input data vector of a linear filter is defined as a vector: 

Xn = [ x ( n), x ( n - 1), ... , x ( n - N + 1) ] T ( 3 .1) 

such that the filter output signal is y(n) = wT Xn. Note the time shift 
property of the input data vector for linear filters: at the time n the 
element x( n) is added to the input data vector Xn-l while the element 
x( n - N) is discarded. Many fast RLS adaptive algorithms use the notion 
of augmented or extended data vectors [29, 60, 85, 135]. The extended 
input data vector Xn is defined as the vector obtained adding x( n) to the 
top of Xn-1 or adding x( n - N) to the bottom of Xn: 

_ [ X ( n) ] [ Xn ] 
Xn = Xn-1 = x( n - N) . (3.2) 

On the contrary, in the case of Volterra filtering the identity (3.2) is 
not valid. For simplicity, we will refer here to a second order homogeneous 
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Volterra filter given by 

N2-1 N2-1 

y(n) = L L Cijx(n - i)x(n - j), (3.3) 
i=O j=i 

where N2 is the filter memory length. The extension to the most genera! 
Nth order Volterra filter will be discussed in Session 3. 

The Volterra filter input data vector is defined by : 

Xn = [ x2 
( n), ... , x 2 ( n - N 2 + 1), x ( n) x ( n - 1), ... , 

x(n - N2 + 2)x(n - N2 + 1), ... , x(n)x(n - N2 + l)f, (3.4) 

which does not satisfy the time shift property. 
In this case, at the time n, the N2 elements contained in the vector 

rn-1 = [x 2 (n - N2 ),x(n - N2 + l)x(n - N2), ... ,x(n - l)x(n - N2)r 
(3.5) 

are discarded from Xn-l and the N2 elements contained in the vector 

vn = [x 2 (n), x(n)x(n - 1), ... , x(n)x(n - N2 + l)r (3.6) 

are added to the remaining elements [85). Two extended input vectors 
are now defined at the time n: the first vector Xn is obtained by adding 
Vn to the top of Xn-1 while the second one Xn is obtained by adding rn-1 

to the bottom of Xn: 

- [ Vn ] Xn = 
Xn-1 

(3.7) 

and 
_ [ Xn ] Xn = . 

rn-1 
(3.8) 

The two extended vectors, due to the presence of different products 
in the input data vector, do not coincide nor it is possible to make them 
coincide by an appropriate element arrangement of Xn, Vn and rn-1· How-
ever, the augmented vectors contain the same elements and differ only by 
a permutation. The necessity for this permutation is due to the loss of 
the time shift property. In [85] a standard fast RLS adaptive algorithm 
has been extended to the Volterra case by taking into account the above 
mentioned permutation. The algorithm described in [85] is fast but it is 
not numerically stable. Fast and numerically stable algorithms can be 
obtained in the linear case by means of triangular matrices, i. e. we may 
refer to the Fast QR algorithms [9, 31, 90, 149) or QRD-based Lattice 
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Figure 3.1: Definition of the left and right columns 
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algorithms [89, 110, 115]. If we have an adaptive algorithm which em-
ploys both the concepts of extended input data vector and of triangular 
matrix, as in our Fast SQR algorithm, then the extension to the Volterra 
case, by taking into account the upper mentioned permutation, becomes 
very difficult: in fact this permutation leads to the loss of the triangular 
structure of the matrices involved. In order to preserve the time shift 
property and to avoid permutations we can arrange the input data in a 
non-rectangular matrix, called V-vector: 

x2(n) x2 (n - 1) 
x(n)x(n - 1) 

x2(n-N2+l) 
x(n - N2 + 2)x(n - N2 + 1) 

x(n)x(n - N2 + 1) (3.9) 

where the diagonal brackets emphasise the non rectangular structure of 
the matrix. 

For the non rectangular matrix in (3.9) we can define left and righi 
columns as shown in Figure 3.1. It is clear that the first left column of 
Xn is formed by the elements which have been added going from Xn-l 

to Xn while the last right column of Xn is formed by the elements which 
will be discarded in the transition from Xn to Xn+i · Let us define the 
extended input V-vector as obtained by adding Vn to Xn-l as the first 
left column or by adding rn-l to Xn as the last right column. Thus, it 
turns out that the two definitions of the extended input data V-vector 
are equal and therefore permutations can be avoided : 

(3.10) 

Note the diff erence of notati on between \a \ b / and \e / d /; in the 
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first case a indicates the first left column and b the remaining columns of 
the V-vector while in the second case d stands for the last right column 
and e for the rest of columns. In what follows, for simplicity, the first 
left column and the last right column will be called first column and last 
column, respectively. For example, the extended input data V-vector for 
the second order homogeneous Volterra :filter is given by 

x2(n) x2(n - 1) x2(n - N2) 
x(n)x(n - 1) x(n - N2 + l)x(n - N2) 

x(n)x(n - N2 + 1) x(n - l)x(n - N2) (3.11) 

In a more general context we can de:fine a V-vector as a non-rectangu-
lar matrix in which the number of elements in each row does not increase 
going from the top to the bottom of the matrix. Even if some algorithms 
like Fast RLS, FTF are indifferent to V-vector rows arrangement, the V 
descendent structure becomes fundamental for the extension of adaptive 
algorithms like the lattice algorithms and the algorithms which use both 
the concepts of triangular matrix and of augmented data vector as shown 
in Section 3.4. 

By varying the number of rows and the number of elements in each 
row we obtain V-vectors of different type. The type of a V-vector is the 
m-tupla of integers that de:fines the number of rows ( m) and the number 
of elements in each row of the V-vector. For example, the type of the 
V-vector in (3.9) is the Nrtupla (N2 , N2 -1, ... ,1). In the following, the 
type of a V-vector for simplicity will be designateci with a capital letter. 

After de:fining V-vectors, which replace the vectors, we can introduce 
the entity which replace the matrix of classica! linear algebra. A V-matrix 
M x N is a V-vector of a certain type M whose elements are again V-
vectors (subV-vectors) of a generally different type N. A V-matrix is 
depicted in Figure 3.2. 

The elements of a V-vector \ aij / can be identi:fied by a couple of 
indexes: the :first index indicates the row while the second indicates the 
column. Analogously the elements of a V-matrix \Aiitmj are identi:fied 
by two couple of indexes, the first couple ij indicates the sub V-vector 
while the second couple lm identi:fies the element in the subV-vector. 
Note that, when it is necessary, V-matrices are identi:fied with double 
diagonal brackets. 

In order to complete the de:finition of the novel algebraic structure we 
have to de:fine the basic operations between V-vectors and V-matrices. 

• Let a and b indicate two V-vectors of the same type, then the sum 
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Figure 3.2: A V-matrix 

of these two entities is a V-vector of the same type whose elements 
are given by : 

• Let A and B indicate two V-matrices Mx N, then the sum between 
these two V-matrices is a V-matrix Mx N whose elements are given 
by: 

• Let a and b indicate two V-vectors of the same type, then the inner 
product between these two entities is a scalar given by : 

a · b = L aij bij. 
ij 

• Let A indicate a V-matrix M x N, and let B indicate a V-matrix 
N x R then the product A· Bis a V-matrix Mx R whose elements 
are given by : 

• Let A indicate a V-matrix Mx N and b indicate a V-vector of type 
N then the product A· bis a V-vector of type M whose elements 
are gi ven by : 

Pii = L Aijhkbhk· 
hk 
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lVIoreover, in order to derive Volterra or multichannel linear adaptive 
RLS algorithms, we have to extend the linear algebra concepts of Trans-
posed matrix, Identity matrix, Inverse matrix and Triangular matrix. 
These concepts are redefined as follows. 

• The Transposed V-matrix of an MX N V-matrix A == \ aiizm j is a 

N x M V-matrix AT with AT == \azmijj. That is, the transposed 
V-matrix has each subV-vector constituted by the elements of A 
which occupy in the different subV-vectors the same positions of 
the subV-vector in AT; furthermore each element is arranged with 
the same order of the corresponding sub V-vector of A. 

There is an analogy between matrices and V-matrices: we may note 
that sub V-vectors correspond to the rows of matrices. Unfortunately 
the "columns" of a V-matrix are more difficult to be visualised, however 
columns can be easily identified as the sub V-vectors of the transposed 
V-matrix. 

• The Identity V-matrix is an MX M V-matrix \/iizm/ with all null 
elements except for the unit elements which present the couple of 
indexes ij equal to lm. 

The definition of Inverse V-matrix is the same of linear algebra: 

• The Inverse V-matrix of an M x M V-matrix A is the M X A1 
V-matrix which pre- or post-multiplied by A gives the identity V-
matrix. 

It is straightforward to verify that, in case V-matrices or V-vectors 
reduce to matrices or vectors respectively, all these definitions coincide 
\Yith those of linear algebra. 

A class of V-matrices of particular interest is formed by triangular 
F-matrices. The great freedom in arranging the null elements allows the 
introduction of twelve different canonica! triangular V-matrices: 
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Right Upper Triangular I 
Right Lower Triangular I 
Left Upper Triangular I 
Left Lower Triangular I 
Right U pper Triangular II 
Right Lower Triangular II 
Left Upper Triangular II 
Left Lower Triangular II 
Right U pper Triangular III 
Right Lower Triangular III 
Left U pper Triangular III 
Left Lower Triangular III 

RUT I 
RLT I 
LUT I 
LLT I 
RUT II 
RLT II 
LUT II 
LLT II 
RUT III 
RLT III 
LUT III 
LLT III 
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Let us start defining triangular V-matrices of kind I. A V-matrix 
\Aii/mj is: 

• Right U pper Triangular I when all elements are null if 

{ 
m <j 

l < i when m = j. 

• Right Lower Triangular I when all elements are null if 

{ 
m <j 

l > i when m = j. 

• Left Upper Triangular I when all elements are null if 

{ 
m >j 

l < i when m = j. 

• Left Lower Triangular I when all elements are null if 

{ 
m >j 

l > i when m = j. 

With regard to the triangular V-matrices of kind II they are obtained 
from V-matrices of kind I by rotation around a vertical axis. Particularly 
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RUT II 
RLT II 
LUT II 
LLT II 

comes from 
comes from 
comes from 
comes from 

LUT I 
LLT I 
RUT I 
RLT I 

For triangular V-matrices of kind III we have that a V-matrix \Aiiim/ 
• Right U pper Triangular III when ali elements are null if 

{ 
l<i 

m < j when l = i. 

• Right Lower Triangular III when ali elements are null if 

{ 
l>i 

m < j when l = i. 

• Left Upper Triangular III when ali elements are null if 

{ 
l<i 

m > j when l = i. 

• Left Lower Triangular III when ali elements are null if 

{ 
l>i 

m > j when l = i. 

The rotation around a vertical axis of a triangular V-matrix of kind 
III produces again a triangular V-matrix of kind III. 

In Fig. 3.3-3.5 three cases of triangular V-matrices of different kind 
are graphically represented. As we may see from these figures, in trian-
gular V-matrices of kind I and II we follow a routing order by columns 
while in triangular V-matrices of kind III we have a routing order by 
rows. Moreover we named Left (Right) Triangular V-matrices because 
the non-null elements tend to take place on the left (right) part of each 
subV-vector. Finally, we named Upper (Lower) Triangular V-matrix be-
cause: 

• in V-matrices of kind I the matrix whose rows are equal to the first 
columns of subV-vectors of the first column is an upper (lower) 
triangular matrix; 
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Figure 3.3: A Left Upper Triangular I V-matrix 
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Figure 3.4: A Left Upper Triangular II V-matrix 
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Figure 3.5: A Left Upper Triangular III V-matrix 

• in V-matrices of kind II the matrix whose rows are equal to the 
last columns of subV-vectors of the last column is an upper (lower) 
triangular matrix; 

• in V-matrices of kind III the matrix whose rows are equal to the 
first columns of subV-vectors of the first column and the matrix 
whose rows are equal to the last columns of subV-vectors of the 
last column are upper (lower) triangular matrices. 

In right (left) strictly decreasing V-matrices of kind I the matrix 
whose rows are equal to the last columns of subV-vectors of the last 
column is lower (upper) triangular. 

In right (left) strictly decreasing V-matrices of kind II the matrix 
whose rows are equal to the first columns of subV-vectors of the first 
column is upper (lower) triangular. 

Moreover we can see that : 

• the transposed of a right (left) triangular V-matrix is a left ( right) 
triangular V-matrix; 

• the transposed of an upper (lower) triangular V-matrix is a lower 
( upper) triangular V-matrix; 
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• the transposed of a triangular V-matrix of kind I (II) (III) 1s a 
triangular V-matrix of kind I (II) (III). 

It is straightforward to demonstrate the validity of these two impor-
tant properties that derive from linear algebra. 

• The product between two triangular V-faatrices with the same tri-
angular structure is stilla V-matrix with the same triangular struc-
ture. 

• The inverse of a triangular V-matrix is a V-matrix with the same 
triangular structure. 

The above mentioned V-matrices are not the unique triangular struc-
tures which satisfy these properties: in general any element routing order 
in a V-vector of type M will define a triangular structure for V-matrices 
M x M. In particular for the following discussions it is important to 
define triangular V-matrices "row k MOD L" where L is the number of 
rows of the V-matrix. These triangular V-matrices are obtained by con-
sidering a routing order which starts from row k, instead of row 1, and 
scans columns in a cyclic manner. 

For instance we define \aiitmj a "row k MOD L" Left Upper Tri-
angular III V-matrix when all elements are null if 

{ 
modL(l - k + 1) < modL(i - k + 1) 

m > j when l = i. 

Note that the transposed of a "row k MOD L" triangular V-matrix 
is still a "row k MOD L" triangular V-matrix. 

3.3 V-vectors for Volterra and Linear Mul-
tichannel Filters 

The V-vector formalism can be applied to Volterra filters of arbitrary 
order. The problem we address now is the arrangement of the input 
data products of a k-th order homogeneous Volterra operator in a V 
decreasing structure, i.e. we want to derive the k-th order input data 
V-vector. This arrangement may be done in a simple manner by the use 
of a filter order/memory length recursion. We can demonstrate, in fact, 
this proposi ti on : 
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Proposition 3.3.1 In order to pass /rom a ( k - 1 )-th memory length, 
i-th order input data V-vector to a k-th memory length, i-th order input 
data V-vector we have: 

1. to add to the ( k - 1 )-th V-vector a right column of products with 
the same building rule of the rows of our V-vector but translated of 
one unit in time; 

2. to add to the bottom of the ( k - 1 )-th V-vector the vector 

(3.12) 

or the vector 
v~k](i-l)x(n - k + 1), (3.13) 

where r~](i-l) indicates the last right column of the k-th memory 
length, (i - 1 )-th order V-vector and v~](i-l) the first left column 
of the same V-vector. 

Note that r~](i-l)x(n) has the same elements of v~](i-l)x(n-k+l). With 
the rule of Proposition 3.3.1 it is triviai to build the i-th order input data 
V-vector from the know ledge of the (i - 1 )-th V-vector. Note that the 
i-th order V-vector with memory length 1 is equal to \xi(n)/. 

Let us proof the validity of the proposition. 

Proof The products of our k-th memory length Volterra operator can 
be divided into three different classes : 

1. products which belong to the (k - 1)-th memory length V-vector; 

2. products constituted in the same manner of the rows of the ( k- l )-
th memory length V-vector but translated one unit in time; 

3. products which do not belong to the previous classes and that, for 
this reason, must present both the input data x( n) and x( n -k+ 1 ). 

The proposed recursive procedure simply translates this class divi-
sion into an element arranging rule. In this way we have only to demon-
strate that the third class coincides with the collection of elements of 
x( n )rhk](i-l) and x( n - k + 1 )v~](i-l). An element of this vectors can-
not appear in the first two classes because in every product are present 
both x(n) and x(n - k + 1); moreover if we considera product ç of this 
third class then xfnr is an (i - 1 )-th order prod u et wi th x ( n - k + 1) 
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x(n)x2(n - 3) 
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Figure 3.6: Input data V-vector of an order 3, memory length 4, homo-
geneous Volterra Filter. 

as a factor, and for this reason it belongs to r~](i-1), while x(n _é.k + l) 
analogously has x( n) as factor and so it belongs to v~](i-l). D 

In Figure 3.6 is presented an example of memory length 4, order 3 
input data V-vector built up with the previous arranging rule based on 
v!ik](i). 

Obviously the possible use of vector r~](i) instead of v~](i) leads to a 
different formulation of input data V-vector. The two V-vectors differ by 
a permutation of equal length rows, but this permutation does not have 
any influence on the algorithm development. 

In most cases, we are not interested in a homogeneous Volterra op-
erator but in a complete Nth memory length Kth order Volterra filter 
given by the following input-output relation 

K N N N 

y(n) = L L L . . . L hi1, ... ,ikx(n - ii) ... x(n - ik)· (3.14) 
k=l i1 =1 i1 =i2 ik=ik-1 

V-vector algebra can be applied also to the filter class of equation (3.14). 
\Ve can derive the input data V-vector of the filter in (3.14) by first 
building the input data V-vector of each homogeneous Volterra operator 
of the filter in (3.14) and then by arranging all the rows of these V-
vectors in a unique V descendant structure. In Figure 3. 7 is depicted the 
V-vector of a 3-rd order, memory length 3 Volterra filter. 

It is worth noting that the V-vector algebra can be used also to deal 
with multichannel linear filters with channels of different memory length. 
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x(n) x(n - 1) x(n - 2) 
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Figure 3. 7: Input data V-vector of an order 3, memory length 3 Volterra 
filter. 

The input data V-vector of the linear multichannel filter can be trivially 
obtained by arranging the input data vectors of the different channels in 
a unique V descendant structure. 

3.4 A Reformulation of the Lee-Mathews' 
Adaptive Fast RLS Algorithm 

The algorithms presented in this section and in Section 3.5 apply to any 
filter whose output is a linear function of an input data V-vector that 
satisfy the time shift property. This filter class includes both the Volterra 
and the linear multichannel filters. 

Again we want to find at each time n a fast recursive solution for the 
exponentially windowed cost function : 

n 

Jn == L Àn-k ld(k) - dn(k)l 2
, (3.15) 

k=O 

where À is an exponential weight called "forgetting factor" that controls 
the rate of tracking time-varying signals, d( k) is the desired adaptive 
filter output, and dn ( k) is the adaptive filter output at time k: 

(3.16) 

Note that in dn ( k) the subscript n indicate that the output signal is 
evaluated from the optimal coefficient vector at time n. Moreover, Xk is 
the input data V-vector and Wn is the optimal filter coefficient V-vector. 

The algorithm proposed in [85] is based on the relationship between 
the forward prediction filter, which estimates v n from Xn-i, and the 
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backward prediction filter, which estimates rn-l from Xn· The sets of 
optimal coefficients of the forward and backward prediction filters will 
be indicated by An and Bn respectively. In [85] An and Bn are matrices; 
on the contrary in this context they will be V-vectors of vectors, i.e. V-
matrices whose subV-vectors are made up of a unique row. 

The corresponding prediction error vectors at time k, denoted as 
fn ( k) and bn.( k), are then defined as 

(3.17) 

and 
(3.18) 

A crucial role in the development of the coefficient update equations 
is played by the Kalman Gain Cn, defined as 

n-1 Cn = iJ~n Xn, (3.19) 

where nn is the autocorrelation V-matrix 

(3.20) 

The Kalman gain is now a V-vector and it may be viewed as the 
optimal coefficient V-vector of a transversal filter that estimates the pin-
ning sequence. The corresponding estimation error In , which is usually 
called "likelihood variable", is given by 

(3.21) 

The likelihood variable assumes a great importance in all Fast Trans-
versal Filter algorithms. In fact it monitors the numerica! stability of the 
algorithm itself. According to [60], In is a real value bounded by zero 
and one, O ~ In ~ 1, and instability arises when In exceeds these bounds 
due to finite precision of processors and to error propagation. 

The coefficients update can be immediately obtained from the knowl-
edge of the Kalman gain V-vector and of the prediction or estimation 
errors : 

An = An-1 - Cn-1f~-1(n), 

Bn = Bn-1 - Cnb~_1 (n), 
Wn = Wn-1 + Cnen-1(n), 

where the estimation error en( k) is given by 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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In order to update the gain V-vector Cn let us introduce the extended 
Kalman gain V-vector Cn that is the least square (LS) estimate for the 
pinning sequence using the extended input data V-vector. Two different 
derivations of Cn may be obtained using the two definitions of Xn given 
in (3.10): 

Cn = \ a~1 fn(n) \ Ana~1fn(n) + Cn-I /, 

Cn = \ Cn + Bn/3~1 bn(n) / /3~ 1 bn(n) /, 

(3.26) 

(3.27) 

where O'.n and J3n are the autocorrelation matrices of, respectively, the 
forward and the backward prediction errors1 : 

n 
O'.n = 2: Àn-kfn(k)f~(k), (3.28) 

k=O 
n 

J3n = L Àn-kbn(k)b~(k), (3.29) 
k=O 

Let us first demonstrate expression (3.26). Remember that 

and 

then 

By considering 

and 

we have 

n 

n 
n _ ~ \n-k- -T Hn - L.J A XkXk 

k=O 

- n-l_ 
Cn = il~n Xn 

Cn = \a\b/ 

L Àn-k\ Vk \ Xk-1/ · (vf a+ xf_1 b) = 
k=O 

n 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

L Àn-k\ vk(vf a+ xf-1 b)\xk-1(vf a+ xf_1b) /(3.35) 
k=O 

1 Please note that we use small bold letters to indicate the autocorrelation matrices 
of the prediction errors in order to maintain the same symbols used in [85]. 
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From (3.32) with simple manipulations we obtain 

(3.36) 

and 
n n 
L Àn-kXk-1vf a+ L Àn-kXk-1XL1 b = Xn-1· (3.37) 
k=O k=O 

Following the derivations of Section 2.3, it is straightforward to demon-
strate that, 

n L Àn-kvkvf = O'.n +A~ !1n-1An, 
k=O 

n 
2::: Àn-kXk-1vf = -!1n-1An, 
k=O 

n 
""'\n-k T n 
L..,; A Xk-1Xk-1 = Hn-1 • 
k=O 

(3.38) 

(3.39) 

(3.40) 

By substituting (3.38), (3.39) and (3.40) in (3.36) and (3.37), the follow-
ing equations are derived 

a= a;;:1fn(n), 

b = Cn-1 + An(a;;:1fn(n)), 

(3.41) 
(3.42) 

which correspond to (3.26). In the same way from Xn = \xn/rn-1/ we 
can demonstrate expression (3.27). 

Note that the two expressions (3.26) and (3.27) do not differ for a 
permutation as in [85] and therefore they can be immediately equated as 
it happens in the case of linear filters. 

Let µn and mn indicate respectively the last right column and the 
remaining first columns of Cn: 

(3.43) 

then it is possible to demonstrate (see [85]) that 

(3.44) 

and 
( 

T )-1 _ 
/n= l-bn-1(n)µn ln (3.45) 
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where 'f n is the "extended" likelihood variable: 

'Yn = 1 - C~Xn = /n-1 - f~(n)a~1 fn(n), (3.46) 

In Table 3.1 the complete Volterra Fast RLS algorithm is summa-
rized. The number of multiplications involved in each expression is also 
reported. We indicate with L the number of rows of the input data 
V-vector, i.e. the number of "channels" of the Volterra or multichannel 
linear filter, and with Nr the total number of coefficients. For exam-
ple, in case of an homogeneous second order Volterra filter L = N 2 and 
Nr = N2(N2 + 1)/2. 

As we can see, this algorithm is identical to that derived by Lee and 
Mathews [85], with the same computational complexity and the same 
stability properties. Practically, the principal difference with the use of 
V-vectors is that now permutations are avoided; the algorithm itself is 
really similar to that of linear filters because all derivations are identical. 
Furthermore the V-vector formalism is completely independent from the 
order of a Volterra filter or from the channels' number of a multichannel 
linear filter. Therefore from these viewpoints V-vectors appear as one 
of the most natural way to deal with Volterra and multichannel linear 
filters in order to develop adaptive algorithms. 

3.5 A Volterra Givens Rotation Based Fast 
S QR RLS Filter 

The Fast RLS algorithm requires a limited number of multiplications per 
sample (6LNT ), but it is unstable on the long term when implemented 
with a finite precision arithmetic. In order to obtain numerically stable 
algorithms many expedients have been devised [60]. As we remarked in 
the previous chapter, one of the most successful approaches is the Square 
Root (SQR) technique, in which the autocorrelation matrix is factorized 
as 

fln = R~Rn. (3.47) 
This factorization is not unique: every QR matrix with Q orthog-

onal (or rotation) matrix (QQT = I) fulfils the same relationship. In 
order to univocally identify the factor Rn, we can choose to work with 
positive diagonal triangular matrices and in this case the factorization 
above mentioned is called Cholesky Factorization. 

In this paragraph, we propose a new algorithm for adaptive Volterra 
prediction and filtering. The algorithm, which presents excellent numeri-
cal properties and belongs to the class of QR algorithms, is the extension 
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Algorithm X 

fn-1(n) = Vn + A~-1Xn-l LNr 
fn(n) = /n-1fn-1(n) 

-1 _ ,\-1 [ -1 _ a;;:_:,r._,(n)fJ_1(n)a;;:_:, ] 2L2 O'.n - O'.n-1 ..\ -1 fT ( )a-1 f ( ) 
"Yn-1 + n-1 n n-1 n-1 n 

'Yn = /n-1 - frf (n)a;;1fn(n) 
An = An-1 - Cn-1f!-1 (n) LNr 
Cn = \a;;1fn(n)\Ana;;1fn(n) + Cn-1/ = \mn/ µn/ LNr 
bn-1(n) = rn-1 + B~-1Xn LNr 

( T )-1 Cn = 1 - bn_1(n)µn [mn - Bn-lµn] LNr 

ì'n = (I-b~_1 (n)µn)-
1

-::Yn 
Bn = Bn-1 - Cnb~-1(n) LNr 

en-1(n) = d(n) - w~_1 Xn Nr 
en(n) = /nen-1(n) 
Wn = Wn-1 + Cnen-1(n) Nr 

TOTAL 6LNr 

Table 3.1: Algorithm for the computation of the Lee-Mathews Fast RLS, 
V-vector version. In the second column is reported the main term of each 
operation cost in multiplications. 
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to Volterra filters of the algorithm of Theorem 2.4.2. As in QR algorithms 
we do have a Q Givens rotation matrix and an R triangular matrix, which 
is the Cholesky factor of the autocorrelation matrix2; but differently from 
QR algorithms, the derivation of the filter is an algebraic one, based on 
the relationship between two different square-root factorizations of the 
extended autocorrelation matrix. 

In order to obtain a fast algorithm, with LNr operations per sam-
ple, the L rows of input data V-vector (the "channels" of the Volterra 
or multichannel linear filter) are updated in a sequential manner [146]. 
Practically, the filter update is divided into L steps and at each step a 
different channel is taken under consideration and updated. 

Let us introduce first some new notations: 

\a \i b / means that a is an element placed before the first element of the 
i-th row of V-vector b; 

\ a4 b / means that b is an element placed after the last element of the 
i-th row of V-vector a; 

\ ~ \i ~ I means that e is a V-vector (a column in the matrix 

analogy) whose elements are placed before the first elements of the 
i-th rows of the corresponding subV-vectors of D and \a\b/ is a 
subV-vector placed before the first subV-vector of the i-th row of 
V-matrix \c\Dj 

\ ~ !~ I means that b is a V-vector (a column in the matrix 

analogy) whose elements are placed after the last elements of the 
i-th rows of the corresponding sub V-vectors of A and \ c4 d / is a 
subV-vector placed before the first subV-vector of the i-th row of 
V-matrix \A4 b/ 

Moreover, let us indicate with Xn,i the input data sub V-vector in which 
only the first i-th rows/ channels have been updated at time instant n; 
fori== Lit is XnL == Xn and fori== O it is Xno == Xn-1· 

' ' All quantities with subscript i are referred to the i-th step and thus 
to the input data V-vector Xn,i· The extended input data V-vector Xn,i 

2 In this chapter we prefer, for convenience, to deal with the square root matrix of 
nn, i. e. Rn, instead of the square root matrix of n;; 1 , i. e. Sn. Note however that it 
is R;; 1 = Sn. 
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is obtained by placing Vn,i (i.e. the i-th element of vector vn) in the left 
of the i-th row of Xn,i-l or placing rn-l,i in the right of the i-th row of 
Xn,i· 

The autocorrelation V-matrix, the Kalman gain V-vector, the for-
ward prediction error, the forward prediction filter V-v~ctor, the LS au-
tocorrelation of forward prediction error, the backward prediction error 
and the backward prediction filter V-vector all at time instant n, step i 
are given respectively by: 

Cn,i 

fn,i(k) 

n 
~ \n-k T L...J A Xn,iXn,i, 
k=O 
n-1 
iJ ~n,iXn,i, 

T 
- Vk i + an ,;Xk i-1, ' ,.. ' 

an-1,i - Cn,i-1fn-1,i( n ), 

Àan-1,i + fn-1,i(n)fn,i(n), 

= rk-1 i + bnT ;Xk i, , ,. ' 
bn-1,i - Cn,ibn-1,i ( n) · 

(3.48) 

(3.49) 
(3.50) 
(3.51) 
(3.52) 
(3.53) 
(3.54) 

This fast SQR algorithm is based on two different factorizations of 
the extended autocorrelation V-matrix 3 : 

·- -T- -r-
{}ni = Rn;Rni = Rn;Rni, ' ,. ' '" ' (3.55) 

where 
R . _ n,i _ \ a11~ \ 0r j 

n,i - -Rn,i-lan,i i Rn,i-1 
(3.56) 

R . -\ Rn,i 1-Rn,ibn,i I 
n,i - OT . al/_2 

i fJn,i 
(3.57) 

such that 
- \ -1/2 \ -1/2 T I R-~ = an,i an,i an,i 

n,i O . R-~ 
i n,i-1 

(3.58) 

--T \ R;;f I o I Rn,i = a-~/2bT. . a-~/2 
fJn,i n,i i fJn,i 

(3.59) 

We prove first equation (3.56).4 The extended autocorrelation matrix 
is given by 

{} n,i = t À n-k \ Vk,i \xk,i-1 / · \ Vk,i \xk,i-1 /T 
k=O 

3 In the following we indicate with R-T the transposed of the inverse of R. 
4 See Appendix 3.A for the fundamental operations on the above V-matrices. 
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(3.60) 

Following the derivations of Section 2.3, it is straightforward to demon-
strate that 

Thus, it is 

n 
"'""""'\n-k 2 + T n L....J A Vk,i =,O'.n,i an,iil~n,i-lan,i 
k=O 

n 

L Àn-kXk,i-l'Pk,i = -On,i-1an,i 
k=O 

n 
"'""""'\n-k T n L....J A Xk,i-1Xk,i-1 = il~n,i-1 
k=O 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

It is trivial to verify that ~ SQ_R factorization of the extended autocor-
relation V-matrix Dn,i = R;,iRn,i is given by 

R . _ n,i - \ a1/~ \ or 
n,i - -Rn,i-lan,i i Rn,i-1 I (3.65) 

In the same way we can demonstrate (3.57). 
The role played in Fast RLS by both the Kalman Gain vector and 

the input data vector is taken here by the V-vector dn defined as 

(3.66) 

Obviously two different extended V-vectors d can be defined in correspon-
dence to the V-matrices (3.58) and (3.59), as described in (3.67)-(3.68). 

- - -T \ \ I \ -1/2 \ I dn,i = Rn,i . Vn,i iXn,i-1 = an,i f n,i( n) i dn,i-1 ' (3.67) 

- - --T \ I I \ I -1/2 I dn,i - Rn,i . Xn,i I i r'n-1,i = dn,i I J3n,i bn,i( n) . (3.68) 

From (3.68) we have that dn is the normalized backward prediction 
error V-vector and that the identified filter is the same of a normalized 
lattice RLS algorithm [60]. 

All the above relations are proved to be correct whatever is the type 
M of the M x M V-matrix R. In the rest of this paragraph however 
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R~,i is a row (i+ 1) MOD L Left Upper Triangular II V-matrix such that 
starting form a row 1 MOD L LUT II V-matrix after L iterations we 
obtain again a row 1 MOD L LUT II V-matrix. 

The V-matrices Rn,i and Rn,i do not coincide but differ by a rotation 
· T --T --T - -V-matnx Qi (QiQi =I) and even the couples Rn,i, Rn,i and dn,i, dn,i 

differ by the same V-matrix. If we determine Qi that allows the passage 
from (3.56) to (3.57) then it is triviai to update dn,i from dn,i-1 · This 
rotation matrix will be decomposed into Givens rotations. Since the 
product QiRn,i is a row x column product we have to proceed on the 
columns of Rn, i.e. the rows (subV-vectors) of R~: 

In particular we have to annihilate some elements of sub V-vector 

(3. 70) 

E.!'eserving the row i MO D L L UT II structure of the remaining part of 
R~,i determined by R~,i-l · For this purpose we use as pivot element 
a~:i2 and we have to rotate on this pivot all the elements at its right 
scanning V-vector (3. 70) by right columns from right to left and (in a 
cyclic manner) from i-th row up to (i+ L - 1) MOD L row (note that 
we stop scanning when we encounter the pivot). 

After applying the Givens rotations, if we discard from R~ i the i-
th row, last column subV-vector, and from every subV-vector the i-th 
row, last column element we obtain R~i which is a row (i+ 1) MOD 
L L UT II V-matrix. Furthermore we ~an see that the update of dn,i 
requires only the knowledge of the Qi V-matrix, i.e. of V-vector (3.70) 
without building up R~ i· 

From the knowledg~ of dn,i we can update all others parameters of 
the algorithm. The a priori forward prediction error can be written as: 

fn-1,i(n) + T RT R-T Vn,i an-1 i n i-1 n i-1 Xn,i-1 
' ' ' 

Vn,i + (Rn,i-lan-1,i) T dn,i-1· 

Let us call 
(3. 71) 
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then we can show that 

Rn i-lan-1 i = ./XTn i-lZn-1 i, ' ' ' ' 
(3.72) 

where T~ i-l is the row i MOD L LUT II Cholesky factor of 
' 

I + 1;;,L1 dn,i-1 d~,i-1 = T n,i-1 T~,i-1 · (3. 73) 

In fact, by omitting for simplicity the subscript (i - 1), we have 

R~Rn - ÀR~-1Rn-l + XnX~, 
.\R~_1 Rn-1 - R~(I - dnd~)Rn = 

RTT-TT-1R n n n n, 

./XRn-1 - T~1 Rn, 

Rn ./XTnRn-1· 

Being 
(3.74) 

and 
(3. 75) 

we obtain immediately (3.73). 
A computationally efficient procedure for the computation of (3. 72) 

has been developed and is presented in Table 3.2. The derivation of this 
procedure is similar to that of the algorithms presented in Section 2.4.3. 
From (3.51) we immediately derive 

Zn,i = .JX Tn,i-1Zn-l,i - dn,i-1fn-1,i( n ). (3. 76) 

The update of /n,i is critical for the numerica! stability of the algo-
rithm. We have 

"1n,i 

and we can update /n,i according to the following equation 

Ìn,i = /n,i-1 + /3;;,~ b~,i ( n) - a~.~ J~,i ( n) · (3. 77) 

But if /n,i is evaluated with (3. 77) an error accumulation on the likelihood 
variable determines a long term numerica! instability of the algorithm. 
This error accumulation can be interrupted recomputing /n after a cer-
tain amount of steps (for instance after L steps) as in equation (3.74). 



3.5 A Volterra Givens Rotation Based ... 

z=O 

From the last column of V-vector to the first 
From the i-th row to the (i+ L - 1) MOD L 

Compute: 
cdhk 
lhk = 1 + ( cdhk )dhk 
1112 
hk 

xhk/Z!{2 

z = z + (cdhk)(xhk/l!{2
) 

e= c/lhk 
Yhk = (xhk/l!{2

) + dhkZ 

75 

Table 3.2: Algorithm for the computation of the y = Tx product, with 
TTT =I+ cddT and TT a row i MOD L LUT II V-matrix. 

The use of this accommodation technique gives a numerically stable 
algorithm. 

The desired signal estimation is produced by a joint process which act 
only after a complete update cycle of the prediction scheme. Proceeding 
with the same developments as for Zn,i, the a priori estimation error is 
now given by 

(3. 78) 

where 
(3.79) 

is the filter which estimate d( n) from the normalized prediction errors, 
and it is 

(3.80) 

Furthermore, as dn is the normalized backward prediction error filter, 
the joint process part coincides with that of normalized Lattice RLS 
and Fast QR algorithms [115]. So even if the filter coefficient vector 
is not directly evaluated, we can still apply this algorithm for system 
identification as well as prediction and filtering. In particular a direct 
dependency of the forward a priori prediction error at time n from the 
input sample at the same time makes the algorithm suitable for the 
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ADPCM application in signal coding [96], even if this direct dependency 
is payed with a not pipelineable structure due to the presence of sums of 
products. 

For what regards the initialization of the algorithm we can choose 

dio= O 
' 

Zo,i = Q 
ho= O 
/1,0 = 1 
ao,i = 8 with 8 << 1. 

This choice leads to a limited memory of initial conditions during the 
transitory convergence period, but even to sharply varying parameters 
in the same period, which can overflow the computational precision of 
processors especially in presence of limited wordlength. This problem 
can be avoided by taking 

ao,i = ~ with ~ >> 1; 

this initialization, in fact, gives slowly varying parameters during the 
transitory convergence period, which however is extended proportionally 
to ~. 

The final algorithm and operation count of all the equations is pre-
sented in Table 3.3. The computational burden of the algorithm in case 
of a strictly decreasing V descendant data vector is (10+ ~)LNT multipli-
cations, (3+ ~)LNr divisions and (1 + ~)LNr square-roots. The addition 
count is comparable to the multiplication count. By the use of an array 
of processors, however, filter adaptation can be performed in a limited 
O(LNT) number of machine cycles. The computational complexity of 
the algorithm presented in this section is similar to or lower than the 
computational complexity of the algorithms described in [146] and [121] 
as reported in Table 3.4. 

A different formulation of the algorithm which does not require any 
square-root has been developed and it is the extension to Volterra filters 
of the algorithm reported in Theorem 2.4.2. 

The numerica! stability. of the algorithm has been verified by sev-
eral experiments with different types of data signals. A finite precision 
arithmetic was simulateci as in [110] by implementing a floating point 
arithmetic with a mantissa of 16, 8 and 4 bits, respectively. The longest 
simulation performed with a 4 bits mantissa had more than 4 millions 
samples and in no one of all the considered simulations any instability 
has been observed. 
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Algorithm X ..; 

dno = dn-1 L I I 

/n,O = ì'n-1,L 
For i=l to L Compute 

..JXTn i-lZn-1 i I I 
5LNr 2LNr LNr 

fn-1,i(n) = Vn,i + ( JXTn,i-1Zn-1,if dn,i-1 LNr 
fn,i(n) = ì'n,i-1fn-1,i(n) 
Zni = ..JXTni-1Zn-li -dni-1fn-1i(n) 

' ' ' ' ' 
LNr 

O'.n,i = ÀO'.n-1,i + fn-1,i( n )! n,i( n) 
Qi from \ a~:i2\ - Zn,i / ~LNr ~LNr 

\ dn,i f f3-;Y
2 
bn,i ( n) / = 

= Qi · \a~Y2 
fn,i(n)\dn,i-1/ ~LNr ~LNr 
-1/2 ) 2 ì'n,i = /n,i-1 + (f3n,i bn,i( n) + 

( -1/2 )2 - an,i f n,i ( n) 
End For 

/n,L = 1 - d~,L dn,L Nr 
..JXTn Lhn-1 

' 
3Nr Nr 

en-1(n) = d(n)- (..JXTn,Lhn-1f dn,L Nr 
hn = ..JXTn,Lhn-1 + dn,Len-1(n) Nr 
en(n) = /n,Len-1(n) 

TOTAL 3JLNr 1~LNr ~LNr 

Table 3.3: Algorithm for the computation of the Givens Rotation Based 
Fast SQR-RLS. In the second, the third and the fourth column is reported 
the main term of each operation cost in multiplications, divisions and 
square-roots. 
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X J 

[146] 12LNtot (3 + !)LNtot (1 + ~)LNtot 

[121] (10 + l)LNtot (3 + l)LNtot (1 + !)LNtot 

NEW (10 + l)LNtot (3 + l)LNtot (1 + ~)LNtot 

Table 3.4: Comparison of the computational complexity of the algo-
rithms in [146] and [121] with the computational complexity of the new 
algorithm. 
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Figure 3.8: Arithmetic mean of the a priori forward prediction mean 
square error as a function of time. The arithmetic mean is evaluated on 
twenty different non-white-Gaussian noise signals while the mean square 
error is computed on data segments of 10 samples. 
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In Figure 3.8 is represented, as a function of time, the arithmetic 
mean of the a priori forward prediction mean square error. The arith-
metic mean is evaluated on twenty different non-white-Gaussian noise 
signals while the mean square error is computed on data segments of 10 
samples. All noise signals are obtained by filtering a zero mean, unit 
variance white Gaussian noise N( n) with the cascade of two 1inear filters 
given by 

x(n) - N(n) + 0.9x(n - 1), 
y(n) - 2x(n) + x(n - 1) - 0.5x(n - 2). 

(3.81) 
(3.82) 

The different plots refers to diff erent mantissa precisi on of the processor. 
Figure 3.8 illustrates how the wordlength affects the performances of the 
algorithm and shows the good convergence properties even with a low 
mantissa precision. The same performance can be obtained both from 
an 8 bit mantissa wordlength and the standard floating point precisi on. 

3.6 Conclusions 
A novel algebraic structure based on non-rectangular matrices has been 
developed. All fundamental objects and basic operations of this algebra 
have been presented in this chapter. The V-vector algebra has revealed 
a powerful tool to cope with adaptation algorithms for Volterra filters. 
\Vith this algebra, in fact, Volterra filters are treated exactly in the same 
way as classica! linear filters. Furthermore V-vector algebra, even though 
initially developed for Volterra filters, can be applied also to linear mul-
tichannel systems with different memory length in the various channels. 

As a matter of fact, it is worth noting that the RLS algorithms devel-
oped taking into account the permutation between the vectors in (3. 7)-
(3.8) coincide 'vith the RLS algorithms developed with the V-vector al-
gebra. However, the permutation in (3. 7)-(3.8) has to be designed ad hoc 
for each one of the considered filters. On the contrary, the developments 
of the V-vector formalism are the same whichever the Volterra or linear 
multichannel adaptive filters may be. 

These considerations make it possible to devise, in addition to the 
easy extension of adaptive algorithms already known for linear filters, the 
derivation of new powerful adaptation techniques for Volterra or linear 
multichannel filters. 



Appendices 

3.A The Fundamental Operations between 
V-Matrices 

The aim of this appendix is to show how to compute the principal op-
erations between the V-matrix structures defined in Section 3.5. First 
of all it is straightforward to show by the definition of the transposed 
V-matrix that 

(3.83) 

(3.84) 

Then the product between two V-matrices is given by 

\ 
a \ bT I\ e \ fT I = \ ae + bT g \ af~ + bTH I 
e . D g . H ce+ Dg . cf + DH 

i i i 

(3.85) 

\ :r !~I\~!~ I=\ :r~:~!~ /:r~:~~ I 
(3.86) 

This is a row per column product: if we make the product between 
every sub V-vector of the first factor and of the transposed of the second 
factor we obtain immediately (3.85) and (3.86). Finally, the inverse V-
matrices are obtained by solving the following systems 

\ ~ \ 
0
; I (3.87) 

\ 0~ !~ J (3.88) 



Chapter 4 

Sufficient Stability Bounds 
for Slowly-Varying 
Direct-Form Recursive 
Linear Filters and Their 
Applications in Adaptive IIR 
Filters 

4.1 Introduction 
Another interesting area in adaptive signal processing is represented by 
adaptive IIR filtering. Adaptive IIR filters have been the subject of active 
research over the last three decades [67, 91, 102, 119, 130]. Despite a large 
amount of work that has been clone, some open issues still remain. One 
of these issues is that of ensuring the stability of the time-varying IIR 
filter that results from the identification process. 

Researchers have attempted to derive adaptive IIR filters that oper-
ate in a stable manner in severa! different ways. One class of algorithms 
is obtained by means of the equation-error technique. In the equation-
error technique, the IIR filter is identified by the use of a two-channel 

Part of the content of this chapter was presented in 
Alberto Carini, V. John Mathews e Giovanni L. Sicuranza, "Suffi.cient Stability 
Bounds for Slowly Varying Discrete-Time Recursive Linear Filters," Proceedings of 
ICASSP 97, April 21-24 1997, Munich, Germany 
and submitted to IEEE Trans. Signa/ Processing in 1996 
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adaptive FIR filter that operates on samples of the input and the desired 
response signals. Since the system model employed in equation-error 
methods is not recursive, the adaptive filter can operate in a stable man-
ner when the step size is properly selected. However, this fact does not 
ensure the stability of the resulting IIR filter. Moreover, it is well-known 
that equation-error adaptive algorithms give biased solutions when the 
desired response signal is corrupted by noise. 

Output error algorithms have become popular in adaptive IIR filter-
ing research in recent years. In output error techniques, the adaptive 
filter operates in a recursive manner on the input signal to provide an 
estimate of the desired response signal. A class of such methods requires 
a certain system transfer function to be strictly positive real (SPR) in 
order to avoid problems with instability and to ensure the convergence of 
the algorithm. This class of algorithms includes the pseudo-linear regres-
sion algorithm (PRA) (45], also known as Feintuch's algorithm, Landau's 
algorithm [77], the hyperstable adaptive recursive filter (HARF) [65] and 
the simplified HARF (SHARF) [80]. An SPR condition is not easy to 
guarantee in practice. In the PRA, the SPR condition limits the range of 
the location of the poles of the unknown system for which convergence is 
guaranteed. This problem is avoided in HARF and SHARF algorithms. 
However, some a priori knowledge of the underlying system model is 
required in order to meet the SPR condition. Moreover, if the system 
consists of two or more parallel sections, the SPR condition is not suffi-
cient to guarantee stability [156]. A second class of adaptive output-error 
direct-form filters employ stability monitoring by checking the location 
of the instantaneous poles of the system and projecting the coefficients 
back to a region for which the instantaneous poles are within the unit cir-
cle [91]. Unfortunately, time-varying filters may be unstable even when 
the instantaneous poles are within the unit circle. A simple example is 
given by the time-varying recursive linear system with two coincident 
poles locateci at (-1 )k-10.5 at time k with input-output relationship 

y(k) = (-l)k- 1y(k - 1) - 0.25y(k - 2) + x(k). (4.1) 

Even though the instantaneous poles are always bounded by one and 
far from the unit circle itself, it is straightforward to show that the re-
sponse of this system to a unit impulse signal diverges exponentially. 
Consequently, even though projection-based techniques that force the 
instantaneous poles of the system to stay within the unit circle work 
well in a large number of situations, they are not guaranteed to operate 
in a stable manner in all situations. A third class of output-error algo-
rithms employs lattice structures [93, 119]. Normalized lattice filters are 



4.2 Sufficient Conditions for the Stability ... 83 

guaranteed to be stable if the reflection coefficients are bounded by one. 
Similar conditions can be established also for other filter structures such 
as power wave digital filters [76] and normal forms [119]. However, direct 
form filters are particularly suited for the multiply-accumulate architec-
tures found in most digital signal processors, and for this reason are often 
preferred to the above-mentioned filter structures. 

In this chapter, we present a method for controlling the adaptation 
step size to guarantee bounded-input bounded-output stability of output-
error adaptive IIR filters. It is well-known [6, 35, 119, 122, 123] that a 
recursive time-varying homogeneous linear system is exponentially sta-
ble if its instantaneous poles are always inside the unit circle and if they 
are sufficiently slowly-varying. We first derive a new upperbound on the 
maximum allowable coefficient variation for the stability of a direct-form 
linear recursive filter, and then apply the results to control the step size 
of an adaptive IIR filter to ensure stable operation. Experimental results 
demonstrating the good convergence characteristics of the adaptive fil-
ter so derived as well as comparing our stability bound with previously 
available results are also included in the chapter. 

4.2 Sufficient Conditions for the Stability 
of Slowly-Varying Direct-Form Recur-
sive Systems 

We consider a time-varying recursive linear system with input-output 
relationship given by 

N-1 N-1 

y(k) = L bi(k)x(k- i)+ L ai(k)y(k - i). (4.2) 
i=O i=l 

Let 

denote the coefficient vector and let the evolution of the coefficients be 
of the form 

O(k + 1) = O(k) + µk'ljJ(k), ( 4.4) 

where µk is a time-varying scalar sequence. Our objective is to find 
a sufficient bound on the squared-norm of the increment vector µk 1jJ ( k) 
gi ven by µ % 1jJ T ( k) 1jJ ( k) such that the time-varying system of ( 4. 2) is stable 
in the bounded-input, bounded-output (BIBO) sense. From such a result, 
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we then find a bound on µk for guaranteeing the stability of the system. 
An adaptive filter with coefficient update as in ( 4.4) will be BIBO stable 
if µk is chosen smaller than or equal to such a bound. The basis for our 
work is the following theorem proved in [123]: 

Theorem 4.2.1 The linear state equation 

x(k + 1) = A(k)x(k), x(ko) = Xo (4.5) 

is uniformly exponentially stable if and only if there exists an N x N 
matrix sequence Q(k) that is symmetric for all k and such that 

171:::; Q(k) :::; pi (4.6) 

and 
AT(k + l)Q(k + l)A(k + 1) - Q(k):::; -</>I, (4.7) 

where 1J, p and e/> are finite positive constants. 

The condition "matrix Q :=:;pi" in the theorem implies that xTQx :=:; 
pxT x for all vectors x. Exponential stability of the homogeneous system 
implies BIBO stability of the more general system in ( 4.2) provided that 
the coefficients of the non-recursive part are bounded [119]. 

Theorem 4.2.l is expressed in terms of the state transition matrix 
A(k) while we are interested in the direct form realization. However, it 
is trivial to transform the direct form representation in ( 4.2) to the state 
space representation by considering the state vector 

x(k) = [y(k - 1), y(k - 2), ... , y(k - N)f (4.8) 

and the corresponding state transition matrix 

[ 

ai(k) a2(k) ... aN-1(k) 
1 o . . . o 

A(k) = : : : . . . 
o o 1 

(4.9) 

Finite and bounded choices of the feedforward coefficients bi( k) do 
not affect the stability of the system. Consequently, ignoring these coef-
ficients in the rest of the analysis does not result in any loss of generality. 
In the derivations that follow, we find a sequence of candidate matrices 
Q(k) that meets the Lyapunov conditions given by (4.6) and (4.7) for 
slowly-varying recursive linear filters. We assume that the instantaneous 
poles of the recursive system are always inside the unit circle. 
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4.2.1 The Lyapunov Candidate Sequence 
Since the poles of the system ( 4.2) are by hypothesis always inside the 
unit circle, we can consider as Lyapunov candidate the unique, symmetric 
and positive definite solution of the discrete-time Lyapunov equation 

(4.10) 

where Vk is a bounded positive sequence with Vk E [vmin, Vmax] and 
[vmin, Vmax] is an arbitrary interval of the positive real axis. 

Following the derivations in [35, 123], it can be shown that Q 11k ( k) is 
given by 

+oo 
Qvk(k) = Vk E [AT(k)]iAi(k). (4.11) 

i=O 

The closed form solution for Q 11k(k) is given by 

vec[Qvk ( k )] = -Vk [AT ( k) 0 AT ( k) - IN2 r 1vec[IN ], ( 4.12) 

where ® indicates the Kronecker product and "vec[Q]" is a vector oper-
ator that stores the columns of Q in a predetermined order. 

Since vk is bounded by the positive and finite values Vmin and Vmax 

and the eigenvalues of A( k) are in the open set (O, 1 ), it can be shown 
that the Lyapunov conditions in ( 4.6) are always satisfied. This result 
can be proved easily by following the derivations in [35, 123]. As for the 
condition in ( 4. 7), let us consider ( 4.10) at time k + 1 and add Q 11k+i ( k + 
1) - Q 11k ( k) to both sides of the expression. It follows trivially that the 
condition of ( 4. 7) can be rewritten as 

AT(k + l)Qvk+l (k + l)A(k + 1) - Qvk(k) = 

= Qvk+i (k + 1) - Qvk(k) - Vk+ilN < -ef>IN. (4.13) 

This condition is met if 

(4.14) 

where ç is a real positive constant, ç < 1 and Il (·)Il is the induced L2 
norm of the matrix ( · ). Dividing both sides of ( 4.14) by Vk+i, ( 4.14) 
becomes 

llQ1(k + 1) - l/k~l Qvk(k)ll ::; ç < 1, 
for all k, where Q 1 (k) is given by 

+oo 
Q1(k) = L [AT(kWAi(k). 

i=O 

( 4.15) 

(4.16) 
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The above condition can be used to enable BIBO stable operation of 
an adaptive IIR filter equipped with a projection technique. Any projec-
tion technique that can move the coefficients back to a space that satisfies 
the condition in ( 4.15) can be used for this purpose. However, since most 
projection techniques have unpredictable computational complexity, and 
since they may result in coefficient stalling, we now derive a closed-form 
bound for µk when the parameter Vk = 1, under the assumption that the 
coefficient vary slowly. In this case the inequality in ( 4.15) reduces to 

( 4.17) 

for all k. Since vk is fixed, we drop the subscript on Q such that Q( k) = 
Q 1 (k) from now onwards. 

To derive the result, we note that 

llQ(k + 1) - Q(k)ll ~ llvec[Q(k + 1)] - vec[Q(k)]ll· ( 4.18) 

Combining ( 4.17) and ( 4.18), we derive a sufficient condition for the 
exponential stability of the system in ( 4.5) to be 

llvec[Q(k + 1)] - vec[Q(k)]ll ~e< 1, (4.19) 

for all k. In the hypothesis of slowly-varying coefficients, the following 
approximation can be applied: 

vec[Q(k + 1)] - vec[Q(k)] ~V' 9vec[Q(k)] · ~8(k), ( 4.20) 

where V'(} indicates the gradient vector operator with respect to the 
coefficient vector (} and ~8(k) = 8(k + 1)- 8(k). Recall from (4.4) that 
~8(k) = µk'tfJ(k). Substituting the approximation of (4.20) in (4.19) and 
manipulating the resulting expression gives an explicit condition on µk 
for the stability of ( 4.5) to be 

e µk < ' - llY' ovec[Q( k )] · 1/1( k) Il ( 4.21) 

for all k. 
The stability conditions of ( 4.15) and ( 4.17) are derived without re-

sorting to any approximation. However, these conditions can be em-
ployed in adaptive recursive filtering applications only with the help of 
projection techniques. Even though the derivation of ( 4.21) employs an 
approximation that is based on slow variations in the coefficients, this 
condition has the advantage of being useful in directly controlling the 
step size of adaptation. 
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The Second-Order Case 

The stability conditions derived in the previous subsection hold for any 
filter order. Computationally simple expressions that relate the filter 
coefficients to the stability bound can be derived for the second-order 
case. Therefore, the implementation of the stability conditions is simplest 
when the adaptive filter is realized as a cascade or parallel connection 
of second-order sections. Since the non-recursive part does not affect 
the stability of the resulting system provided that the coefficients are 
bounded, we consider the following second-order filter: 

y(k) = a1(k)y(k - 1) + a2(k)y(k - 2) + x(k). (4.22) 
For the instantaneous poles of this system to be inside the unit circle, 
the coefficients must satisfy the inequalities 

( 4.23) 
and 

( 4.24) 
The candidate Lyapunov matrix Q(k) in (4.16) can be shown to be 

given by 

( 4.25) 

where 

r(k) = -a~(k) + a~(k) + ai(k)a2(k) + a2(k) + ai(k) - 1 (4.26) 
and 

s(k) = a~(k) - a~(k) + ai(k)a2(k) + a2(k) + ai(k) - 1. (4.27) 
Substituting ( 4.25) into ( 4.21) results in the following bound for µk for 
the second-order system: 

r 2 k 
µk~ -.==================================~======== 

4(r(k) · 'l/;2 (k) - (a2(k) - 1) · v(k))2 

where 

+8((a1(k) 'l/;2(k) + a2(k) 'l/;1(k)) · r(k) - a1(k)a2(k) · v(k))2 

+(r(k) · w(k) - v(k) · s(k))2 

( 4.28) 

w(k) = (3a~(k) + ai(k) - 2a2 (k) + 1) 'l/; 2 (k) + 2a1(k)(a2(k) + 1) 'l/;1(k) 
( 4.29) 

and 

v(k) = ( - 3a~(k) + 2a2(k) + ai(k) + l)'l/;2(k) + 2a1(k)(a2(k) + l)'l/;1 (k). 
( 4.30) 
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4.3 Stabilized Output Error Adaptive IIR 
Filters 

In this section, we apply the stability condition derived in Section 4.2 to 
the stabilization of output-error adaptive IIR filters. Even though the 
ideas presented here are applicable to almost all adaptive IIR filters, we 
describe our approach using the Gauss-Newton output error adaptation 
algorithm (91 ). Furthermore, since the implementation of the stability 
condition is simplest when the adaptive filter is realized as a cascade or 
parallel connection of second-order sections, we have considered adaptive 
IIR filters employing parallel second-order sections. 

Each second-order section is of the form 

Yi( k) = a1i( k )Yi( k- l) +a2i( k )Yi( k-2) + boiu( k) + biiu( k- l) + b2iu( k-2). 
( 4.31) 

where u( k) denotes the input to the section. Let the data vector and the 
coefficient vector of the i-th section be given by1 

Xi(k) = [u(k), u(k - 1), u(k - 2), Yi(k - 1), Yi(k - 2)f ( 4.32) 

and 
( 4.33) 

respectively. We define the data and coefficient vectors for the overall 
structure to be 

X(k) = [Xf (k),XI(k), ... ,XI(k)]T ( 4.34) 

and 
O(k) = [Of (k), oI(k), ... , OI{k)f, ( 4.35) 

respectively, where L denotes the number of parallel sections. 
The coefficients are updated in this method as 

O(k + 1) = O(k) + µ(k)R-1(k + l),,P(k)e(k) ( 4.36) 

where µ( k) is a time-varying step size matrix of the adaptive filter defined 
as 

µ(k) = diag[µ1 (k), µ2(k), ... , µsL(k)], 
e( k) is the a priori estimation error defined as 

L 
e(k) = d(k)- LYi(k), 

i=l 

( 4.37) 

( 4.38) 

1 Note the exception in our notation. We use the capitai letter X to indicate the 
data vector because x was used in Section 4.2 in order to indicate the state vector. 
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and 
T T T ]T 'lf;(k) = (1/;1(k),1/;2(k), ... ,1/JL(k) ( 4.39) 

is the information vector whose i-th vector element 'lj;i(k) is 

1 
1/;i(k) = 1 - a1i(k)q-1 - a2i(k)q-2Xi(k). (4.40) 

In the above expression, the notation q-1 refers to a unit delay operator. 
The matrix R( k) is an estimate of the autocorrelation matrix of the 
information vector and it is recursively computed as 

R(k) = ÀR(k - 1) + (1 - À)'lj;(k)'lf;T(k), ( 4.41) 

where O ~ À < 1 is a parameter that controls the convergence and 
tracking speed of the estimation of the autocorrelation matrix. Its inverse 
may be evaluated recursively using the matrix inversion lemma as 

R-1(k + 1) = .!_ (R-1(k) - R-1(k)'lf;(k)'lf;T(k)R-1(k)) . 
À 1 ~,\ + 'lj;T(k)R-1(k)'lj;(k) 

( 4.42) 

The BIBO stability of the above adaptive filter can be achieved by 
constraining the step sizes associateci with the recursive component of 
each section to meet the conditions specified by ( 4.28). We point out 
again that the instantaneous poles must always lie within the unit circle 
and that the coefficients of the feedforward part must be bounded. In 
all our experiments, we have also limited the maximum step size value. 
Doing so has two advantages: {i) it allows the designer to contro! the 
steady-state behaviour of the adaptive filter independently of the char-
acteristics of the adaptive filter coefficients, and {ii) it ensures that the 
coefficients vary slowly so that the approximations in the derivation are 
vali d. 

The computational complexity of calculating the step size bound in 
( 4.28) correspond to 16 multiplications, one square-root operation and 
one division per second-order section. Consequently, the complexity of 
implementing the stability bounds for a cascade or parallel adaptive fil-
ter is linearly proportional to the order of the filter. Furthermore, this 
complexity is comparable to or smaller than the complexity of adapting 
the coefficients in many adaptive IIR filtering algorithms. 

4.4 Experimental Results 
In the first set of results presented below, the adaptive filters were em-
ployed to identify an unknown, fourth-order IIR filter with transfer fune-
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ti on 

H(z) - 1 2 
- 1 - l.86z-1 + 0.8698z-2 + 1 - z-1 + 0.5z-2 ( 4.43) 

using measurements of the input and output signals. The poles of the 
above system are located at [0.93 ± 0.07 j] and [0.5 ± 0.5j]. The adap-
tive filters employed a parallel connection of two second-order systems 
and were adapted using the Gauss-Newton algorithm. The input of the 
unknown system is a coloured Gaussian signal with zero mean value ob-
tained by filtering a white Gaussian signal with zero mean value and unit 
variance with the FIR filter of transfer function given by 

W(z) = 1+0.5z-1
. ( 4.44) 

The desired response signal was generated by processing this signal wi th 
the unknown system and then corrupting the output with an additive, 
zero-mean and white Gaussian noise sequence that is statistically inde-
pendent of the input signal. The variance of the measurement noise was 
such that the output signal-to-noise ratio was 30 dB. The adaptive filter 
employed a different step size sequence for each second-order section and 
for the recursive and non-recursive part of each section. The step size of 
the recursive part was selected to be the minimum of 0.001 or the bound 
suggested by our conditions, while that of the moving average part was 
fixed at 0.0005. The forgetting factor in the evaluation of the inverse of 
the autocorrelation matrix was chosen to be 0.9999. Almost all output 
error adaptive recursive filters are susceptible to converging to the wrong 
local minima of the squared estimation error surface. In the results pre-
sented here, all the experiments that resulted in convergence to wrong 
local minima were eliminated from the calculation of the ensemble av-
erages. In this way, we are able to observe the speed of convergence of 
the adaptive filter when it converged to the true solution. The results 
displayed in the figures are averages of the first fifty experiments in which 
the coefficients converged to the correct solution. 

In addition to constraining the step size to values below the stability 
bound at each time, we must also verify that the instantaneous poles 
of the updated filter are within the unit circle. In the experiments de-
scribed below the updates for a particular iteration was simply skipped 
whenever one or more poles crossed the unit circle. In order to ensure 
the BIBO stability of the adaptive filter feedforward part, we also im-
posed an upper bound on the absolute value of feedforward coefficients. 
The upper bound chosen was 1000, and in no experiment the feedforward 
coefficients reached this bound. The algorithm was initialized with the 
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Figure 4.1: Evolution of the feedback coefficients of one of the parallel 
sections of the stabilized adaptive IIR filters. 
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Figure 4.2: Evolution of the mean-square estimation error in the stabi-
lized adaptive IIR filters. 

coefficients of the feedforward parts equal to 0.5 and the poles of the 
recursive part equal to [O.l ±O.li] and [-0.l ±O.li] respectively for each 
second-order section. 

Figure 4.1 shows the ensemble averaged behaviour of the coefficients 
of the parallel section that correspond to the coefficients 1.86 and 0.8698 
( corresponding to the poles locateci at [0.93 ± 0.07 j]) of the unknown 
system. Figure 4.2 shows the ensemble averaged, squared estimation 
error at the output of the adaptive filters. The horizontal line in the figure 
represents the noise floor. Figure 4.3 displays the ensemble averaged step 
size sequence for the parallel section tracking the poles of the unknown 
system at [0.93 ± ·o.07j]. The results indicate that step size selection 
using the closed form conditions in ( 4.28) results in stable operation of 
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Figure 4.3: Evolution of the step size sequence of the stabilized adaptive 
IIR fil ters. 

the adaptive filter. The initial values of the step size are small in this 
example because the initial estimation error is large. Combined with the 
large error, the initial values of the step size produced the largest changes 
possible that still maintained the exponential stability of the system. 

We now compare the performance of the stabilized adaptive IIR filter 
with that of the SHARF algorithm. In order to make the comparisons 
as fair as possible, we used a single second order system for identifying 
an unknown second-order system with transfer function 

1 H(z) = . 
1 - l.9z-1 + 0.905z-2 

( 4.45) 

We used the same experimental conditions as in the previous example, 
with the difference that we employed the same step size sequence for 
adapting the moving average and the recursive coefficients of the system. 
The coefficient update in the SHARF algorithm was implemented as 
in [130] in the following manner: 

9(k + 1) = 9(k) + µR-1(k + l)X(k)e1(k), ( 4.46) 

where 

R-1(k 1) = _!_ (R-1(k) - R-1(k)X(k)XT(k)R-1(k)) 
+ ,\ l~À + XT(k)R- 1(k)X(k) ' 

( 4.4 7) 

e(k) = d(k) - (}T(k)X(k), ( 4.48) 
and 

p-1 

e1(k) = 2::: c(m)e(k - m). ( 4.49) 
m=O 
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Figure 4.4: Comparison of the stabilized adaptive filter of this chapter 
and the SHARF algorithm. 

The input vector X(k) is defined in this case as [x(k), y(k-1), y(k-2)f. 
In order to obtain satisfactory convergence of the SHARF algorithm, the 
FIR filter with transfer function C(z) that gives the filtered estimation 
error e1(k), must be such that C(z) ~ A(z), where A(z) is the denomi-
nator of the transfer function of the unknown filter. In our case we have 
considered the optimal choice of C(z) = A(z). 

Both the algorithms were initialized with the coefficient of the feed-
forward part equal to 0.5 and with the two poles at the origin. 

The step size µ was selected to be 0.00008 for the SHARF algorithm 
so that the steady-state excess mean-square error was identica! to that 
of the stabilized adaptive IIR filter of this chapter. We note that the 
coefficient update equations ( 4.46) and ( 4.4 7) have the form of a Gauss-
Newton update. The similarity of this set of update equations to those 
in ( 4.36)-( 4.42) and the choices of the step sizes so that the steady-state 
errors are almost identica! make it possible to make fair comparisons of 
the performance of the two algorithms. 

Figure 4.4 plots the evolution of the mean-squared estimation error 
for the two algorithms. We can see from this figure that the SHARF 
algorithm converges much slower than the method introduced in this 
chapter. Note that the time scales used in the two plots are different 
from each other. In general, when the instantaneous poles are initialized 
to be sufficiently removed from the unit circle, we have observed that our 
method converges significantly faster than the SHARF. However, it is 
possible to slow the initial convergence rate of our method by initializing 
the instantaneous poles to be very dose to the uni t circle. Such an 
initialization will force the initial values of the step size to be very small, 
and therefore will result in slow convergence. 

We also studied the convergence behaviour of the Gauss-Newton out-
put error algorithm with fixed step size using the same experimental 
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Figure 4.5: Comparison of the bound in ( 4.28) with that derived in [6] 
and [35]. 

conditions. Vvithout pole projection inside the unit circle, the algorithm 
became unstable in all 50 experiments we performed with a step size 
equal to 6 · 10-4 , which was lower than the maximum step size value we 
allowed for the stabilized adaptive filter. With pole projection and a step 
size equal to 8 · 10-4 , the instantaneous poles moved to locations outside 
the unit circle so often that the overall speed of convergence was much 
slower than that of the stabilized algorithm. Furthermore, the evolution 
of the coefficients toward their steady-state values was very erratic for 
the method employing only pole projection. In our experiments with the 
adaptive filter employing the new step size bound, only in one of the 
fifty-one experiments did the coefficients of the system not converge to 
the correct coefficient values after 20,000 samples. With the fixed step 
size, the coefficients in sixteen of sixty-six experiments did not converge 
to the correct values during the same time span. 

Finally, we compare the bounds given by ( 4.28) with the bounds 
derived in [6] and [35] for the maximum allowable variations in the coef-
ficients of an exponentially stable, second-order linear system with time-
varying coefficients. The stability bounds in [6] and [35] are expressed in 
terms of the state transition matrix. In order to make the comparison as 
fair as possible we derived the maximum allowable coefficient variation 
for the state transition matrix defined in ( 4.9). Figure 4.5 displays the 
three bounds as a function of the magnitude of the complex instantaneous 
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poles of the system. The curve a refers to the bound given by ( 4.28) while 
the curves b and e refers to the stability bounds derived in [6] and (35], 
respecti vely. 

The bounds were obtained for the case when the complex conjugate 
pole pair moved along straight lines located at ±45 degrees to the real 
axis. The coefficients were assumed to change as in ( 4.4), and the vector 
'ljJ ( k) was assumed to have unit magnitude at each time. The bounds are 
for the scaling factor µk in the coefficient evolution equation ( 4.4). It is 
clear from the results of Figure 4.5 that all three stability bounds converge 
to zero as the instantaneous poles approach the unit circle. However, the 
rate at which µ( k) in ( 4.28) approaches zero when the poles tend to the 
unit circle is several orders of magnitude slower than the bound derived 
in (35]. Furthermore, the bound for µ( k) given by ( 4.28) is much greater 
than the bound in [6]. This result is an additional demonstration of the 
usefulness of the sufficient stability bounds derived in this thesis. 

4.5 Concluding Remarks 
This chapter presented a novel stability condition for time-varying direct-
form recursive linear systems. This condition was successfully applied 
for designing bounded-input, bounded-output stable adaptive IIR filters. 
The experimental results not only confirmed the reliability of the derived 
bound, but also demonstrated the better convergence characteristics of 
the stabilized algorithm when compared with other stable adaptive IIR 
filters. The time-varying bound derived in this thesis may be incorpo-
rated into any practical adaptive IIR filter. It is well-known that certain 
adaptive IIR filtering algorithms such as Feintuch's method diverge for 
all choices of the step size for certain input signals [156]. Experimental 
results as well as theoretical considerations indicate that the step size 
bound derived in this chapter eventually goes to zero in such situations, 
thus preserving the BIBO stability of the adaptive filter. 



Chapter 5 

Sufficient Stability 
Conditions for Discrete-Time 
Recursive Polynomial Filters 

5.1 Introduction 

In Chapter 1 we have introciuceci the Volterra filters, which are polyno-
mial filters originateci from the truncation of the Volterra series expan-
sion. One cirawback of these polynomial filters is that they require a large 
number of coefficients to characterize a nonlinear process. This problem 
can be alleviateci by using recursive polynomial structures. In fact many 
real-worlci nonlinear systems have an infinite memory for the input sig-
nal history. In this situation, system mocielling by means of recursive 
polynomial structures requires a much lower number of coefficients than 
the non-recursive counterpart. Moreover, as shown in Chapter 6, re-
cursive polynomial structures are also obtaineci from the exact inversion 
of Volterra filters. However, recursive polynomial filters are inherently 
unstable, in the sense that it is always possible to finci bouncieci input 

Part of the content of this chapter was presented in 
Enzo Mumolo e Alberto Carini, "A Stability Condition for Adaptive Recursive Sec-
ond Order Volterra Filters," Signa/ Processing, Elsevier, Vol.54, No. 1, Oct. 1996, 
pp. 85-90 
Alberto Carini e Enzo Mumolo, "Adaptive Stabilization of Recursive Second Order 
Polynomial Filters by Means of a Stability Test," Proceedings of 1995 IEEE Work-
shop on Nonlinear Signa/ and Image Processing, June 20-22 1995, Neos Marmaras, 
Halkidiki, Greece, pp. 939-942 
Enzo Mumolo e Alberto Carini, "Recursive Volterra Filters with Stability Monitor-
ing," Proceedings of EUSIPCO 96, September 10-13 1996, Trieste, Italia 
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signals which drive the nonlinear filter to instability. As a matter of fact, 
the stability of recursive polynomial filters depends not only on the filter 
coefficients as it happens in linear systems, but also on the input sig-
nal which must belong to a certain class to produce a bounded and well 
behaved filter output. This subset of input signals depends only from 
the recursive filter structure. Lee and Mathews introduced the notion 
of input-dependent stability for nonlinear recursive filters; some results 
concerning the bilinear systems are described in [84, 86, 87, 88]. Bi-
linear systems are the simplest form of recursive nonlinear model [92]. 
In [84, 86, 87] input dependent sufficient stability conditions have been 
reported; in [88] the conditions of [86] have been used to monitor the 
stability of a bilinear system model in a system identification task. 

In [75], sufficient conditions for certain classes of discrete time nonlin-
ear systems, where the output is computed from past input and output 
values plus mixed product of input and outputs, have been described. 
The conditions can be applied to any polynomial recursive system; how-
ever, a direct derivation of the output of the filter as a series of product 
of the input and past output samples is required. Generally, it is not easy 
to derive this series of products nor it is simple to verify the conditions 
given in [75). 

In [68] other stability conditions for bilinear and quadratic filters are 
presented. In particular, conditions are given under which asymptotically 
periodic inputs produce asymptotically periodic outputs with the same 
peri od. 

In this chapter we derive input-dependent stability conditions for 
recursive polynomial filters. In Section 5.2, we first describe a simple 
sufficient stability condition for recursive second order polynomial filters 
given by the following difference equation: 

M1 M2 M2 
y(n) = l:ai(i)x(n - i)+ LLa2(i,j)x(n - i)x(n -j) + 

i=O i=O j=i 

N1 N2 N2 L hi(i)y(n - i)+ L L h2(i,j)y(n - i)y(n - j). (5.1) 
i=i i=i j=i 

In Section 5.3 a similar stability condition is derived for the more general 
recursive polynomial filter described by the difference equation 

M1 M2 M2 
y(n) = L ai(ii)x(n - ii)+ L L a2(ii, i2)x(n - ii)x(n - i2) + 

Mp Mp 

· · · + L · · · L ap(ii, · · ·, ip)x(n - ii)··· x(n - ip) + 
i1=0 ip=O 
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Ni N2 N2 

+ L h1(i1)y(n - ii)+ L L h2(ii, i2)y(n - ii)y(n - i2) + 

Nq Nq 

· · · + L · · · L hq(ii, · · ·, iq)y(n - ii)··· y(n - iq)· (5.2) 
ii=l iq=l 

.The system described in (5.1) and (5.2) are also referred to as "re-
cursive Volterra filters". It will be shown in Section 5.2 and 5.3 that, 
provided that the stability of the linear part is guaranteed, the output of 
the fil ters in ( 5 .1) and ( 5. 2) is bounded for every n if the input signal is 
bounded by a certain value which can be very efficiently computed from 
the filter coefficients. No requirement is imposed on the filter coefficients. 

5.2 Sufficient Stability Conditions for Re-
cursive Quadratic Filters 

For simplicity, let us introduce the time-invariant operator q-1 such that 

Moreover, let us call Pi the zeros of the polynomial 

(5.3) 

and introduce the following terms: 

Ni M1 
a= Il (1 - IPil), f3 =I: la1(i)I, 

i=l i=O 

N2 N2 M2 M2 

1 =E E lh2(i,j)I, s =EL: la2(i,j)I (5.4) 
i=l j=i i=O j=i 

We now prove the following preliminary result, which is a sufficient 
stability condition for the recursive system 

Ni N2 N2 
y(n) = ç(n) + Lh1(i)y(n-i) + LLh2(i,j)y(n-i)y(n-j). (5.5) 

i=l i=l j=i 
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Theorem 5.2.1 If 

I it is lç(n)I ~ Mç and ly(n)I < My for every n < O, where Mç 
o? and M - a 4/ y - 27' 

11 the zeros Pi are inside the unit circle, Vi = 1 ... N1, 

iii the input signal ç(n) is bounded by Mç for every n ~O. 

then the output signal y( n) of the recursive polynomial filter described in 
(5.5) is bounded by My for every n. 

Proof 'Vith the q-i operator described above, the recursive quadratic 
system reported in (5.5) can be rewritten in the following way: 

( 1 - E h1 ( i)q-i) y(n) = ç(n) + ~ ~ h2 (i,j)y(n - i)y(n - j) (5.6) 

and, by defining 

N2 N2 
k(n) = ç(n) + LL h2(i,j)y(n - i)y(n - j) (5.7) 

i=l j=i 

one can write 

(5.8) 

or 

{ 

Ni _ 1 } y(n) = ;g (i - p;q-1
) k(n). (5.9) 

By induction on the order of the system, one can easily show [84] that 
this last expression can also be written as follows: 

(5.10) 

In fact, considering a first order system, with N1 = 1, we have 

(5.11) 
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or, by successive substitutions, 

(5.12) 

In other words, (5.10) holds for N1 = 1. Suppose now that (5.10) is true 
for all the system orders from 1 to (N1 - 1) and let us see if (5.10) holds 
for all the system orders. The N1-th order system can be viewed as the 
cascade of a first order system with a pole PN1 and a (N1 - 1)-th order 
system with poles p1 · • • PN1 _ 1 . Hence 

Substituting (5. 7) in (5.10), it follows that 

{ 

Ni oo } { Ni oo } N2 N2 
y(n) = g ~piq-1 ç(n)+ g ~piq-1 

'{; f; h2(i,j)y(n-i)y(n-j) 

(5.14) 
and, from (5.14) 

ly(n)I s; {fi ~ IP;l1q-}ç(n)I + 

{Il~ IP;l1q-l} ~ ~ lh2(i,j)lly(n - i)lly(n - j)I 

(5.15) 

Let us now suppose that lç( n) I ~ Mç for every n. By hypothesis, IY( n) I ~ 
lvfy for n <O. Furthermore, let us suppose that ly(n - i)I ~ My for each 
i 2: 1. Then, also the current output sample y( n) is bounded by My· In 
fact, from (5.15): 

ly(n)I < {fi ~ IP•l1} Me+ 

{fi ~ IP;l1q-l} ~ ~ lh2(i,j)IM; (5.16) 

Since IPil < 1, we have L:~o IPil' = (1 - IPilf 1 and, by substituting into 
(10) and using (3) and (5), we obtain 

ly(n)I ~ _!_Me+ 1 M2 = ~ (5.17) 
a a Y 21 
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In conclusion, if the input signal ç( n) is bounded by Mç for every n, by 
induction the output signal y( n) is bounded by My for every n. D 

If, in particular, the linear recursive part in (5.5) is missing, the input 
and output bounds are given by the following Corollary. 

Corollary 5.2.1 With the hypothesis that lç(n)I ::; fi and ly(n)I ::; 

~ for every n < O, the output signal y(n) of the following recursive 
nonlinear filter: 

M2 M2 
y(n) = ç(n) + L L h2(i,j)y(n - i)y(n - j) (5.18) 

i=l j=i 

is bounded by ~ for every n ~ O if the input signal ç( n) is bounded by 

l, for every n ~O. 

Proof From (5.18) it follows that 

M2 M2 
ly(n)I ::; lç(n)I + L L lh2(i,j)lly(n - i)lly(n - j)I (5.19) 

i=l j=i 

As in Theorem 5.2.1, this corollary can easily be proved by induction.D 

Remark 5.2.1 The stability condition can be shown not to be necessary 
for stability by showing that there exist stable recursive polynomial filters 
that do not satisfy the input bound. For example, consider the system 
y(n) = x(n) + y2(n - 1). According to Corollary 5.2.1, the input bound 
for stability is 1/4. However, if we consider the impulse response of 
this system, it can be readily shown that the system is stable for input 
amplitudes less than or equal to 1. 

A sufficient condition for the stability of (5.1) is, finally, given in the 
following theorem. 

Theorem 5.2.2 lf 
i for every n < O it is lx( n) I ::; Mx and IY( n) I ::; My, where 

and 
a 

My=-, 
2, 
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ii the zeros Pi are inside the unit circle, Vi = 1 ... Ni, 

iii the input signal x( n) is bounded by Mx for every n ~ O. 

then the output of the system in (5.1), is bounded by My for every n ~ O. 

Proof The recursive equation described in (5.1) is obtained using (5.5) 
where ç( n) is defined as follows: 

M1 M2 M2 
ç(n) = 'La1 (i)x(n -i)+ 'L'La2(i,j)x(n -i)x(n -j) (5.20) 

i=O i=O j=i 

2 
By Theorem 5.2.1, if ç(n) is bounded by Mç = :l;y for every n the output 
signal y( n) of the system in ( 5.1) is bounded by My. Thus, we find a 
bound of x(n), Mx, which assures that the output signal ç(n) of (5.20) 
is bounded by Mç. From (5.20) 

Vn. 

The bound we are looking for is the maximum Mx such that 

f3Mx + 8M; ::; Mç. 

(5.21) 

(5.22) 

This is equal to the positive root of f3Mx + 8M; - Mç =O which is 

Substituting .l\fç in this last expression, we finally obtain 

D 

5.3 Sufficient Stability Conditions for Gen-
erai Order Recursive Volterra Filters 

Let us cali Pi the zeros of the polynomial 

(5.23) 
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Moreover let us call 
N1 

ÌI = Il(l - lpd) 
i=l 

and introduce the absolute summation of the Volterra kernels as follows: 

ì2 = - I: I: lh2(ii, i2)1, ... ' 
i1 i2 

With these quantities, let us introduce the following polynomial 
q 

P1(z) = L hizi-I, (5.24) 
i=l 

which for the Descartes' rule has a unique real positive zero. Let us call 
My the unique positive zero of (5.24) and, with it, compute the following 
value: 

(5.25) 
i=l 

Finally, let us define the following quantities: 

80 =-Me, 01 =I: la1(ii)I, 
i1 

s2 =I: I: la2(ii, i2)1, ... ' 
i1 i2 

and, with such quantities, let us introduce the polynomial 
p 

P2(z) = L Dizi. (5.26) 
i=O 

Again, for the Descartes' rule the polynomial in (5.26) has a umque 
positive zero which will be called Mx. 

The system described in (5.2) can be written also as follows: 

y(n) = A{x(n)} + H {y(n)} (5.27) 

where 
M1 M2 M2 

A{x(n)} L a1(i1)x(n - ii)+ L L a2(i1, i2)x(n - ii)x(n - i2) 

Mp Mp 

+ · · · + L · · · L ap(ii, · · ·, ip)x(n - ii)··· x(n - ip) 

(5.28) 
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and 
Ni N2 N2 

H{y(n)} L hi(ii)y(n - ii)+ L L h2(ii, i2)y(n - ii)y(n - i2) 

Nq Nq 

+ · · · + L · · · L hq(ii, · · ·, iq)y(n - ii)··· y(n - iq)· 

(5.29) 

Using the above definitions, we now prove the following results. 

Theorem 5.3.1 The output of the system 

y(n) = ç(n) + H{y(n)} (5.30) 

is bounded for every n if 

1 it is le(n)I < Me and ly(n)I ~ My for every n < O, where My is the 
unique positive root of the polynomial in (5.24) and Me is defined 
in (5.25), 

11 the zeros Pi are inside the unit circle, Vi = 1 ... Ni, 

iii the input signal ç(n) is bounded by Me for every n ~O. 

Moreover, in these conditions the output of the system in (5.30) is bounded 
by My for every n ~O. 

Proof The proof is similar to that of Theorem 5.2.1. Using (5.29), (5.30) 
we have that 

Nq Nq 

L · · · L hq(ii, · · ·, iq)y(n-ii) · · · y(n-iq)· 

(5.31) 
By defining 

N2 N2 

k(n) = ç(n)+ L L h2(ii,i2)y(n-ii)y(n-i2)+···+ 
ii=i i2=i 

Nq Nq 

L · · · L hq(ii, · · ·, iq)y(n - ii)··· y(n - iq) (5.32) 
i1 =i iq=i 
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and, introducing the p/s defined above, 

{ 

N1 _ 1 } 
y(n) = !! ( 1 - p;q-1

) k(n ). (5.33) 

Since the poles Pi are inside the unit circle, by induction on the order 
of the system, one can easily show that this last expression can also be 
written as follows: 

(5.34) 

Substituting the expression of k(n) in (5.34), it follows that 

and, from (5.35) 

{ 

Ni oo } Nq Nq !! f,; IP;l1q-l iE! .. ·i~ lhq( i1, .. ., iq)llY( n-i1)I · · · ly( n-iq)I. 

(5.36) 
Let us now suppose that a bound Mç exists such that lç( n) I ::;; Mç for 
every n and let us look for a bound of y(n). \Ve proceed by induction 
on the sample number. We suppose ly(n)I ::;; My Vn <O. Assume that 
IY( n - i) I ::;; My for each i 2:: 1. We will show that, in these hypothesis, a 
bound My that holds for any output sample y(n) can be found. In fact, 
from (5.36): 
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{ 

Ni oo } Nq Nq 

+ g~IP;l1 ;E···i~lh.(i1,···,i.)IM:. (5.37) 

Since IPi I < 1, we have obviously L:~o 1Pd1 = (1 - 1Pdt1
• Thus, by 

substituting this last expression into (5.37), we obtain 

ly(n)I ~ _!_Me - 12 M~ - · · · - /q M~. 
/1 /1 /1 

(5.38) 

Thus, the system output y( n) is always bounded if the right term of 
(5.38) is bounded by My. By imposing this condition, from (5.38) we 
get 

(5.39) 
i=l 

The output of the system (5.30) is bounded for every choice of Me, 
My that satisfy (5.39). In particular, we are interested in the maximum 
value of Me that meets condition (5.39), which is given by the My that 
maximizes the following function 

q 

F= L/iM~ (5.40) 
i=l 

This My can be found by setting to zero the first derivative of F. That 
IS, 

(5.41) 

According to the definitions given above, the unique positive solution of 
(5.41) is called A1y. The corresponding extrema of F is the upper bound 
on ç ( n) we are looking for, and i t is gi ven by Me as defined in ( 5. 25). D 

Theorem 5.3.2 The output of the system 

y(n) = A{x(n)} + H {y(n)} (5.42) 

is bounded for every n if 
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I it is lx(n)I ~ Mx and ly(n)I ~ My for every n < O, where Mx and 
My are the unique positive roots of the polynomials in (5.24) and 
(5.26), respectively, 

u the zeros Pi are inside the unit circle, \li = 1 ... Ni, 

iii the input signal x( n) is bounded by Mx for every n 2:: O. 

A1oreover, in these conditions the output of the system in (5.42) is bounded 
by My f or every n 2:: O. 

Proof By using the result in Theorem 5.3.1, we find the maximum bound 
of the input to the system 

ç(n) = A{x(n)} (5.43) 

such that its output ç(n) is bounded by Mç. Therefore, assuming that 
lx(n)I ~Mx for each n, from (5.28), it comes out that 

M1 M2 M2 
le(n)I ~ L la1(i1)IMx + L L la2(ii, i2)1M; + · · · + 

i1=0 

Mp Mp 

+ L ··· L lap(ii,···,ip)IM~ (5.44) 
ii=O ip=O 

or p 
le(n)I ~ E8iM~. (5.45) 

i=l 

If we impose that the right term of (5.45) is bounded by Mç, we make 
sure that le( n) I ~ Me for every n. Hence, using the definition of 80 given 
above, the following condition must hold: 

p 

L8iM~ ~o (5.46) 
i=O 

The maximum value of Mx that satisfies (5.46) is the unique positive 
zero of P2(z) described in (5.26). D 

Remark 5.3.1 The conditions of Theorems 5.3.1 and 5.3.2 are not nec-
essary for the stability of the systems (5.30) and (5.42), respectively. 
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Remark 5.3.2 The bounds are based on the computation of the roots 
of polynomials (5.24) and (5.26), respectively. The coefficients of these 
polynomials present just one change of the sign and therefore, for the 
Descartes rule of sign, the real and positive roots are unique. Accordingly, 
the zeros of the polynomials P1 and P2 can be computed very efficiently 
by numerica! methods. 

5.4 Final Remarks and Conclusion 
Simple stability conditions for recursive polynomial filters have been de-
scribed in this chapter. The sufficient conditions proved in Section 5.2 
are expressed in a closed form, while those in Section 5.3 require the 
computation of the real positive zero of two polynomials. However, for 
the particular form of that polynomials, the real positive zero can be 
computed very efficiently by numerica! methods. 

As it will be pointed out in Chapter 6, the theorems presented in 
this chapter can be used to find conditions for the stability of the exact 
inverse of a truncated Volterra filter. 



Chapter 6 

The Inverse of Certain 
N onlinear Systems 

6.1 Introduction 
The equalization and linearization of nonlinear system is a subject of 
exploding interest in Signal Processing. In Chapter 7 we will present a 
theory for the equalization and linearization of a wide class of nonlinear 
systems. In this chapter, instead, we present some theorems for the inver-
si on of certain nonlinear systems; these theorems constitute the starting 
point for the development of the equalization and linearization theory 
introduced in Chapter 7. In particular, we present some results for the 
exact inversion of the nonlinear systems described by the input-output 
relationship 

y(n) = g[x(n)]h[x(n - 1), y(n - 1)] + f[x(n - 1), y(n - 1)], (6.1) 

where g[·], h[·, ·] and f[·, ·] are causai, discrete-time and nonlinear oper-
ators, and the inverse function g-1 [·] exists. We also present expressions 
for the pth order inverses of systems of the form 

y(n) = g[x(n)] + f[x(n - 1), y(n - 1)]. (6.2) 

The second result is useful in situations where the exact inverse system 
does not exist, or is not stable. Even when the exact inverse does not 

Part of the content of this chapter was presented in 
Alberto Carini, Giovanni L. Sicuranza and V. John Mathews "On the Inversion of 
Certain Nonlinear Systems," IEEE Signa[ Processing Letters, Dee. 97 
Alberto Carini, Giovanni L. Sicuranza and V. John Mathews "On the Exact Inverse 
and the pth Order Inverse of Certain Nonlinear Systems," Proceedings of NSIP 97, 
September 7-11 1997, Michigan, USA 
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exist, the class of filters in (6.2) admits efficient realizations of their pth 
order inverses. 

6.2 The Inverse of Certain Nonlinear Sys-
tems 

In all of our discussions, we assume causal signals, i.e., all the signals are 
identically zero for time indices less than zero. The following theorem 
shows how to evaluate the exact inverse of (6.1). 

Theorem 6.2.1 Let g[·L h[·, ·] and J[·, ·] be causal nonlinear discrete 
operators and let the inverse operator g-1 [·] exist. Then, the exact inverse 
of the system in {6.1) is described by the input-output relationship 

z(n) _ 
9

_1 [u(n)- f[z(n -1),u(n -1)]] (6.3) 
- h[z(n - 1), u(n - 1)] ' 

where u( n) and z( n) are the input signal and output signal, respectively, 
of the system. 

Proof We demonstrate first that the system in (6.3) is the post-inverse 
of (6.1), i.e., a cascade interconnection of the system in (6.1) followed 
by the system in (6.3) results in an identity system. We proceed by 
mathematical induction. Let x( n) and y( n) represent the input and 
output signals, respectively, of the system in (6.1). To prove the theorem 
using induction, we assume that 

z( n - i) = x( n - i) Vi > O. 

We must now show using (6.4) that 

z(n) = x(n) 

when u(k) = y(k) for k ~ n. Now, 

z(n) = _1 [y(n)-J[z(n-1),y(n-1)]] 
g h[ z( n - 1), y( n - 1)] 

g_1 J[x(n - 1), y(n - 1)) - J[z(n - 1), y(n - 1)]} 

[ 

{g[x(n)]h[x(n - 1), y(n- 1))+ l 
h[z(n-1),y(n-1)] · 

(6.4) 

(6.5) 

(6.6) 
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By substituting z(n - i) = x(n - i) from (6.4) into (6.6), it follows in 
a straightforward manner that z(n) = x(n). We can prove in a similar 
manner that the system in (6.3) is also the pre-inverse of the system 
in (6.1), i.e. a cascade interconnection of the system in (6.3) followed 
by the system in (6.1) results in an identity system. This completes the 
proof. D 

Remark 6.2.1 The inverse of the system in (6.1) may not exist or may 
not be stable. For example, if 

h[z(n - 1), u(n - 1)] =O (6.7) 
at any time for some specific input signal, the inverse system of ( 6.1) is 
unstable. 

Example 6.2.1 We wish to find the inverse of the bilinear system 
N-1 N-1 

y(n) = x(n) + L aix(n - i)+ L biy(n - i)+ 
i=l i=l 

N-1 N-1 

L L Cijx(n - i)y(n - j). (6.8) 
i=O j=l 

Let us define f, h and g to be 
N-1 N-1 

J[x(n - 1), y(n - 1)] = L aix(n - i)+ L biy(n - i)+ 
i=l i=l 
N-1 N-1 L L Cijx(n - i)y(n - j), (6.9) 
i=l j=l 

N-1 
h[x(n - 1), y(n - 1)] 1 + L CojY ( n - j) (6.10) 

j=l 

and 
g[x(n)] = x(n), (6.11) 

respectively. Then, we can utilize Theorem 6.2.1 to find the inverse of 
the bilinear system to be 

{ 

N-1 N-1 

u(n) - L biu(n - i) - L aiz(n - i)+ 
i=l i=l 

N-1 N-1 

- ~ ~ CijZ(n - i)u(n - j)} 
z(n) = ______ N ___ l _______ _ (6.12) 

1 + L c0jy(n - j) 
j=l 
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A simpler expression can be found for the inverse filter of the sys-
tem in (6.2). The following corollary can be immediately derived from 
Theorem 6.2.l. 

Corollary 6.2.1 Let g[·] and f[·, ·] be causa[ nonlinear discrete operators 
and let the inverse operator g-1 [·] exist. Then, the causa[ discrete nonlin-
ear system described in {6.2) has the inverse system whose input-output 
relationship is given by 

z(n) = g-1 [u(n) - f[z(n - 1), u(n - l)J]. (6.13) 

Example 6.2.2 The inverse of the bilinear system 

N-1 N-1 

y(n) = x(n) + L aix(n - i)+ L biy(n - i)+ 
i=l i=l 

N-1 N-1 

L L CijX(n - i)y(n - j) (6.14) 
i=l j=l 

is the bilinear system 

N-1 N-1 

z(n) = u(n) - L biu(n - i) - L aiz(n - i)+ 
i=l i=l 

N-1 N-1 - L L CijZ(n - i)u(n - j). (6.15) 
i=l j=l 

Note that the double summation in (6.14) is slightly different from the 
double summation in (6.8), and this difference contributes to the simpler 
inverse system in (6.15). 

6.3 pth Order lnverses 
N ot all nonlinear systems possess an inverse and many nonlinear sys-
tems admit an inverse only for a certain subset of input signals. For 
these reasons, Schetzen developed the theory of the pth order inverse of 
a nonlinear system whose input-output relation can be represented using 
a Volterra series expansion [126, 127]. The pth order inverse of a non-
linear system H is defined in [126, 127] as the pth order system which, 
connected in cascade with H, results in a system whose linear kernel is 
the identity system and whose Volterra kernels from the second up to the 
pth order are zero. A pth order system is one in which all the Volterra 
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kernels of order greater than p are zero. The definition of the pth order 
inverse was relaxed in [125] by allowing the inverse system to possess 
non-zero Volterra operators of order greater than p. These operators do 
not affect the first p Volterra operators of the cascade system. This re-
laxed definition of the pth order inverse was employed in [125] to derive 
simpler and computationally more effi.cient expressions for the inverse 
system. However, because of the presence of higher order components, 
the definition of the pth order inverse in [125] does not result in a unique 
inverse system. 

The following theorem presents an effi.cient method of computing a 
pth order inverse of the system in (6.2). Note that this system is a special 
case of the system in (6.1) when h[·, ·] = 1. 

Theorem 6.3.1 Let g[·] and f[·, ·] be causai, discrete-time noniinear op-
erators with convergent Volterra series expansions with respect to all the 
arguments. Moreover, iet the pth order inverse g;1 [·] of the system g[·] 
exist. Then a pth order inverse of the causai, discrete-time noniinear sys-
tem described in (6.2) is given by the following input-output relationship: 

z(n) = g;1 [u(n) - f[z(n - 1), u(n - l)J]. (6.16) 

Proof As was the case for the Theorem 6.2.1, we first show that the 
system in (6.16) is the pth order post-inverse of the system in (6.2). Using 
the same variables as in the derivation of Theorem 6.2.1, we express z(n) 
as 

z(n) g; 1 [y(n) - f[z(n - 1), y(n - l)J] 

g;1 [g[x(n)] + f[x(n - 1), y(n - l)] + 
- f[z(n - 1), y(n - l)l]. (6.17) 

\Ve proceed by mathematical induction. We assume that, for any i 
greater than zero, the output z( n - i) differs from x( n - i) only by 
Tp(n - i), a term whose Volterra series expansion in x(n) contains only 
kernels of order larger than p, i. e., 

z( n - i) = x( n - i) + Tp( n - i) Vi > O. (6.18) 

\Ve have to prove that the Volterra series expansion of z( n) - x( n) have 
zero kernels of order up to p. Since J[·, ·] admits a convergent Volterra 
series expansion, we have from (6.18) that the Volterra series expansion 
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of the di:fference f[x( n - 1 ), y( n -1 )] - f[z( n -1 ), y( n -1 )] contains only 
kernels of order greater than p, i. e., 

f[x(n - 1), y(n - 1)] - f[z(n - 1), y(n - 1)] =o+ r;(n), (6.19) 

where the Volterra kernels of T~( n) up to order p are zero. Substitut-
ing (6.19) in (6.17), we get 

(6.20) 

The pth order inverse of the operator g[·] derived in [126] is given by 
a pth order truncated Volterra series whose kernels depend only on the 
first p kernels of the Volterra series expansion of g[·]. The pth order 
inverse derived in [125] may have Volterra kernels of order greater than 
p. However, the inverse still has a Volterra series expansion with finite 
order of nonlinearity, and it depends only on the first p kernels of the 
Volterra series expansion of g[·]. Consequently, it immediately follows 
from (6.20) that 

z ( n) = x ( n) + TP ( n) (6.21) 
and that the system in (6.16) is the pth order post-inverse of the system 
in (6.2). We can prove in a similar manner that it is also apre-inverse of 
the system in (6.2). D 

Remark 6.3.1 Due to the rational structure of the system in (6.3), a 
similar expression for the pth order in verse of the system in ( 6 .1) does 
not exist. 

Example 6.3.1 We wish to derive a pth order inverse for the second-
order Volterra filter given by the following expression: 

N-1 N-1 N-1 

y(n) = L aix(n - i)+ L L bijX(n - i)x(n - j). (6.22) 
i=O j=i 

Let 
N-1 

g[x(n)] = a0 x(n) + x(n) L b0jx(n - j) (6.23) 
j=O 

and 

N-1 N-1 N-1 

f[x(n - 1)] = L aix(n - i)+ L L bijx(n - i)x(n - j). (6.24) 
i=l i=l j=i 
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According to the Theorem 6.3.1, a pth order inverse of (6.22), is 

[ 

N-1 N-1 N-1 ] 
z(n) = g;1 u(n) - ~ a;z(n - i) - ~ t;; b;jz(n - i)z(n - j) . 

(6.25) 
The pth order inverse g;1 [·] can be computed iteratively as in [125] and 
is given by 

(6.26) 

where g11 
[·] is the inverse of the first Volterra operator of g[·] (i.e., a01 in 

our case) and qp[·] is the truncated Volterra series expansion of the system 
g[·] that contains only the second through pth order Volterra kernels. 

While it is possible tò compute the pth order inverse of the system 
of (6.22) as in (125], using the structure in (125] for inverting a smaller 
subsystem and then using Theorem 6.3.1, as we have clone here, is a more 
efficient procedure in most situations. 

The computational cost for the evaluation of (6.25) is 2(N - 1) + 
(N-;l)N + (N + 2)(p - 1) multiplications per time instant. The corre-
sponding computational cost for directly computing the pth order inverse 
of (6.22) as in (6.26) is N + ( 2N + N(~+i)) (p-1) multiplications per time 
instant. Implementing (6.25) has a computational cost of O(N2 + pN) 
multiplications per time instant while for the method in [125] the compu-
tational cost is O(N2p). The methodology suggested by Theorem 6.3.1 
is more efficient for evaluating the pth order inverse of a Volterra filter of 
order q when p is greater than q. On the other hand, when p < q, only 
the first p Volterra operators are significant for the evaluation of the pth 
order inverse. In this situation, both methods of inversion require almost 
the same number of multiplications per sample. 

6.4 An Experimental Result 
We consider the pth order inversion of the second order Volterra filter 
with input-output relationship 

y(n) = x(n) - x(n - 1) - 0.125x(n - 2) + 
0.3125x(n - 3) + x2 (n) - 0.3x(n)x(n - 1) + 
0.2x(n)x(n - 2) - 0.5x(n)x(n - 3) + 
0.5x2(n - 1) - 0.3x(n - l)x(n - 2) + 
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-0.6x(n - l)x(n - 3) - 0.6x2(n - 2) + 
0.5x(n - 2)x(n - 3) - O.lx2 (n - 3). 
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(6.27) 

The pth order inverse derived applying Theorem 6.3.1, where g; 1 [·] is 
computed as in equation (6.26), is compared with the pth order inverse 
obtained by directly using the method in [125]. In Figure 6.1 the points 
identified with o referto the pth order inverse of the Theorem 6.3.1, while 
the points indicateci with + refer to the pth order inverse of [125]. The 
plots in Figure 6.la compare the computational cost in multiplications 
for different orders p of the inversion. The computational efficiency of the 
pth order inverse of Theorem 6.3.1 over the inverse suggested in [125] can 
be clearly seen in this figure. Figures 6.lb and 6.lc displays the mean-
squared error (MSE) between the input signal of the system in ( 6.27) 
and the output of its pth order inverse when connected in cascade to 
the system. The input signal was white and Gaussian-distributed with 
zero mean value. Figure 6.lb presents the MSE in the reconstruction 
of the input for different values of the inverse filter order p when the 
standard deviation of the input signal was 0.05. Figure 6.lc shows the 
mean-square error values for different standard deviations of the input 
signal for a fifth-order inverse system. All the results presented are time 
averages of 1,000 samples of the ensemble averages computed over fifty 
independent experiments. Values of the standard deviations for which a· 
corresponding MSE value is absent correspond to instability situations. 
\Ve can see that our approach give the similar or better performances 
as the method in [125] till instability arises in the inverse system. In 
such situations, the performance of the pth order inverse of [125] are also 
unacceptable. 

6.5 Concluding Remarks 
This chapter presented expressions for the exact inverse and the pth order 
inverse of a wide class of discrete-time nonlinear systems. This class in-
cludes most causal polynomial systems with finite order as well as many 
nonlinear filters with nonpolynomial input-output relationships. In par-
ticular, Theorem 6.2.1 allows the inversion of all recursive polynomial 
systems whose dependence on the input sample x( n) can be character-
ized using an invertible component g[x(n)]. The computational cost of 
the exact inverse filter coincides with the cost of implementing the direct 
system and the operator g- 1 [·]. Theorem 6.3.1 applies to all recursive 
polynomial systems with the same characteristic as described above, as 
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well as many other nonlinear systems. In this case also, the cost of im-
plementing the inverse filter is that of implementing the direct system 
and the pth order inverse of g[·]. All the inverse filters presented in this 
chapter are recursive and therefore may possess poor stability properties. 
Consequently, the stability of such systems must be tested after the in-
version of the filter. Stability of recursive nonlinear systems is a topic 
of active research. Some useful stability results for recursive polynomial 
filters can be found in [19, 75, 86, 87, 133] and in Chapter 5. 



Chapter 7 

Equalization and 
Linearization of N onlinear 
Systems 

7.1 Introduction 
Equalization of linear systems has been studi ed for several years [94]. 
Many real channels, however, possess non-negligible nonlinearities that 
make it impossible for linear equalization procedures to provide accept-
able results. Examples of real world systems in which nonlinear effects 
are present include satellite communication channels [10, 11], voiceband 
data transmission systems [13], high density magnetic recordings [16], 
high density optical systems [1] and loudspeaker systems [49, 53, 69], 
drift oscillations in random seas [71], semiconductor devices [64, 99, 100] 
and biologica! phenomena [63, 74], to name but a few. 

The need to compensate for such nonlinearities in these and other ap-
plications has made the problem of nonlinear equalization one of the most 
active research areas of digital signal processing. This chapter presents 
a theory for the exact and the pth order equalization or linearization 
of nonlinear systems with known recursive or nonrecursive polynomial 
input-output relationship. Extension to more general nonlinear system 
models such as those considered in [26] is possible. However such exten-

Part of the content of this chapter was presented in 
Alberto Carini, Giovanni L. Sicuranza and V. John Mathews "Equalization and Lin-
earization of Nonlinear Systems," Proceedings of ICASSP-98, International Confer-
ence on Acoustics Speech and Signa[ Processing, May 12-15 1998, Seattle, Washington, 
USA. 
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sions are not presented here. The theory we present is an extension of 
the standard equalization technique for linear systems. 

Definition 7 .1.1 A nonlinear equalizer is a filter which, when connected 
in cascade before or after a nonlinear system, results in an overall system 
whose characteristics correspond to those of an identity system in the 
band of frequencies and in the range of input signal amplitudes of interest. 

Unlike the linear case, we impose a limit on the range of input amplitudes 
because of the nonlinear nature of the problem. Nonlinear systems, are 
often amplitude dependent. Some nonlinear systems may be stable for 
a certain range of input signal amplitudes, but their outputs may not 
be defìned or they may be unstable outside that range of amplitudes 
[68, 75, 86, 87, 97]. 

Definition 7 .1.2 A linearizer is a filter which, when connected in cas-
cade before or after the unknown system, results in an overall system 
whose characteristics correspond to those of a linear system in the fre-
quency band and in the range of input signal amplitudes of interest. 

When a equalizer (linearizer) is connected before the unknown system 
it is called a pre-equalizer (pre-linearizer). When it is connected after a 
nonlinear system, it is called a post-equalizer (post-linearizer). 

Several equalization/linearization procedures are available in the lit-
erature [11, 13, 16, 49, 53, 56]. Many such techniques start from the 
identifi.cation of a model which describes the input-output relationship 
of the unknown system. One exception to this framework is the work 
of Giannakis and Serpedin [56]. In [56] a method for the blind equaliza-
tion of truncated Volterra channels by means of a bank of linear fi.lters 
is presented. The technique of [56] equalizes the system channel using 
only its output signal. We note, however that the method in [56] cannot 
be used for pre-equalization or pre-linearization of nonlinear systems. In 
addition, our method is useful fora much larger class of channel models. 

One of the fìrst attempts of nonlinear equalization was performed in 
digital communication channels. Two different techniques were derived. 
One method performs equalization by designing a truncated Volterra fi.1-
ter which minimizes the mean square error between the decision device 
input and the correct symbol value [11]. The second technique per-
forms a cancellation of the estimated linear and nonlinear intersymbol 
interferences obtained from preliminary decision performed after linear 
equalization [13, 16]. 
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A nonlinear equalization/linearization technique that is popular with 
many researchers is described in [49] and [53]. First, the unknown system 
is identified by means of a truncated Volterra system model. Then an 
approximate equalizer or linearizer is derived by means of the pth order 
inverse [126, 127] of the estimateci forward system. We note here that 
the system in [53] uses a second-order inverse, even though (53] does not 
explicitly state so. A pth order system is one in which all the Volterra 
kernels of order greater than p are zero. The pth arder inverse is an 
approximation of the true inverse of the nonlinear model. The pth order 
inverse of a nonlinear system H is defined as the pth arder truncated 
Volterra system, which when connected in cascade with H results in a 
system whose Volterra kernels from the second up to the pth arder are 
zero. A generalized pth arder inverse that allows the inverse filter to 
have kernels of arder greater than p has also been derived [125]. The 
higher-order kernels do not aff ect the first p kernels of the cascade of 
the pth order inverse and the unknown system. The computation of the 
pth arder inverse requires the inversion of the linear component of the 
unknown system model. This linear inverse filter is typically determined 
by approximating the desired transfer function with an FIR filter (49, 53]. 
Both amplitude and phase errors highly degrade the performances of the 
resulting linearizer. 

This chapter introduces methods for equalizing and linearizing a class 
of nonlinear systems whose input-output relationship is given by 

N N 
y(n) = :L aix(n - i) - :L biy(n - i)+ 

i=O i=l 
L N N N 

Ì: Ì: Ì: . . . Ì: hi1i2 ••• ikx(n - ii)x(n - i2) · ... · x(n - ik) 

L N N N 

- Ì: Ì: L· · · L ri1i2 ••• iky(n - ii)y(n - i2) · ... · y(n - ik) 
k=2 i1 =O i2=i1 ik=ik-1 
N N 

+LÌ: CijX(n - i)y(n - j), (7.1) 
i=O j=l 

where we consider only a mixed product term for ease of presentation. We 
first present exact equalizers and linearizers for such systems. Such sys-
tems may not always be realizable, and even the realizable systems may 
not be stable. Consequently, we introduce the concepts of the p-th arder 
equalization and linearization, and present algorithms for developing re-
alizable and stable pth arder equalizers and linearizers. We assumes that 



7 .2 Ideai equalization and linearization 122 

the characteristics of the nonlinear system to be equalized (linearized) 
are completely known. Adaptive algorithms that estimate the parame-
ters of the system online are under investigation and will be the content 
of a future paper. 

The rest of the chapter is organized as follows. The theory of exact 
equalization and linearization for nonrecursive polynomial system models 
is presented in Section 7.2. Section 7.3 derives the pth arder equaliza-
tion (linearization) technique from a power series expansion of the exact 
equalization (linearization) method. In Section 7.4, we extend the exact 
and pth order equalization and linearization theory to recursive polyno-
mial filters. Section 7 .5 presents an experimental result that illustrates 
the capabilities of our techniques. Concluding remarks are given in Sec-
tion 7.6. 

7.2 Ideai equalization and linearization 
In Chapter 6, it was shown that the inverse of the system 

y(n) = G[x(n)]H[x(n - 1), y(n - l)] + F[x(n - 1), y(n - l)], (7.2) 

where G[·], H[·, ·] and F[·, ·] are causal, discrete-time and nonlinear op-
erators and the inverse function c-1 [·] exists, always exists and is given 
by 

w(n) = c-1 [u(n) - F[w(n -1), u(n - l)J] . (7.3) 
H[w(n - 1), u(n - l)] 

We restrict ourselves to the nonrecursive system model with input-
output relationship 

N N N 
y(n) = L aix(n - i)+ L L Cijx(n - i)x(n - j) + ... 

i=O i=l j=i 
N N N 

+ L L · · · L hi1 i 2 ••. iLx(n - il)x(n - i2) · ... · x(n - iL). 

(7.4) 

in this section. Extension of the results to more general system models 
are considered in Section 7.4. 

According to (7.3), the inverse of the system in (7.4) always exists 
and is given by 

1 [ N N N 
w(n) = ao u(n) - ~ aiw(n - i) - ~ t; c;1w(n - i)w(n - j) - ... 
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- i~l ;~, .. ;LI;,_, h;,;2 ... iL w( n - ii)w(n - i2) · ... · w( n - iL)] , 

(7.5) 

\Yhere u( n) and w( n) are the input and output signal, respectively. The 
inverse filter in (7.5) is usually computationally less expensive than the 
pth order inverse of (7.4), especially when p takes high values. While 
the pth order inverse always introduces new harmonic components of 
order greater than p, the exact inverse of (7.5) does not give rise to such 
harmonics. However, the recursive system of (7.5) may not be stable. 
This issue will be discussed later in the chapter. An explicit expression 
for the output of the inverse system as in (7.5) is possible because the 
system model does not depend on the input sample x( n) in a nonlinear 
manner. 

An implicit expression for the inverse of the more general system 

N N N 
y(n) = L aix(n - i)+ L L CijX(n - i)x(n - j) + ... 

i=O j=i 
N N N 

+ L L · · · L hi1i2 ... iLx(n - ii)x(n - i2) · ... · x(n - iL) 

(7.6) 

if it exists, is given by 

w(n) = :o [u(n)- ~a;w(n -i)- ~~c;;w(n -i)w(n -j)- ... 

In what follows, we employ a compact expression given by 

y(n) = A(q)x(n) + N[x(n)] (7.8) 

to represent the systems in (7.4) and (7.6). In the above equation, q-1 

is the delay operator, x(n) and y(n) are the input and output signals, 
respecti vely, 

N 
A(q) = L aiq-i (7.9) 

i=O 
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u(n) + w(n) - - -1 - + - A (q) 
'~ -

N[.] --

Figure 7 .1: The ideal equalizer. 

represents the linear component of the nonlinear system, and 

N N 
N[x(n)] = L L CijX(n - i)x(n - j) + ... + 

i=r j=i 
N N N 
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--

L L · · · L hi1i2 ••• iLx(n - ii)x(n - i2) · ... · x(n - iL) 

(7.10) 

is the component of the nonlinear system obtained by removing the effects 
of the linear component from the output signal. If r is equal to 1, (7.10) 
corresponds to the system in (7.4), and if r is equal to O, the expression 
corresponds to the system in (7.6). Using the above notation, we can 
express the input-output relationship of the inverse of the system in (7.8) 
as 

A(q)w(n) = u(n) -N[w(n)]. (7.11) 
We can also express the output signal explicitly as 

w(n) = A-1 (q)u(n) - A-1(q)N[w(n)]. (7.12) 

Figure 7.1 shows a block diagram for the recursive polynomial filter 
in (7.12). We note that the overall system can be described as a feed-
back system in which the feedback loop contains a nonlinear operator 
and the feedforward loop contains the inverse of the linear component 
of the quadratic filter. The inverse system in (7.12) will not be stable 
unless the linear part of the system model in (7.8) has minimum phase 
characteristics. \Vhen A( q) represents a minimum phase system, the sys-
tem in (7.12) can be shown to operate in a stable manner whenever the 
input signal is sufficiently small. The bound on the input signal depends 
on the zeros of A(q) and on the coefficients of N[·] [68, 86, 87, 97]. Thus, 
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our inverse system will equalize the above nonlinear system only on the 
range of amplitudes for which it is stable. 

In many applications, we are interested in equalizing the unknown 
system only on a certain band of frequencies. For example it may be 
known that the input signal is band-limited. Such an equalizer may 
be designed by replacing A-1 (q) in Figure 7.1 with another linear filter 
such that the overall system response corresponds to that of an identity 
system in the band of interest and possibly to zero outside the band. 
The following two theorems characterize the structure of the post and 
pre-equalizers for a specific range of frequencies. 

Theorem 7.2.1 Let the input signal x(n) of the system in (7.8) be band-
limited with spectrum inside a certa in frequency band B and let u( n) be 
its output. Let A.-1 ( q) be the linear equalizer of the system A( q) in the 
band B with zero response outside the band B. A post-equalizer for the 
system of (7.8) in the band B is given by 

w(n) = A.-1(q)u(n) - A.-1 (q)N[w(n)]. (7.13) 

Proof \\'e consider the post-equalization of the nonlinear system in (7.8) 
in the band Band the elimination of all other frequencies at the output. 
For this purpose, we first cascade the system in (7.8) with the linear filter 
A.-1 ( q) and then equalize the resulting nonlinear system. Cascading (7.8) 
with the linear system A.-1 ( q) eliminates all frequencies outside the band 
B. The resulting system has input-output relationship 

z(n) = A.-1 (q)A(q)x(n) + A.-1(q)N[x(n)]. (7.14) 

Since x( n) has frequency components only on B, the above system is 
equivalent to 

z(n) = x(n) + A.-1 (q)N[x(n)], (7.15) 

whose post-inverse system is given by 

w(n) = z(n) -À.-1 (q)N[w(n)]. (7.16) 

Since z(n) is band-limited to the band B, the output of the system 
in (7.16) is also band-limited to the band B. Thus, the cascade of z(n) = 
A.-1 (q)u(n) (where we assume u(n) = y(n)) and the system in (7.16) is 
an exact post-equalizer for the system in (7.8) in the band B. It is triviai 
to prove that this system is identica! to (7.13). D 
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\;\/hen the input signal is not band-limited to the frequency band B, 
the filter in (7.13) is only an approximate post-equalizer for the system 
in (7.8). The equalization, in particular, is affected by the frequency 
components of the input signal outside the band B since the output of 
the nonlinear filter (7.8) in the frequency band Bis affected by the input 
signal components outside the band. If the contribution of the out-of-
band is negligible, the system in (7.13) will still provide good equalization 
of the system in (7.8). 

Theorem 7.2.2 Let A.-1(q) be the linear equalizer of the system A(q) in 
the band B with zero response outside the band B. A pre-equalizer in the 
frequency band B for the system of (7.8) is given by 

w(n) = A.-1(q)u(n) - A.-1(q)N[w(n)]. (7.17) 

The proof is similar to that of Theorem 7.2.l. Since the pre-equalizer 
operates directly on the input signal, there is no need to assume that it 
is band-limited to achieve an exact equalization. The pre-equalizer will 
directly eliminate the frequency components of the input signal that fall 
outside the band B. However, the pre-equalizer is unable to eliminate 
the frequency components of y(n) that fall outside the band B. Both 
amplitudes and phase errors between the linear equalizer .A-1 ( q) and 
the linear part of the true inverse filter A-1 (q) affect the quality of the 
nonlinear equalization. Consequently, it is important to design the linear 
system A.-1 (q) with particular care. 

7.2.1 The ideai pre- and post-linearizers 
There are many situations in which we do not have to perfectly equalize 
the nonlinear system, but desire only to compensate for the nonlinearities 
introduced by the unknown system. As we defined earlier, a pre-linearizer 
(post-linearizer) is a filter, which when connected before (after) a nonlin-
ear system, results in an overall system whose characteristics corresponds 
to those of a linear filter in the frequency band and in the range of in-
put signal amplitudes of interest. In this chapter, the linear system that 
results from the linearization process will always have transfer function 
equal to the linear part of the nonlinear system that is linearized. 

Definition 7 .2.1 The ideal pre-linearizer (post-linearizer) is the filter 
that pre-linearizes {post-linearizes) the nonlinear system in ali of the fre-
quency domain. 
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v(n) + w(n) - + - -
'~ -

A-l(q) N[.] -

Figure 7.2: The ideai pre-linearizer. 

The ideal pre-linearizing filter for the system in (7.8) is given by the 
following expression: 

w(n) = v(n) - A-1(q)N[w(n)], (7.18) 

where v( n) and w( n) are the input and the output signal, respectively, 
of the prelinearizer. 
Proof Consider a cascade of a linear system 

u(n) = A(q)v(n) (7.19) 

followed by an identity system obtained by the cascade connection of the 
pre-equalizer of (7.8) with the system in (7.8). Obviously, the overall sys-
tem characteristic is also given by (7.19). Thus, the cascade connection 
of the linear system in (7.19) and the ideal pre-equalizer given by (7.11) 
is an ideal pre-linearizer for the nonlinear system in (7.8). The overall 
input-output relationship of this pre-linearizer is given by 

A(q)w(n) = A(q)v(n) - N[w(n)] 

which is identica! to the system of (7.18). 

(7.20) 

D 

In the same way we can prove that the ideal post-linearizing filter for 
(7.8) is given by 

w(n) = v(n) -N[A-1(q)w(n)]. (7.21) 

Figures 7 .2 and 7 .3 illustrate the block diagrams of the ideal pre- and 
post-linearizer for the system in ( 7. 8). 

We now consider the problem of designing pre- and post-linearizers 
when the input signal is known to be bandlimited. The following re-
sults can be proved in a manner similar to that employed for proving 
Theorem 7.2.l. 
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v(n) + w(n) 
+ - -
·~ -

N[.] A-l(q) --

Figure 7.3: The ideal post-linearizer. 

Theorem 7.2.3 Let the input signal x(n) of the system in (7.8) be band-
limited with spectrum inside a certa in frequency band B and let v( n) be its 
output. Let A.- 1 (q) be the linear equalizer of the system A(q) in the band 
B with zero response outside the band B. A post-linearizing filter in the 
band B for the system of (7.8) is given by the system with input-output 
relationship 

w(n) = v(n) -N[À.-1 (q)w(n)]. (7.22) 

Theorem 7.2.4 Let the input signal v(n) be band-limited to a certain 
frequency band B. Let A.-1 (q) be the linear equalizer of the system A(q) 
in the band B with zero response outside the band B. A pre-linearizing 
filter in the band B for the system of (7.8) is given by the system with 
input-output relationship 

w(n) = v(n) -À.-1 (q)N[w(n)]. (7.23) 

If the input signal of the nonlinear system in (7.8) is not band-limited, 
the :filter in (7.22) is only an approximation to the post-linearizer of the 
system in (7.8). If the input signal v(n) of (7.23) is not band-limited 
in the band B, the output w(n) of the linearizer is not band-limited. 
However, the system in (7.23) is still a pre-linearizer for the nonlinear 
system in (7.8) in the band B. In any case, the output y(n) of the 
cascade of the system in (7.23) followed by (7.8) has non null frequency 
components outside the band B. 

7 .3 pth Order Equalizers and Linearizers 
In the previous section, we introduced some :filters for the exact equaliza-
tion or linearization of a certain class of nonlinear systems. These :filters 
may not always be realizable. For example, when r = O in (7.8), the 
equalizers and linearizers do not have explicit input-output relationship. 
In this situation the filters of Figures 7.1, 7.2 and 7.3 are not realiz-
able because the feedback loop depends on output samples that have 
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not yet been computed. Furthermore, because of the recursive struc-
ture of the equalizers/linearizers, these filters, if they exist, may also be 
unstable. In what follows, we present a theory for the pth order equaliza-
tion/linearization of nonlinear systems [126, 127]. By means of pth order 
equalization/linearization we derive filters that are always realizable and 
are bounded input bounded output stable. 

Definition 7 .3.1 A pth order equalizer is a filter which, when connected 
in cascade be/ore or after a nonlinear system, results in an overall system 
whose characteristics, in the band of frequencies and in the range of the 
input signal amplitudes of interest, correspond to those of a parallel con-
nection of an identity system and a nonlinear component whose Volterra 
kernels of order smaller than or equal to p are all zero. 

Definition 7 .3.2 A pth order linearizer is a filter which, when connected 
in cascade be/ore or after a nonlinear system, results in an overall sys-
tem whose characteristics, in the band of frequencies and in the range of 
the input signal amplitudes of interest, correspond to those of a parallel 
connection of a linear system and a nonlinear component whose Volterra 
kernels of order smaller than or equal top are all zero. 

When a pth order equalizer (linearizer) is connected before the non-
linear system in (7.8) it is called a pth order pre-equalizer (pth order pre-
linearizer). \ì\Then it is connected after the nonlinear system, it is called 
a pth order post-equalizer (pth order post-linearizer). We now present 
several theorems that are the counterparts of the results in the previous 
section to the case of the pth order equalizer and linearizer. 

Theorem 7.3.1 Let the linear inverse filter A-1 (q) be bounded input 
bounded output stable. The sequence of systems defined by 

A-1(q)u(n), 
A-1(q)u(n) - A-1 (q)N[wp_ 1 (n)]; p > 1 

(7.24) 
(7.25) 

converges to the system in {7.12) when the input signal is bounded by 
some finite constant T > O. Moreover, the system in (7.25) is a gener-
alized pth order inverse of the system in (7.8) in the sense of Sarti and 
Pupolin {125}. 

Recall that the generalized pth order inverse may have Volterra ker-
nels of order larger than p. A cascade connection of a nonlinear system 
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and its (generalized) pth order inverse results in a nonlinear system that 
is an identity system plus a residual nonlinearity whose Volterra kernels 
of order O through p are zero. 
Proof of Theorem 7.3.1 We prove by induction that (7.25) is the 
p-th order inverse of (7.8). Let us process the output of the system 
of (7.8) with the system defined by (7.24) and (7.25). By considering 
u(n) = y(n), for p = 1 we obtain the following input-output relationship: 

w1(n) x(n) + A-1(q)N[x(n)], 
- x(n) + T1(n), (7.26) 

where T1 ( n) is a Volterra operator of order greater than 1. This proves 
that w 1 ( n) is the output of a first order inverse in the sense of Sarti and 
Pupolin. Let us suppose that wp( n) is the output of a pth order inverse, 
z.e., 

(7.27) 

where Tp( n) is a Volterra operator of order greater than p. We want to 
prove that the system defined by 

Wp+i(n) = A-1(q)u(n) - A-1(q)N[wp(n)] (7.28) 

is a (p+ l)th order inverse of (7.8). By substituting y(n) in (7.8) for u(n) 
and (7.27) for wp(n) in (7.28), we have 

x(n) + A-1(q)N[x(n)] - A-1(q)N[x(n) + Tp(n)] 
x(n) + A-1(q)N[x(n)] - A-1(q)N[x(n)] + Tp+i(n), 

(7.29) 

where Tp+l is an operator of order greater than p + 1 and we have taken 
into account the fact that N[ ·] is an operator of order greater than 1. 
Thus, we have shown that the sequence of systems defined by (7.24)-
(7.25) define pth order inverses of (7.8). If A-1 (q) is stable, the sequence 
of systems (7.24)-(7.25) will converge to (7.11) at least in an amplitude in-
terval around zero. In order to prove convergence we have simply to prove 
that llTp+i(n)lloo tends to zero when the input signal x(n) is bounded by 
some finite constant T >O, i.e. when llx(n)lloo < T. Note that if A-1 (q) 
is stable and llx( n) 11 00 < 1, it is1 

(7.30) 
1These inequalities can be easily proved following the derivations in [86] or [98]. 
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for some positive constant k1 and, if we suppose also llTp(n)ll 00 < 1, 

llTp+I(n)lloo llA-1(q)N[x(n)] - A-1(q)N[x(n) + Tp(n)Jll 00 

= ll9[x(n), Tp(n)Jlloo 
< k2 I Ix ( n) 11 oo 11 Tp ( n) 11 oo + k3 I I Tp ( n) 11 ~, ( 7 · 31) 

where k2 and k3 are some positive constants and 9[x(n),Tp(n)] is a finite 
order polynomial with no constant or linear term and with each term 
containing at least a factor Tp( n). Let k be a positive constant less 
than 1 and let llx(n)ll 00 < r = maxU

1
, k

2
!k

3
, 1); it is easy to prove by 

induction that llTp(n)ll 00 < 1 for every p and 

Il Tp+I ( n) Il oo < kP Il x ( n) Il oo. 
Thus, llTp+I(n)lloo converges to zero when llx(n)lloo < r. 

(7.32) 

D 

The sequence (7.24)-(7.25) corresponds to a systolic cascade of cells 
as shown in Figure 7.4. Thus the pth order inverse can be easily imple-
mented using VLSI circuits. Furthermore, each cell is always realizable 
while we recall that the ideai equalizer is not always realizable for the 
system in (7.8). 

The following theorems deal with the pth order inverses and lineariz-
ers for systems with band-limited input signals, and can be proved in a 
manner similar to the derivations for Theorem 7.3.1. 

Theorem 7.3.2 Let the input signal x(n) to the system in (7.8) be band-
limited to a certain frequency band B and let u( n) be its output. Let 
.A-1 ( q) be the linear equalizer of the system A( q) in the band B with zero 
response outside B. lf A.-1 ( q) is stable, the sequence of systems defined 
by 

w1(n) = A.-1(q)u(n), 
wp(n) = A.-1(q)u(n) -A.-1(q)N[wp_1 (n)]; p > 1 

(7.33) 
(7.34) 

converges to the system (7.13) when u( n) is bounded by some finite con-
stant r > O. Af oreover, the system in (7.34) is a pth order post-equalizer 
for the system in (7.8). 

Theorem 7 .3.3 Let A.-1 ( q) be the linear equalizer of the system A( q) in 
the band B with zero response outside B. lf A.- 1 ( q) is stable, the sequence 
of systems defined by 

w1(n) A.-1(q)u(n), 
wp(n) = A.-1(q)u(n) + A.-1(q)N[wp-1(n)]; p > 1 

(7.35) 
(7.36) 



7 .3 pth Order Equalizers and Linearizers 

e = 

I .-, 

_j}c. 
···················;~·············: 

o u 

132 

Figure 7.4: The pth order inverse implemented as a cascade connection 
of systolic cells. 
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converges to the system in (7.17} when u( n) is bounded by some finite 
constant T > O. Moreover, the system in (7.36} is a pth order pre-
equalizer of the system in (7.8). 

The block-diagrams of the pth order pre- and post- equalizers are 
identica! to that in Figure 7.4 with the difference that the system A-1 (q) 
is now substituted by the linear equalizer A.-1(q). . 

Theorem 7.3.4 Let the input signal x(n) to the system in (7.8} be band-
limited to a certain frequency band B and let v( n) be its output. Let 
A:-1 ( q) be the linear equalizer of the system A( q) in the frequency band B 
with zero response outside B. If A.-1 ( q) is stable, the sequence of systems 
defined by 

v(n), 
v(n) -N[A-1(q)wp_1(n)]; p > 1 

(7.37) 
(7.38) 

converges to the system in (7.22} when v( n) is bounded by some finite 
constant T > O. Moreover, the system in (7.38} is a pth order post-
linearizer of the system in (7.8). 

Theorem 7.3.5 Let the input signal v(n) be band-limited. Let A.-1(q) be 
the linear equalizer of the system A( q) in the band B with zero response 
outside B. If A:-1 ( q) is stable, the sequence of systems defined by 

v(n), 
v(n) - A.-1

( q)N[wp-1(n )]; p>l 
(7.39) 
(7.40) 

converges to the system in (7.23} when v( n) is bounded by some finite 
constant T > O. Moreover, the system in (7.40} is a pth order pre-
linearizer of the system in (7.8). 

In a similar manner we can define the pth order pre- and post- lin-
earizers. The structure of the pre-linearizer is the same as in Figure 7.4, 
with the difference that the initial linear block A-1 (q) is now absent. A 
block diagram of the post-linearizer is shown in Figure 7.5. 

The pth order equalizers/linearizers of Figures 7.4 and 7.5 are quite 
attractive because of their systolic structure which allows for modularity 
as well as cell reuse in hardware realizations. However, if we are interested 
only on a pth order inversion/ equalization, the structure of Figures 7.4 
and 7.5 is slightly redundant. 
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Figure 7 .5: The pth order post-linearizer. 
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Figure 7 .6: The delayed cell. 
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Remark 7 .3.1 Let us number the nonlinear celis in Figure 7.4 from the 
left to the right from 1 to (p - 1). We can drop ali the Volterra kernels 
of N[wi( n )] of order greater than i+ 1 from the ith celi and stili obtain a 
generalized pth order inverse in the sense of Sarti and Pupolin. This is 
a direct consequence of the fact that the Volterra kernels of order larger 
than i+ 1 in the i th celi generates no nonlinear component of order lower 
than p + 1 at the output. 

The pth order equalizers and linearizers discussed in this section 
presents some disadvantages when compared with the ideal equalizers 
and linearizers, but exhibit several characteristics that may make them 
more useful in practical applications. The pth order inverses are com-
putationally more expensive than the ideal inverses. The computational 
cost is almost p times larger for pth order systems. They also do not 
perfectly compensate for the distortions introduced by the nonlinearities 
since they do not attempt to reduce distortions of order larger than p. 
The ad vantage of the pth order equalizers and linearizers is that we can 
guarantee their stability in many practical situations. One other advan-
tage of the pth order systems is that it is possible to delay the response of 
the linear equalizer in order to simplify its design. In the case of the ideal 
equalizers the response of the linear equalizer cannot be delayed because 
the linear equalizer appears in the feedback loop and the introduction of 
a delay would completely modify the response of the system. Figure 7 .6 
presents a cell with delayed equalizer. This cell may be used to replace 
each of the cells shown in Figure 7.4. Note that the delay q-L of the 
upper branch is used to compensate for the delay added to the linear 
equalizer. 
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7 .4 Equalization and Linearization of Re-
cursive Polynomial Systems 

In this section, we briefly extend the results of Sections 7 .2 and 7.3 to the 
case of recursive polynomial systems. We consider the following system 
model: 

N N 
y(n) = :E aix(n - i) - :E biy(n - i)+ 

i=O i=l 
L N N N 

L L L · · · L hi1i2 ... ikx(n - ii)x(n - i2) · ... · x(n - ik) 

L N N N 

- L L L · · · L ri1i2 ... iky(n - ii)y(n - i2) · ... · y(n - ik) 

N N 

+ L L CijX(n - i)y(n - j), (7.41) 
i=l j=l 

where we consider only a mixed product term for ease of presentation. 
According to equation (7.3) the inverse of the system always exists and 
is given by 

w(n) = :Ju(n)+~b;u(n-i)-~a;w(n-i)+ 
L N N N 

L L L · ·. L ri1i2 ... iku(n - ii)u(n - i2) · ... · u(n - ik) 

L N N 

- L L · · · L hi1i2 ... ikw(n - ii)w(n - i2) · ... · w(n - ik) 
k=2 i1=l ik=ik-1 

N N ] - ?= ?= Cijw(n - i)u(n - j) . 
i=l J=l 

(7.42) 

An implicit expression for the inverse of the more generai model 
N N 

y(n) = L aix(n - i) - L biy(n - i)+ 
i=O i=l 

L N N N 

L L L . . . L hi1i2 ... ikx(n - ii)x(n - i2) · ... · x(n - ik) 

L N N N 

- L L L · · · L ri1i2 ... iky(n - ii)y(n - i2) · ... · y(n - ik) 
k=2 i1 =1 i2=i1 ik=ik-1 
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N N 
+ L L Cijx(n - i)y(n - j), (7.43) 

i=O j=I 
if it exists, is given by 

w(n) = :o [u(n) + ~ b;u(n - i) - ~a;w(n - i)+ 
L N N N L L L ... L ri1i2 ... iku(n - i1)u(n - i2) · ... · u(n - ik) 

L N N 
- L L ·.. L hi1i2 ... ikw(n - i1)w(n - i2) · ... · w(n - ik) 

k=2 i1=0 Ìk=ik-1 

N N ] -~fi c;;w(n - i)u(n - j) . (7.44) 

In what follows, we employ the compact expression given by 

B(q)y(n) = A(q)x(n) +N[x(n),y(n)] (7.45) 

to represent the system in (7.41) and (7.43). In the above expression, 
N 

A(q) = L aiq-i, (7.46) 
i=O 

N 
B(q) = 1 + L biq-i (7.47) 

i=l 

and 
L N N 

N[x(n), y(n)] L L · · · L hi1i2 ... ikx(n - ii)· ... · x(n - ik) 

L N N 

- L L · · · L ri1i2 ... iky(n - ii)· ... · y(n - ik) 

N N 
+ L L Cijx(n - i)y(n - j). (7.48) 

i=r j=l 

'i\Then r is equal to 1, (7.45) corresponds to the system in (7.41), and 
when r is equal to O, the expression corresponds to the system in (7.43). 
U sing the above notation we can express the input-output relationship 
of the inverse of the system in (7.45) as 

A(q)w(n) = B(q)u(n)-N[w(n), u(n)], (7.49) 
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where u( n) and w( n) are the input and output signals respectively of the 
inverse system. We can also express the output signal as 

w(n) = A-1(q)B(q)u(n) - A-1(q)N[w(n), u(n)]. (7.50) 

The following result holds for the post-equalizer of the system in 
(7.45 ). 

Theorem 7.4.1 Let the input signal x(n) of the system in (7.45) be 
band-limited to a certain frequency band B and let u( n) be its output. 
Let À-1 ( q) be the linear equalizer of the system A( q) in the band B with 
zero response outside B. The system defined by 

w(n) = A.-1(q)B(q)u(n)- A.-1(q)N[w(n), u(n)], (7.51) 

is a post-equalizer in the band B for the system of (7.45). 

A similar theorem holds for the pre-equalizer. 
We are also interested in deriving a pre- or post-linearizing filter. 

In this part also, the linear system that results from the linearization 
process will ha ve transfer function equal to the linear part of the nonlinear 

system that is linearized, i.e., equa! to ~t~1 · Following the derivations 
in Section 7.2, it can be easily verified that the ideal pre-linearizing filter 
is given by the system with the following input-output relationship: 

w(n) = v(n) - A-1(q).N[w(n), ~i~~ v(n)], (7.52) 

where v( n) and w( n) are the input and the output signal, respectively. 
Similarly, the ideal post-linearizing filter is given by 

w(n) = v(n) - B-1 (q).N[~~:i w(n), v(n)]. (7.53) 

We can easily extend the results of Theorems 7.2.3 and 7.2.4 to the case 
of recursive nonlinear systems using (7.52) and (7.53). 

Finally, the following theorem holds for the pth order inversion of a 
recursive nonlinear system. 

Theorem 7.4.2 Let the linear inverse filter A-1 ( q) be bounded input 
bounded output stable. The sequence of systems defined by 

B(q) 
A(q) u(n), 

w1(n) - A-1(q)N[wp_1(n), u(n)] 

(7.54) 

(7.55) 
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converges to the system in (7.50) when u(n) is bounded by some finite 
constant T > O. Aforeover, the system in (7. 55) is a generalized pth order 
inverse of the system of (7.45) in the sense of Sarti and Pupolin {125}. 

Similar theorems can be derived for the pth order equalizers and 
linearizers also. 

7.5 An application in Linearization of Loud-
speakers 

Harmonic distortion caused by non-ideal behaviour of loudspeakers can 
significantly affect the perceptual quality of audio signals reproduced 
by the loudspeaker. In this example, we consider the linearization of 
the nonlinearities associated with a synthetic loudspeaker using the pth 
order pre-linearizer of Figure 7.4. Previous work [69] has shown that 
loudspeaker nonlinearities can be efficiently modeled with good accuracy 
using low-order, truncated Volterra systems. Many linearization proce-
dures for loudspeakers that have been proposed in literature use pth order 
linearization [49, 53]. The main causes of harmonic distortions in loud-
speakers are the nonuniform flux density of the permanent magnet and 
the nonlinearity of the suspensions. Such distortions can be controlled 
by a careful design that imposes expensive constraints or by limiting the 
output power. Another approach that is less expensive and also does not 
limit the output power is to use digital linearization techniques. 

Typically, a single loudspeaker is modeled with the help of a good 
microphone or a laser vibrometer. Such an approach does not consider 
the true environment in which the loudspeakers operate. In general we 
do not have a single loudspeaker but at least two or more often three 
loudspeakers that cover the acoustic band. The signal that comes from 
the power amplifier is separated by a crossover filter in the two/three 
components that are fed to the corresponding loudspeakers. Since it is 
much easier to design a low distortion mid frequency (midrange) and high 
frequency (tweeter) loudspeakers than woofers, problems with harmonic 
distortions are usually more dominant at low frequencies. It is there-
fore not unusual to compensate only for the distortions caused by the 
woofer. However, the woofer will not only generate audio frequency com-
ponents in its passband, but also in the passband of the mid-frequency 
loudspeaker due to the harmonic distortion. Such distortions cannot be 
compensated by the woofer, and must be corrected by the midrange loud-
speaker. For this reason, the most reasonable way to operate is not to 
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Figure 7. 7: Loudspeaker modeling. 
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model the woofer response alone, but the complete frequency response of 
the bank of loudspeakers by means of a good quality microphone. In this 
way the crossover filter and the particular configuration of loudspeakers 
will be completely transparent to the modeling process. After determin-
ing the range of frequencies in which the distortions are severe and have 
to be compensateci, it is convenient to model the loudspeaker system in 
this band only. To reduce the computational complexity associateci with 
the modeling and linearization process, we have chosen to work with 
a lower-rate signal obtained by decimating an appropriately bandpass 
filtered version of the microphone output. 

Figure 7. 7 displays the block diagram of an experimental set-up. The 
two lowpass filters of Figure 7.7 used for modeling the loudspeaker sys-
tem must meet stfingent amplitude and linear phase characteristics in 
the passband in order to avoid large errors in the estimateci nonlinear 
model, which in turn would highly degrade the quality of the lineariza-
tion. After the loudspeaker is modeled in the range of frequencies where 
the distortions has to be compensateci, the digital circuit of Figure 7.8 is 
used for the linearization. 

The block marked L. P. 1andH.P.1 in Figure 7.8 are complementary 
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filters with lowpass and highpass characteristics, respectively. L. P. 1 se-
lects the frequency band in which the system attempts to compensate for 
the distortions. The signal then is subsampled with the same decimation 
factor employed for modeling the loudspeaker and processed by the lin-
earizer that corresponds to the estimateci loudspeaker model. By further 
interpolation and addition of the high frequency component, we obtain 
the predistorted signal. For the linearization the filter requirements on 
L. P. 1 and H. P. 1 are not severe. The amplitude and phase distortions of 
these filters affect the audio signal but not the linearization process. On 
the other hand, the filter L. P. 2 must meet stringent constant amplitude 
and a linear phase requirements to provide a good linearization perfor-
mance. The delay q-N of the lower branch compensate for the delay 
introduced in the upper branch. 

The linearization procedure was simulateci with a synthetic loud-
speaker system. The loudspeaker was modeled using a second-order 
truncated Volterra filter with memory lengths 101 and 40 samples for 
the linear and quadratic parts, respectively. The second-order harmonic 
distortion of the system is shown in Figure 7.9. Since the distortions were 
primarily in the range [O, fN /3] Hz., where fN denotes the Nyquist fre-
quency, the band [O, f N /3] was selected by means of a lowpass filter. We 
employed a PCAS filter [83] for this purpose. The PCAS filter consists 
of two parallel allpass filters. In our system, the first allpass filter was 
a simple delay of 100 samples while the the second one was an allpass 
filter of memory length 99 samples that is used to obtain the desired 
amplitude and phase characteristics of the overall response. In order 
to select the high band [fN /3, fN] we used the complementary filter for 
the above lowpass system, which is a PCAS filter also. The output of 
the lowpass filter was subsampled by a factor of three. The parameters 
of the loudspeaker were estimateci using a quadratic filter with memory 
length equal to 51 samples for the linear component and 40 samples for 
the second-order nonlinearity from the subsampled versions of the input 
to the loudspeaker and its output in the presence of uncorrelated, 30 dB 
measurement noise. Experiments were conducted with severa! other val-
ues of memory lengths of the linear and quadratic components of the 
model, and the above values gave the best results for loudspeaker identi-
fication. The estimated model was then used to pre-linearize the system 
using second, third, fourth and fifth order linearizers. The linear equal-
izer was realized by means of a PCAS filter constituted by two allpass 
filters with memory lengths 81 samples each. 

Figure 7.9 also shows the second-order harmonic distortion measured 
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at the output of the linearized systems. The second-order distortion is 
the smallest in the case of the second-order linearizer. This linearizer 
is sufficient to correct for the second-order distortions and it produces 
the most compact spectrum for the predistorted signal. The third-order 
linearizer exhibits a higher second-order distortion in this experiment. 
This is due to model mismatch, our approximations and the wider band 
of the predistorted signal whose intermodulation contributions alter the 
amplitude of the fundamental frequency components. The higher-order 
linearizers exhibit comparable second-order distortions to the second-
order linearizer. The improvement due to the use of the linearizer is 
evident from all the experimental results. 

7.6 Concluding Remarks 

This chapter presented a theory.for the exad and the pth order equaliza-
tion or linearization of nonlinear systems with known polynomial input-
output relationships. An attractive aspect of the results in the chapter 
is that the equalizers and linearizers can be implemented by cascading 
modular and stable components. Thus, the pth order equalizers and lin-
earizers can be easily implemented using VLSI circuits. This chapter 
also included the application of the theory developed in a problem in-
volving linearization to compensate for harmonic distortions introduced 
by loudspeakers. Adaptive algorithms for equalization and linearization 
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are under investigation and will be the content of a future paper. 



Chapter 8 

Conclusions 

8.1 Summary 

Several contributions to the research areas of Adaptive Filtering and 
N onlinear Filtering have been presented in this dissertation. 

The candidate has first developed some novel fast and stable RLS 
algorithms for adaptive linear :filtering. The algorithms present a very 
robust numerica! stability combined with an effi.cient computational com-
plexity. Some of these algorithms have been extended to adaptive Volterra 
:filtering by means of V-vector algebra. This is a novel formalism that al-
lows the development of Volterra and linear multichannel adaptive :filter 
algorithms as an extension of linear adaptive techniques. Successively, 
contributions have been given to the :field of adaptive IIR :filtering. In 
particular, the candidate has developed a suffi.cient time-varying bound 
on the maximum variation of the coeffi.cients of an exponentially sta-
ble time-varying direct-form homogeneous linear recursive :filter. This 
bound was then applied to control the step size of output error adaptive 
IIR :filters to achieve bounded input bounded output stability of adaptive 
:filters. 

Maybe the most important contributions of this dissertation are in 
the area of nonlinear equalization. The candidate has first derived some 
theorems for the exact and pth order inversion of a wide class of nonlinear 
systems. This class includes most causai polynomial systems with finite 
order as well as many nonlinear :filters with nonpolynomial input-output 
relationship. In particular, it was proved that Volterra :filters possess 
an inverse that in many cases is a recursive polynomial :filter. The sta-
bility of many polynomial :filters is input dependent: if the linear part 
of the :filter is stable and the input signal is suffi.ciently small the non-
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linear filter is stable. In this dissertation we have also presented some 
theorems that quantify "how much small" the input signal should be in 
order to guarantee the stability of recursive Volterra filters. Eventually, 
by exploiting the expression of the exact inverse of recursive or nonrecur-
sive polynomial filters that was recently derived, a theory for the exact 
and pth order equalization and linearization of nonlinear systems with 
known recursive or nonrecursive polynomial input-output relationship 
was developed. The theory is an extension of the standard equalization 
technique for linear systems. Moreover, the proposed pth order lineariz-
ers and equalizers can be implemented by cascading modular and stable 
components that can be easily realized using VLSI circuits. 

8.2 Suggestions for Future Research 
All the areas the student has coped with are still very active. Industry 
needs fast converging stable adaptive linear and nonlinear filters with low 
computational complexity. The greatest limitation of the class of Lattice 
QR algorithms is the O(N) number of divisions (where N is the linear 
filter memory length) which are needed for the adaptation. Divisions 
are not suited to the architecture found in most digital signal processors. 
The SFTF algorithm of [135] is a fast RLS algorithm that employs only 
multiplications but unfortunately stability is ensured only with station-
ary signals. A very promising class of adaptive filters is that of the Affine 
Projection Algorithm (APA) [107] and its fast implementations (FAPA) 
[8, 95]. These algorithms are an extension of the Normalized Least Mean 
Square (NLMS) algorithm. They require only an order O(N) + O(P) of 
multiplications (where P is the order of the algorithm, P = 1 for the 
NLMS algorithm) and, when the order P of the algorithm is sufficiently 
high, they have a speed of convergence that is comparable with that of 
RLS adaptive filters. 

The main limitation of Volterra filters is that their computational 
complexity increases exponentially with the filter order. In [48] and [49] 
a very interesting approximation of Volterra filters was presented. In 
case of a second order Volterra filter, the filter structure of [48, 49] is 
constituted only of three linear filters with memory length equal to that 
of the Volterra filter which is approximated. A very interesting research 
area is the development of adaptive algorithms for this filter structures. 

Despite the large amount of work that has been clone for adaptive 
IIR filters, in most cases the performances of the algorithms that have 
been deriYed are still unsatisfactory. Due to the high nonlinearity of 
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the optimization problem, researchers have to cope with problems of 
biased solution, of local minima, of instability of the :filter that results 
from the identi:fication process. To the author experience one of the 
most well performing algorithms is that in [116]. The above mentioned 
problems are avoided in [116], but still the speed of convergence can be 
unsatisfactory, especially in situations when the :filter we want to identify 
has poles very dose to the unit circle. Consequently, much work has still 
to be clone in the area of adaptive IIR :filtering. 

The stability of recursive polynomial :filters is a very interesting sub-
ject especially for the implications with nonlinear equalization. Several 
contributions have been presented in literature [21, 68, 75, 84, 86, 87, 88, 
97, 98], but these results in most cases are over conservative, in the sense 
that the input signal stability region that is identi:fied is much smaller 
than the real one. Further research has to be clone in this area. 

Inversion, equalization and linearization on nonlinear systems is a 
subject of exploding interest in Signal Processing. Novel applications of 
nonlinear equalization are currently investigateci. The theory we have 
presented allows the exact and pth order equalization and linearization 
of most recursive polynomial systems with known input-output relation-
ship. The proposed technique applies a linear :filter design procedure 
with combined amplitude and phase speci:fications in order to design a 
linear equalizer. Novel and more efficient linear :filter design techniques 
with these characteristics should be developed. The extension of the 
equalization/linearization theory to adaptive :filters is currently under 
investigation and is another interesting research :field. 
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