

Progetto Life+ 08NAT/IT/000369 "GYPSUM". Primi risultati sulle analisi chimiche delle acque nei gessi dell'Emilia Romagna

Stefano Bergianti, Bruno Capaccioni¹, Claudio Dalmonte, Jo De Waele^{1*}, William Formella, Alessandro Gentilini, Riccardo Panzeri, Stefano Rossetti, Baldo Sansavini

Abstract

Since 2010 a Project Life + 08NAT/IT/000369 "Gypsum" is running, dealing with the safeguard and management of the main gypsum environments of Emilia Romagna region and cofinanced by the European Union. Action A3 of this Project is concerned with the pluriannual hydrochemical and microbiological monitoring of the most important gypsum aquifers. In this paper the first results of this hydrochemical monitoring are presented.

Keywords

Gypsum, Hidrogeology, Progect Life+ 08NAT/IT/000369

Riassunto

Dal 2010 è in corso il Progetto Life+ 08NAT/IT/000369 "Gypsum" finalizzato alla tutela e gestione dei principali ambienti gessosi dell'Emilia-Romagna e cofinanziato dall'Unione Europea. Nell'ambito dell'Azione A3 è previsto un monitoraggio pluriennale dei principali acquiferi carsici sotto l'aspetto chimico e microbiologico.

In questo lavoro vengono presentati i primi risultati di questo monitoraggio idrochimico.

Parole Chiave

Gessi, idrogeologia, idrochimica, monitoraggio, Progetto Life+ 08NAT/IT/000369

¹ Dipartimento di Scienze della Terra e Geologico-Ambientali, Istituto Italiano di Speleologia, Via Zamboni 67 - 40126 Bologna (* jo.dewaele@unibo.it)

Introduzione

In Emilia Romagna il fenomeno carsico si manifesta quasi esclusivamente nelle rocce evaporitiche, in particolare nei gessi, che affiorano su meno dell'1% del territorio regionale (DE WAELE et al., 2011) (Fig. 1). In particolare si possono distinguere due tipi di evaporiti: quelle triassiche, affioranti nell'alta Val di Secchia in provincia di Reggio Emilia, ed i gessi messiniani, distribuiti lungo la fascia pedeappenninica, da Reggio Emilia fino a Rimini. Il fenomeno carsico in queste rocce è stato studiato da tantissimo tempo (ALTARA et al., 1995; MARINELLI, 1917).

Attualmente, malgrado gli esigui affioramenti, gli speleologi hanno esplorato circa 600 cavità, tra cui sia la grotta più profonda al mondo in gesso (sistema carsico di Monte Caldina, Alta val di Secchia, profonda ben 265 m) (CHIESI et al., 1999), sia la grotta in gesso di origine epigenica più lunga al mondo (Sistema Carsico Spipola-Acquafredda nei Gessi Bolognesi con oltre 11 km di sviluppo) (DEMARIA, 2003).

La quasi totalità degli affioramenti evaporitici dell'Emilia Romagna, che negli anni '60 e '70 del secolo scorso erano in grave pericolo di distruzione a causa dell'attività delle cave di gesso, costituiscono importanti habitat per numerose specie di piante ed animali, diverse delle quali caratteristiche di questi ambienti. Per questo motivo la quasi totalità delle aree evaporitiche è stata messa sotto tutela (Parchi Nazionali, Regionali, Riserve e SIC). Questi Siti di Interesse Comunitario (Direttiva Habitat della CE) sono:

SIC IT4030009 Gessi Triassici (Alta Val di Secchia, Reggio Emilia), SIC IT4030017 Cà del Vento-Cà del Lupo-Gessi di Borzano (Reggio Emilia), SIC IT4050001 Parco dei Gessi Bolognesi-Calanchi dell'Abbadessa (Bologna), SIC IT4050027 Gessi di Monte Rocca, Monte Capra e Tizzano (Zola Predosa, BO), SIC IT4070011 Vena del Gesso Romagnola (Faenza/Imola) e SIC IT4090001 Onferno (Rimini)(Fig. 1).

La circolazione idrica e la qualità delle acque in queste aree carsiche è stata studiata solo parzialmente ed in modo frammentario (FORTI & FRANCAVILLA, 1990), con alcune aree ben studiate dal punto di vista idrogeologico (per esempio le Fonti di Poiano) (AA.VV., 1988; CHIESI & FORTI, 2009; CHIESI et al., 2010), altre meno in dettaglio (come i sistemi carsici della Spipola, Bologna, e del Rio Stella/Rio Basino Riolo Terme, il Farneto e l'area carsica di Borzano) (CASALI, 1972; FORTI et al., 1985, 1989; FORTI & CHIESI, 2001). Per altre aree ancora, come i gessi di Rontana e Castelnuovo, Faenza, si dispongono di poche informazioni (BENTINI & LUCCI, 1999). Per la maggior parte dei sistemi carsici, invece, non si sa quasi nulla sia sulla quantità, sia sulla qualità delle acque che scorrono in queste aree gessose.

Nell'ambito dell'Azione A3 del Progetto Life+ 08NAT/IT/000369 "Gypsum", è in corso di opera un monitoraggio pluriennale (2010-2014) dei principali acquiferi carsici sotto l'aspetto chimico e microbiologico, in modo da caratterizzare queste acque ex-ante ed ex-post. Tale monitoraggio consentirà di capire la qualità ambientale di numerosi siti e, se necessario, di programmare interventi di bonifica e di tutela.

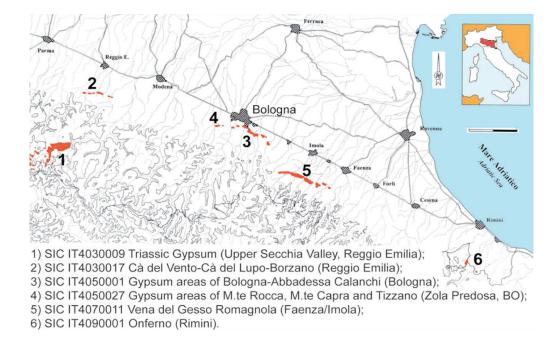


Fig. 1 Le aree carsiche gessose dell'Emilia Romagna

Materiali e metodi

A partire da Maggio 2010, con cadenza trimestrale, sono state analizzate le acque su quasi 50 punti di controllo nei sei SIC gessosi dell'Emilia Romagna al fine di comprendere nel dettaglio la qualità delle acque in questi contesti, verificando l'impatto dovuto a sostanze di origine agricola (nutrienti, pesticidi, sedimenti) o ad altre forme di inquinamento (ad es. carico organico) legate ad insediamenti o attività antropiche o fattori naturali (es. colonie di pipistrelli). I punti campionati hanno riguardato inghiottitoi, fiumi e torrenti in grotta, e risorgenti (Fig. 2).

Il numero dei punti d'acqua campionati per ogni SIC è riportato in Tabella 1.

Tabella 1 – Aree SIC e numero di punti d'acqua campionati

Area SIC	Numero siti
Sic IT4030009 Gessi Triassici	3
Sic IT4030017 Cà del Vento, Cà del Lupo, Gessi di Borzano	4
Sic IT4050001 Gessi Bolognesi, Calanchi dell'Abbadessa	16
Sic IT4050027 Gessi di Monte Rocca, Monte Capra e Tizzano	2
Sic IT4070011 Vena del Gesso Romagnola	20
Sic IT4090001 Onferno	4
TOTALE	49

Fig. 2 Punti campionati (vedi Tabella 2):

- A. Risorgente del Basino;
- B. Tanone della Gaggiolina;
- C. Tana della Mussina di Borzano;
- D. Torrente Acquafredda nella Grotta della Spipola;
- E. Risorgente di Ca' delle Ghiaie

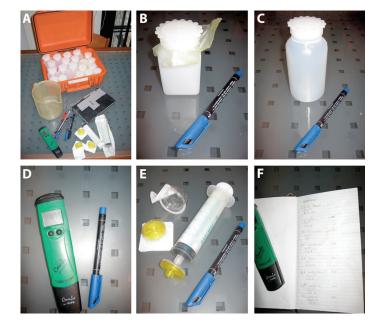


Fig. 3 Kit di campionamento:

- A. Valigetta completa;
- B. Barattolo per campione d'acqua acidificato;
- C. Campione per acqua talquale;
- D. pHmetro con misura dell'acidità e temperatura;
- E. Siringa da 50 ml con filtrino sterile (sx) ed avvitato;
- F. Quaderno di campagna (con matita attaccata)

In questo primo anno sono state effettuate 3 campagne di prelievo che non sempre hanno interessato tutti i siti prescelti, sia per problemi di logistica sia per mancanza di acqua da campionare (dovuta alle sfavorevoli condizioni idrologiche). Nei primi mesi del Progetto si sono affinate le tecniche di campionamento con un protocollo che verrà illustrato in seguito. I campionamenti sono stati effettuati con l'indispensabile collaborazione degli speleologi aderenti a vari gruppi speleologici della Federazione Speleologica Regionale dell'Emilia Romagna, senza i quali molti punti d'acqua da campionare non sarebbero nemmeno stati individuati.

Va precisato che in alcuni dei siti di Tabella 2 non sono stati ancora effettuati campionamenti per mancanza di acqua (stagione secca) o per problemi logistici. In particolare la Risorgente della Grotta Novella (non trovata, C07), la Risorgente di Castel de' Britti (non accessibile, C16), la Grotta della Befana (secca, E01), l'Abisso Fantini (logistica difficile, E14). Si spera, nel futuro, di riuscire a campionare tali siti in condizioni idrologiche più idonee, oppure di superare i problemi logistici finora incontrati (tabella 2).

Per il campionamento delle acque per analisi chimiche e microbiologiche è stato preparato un kit completo (valigetta + contenitori per la microbiologia) che consente di prelevare 10 campioni per ogni missione. La valigietta (Figura 3A) contiene 10 contenitori da 100 ml (quadrati) contenenti 1 ml di acido nitrico (chiusi con controtappo e tappo a vite per evitare di perdere l'acido) (Figura 3B), 10 contenitori di plastica da 250 ml per il campione tal quale (tondi) (Figura 3C), un pH-metro Combo Hanna (che misura oltre l'acidità (pH) anche la temperatura e la conducibilità) (Figura 3D), due siringhe in plastica da 50 ml con filtrini sterili da 0,45 micrometri (Figura 3E), il quaderno di campagna (Figura 3F), alcuni pennarelli, due matite, la lista dei campioni (e relative sigle) e un libretto istruzioni. Il set di campionamento è completato con 10 contenitori sterili di

plastica da 100 ml ed altrettanti provette sterili con tappo a pressione per il prelievo microbiologico.

Tutte le analisi chimiche (Na+, K+, Mg2+, Ca2+, NH4+, HCO3-, CO32-, SO42-, CI-, F-, Br-, NO2-, NO3-, e PO43-) sono state effettuate nei laboratori del Dipartimento di Scienze della Terra e Geologico-Ambientali dell'Università di Bologna. Le analisi per Ione ammonio (NH4+, mediante spettrofotometro Hack DR 2010 portatile a raggio singolo) e mediante alcalinità (titolazione acidimetrica) sono state fatte entro le 24 ore dal campionamento. Le restanti analisi sono state effettuate nelle settimane seguenti, sempre entro 40 giorni, utilizzando uno Spettrometro di Assorbimento Atomico Thermo S a doppio raggio per i cationi ed un Cromatografo Ionico Metrohm 881 IC Pro per i restanti anioni. In alcuni campioni d'acqua di novembre/dicembre 2010 sono stati analizzati anche metalli e semimetalli minori ed in tracce (es. Pb, As, Cu, Zn, Cd ecc.).

Risultati e Conclusioni

I risultati delle prime tre analisi sono riportati in Tabella 3.

Le acque analizzate possono essere classificate come "minerali" (> 1g/L di sali disciolti) contenendo da un minimo di 1 ad un massimo di 10 g/L di sali disciolti. Risultano particolarmente arricchite in ione solfato con concentrazioni anche superiori a 2000 mg/L (camp. A1). Tali valori evidentemente legati alla dissoluzione di gesso e/o anidrite collocano quasi tutte le acque analizzate fuori dai limiti per la potabilità, ai sensi del decreto 31/2001 (limite = 250 mg/L)(vedi anche Fig. 6).

Nel diagramma di Fig. 4 sono confrontati i valori del contenuto totale di sali disciolti (TDS) per i primi due campionamenti effettuati. La distribuzione dei campioni si allinea lungo la retta a 45°, indicando chiaramente una sostanziale omogeneità di questo parametro nel tempo. Le

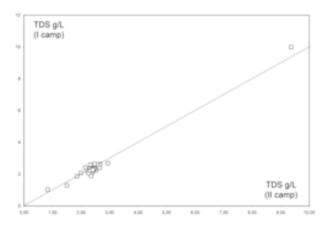


Fig. 4 Confronto tra i contenuti totali di sali disciolti (TDS) nei due campionamenti effettuati



Fig. 5 Confronto tra i contenuti di nitrati nelle acque nei due campionamenti effettuati

concentrazioni di nitrati (Fig. 5) risultano particolarmente elevate con valori su 6 campioni (F1, F2, F4, E10, E11 e E21, vedi Tabella 3) che superano il limite di potabilità ai sensi del decreto 31/2001 (50 mg/L).

Da notare che le concentrazioni di nitrati risultano indipendenti dal contenuto di sali disciolti (Fig. 6) e dichiaratamente stagionali, almeno per i campioni con i contenuti più elevati (Fig. 5). Per quanto riguarda la composizione dei sali disciolti nel diagramma classificativo di Fig. 7a-d sono riportati tutti i campioni analizzati rispetto ai sette ioni fondamentali, distinti tra acque di inghiottitoio, di grotta e di risorgenza. La maggior parte dei campioni di tutti i gruppi si collocano nel quadrante delle acque solfato calciche, tre campioni di acque di inghiottitoio nel quadrante delle acque bicarbonato calciche (E6, E19 e C10) ed uno nel campo delle acque clorurato sodiche (A1). La distribuzione dei punti (Fig. 7b) evidenzia una chiara tendenza delle

acque di inghiottitoi a distribuirsi più lontano dal vertice Ca-SO,, cioè ad essere apparentemente meno influenzate di quelle di risorgenza e di grotta da dissoluzione diretta di gesso e/o anidrite, ipotizzabile per la maggior parte dei campioni in virtù del loro stato di saturazione rispetto al gesso, o da miscelazione con acque derivanti dal medesimo processo, ipotizzabile per alcuni campioni largamente sottosaturi in gesso (E6 e E19). Mettendo a confronto il contenuto in nitrati e TDS per le acque di inghiottitoi, grotte e risorgenti appare netta l'evoluzione delle acque inghiottite, che si saturano rapidamente per la dissoluzione del gesso, e si arricchiscono in nitrati per la presenza di guano di pipistrelli (Fig. 6). Dalla stessa figura si evince anche chiaramente la stagionalità del contenuto in nitrati, legato all'effetto diluizione, con concentrazioni più elevate nella stagione secca (settembre).

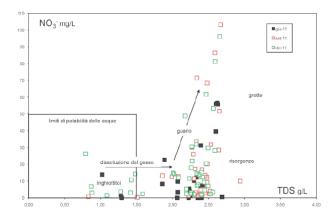


Fig. 6 Confronto tra il contenuto di sali disciolti (TDS) e il contenuto di nitrati in tutte le acque analizzate.

Dall'analisi del grafico si vede bene una possibile evoluzione delle acque dall'inghiottitoio alla risorgente

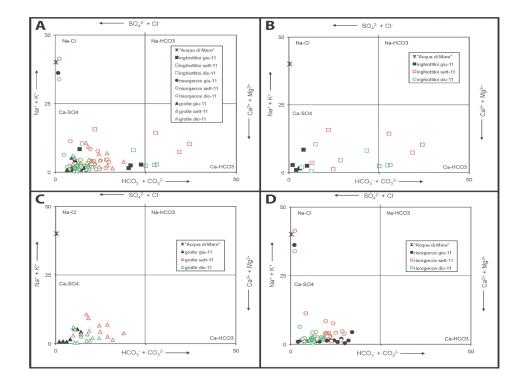


Fig. 7 Diagramma classificativo delle acque.

- A. Tutte le acque campionate;
- B. Inghiottitoi;
- C. Scorrimenti in grotta;
- D. Risorgenti

Ringraziamenti

Questo programma di monitoraggio si inserisce nelle attività del Progetto LIFE+ 08 NAT/IT/00369 "GYPSUM" 2010-2014 (www.lifegypsum.it, Beneficiario coordinatore Parco Reg. Gessi Bolognesi e Calanchi dell'Abbadessa; per info D. Bianco: servizioambiente@parcogessibolognesi.it). I campionamenti delle acque sono stati effettuati in collaborazione con numerosi speleologi dei gruppi appartenenti alla Federazione Speleologica Regionale dell'Emilia Romagna. Per le analisi di laboratorio si ringrazia Piero Trentini.

BIBLIOGRAFIA

AA.VV., 1988 - *L'area carsica dell'alta Val di Secchia, studio interdisciplinare dei caratteri ambientali.* Studi e Documentazioni, 42. Reg. Emilia Romagna — Prov. Reggio Emilia, 1-303.

ALTARA E., DEMARIA D., GRIMANDI P. & MINARINI G. (eds), 1995 - *Atti del convegno "Precursori e pionieri della speleologia in Emilia-Romagna"*. Speleologia Emiliana, s. IV, Anno XXI, 6, 1-160.

BENTINI L. & LUCCI P., 1999 - Le grotte della Vena del Gesso Romagnola. I gessi di Rontana e Castelnuovo. FSRER, 23-26.

CASALI R., 1972 — Idrologia ipogea della zona compresa fra i torrenti Zena ed Idice in località Farneto (S. Lazzaro in Savena Bologna). Atti del VII Convegno Speleologico dell'Emilia Romagna e del Simposio di Studi sulla Grotta del Farneto, S. Lazzaro in Savena-Bologna, 9-10 Ottobre 1971, Rassegna Speleologica Italiana, Mem. X, 148-152.

CHIESI M., FORMELLA W., CASADEI A., FRANCHI M. & DOMENICHINI M., 1999 - *Il sistema carsico di Monte Caldina Alta Valle del Fiume Secchia*, Reggio Emilia. Speleologia Emiliana, 10, 19-27.

CHIESI M. & FORTI P. (eds.), 2009 - Il Progetto Trias: studi e ricerche sulle evaporiti triassiche dell'alta valle di Secchia e sull'acquifero carsico di Poiano (Reggio Emilia). Mem. Ist. It. Spel., s. II, 22, 1-164.

CHIESI M., FORTI P. & DE WAELE J., 2010 - *Origin and evolution of a salty gypsum/anhydrite karst spring: the case of Poiano (Northern Apennines, Italy).* Hydrogeology Journal, 18, 1111-1124.

DEMARIA D., 2003 - *Emilia Romagna*. In: Madonia G. & Forti P. (Eds.), *Le aree carsiche gessose d'Italia*. Mem. Ist. It. Spel., s. II, 14, 159-184.

DE WAELE J., FORTI P. & ROSSI A., 2011 - *Il carsismo nelle evaporiti dell'Emilia Romagna*. In: ROSSI A. (Ed.), I geositi carsici dell'Emilia Romagna. (in stampa)

FORTI P. & CHIESI M., 2001 - Idrogeologia, idrodinamica e meteorologia ipogea dei gessi di Albinea, con particolare riguardo al Sistema carsico afferente alla Tana della Mussina di Borzano (Er-RE 2) (Albinea-Reggio Emilia). In: Chiesi M. (Ed.), L'area carsica di Borzano (Albinea-Reggio Emilia). Mem. Ist. It. Spel., s. II, 11, 1-139.

FORTI P. & FRANCAVILLA F., 1990 - *Gli acquiferi carsici dell'Emilia-Romagna: conoscenze attuali e problemi di salvaguardia*. At. Parm., Acta Nat., 26 (1-2), 69-80.

FORTI P., FRANCAVILLA F., PRATA E., RABBI E., VENERI P. & FINOTELLI F., 1985 - Evoluzione idrogeologica dei sistemi carsici dell'Emilia-Romagna: 1- Problematica generale; 2- Il complesso Spipola - Acqua Fredda. Regione Emilia Romagna, Tip. Moderna, Bologna, 1-60.

FORTI P., FRANCAVILLA F., PRATA E., RABBI E. & GRIFFONI A., 1989 - Evoluzione idrogeologica dei sistemi carsici dell'Emilia-Romagna: il complesso Rio Stella-Rio Basino (Riolo Terme, Italia). Atti XV Congr. Naz. Spel., 349-368.

MARINELLI O., 1917 - Fenomeni carsici nelle regioni gessose d'Italia. Memorie Geografiche di Giotto Dainelli, 34, 263-416.

Tabella 2 – Siti monitorati

CAMP.	SISTEMA CARSICO	PUNTO DI INDAGINE
	Sic 1T4030009 Gess	si Triassici
A01	Fonti di Poiano	Risorgente di dx
A02	Tanoni	Tanone della Gacciolina
A03	Ca' delle Ghiaie	Ca' delle Ghiaie
'	Sic IT4030017 Cà del Vento, Cà de	el Lupo, Gessi di Borzano
B01	Tana Mussina Borzano	Tana della Mussina di Borzano
B02	Risorgente del Rio Groppo	Risorgente del Rio Groppo
B03	Tana del Tasso	Tana del Tasso (fronte Montericco)
B04	Tana Mussina Montericco	Tana Mussina di Montericco
	Sic IT4050001 Gessi Bolognesi, C	Calanchi dell'Abbadessa
C01	Coralupi - Pelagalli	Grotta Coralupi - Dolina dell'Inferno
C02	Coralupi - Pelagalli	ex cava Calgesso
C03	Farneto	Inghiottitoio Valle cieca Ronzana
C04	Cioni - Ferro di Cavallo	Ris. Cioni-Ferro di Cavallo
C05	Farneto	Risorgente Farneto (botola)
C06	Novella	Grotta Novella (bidone)
C07	Novella	Risorgente Valle Idice
C08	Calindri - Osteriola	Valle cieca Budriolo - Grotta Calindri
C09	Calindri - Osteriola	Risorgente Osteriola (tubo a monte)
C10	Acquafredda - Spipola	Inghiottitoio Valle cieca Acquafredda
C11	Acquafredda - Spipola	Spipola (Sala dei Sedimenti)
C12	Acquafredda - Spipola	Spipola (arrivo a sx Salone del Fango)
C13	Acquafredda - Spipola	Spipola (Sala dei Canali di Volta)
C14	Acquafredda - Spipola	Spipola (a monte Pozzo Elicoidale)
C15	Gaibola	Gr. dietro Chiesa di Gaibola (ris.)
C16	Castel de'Britti	Risorgente di Castel de'Britti
C17	Gaibola	Gr. dietro Chiesa di Gaibola (sifone)
C18	Gaibola	Gr. dietro Chiesa di Gaibola (mezzo)
	Sic IT4050027 Gessi di Monte Rocc	ca, Monte Capra e Tizzano
D01	Gortani	Inghiottitoio della Gortani
D02	Gortani	Risorgente della Gortani
	Sic IT4070011 Vena del G	esso Romagnola
E01	Sconosciuto	Grotta della Befana
E02	Rio Gambellaro	Risorgente del Rio Gambellaro
E03	Re Tiberio	Risorgente del Re Tiberio
E04	Re Tiberio	Torrente in cava del Re Tiberio
E05	Ca' Boschetti	Grotta N.1 di Ca' Boschetti
E06	Rio Stella-Basino	Inghiottitoio del Rio Stella
E07	Rio Stella-Basino	Sifone in sx idrografica nel Basino
E08	Rio Stella-Basino	Arrivo Abisso Bentini
E09	Rio Stella-Basino	Risorgente del Basino
E10	Sempal	Grotta della Colombaia
E11	Sempal	Risorgente Sempal
E12	Cassano	Grotta sotto Cassano Risorgente
E13	Rio Cavinale	Risorgente del Rio Cavinale
E14	Rio Cavinale	Abisso Fantini
E15	Rio Cavinale	Inghiottitoio di Selva
E16	Tanaccia	Grotta della Tanaccia Risorgente
E17	Tana della Volpe	Inghiottitoio della Tana della Volpe
E18	Rio Stella-Basino	A monte arrivo Bentini
E19	Rio Stella-Basino	Arrivo laghetti Rio Stella
E20	Topolino	Grotta del Topolino
E21	Sconosciuto	Risorgente del Caronte

CAMP.	SISTEMA CARSICO	PUNTO DI INDAGINE
	Sic IT4090001 Onfer	no
F01	Onferno	Grotta di Onferno (a monte)
F02	Onferno	Grotta di Onferno (arrivo sx)
F03	Onferno	Grotta di Onferno (pisoliti)
F04	Onferno	Grotta di Onferno (risorgente)

Tabella 3 – Risultati delle analisi chimiche sulle acque dei primi tre campionamenti (giugno, settembre e dicembre 2010)

ID	Periodo	Anno	Т	рН	Na ⁺¹ ppm	K ⁺¹ ppm	Ca+2 ppm	Mg+² ppm	HCO ₃ -1	F-1 ppm	Cl ⁻¹	Br¹ ppm	NO ₃ -1	SO ₄ -2 ppm	NH ₄ +1 ppm
A01	II	2010	9,5	7,75	2783,67	10,94	867,39	37,23	152,5		3988,97	0,12	13,45	2131,61	0,07
	III	2010	9,8	8,02	2464,40	9,81	841,23	34,43	176,9		3766,48		44,66	2032,59	0,09
	IV	2010	10,2	7,85	2151,69	10,63	821,23	44,43	189,1	0,02	3611,48		41,51	1935,59	0,07
A02	II	2010	10,6	8,17	12,32	1,09	514,74	52,96	152,5	0,11	19,31			1469,16	0,03
	III	2010	10,8	8,39	17,70	1,82	568,70	49,94	219,7		17,09		2,13	1506,95	0,01
	IV	2010	8,2	8,40	17,75	1,84	548,70	50,45	213,6		18,69		2,33	1406,95	0,06
A03	Ш	2010	9,6	8,26	21,54	2,34	563,64	57,64	183,0		16,96			1508,22	0,04
	III	2010	9,6	8,50	35,82	2,36	595,43	74,30	244,1		44,35		2,96	1452,77	0,07
	IV	2010	8,2	8,57	34,69	2,86	585,41	74,20	241,0		43,16		2,16	1418,71	0,01
B01	П	2010	11,2	7,85	15,02	2,26	554,37	45,59	192,2	0,50	9,62		12,17	1501,95	0,04
	III	2010	11,2	8,36	21,71	2,66	614,23	47,93	256,3	0,67	17,73		12,32	1428,23	0,03
	IV	2010	10,7	8,55	22,59	3,15	616,28	45,86	256,3	0,51	18,65		12,32	1446,57	0,07
B02	II	2010	10,4	7,35	16,19	1,82	517,71	46,51	204,4	0,20	10,21		4,16	1434,18	0,04
	III	2010	11,1	7,71	22,86	2,77	579,27	56,08	231,9	0,46	15,87		3,08	1413,03	0,04
	IV	2010	8,5	7,98	22,99	1,97	539,15	51,06	231,9	0,16	15,87		3,10	1393,12	0,03
B03	П	2010	11,0	7,76	21,14	3,82	519,28	50,01	210,5	0,13	6,96		1,01	1435,55	0,02
	III	2010	12,1	8,05	33,38	4,46	592,76	60,70	256,3	0,29	23,60		1,60	1441,43	0,05
	IV	2010	7,5	8,04	36,38	4,41	562,22	56,69	256,3	0,29	23,60		1,60	1461,85	0,05
B04	IV	2010	10,5	8,05	31,26	6,11	546,88	61,23	231,9	0,39	25,66		2,12	1395,41	0,05
C02	III	2010	11,3	8,29	76,15	4,36	592,90	50,48	262,4	0,53	139,47		9,29	1343,71	0,05
	IV	2010	/	8,7	66,87	4,31	582,89	49,23	262,4	0,53	139,41		9,29	1323,75	0,04
C03	IV	2010	2,0	8,82	95,35	6,39	587,25	37,88	387,5	0,26	118,36		3,45	1326,33	0,02
C04	III	2010	12,8	7,88	105,70	5,90	635,03	10,23	112,9	0,71	186,34		2,40	1452,30	0,01
	IV	2010	/	8,4	105,70	6,19	631,96	12,64	112,9	0,71	178,34		2,26	1482,29	0,01
C06	IV	2010	/	7,8	89,95	0,64	617,15	25,32	231,9	0,33	157,57		4,56	1319,87	0,02
C08	III	2010	10,6	8,40	21,53	7,08	565,12	11,56	128,1	0,38	22,79		12,69	1313,11	0,01
	IV	2010	0,1	8,54	21,95	6,97	558,85	10,11	128,1	0,38	22,79		12,01	1320,11	0,01
C09	III	2010	13,8	7,66	26,62	11,46	606,70	60,30	384,4	0,51	30,30		7,04	1354,38	0,03
	IV	2010	11,6	7,87	26,62	11,83	609,37	61,36	390,5	0,51	30,59		7,04	1354,38	0,02
C10	III	2010	15,2	8,48	68,78	7,02	171,57	88,20	494,2	0,29	105,04		3,55	339,75	0,03
	IV	2010	1,8	8,75	65,23	6,97	178,33	81,21	482,0	0,26	104,36		3,68	358,39	0,03
C11	III	2010	11,7	8,21	33,27	4,10	587,25	41,16	292,9	0,38	42,56		11,45	1287,89	0,04
	IV	2010	/	8,5	35,13	3,85	531,28	42,38	280,7	0,38	40,65		11,45	1287,89	0,04
C13	III	2010	12,0	8,33	30,86	3,91	622,74	47,72	506,4	0,25	13,28		31,67	1276,54	0,03
	IV	2010	/	7,8	30,86	3,81	622,74	47,69	506,4	0,25	13,88		29,67	1236,54	0,04
C14	III	2010	11,4	7,97	10,89	0,26	618,18	29,30	408,8	0,39	40,44		16,79	1285,76	0,04
	IV	2010	/	8,2	16,89	0,22	616,39	27,35	396,6	0,38	42,22		15,15	1285,71	0,03
C15	III	2010	14,1	8,08	36,40	7,67	632,09	36,85	387,5		90,22		20,11	1272,81	0,02
	IV	2010	/	/	26,41	0,30	629,12	37,35	387,5		91,12		20,35	1275,71	0,02
C17	III	2010	10,8	8,25	18,47	0,98	616,36	12,66	335,6	0,34	17,67		25,91	1261,46	0,00
	IV	2010	/	/	15,36	1,03	616,36	11,33	335,6	0,34	17,16		21,89	1254,41	0,01
C18	III	2010	12,5	7,88	63,39	9,21	688,11	34,33	418,0		140,93		28,50	1261,20	0,01
	IV	2010	/	/	73,36	9,81	628,22	34,38	418,0		139,56		28,20	1256,66	0,01

ID	Periodo	Anno	Т	рН	Na ⁺¹ ppm	K ⁺¹ ppm	Ca+2 ppm	Mg+2 ppm	HCO ₃ -1	F-1 ppm	CI ⁻¹ ppm	Br¹ ppm	NO ₃ -1 ppm	SO ₄ -2 ppm	NH ₄ ⁺¹ ppm
D01	IV	2010	4,7	8,68	23,54	3,68	177,24	30,15	213,6	0,38	21,58		6,72	393,41	0,02
D02	IV	2010	6,1	8,34	24,75	5,56	399,74	32,22	231,9	0,52	22,15		2,28	866,14	0,01
E02	II	2010	12,5	7,76	15,54	1,61	576,25	38,10	201,4		20,81		5,32	1372,97	0,01
	III	2010	13,3	8,33	21,35	1,30	649,41	43,35	183,0	1,022	22,19		3,96	1597,91	0,01
	IV	2010	6,4	8,09	18,34	9,23	568,50	32,76	207,5	0,520	21,30		2,32	1333,76	0,01
E03	II	2010	12,0	8,28	14,42	2,03	527,89	76,59	164,7		21,19		10,20	1482,96	0,07
	III	2010	12,4	8,61	17,47	2,09	557,92	82,70	91,5	1,793	19,45		13,34	1668,56	0,05
	IV	2010	10,5	8,32	14,99	2,97	553,40	85,59	164,7	2,040	16,76		13,82	1515,52	0,04
E04	II	2010	12,5	7,96	10,35	2,83	583,87	69,93	146,4	1,66	7,70		7,30	1590,44	0,01
E05	II	2010	12,3	8,00	20,11	4,31	517,15	42,97	268,5		19,22		3,30	1196,78	0,00
	III	2010	12,6	8,29	31,06	1,86	586,17	54,45	152,5	1,50	43,77		4,61	1517,49	0,00
	IV	2010	10,0	7,83	20,39	10,92	339,49	28,33	262,4	0,79	25,08		14,18	780,28	0,00
E06	II	2010	20,2	8,36	14,95	5,43	164,74	62,22	411,9	13,88	29,44		13,81	319,91	0,00
	III	2010	17,8	8,38	28,39	3,69	111,12	57,23	414,9	0,397	8,80		0,64	205,43	0,00
	IV	2010	5,2	8,53	12,42	5,31	156,47	50,75	396,6	0,290	10,28		2,93	245,35	0,00
E07	II	2010	12,7	7,46	10,86	2,44	588,49	29,06	195,3	0,77	9,36		2,56	1446,00	0,09
	III	2010	12,8	7,55	25,16	2,89	580,64	37,24	201,4	0,61	15,42		1,81	1446,71	0,08
	IV	2010	12,6	7,60	4,22	0,99	585,71	24,68	201,4	0,81	8,81		5,14	1361,51	0,00
E08	II	2010	12,0	8,25	8,56	2,20	573,37	31,92	128,1	0,55	9,51		0,99	1466,89	0,00
	III	2010	11,8	8,07	21,72	1,77	561,03	41,08	103,7	0,61	18,23		1,39	1475,93	0,09
	IV	2010	11,9	8,47	5,17	0,88	653,17	29,68	238,0	11,25	12,84		14,40	1381,45	0,01
E09	II	2010	11,3	8,14	15,36	4,05	488,60	46,01	213,6	0,28	11,89			1286,31	0,04
	III	2010	10,8	7,98	10,48	4,20	569,51	47,02	158,6	0,68	12,54		2,79	1461,72	0,01
	IV	2010	9,0	8,42	12,96	3,95	582,15	41,77	152,5	1,45	24,64		7,96	1529,84	0,07
E10	II	2010	9,4	8,08	12,06	4,30	599,50	28,75	274,6	0,31	4,55		30,23	1317,29	0,00
	III	2010	8,8	8,25	4,59	7,97	604,33	17,37	280,7	0,43	5,76		71,43	1344,63	0,01
	IV	2010	5,8	7,99	5,02	4,28	576,95	21,16	231,9	0,72	8,89		48,75	1277,14	0,06
E11	II	2010	12,4	7,92	16,77	7,50	618,20	29,74	256,3	1,67	18,63		31,18	1415,63	0,04
	III	2010	12,7	7,85	31,75	7,92	648,82	40,75	262,4	0,75	30,01		51,58	1578,67	0,03
	IV	2010	12,2	8,57	9,16	7,74	610,93	24,10	250,2	1,58	15,79		30,51	1320,86	0,01
E12	l II	2010	13,3	7,68	18,80	4,63	588,66	37,64	183,0	2,78	21,07		7,09	1497,10	0,01
	III	2010	13,5	8,22	28,76	4,95	604,09	39,71	213,6	1,19	19,43		17,17	1385,73	0,01
	IV	2010	13,3	7,69	25,35	5,98	569,29	40,29	131,2	1,16	22,56		18,01	1446,79	0,01
E13	II	2010	11,7	8,30	8,06	3,51	462,23	30,15	280,7	.,	7,47		8,27	1057,46	0,00
	III	2010	12,3	8,39	7,72	2,92	501,89	28,58	268,5	0,70	33,23		13,16	1002,77	0,01
	IV	2010	7,1	8,14	24,81	6,13	495,07	32,62	219,7	6,23	51,21		14,73	1162,77	0,03
E15	II	2010	12,0	8,45	8,81	5,10	293,25	23,61	439,3	0,27	4,87		1,65	501,34	0,00
	IV	2010	5,9	8,38	9,12	4,37	148,91	32,68	323,4	1,89	22,54		26,19	223,80	0,01
E16	II	2010	11,9	7,78	23,39	5,83	517,15	24,68	225,8	.,00	32,57		9,69	1233,38	0,00
LIO	lll	2010	12,7	7,73	15,67	7,20	523,18	21,88	219,7	0,27	23,01		12,64	1168,00	0,00
	IV	2010	10,2	8,03	25,10	9,65	495,07	29,45	311,2	0,46	35,16		14,18	1101,24	0,01
E17	II	2010	15,7	8,30	132,64	19,84	471,96	91,52	329,5	0,40	64,39		0,43	1577,85	0,01
L17	lll	2010	18,5	8,29	175,54	26,90	567,40	100,08	335,6	0,38	93,42		9,93	1632,58	0,00
	IV	2010	5,5	8,10	92,43	16,79	264,80	44,20	183,0	0,46	36,23		10,65	779,11	0,00
E18	II	2010	10,9	8,26	16,05	5,43	429,09	61,61	262,4	2,64	14,77		22,58	1077,70	0,00
LIU	III	2010	9,6	7,74	25,37	3,73	567,41	64,43	158,6	0,56	22,49		1,40	1506,40	0,00
	IV	2010	7,2	8,53	15,72	5,63	305,12	51,02	256,3	0,58	12,29		3,01	769,24	0,00
E19	II	2010	18,0	8,21	17,86	6,06	250,40	65,52	457,6	0,00	29,43		3,01	465,62	0,00
LIJ	III	2010	16,4	7,58	34,76	6,19	274,92	68,18	659,0	0,00	6,99		0,28	458,99	0,00
	IV	2010	3,7	8,42	16,64	5,06	200,84	52,02	506,4	0,04	11,31		1,43	295,66	0,00
E20	II	2010	12,2	7,52	6,08	0,00	600,53	30,49	256,3	0,47	7,27		1,43	1506,00	0,00
EZU						0,00					1,21	0.057			
	III	2010	20,9	7,26	8,19	0 55	592,80	29,59	238,0	1 20	0.00	0,857	7 1 1	1286,69	0,00
F01	IV	2010	9,8	7,95	4,65	0,55	637,24	30,33	250,2	1,38	9,98		7,11	1398,27	0,01
E21	ll III	2010	13,1	7,43	17,22	5,62	584,11	33,20	305,1	1 70	13,45		7,30	1371,91	0,01
	III	2010	13,7	7,69	34,56	3,45	608,88	50,25	323,4	1,72	50,88		12,15	1392,52	0,01
F04	IV	2010	13,2	7,53	28,63	5,68	654,60	39,11	323,4	1,61	36,94		53,26	1426,88	0,01
F01	II	2010	11,5	8,33	71,10	37,70	542,19	64,80	225,8	0,40	69,95		56,54	1556,77	0,05

ID	Periodo	Anno	Т	рН	Na ⁺¹ ppm	K ⁺¹ ppm	Ca+2 ppm	Mg ⁺² ppm	HCO ₃ -1 ppm	F-1 ppm	CI ⁻¹ ppm	Br¹ ppm	NO ₃ -1 ppm	SO ₄ -2 ppm	NH ₄ ⁺¹ ppm
	III	2010	13,5	8,33	84,08	41,90	588,55	69,58	219,7	0,33	74,72		103,08	1487,58	0,01
	IV	2010	7,5	8,60	81,09	46,31	580,36	69,58	219,7	0,33	74,72		96,08	1487,18	0,01
F02	Ш	2010	11,3	8,33	64,05	41,61	540,90	68,47	207,5		69,83		55,94	1556,94	0,07
	III	2010	13,3	8,44	63,63	50,69	604,87	65,52	231,9	0,43	92,71		86,40	1393,37	0,02
	IV	2010	7,7	8,57	63,77	48,65	611,35	61,65	231,9	0,44	96,89		81,19	1396,39	0,02
F03	II	2010	11,2	8,38	51,56	34,27	565,09	62,58	256,3	0,04	55,32		39,40	1536,20	0,05
	III	2010	12,9	8,46	37,13	25,95	512,55	55,85	292,9	0,39	48,52		33,42	1323,02	0,05
	IV	2010	10,0	8,51	36,16	25,12	514,36	57,73	292,9	0,37	48,52		31,89	1323,09	0,03
F04	П	2010	10,4	8,40	56,95	30,78	570,60	65,02	250,2	0,10	60,29		55,62	1543,61	0,11
	III	2010	11,8	8,19	50,50	27,78	540,62	64,52	299,0	0,39	62,28		68,40	1366,55	0,06
	IV	2010	7,0	8,66	56,18	27,31	531,61	62,36	299,0	0,31	62,28		61,63	1366,59	0,05