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Summary. - Universal Gröbner bases (UGB) are a useful tool to
obtain a set of different models identified by an experimental de-
sign. Usually, the algorithms to obtain a UGB for the ideal of
a design are computationally intensive. Babson et al. (2003)
propose a methodology to construct UGB in polynomial time.
Their methodology constructs a list of term orders based upon
the Hilbert zonotope. We focus on the generation of such a list.
We use results on hyperplane arrangements to present a theorem
which simplifies the computation of term orders for designs in
two dimensions. Our theorem constructs directly the normal fan
of the Hilbert zonotope.

1. Introduction

When analyzing an experiment, it is useful to consider different al-
ternative models; for example in a computer experiment where the
cost of every run is high and only a reduced number of runs is pos-
sible. In the analysis stage, we may want to have different models
at hand, maybe to choose a simulator of our experiment. Then we
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can select a model based on the interpretation as well as the usual
statistical criteria. A search through all the potential identifiable
models would be impossible and thus we must restrict our class of
models. In the present work we consider only the class of hierar-
chical polynomial models. This class has been studied previously
in literature under the names “well-formed”, “hierarchical” or “hi-
erarchically well-formulated” models, see Bates et al. (2003) and
Peixoto (1990). We also restrict the search to full rank models to
ensure identifiability.

The search algorithms we are interested in are based on algebraic
techniques and return a large subset of the class we are interested in.
Depending on the design, sometimes the algebraic techniques return
the whole class. However, the algebraic techniques rely on important
results from polytopal geometry. For this reason, Sections 2 and 3
introduce both (algebraic and polytopal) notations and explain the
link between them. In Section 4 we introduce an important polytope
called the Hilbert zonotope, and describe its role in our problem. In
Section 5 we give a new theorem which simplifies the current use of
the zonotope in two dimensions. Some computational details are in
the appendix.

2. Algebra and design of experiments

Pistone and Wynn (1996) pioneered the use of Gröbner bases in ex-
perimental design. They demonstrate that computational commu-
tative algebra (CCA) is a useful tool, not only to propose different
models, but also to study generalized confounding of models and
model terms. We start by defining the experimental design and the
class of models we will be considering along this work.

Definition 2.1. An experimental design is a finite set of n distinct
points D ⊂ R

d, where d is the number of factors and n is the number
of runs.

The class of hierarchical polynomial models we are interested in is
in one-to-one correspondence with the set of staircases defined next.

Definition 2.2. A staircase is a nonempty subset λ of the set N
d of

non-negative integer vectors such that if u ∈ λ and v ≤ u (coordinate-
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wise) then v ∈ λ. Let
(

N
d

n

)

stair
denote the finite set of staircases with

n elements.

The cardinality of
(

Nd

n

)

stair
for d = 2, 3 is computed by MacMa-

hon’s classic formulas (see Appendix 7.1), while for d ≥ 4 it is still an
open problem, see Onn and Sturmfels (1999). The log map acts from
the terms in R[x1, . . . , xd] to Z

d as log(xα1
1 · · · xαd

d ) = (α1, . . . , αd).
Then, one applies it to the terms in a hierarchical polynomial model
and obtains a staircase.

Example 2.3. The hierarchical model {1, x1, x2, x1x2} corresponds

to the staircase
{(

0
0

)
,
(
1
0

)
,
(
0
1

)
,
(
1
1

)}
∈

(
N

2

4

)

stair
.

Definition 2.4. Let

V d
n :=

⋃

λ∈(Nd

n
)

stair

λ (1)

denote the union of all n-staircases in N
d.

The computation of V d
n can be simplified by noting that V d

n =
{v ∈ N

d :
∏d

i=1 (vi + 1) ≤ n}. Babson et al. (2003) use the asymp-
totic bound O(n(log n)d−1) for the cardinality of V d

n .

Example 2.5. For n = 5, d = 2, we have seven different staircases,
and their union is

V 2
5 =

{(0
0

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
,
(4
0

)
,
(0
1

)
,
(0
2

)
,
(0
3

)
,
(0
4

)
,
(1
1

)}
,

see Figure 1 .

Now we give the basic elements for identifying models using CCA.
The reader is referred to Cox et al. (1996) for a comprehensive
resource on algebraic geometry and to Pistone et al. (2000) for the
use of CCA in statistics.

Definition 2.6. The design ideal I is the set of all polynomials that
vanish on the design: I = {f ∈ R[x1, . . . , xd] : f(x) = 0 for all x ∈
D}.
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v1

v2

Figure 1: Picture of V 2
5 . The dashed curve corresponds to (v1 +

1)(v2 + 1) = 5

Here R[x1, . . . , xd] is the ring of polynomials in x1, . . . , xd indeter-
minates, which for simplicity we write as R[x]. The ideal I is gener-
ated by a finite set of polynomials G and we write I = 〈g : g ∈ G〉 =
{
∑

g∈G gh, h ∈ R[x]}. The length of an ideal I is the dimension of the
quotient space R[x]/I, where the quotient space R[x]/I is the class of
all polynomials in R[x] modulo the ideal, e.g. for every f in R[x] we
can construct a representative [f ] = {g ∈ R[x] such thatf − g ∈ I}.
Our search for models identifiable by a design can be expressed pre-
cisely as the search for basis for R[x]/I. This important fact enables
us to use algebraic techniques to solve our problem.

Definition 2.7. A term ordering τ is an ordering relation ≻ on the
terms xα, α ∈ N

d that satisfies i) xα ≻ 1 for all xα and ii) if for
α, β, γ ∈ N

d we have xα ≻ xβ, then xαxγ ≻ xβxγ.

Note that a term ordering corresponds to an ordering relation on
N

d. The leading term of a polynomial f is the largest term in f with
respect to the term ordering τ . We write LTτ (f).

Definition 2.8. A Gröbner basis for an ideal I with respect to a
term order τ is a finite subset Gτ ⊂ I such that 〈LTτ (g) : g ∈ Gτ 〉 =
〈LTτ (f) : f ∈ I〉.

Definition 2.9. A reduced Gröbner basis (RGB) of I is a Gröb- ner
basis Gτ such that i) the coefficient of LTτ (g) is one for all g ∈ Gτ ,
ii) for all g ∈ Gτ , no monomial of g lies in 〈LTτ (f) : f ∈ Gτ\g〉

A model for the responses at the design is identified by all those
terms which cannot be divided by the leading terms of Gτ . This basis
is the hierarchical polynomial model we look for.
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Example 2.10. Consider the following non-regular fraction of a fac-

torial 32 experiment: D =
{(0

0

)
,
(1
0

)
,
(0
1

)
,
( 1
−1

)
,
(−1

1

)}

. For a term

ordering in which x1 ≻ x2, we construct the following RGB (leading
terms underlined) Gτ = {x2

1 + 2x1x2 + x2
2 − x1 − x2, x

3
2 − x2, x1x

2
2 −

x1x2 − x2
2 + x2} and we identify the model {1, x1, x2, x1x2, x

2
2}.

Caboara et al. (1997) enlarged upon Pistone and Wynn’s ideas,
and defined the fan of an experimental design as the set of all hier-
archical models identifiable by a given design. Caboara et al. distin-
guished between algebraic fan (models obtained with Gröbner basis
methods by varying the term ordering), and statistical fan (all hi-
erarchical polynomial models identified by the design). In examples
2.11 and 2.12 we illustrate the algebraic and statistical fan for the
design given in example 2.10. Throughout this work, we will use
algebra to obtain the algebraic fan of the design.

Next we outline the algebraic approach to computing the fan.
The main idea is to construct a universal Gröbner basis (UGB) for
the design ideal I. The UGB of a (design) ideal is defined as

U(I) :=
⋃

τ

Gτ , (2)

where Gτ is a RGB under the term ordering τ , and τ runs over all
term orderings. Once we have U(I), we can list the algebraic fan of
the design. We refer to Weispfenning (1987) for details on properties
of UGBs.

Example 2.11. (cont. of Example 2.10) The UGB of I is

U(I) = {x2
1 + 2x1x2 + x2

2
︸︷︷︸

−x1 − x2, x3
2

︸︷︷︸

−x2, x3
1

︸︷︷︸

−x1,

x1x
2
2

︸︷︷︸

−x1x2 − x2
2 + x2, x2

1x2
︸︷︷︸

−x2
1 − x1x2 + x1},

where the terms underlined with “ ” are the leading terms for the
condition x1 ≻ x2; and we underline with “

︸︷︷︸
” the leading terms

for x1 ≺ x2. We observe that

1. every polynomial in U(I) vanishes at every design point, and
the set of equations for U(I) has no other solution than the
design points;
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2. the set of term orders is partitioned by the conditions x1 ≻ x2

and x1 ≺ x2. Thus U(I) is indeed a UGB. Moreover, U(I)
is the union of two RGBs and, in this sense, is minimal and
unique;

3. the algebraic fan of D is thus formed by {1, x1, x2, x1x2, x
2
2}

and {1, x1, x2, x1x2, x
2
1} which are obtained as those terms not

divisible by the leading terms for x1 ≻ x2 and x1 ≺ x2 respec-
tively.

However, in general to compute UGB using Equation (2) directly
is not possible, as there is an infinite number of term orderings.
Moreover, many different term orderings yield the same Gτ . A sur-
prising fact proved by Mora and Robbiano (1988) is that for any
ideal, the union in Equation (2) is finite. Thus we need an efficient
way to generate term orders and to compute UGBs. This will be the
topic of the next subsection.

We end this subsection by noting that algebra gives some of the
models we seek, but not necessarily all of them. There are staircases
that cannot be obtained by algebraic means and still are identifiable.

Example 2.12. (cont. of Example 2.11) The model

{1, x1, x2, x
2
1, x

2
2} (3)

is identifiable by the design as the design matrix

1 x1 x2 x2
1 x2

2

1 0 0 0 0
1 1 0 1 0
1 0 1 0 1
1 1 −1 1 1
1 −1 1 1 1

is full rank. Indeed by exhaustive search one can show that the sta-
tistical fan of D is composed of {1, x1, x2, x1x2, x

2
2}, {1, x1, x2, x

2
1, x

2
2}

and {1, x1, x2, x1x2, x
2
1}. Now we explain why we cannot obtain

Model 3 by algebraic methods. The following is a generating set of
polynomials for I: {f1 = x3

1−x1, f2 = x3
2−x2, f3 = x2

1+2x1x2+x2
2−

x1 − x2}. We have that for any τ , LTτ (f1) = x3
1 and LTτ (f2) = x3

2;
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and to obtain Model 3 we need LTτ (f3) = x1x2 for some τ . The pre-
vious statement implies x1x2 ≻ x2

1 and x1x2 ≻ x2
2 simultaneously.

This in turn means that x2 ≻ x1 and x2 ≺ x1, which is not possible
for any term ordering.

3. Polytopes for the algebra

We start this subsection with the basic definitions of polytopal geom-
etry, for which references are Ziegler (1994) and Grümbaum (2003);
later we present the use of polytopes in relation to Gröbner bases,
for which basic references are Bayer and Morrison (1988), Mora and
Robbiano (1988) and Sturmfels (1995).

3.1. Basic definitions

A d−dimensional polytope P may be specified as the set of solutions
of a system of linear inequalities

Ax ≤ b,

where A is a real matrix of d columns and b, x ∈ R
d. If the polytope

P is not bounded, then we refer to it as a polyhedron. For a bounded
polytope, the positions of the vertices may be found using a process
called vertex enumeration, see Avis and Fukuda (1991). A particu-
lar type of bounded polytopes are zonotopes, which are defined as
follows.

Definition 3.1. The zonotope of a finite set of vectors V ⊂ R
d is

given by the following Minkowski sum

Z(V ) :=
∑

v∈V

[−v, v],

where the summand [−v, v] = [−1, 1] · v is the line segment between
−v and v in R

d.

Example 3.2. Consider V =
{(1

0

)
,
(0
1

)}
⊂ R

2. We compute Z(V )

by Minkowski-summing the line segments
[(−1

0

)
,
(1
0

)]
and

[( 0
−1

)
,
(0
1

)]

,

e.g. for every vector a in the first line segment, we add every vector b
in the second line segment. The result is the square Z(V ) = [−1, 1]×
[−1, 1] = [−1, 1]2.
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P
C

′

1 C
′

2

C
′

3

C
′

4

C
′

5

Q
C1

C2
C3

Figure 2: The polytopes P and Q and their normal fans N (P ) and
N (Q). P is a refinement of Q.

A polyhedron of the form Ax ≥ 0 is called a polyhedral cone. A
pointed cone is a cone that contains the origin. Then every poly-
hedral cone is a pointed cone. Polyhedral cones admit another
description, that is as the positive hull of a set of vectors. The
positive hull of V is the set {

∑
viλi : vi ∈ V, λi ≥ 0}. Now,

for a polyhedron P ⊂ R
d and ω ∈ R

d, we define a face of P as
F = {u ∈ P : ω · u ≥ ω · v ∀v ∈ P}.

A complete fan is a family of pointed polyhedral cones in R
d in

such a way that its union is all of R
d. The normal fan N (P ) of

a d−polytope P ⊂ R
d is the collection CF of all vectors a ∈ R

d

such that the linear function x → a · x on P is maximized by all
points on F ; where F is a non-empty face of P . The construction
of the normal fan is illustrated in Figure 2 for two bidimensional
polytopes P and Q. Note that for every vertex h, its normal cone
Ch is generated as the positive hull of the normal vectors of adjacent
facets.

Theorem 3.3. (Ziegler, 1994) Let Z = Z(V ) ⊆ R
d be a zonotope.

Then the normal fan N (Z) of Z is the fan FA of the hyperplane
arrangement
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A = AV := {H1, . . . ,Hp}

in R
d given by

Hi := {c ∈ (Rd)∗ : cvi = 0, vi ∈ V }.

Here (Rd)∗ represents the dual vector space which is the real
vector space of all linear functions R

d → R. These are real row
vectors of length d.

A polyhedron P is a refinement of a polyhedron Q if the normal
fan of P is a refinement of that of Q. The refinement means that the
closure of each normal cone of Q is the union of closures of normal
cones of P . The closure of a cone is the cone plus its boundary. In
Figure 2 we illustrate an example of refinement. The polytope P is a
refinement of Q as the cones of N (Q) can be expressed as unions of
the cones in N (P ), namely C1 = C ′

1∪C ′
2, C2 = C ′

3 and C3 = C ′
4∪C ′

5.

3.2. Polyhedra to compute UGBs

For the rest of this section, it is necessary to elaborate on design
ideals as part of the theory of Hilbert schemes. We refer the reader
to Miller and Sturmfels (2004) and just recall that Hilbert schemes
Hilbd

n are algebraic varieties that parametrize families of ideals in
polynomial rings, where d is the number of indeterminates of factors
and n is the dimension of the quotient space, i.e. the number of
design points. For example, the Hilbert scheme Hilb2

2 consists of
all ideals I ⊂ R[x1, x2] for which the quotient space R[x1, x2]/I has
dimension 2 as a R−vector space, i.e. in our case, this comprises all
the possible polynomial ideals generated by two points in the plane.
The starting point for the computation of the UGB for an ideal I is
the construction of the state polyhedron S(I).

A subset λ ⊂ N
d of n elements is basic for the ideal I ∈ Hilbd

n

if the R−vector space lin{xv : v ∈ λ} := {
∑

v∈λ αvx
v} satisfies

lin{xv : v ∈ λ} ∩ I = {0}. A hierarchical model obtained with
CCA techniques is basic for the design ideal. Now, for a basic set
λ, we define its sum as

∑

v∈λ v. The basis polytope of I ∈ Hilbd
n is

the convex hull of sums of basic sets of I in V d
n , that is B(I) :=

conv
(
{
∑

v∈λ v : λ ⊂ V d
n , λ basic for I}

)
. The state polyhedron of
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I ∈ Hilbd
n is given by S(I) := B(I) + R

d
+. This last sum is inter-

preted as a Minkowski sum, and R
d
+ ⊂ R

d is the positive orthant.
The vectors w ∈ Z

d
>0 ⊂ R

d
+ are used to order terms by the

product w · α, for example we order the terms x2
1x2, x3

2, x1x2 as
x2

1x2 ≻ x1x2 ≻ x3
2 with w =

(3
1

)
, but as x3

2 ≻ x2
1x2 ≻ x1x2 with

w′ =
(
2
3

)
.

We construct the normal fan of S(I). Let Ch be the normal cone
corresponding to the vertex h of S(I). We have that

⋃

h Ch = R
d
+.

Now, for every vertex h, Gröbner theory states that the vectors {w :
w ∈ Z

d
>0, w ∈ Ch} will give the same RGB. In this sense, every cone

Ch creates an equivalence class of ordering vectors. For this reason,
we need only one w for every cone, and let Gw be the RGB obtained
with the ordering vector w. We compute the UGB by

U(I) :=
⋃

w

Gw. (4)

Example 3.4. (cont. of Example 2.10) The state polyhedron for the
design ideal I is given by S(I) = conv

({(
2
4

)
,
(
4
2

)})
+ R

2
+. We obtain

the sum
(2
4

)
as follows: the log of the model {1, x1, x2, x1x2, x

2
2}

gives the staircase
{(0

0

)
,
(1
0

)
,
(0
1

)
,
(1
1

)
,
(0
2

)}
, then the coordinate-wise

sum gives
(
2
4

)
. We have that

(
4
2

)
corresponds to {1, x1, x2, x1x2, x

2
1}

and we note that the model {1, x1, x2, x
2
1, x

2
2} corresponds to the sum

(3
3

)
, which is an interior point of S(I). In Figure 3 we illustrate S(I)

and its normal fan composed of the cones C1 and C2. Now, we select
an integer vector in the interior of C1, e.g. w1 =

(2
1

)
and obtain Gw1

which is the same RGB as in Example 2.10. We compute the UGB
by repeating the computation with a vector w2 in C2 and uniting
the two RGBs as U(I) = Gw1 ∪ Gw2.

By using the state polyhedron S(I) we can obtain the adequate
ordering vectors w, one for every normal cone, and then compute
the UGB using Equation (4). Up to this point, we have solved the
initial problem of selecting the right term orders to compute the
UGB. However, we need to compute S(I) for every D. This is a
disadvantage because the method has to deal with each specific case
in a different way. Another disadvantage of this approach is the
inherent complexity of the construction of S(I).
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S(I)

C1

C2
C1

C2

Figure 3: Picture of S(I) and the cones in N (S(I)).

For certain types of designs this disadvantage can be partly over-
come. Onn and Sturmfels (1999) prove that if a design has a generic
configuration (roughly a design whose points are at random), then
S(I) equals the corner cut polyhedron. They also prove that the list
of models is enumerable in polytime for a generic design. They give
a determinant-based formula to retrieve a model corresponding to a
vertex of S(I) for any vertex. For a random design, Caboara et al.

(1997) show that all models in
(

N
d

n

)

stair
are identifiable.

In the next section we introduce the Hilbert zonotope, which
overcomes the inherent difficulties of the state polyhedron.

4. Hilbert zonotope

We are now arriving at the main point of this paper in which the
Hilbert zonotope is the central feature. We follow the definition in
Onn and Sturmfels (1999) and Babson et al. (2003). We construct
the zonotope and then list some of its main features.

Definition 4.1. The symmetrization of a finite set A ⊂ Z
d is

sym(A) := {a − b : a ∈ A, b ∈ A\a} (5)

The following properties of sym(A) can be easily demonstrated:
i) sym(A) is centrally symmetric, that is, if a ∈ sym(A) then −a ∈
sym(A), and ii) 0 /∈ sym(A).

Definition 4.2. The primitive elements of a set A ⊂ Z
d\{0} are

all the elements of A that are not non-negative integer multiples of
another element of A. We call this set prim(A).
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Figure 4: Symmetrization of V 2
5 (left), and D2

5 (right).

Definition 4.3. For n > 1 let Dd
n be the set of primitive vectors of

the symmetrization of V d
n , that is Dd

n := prim(sym(V d
n )). For n = 1

let Dd
1 := ±{e1, . . . , ed}, where ei is the i−th unit vector.

Example 4.4. Figure 4 gives the symmetrization of V 2
5 and its prim-

itives D2
5 .

When we compute the primitives of sym(V d
n ), it is sufficient to

consider only those elements of sym(V d
n ) where the greatest com-

mon divisor of its non-zero components is one. The set Dd
n contains

vectors pointing in all directions of V d
n . It has no zero vector and

has only one vector for each of the directions from the zero to a
point in sym(V d

n ). This is at the core of the definition of the Hilbert
zonotope.

Definition 4.5. The Hilbert zonotope Hd
n is the following Min- kowski

sum:

Hd
n :=

∑

v∈Dd
n

[0, 1] · v ⊂ R
d (6)

Clearly, Hd
n is a zonotope. The Hilbert zonotope is a complicated

figure with many facets and vertices, even for small values of d, n (see
for example, Table 1 in the Appendix). Next we give two examples
and two propositions. Proposition 4.8 gives a recurrence relation
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between Hilbert zonotopes, and Proposition 4.9 gives a refinement
relation between Hilbert zonotopes.

Example 4.6. For n = 1, Hd
1 is the d−cube [−1, 1]d.

Example 4.7. The vertices of H2
5 are given by

H2
5 = ±

{(−27
23

)
,
(−27

25

)
,
(−25

27

)
,
(−23

27

)
,
(−15

25

)
,
(−9

23

)
,
(−5

21

)
,
( 1
17

)
,

( 9
11

)
,
(11

9

)
,
(17

1

)
,
(21
−5

)
,
(23
−9

)
,
( 25
−15

)}

On the left side of Figure 5 we present H2
5, which is a 28-gon.

Proposition 4.8. The Hilbert zonotope satisfies the following prop-
erty: Hd

n ⊂ Hd
n′ for n < n′.

Proof. For a fixed d, if n < n′ we have that V d
n ⊂ V d

n′ , and thus
sym(V d

n ) ⊂ sym(V d
n′), and Dd

n = prim(sym(V d
n )) ⊂ prim(sym(V d

n′))
= Dd

n′ , that is

Dd
n′ = Dd

n

⋃

(Dd
n′\Dd

n). (7)

Note that Dd
n′\Dd

n is a non-empty set. Now we construct the zono-
tope Hd

n′ by Minkowski-summing over v ∈ Dd
n′ ,

Hd
n′ =

∑

Dd
n

[0, 1] · v +
∑

Dd

n′\D
d
n

[0, 1] · v = Hd
n +

∑

Dd

n′\D
d
n

[0, 1] · v ⊃ Hd
n,

which completes the proof.

Proposition 4.9. The Hilbert zonotope Hd
n′ is a refinement of Hd

n

for n < n′.

Proof. We construct the normal fan of Hd
n′ using Theorem 3.3 and

Equation (7) from Proposition 4.8. The normal fan is then comprised
of two groups of hyperplanes. The first group is those hyperplanes
corresponding to N (Hd

n) (i.e. those hyperplanes orthogonal to v ∈
Dd

n); while the second group comprises the hyperplanes orthogonal
to the vectors v ∈ Dd

n′\Dd
n. As the set Dd

n′\Dd
n is nonempty, the

second group of hyperplanes creates the refinement relation.
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Figure 5: Picture of H2
5 with its normal cones (above), and the

normal fan N (H2
5) (below).
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H2
2

C1

C2

C1

C2
w2

w1

Figure 6: Picture of H2
2 with its normal fan (left). In the right side of

the figure, for every cone Ci we select the ordering vector wi (pointed
in black). We added the vectors that generate Ci.

4.1. The Hilbert zonotope and UGB

In this subsection we illustrate the use of the zonotope to compute
universal Gröbner bases. First we recall the important result about
the universality of the zonotope.

Theorem 4.10. (Babson et al., 2003) The Hilbert zonotope Hd
n is a

refinement of both the basis polytope B(I) and the state polyhedron
S(I) of every member of the Hilbert scheme Hilbd

n.

The previous theorem is used to construct an efficient set of or-
dering vectors, which is next described. For every vertex h of Hd

n we
construct the corresponding normal cone Ch. Now let w(h) ∈ Z

d
6=0

be the vector in the interior of the cone Ch with minimum norm
with respect to the standard Euclidean distance. There is a unique
w(h) for every vertex h. Let W d

n be the set of all vectors w(h), that
is W d

n := {w(h) : h vertex of Hd
n}. We are interested only in those

elements of W d
n which are positive. Let W d

n+ ⊂ W d
n be the subset of

vectors w(h) in the first orthant. This set of positive vectors W d
n+

defines a universal set of term orders for Hilbd
n, which can be com-

puted once and for all, and is independent of the configuration of
D. The set W d

n+ was proposed by Babson et al. as part of their
polynomial time algorithm to compute UGB and the fan of a design.
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Example 4.11. Consider H2
2. Of all the six cones of its normal fan,

we only consider the cones which lie in the positive orthant, which
are labelled C1 and C2 in Figure 6. The cone C1 is generated as the
positive hull of

{(0
1

)
,
(1
1

)}
, while C2 is generated by

{(1
0

)
,
(1
1

)}
. For

C1 we have w(1) =
(
0
1

)
+

(
1
1

)
=

(
1
2

)
and thus W 2

2+ =
{(

1
2

)
,
(
2
1

)}
.

Example 4.12. For the values n = 5, d = 2, we have that W 2
5+ is

{(
1

5

)

,

(
2

7

)

,

(
2

5

)

,

(
3

5

)

,

(
5

7

)

,

(
4

5

)

,

(
5

4

)

,

(
7

5

)

,

(
5

3

)

,

(
5

2

)

,

(
7

2

)

,

(
5

1

)}

.

In the right side of Figure 5 we illustrate the complete normal fan
N (H2

5). We compare the refinement given by the normal fan of H2
5

in Figure 5 (with 12 cones in the first orthant) against the normal
fan of S(I) in Figure 3 (with only two cones in the first orthant).

5. Main theorem

Theorem 5.1 gives a fast method to compute the first orthant of
N (H2

n). The construction of Theorem 5.1 is intuitively more appeal-
ing and easier than the usual construction of N (Hd

n). Unfortunately,
it cannot be extended to d ≥ 3 as we shall see in the next section.

Theorem 5.1. The cones in the first orthant of N (H2
n) are generated

by the set prim
(
[0, n − 1]2\

{(0
0

)})
, where [a, b] = {c ∈ Z, a ≤ c ≤ b}.

Proof. Using Definition 4.3, we have D2
n = prim(±([−n + 1,−1] ×

[1, n− 1]))
⋃

(±prim(V d
n )). We must keep in mind that D2

n is the set
of summands in the definition of H2

n. Next we shall apply Theorem
3.3 to generate all the hyperplanes of the fan. For every vector
(a

b

)
∈ prim(±([−n+1,−1]×[1, n−1])), the corresponding orthogonal

hyperplane will be generated by
(
−b
a

)
∈ prim(±([1, n − 1]2)). This

last vector is orthogonal to
(a

b

)
. We now have that the horizontal

and vertical axes are obtained by ±ei ∈ ±prim(V d
n ). As we are only

concerned with the first orthant, we have that the fan is generated by
prim([1, n − 1]2)

⋃
{ei} = prim

(
[0, n − 1]2\

{(0
0

)})
. The cardinality

of [0, n− 1]2\
{(0

0

)}
complies with the bound O(n2). Now, to obtain

the primitives we just need to screen out the non-primitive elements
and we can achieve all this with O(n2) operations.
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Figure 7: Cones of N (H2
5).

Now we give two examples, the first shows the use of Theorem
5.1 to obtain the ordering vectors, and the second the use of the
vectors to obtain the algebraic fan of an experiment.

Example 5.2. For n = 5, we have that the cones in the first orthant
are generated by the set prim

(
[0, 4]2\

{(0
0

)})
=

{(
0
1

)
,
(
1
4

)
,
(
1
3

)
,
(
1
2

)
,
(
2
3

)
,
(
3
4

)
,
(
1
1

)
,
(
4
3

)
,
(
3
2

)
,
(
2
1

)
,
(
3
1

)
,
(
4
1

)
,
(
1
0

)}
.

We now explain the generation of the set of ordering vectors W 2
5+.

We start with the first cone in clockwise direction. For this cone, the
generating vectors are

(0
1

)
and

(1
4

)
, and the corresponding vector in

the interior of the cone is
(
0
1

)
+

(
1
4

)
=

(
1
5

)
. We proceed similarly with

the rest of the cones and we obtain W 2
5+ as in Example 4.12.

Example 5.3. Consider the experiment D =
{(−1

−1

)
,
(−1

1

)
,
( 1
−1

)
,
(1
1

)
,

(0
0

)}
, which is a factorial design with a central point. We now use the

ordering vectors W 2
5+ to compute UGB and obtain the algebraic fan.

For this case the algebraic fan has the models {1, x1, x2, x1x2, x
2
1}

and {1, x1, x2, x1x2, x
2
2} and coincides with the statistical fan, which

can be proved easily.

In the next proposition we identify commonly used term order-
ings within the structure of N (H2

n). We omit the proof.
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Proposition 5.4. i)For n > 1, the set W 2
n+ includes the vectors

(
1
n

)
,

(n
1

)
,
(n−1

n

)
and

( n
n−1

)
.

ii) If we order the set V 2
n using the vectors defined in i), we have

the following equivalence:
(1
n

)
corresponds to a Lex ordering in which

x1 ≺ x2;
(n
1

)
to Lex x1 ≻ x2;

(n−1
n

)
to DegLex x1 ≺ x2 and

( n
n−1

)
to

DegLex x1 ≻ x2.

6. Discussion

We presented Theorem 5.1, which gives the desired ordering vectors
without having to actually compute the Hilbert zonotope and thus
saving computational effort. The former methodology of Babson et
al. (2003) constructs the vectors in O(n2(d−1)(log n))2(d−1)2) time,
which for the case d = 2 is O(n2(log n)2), while our proposal in
Theorem 5.1 is of order O(n2).

Our result for the bidimensional Hilbert zonotope can be easily
explained in a graphical manner, as follows. The cones of N (H2

n)
are generated by rotating D2

n by 90 degrees. In particular, the first
orthant of N (H2

n) is generated by vectors stemming from the origin
and pointing towards all possible the directions of the square grid
[0, n − 1]2. See next example and Figure 10 in Appendix 7.3 for a
graphical depiction of this idea.

Example 6.1. Consider the values d = 2, n = 5. The set D2
5 is

depicted in Figure 4. We generate the cones in N (H2
n) by rotating

D2
5 , which we illustrate in Figure 7.

However, there is no immediate generalization for higher dimen-
sions, and Theorem 5.1 and the graphical explanation will be valid
only for d = 2.

Example 6.2. Consider the case d = 3, n = 3. A vector that gen-
erates a cone in the first orthant is v = (1, 2, 4)T , but we have that
v /∈ prim([0, 2]3\{(0, 0, 0)T }).

6.1. Future work

Our problem is one of representation change for polytopes. Polytopes
have two representations: first as a set of vertices and secondly as
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sets of inequalities. Being a zonotope, Hd
n has a third representa-

tion: as a Minkowski sum. While computing the normal fan of Hd
n,

we are changing from the third representation to the second. We
are interested in the normal fan of Hd

n, and more precisely, in the
generating vectors for its normal cones. These generating vectors
are precisely the orthogonal vectors to the hyperplanes of the second
representation. A difficulty is the complexity of the computation, as
the next example shows.

Example 6.3. Consider D3
3 = ±{(0, 0, 1)T , (0, 1, 0)T , (1, 0, 0)T , (0, 1,

−1)T , (1, 0,−1)T , (1,−1, 0)T , (0, 1,−2)T , (1, 0,−2)T , (1,−2, 0)T , (0,
2,−1)T , (2, 0,−1)T , (2,−1, 0)T }. Now, to compute the generating
vectors of the fan, a rough approach is as follows: i) call the desired
set of generators F and initialize it to the empty set, ii) take a
set of 3 linearly independent vectors of D3

3 and construct a 3 × 3
matrix, iii) by gaussian elimination, we find the set of orthogonal
integer vectors which belong to the set of generators of the normal
fan of H3

3, call this set V , iv) update F = F
⋃

V and repeat from
i) until all possible linearly independent sets of three vectors have
been processed. For the present example, steps i) to iii) would be
iterated using all

(24
3

)
= 2024 sets of three vectors to construct the

final set F of 50 generating vectors for N (H3
3). This proposal is of

order O(d2 ·
(#Dd

n

d

)
), with the cardinality of Dd

n having the bound

O(#Dd
n) = O(n2(log n)2(d−1)) (Babson et al., 2003).

7. Appendix

7.1. Cardinality of the set of staircases

The formulas for the cardinality of the set of staircases have a long
story, stemming from Euler’s work in integer partitions, see Hardy
and Wright (1975). The formulas are called after MacMahon, who
studied them in early 20th century. MacMahon’s formulas are

∞∑

n=0

#

(
N

2

n

)

stair

·zn =

∞∏

k=1

1

1 − zk
= 1+z+2z2 +3z3 +5z4 +7z5 + . . .

(8)
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∞∑

n=0

#

(
N

3

n

)

stair

· zn =

∞∏

k=1

1

(1 − zk)k
= 1 + z + 3z2 + 6z3 + 13z4 + . . .

(9)

Next we show an example using MacMahon’s formulas. The number
of staircases with four elements (n = 4) in two dimensions (d = 2) is
5, which is the coefficient of z4 in Equation 8. Finally, we see that
we can express the number 4 as the following five integer partitions:
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

7.2. Complexity of the Hilbert zonotope

Table 1 lists the number of vertices, number of facets and number
of positive ordering vectors1 for various values of d and n. The
asymptotic order for the first two is discussed in Babson et al. (2003).
The cardinality of W 2

n+ is listed on the sequence A049696 (Sloane,
2004); and the following orders of magnitude are reported

#W 2
n+ = 6n2/π2 + O(n log n),

and the refinement

#W 2
n+ = 6n2/π2 + O(n(log n)2/3(log log n)4/3)

(Sloane, 2004).

n 1 2 3 4 5 6 7 8 9 10 11 12
# of facets 4 6 10 20 28 48 56 84 100 128 144 192

#W
2
n+ 1 2 4 8 12 20 24 36 44 56 64 84

Table 1. Values for H
2
n
.

n 1 2 3 4 5 6
# of facets 6 14 50 458 1022 4970

# of vertices 8 24 84 720 1500 7320
#W 2

n+ 1 6 24 192 456 1974

Table 1 (cont.). Values for H3
n.

1See Appendix 7.4 for examples of W d
n+. We have computed tables with the

vectors up to the following values (d, n): (2, 57), (3, 6), (4, 2), available from the
author by request.
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n 1 2
# of facets 8 30

# of vertices 16 120
#W 2

n+ 1 24

Table 1 (cont.). Values for H4
n.

7.3. Pictures of zonotopes

We show several zonotopes in Figures 8 and 9. We give the generat-
ing vectors for the cones of N (H2

n) in Figure 10.

Figure 8: Bidimensional Hilbert zonotopes for n = 1, . . . , 6 (starting
from the centre).

7.4. Ordering vectors

We list some examples of ordering vectors. For other values d, n, see
Note 1.
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Figure 9: Tridimensional Hilbert zonotope for n = 1, . . . , 5 (starting
from top left).
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Figure 10: Generating vectors for the cones of N (H2
n) for n =

1, . . . , 10.
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7.4.1. Bidimensional case

W 2
1+ =

{(1
1

)}

; W 2
2+ =

{(2
1

)
,
(1
2

)}

; W 2
3+ =

{(3
1

)
,
(3
2

)
,
(2
3

)
,
(1
3

)}

;

W 2
4+ =

{(1
4

)
,
(2
5

)
,
(3
5

)
,
(3
4

)
,
(4
3

)
,
(5
3

)
,
(5
2

)
,
(4
1

)}

;

W 2
5+ =

{(1
5

)
,
(2
7

)
,
(2
5

)
,
(3
5

)
,
(5
7

)
,
(4
5

)
,
(5
4

)
,
(7
5

)
,
(5
3

)
,
(5
2

)
,
(7
2

)
,
(5
1

)}

;

W 2
6+ =

{(1
6

)
,
(2
9

)
,
(2
7

)
,
(3
8

)
,
(3
7

)
,
(4
7

)
,
(5
8

)
,
(5
7

)
,
(7
9

)
,
(5
6

)
,
(6
5

)
,
(9
7

)
,
(7
5

)
,
(8
5

)
,

(7
4

)
,
(7
3

)
,
(8
3

)
,
(7
2

)
,
(9
2

)
,
(6
1

)}

;

W 2
7+ =

{(1
7

)
,
( 2
11

)
,
(2
9

)
,
(2
7

)
,
(3
8

)
,
(3
7

)
,
(4
7

)
,
(5
8

)
,
(5
7

)
,
(7
9

)
,
( 9
11

)
,
(6
7

)
,
(7
6

)
,

(11
9

)
,
(9
7

)
,
(7
5

)
,
(8
5

)
,
(7
4

)
,
(7
3

)
,
(8
3

)
,
(7
2

)
,
(9
2

)
,
(11

2

)
,
(7
1

)}

.

7.5. Three dimensional case

W 3
1+ = {(1, 1, 1)T };

W 3
2+ = {(1, 2, 3)T , (1, 3, 2)T , (2, 3, 1)T , (3, 2, 1)T , (3, 1, 2)T , (2, 1, 3)T }.
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