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A Remark on Long Range Effect for a
System of Semilinear Wave Equations

HibEo KUBO AND MOTOHARU TAKAKI

ABSTRACT. In this paper we consider the Cauchy problem for a sys-
tem of semilinear wave equations whose nonlinearity has long range
effect on the solution. Such a result was obtained by Kubo, Kubota,
and Sunagawa (Math. Ann. 335 (2006)) under the assumption that
the initial data are radially symmetric. The aim of this paper is to re-
move the radial symmetricity of the initial data for typical cases of the
nonlinearities.
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1. Introduction

This paper is concerned with the global behavior of solutions to the Cauchy
problem for a system of semilinear wave equations :

{(ag — A)u=|9v)* in [0,00) x R3, "

(02 — A)v = |0pulP in [0,00) x R3,

where p > 2, A = 2321 92, 9 = 8/9x;, and 9; = 0/0t. The initial condition
is posed by
u(0) = f1, Oru(0) = g1, @)
,U(O) = f?v at’l)(o) = 92,
where f;,g; (i = 1,2) are functions in some weighted Sobolev spaces whose
norms are supposed to be small enough. In [4] the Cauchy problem for (1)
with a wider range of exponents of the nonlinearity was handled. Namely, the
global behavior of solutions to

(02 — A)u = |gv[P*  in [0,00) x R3,
(02 — A)v = |dulP? in [0,00) x R?

was studied, by assuming that the initial data is radially symmetric and the
exponents py, pa satisfy 1 < p; < po, pa(p1 — 1) > 2.
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The aim of this paper is to remove the assumption that the initial data is
radially symmetric for the case where p; = 2, po > 2. We recall that in the
case of the single wave equation

(02 — A)u = [QsulP in [0,00) x R?, (3)

the critical exponent is p = 2 (see [6], [2]). We underline the following significant
difference between the problems for the single wave equation and for a system
of semilinear wave equations: The global solution of the single wave equation
is asymptotically free for p > 2, i.e., there exists a solution of (0? — A)u, =0
in [0, 00) x R? such that

1w = us)(®)]lp < CP(1+1)~ P2,

for t > 0, where ||u(t)||g stands for the energy, namely,

1/2
u(t) 1 = ( | oty + Vu<t,x>|2>dx)

3
(see [2]). On the other hand, it was shown in [4] that the global solution (u,v)
of (1)-(2) cannot be asymptotically free in general and tends to the solution
(ug,v4) of

(4)

(8752 — A)U+ = |8{U+|2 in [0700) X R3,
(02 — Aoy =0 in [0,00) x R3

in the sense of the energy, provided the solution (u,v) is radially symmetric.
The presence of the right-hand side on the first equation of (4) shows the long
range effect of the nonlinearity. Therefore, it is a natural question if the same
is true without assuming the radial symmetricity or not.

In order to state our result, we introduce notation. We set

80 = at, 0= (6,5,V)7 V= (81,82,83), S = t@t +x- V,
on = t8j +.Tj6t (] = 1,2,3)7 Qij = Ijai — xi[)j (1 S ’L <] S 3)
We denote I' = (I'y,...,I'11) and T = I'{* ... 7}, where I'; is one of 9,

(0<pu<3),Q, (0<p<v<3),and S, while a = (a,...,a11) is a
multi-index. For s =0,1,2,... and 1 < ¢ < oo, we set

la(lls.q = D IT*ult)l|zors)-

loo<s

Let H® be the completion of C§° (R?) x C5°(R?) with respect to ||V f|| gr=+|g|| mr-,
where (f,g) € C°(R3) x C§°(R3) and s =0,1,2,...
We now define

Y5 = {(u(t), 0pu(t)), (v(t), 0rv(t)) € C([0,00); H?) s [I(u, v) | x= < 6},
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where we put

ou(t)||s.
Il (w, v)ll x> = sup ALV sup [0v(t)[s,2-

t>0 10g(2 + t) t>

We look for a solution to the following integral equation in Ys:

(ut), Bpu(t)) = U(H)(fr, 1) + / Ut — 5)(0, [Byu(s)[2)ds,

t (5)
(0(t), Byo(t) = U(t) (2, g2) + / Ut — 5)(0, |dyu(s)|")ds

for t € [0,00). Here U(t) is the propagator associated with the wave operator

02 — A. In addition, we put (z) = /1 + |z|2 for z € R®. Throughout this

paper, we denote by C' a positive constant which may change from line by line.
Our result in this paper is the following.

THEOREM 1.1. Assume that (f1,91), (f2,92) € H? satisfy

YUV fillaz + 1) gl =) < e (6)

i=1,2

If p > 2, then there exist positive numbers €9 and Cy such that for any € €
(0,e0], the problem (5) has a solution (u,v) € Yac,e. Moreover, there exists a
solution (uy,vy) to (4) satisfying

[(u—uy)(t)| s < CePTH(L41)~ P2 (7)
[(v —v4)(t)|| e < CP(1+ )~ P2 8)

fort > 0, where p is an arbitrary number such that 2 < p < p.
If we assume, in addition to (6), that (f;,g:) € C*(R3) x C(R?) satisfy

sup [(@)" 7| fi(@)] + (@)"{lgi(2)| + |V fi(2)[}] < A (9)

zER3

for some A and i = 1,2, then we have

C(A+ 2(log(1+t+ |x]))?)
futt, o)l < L+t [2)
C(A+eP)

(T+t+ [z + |t — |z][)P~2

; (10)

v(t, )| <

for (t,x) € [0,00) x R3.
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2. Preliminaries

In this section we prepare several lemmas.

LEMMA 2.1 ([3]). For u € C§°([0,00) x R™) we have

[ult,@)] < O+ ¢+ [a) =P+ [t — el )77 fu(t)

$,Po

provided s > n/p, s=1,2,..., and 1 < p < 0.
While, for u € C§°(]0,00) x R™) we have

[u(®)|[ze < C(1+ )~ DEPVD| |y (1)),
provided 1 <p < q<oo,s >n(l/p—1/q), and s =1,2,....
LEMMA 2.2. Let F(t) € C([0,00); H™(R?)). If u solves (0} — A)u = F, then

we have for any m > 0

t
10u(t) |2 < [[0U(0) 2 + C / 1 (5) . 2ds.

For g € C(R?) we define its spherical mean by

Mig(r) = - /S gl + w)ds, (12)

for t > 0 and = € R3. Then we have the following.
LEMMA 2.3 ([1]). Assume that f € CY(R3), g € C(R?) satisfy
(L + )" @)+ @+ [2){lg(@)] + [V f(2)]} < A (13)
for any x € R, where A > 0,k > 2. If we set
u(t,z) = tMeg(x) + O (t My f (),
then we have for any (t,x) € [0,00) x R?

CA
At + ]z + [t = fal)=—2

u(t, z)| <

LEMMA 2.4 ([5]). If f € C(R?), then we have

ot [T

[ s, AFOVA
ly—=|=t r |r—t|

fort >0 and z € R? with r = |z|.



LONG RANGE EFFECT FOR THE WAVE EQUATION 115

3. Linearized Problem

For 0 < 6 < 1, we wish to define a map L: Y5 — Y; by L(w, z) = (u,v), where
(u,v) is the solution of

(u(t), Qu(t)) = U(t)(f1,91) +/0 U(t = 5)(0,|0:2(s)|*)ds,

: (14)
(v(t), Orv(t)) = U(t)(f2, 92) +/0 U(t = 5)(0, |0rw(s)[")ds

for t € [0,00). Note that if (f1,01), (f2,92) € H? satisfy (6), then we see that
[0u(0)]|2,2 + [|0v(0)]|2,2 < Coe (15)

with a numerical constant Cj.
In the following proposition we prove a basic property of the map L.

PROPOSITION 3.1. Let p > 2 and (6) be fulfilled. Then there exists a positive
number €9 such that L maps Yac,e into itself for e € (0,eq]. Moreover, for any
(w,z), (W, 2) € Ys with 0 < § <1 we have

IL(w, 2) — L(w, 2) | x1 < Coll(w, 2) — (@, 2)[| x2 (16)
and

IL(w,z) = L(w, 2) || x> < Co(|[(w, 2) — (w0, )] x> (17)
+ll(w, 2) — (@, 2)[5).
Proof. We begin with proving that if (w,z) € Ya¢,e, then we have (u,v) =

L(w, z) € Yac,e, provided ¢ is sufficiently small.
First we show that for any (w, z) € Ys we have

[0u(®) 2,2

< ||6u(0 C62. 18
éﬁ log(2 + ) = [0u(0)]]2,2 + (18)

By using Lemma 2.1 we get

110:2(5) 12|22 < 10ez(5) [l Lo< 106z (5) |2 < C(1+ )7 H|Br2(s) |3
<08 (1+s)71,
IT(102(5)*) |22 < Clle2(5) || o< [T 2(s) || 2
< C(1+5)"0:2(5)3 2
<O (1+s)71,
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and

IT2(10e2(3) ")l 22 < C|02(8) || = IT2p2(s)l| 2 + ITDe2(5)[|74)
<O +5)7H8e2(3)]13 2
<C&*(1+s)

Therefore it follows from Lemma 2.2 that
t
Jou(t)z2 < [0u(O)]l22 + €5 [ (1+ ) ds, (19
0

which implies (18).
Next we show that for any (w, z) € Y5 with 0 < § < 1, we have

sup 10v(t)]l2,2 < 00(0)]|2,2 + C82. (20)
>

By Lemma 2.1 we get
10rw ()7 |2 < 0w ()5 = [Drw(s)]| L2
<C(1+5)" "V ow(s)b
< CoP(1 4 s)~ P Y(log(2 + 5))P,
T (10w ()P 22 < CllDsw(s) | [ITOw(s)] L2
<C(1+5)" "D dw(s)|b
< O8P(1+ s)"® D (log(2 + 5))?,

and

7% (10sw()[P)l| 2 < C(l|0w(s) = [T20sw(s)]| 2
+[|10cw () 177 |TOez(s)]174)
< C8P(1+4 5)~ PV (log(2 + 5))P.

Since p > 2 and 0 < § < 1 we have

¢
10v(t)]|2,2 < [|Ov(0)]2,2 + 05”/ (14 5)~ P Y(log(2 + 5))Pds
0
< [|0v(0)]|2,2 + C5°.
Thus we obtain (20), and hence

I, v)llx= < Coe + C62,
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by (15). If we choose 6 = 2Cpe and taking € so small that 4CChep < 1 and
2Cheg < 1, we find the desired conclusion.

Next we prove (16) and (17). In the following, we denote by (@, ) = L(w, 2).
Analogously to (18), we can prove

|06 = @)D .
up oy < OOlw.2) - (@ Dl (21)

for s = 1,2. Therefore it suffices to show

sup [0(v = 0)(®)[[1,2 < COll(w, 2) — (W, 2) || x» (22)

and
sup [0(v =) (#)]l2,2 < Co([[(w, 2) — (@, 2) || x= (23)

+(w, 2) = (@, 2)[5%).-
For this, we need to evaluate |||Ow(s)|? — |0W(s)[P]ls,2 (s =0,1,2).
Since p > 1, we have from Lemma 2.1
[10cw(s)[” — |Or(s) ||| 2
< p(ll0cw(s)l|z + 10¢w(s) ]| L= )P~ |0 (w — @)(s)]| 2
< O +5)" P V(|0w(s) 2.2 + 10t (s)l|2.2)" 10 (w — @)(5) 1.2
< O (w, 2) = (@, 2)x1 (1 + )P (log(2 + 9))".
Similarly we get
IT(180sw ()" — |0y (s)[7)| L2
< CO"M(w, 2) = (@, 2)l|x: (1 + 5) P (log(2 + 9))".

Thus we get (22), since 0 < § < 1 and p > 2.
When p > 3, we have

IT2(10pw(s)[? — 8y (s)[P)] L2
< O M (w, 2) = (@, 2| x2 (1 4 5)~ P~ (log(2 + )7
While, when 2 < p < 3, observing that
1(18sw(s)[P~2 — [0y (s)[P~2) (L (s))? || 2
< [[0e(w — @)(8) [P~ (L0 (s))? | 2
< [0u(w — @)(s) |76 1T O () 1 7.
< C8%||(w, 2) — (@, 2) [ (1 + 5)~ P2/~ (@HD (1og(2 4 5))P
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with ¢ =12/(5 — p), we find
T2 (|00w(s)” — [0p(s)[”) ] 2
< C(°(w, 2) = (@, 25" + 6" M (w, 2) — (@, 2) ]| x2)
x (14 5)~®Y(log(2 + 5))P.

Since 0 < 6 < 1 and p > 2, we obtain (23), and hence (16) and (17) follow.
This completes the proof. O

4. Proof of Theorem 1.1

Let Cy and g¢ be the numbers from (15) and Proposition 3.1. In the following
we always assume ¢ € (0,¢&¢].
First of all, we define a sequence {(uyn,v,)}52 s C Yacye by

{(un+1,vn+1) = L(un,vy) forn=0,1,2...,
(uo(t), Opuo(t)) = U(t)(f1,91), (vo(t), vo(t)) = U(t)(f2,g2).

From (15) we have (ug,vo) € Yac,e, s0 that {(un,v,)}52y C Yac,e for all n. It
follows from (16) and (17) with (w, 2) = (un,vp), (@, 2) = (un—1,vp—1) that

It 1s 0nt1) = (s vn) llx2 + (g1, 0ng1) = (n, 00) 557
< 20005(”|(unavn) - (un—lavn—l)m)(2 + H|(u7la Un) - (un—la Un—l)‘”?(_lz)-
We may assume 2C'Cpe < 1/2, by taking €¢ to be smaller if necessary. Thus
we get
It 1, 0nt1) = (s o) llx2 + (g1, 0ng1) = (n, v0) 557
< 27" ([l (1, 1) = (w0, vo)llx= + Nl (ur, v1) — (w0, v0) I3%),
which implies that {(u,,v,)}52, is a Cauchy sequence in Ya¢,.. Hence there
exists (u,v) € Yacye such that {(un,v,)}22, converges to it in Ya¢,., so that
it is the solution of (5).
Next we deduce the asymptotic behavior of the solution (u,v) to (1)-(2)
obtained in the above. Let § = 2Cye in the following.

Notice that |9;u(t)[? € L*([0,00); L2(R?)), since we have |||0;u(t)[P||L: <
C6P(1 + 5)~ =V (log(2 + 5))P. Therefore, we can define

.y T e (S S)IEl 2o P ds
vsl) =0+ [ F (SRl ), (24)

and we see that v — v solves

(0F = D) (v = vy) = |Opul”
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in the sense of distribution. Hence v, satisfies (07 — A)vy = 0. Moreover, we
have

oo
= v0le < [ Nows)zads
< cap/ (14 5)~®Y(log(2 + 5))Pds,
t
which leads to (8).
In order to proceed further we need the following lemma.

LEMMA 4.1. Let vy be the function defined by (24). Then we have

[0ev4-(t) |12 < €9, (25)

10:(v — v ) (#) 1.2 < COP(1+ 1)~ P2 (26)

fort>0.

Once we find the above lemma, we can deduce (7). In fact, (25) and (26)
together with Lemma 2.1 yield
1060 (£)[* — 004 (1) 2
< (10w@)|zs + 10ev4 () L) |10 (v — v ) (#) ]| s
< C+8)7 (10w 1.2 + 10e04 ()12 10 (v = v1) (B |12
< O+ 5)~ D), (27)

This estimate allows us to define

we (t) = u(t) + /too f*(M

2 V(S 2 S.
o FUaws)? ~ s (5))d

Then we see that u — u4 solves
(07 = A)(u = uy) = |00]* = 904
in the sense of distribution, and hence u satisfies
(07 = A)uy = ||,
Moreover, by (27) we have
l(u —uy) (@) < C/t [10e0(s)]* = |0¢v+(5) ||| 2ds

< 05P+1/ (14 )~ P s,
t
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which leads to (7).
Proof of Lemma 4.1. Notice that (26) yields
1004 ()12 < [10c0@)]l12 + 10 (vy —0)(#)]l12 < C9,

since 0 < § < 1 and p > 2. Therefore, it is enough to show (26). In view of
(8), we see that (26) follows from

108, (w = vy ) ()12 < CO7(1 4+ £)~F=2), (28)

We are going to show (28). For simplicity, we put o = v — vy and F(¢,z) =
|Opu(t, z)|P. Tt follows from (24) that

ottt = | " F(Jel(sint — $)|E)F(F(s)))ds + F(t, ),

0,00(0) = [ F* ((costt ~ NDFOF(N)ds (G =1.2.3)
©0io(0) =~ [ F (feostt ~ D FQuF())ds (1 <13)
Q0,01 (1) /Oo]-"* ((cos(t — s)[€)F(QuyF(s)))ds

+i toof*(<sm<t—s)lfnIg FR@)ds (=1,23),
soi(t) = - [ " P ((cos(t — )[€)) F(SF(s)))ds

]—'* cost—s)|§\) (F (s)))ds

t

Thus we get
IT00(t)]| 2 </ > ITF(s)]|L2 ds + || F(1)]| 2,
t la|<1
which implies (28). This completes the proof of Lemma 4.1. O

We turn back to the proof of Theorem 1.1. It remains to prove (10) and
(11) under the assumption (9). Since (f;,9;) € C1(R3) x C(R3) (i = 1,2), we
see that

u(t,z) = up(t, z) +—/ / |0wv(s,y)|?dS,ds,
ly—z|=t—s

t—s

v(t, z) = vo(t, x) _~_7/

t—s

/ |0vu(s,y)|PdS,ds
ly—z|=t—s
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with
uo(t, x) = tMig1(x) + Oy (tMy f1 (),
vo(t,x) = tMiga(x) + O (t My f2(w)).
By (9) and Lemma 2.3 we get

CA
(I+t+7r)(1+ [t —r))p2’

|UO(t7$)| + |’U0(tvm)| <

where we have set r = |z|. While, observing that Lemma 2.1 leads to

10rv(s)]13 5
(T4 s+ DA +ls = lyl)’

D (s, y)I* <

we have from Lemma 2.4

1/t ! / |0wv(s,y)|?dS,ds
A Jo t =5 Jiy—aj=t—s 8% Y Y

r+t—s 2
<[ Mow(s)B
|

rtrs] (18 +X)2(1+[s = Al)

2 r+t—s
06 // ! dMds.
|r— t+s| +S+)\)(1+|8—)\|)

Changing the variables by a = s + A\, 8 = s — A, the last quantity is bounded

by
C6? /’“ / dBda 052 ™t da
—log(2+t+r / .
r—t| 1+ a) 1+|ﬂ|) ( ) =t (1+a)

When ¢t < 2r and r > 1, we have r > C(1 4+ r 4+ t), so that

1 /T+t 1 Clog(2+71+1t)
- a <
‘T7t|1+05 1+t+’l"

Therefore we get

1 /1
— (s, y)|?dS,ds| <
= / — /||— vo(s, ) 2dSyds| <

While, when ¢t > 2r or 0 < r < 1, we have

C5?(log(2 41 +1))?
I1+t+r

1/'“” 1 4t —|r—t 1
- a < < .
iy 1+ r(1+|r—t|) 1+ |r—t
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Since 1 +r 4+t < C(1+ |r —t|), we find (10).

Similarly, we get

10ru(s)]3,5(log (2 + 5))”

dyu(s,y)| < ’
Ol I < G TP+ 15 = WP

so that

1 [t 1
A P
o ey e

t p
<o [ = —
t=58 Jly—aj=t—s L+ s+ y)PA +|s — [y[])?

D r+t—s
<9 // A d\ds,
r—tts] (148 +A)P(1+]s — A/

where p is an arbitrary number such that 2 < p < p. Changing the variables
as before, we obtain (11) in a similar fashion. This completes the proof of
Theorem 1.1. 0
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