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A Remark on Long Range Effect for a
System of Semilinear Wave Equations
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Abstract. In this paper we consider the Cauchy problem for a sys-
tem of semilinear wave equations whose nonlinearity has long range
effect on the solution. Such a result was obtained by Kubo, Kubota,
and Sunagawa (Math. Ann. 335 (2006)) under the assumption that
the initial data are radially symmetric. The aim of this paper is to re-
move the radial symmetricity of the initial data for typical cases of the
nonlinearities.
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1. Introduction

This paper is concerned with the global behavior of solutions to the Cauchy
problem for a system of semilinear wave equations :{

(∂2
t −∆)u = |∂tv|2 in [0,∞)× R3,

(∂2
t −∆)v = |∂tu|p in [0,∞)× R3,

(1)

where p > 2, ∆ =
∑3
j=1 ∂

2
j , ∂j = ∂/∂xj , and ∂t = ∂/∂t. The initial condition

is posed by {
u(0) = f1, ∂tu(0) = g1,

v(0) = f2, ∂tv(0) = g2,
(2)

where fi, gi (i = 1, 2) are functions in some weighted Sobolev spaces whose
norms are supposed to be small enough. In [4] the Cauchy problem for (1)
with a wider range of exponents of the nonlinearity was handled. Namely, the
global behavior of solutions to{

(∂2
t −∆)u = |∂tv|p1 in [0,∞)× R3,

(∂2
t −∆)v = |∂tu|p2 in [0,∞)× R3

was studied, by assuming that the initial data is radially symmetric and the
exponents p1, p2 satisfy 1 < p1 ≤ p2, p2(p1 − 1) > 2.
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The aim of this paper is to remove the assumption that the initial data is
radially symmetric for the case where p1 = 2, p2 > 2. We recall that in the
case of the single wave equation

(∂2
t −∆)u = |∂tu|p in [0,∞)× R3, (3)

the critical exponent is p = 2 (see [6], [2]). We underline the following significant
difference between the problems for the single wave equation and for a system
of semilinear wave equations : The global solution of the single wave equation
is asymptotically free for p > 2, i.e., there exists a solution of (∂2

t −∆)u+ = 0
in [0,∞)× R3 such that

‖(u− u+)(t)‖E ≤ Cεp(1 + t)−(p−2),

for t ≥ 0, where ‖u(t)‖E stands for the energy, namely,

‖u(t)‖E =
(∫

R3
(|∂tu(t, x)|2 + |∇u(t, x)|2)dx

)1/2

(see [2]). On the other hand, it was shown in [4] that the global solution (u, v)
of (1)-(2) cannot be asymptotically free in general and tends to the solution
(u+, v+) of {

(∂2
t −∆)u+ = |∂tv+|2 in [0,∞)× R3,

(∂2
t −∆)v+ = 0 in [0,∞)× R3

(4)

in the sense of the energy, provided the solution (u, v) is radially symmetric.
The presence of the right-hand side on the first equation of (4) shows the long
range effect of the nonlinearity. Therefore, it is a natural question if the same
is true without assuming the radial symmetricity or not.

In order to state our result, we introduce notation. We set

∂0 = ∂t, ∂ = (∂t,∇), ∇ = (∂1, ∂2, ∂3), S = t∂t + x · ∇,
Ω0j = t∂j + xj∂t (j = 1, 2, 3), Ωij = xj∂i − xi∂j (1 ≤ i < j ≤ 3).

We denote Γ = (Γ1, . . . ,Γ11) and Γα = Γα1
1 . . .Γα11

11 , where Γi is one of ∂µ
(0 ≤ µ ≤ 3), Ωµν (0 ≤ µ < ν ≤ 3), and S, while α = (α1, . . . , α11) is a
multi-index. For s = 0, 1, 2, . . . and 1 ≤ q ≤ ∞, we set

‖u(t)‖s,q =
∑
|α|≤s

‖Γαu(t)‖Lq(R3).

LetHs be the completion of C∞0 (R3)×C∞0 (R3) with respect to ‖∇f‖Hs+‖g‖Hs ,
where (f, g) ∈ C∞0 (R3)× C∞0 (R3) and s = 0, 1, 2, . . .

We now define

Yδ = {(u(t), ∂tu(t)), (v(t), ∂tv(t)) ∈ C([0,∞);H2) ; |||(u, v)|||X2 ≤ δ},
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where we put

|||(u, v)|||Xs = sup
t≥0

‖∂u(t)‖s,2
log(2 + t)

+ sup
t≥0
‖∂v(t)‖s,2.

We look for a solution to the following integral equation in Yδ:
(u(t), ∂tu(t)) = U(t)(f1, g1) +

∫ t

0

U(t− s)(0, |∂tv(s)|2)ds,

(v(t), ∂tv(t)) = U(t)(f2, g2) +
∫ t

0

U(t− s)(0, |∂tu(s)|p)ds
(5)

for t ∈ [0,∞). Here U(t) is the propagator associated with the wave operator
∂2
t − ∆. In addition, we put 〈x〉 =

√
1 + |x|2 for x ∈ R3. Throughout this

paper, we denote by C a positive constant which may change from line by line.
Our result in this paper is the following.

Theorem 1.1. Assume that (f1, g1), (f2, g2) ∈ H2 satisfy∑
i=1,2

(‖〈·〉2∇fi‖H2 + ‖〈·〉2gi‖H2) ≤ ε. (6)

If p > 2, then there exist positive numbers ε0 and C0 such that for any ε ∈
(0, ε0], the problem (5) has a solution (u, v) ∈ Y2C0ε. Moreover, there exists a
solution (u+, v+) to (4) satisfying

‖(u− u+)(t)‖E ≤ Cεp+1(1 + t)−(p̃−2), (7)

‖(v − v+)(t)‖E ≤ Cεp(1 + t)−(p̃−2) (8)

for t ≥ 0, where p̃ is an arbitrary number such that 2 < p̃ < p.
If we assume, in addition to (6), that (fi, gi) ∈ C1(R3)× C(R3) satisfy

sup
x∈R3

[〈x〉p−1|fi(x)|+ 〈x〉p{|gi(x)|+ |∇fi(x)|}] ≤ A (9)

for some A and i = 1, 2, then we have

|u(t, x)| ≤ C(A+ ε2(log(1 + t+ |x|))2)
(1 + t+ |x|)

, (10)

|v(t, x)| ≤ C(A+ εp)
(1 + t+ |x|)(1 + |t− |x||)p̃−2

(11)

for (t, x) ∈ [0,∞)× R3.
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2. Preliminaries

In this section we prepare several lemmas.

Lemma 2.1 ([3]). For u ∈ C∞0 ([0,∞)× Rn) we have

|u(t, x)| ≤ C(1 + t+ |x|)−(n−1)/p(1 + |t− |x||)−1/p‖u(t)‖s,p,

provided s > n/p, s = 1, 2, . . . , and 1 ≤ p <∞.
While, for u ∈ C∞0 ([0,∞)× Rn) we have

‖u(t)‖Lq ≤ C(1 + t)−(n−1)(1/p−1/q)‖u(t)‖s,p,

provided 1 ≤ p ≤ q <∞, s ≥ n(1/p− 1/q), and s = 1, 2, . . . .

Lemma 2.2. Let F (t) ∈ C([0,∞);Hm(R3)). If u solves (∂2
t −∆)u = F , then

we have for any m ≥ 0

‖∂u(t)‖m,2 ≤ ‖∂u(0)‖m,2 + C

∫ t

0

‖F (s)‖m,2ds.

For g ∈ C(R3) we define its spherical mean by

Mtg(x) =
1

4π

∫
S2
g(x+ tω)dSω (12)

for t ≥ 0 and x ∈ R3. Then we have the following.

Lemma 2.3 ([1]). Assume that f ∈ C1(R3), g ∈ C(R3) satisfy

(1 + |x|)κ−1|f(x)|+ (1 + |x|)κ{|g(x)|+ |∇f(x)|} ≤ A (13)

for any x ∈ R3, where A > 0, κ > 2. If we set

u(t, x) = tMtg(x) + ∂t(tMtf(x)),

then we have for any (t, x) ∈ [0,∞)× R3

|u(t, x)| ≤ CA

(1 + t+ |x|)(1 + |t− |x||)κ−2
.

Lemma 2.4 ([5]). If f ∈ C(R3), then we have∫
|y−x|=t

f(|y|)dSy =
2πt
r

∫ r+t

|r−t|
λf(λ)dλ

for t ≥ 0 and x ∈ R3 with r = |x|.
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3. Linearized Problem

For 0 < δ < 1, we wish to define a map L : Yδ → Yδ by L(w, z) = (u, v), where
(u, v) is the solution of

(u(t), ∂tu(t)) = U(t)(f1, g1) +
∫ t

0

U(t− s)(0, |∂tz(s)|2)ds,

(v(t), ∂tv(t)) = U(t)(f2, g2) +
∫ t

0

U(t− s)(0, |∂tw(s)|p)ds
(14)

for t ∈ [0,∞). Note that if (f1, g1), (f2, g2) ∈ H2 satisfy (6), then we see that

‖∂u(0)‖2,2 + ‖∂v(0)‖2,2 ≤ C0ε (15)

with a numerical constant C0.
In the following proposition we prove a basic property of the map L.

Proposition 3.1. Let p > 2 and (6) be fulfilled. Then there exists a positive
number ε0 such that L maps Y2C0ε into itself for ε ∈ (0, ε0]. Moreover, for any
(w, z), (w̃, z̃) ∈ Yδ with 0 < δ < 1 we have

|||L(w, z)− L(w̃, z̃)|||X1 ≤ Cδ|||(w, z)− (w̃, z̃)|||X1 (16)

and

|||L(w, z)− L(w̃, z̃)|||X2 ≤ Cδ(|||(w, z)− (w̃, z̃)|||X2 (17)

+ |||(w, z)− (w̃, z̃)|||p−2
X1 ).

Proof. We begin with proving that if (w, z) ∈ Y2C0ε, then we have (u, v) =
L(w, z) ∈ Y2C0ε, provided ε is sufficiently small.

First we show that for any (w, z) ∈ Yδ we have

sup
t≥0

‖∂u(t)‖2,2
log(2 + t)

≤ ‖∂u(0)‖2,2 + Cδ2. (18)

By using Lemma 2.1 we get

‖|∂tz(s)|2‖L2 ≤ ‖∂tz(s)‖L∞‖∂tz(s)‖L2 ≤ C(1 + s)−1‖∂tz(s)‖22,2
≤ Cδ2(1 + s)−1,

‖Γ(|∂tz(s)|2)‖L2 ≤ C‖∂tz(s)‖L∞‖Γ∂tz(s)‖L2

≤ C(1 + s)−1‖∂tz(s)‖22,2
≤ Cδ2(1 + s)−1,
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and

‖Γ2(|∂tz(s)|2)‖L2 ≤ C(‖∂tz(s)‖L∞‖Γ2∂tz(s)‖L2 + ‖Γ∂tz(s)‖2L4)

≤ C(1 + s)−1‖∂tz(s)‖22,2
≤ Cδ2(1 + s)−1.

Therefore it follows from Lemma 2.2 that

‖∂u(t)‖2,2 ≤ ‖∂u(0)‖2,2 + Cδ2
∫ t

0

(1 + s)−1ds, (19)

which implies (18).
Next we show that for any (w, z) ∈ Yδ with 0 < δ < 1, we have

sup
t≥0
‖∂v(t)‖2,2 ≤ ‖∂v(0)‖2,2 + Cδ2. (20)

By Lemma 2.1 we get

‖|∂tw(s)|p‖L2 ≤ ‖∂tw(s)‖p−1
L∞ ‖∂tw(s)‖L2

≤ C(1 + s)−(p−1)‖∂tw(s)‖p2,2
≤ Cδp(1 + s)−(p−1)(log(2 + s))p,

‖Γ(|∂tw(s)|p)‖L2 ≤ C‖∂tw(s)‖p−1
L∞ ‖Γ∂tw(s)‖L2

≤ C(1 + s)−(p−1)‖∂tw(s)‖p2,2
≤ Cδp(1 + s)−(p−1)(log(2 + s))p,

and

‖Γ2(|∂tw(s)|p)‖L2 ≤ C(‖∂tw(s)‖p−1
L∞ ‖Γ

2∂tw(s)‖L2

+ ‖∂tw(s)‖p−2
L∞ ‖Γ∂tz(s)‖

2
L4)

≤ Cδp(1 + s)−(p−1)(log(2 + s))p.

Since p > 2 and 0 < δ < 1 we have

‖∂v(t)‖2,2 ≤ ‖∂v(0)‖2,2 + Cδp
∫ t

0

(1 + s)−(p−1)(log(2 + s))pds

≤ ‖∂v(0)‖2,2 + Cδ2.

Thus we obtain (20), and hence

|||(u, v)|||X2 ≤ C0ε+ Cδ2,
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by (15). If we choose δ = 2C0ε and taking ε0 so small that 4CC0ε0 ≤ 1 and
2C0ε0 < 1, we find the desired conclusion.

Next we prove (16) and (17). In the following, we denote by (ũ, ṽ) = L(w̃, z̃).
Analogously to (18), we can prove

sup
t≥0

‖∂(u− ũ)(t)‖s,2
log(2 + t)

≤ Cδ|||(w, z)− (w̃, z̃)|||Xs (21)

for s = 1, 2. Therefore it suffices to show

sup
t≥0
‖∂(v − ṽ)(t)‖1,2 ≤ Cδ|||(w, z)− (w̃, z̃)|||X1 (22)

and

sup
t≥0
‖∂(v − ṽ)(t)‖2,2 ≤ Cδ(|||(w, z)− (w̃, z̃)|||X2 (23)

+ |||(w, z)− (w̃, z̃)|||p−2
X1 ).

For this, we need to evaluate ‖|∂tw(s)|p − |∂tw̃(s)|p‖s,2 (s = 0, 1, 2).
Since p > 1, we have from Lemma 2.1

‖|∂tw(s)|p − |∂tw̃(s)|p‖L2

≤ p(‖∂tw(s)‖L∞ + ‖∂tw̃(s)‖L∞)p−1‖∂t(w − w̃)(s)‖L2

≤ C(1 + s)−(p−1)(‖∂tw(s)‖2,2 + ‖∂tw̃(s)‖2,2)p−1‖∂t(w − w̃)(s)‖1,2
≤ Cδp−1|||(w, z)− (w̃, z̃)|||X1(1 + s)−(p−1)(log(2 + s))p.

Similarly we get

‖Γ(|∂tw(s)|p − |∂tw̃(s)|p)‖L2

≤ Cδp−1|||(w, z)− (w̃, z̃)|||X1(1 + s)−(p−1)(log(2 + s))p.

Thus we get (22), since 0 < δ < 1 and p > 2.
When p ≥ 3, we have

‖Γ2(|∂tw(s)|p − |∂tw̃(s)|p)‖L2

≤ Cδp−1|||(w, z)− (w̃, z̃)|||X2(1 + s)−(p−1)(log(2 + s))p.

While, when 2 < p < 3, observing that

‖(|∂tw(s)|p−2 − |∂tw̃(s)|p−2)(Γ∂tw̃(s))2‖L2

≤ ‖|∂t(w − w̃)(s)|p−2(Γ∂tw̃(s))2‖L2

≤ ‖∂t(w − w̃)(s)‖p−2
L6 ‖Γ∂tw̃(s)‖2Lq

≤ Cδ2|||(w, z)− (w̃, z̃)|||p−2
X1 (1 + s)−(2(p−2)/3)−((p+1)/3)(log(2 + s))p
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with q = 12/(5− p), we find

‖Γ2(|∂tw(s)|p − |∂tw̃(s)|p)‖L2

≤ C(δ2|||(w, z)− (w̃, z̃)|||p−2
X1 + δp−1|||(w, z)− (w̃, z̃)|||X2)

× (1 + s)−(p−1)(log(2 + s))p.

Since 0 < δ < 1 and p > 2, we obtain (23), and hence (16) and (17) follow.
This completes the proof.

4. Proof of Theorem 1.1

Let C0 and ε0 be the numbers from (15) and Proposition 3.1. In the following
we always assume ε ∈ (0, ε0].

First of all, we define a sequence {(un, vn)}∞n=0 ⊂ Y2C0ε by{
(un+1, vn+1) = L(un, vn) for n = 0, 1, 2 . . . ,
(u0(t), ∂tu0(t)) = U(t)(f1, g1), (v0(t), ∂tv0(t)) = U(t)(f2, g2).

From (15) we have (u0, v0) ∈ Y2C0ε, so that {(un, vn)}∞n=0 ⊂ Y2C0ε for all n. It
follows from (16) and (17) with (w, z) = (un, vn), (w̃, z̃) = (un−1, vn−1) that

|||(un+1, vn+1)− (un, vn)|||X2 + |||(un+1, vn+1)− (un, vn)|||p−2
X1

≤ 2CC0ε(|||(un, vn)− (un−1, vn−1)|||X2 + |||(un, vn)− (un−1, vn−1)|||p−2
X1 ).

We may assume 2CC0ε < 1/2, by taking ε0 to be smaller if necessary. Thus
we get

|||(un+1, vn+1)− (un, vn)|||X2 + |||(un+1, vn+1)− (un, vn)|||p−2
X1

≤ 2−n(|||(u1, v1)− (u0, v0)|||X2 + |||(u1, v1)− (u0, v0)|||p−2
X1 ),

which implies that {(un, vn)}∞n=0 is a Cauchy sequence in Y2C0ε. Hence there
exists (u, v) ∈ Y2C0ε such that {(un, vn)}∞n=0 converges to it in Y2C0ε, so that
it is the solution of (5).

Next we deduce the asymptotic behavior of the solution (u, v) to (1)-(2)
obtained in the above. Let δ = 2C0ε in the following.

Notice that |∂tu(t)|p ∈ L1([0,∞);L2(R3)), since we have ‖|∂tu(t)|p‖L2 ≤
Cδp(1 + s)−(p−1)(log(2 + s))p. Therefore, we can define

v+(t) = v(t) +
∫ ∞
t

F∗
( sin(t− s)|ξ|

|ξ|
F(|∂tu(s)|p)

)
ds, (24)

and we see that v − v+ solves

(∂2
t −∆)(v − v+) = |∂tu|p
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in the sense of distribution. Hence v+ satisfies (∂2
t −∆)v+ = 0. Moreover, we

have

‖(v − v+)(t)‖E ≤
∫ ∞
t

‖|∂tu(s)|p‖L2ds

≤ Cδp
∫ ∞
t

(1 + s)−(p−1)(log(2 + s))pds,

which leads to (8).
In order to proceed further we need the following lemma.

Lemma 4.1. Let v+ be the function defined by (24). Then we have

‖∂tv+(t)‖1,2 ≤ Cδ, (25)

‖∂t(v − v+)(t)‖1,2 ≤ Cδp(1 + t)−(p̃−2) (26)

for t ≥ 0.

Once we find the above lemma, we can deduce (7). In fact, (25) and (26)
together with Lemma 2.1 yield

‖|∂tv(t)|2 − |∂tv+(t)|2‖L2

≤ (‖∂tv(t)‖L4 + ‖∂tv+(t)‖L4)‖∂t(v − v+)(t)‖L4

≤ C(1 + s)−1(‖∂tv(t)‖1,2 + ‖∂tv+(t)‖1,2)‖∂t(v − v+)(t)‖1,2
≤ Cδp+1(1 + s)−(p̃−1). (27)

This estimate allows us to define

u+(t) = u(t) +
∫ ∞
t

F∗
( sin(t− s)|ξ|

|ξ|
F(|∂tv(s)|2 − |∂tv+(s)|2)

)
ds.

Then we see that u− u+ solves

(∂2
t −∆)(u− u+) = |∂tv|2 − |∂tv+|2

in the sense of distribution, and hence u+ satisfies

(∂2
t −∆)u+ = |∂tv+|2.

Moreover, by (27) we have

‖(u− u+)(t)‖E ≤ C
∫ ∞
t

‖|∂tv(s)|2 − |∂tv+(s)|2‖L2ds

≤ Cδp+1

∫ ∞
t

(1 + s)−(p̃−1)ds,
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which leads to (7).

Proof of Lemma 4.1. Notice that (26) yields

‖∂tv+(t)‖1,2 ≤ ‖∂tv(t)‖1,2 + ‖∂t(v+ − v)(t)‖1,2 ≤ Cδ,

since 0 < δ < 1 and p > 2. Therefore, it is enough to show (26). In view of
(8), we see that (26) follows from

‖Γ∂t(v − v+)(t)‖L2 ≤ Cδp(1 + t)−(p̃−2). (28)

We are going to show (28). For simplicity, we put ṽ = v − v+ and F (t, x) =
|∂tu(t, x)|p. It follows from (24) that

∂2
t ṽ(t) =

∫ ∞
t

F∗
(
|ξ|(sin(t− s)|ξ|)F(F (s))

)
ds+ F (t, x),

∂j∂tṽ(t) = −
∫ ∞
t

F∗
(
(cos(t− s)|ξ|)F(∂jF (s))

)
ds (j = 1, 2, 3),

Ωjl∂tṽ(t) = −
∫ ∞
t

F∗
(
(cos(t− s)|ξ|)F(ΩjlF (s))

)
ds (1 ≤ j < l ≤ 3),

Ω0j∂tṽ(t) = −
∫ ∞
t

F∗
(
(cos(t− s)|ξ|)F(Ω0jF (s))

)
ds

+ i

∫ ∞
t

F∗
(
(sin(t− s)|ξ|) ξj

|ξ|
F(F (s))

)
ds (j = 1, 2, 3),

S∂tṽ(t) = −
∫ ∞
t

F∗
(
(cos(t− s)|ξ|)F(SF (s))

)
ds

−
∫ ∞
t

F∗
(
(cos(t− s)|ξ|)F(F (s))

)
ds.

Thus we get

‖Γ∂tṽ(t)‖L2 ≤
∫ ∞
t

∑
|α|≤1

‖ΓαF (s)‖L2 ds+ ‖F (t)‖L2 ,

which implies (28). This completes the proof of Lemma 4.1. �

We turn back to the proof of Theorem 1.1. It remains to prove (10) and
(11) under the assumption (9). Since (fi, gi) ∈ C1(R3) × C(R3) (i = 1, 2), we
see that

u(t, x) = u0(t, x) +
1

4π

∫ t

0

1
t− s

∫
|y−x|=t−s

|∂tv(s, y)|2dSyds,

v(t, x) = v0(t, x) +
1

4π

∫ t

0

1
t− s

∫
|y−x|=t−s

|∂tu(s, y)|pdSyds
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with

u0(t, x) = tMtg1(x) + ∂t(tMtf1(x)),
v0(t, x) = tMtg2(x) + ∂t(tMtf2(x)).

By (9) and Lemma 2.3 we get

|u0(t, x)|+ |v0(t, x)| ≤ CA

(1 + t+ r)(1 + |t− r|)p−2
,

where we have set r = |x|. While, observing that Lemma 2.1 leads to

|∂tv(s, y)|2 ≤
‖∂tv(s)‖22,2

(1 + s+ |y|)2(1 + |s− |y||)
,

we have from Lemma 2.4∣∣∣∣∣ 1
4π

∫ t

0

1
t− s

∫
|y−x|=t−s

|∂tv(s, y)|2dSyds

∣∣∣∣∣
≤ C

r

∫ t

0

∫ r+t−s

|r−t+s|

λ‖∂tv(s)‖22,2
(1 + s+ λ)2(1 + |s− λ|)

dλds

≤ Cδ2

r

∫ t

0

∫ r+t−s

|r−t+s|

1
(1 + s+ λ)(1 + |s− λ|)

dλds.

Changing the variables by α = s + λ, β = s− λ, the last quantity is bounded
by

Cδ2

r

∫ r+t

|r−t|

∫ t−r

−t−r

dβdα

(1 + α)(1 + |β|)
≤ Cδ2

r
log(2 + t+ r)

∫ r+t

|r−t|

dα

(1 + α)
.

When t ≤ 2r and r ≥ 1, we have r ≥ C(1 + r + t), so that

1
r

∫ r+t

|r−t|

1
1 + α

dα ≤ C log(2 + r + t)
1 + t+ r

.

Therefore we get∣∣∣∣∣ 1
4π

∫ t

0

1
t− s

∫
|y−x|=t−s

|∂tv(s, y)|2dSyds

∣∣∣∣∣ ≤ Cδ2(log(2 + r + t))2

1 + t+ r
.

While, when t > 2r or 0 < r < 1, we have

1
r

∫ r+t

|r−t|

1
1 + α

dα ≤ r + t− |r − t|
r(1 + |r − t|)

≤ 1
1 + |r − t|

.
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Since 1 + r + t ≤ C(1 + |r − t|), we find (10).
Similarly, we get

|∂tu(s, y)|p ≤
‖∂tu(s)‖p2,2(log(2 + s))p

(1 + s+ |y|)p(1 + |s− |y||)p/2
,

so that ∣∣∣∣∣ 1
4π

∫ t

0

1
t− s

∫
|y−x|=t−s

|∂tu(s, y)|pdSyds

∣∣∣∣∣
≤ Cδp

∫ t

0

1
t− s

∫
|y−x|=t−s

(log(2 + s))p

(1 + s+ |y|)p(1 + |s− |y||)p/2
dSyds

≤ Cδp

r

∫ t

0

∫ r+t−s

|r−t+s|

λ

(1 + s+ λ)p̃(1 + |s− λ|)p/2
dλds,

where p̃ is an arbitrary number such that 2 < p̃ < p. Changing the variables
as before, we obtain (11) in a similar fashion. This completes the proof of
Theorem 1.1. �
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