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Iron plays a key role in cellular processes of mammals 
Iron is an essential element for metabolism of mammals acting as cofactor for several redox 

reaction. Body iron is imported in ferrous (Fe+2) and ferric (Fe+3) status and its ability to change 

ionic form can cause the production of oxygen free radicals1. Therefore iron is reactive and 

potentially toxic for cells and tissues and it can damage various cellular components. It is necessary 

a tight regulation of iron absorption, transport, storage and adequate distribution in bloodstream to 

maintain iron homeostasis of living organisms.  

In plasma, ferric iron (Fe+3) binds two high-affinity binding sites on the glycoprotein transferrin 

that maintains iron in a soluble form, limits the generation of free radicals and transports iron into 

the cells. Levels of transferrin saturation indicate the levels of plasma iron: in normal status 

transferrin saturation level measures about 30%, in iron deficiency transferrin saturation is below 

16% and in iron overload transferrin exceed 45% of saturation till 60% that provokes the toxic 

accumulation of iron in bloodstream2. 

At physiological levels circulating iron is regulated by signals from several pathways that use iron 

and from cells that supply iron2 so any disorder that affects the components of the tightly regulated 

pathway of iron distribution and storage could cause severe pathologies in humans. 

 

How much iron do humans need? 

Adult humans contain about 3-4 g of iron on average, most of which is bound to heme in 

haemoglobin. The remaining iron is stored in macrophages and hepatocytes in spleen and liver 

bound to the cytoplasmic protein ferritin and in muscle as myoglobin, an oxygen storage protein. 

Moreover iron is fundamental for energy production and synthetic metabolism of all the cells that 

contain iron in small concentrations3.  

The most relevant source of iron in human body is duodenal enterocytes but only a small 

proportion of total iron is released into bloodstream from duodenal enterocytes. Every day, 15-25 

mg of iron in bloodstream come from aged erythrocytes that are recycled by macrophages in the 

spleen. Iron from enterocytes and macrophages is bound to the glycoprotein transferrin and reaches 

all the tissues where it is required in response to tissue oxygenation. The majority will be utilized 

for haemoglobin synthesis. 

These observations and the lack of a regulated excretion of iron from organism suggest that the 

mechanism regulating the total amount of body iron requires a tight control of dietary iron 

absorption and of iron recycling from macrophages. Indeed, several studies focused on the 

molecules and biological processes involved in iron homeostasis and many have been identified.  

Iron naturally occurs in low soluble oxidised form. Human diet is rich of ferritin, ferric iron and 

heme. Heme iron from meat and fish is efficiently absorbed but their consumption is evolutionary 

recent and geographically limited. Human populations had a vegetarian diet throughout most of 

their evolution and the efficient conservation and internal recycling of iron highlights how 
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mammalian evolution occurred in iron poor environment. Today, human populations from 

developed countries have access to iron rich food and most of them have to be able to limit iron 

uptake to avoid excessive toxic iron accumulation3. 

The transport of inorganic iron has been studied in details. Duodenal enterocytes absorbe 1-2 mg of 

inorganic dietary iron per day via a divalent metal transporter 1 (DMT1/SLC11A2 solute carrier 

family 11, member 2) expressed on the brush-border membrane as shown in Figure 12. This 

mechanism is important to balance the iron physiological loss due to the desquamation of epithelial 

surfaces, sloughing of intestinal epithelial cells, urinary cells, blood loss and sweat2,3. 

Oxidized ferric iron is reduced by a membrane reductase DcytB (Duodenal cytochrome B) or 

Cybrd1. Heme iron is independently absorbed likely through HCP1, Heme carrier protein 1, but its 

mechanism of transport remains uncertain. The hemoxygenase 1 (HOX1) releases heme iron into 

the enterocytes. 

 
Figure 1. Regulation of systemic iron homeostasis. Divalent metal transporter 1 (DMT1) at the apical membrane of 

enterocytes takes up iron from the lumen of the duodenum after DCYTB reduces Fe+3 to Fe+2. Ferroportin at the 

basolateral membrane cooperates with hephaestin that oxidizes Fe+2 to Fe+3. Iron-loaded (diferric) transferrin (Tf-Fe2), 

indicated by red dots, supplies iron to all cells by binding to the transferrin receptor 1 (TfR1) and subsequent endocytosis. 

TfR1 is highly expressed on hemoglobin-synthesizing erythroblasts. Hepatocytes sense transferrin saturation/iron stores 

and release hepcidin accordingly. Red cell iron is recycled by macrophages via ferroportin and the ferroxidase 

ceruloplasmin. In iron overload (left), high hepcidin levels inhibit ferroportin-mediated iron export by triggering 

internalization and degradation of the complex to reduce transferrin saturation. Hepcidin expression is high. In iron 

deficiency (right), iron is released by ferroportin into the circulation. Hemoglobin-derived heme is catabolized in 

macrophages by hemoxygenase-1 (HOX1). Hepcidin expression is low. doi 10.1016/j.cell.2010.06.028 

 

How does the body store and distribute the iron? 

Hepatocytes represent the main storage site of iron in mammals where iron is bound to ferritin. 

Ferritin is composed of 24 chains of heavy (H) and light (L) type. The H subunits act as 



General introduction  
 

11 

ferroxidases to facilitate the conversion of cytosolic Fe+2 to the oxidized form for storage3 and, 

according to body needs, hepatocytes release stored iron into the circulation. A soluble form of 

ferritin is present in blood plasma. This form is a 24-subunit polymer containing a low quantity of 

iron and mostly L-ferritin. Serum concentrations of ferritin are a clinically useful indication of iron 

storage status. 

As shown in Figure 1 cytosolic iron can be exported from hepatocytes, macrophages and 

enterocytes by the basolateral iron exporter ferroportin SLC40A1 (solute carrier family 40, member 

1 or IREG1 iron-regulated gene 1 or MTP1 metal transporter protein 1) expressed on the surface of 

iron-releasing cells2. To be loaded onto the 75-80-kDa iron carrier transferrin (TF), iron needs to be 

converted to Fe+3 by the oxygen-dependent ferroxidases hephaestin and ceruloplasmin. Hephaestin 

(HEPH) is a 130-kDa transmembrane protein expressed predominantly in enterocytes and the 

placenta, ceruloplasmin (CP) is a 130-kDa copper-containing protein highly expressed in the liver 

and the retina. Both are expressed in brain3. 

Transferrin is a glycoprotein that binds two ferric ions and delivers them to target tissues for uptake 

by transferrin receptor-1 (TFR1). TFR1 is composed by two identical monomeric subunits that link 

two transferrin molecules in a complex. It is highly expressed in erythroid precursors to promote 

the haemoglobin synthesis. Several years ago its homologous was cloned and mapped. TfR2 is a 

transmembrane gylocoprotein encoded by the gene TFR2 comprising 18 exons located on 

chromosome 7q22 in close proximity to the erythropoietin gene (EPO) and interacts with 

transferrin with lower affinity than TfR14. The homeostatic system must maintain transferrin 

saturation at physiological levels, responding to signals from pathways that consume iron (such as 

erythropoiesis) and sending signals to the cells that supply iron to the bloodstream2. 

The erythropoiesis uses about 25 mg per day of recycled iron through the acquisition of iron by 

TfR1 that induces the maturation of erythroid precursors. The lack of TfR1 in mouse embryos 

provokes death due to severe anemia and the dysfunction of the other components like DMT1 in 

humans and mice cause similar phenotypes and liver iron accumulation2. 

The production of heme requires that iron is imported in the mithocondria through the membrane 

protein mitoferrin 1 (Mfrn1/SLC25A37, colute carrier family 25, member 37)5. The erythroid-

specific enzyme for the heme precursor protoporphyrin IX, ALAS2 (gamma-aminolevulinic acid 

synthase 2) must coordinate the synthesis with the available iron and is regulated by IRE/IRP 

system (iron–responsive element / iron regulatory protein). The cytoplasmic Iron Regulatory 

Proteins (IRPs) interact with the sequences of nucleotides called Iron esponsive elements (IREs), 

about 30 nucleotides located on 5’ or 3’ of mRNA of iron regulatory genes as ferritin and TfR6: in 

iron deficiency condition IRP-IRE downregulates ferritin transcription and upregulates TfR1 

transcription, viceversa in iron overload. Based on iron condition several mRNA as DMT1, 

transferrin or ALAS2 are simultaneously regulated. 

These observations on iron homeostasis have led to the expectation that one or more systemically 
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acting hormones regulate the major flows of iron, the absorption by intestine, its utilization in 

erythropoiesis, the recycle of erythrocytes and the storage by hepatocytes and are in turn regulated 

by iron3. Accordingly in 2001 it was shown that iron export by ferroportin is strictly regulated by 

the liver hormone hepcidin (HAMP) that binds ferroportin and according to iron body needs 

induces its endocytosis and proteolysis in lysosomes in order to reduce the release of iron into 

circulation7. 

The role of hepcidin in iron metabolism has been suggested by the stimulation of hepcidin 

synthesis in iron-rich diets and observed by chance in a knockout mouse for the gene usf2 next to 

hamp8. Knockout mouse showed a hereditary affection of iron homeostasis known as 

hemochromatosis. 

In 2001 in a family study9, subjects affected by a juvenile condition of hemochromatosis showed 

homozygous deleterious mutations in HAMP, confirming its essential role. 

Hepcidin is the main regulatory molecule of iron homeostasis through a mechanism of feedback by 

plasma iron concentration. It is encoded by the single three exons gene HAMP on chromosome 

19q13. Its mature form is a 2.7-kDa (25 amino acid) peptide generated from a 84 amino acid 

prepropeptide by furin cleavage. It is secreted by hepatocytes and circulates in blood plasma mostly 

free except for weak binding to albumin and α2-macroglobulin and is filtered by the kidneys5. As 

shown in Figure 2 hepcidin forms a hairpin structure with four intramolecular disulfide bonds10, the 

NH2-terminal contains six amino acids highly conserved and essential for the iron-regulatory 

function of hepcidin because of the interaction with receptor ferroportin11. In human urine two 

different NH2-terminally truncated shorter forms (22 and 20 amino acids) were found. In human 

plasma a 20-amino acid form is present at much lower concentrations than the full-length 25-amino 

acid hepcidin5. 

 
Figure 2. Hepcidin amino acid sequence and structure. The NH2-terminal segment known to interact with ferroportin 

is shaded in light red. The characteristic cysteines and their disulfide bonds are shown in yellow. 

doi:10.1152/physrev.00008.2013 
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The study of molecular mechanisms underling hereditary hemochromatosis in humans and in mice 

has been fundamental to clarify hepcidin regulation processes in dysregulation of iron distribution 

conditions. 
The interaction hepcidin-ferroportin effectively controls the flux of iron into plasma and the iron 

supply available to the iron-consuming tissues. Inherited and acquired disorders that perturb 

hepcidin production cause alteration of iron level. Overexpression of hepcidin causes iron 

deficiency anemia12,13 both by inhibiting iron absorption and restricting the release of stored iron. 

On the contrary, hepcidin deficiency in humans causes iron overload in parenchymal organs 

including the liver, pancreas, and the heart, coupled with the paradoxical loss of macrophage iron 

stores9,14,15. The consequences of excess or deficiency of hepcidin highlight its fundamental role in 

the control of iron absorption and in the release of recycled iron from macrophages. In addition, 

heterozygous human ferroportin mutations interfere with hepcidin binding16,17, confirming the 

critical role of the hepcidin-ferroportin interaction and suggesting that ferroportin may be the sole 

target of hepcidin3. 

 

Iron overload and iron deficiency disorders 

Inherited disorders resulting from mutations of genes involved in regulating iron metabolism cause 

unbalanced iron levels and opposite clinical conditions: iron deficiency and iron accumulation in 

organs and tissues. 

Low expressed hepcidin by hepatocytes or ferroportin resistance to the endocytic effect of hepcidin 

results in hereditary hemochromatosis (HH) that leads to iron overload of the liver and other organs 

causing cirrhosis and liver cancer, heart failure, diabetes and arthritis. 

Hereditary hemochromatosis exists in four recessive and one dominant forms. A homozygous 

missense mutation of the HFE gene (C282Y) is the causative variant responsible for the most 

common recessive hereditary hemochromatosis18. At least 5-10% of Caucasians are heterozygous 

for this mutation that has a low penetrance and it is more common in affected older males. HFE 

(Human Hemochromatosis Protein) on chromosome 6 encodes a ubiquitously expressed major 

histocompatibility complex class 1-like molecule and the C282Y mutation affects β 2-

microglobulin binding. The levels of hepcidin in affected cases are inadequately low for the degree 

of iron loading.  

Other two forms of juvenile hereditary hemochromatosis are less common and characterized by 

undetectable levels of hepcidin. They are often associated to hypogonadism, refractory heart 

failure, and even premature death. They are caused by mutations of hemojuvelin (HJV) or of 

HAMP gene. 

HJV is a glycophosphatidlyinositol-linked protein mostly expressed in liver, skeletal muscle, and 

heart. HJV is present in a membrane and soluble forms (mHJV and sHJV) and has been discovered 

as a bone morphogenetic protein (BMP) coreceptor19. 
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Figure 3. Regulation of Hepcidin Expression 

(A) Hepcidin regulation by systemic iron availability. High concentrations of Tf-Fe2 displace HFE from TfR1 to promote 

its interaction with transferrin receptor 2 (TfR2). The HFE-TfR2 complex then activates hepcidin transcription via 

ERK/MAPK and bone morphogenetic protein (BMP)/SMAD signaling. The BMP coreceptor hemojuvelin (HJV) 

interacts with type I and type II BMP receptors (BMPR) at the plasma membrane to induce phosphorylation of receptor-

activated SMAD (R-SMAD) proteins, and subsequent formation of active transcriptional complexes involving the co-

SMAD factor SMAD4. This signaling is inhibited by soluble HJV (sHJV). TMPRSS6 physically interacts with HJV and 

causes HJV fragmentation. SMAD7 interferes with SMAD4-controlled hepcidin activation. Sequence motifs critical for 

SMAD- mediated control of the hepcidin promoter are shown. (B) Hepcidin regulation by erythropoietic signals. GDF15 

and TWSG 1 are released by erythroid precursors to inhibit BMP/SMAD activation of hepcidin. This situation 

characterizes iron-loading anemias. (C) Hepcidin regulation by inflammatory stimuli. Interleukin 6 (IL6) activates the 

Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling pathway and stimulates the 

hepcidin promoter via a STAT-binding motif close to the transcription start site. The BMP signaling pathway also 

contributes to the inflammatory response via SMAD4. Doi 10.1016/j.cell.2010.06.028 



General introduction  
 

15 

 

As shown in figure 3A, BMPs belong to the Transforming Growth Factor β (TGFβ) family, soluble 

proteins that interact with specific receptors (BMPR) on cellular membrane. BMP6 binding to the 

cofactor HJV and to BMPR is involved in hepcidin transcription control via SMAD proteins 

signalling. Mutations in membrane HJV cause low hepcidin levels and iron overload suggesting an 

essential role in hepcidin regulation. 

Hemochromatosis forms due to HAMP mutations are extremely rare. 

The fourth hereditary hemochromatosis is due to TfR2 mutations but presents a less severe 

phenotype than the juvenile form20. As previously shown, TfR2 is a type II transmembrane protein 

that binds transferrin with lower affinity than TfR1. 

A dominant form of hereditary hemochromatosis is caused by missense mutations in ferroportin 

and is called ‘ferroportin disease’21. Mutations can reduce membrane localization or the ability of 

ferroportin to export iron. That causes macrophage iron retention, normal or low plasma iron 

levels, and in some cases iron-restricted erythropoiesis. The hepcidin-resistant ferroportin 

mutations cause high plasma iron and hepatocyte iron accumulation because hepcidin fails to bind 

ferroportin or its internalization and degradation.  

Other imbalanced hepcidin levels are due to iron-loading anemias in which erythropoietic signals 

suppress hepcidin transcription in condition of high systemic iron load as reported for beta-

thalassemia intermedia3. 

 

On the opposite in some condition the production and blood concentrations of hepcidin are 

inappropriately high or the membrane concentration or iron-transporting capacity of ferroportin is 

decreased. Anemia is caused by high hepcidin expression and low plasma iron levels due to lower 

iron release by macrophages and lower iron absorption. The most common pathologies are the 

acquired anemia of chronic diseases (ACD) and the genetic iron-refractory iron deficiency anemia 

(IRIDA). 

Related to its evolutionary origin, hepcidin transcription is activated by inflammatory cytokines, 

especially interleukin 6 as described below and in Figure 3C. Excessive hepcidin production is also 

seen in patients with infections, malignancies, chronic kidney diseases, or any type of 

inflammation. 

The genetic affection IRIDA is caused by mutations in a liver-expressed transmembrane serine 

protease of type II TMPRSS6 (matriptase-2), a gene that encodes a protease that negatively 

regulates hepcidin expression22.	
  Genetic causative variant (rs855791) in TMPRSS6 is common in 

general population (about 45%) and may modulate the ability to absorb iron and to synthesize 

hemoglobin for maturing erythroid cells23. The structural features of matriptase-2 are highly 

conserved across mammalian species, including human, macaque monkey, dog, cow, mouse and 

rat. The extracellular domain contains multiple motifs and domains including bone morphogenetic 
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protein 1 (CUB) domain and a prodomain region that contains the cleavage site for protease 

fundamental for the activation of the signalling of HAMP transcription24. 

 

Pathway of up-regulation and down-regulation of hepcidin 

After the discovery of the biological role of hepcidin, several progresses have highlighted the 

molecules and pathways that control hepcidin expression in response to concentration of iron and 

the role of the membrane proteins mutated in hereditary hemochromatosis (HFE, HJV, and TfR2) 

in this process.  

Bone Morphogenetic Protein (BMP) receptor-hemojuvelin (HJV)-Son of Mothers Against 

Decapentaplegic (SMAD) pathway are the core of hepcidin regulation pathway as indicated by the 

presence of several functional BMP-response elements (BREs) in the hepcidin promoter. BMP6 is 

specific for BMP receptor (BMPR) and essential in mouse: knockout mice show low hepcidin 

levels and iron overload3. 

As previously indicated, HJV is an essential co-receptor of BMP receptor for the activation of iron 

signalling. HJV can bind BMP2 and BMP425,26 but the binding to BMP6 with BMPR can induce 

SMAD cascade. In humans and mice the absence of HJV leads to the same severe phenotype as the 

absence of BMP. But it is unclear how BMP6 mRNA expression is activated by increased iron 

levels and repressed by iron deficiency. The BMP/HJV complex joins the type I (Alk2 and Alk3) 

and the type II (ACTRIIA) BMP receptors to induce phosphorylation of receptor activated SMAD 

(R-SMAD) proteins and subsequent formation of active transcriptional complexes involving the 

co-SMAD factor, SMAD427 (Figure 3A).  

Other extracellular sensors bind BMP pathway in an uncertain way.  

On the plasma membrane of hepatocytes TfR1 and TfR2 act as sensors of the concentration of Tf-

Fe2: the hemachromatosis-related membrane protein HFE binds TfR1 at a site that overlaps the 

transferrin binding domain and it competes with the binding of Tf-Fe2. TfR2 can bind HFE and Tf-

Fe2 simultaneously28. Mice with mutations that increase the binding of HFE to TfR1 show a similar 

phenotype of HFE-deficient mice: low hepcidin expression and iron overload. Mutations that 

abolish HFE-TfR1 interaction show high levels of hepcidin expression and iron deficiency. 

These findings suggest that high concentration of Tf-Fe2 remove HFE from TfR1 to promove the 

interaction with TfR2, which is further stabilized by increased Tf-Fe2 binding to the lower-affinity 

TfR2. Afterwards HFE-TfR2 complex activates hepcidin transcription. 

As shown in Silvestri et al 200829, the transmembrane serine protease maptriptase-2 TMPRSS6 that 

causes the severe genetic disorders iron-refractory iron deficiency anemia (IRIDA) in mice and 

humans, has a strong effect on hepcidin suppression as shown by the Mask and Tmprss6 deficient 

mouse model, which results from a deletion of the serine protease domain in inappropriately high 

levels of Hamp mRNA expression and are unable to absorb oral iron. 

TMPRSS6 function in vitro as negative regulator of hecpdin-BMP signalling cleaving the BMP 
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agonist hemojuvelin switching off BMP signaling and thereby decreasing hepcidin transcription 

suggesting that HJV is the major TMPRSS6 target for iron regulation. Genetically, the combined 

deficiency of HJV and TMPRSS6 causes iron overload, suggesting that TMPRSS6 acts upstream 

of HJV. 

It is unknown whether, in vivo, TMPRSS6 cleaves other substrates. In iron deficiency, the function 

of TMPRSS6 is essential to suppress hepcidin and to allow iron absorption. In vitro, the expression 

of TMPRSS6 is up-regulated by hypoxia and iron deficiency and its proteolytic activity is inhibited 

by hepatocyte growth factor activator inhibitor type-2 (HAI-2), an inhibitor of the homologous 

protease matriptase-130. The regulation of TMPRSS6 in vivo is largely unknown. 

 

As shown in Figure 4 the expression of hepcidin in hepatocytes is transcriptionally feedback-

regulated also by hepatic iron storage, hypoxia, erythropoietic activity and inflammatory states. 

Iron stored in liver acts as a regulator of hepcidin transcription in an uncertain way. It seems that 

the expression of BMP6 is regulated by iron storage. The ablation of BMP6 or hemojuvelin 

interferes partially with the hepcidin response to increased iron stores. 

Figure 4. Regulation of hepcidin synthesis in hepatocytes. The major regulatory influences include iron-transferrin and 

iron stores (blue), inflammation (green), and erythroid activity (red). doi:10.1152/physrev.00008.2013 

 

Hypoxia is a condition of significant lower oxygen concentration in cells and tissues that 

constitutes a stress for all mammals cells in different conditions: high altitudes, during prenatal 

development and in pathological conditions as cardiovascular diseases and cancer. Mammals cells 

have evolved mechanisms sensible to changes in oxygen concentration and adaptive responses to 

reach the homeostasis31. 

The adaptions include the increased oxygen-carrying capacity of blood flow to hypoxic organs and 

tissues thanks to the activation of genes and proteins responsible for erythropoiesis as 

erythropoietin EPO, iron transport as TF, TfR, CP, MFRN, ALAS2, ferritin genes and the 

switching from aerobic to anaerobic metabolic pathways.  

The main mediators of the adaptions are the key regulatory proteins of iron metabolism hypoxia-

inducible factor 1 HIF1 and HIF2 and Iron responsive protein IRP1 and IRP2 that act as oxygen 
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sensors. 

HIFs are heterodimeric transcription factors composed of α and ß subunits with three isoforms 

each one. In normal condition HIFα  subunit is hydroxylated and proteolytically degraded 

viceversa in oxygen deficiency it traslocates in the nucleus and with HIF ß bind to the hypoxic-

responsive enhancer element (HRE) to activate the hypoxia-inducible gene expression. 

Hepcidin is suppressed by both anemia and hypoxia and iron deprivation and hypoferric anemia 

lead to poor tissue oxygenation. The downregulation of hepcidin when HIF levels are elevated 

suggests that HIF may be one of the missing links between iron homeostasis and hepcidin 

regulation. The expression of HAMP is downregulated in hypoxia condition probably through the 

HIF1 and HIF2 however the physiologic relevance and the mechanisms of hepcidin regulation by 

hypoxia are still uncertain and conflicting. 

The IRP1 and IRP2 react in different way to hypoxia. They are regulated by oxygen at a 

posttranscriptional level but the total amount of mRNA of IRP1 and IRP2 does not change in 

hypoxic condition. The IRP1 gene expression is HIF independent while the levels of IRP2 protein 

increase under hypoxic condition because they need sufficient iron to be degraded. Under hypoxia 

IRP2 is predominant and mainly binds to IREs and regulates HIF2α. 

In hypoxic condition the production of erythrocytes is enhanced. Erythropoiesis utilizes 

haemoglobin and relies on the heme synthesis. The increased heme synthesis requires greater iron 

availability to erythorid precursor cells. EPO production has been shown to increase 1000-fold in 

response to hypoxia because of the binding of HIF to a HRE found in epo gene. 

EPO injection into mice reduces hepcidin levels in a dose-dependent manner and can override 

signals that activate hepcidin expression whereas in human injections decrease urinary excretion of 

hepcidin. These findings suggest that EPO likely suppresses hepcidin by stimulation of 

erythropoiesis rather than more directly. 

 

The regulation of hepcidin occurs also by erythropoiesis that needs large quantities of iron. In case 

of haemorrhage or erythropoietin, the iron absorption by intestine greatly increases in response to 

the need of iron for accelerated erythropoiesis. 

In response to erythropoietin, bone marrow produces a hepcidin suppressor that could act in similar 

way in anemias with ineffective erythropoiesis where hepcidin is decreased despite iron overload 

and even in the absence of transfusions32,33,34,35. In Figure 3B GDF15 (Growth differentiation factor 

15) and TWSG1 (Twisted gastrulation protein homolog 1) released by erythroid precursors, are 

proposed as possible suppressor of BMP-dependent activation of hepcidin transcription. High 

levels of GDF15, especially present in thalassemia cases, can suppress hepcidin transcription but 

their physiologic or pathological role is uncertain. 

TWSG1 expression is increased in thalassemic mice, where it is produced during early erythroblast 

maturation. In cellular models, the BMP-binding protein TWSG1 inhibits BMP-dependent 
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activation of Smad-mediated signal transduction that leads to hepcidin activation. 

The dentification of the physiological and pathological erythroid regulators of hepcidin is crucial. 

 

Finally, as shown in Figure 3C, hepatocyte synthesis of hepcidin is regulated also by inflammatory 

cytokines, especially interleukin 6 (IL6) through the STAT-3 signalling pathway. 

Inflammation-induced hepcidin increase causes the hypoferremia that develops early during 

infections or inflammatory diseases likely to limit the multiplication of iron-dependent extracellular 

microbes. On the other side, the hypoferremia can limit the availability of iron for erythropoiesis 

and contribute to anemia of inflammation or anemia of chronic disease36. 

 

Genetic studies of human variation of hepcidin and iron parameters levels 

As previously shown, variation in body iron level is associated with pathological processes and rare 

monogenic disorders. It is however likely that common and multiple genetic factors may also cause 

variation in iron homeostasis. 

One of the aims of my work was to analyze the genetic and environmental factors that determine 

the quantitative levels of hepcidin and iron parameters in humans. Today human genome wide 

association studies (GWAS) highlighted the significance of matriptase-2 in regulation of iron 

homeostasis by identifying common TMPRSS6 variants associated with pathological 

hematological parameters, including hemoglobin (Hb), transferrin saturation (TfSat), erythrocyte 

mean cell volume (MCV) and serum iron concentrations37,38. Ganesh et al in 200939 identified 

genome-wide significant association of SNPs within the HFE gene associated to Hb, MCV, 

hematocrit (PCV) and mean corpuscular hemoglobin (MCH). Additionally, the mutation in HFE 

encoding the C282Y substitution was associated with increased MCV and Hb concentrations in a 

study of individuals drawn from a screening study for hemochromatosis and iron overload. 

Individuals heterozygous for either allele do not manifest clinical iron overload but may have an 

increased iron uptake and resistance to anemia, and the C282Y-encoding mutation may increase 

the risk of coronary heart disease by increasing iron stores and lipid oxidation. The transferrin 

receptor (TFR1) and transferrin receptor 2 (TFR2) SNPs were associated with MCH and MCV, and 

SNPs within TFR2 were associated with PCV and MCV.  

The identification of novel loci that affect iron metabolism can clarify many clinical or subclinical 

conditions and offer novel potential targets for the diagnosis and treatment of iron overload and 

anemias. 

 

A large population study: Val Borbera Project  
The prediction of the risk for disease in healthy individuals requires a large sample size, detailed 

knowledge of the risk factors, their effect size and how they interact. The large genome wide 

association studies (GWAS) performed to date have provided initial information on the genetic 
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architecture of many diseases, but they have identified variants that individually explain a very 

small fraction of the genetic variance, to be used for an accurate prediction of the genetic risks. 

Isolated founder populations provide an attractive alternative for the study of complex traits as they 

typically exhibit greater genetic and environmental homogeneity and present enrichment in low 

frequency and rare variants respect to mixed outbred populations40.  

The origin of isolated populations from relatively recent common ancestors has increased linkage 

disequilibrium (LD) making possible to reconstruct extended and conserved haplotypes and long 

stretches of consecutive homozygous genotypes at adjacent single nucleotide polymorphisms 

(SNPs) loci called ROHs41 as shown in Figure 5. Knowledge of the underlying genetic and 

population structure is essential to carefully design association studies, including choice of the 

most appropriate analysis approach that may depend from the degree of isolation, the length of the 

time the population has remained isolated and the size of the funding group. 

Val Borbera Project started in 2005 with the aim to investigate the genetic factors responsible for 

human complex diseases. The population recruited is located in Val Borbera, a large valley in 

Northern-Western Italy isolated by the surrounding mountains and by a deep canyon.  

In the past centuries the population that lived in the seven villages of the valley increased till 

10,000 individuals but in the last century decreased due to the emigration the population and now 

includes about 3,000 individuals that live in the valley and in the surrounding areas. 

 

 
Figure 5. Statistics on the extension of the ROHs in the valley (a) and villages (b) with respect to other populations. 

(A) ROHs were binned according to length and per each population the percentage of individual having at least one ROH 
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of a given length is indicated on the y axis. As the length of the ROHs increases different trends are visible for the isolate 

and the reference populations. Villages behave similarly among them (B). doi: 10.1038/ejhg.2012.113 

 

To reconstruct a complete genealogical pedigree from birth, marriage and death records extracted 

from city and parish church archives, a powerful algorithm has been implemented in our 

laboratory42. As we showed in 2009 in Traglia et al43 most of the population (89.5%) was included 

in a large genealogical tree of about 50,000 people tracing back up to 16 generations. As shown in 

Figure 6 endogamy was 70% in the 17th century, indicating some immigration. It increased and 

reached 80% with peaks of 90% in 1800 and started to decrease in the middle of the 1900. 
 

 
Figure 6. Percentage of endogamic marriages, over the centuries. 25 years periods were considered and are indicated 

along the X-axis. Marriages were counted from the marriage registers. doi: 10.1371/journal.pone.0007554 

 

The healthy subjects enrolled in the study are 1,803 in 18-102 years range of age (Figure 7). This 

sample was enriched in females (56%) and in older people (mean age 55 years). There is an 

enrichment in older individuals: 34.4% are older than 65 years and 8.6% are older than 80 years. 

About 50% of the participants were born in Val Borbera, 90% of the rest were born in the nearby 

area but 80% of the parents and 90% of the four grandparents of the participants were born in Val 

Borbera. 

Thanks to the reconstructed full genealogy, the kinship coefficient (kc) of the living descendants of 

the original population has been calculated: the average kinship is 0.000373 with 3.5% of the entire 

population presenting a kinship=0. The average inbreeding in the population is 0.000746. 

 



 Chapter 1 

	
  
22 

 
Figure 7. Age and sex distribution of the participants to the study. 5 years periods were considered. In black are the 

males, in grey are the females. 

 

 

Genetic study of risk factor for iron-related diseases 

Val Borbera study (VB) collected a large set of quantitative traits risk factor for iron-related 

disorders, obesity, cardiovascular diseases as iron homeostasis parameters, hematological and lipid 

metabolism traits: serum iron, transferrin, transferrin saturation, ferritin and hepcidin, hemoglobin 

(Hb), hematocrit (PCV), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), 

mean corpuscular hemoglobin concentration (MCHC), red blood cell (RBC), total cholesterol 

(TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG). The 

genetic study of this set of quantitative traits is useful to predict the risk of disorders that affect iron 

stable status in healthy individuals and to understand the genetic architecture of diseases and 

biological processes of the onset of different clinical conditions.  

To assess a set of Val Borbera genotypes and perform genome-wide association analysis (GWAS), 

most of individuals (n=1,664) has been genotyped with Illumina 370K Quad v3 Array and n=121 

individuals with Illumina 700k Array, commercial chips enriched in variants that are common in 

the general population (Minor allele frequency - MAF >=5%).  

HapMap Project44 is an international consortium born in 2002 with the aim to obtain the most 

complete set of common variants and haplotypes representative of the general population. Several 

groups collected 270 samples from four different Asian, African and European populations and 

calculacteed the linkage disequilibrium (LD) between the variants and their haplotypes. In each 

genomic region were extracted tag-SNPs representative of the total SNPs in each haplotypes. The 

results represent a useful genetic map of the human genome published in 2005-2009 and available 

in public database to be used as reference for genetic studies. 

Thanks to this improvement most of published GWAS results showed common tag SNPs 

associated to complex traits and diseases as reported in GWA catalogue by National Human 

Genome Research Institute (NHGRI) (www.genome.gov/gwastudies/). To date GWAS studies 
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have examined more than 15 categories of common diseases and traits and discovered about 12,000 

SNP-trait whole-genome associations as shown in Figure 8. 

To improve the number of variants and their accuracy Val Borbera study firstly inferred the 

genotypes of the total sample of 1,785 individuals to 2.5M markers of HapMap2 Project release 

and to 3.2M markers of HapMap3 Project release31 based on common haplotypes and allele 

frequencies. 

 

A. 
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B. 

 
 

Figure 8. Genome-wide association study results for complex diseases and traits. (A) GWAS findings by 

categories reported in www.genome.gov/gwastudies/ and adapted from http://www.ebi.ac.uk/fgpt/gwas/. Last 

update Dec 2013. (B) Studies, traits and SNP-trait associations from 2005–2013 reveal the growth in eligible 

studies. doi:10.1093/nar/gkt1229 

 

The associated common variants explained only a small fraction of phenotypic variability as 

expected by literature45. The low frequency (MAF 1-5%) and rare variants (MAF<1%) are known 

to have higher impact on the phenotypes and potentially explain a large percentage of the total 

variance but they are not included in the widespread genotyping arrays.  

Thanks to the improvement of high throughput sequencing techniques and the concomitant fall in 

costs, several international projects had sequenced samples from different ethnic groups around the 

world to improve the knowledge about genetic variations in particular about low frequency 

variants. The first project that sequences a large number of people was 1000 Genomes Project46 

that analysed different ancestries individuals to provide a comprehensive resource on human 

genetic variants that have frequencies of at least 1% in the populations studied.  

The project started in 2008 as a Pilot phase and the publication in 201047 of the results obtained 

from low-coverage whole-genome sequences of 179 individuals from four populations; high-

coverage sequences of two mother–father–child trios; and exon-targeted sequencing of 697 

individuals from seven populations. The final phase 3 data collect the low coverage (4x) sequences 

of 2,577 individuals: 523 Eastern Asians, 494 Southern Asians, 691 Africans, 514 Europeans and 
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355 Americans spread in 25 populations. The data are fully available for autosomes, chromosome 

X and Y in October 2014. 

To focus on the rare variants effects most recently Val Borbera genotypes were inferred to about 

38M of markers released by 1000 Genomes Project46 and used in the current largest international 

meta-analyses for the genetic study of complex traits. 

  

The powerful contribution of genetic isolates to human variation knowledge 

Italian network of genetic isolates (INGI) 

The Italian isolated populations joined together in a consortium, the Italian Network of Genetic 

Isolates (INGI) to enlarge the samples size and perform large genetic meta-analysis in order to 

better exploit the typical enrichment in rare variants and the homogeneity of isolated cohorts in 

Italy. 

Population genetic studies on European populations have highlighted Italy as one of genetically 

most diverse regions, reflecting its demographic and geographic history48. Figure 9 showes the 

genetic diversity of Italian isolates respect to Europeans.  

 
Figure 9. Principal component analysis of genetic diversity in Europeans. Label position indicates the (a) specific 

PC1 and PC2 coordinate values for each individual and (b) the mean PC1 and PC2 coordinate values for each population. 

For (a, b), the colors have a following meaning: (1) dark blue color: a homogeneous fraction of the FVG population; a 

blue color: more general fraction of the FVG population; a red color: other Italian samples; a violet color: Basques; an 

orange color: Slovenians; and green color: all other populations. For (a, b), the following population abbreviation labels 

are used: AT, Austrians; BA, French Basques; BG, Bulgarians; BO, Borbera; CA, Carlantino; CL, Clauzetto; CH, Swiss; 

CZ, Czechs; GR, Germans; ER, Erto; ES, Spaniards; FR, French; HU, Hungarians; IL, Illegio; IT, Italians; JW_A, 

Ashkenazy Jews; JW_S, Sephardic Jews; OR, Orcadians; RE, Resia; RO, Romanians; SA, Sardinians; SA_, Sauris; 

SMC, San Martino del Carso; SI, Slovenians; TU, Tuscans. The extra abbreviations: N, northern; S, southern; I, a more 

homogeneous sub-population; G, a more general sub-population. doi:10.1038/ejhg.2012.229 

 

To date INGI collects four main projects: Val Borbera Project (VB)43, the East-Northern villages of 

Genetic Park of Friuli Venezia Giulia (FVG)49, the South village Carlantino (CARL)50 and 
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Campora and Gioi-Cardile in Cilento Genetic Park (CILENTO)51 and a total of more than 6,000 

genotyped and phenotyped individuals. 

Several studies published the results of INGI collaborations as the association of TAF3 to 

MCHC52, the study of the bitter receptor genes associated to food preferences53, the variation in 

platelet count in Italy54, the hearing function study49 and the meta-analysis on Anti Mullerian 

hormone for study of fertility55. 

INGI cohorts joined international consortia for the genetic study of many risk factors for common 

diseases in inbred and outbred populations: Genetic Iron Status (GIS) consortium for iron 

parameters study that identified a correlation between iron and lipid metabolism as shown in 

Chapter 856, HaemGen consortium that discovered seventy novel loci for hemoglobin and 

haematological traits57, Global Urate Genetics Consortium (GUGC) for the study of serum urate58 

and a large meta-analysis for the study of uromodulin in urinary traits59, Platelet consortium60 that 

identified eleven novel regulators of blood cell formation, Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) Consortium for the study of age of menarche, age of 

menopause61, thyroids diseases62 and CDKGen for renal traits63. 

Further population specific analyses have been performed on phenotypes collected by single INGI 

cohorts. As shown in Chapter 7 Val Borbera organized the first international large meta-analysis on 

hepcidin hormone64 in collaboration with other two Dutch outbred cohorts to dissect the loci that 

regulate hepcidin and iron pathway. 

 

How to uncover the missing disease-causing variants 

Whole-genome sequencing (WGS) 

Therefore to date INGI have been used in large meta-analyses to highlight genetic association of 

common variants with several complex traits. Thanks to next-generation sequencing approaches we 

are now able to map population-specific low-frequency variants. 

In 2012, INGI cohorts joined the ‘European Sequencing and Genotyping Infrastructure Project’ 

(ESGI) and ‘UK10k Project65’ coordinated by Wellcome Trust Sanger Institute, Hinxton, UK to 

focus on powerful enrichment in low-frequency variants of isolated populations and figure out 

most high-impact and causative variants associated to complex diseases in known and novel loci.  

UK10k Project65 collects 10,000 British individuals coming from Alspac cohort and Twins UK 

cohort and sequenced at low coverage (6x) about 4,000 people from both cohorts. 

The large-scale genome-wide studies of 4,000 DNA sequences allowed the exploration of rare 

variants of an order of magnitude greater depth (down to 0.1% allele frequency) than the 1000 

Genomes Project46 in different categories of phenotypes: hematological, cardiovascular, lipid 

metabolism, renal and anthropometric traits. 

The whole Italian cohort INGI genotypes dataset has been imputed using as reference the set of 

UK10k sequences to highlight associations in rare variants for about 30 traits shared between VB 
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and UK10k projects that affect metabolism: the results show several population-specific associated 

loci enriched in rare variants, other suggestive loci shared in two or more cohorts and most of 

UK10k outcomes replicated by Italian cohorts. These preliminary results highlight the power of 

genetic isolates to find out causative rare variants in novel and known loci. 

 

Reference panel of Italian sequences 

Recently several population studies used high-throughput sequencing resources to improve the 

power of their cohorts of discoverying rare variants associated to complex traits as the association 

of a very low frequency variant in APOC3 locus to plasma triglycerides in UK66 or gene-based 

association to psychophysiological phenotypes67 and to characterize the structure and genetic 

variation content of their population as Genome of Netherlands consortium68 and Finnish founder 

populations69.  

For the same purpose, about 1,000 samples were randomly selected from each isolated cohort INGI 

and are being typed by low-coverage whole-genome sequencing and high-coverage exome-

sequencing. The main aim is to further enrich in lower frequency variants and design an Italian 

reference panel to be used in genome-wide association analyses on iron-related diseases and other 

common diseases and secondly to quantify the genetic drifting events occourred in the history of 

Italian isolates and their evolutionary processes70. 

Afterwards it would be interesting to improve the INGI reference panel with additional sequences 

from South-Europe populations as Greek71 and other Mediterranean isolates as Croatian isles72 and 

to compare lower frequency to other general Italian genotyped populations as renal-diseases cohort 

study in ‘INCIPE Project’ at University of Verona. 

 

Aims and outline of the thesis 
 
The aim of this thesis is the identification of novel loci involved in regulation and disorders of iron 

homeostasis through epidemiological and genetic characterization of quantitative levels of hepcidin 

hormone and serum iron homeostasis parameters ferritin, iron, transferrin and transferrin saturation 

in a healthy Italian isolated population.  

The studies in this thesis consist of three major parts. The first part reported the study of hepcidin 

levels variability in the Italian cohort Val Borbera. In Chapter 2 a characterization of hepcidin-20 

isoform, a truncated isoform found in elevated levels in heterogeneous pathological conditions like 

acute myocardial infarction, anemia of chronic disease (ACD), and, particularly, in chronic kidney 

disease (CKD) has described and in Chapter 3, to better understand the unclear link between iron 

levels and metabolic syndrome (MetS) we tried to assess if the levels of hepcidin-25 isoform in 

individuals affected by metabolic syndrome correlate with their high levels of ferritin. 

The second part of this thesis focused on the effect in Val Borbera of the causative variant 

rs855791 in serine protease TMPRSS6 locus, the negative regulator of hepcidin. The effects in 
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vitro of 736A and 736V mutations on the inhibition of hepcidin and the levels of hepcidin and iron 

in homozygotes 736A respect to 736V in Val Borbera healthy individuals have been studied 

(Chapter 4). In Chapter 5 we evaluated whether the A736V TMPRSS6 polymorphism influences 

hepcidin levels and erythropoiesis in chronic hemodialysis cases respect to controls. 

In the third part of this thesis are reported several studies aimed to assess the genetic architecture 

of iron parameters and hepcidin. In particular Chapter 6 explains the association of HFE and 

TMPRSS6 to hepcidin, iron and hematological traits. The effects of inflammation and acquired 

iron deficiency on iron homeostasis were considered to to highlight the genetic effects. Due to the 

low statistical power of Val Borbera cohort to find out novel loci for hepcdin, we collaborated with 

two other Dutch groups and measured hepcidin levels for about 6,000 individuals in a large meta-

analysis (Chapter 7). Two novel candidate genes on chromosome 2 and 10 are reported. At the 

same time iron and the correlated parameters ferritin, transferrin and transferrin saturation have 

been studied in a large international meta-analysis planned by Genetic Iron Status (GIS) 

consortium from 2010 on 11 European cohorts that collect 48,000 individuals. Significative 

associations of known loci are confirmed and two novel loci for ferritin and three loci for 

transferrin discovered. Some loci have a high pleiotropic effect with lipid metabolism connecting 

iron homeostasis with cardiovascular risk (Chapter 8). 

The large dataset has been used in a Mendelian Randomization study (MR) to assess the effect of 

the increase of levels of iron in the brains of patients with Parkinson disease (PD) where genes 

known to modify iron levels were used to estimate the effect of iron on PD risk (Chapter 9). 

Chapter 10 debates the future perspectives to exploit the enrichment in rare and low-frequency 

variants of isolates INGI through the use of the innovative approach of whole-genome sequencing 

(WGS). A selected random sample of individulas from Val Borbera and from the villages of 

Genetic Park of Friuli Venezia Giulia has been analysed in order to improve the set of enriched rare 

and population specific variants. The INGI sequences will be combined in a haplotype enriched 

panel to be used as reference for the imputation of INGI cohorts and other Italian cohorts to 

improve the statistical power of GWAS and to better assess the biological processes of iron genetic 

disorders and other correlated metabolic parameters. 
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Part I 
A population-based study of hepcidin  

 
The first part of the study includes the characterization of interactions of hepcidin, the main 

regulatory molecule of iron homeostasis, with iron and other cellular and environmental 

factors in the large population of Val Borbera, an Italian genetic isolate. 

The two isoforms hepcidin-20 and hepcidin-25 present in serum  and their ratio were 

measured  and analyzed in relation with age, sex and iron parameters.  

Patients may present concurrent liver iron overload and metabolic syndrome (MetS), a 

dosorder known as dysmetabolic hyperferritinemia (DHF).  The possible role of hepcidin 

in the disease has been evaluated in a subset of Val Borbera individuals affected by 

metabolyc syndrome to try to dissect the correlation between MetS and  hepcidin level. 
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Abstract 
Hepcidin, a 25 aminoacid liver hormone, has recently emerged as the key regulator of iron 

homeostasis. Proteomic studies in limited number of subjects have shown that biological fluids can 

also contain truncated isoforms, whose role remains to be elucidated. We report, for the first time, 

data about serum levels of the hepcidin-20 isoform (hep-20) in a general population, taking 

advantage of the Val Borbera (VB) study where hepcidin-25 (hep-25) was measured by SELDI-

TOF-MS. Detectable amount of hep-20 were found in sera from 854 out of 1577 subjects (54.2%), 

and its levels were about 14% of hep-25 levels. A small fraction of subjects (n=30, 1.9%) had 

detectable hep-20 but undetectable hep-25. In multivariate regression models, significant predictors 

of hep-20 were hep-25 and age in males, and hep-25, age, serum ferritin and body mass index in 

females. Of note, the hep-25:hep-20 ratio was not constant in the VB population, but increased 

progressively with increasing ferritin levels. This is not consistent with the simplistic view of hep-

20 as a mere catabolic byproduct of hep-25. Although a possible active regulation of hep-20 

production needs further confirmation, our results may also have implications for immunoassays 

for serum hepcidin based on antibodies lacking specificity for hep-25. 
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Introduction 
In the last decade hepcidin, a small peptide hormone, has emerged as the key regulator of systemic 

iron homeostasis1,2. Hepcidin inhibits the intestinal absorption of dietary iron 

and the release of iron from macrophages through the interaction with the transmembrane iron 

exporter ferroportin, causing its internalization and degradation in lysosomes3. The iron bioactive 

form of hepcidin is a 25-amino acid peptide (hep-25) that shares high homology with defensins, a 

family of antimicrobial peptides of the innate immunity4. It is produced mainly by the liver as an 

84-amino acid precursor that subsequently undergoes proteolytic cleavages to generate the mature 

form5. Further hep-25 processing can result in the generation of two amino-terminal truncated 

isoforms, hepcidin-22 (hep-22) and hepcidin-20 (hep-20), whose physiological role is still unclear6. 

The development of a reliable hepcidin assay has been proven difficult, particularly with classical 

immunological methods, yielding to a number of different approaches7. Among these, Mass 

Spectrometry (MS) based studies in limited number of subjects have identified and measured small 

amounts of hep-20 in both serum and urine, while hep-22 has been found only in urine8. Of note, 

functional studies have demonstrated that the two truncated isoforms almost completely loss the 

ability to interact with ferroportin9. Being inactive in iron regulation, they have been postulated to 

be degradation byproducts of hep-25. On the other hand, recent studies have suggested that hep-20 

may retain greater antimicrobial and fungicidal activity than hep-25, particularly at acidic pH (pH 

5.0)10,11. In the small series published until now, relatively high levels of hep-20 have been detected 

in heterogeneous pathological conditions like acute myocardial infarction (AMI)12, anemia of 

chronic disease (ACD)13, and, particularly, in chronic kidney disease (CKD)14-16. In our previous 

study using an improved Surface Enhanced Laser Desorption/Ionization Time of Flight-MS 

(SELDI-TOF-MS) approach where 54 patients in chronic hemodialysis were compared with 57 

controls, hep-20 was detectable in 100% and 39%, respectively15. Kroot et al.17 evaluated 186 

patients with various diseases and 23 healthy controls by a weak cation exchange (WCX)-TOF-MS 

assay. No isoforms were found in sera from healthy subjects and patients with low hepcidin 

concentrations, while relevant amount of hep-20 were found in some conditions, again particularly 

in CKD. These studies highlighted that the contribution of hep-20 to “total” serum hepcidin 

measured by a non-selective ELISA assay is not constant but may vary substantially between 

healthy subjects and patients with different diseases. However, large-scale information about serum 

hep-20 concentration is lacking. Thus, the present study was aimed at quantifying serum hep-20 

within the framework of the recently completed Iron Section of the Val Borbera (VB) study18, 

where serum hepcidin was measured by SELDI-TOF-MS. To the best of our knowledge, we report 

here for the first time in a large general population the levels of hep-20 according to age and sex, 

their determinants, and the variations of hep-25:hep-20 ratio according to the iron status.  
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Material and methods 

Subjects and biochemical analyses 

This study included 1577 subjects aged 18–98 years enrolled in the Iron Section of the VB study. 

Details about the general design of this study, as well as the enrollment criteria have been 

extensively reported elsewhere18,19. The study was approved by the San Raffaele Hospital and 

Regione Piemonte ethical committees, and all subjects gave written informed consent. For each 

participant, anthropometric, complete blood cell count, and biochemical parameters including 

serum iron, transferrin, transferrin saturation, ferritin, creatinine, and markers of inflammation were 

available. Serum hepcidin isoforms were determined using a SELDI-TOF-MS assay previously 

used for their identification and characterization8, and subsequently validated for quantification by 

several investigators including our group12-18,20. 

 

 
Figure 1. Representative SELDI-TOF-MS profile of serum samples from Val Borbera cohort with (A) and without (B) 

hep-24 internal standard. The hepcidin isoforms hep-20, hep-24 (synthetic analogue), and hep-25 are indicated by 

rectangles. 

 

Briefly, copper loaded immobilized metal affinity capture ProteinChip arrays (IMAC-30 Cu2+) 

were selected as chromatographic surface. A synthetic hepcidin analogue, hepcidin-24 (hep-24, 

purchased from Peptide International, Louisville, KY), was used as internal standard for 

quantification. Spectra were collected in duplicate for each serum samples, with or without spiking 

of the internal standard at a concentration of 10 nM (Fig. 1). With respect to hep-20 quantification, 

we used as reference peak hep-20 kindly provided by Dr. Elizabeta Nemeth (University of 
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California Los Angeles, CA). Hep-20 concentration was expressed in nM resulting from the 

following equation: (sample 2192 m/z peak intensity) × 10 nM/(hep-24 spiked sample 2673 m/z 

peak intensity–nonspiked sample 2673 m/z peak intensity). Based on the measured background 

noise in MS spectra, the lower limit of detection (LLOD) for both hepcidin isoforms was 0.55 nM. 

It was calculated on 20 randomly selected VB sera, and was in agreement with the LLOD 

previously published by our group and others20. Adequate linear standard curve (y = 1.566 × − 

0.254, R2 = 0.998) was obtained by serially diluting synthetic hepcidin-20 in blank serum (diluted 

1:100 in water). Intra-day precision was determined by using three different concentrations of hep-

20 (5, 10, and 25 nM), each with seven replicates. This was repeated on four separate days. 

Precision was assessed by coefficient of variation (CV%). The within and between run precisions 

at the low concentrations similar to what found in VB subjects were 6.9% and 7.0%, respectively. 

The mean peak intensity ratio hepcidin-24/hepcidin-20 in blank serum spiked with both peptides at 

7 different concentration combinations (25, 20, 15, 12.5, 10, 7.5, and 5 nM) was 0.85, i.e. similar to 

what obtained for the main isoform hepcidin-2515. 

 

Statistical analyses 

Statistical analyses were performed using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). 

Continuous variables were expressed as means ± standard deviations, while those with a skewed 

distribution, including hep-25, hep-20, hep-25:hep-20 ratio, ferritin, CRP and creatinine, were log-

transformed and expressed as geometric means with 95% confidence intervals (CIs). Considering 

that in many subjects the levels of hepcidin (in particular those of hep-20) were not detectable, not 

allowing a correct log-transformation, the relative statistical analyses in the whole study population 

were performed adding the value of 0.1 to each hepcidin value and considering not detectable 

hepcidin levels as 0 (thus, the log transformable 0.1 [0 + 0.1] for statistical analysis). For sake of 

completeness, the analyses on hep-25 and hep-20 were performed also in the subgroups with 

detectable levels. On the other hand, the analyses on hep-25: hep-20 ratio were performed only in 

subjects with detectable levels of both isoforms. Quantitative data were analyzed using the 

Student's t test or by analysis of variance (ANOVA) with polynomial contrasts for linear trend 

when indicated. Sex specific correlations between quantitative variables were assessed using 

Pearson's test. Qualitative data were analyzed using the chi-square test, with analysis for linear 

trend when indicated. Independent determinants of serum hep-20 and hep-25:hep-20 ratio were 

estimated by means of linear regression models, including all the variables significantly associated 

at univariate analysis. Two-sides P values < 0.05 were considered statistically significant. 

 

Results 
The main characteristics of the total population are listed in Table 1. This table also lists data 

stratified by gender, since we previously observed significant gender differences in serum levels of 
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the bioactive hep-25 isoform, as reported in detail elsewhere18. 

 

 Table 1. 

 
 

Briefly recapitulating, hep-25 was significantly lower in women aged <50 years as compared to 

men of same age, while after this time-point (nearly corresponding to women's menopause) hep-25 

levels tended to be similar in both sexes and relatively stable over the following decades. This 

reflected mainly the lower iron status (i.e. lower ferritin levels) of women during the fertile period, 

where iron absorption from the gut needs to be allowed by low hep-25 to counterbalance iron 

losses with menses. Hep-20 was detectable in 854 out of 1577 (54.2%) subjects, at variance with 

hep-25, which was detectable in 89.1% of subjects. The main characteristics of the subjects 

stratified for detectable serum hepcidin isoform are reported in Supplementary Table 1. Of note, 

there was a group, albeit small (n=30, 1.9%), of subjects in whom only the “minor” hep-20 isoform 

was detectable. In general, as compared with subjects with undetectable hep-20, subjects with 

detectable hep-20 were older and had higher body iron status (as reflected by transferrin saturation 
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and ferritin levels) and hep-25 levels (Supplementary Table 2). 

The two hepcidin isoforms were significantly and positively correlated in both sexes (males: r = 

0.48, P < 0.001; females: r = 0.45, P < 0.001; Fig. 2). At univariate analyses, hep-20 also 

significantly correlated with age, hemoglobin, and C-Reactive Protein (CRP) in men, and with age, 

body mass index (BMI), ferritin, CRP and creatinine in women (Table 2). Multivariate linear 

regression models showed hep-25 and age as independent significant predictors of hep-20 in men, 

while hep-25, age, BMI, and ferritin were significant predictors of hep-20 in women (Table 3A and 

B). Of note, the beta coefficient of ferritin in women was negative (Table 3B). Fig. 3A and B 

shows the variations of hep-20 in the VB population according to different ranges of age and iron 

status (reflected by serum ferritin levels), respectively. In addition, Supplementary Fig. 1 shows the 

corresponding hep-25 levels after stratification for ferritin levels.  

 
Figure 2. Correlation plot between hep-20 and hep-25 (logarithmic scale) 
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Table 2.  

 
 

We then focused on the ratio between the two isoforms, and particularly on its behavior in relation 

with age and iron parameters of VB subject (Table 4 and 5). This analysis could be properly done 

only in subjects with both the hepcidin isoforms detectable (n = 824). The hep-25:hep-20 ratio was 

clearly lower in women aged <50 years (i.e. premenopausal) as compared to men of corresponding 

age, while differences attenuated in the subsequent decades (Fig. 4A). Of note, the hep-25:hep-20 

ratio was not constant in the VB population, but increased progressively according to increasing 

ferritin levels (Fig. 4B). Fig. 5A and B summarizes the relative percentages of hep-25 and hep-20 

according to increasing ferritin levels. In both sexes, the relative percentage of hep-20 

progressively and significantly decreased with increased ferritin levels. 

 

Discussion 
Although much is known on the mechanism of action of hepcidin through the binding with its 

receptor/cellular exporter ferroportin3, the mechanism(s) of hepcidin processing, secretion, and 

catabolism are still poorly elucidated.  
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Table 3.  

 

 
Initial efforts to establish reliable assays for this hormone have indicated that the entire pre-pro-

hormone (84 amino acid) is also present in the circulation21, while, at variance with hep-25, its 

concentration correlates poorly with iron status22. Moreover, small studies by MS-based 

techniques7,8 have found that two further N-terminal truncated isoforms, namely hep-22 and hep-

20, are present in biological fluids, particularly hep-20 in certain disease conditions like CKD 15,17. 

Even though hep-20 may be either quantitatively or qualitatively the most relevant isoform of 

“mature” hepcidin, no large-scale population study has been conducted so far on its serum levels 

relative to hep-25, as well as on its possible determinants. This study establishes for the first time 

that more than half individuals at population level have detectable amount of hep-20 in the 

circulation. 
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Figure 3. Behavior of hep-20 in VB population according to different ranges of age (A) and ferritin (B), respectively. 

Males are indicated by continuous blue line, females by a red dotted line. 

 

These individuals were generally included among those with discrete amount of serum hep-25, 

who in turn represented approximately 89% of the total VB population. As described in detail 

elsewhere18, the remaining 11% of individuals were mostly represented by pre-menopausal women 

with highly prevalent low iron status23, implying the need to suppress hepcidin for up-regulating 

the absorption of dietary iron2. The large VB database also allowed us to investigate the relevant 

variables associated with hep-20 levels. To put our results into perspective, we will discuss in more 
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detail two main possible practical implications. 

 

Hepcidin-20 as a possible caveat in hepcidin assay for clinical purpose 

To the best of our knowledge, the VB is the first large-scale population study on serum hepcidin 

using a MS-based assay. The high correlation of hep-25 with iron status was reported elsewhere18, 

and paralleled what observed in a Dutch population by another group using an ELISA method24. 

Notwithstanding recent considerable progress in the complex field of hepcidin assay7, we still lack 

a gold reference method25, and each approach has relative advantages and caveats. 

 

Table 4. 

 
 

In particular, ELISA methods are cheaper, easy, and have the potential for wide diffusion in 

clinical settings, but lack absolute specificity for hepcidin isoforms because of various degree of 

antibody cross-reactivity that is hard to eliminate. On the other hand, MS-based methods are costly 

and require dedicated personnel, but can properly distinguish the isoforms. Indeed, in the only 

study published so far that directly compared two second-generation hepcidin assays, Kroot et al. 

showed that the observed differences in absolute concentrations were explained, at least partially, 

by the isoforms detected by MS, as opposed to “total” hepcidin detected by ELISA17. Until now, 

data on hep-20 in healthy subjects were limited and could only be inferred from small case–control 

studies. We previously reported by SELDI- TOF-MS that hep-20 was detectable in sera from 35 

out of 57 (62%) healthy controls, at variance with CKD patients in whom hep-20 was always 

detectable15. Kroot et al., using WCX-TOF-MS assay, compared data from 23 healthy controls with 

several groups of patients with heterogeneous disorders of iron metabolism17. Hep-20 was not 
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detectable in the few of controls, but was frequently high in several diseases, particularly in CKD. 

 

Table 5. 

 
 

Different percentage in controls with detectable hep-20 between the two studies may be explained 

by the fact that we used more stringent criteria for “control” definition, excluding subjects with 

even subclinical iron deficiency and hence virtually eliminating those with low/ absent hepcidin 

production. Anyway, the present study suggests that the relative contribute of hep-20 to “total” 

serum hepcidin is not negligible at population level. In the total population, mean hep-20 levels 

were about 14% of corresponding hep-25 levels. On the other hand, when considering only 

subjects with detectable hep-25 levels (n= 1405), this percentage rose up to 42.1%. 
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Figure 4. Hep-25:hep-20 ratio in groups of individuals classified according to age (A) and ferritin levels (B), 

respectively. Males are indicated by blue continuous line, females by a red dotted line. 

 

Hepcidin-20: more than simply a “fixed” degradation products? 

The presence of circulating truncated hepcidin isoforms raises questions about their origin and 

biological meaning. Until now, little is known about the processing of the 22-mer, and 20-mer 

peptides. Biochemical studies from Schranz and co-workers26 proposed that the two truncated 

isoforms may result from the sequential action of unknown aminopeptidases on the mature hep-25 

peptide. The Authors suggested Dipeptidylpeptidase IV as a strong candidate for the generation of 

hep-20 from hep-22, based on the presence of a proline at the cleavage site27. Whatever the 

molecular mechanism, whether or not the processing is actively regulated remains elusive. 

Theoretically, hep-20 may represent either the final inactive product of constitutive (i.e. not 

regulated) degradation of hep-25, or a possibly functional peptide whose production may be 

modulated by body's need relative to the need of hep-25.  
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Figure 5. Relative percentages of hep-25 and hep-20 according to increasing ferritin levels in males (A) and females (B), 

respectively. The percentage value over the column represents the proportion of hep-20 on total hep (calculated as hep-

20+hep-25). 

 

Clues to the latter hypothesis are the recent studies on the potentially relevant antimicrobial 

properties of hep-2010,11, as well as the pilot studies on its increased concentration in several 

diseases12,13,15,16. Although our study cannot inform on the putative hep-20 function, it may point 

toward a putative active regulation of hep-20 production and/or hep-25 degradation. This is 

illustrated particularly by analyzing the hep-25:hep-20 ratio. A simple degradation process should 

result in a relatively stable ratio between the bioactive peptide (hep-25) and its catabolic product 

(hep-20). On the other hand, as depicted in Fig. 4A and B, the ratio was consistently lower in 

women during the fertile period than in men of corresponding age, and increased progressively in 
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both sexes with increasing ferritin levels. Accordingly, a multivariate model showed that ferritin 

was an independent predictor of hep-20 in women with a negative coefficient, and not positive as it 

would be expected if hep-20 would merely represent a constitutive degradation product of hep-25 

(Table 5). Taken together, these observations suggest that in subjects with iron deficiency the few 

hep-25 produced may be, in addition, efficiently degraded to keep the iron bioactive peptide as low 

as possible to maximize intestinal iron absorption. On the other hand, in subjects with adequate or 

high iron status hep-25 degradation may proceed less efficiently to keep a normal iron balance 

and/or prevent dangerous iron load. 

 

Study limitations 

Although fascinating, the hypothesis of an active regulation of hep-20 needs further specific 

studies, being only indirectly supported by our data. Other limitations of our study are represented 

by the lack of mechanistic explanation on hep-20 formation/function, as well as the relatively high 

lower limit of detection of our assay that did not allow proper evaluation of the hep-25:hep-20 ratio 

in subjects with undetectable levels of both isoforms. Moreover, our data suffer from the lack of 

standardization of current hepcidin assays25, and need confirmation once a “gold reference” assay 

will be established. 

 

Conclusions 
Considering the recent discovery of hepcidin, we are likely only at the beginning of a story in 

which much has to be yet discovered. While in the last decade we have learned much on hepcidin 

regulation at transcriptional level1,2, times may be mature for in depth investigations on the post-

translational regulation of this small peptide hormone. If confirmed, our data may suggest an active 

regulation of hep-25 degradation according to body iron need. The protease(s) responsible of hep-

25 processing, once identified, might be therapeutic target(s) for the control of iron metabolism. 
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Abstract 
The recent discovery of hepcidin, the key iron regulatory hormone, has changed our view of iron 

metabolism, which in turn is long known to be linked with insulin resistant states, including type 2 

diabetes mellitus and the Metabolic Syndrome (MetS). Serum ferritin levels are often elevated in 

MetS (Dysmetabolic hyperferritinemia - DHF), and are sometimes associated with a true mild-to-

moderate hepatic iron overload (dysmetabolic iron overload syndrome - DIOS). However, the 

pathophysiological link between iron and MetS remains unclear. This study was aimed to 

investigate, for the first time, the relationship between MetS and hepcidin at population level. We 

measured serum hepcidin levels by Mass Spectrometry in 1,391 subjects from the Val Borbera 

population, and evaluated their relationship with classical MetS features. Hepcidin levels increased 

significantly and linearly with increasing number of MetS features, paralleling the trend of serum 

ferritin. In multivariate models adjusted for relevant variables including age, C-Reactive Protein, 

and the HFE C282Y mutation, ferritin was the only significant independent predictor of hepcidin in 

males, while in females MetS was also independently associated with hepcidin. Overall, these data 

indicate that the fundamental iron regulatory feedback is preserved in MetS, i.e. that hepcidin tends 

to progressively increase in response to the increase of iron stores. Due to recently discovered 

pleiotropic effects of hepcidin, this may worsen insulin resistance and contribute to the 

cardiovascular complications of MetS. 
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Introduction 
The “metabolic syndrome” (MetS) is a condition highly prevalent in western countries, involving 

near one fourth of the adult population1. Although definitions vary, the essential features of MetS 

are represented by the deadly quartet of hyperglycemia, dyslipidemia, hypertension, and obesity2, 

leading to a substantial cardiovascular risk, but also to risk of hepatic diseases, namely 

nonalcoholic fatty liver disease (NAFLD). In 1997, Moirand et al. first reported the presence of 

histologically proven liver iron overload in overweight subjects with abnormal glucose metabolism 

and dyslipidemia3. This condition, later designated as dysmetabolic iron overload syndrome 

(DIOS)4, is now known to occur in about one third of subjects with NAFLD and represents the 

most severe counterpart of the so-called dysmetabolic hyperferritinemia (DHF) (for a recent 

extensive review, see Dongiovanni et al5). The latter in turn is by far the commonest cause of 

consultation for increased serum ferritin levels in clinical practice6. Nevertheless, the complex 

pathophysiological links between iron and metabolic derangements remain poorly understood5. In 

the last ten years, hepcidin has emerged as the key iron-regulatory hormone7. This defensin-like 25 

amino acid peptide is mainly produced by the liver in response to increased plasma or tissue iron to 

homeostatically down-regulate absorption and recycling of the metal8. At the molecular level, 

hepcidin acts by binding and inactivating its cell membrane receptor ferroportin, the only known 

cellular iron exporter9. Ferroportin is particularly expressed by cells critical for iron homeostasis, 

like absorbing duodenal enterocytes, reticuloendothelial macrophages (involved in iron storage and 

recycling), and hepatocytes (involved in iron storage and endocrine regulation)9. Hepcidin is also 

upregulated by inflammatory cytokines, a response believed to contribute to host defense by 

subtracting iron from invading pathogens10. Given its central role in iron homeostasis, hepcidin 

represents an appealing candidate to be investigated in subjects with MetS features, but until now 

methodological difficulties11 have hampered large epidemiological studies. Taking advantage from 

the recently completed iron section of the Val Borbera Study (VBS)12, this study was aimed to 

investigate the relationships between hepcidin and the main features of MetS at population level. 

 

Materials and Methods 
Details on the VBS population have been previously reported elsewhere12. Individuals aged 18 

years or older were eligible to participate in the study. In this analysis we included subjects with 

available complete data allowing their classification according to established criteria for MetS2. In 

detail, the following features were considered: 1) abdominal obesity, defined as the presence of 

waist circumference ≥94 cm in men or ≥80 cm in women; 2) fasting plasma glucose ≥100 mg/dL 

or drug treatment for elevated blood glucose; 3) serum triglycerides ≥150 mg/dL or drug treatment 

for elevated triglycerides; 4) serum HDL cholesterol (HDL-C) <40 mg/dL in men and <50 mg/dL 

in women or drug treatment for low HDL-C; 5) blood pressure ≥130/85 mmHg or drug treatment 

for elevated blood pressure. Subjects were considered to have MetS when they had at least three of 
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the above-mentioned five traits. Homozygotes for the hemochromatosis mutation (C282Y on the 

HFE gene) were excluded (n = 7). A total of 1,391 subjects, 616 men and 775 women were finally 

included in the present study. Fasting blood samples obtained early in the morning were analyzed 

the same day or stored at −80°C for further analysis. Routine blood parameters and serum hepcidin 

were determined by standard methods and by mass spectrometry, respectively, as previously 

described12. The study was approved by the ethical committees of San Raffaele Hospital Milano, 

Regione Piemonte, and Azienda Integrata Ospedaliera Universitaria of Verona, Italy. All subjects 

gave written informed consent. 

 

Statistical Analyses 

All calculations were performed using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). As 

many of the continuous variables of interest, including serum hepcidin and ferritin, showed a non-

Gaussian distribution, their values were log-transformed and expressed as geometric means with 

95% confidence intervals (CIs). 

Since some subjects had serum hepcidin levels below the lower limit of detection (LLOD) for our 

method (0.55 nM), to allow a correct analysis these subjects were considered as having hepcidin 

“0”, and hepcidin was log-transformed after the addition of 0.1 to each value in the dataset. 

Quantitative data were analyzed using the Student’s t test or by analysis of variance (ANOVA) 

with polynomial contrasts for linear trend, when appropriate. Qualitative data were analyzed with 

the χ2 test and with χ2 analysis for linear trend, when appropriate. Correlations between 

quantitative variables were assessed using Pearson’s coefficient. Most of the hepcidin-related 

analyses were done separately in males and females, since we12 and others13 recently reported 

substantial gender differences in hepcidin serum levels. Particularly, women during the fertile 

period showed hepcidin levels significantly lower (i.e. less than half) than men of the same age 

range. Similarly, since MetS subjects were older than those without MetS, analyses were always 

adjusted for age. Independent determinants of serum hepcidin levels were assessed through a series 

of linear regression models, using either MetS by itself or individual MetS features as covariates, 

and adjusting for age, ferritin, C-Reactive Protein (CRP) and C282Y HFE mutation. Two-sided p 

values <0.05 were 

 

Results 
Table 1 summarizes the main clinical, anthropometrical and biochemical features of the population 

studied, including stratification by gender. Using these data, we calculated the population 

prevalence of MetS features (shown in Table S1). Overall, 304 individuals (21.9%) could be 

classified as having MetS using the criteria defined above. Table 2 shows the biochemical iron 

parameters of the VB subjects stratified for having or not the MetS. Of note, MetS subjects had 

significantly higher serum levels of both ferritin and hepcidin as compared to subjects without 
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MetS (geometric means for ferritin: 102 versus 61 µg/L, P<0.001; for hepcidin: 7.95 versus 4.29 

nM, P<0.001). Such results remained statistically significant also after adjusting for age and sex 

(Table 2, last column). Beyond mean values, to evaluate the proportion of MetS individuals with 

high hepcidin values, we stratified hepcidin levels into quartiles considering subjects with no or 

just one MetS feature as the reference group. Of note, subjects with undetectable hepcidin levels 

were significantly underrepresented in the MetS group as compared to the non-MetS group (Table 

2). As shown in Figure S1, near 50% of subjects with ≥4 MetS features had hepcidin values in the 

top quartile of the reference group. We then evaluated the behavior of these two parameters 

according to the number of MetS features (0 to 5, where the last two categories were merged 

because of the small number of subjects with all five the features). According to our previous data 

in a different population14, serum ferritin levels increased linearly according to increasing number 

of MetS features, both in males and in females (Figures S2 A–C). The same behavior was observed 

for serum hepcidin levels, again both in males and in females (Figures 1 A–C). At univariate 

analyses (Table S2), the variable showing the strongest association with hepcidin was ferritin (beta 

coefficients = 0.559, and 0.585 in males and females, respectively; P<0.001 for both). Of note, beta 

coefficients and slopes were quite similar when correlations were made separately in subjects with 

or without the MetS (Figure S3), suggesting that the homeostatic loop of hepcidin in response to 

iron stores is well preserved in MetS. 

We then performed a series of multiple logistic models to assess the influence of MetS or its 

individual components on hepcidin levels in both sexes after adjustment for age and all the other 

relevant covariates, i.e. ferritin, CRP, and C282Y HFE mutation (whose allelic frequency in the VB 

population was 0.065)12. When considering MetS as a comprehensive covariate (Table 3) in a 

model adjusted for age and serum ferritin, it was independently associated with hepcidin in females 

but not in males, although the standardized beta coefficient (0.093) for MetS was quite lower than 

that for ferritin (standardized beta coefficient = 0.580). This association remained statistically 

significant also after adjustment for CRP and C282Y HFE mutation (standardized beta coefficient 

= 0.080; P = 0.012), as well as after including in the model hemoglobin, uric acid, and creatinine 

(standardized beta coefficient = 0.073; P = 0.028). Considering the individual MetS features as 

covariates (Table S3), the only independent association was observed for abnormal glucose 

metabolism in females, again with a beta coefficient (0.080) much lower than that of ferritin 

(0.638). Since the interaction term between ferritin and MetS was significant in females (P<0.001), 

hepcidin levels were stratified in this group according to both ferritin levels and presence/absence 

of MetS. As shown in Figure S4, the MetS-associated increase of hepcidin was particularly evident 

(and statistically significant) in females with the lower ferritin values. A similar trend was not 

observed in males (data not shown). Finally, when females were stratified on the basis of hepcidin 

levels, the prevalence of MetS increased progressively from the lowest to the highest strata (Figure 

S5A). This association remained statistically significant after adjustment for age and ferritin 
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(Figure S5B). 

 

 

 
Figure 1. Serum hepcidin levels in the Val Borbera population according to increasing number of MetS features. 

(A) whole population, (B) males and (C) females. 

 

Discussion 
In the recent years, a bulk of evidence, particularly from epidemiological studies14-17 have 

established a link between iron metabolism and insulin resistant states, including type 2 diabetes 
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mellitus and the MetS (for recent reviews, see Dongiovanni et al5 and Rajpathak et al18). 

Accordingly, experimental studies19, recently confirmed by a sophisticated approach in C. 

Elegans20, have revealed a complex interplay between insulin/IGF-1 signaling and ferritin 

expression. On the other hand, some prospective studies16,17 have shown a positive association 

between baseline levels of ferritin, i.e. the best available serum marker of body iron stores21, and 

development of type 2 diabetes. On this basis, it has been postulated that iron may promote insulin 

resistance through its well-known pro-oxidant properties22. Although this causal link remains 

debated, it is undisputed that dysmetabolic subjects often have high serum ferritin levels, being the 

so-called dysmetabolic hyperferritinemia (DHF) the commonest cause of mild to moderate 

hyperferritinemia in clinical practice6. The histopathological entity known as dysmetabolic iron 

overload syndrome (DIOS, formerly designated as “insulin resistance-associated hepatic iron 

overload – IRHIO)4 is now believed to represent the most severe clinical expression of DHF5, 

where variable degrees of stainable iron coexist with classical features of NAFLD, and serum 

ferritin levels predicts advanced hepatic fibrosis23. 

Our view of iron overload disorders has radically changed by the discovery of hepcidin7, which has 

been demonstrated to be inappropriately low in genetic hemochromatosis8. On the other hand, pilot 

studies have found high hepcidin levels in either serum24 or urine25 of few DIOS subjects (n = 16 to 

24), suggesting a distinct pathogenesis. Supporting and extending these observations, our results 

establish for the first time at population level that subjects with MetS have increased serum levels 

of hepcidin. In subjects of both sexes hepcidin increased linearly with increasing number of the 

five classical MetS features, paralleling the previously described behavior of serum ferritin14. 
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Of note, serum ferritin was the strongest predictor of hepcidin, while in our analyses CRP, the 

classical systemic marker of inflammation, was not a significant determinant of both parameters. 

Taken together, these data indicate that the fundamental iron regulatory feedback is preserved in 

MetS, i.e. that hepcidin tends to progressively increase in response to a moderate increase of iron 

stores, likely in the attempt to counterbalance it by limiting intestinal iron absorption. As a 

corollary, once simple and cheap hepcidin assays will be available in the future, the 

hepcidin:ferritin ratio may be proven helpful in practice for rapid distinction of DHF/DIOS from 

other iron overload disorders where hepcidin is inappropriately low, as mentioned above. 
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While our data definitively exclude hepcidin deficiency as the underlying mechanism, the key-

point that remains to be addressed is the primum movens leading to an increase of iron stores in 

some dysmetabolic subjects. Aigner et al. proposed that some cytokines produced by the expanding 

adipose tissue (i.e. TNF-α and other “adipokines”) may down-regulate hepatic ferroportin leading 

to intracellular iron accumulation and compensatory stimulation of hepcidin26. Things are further 

complicated by the fact that the adipose tissue by itself may be a source of hepcidin27. On the other 

hand, some findings in women may be in agreement with these hypotheses. Indeed, we found that 

in women MetS was independently associated to hepcidin in multivariate models. Of note, when 

women with or without MetS were stratified by ferritin levels, MetS women with ferritin in the 

lower range had hepcidin levels significantly higher than non-MetS counterpart. Since this was 

particularly evident in women with ferritin levels indicating true iron deficiency (i.e. <30 µg/l) 

where hepcidin is generally almost completely suppressed12, this suggests that some MetS-related 

factors may affect hepcidin in this subgroup. On the other hand, the influence of MetS per se on 

hepcidin levels appears limited when iron stores are abundant. Recent experimental studies have 

found that leptin, one of the main adipokines, is able to stimulate hepatic hepcidin production28, 

and a positive correlation has been found between serum levels of leptin and hepcidin in obese 

children29. Our results may warrant further studies on adults in this direction, particularly focusing 

on differences by gender. Indeed, the reason(s) why we observed an independent influence on 

hepcidin only in women remain to be elucidated. Nonetheless, some clues in literature also suggest 

that the link between iron and dysmetabolic features may be particularly relevant in women. Sheu 

et al. found a relationship between ferritin and insulin resistance only in women but not in men15. 

Similarly, the largest prospective study showing ferritin as an independent predictor of future 

development of type 2 diabetes mellitus included only women16. 
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Chronic Hyperhepcidinemia in Metabolic Syndrome: more than Simply a Bystander? 

Whatever the mechanism(s) behind, this study establishes for the first time at population level that 

hepcidin levels tend to be high in MetS. In view of the rapidly growing evidence for pleiotropic 

effects of hepcidin, this may have relevant implications for the MetS pathophysiology. First, 

studies in cellular models have recently demonstrated that hepcidin binding to ferroportin is able to 

activate Janus kinase 2/Signal Transducer and Activator 3 (Jak2/STAT3) signaling, leading in turn 

to an increased production of Suppressor of cytokine signaling 3 (SOCS3)30, a central player in 

inducing hepatic steatosis, and MetS in mouse models31. Thus, hyperhepcidinemia might prime a 

vicious circle worsening MetS through SOCS3 induction over time. Second, high hepcidin levels 

may theoretically contribute to the well-known cardiovascular morbidity in MetS subjects. Indeed, 

three very recent experimental studies32-34 have concordantly indicated that hepcidin may promote 

atherosclerosis, particularly by destabilizing the plaques through macrophage overactivation after 

erythrophagocytosis34. 

 

Study Limitations 

Due to its observational design, our study cannot provide any mechanistic explanation, particularly 

with regards to whether increased hepcidin levels are cause or consequence of insulin resistance in 

subjects with MetS. Similarly, the lack of data on insulin levels precluded a direct analysis of the 

relationship between hepcidin and estimates of insulin resistance. 

 

Conclusions 
Our population study provides the first evidence for chronic hyperhepcidinemia as a new additional 

feature of MetS. The strong association between hepcidin and ferritin, as well as their parallel 

behavior as a function of increasing number of MetS features, suggest that hyperhepcidinemia may 

occur mainly in response to mild-to-moderate increase of body iron stores. Due to the recently 

discovered pleiotropic effects of hepcidin, our study suggests future investigations on the possible 

role of this hormone in worsening insulin resistance and in promoting the cardiovascular 

complications of MetS. 
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Part II 
Effect of A736V TMPRSS6 on hepcidin and iron 

metabolism in healthy individuals and in case 

controls studies 

 
The next two studies focused on the serine protease matriptase-2 TMPRSS6, the negative 

regulator of hepcidin and of the BMP/SMAD pathway. TMPRSS6 inactivation causes 

iron-deficiency-anemia refractory to iron administration both in humans and mice. 

Genome wide association studies have shown that the SNP rs855791, which causes the 

matriptase-2 V736A amino acid substitution, is associated with variations of serum iron, 

transferrin saturation, hemoglobin and erythrocyte traits.  

In the first study the activity of hepcidin inhibition of rs855791, has been verified in vitro 

and then tested in healthy Val Borbera population. 

In the second study the effect of TMPRSS6 polymorphism rs855791 on hepcidin and 

erythropoiesis has been studied in patients with chronic hemodialysis (CHD) to clarify 

whether rs855791 influences iron metabolism and anemia during chronic inflammation 

and renal failure. 
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Abstract 
The iron hormone hepcidin is inhibited by matriptase-2, a liver serine-protease encoded by 

TMPRSS6 gene. Cleaving the BMP-coreceptor hemojuvelin, matriptase-2 impairs the 

BMP/SMAD signaling pathway, downregulates hepcidin and facilitates iron absorption. TMPRSS6 

inactivation causes iron-deficiency-anemia refractory to iron administration both in humans and 

mice. Genome wide association studies have shown that the SNP rs855791, which causes the 

matriptase-2 V736A amino acid substitution, is associated with variations of serum iron, transferrin 

saturation, hemoglobin and erythrocyte traits. Here we show that in vitro matriptase-2 736A inhibits 

hepcidin more efficiently than 736V. Moreover, in a genotyped population, after exclusion of 

samples with iron deficiency and inflammation, hepcidin, hepcidin/transferrin saturation and 

hepcidin/ferritin ratios were significantly lower and iron parameters were consistently higher in 

homozygotes 736A than in 736V. Our results indicate that rs855791 is a TMPRSS6 functional 

variant and strengthen that even a partial inability to modulate hepcidin influences iron parameters 

and indirectly erythropoiesis. 
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Introduction  
Hepcidin is the key regulator of iron homeostasis, controlling surface expression of the iron 

exporter ferroportin on enterocytes and macrophages1. Inactivation of hepcidin causes severe iron 

overload in mice and humans, whereas hepcidin overexpression causes iron deficiency anemia2. 

Hepcidin expression is up-regulated in response to increased body iron, through the Bone 

Morphogenetic Protein (BMP)-hemojuvelin (HJV)-Son of Mothers Against Decapentaplegic 

(SMAD) pathway3 and inhibited by matriptase-2 (MT2), a type II transmembrane serine protease, 

encoded by the TMPRSS6 gene4,5 that in vitro cleaves the BMP-coreceptor HJV6. In vivo “Mask” 

mice, which have a deleted serine protease domain4, and Tmprss6 null mice7 show microcytic 

anemia due to high hepcidin levels. TMPRSS6 deleterious mutations in humans cause iron- 

refractory iron-deficiency anemia (IRIDA), unresponsive to oral iron administration5. The same 

mutations show partial inhibition of the hepcidin promoter activity when overexpressed with HJV 

in vitro in hepatoma cells6,8. 

Recently genome-wide association studies (GWAS) reported the association of common genetic 

variants of TMPRSS6 (rs855791 and rs4820268) with serum iron and transferrin saturation9-11, 

hemoglobin (Hb), MCV and MCH12,13, highlighting a role for MT2 in the control of iron and 

erythrocyte parameters. The SNP rs855791 (2321G->A) causes a non-synonymous alanine to 

valine change (A736V) in the catalytic domain, whereas the SNP rs4820268 leads to a synonymous 

change at 521 and is in linkage disequilibrium with rs855791. Since rs855791 affects the MT2 

catalytic domain, a common speculation was that its effects were hepcidin-mediated9,14. 

We tested this hypothesis using an in vitro assay, based on luciferase reporter gene driven by the 

hepcidin promoter and showed that the MT2736A inhibits hepcidin more efficiently than MT2736V. 

We also demonstrated that this variant affects hepcidin levels of normal individuals. 

 

Material and methods 

In vitro studies 

The in vitro analyses (western blot, hepcidin promoter activity assay and binding assay) were 

previously reported6 and are detailed in supplemental material. The TMPRSS6 variant, encoding 

736A (MT2736A) was obtained by mutagenesis of MT2736V plasmid by using the QuikChange site- 

directed mutagenesis kit (Stratagene, La Jolla, CA) 

 

Human studies 

The population of the genetic isolate “Val Borbera” (VB) was previously described15. The study 

was approved by San Raffaele Ethical Committee. Serum hepcidin levels were measured by 

SELDI-TOF-Mass Spectrometry16 and detailed results are reported elsewhere11. 

 

Statistical analysis 
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Association of TMPRSS6 rs855791 was first analyzed in 655 unrelated (pairwise kinship 

coefficient <0.0625) individuals selected using the Greffa software17. We included in the final 

analysis only individuals with hepcidin levels above the lower limit of detection (0.55 nM) and 

subjects with ferritin 30ng/ml and CRP 1mg/dL (Subset 1), Mean values were adjusted for sex, 

age, squared age and by interaction between them (sex*age, sex*squared age) by ANOVA (95% 

C.I.) using SPSS 17.0 software (SPSS Chicago, IL, US) and in house R-2.8.1 scripts (The R 

Project for Statistical Computing at http://www.r-project.org). 

 

Results and discussion 
In vitro function of MT2 A736V variants 

We first demonstrated that the proportion of MT2736A and MT2736V expressed on the surface of 

transfected cells was similar (Fig. 1A). Then we observed that MT2736A inhibited the luciferase- 

hepcidin promoter more efficiently than MT2736V with a dose-dependent effect at low concentration 

(Fig. 1B). In agreement with the luciferase assay the release of the serine protease domain, that in 

our hands correlates with the protease activity6,8, was slightly increased in cells transfected with the 

more active MT2736A variant compared with MT2736V (Fig. S1 upper panel). These results suggest 

that rs855791 is a functional variant. Western blot on cell lysates and phospholipase C were not 

enough sensitive to detect a significant difference in the cleavage of HJV between the two variants 

(Fig. S1 lower panel). 

Based on gene expression arrays analysis, it was proposed that rs4820268, the other TMPRSS6 

variant significantly associated with iron and erythrocyte traits10,18 might cause a differential allelic 

expression (60:40 ratio) of TMPRSS6 mRNA19. However, it is unlikely that the modest difference 

observed results in detectable changes of the protease activity. rs4820268 is in linkage 

disequilibrium (r2 = 0.811 in VB cohort) with rs855791: thus its association with iron and 

erythrocyte traits might simply be secondary to that of rs855791. 

Human database indicates V at 736 position as the “wild type” matriptase-2. However, comparative 

analysis indicates A as the ancestral amino acid, since A is evolutionary conserved in all the 

species where an annotated matriptase-2 sequence is available (Fig. 1C). This observation suggests 

that the MT2736V variant, that leads to increased hepcidin production and inhibition of iron 

absorption, is evolutionary a recent change. 
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Figure 1. In vitro characterization of the function of MT2 variants and evolutionary conservation of the catalytic 

domain. (A) Quantification of membrane-bound MT2 (MT2) by binding assay. HeLa cells were transiently transfected 

with the TMPRSS6 cDNA encoding MT2736V, MT2736A, or the empty vector (mock) and analyzed for the percentage of 

MT2 on the cell surface6. The amount of surface MT2 was calculated as the ratio between the absorbance of 

unpermeabilized and permeabilized cells. Error bars indicate SD. (B) Hepcidin promoter activity assay. Hep3B cells were 

transiently transfected with 0.25 µg of pGL2-basic reporter vector (Promega) containing the 2.9-kb fragment of the 

human hepcidin promoter23 in combination with pRL-TK Renilla luciferase vector (Promega) and HJV, as described 

previously6. Increasing doses (from 0.002 to 0.01 µg/mL) of MT2736V or MT2736A-expressing vectors were used. Relative 

luciferase activity was calculated as the ratio of firefly (reporter) to Renilla luciferase activity and is expressed as a 

multiple of the activity of cells transfected with the reporter alone. Experiments were performed in triplicate. The 

statistical significance is indicated above the bars. (C) Alignment of part of the serine protease domain of MT2 of 

different species by multiple sequence alignment ClustalW (EMBL-EBI) program. The sequence is highly conserved. 

The human 736 and the orthologous position in the other species are boxed. 

 

Hepcidin levels of normal carriers of MT2 736 variants 

We validated our in vitro results in the VB cohort, which had serum hepcidin levels measured. 

Since in a genetic isolate many individuals are related only a group of 655 unrelated individuals 

was studied. Furthermore we selected 545 normal subjects, after excluding iron deficient 

individuals (serum ferritin <30 ng/ml) and individuals with clinically relevant inflammatory 

conditions (CRP >1 mg/dL)11. Serum hepcidin levels were lower in AA compared to VV 

homozygous individuals. The difference was not significant in the whole series but only in the 

selected subset (p = 0.038) (Fig. 2 and Table S1). Since hepcidin expression is strongly dependent 
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on both iron stores and plasma iron we normalized hepcidin on ferritin and on transferrin 

saturation. In both cases we confirmed that the normalized values were significantly lower in AA 

compared to VV homozygotes (p=0.038 for hepcidin/ferritin and p=0.056 for hepcidin/transferrin 

saturation respectively) in subset 1 (Fig. 2 and Table S1). Consistently iron and transferrin 

saturation were higher in AA than in VV homozygotes (Fig. 2 and Table S1), as observed9. MCV 

and MCH showed a similar trend, although the difference did not reach statistical significance (Fig. 

S2). No difference was found for ferritin, transferrin and Hb levels (Fig. S1 and not shown).  

Our results suggest that MT2 influences normal hepcidin response to both plasma and total body 

iron. Hepcidin regulation is complex2. In mice the hepcidin response to isolated increase of 

transferrin saturation20 or to an acute iron increase21 differs from the response to increased total 

body iron or to chronic iron treatment. Both responses are based on the same BMP signaling 

pathway and on SMAD activation, but only the second entails a BMP6 increase20,21. The difference 

in the hepcidin/transferrin saturation and hepcidin/ferritin ratios observed between the two 

TMPRSS6 genotypes strengthens a role for MT2 in counterbalancing both BMP6-dependent and 

BMP6- independent hepcidin upregulation. The reduced activity of MT2736V demonstrated by the 

in vitro assay is in agreement with the effect observed in vivo. 

MT2736V is the less frequent allele with a frequency of 0.45 in Val Borbera, as in other Caucasian 

populations. From the available studies the distribution among different populations is not 

homogeneous (Table S2). Although the samples analyzed are limited, MT2736A seems largely 

prevalent among Africans (0.80-0.90) compared to Caucasians (0.50)9,11,14 and Japanese (0.40)22. 

Whether the variant might provide an advantage enhancing iron absorption in conditions of limited 

dietary availability or alternatively might have conferred protection against some infections 

remains to be clarified in future studies. 
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Figure 2. Hepcidin traits and iron parameter mean levels in individuals from subset 1 classified according to MT2 

genotypes (AA, AV, and VV). Hepcidin (A), hepcidin/ferritin ratio (B), hepcidin/transferrin saturation ratio (C), serum 

iron (D), and transferrin saturation (E) are shown. Data are expressed as mean values and are corrected by sex, age, 

squared age, and interaction by ANOVA (95% confidence intervals are shown). VV indicates homozygotes for the 

TMPRSS6 alleles encoding valine; AA, homozygotes for the TMPRSS6 alleles encoding alanine; and AV, compound 

heterozygotes for the 2 alleles. P values refer to comparison between AA and VV homozygotes; *P < .05; **P < .0005. 

 

In conclusion our data indicate that TMPRSS6 rs855791 has a functional role in determining the 

protease activity and regulating hepcidin expression both in vitro and in normal subjects, 

suggesting that it influences hepcidin response to the increase of both circulating and total body 

iron. 
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Abstract 
Background: Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a 

major genetic determinant of iron metabolism in healthy subjects, influences serum levels of 

hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis 

(CHD). 

Methods: To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin 

evaluation), and 188 healthy controls without iron deficiency, matched for age and gender. Genetic 

polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin 

quantified by mass spectrometry. 

Results: Serum hepcidin levels were not different between the whole CHD population and controls 

(median 7.1, interquartile range (IQR) 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively), but were 

higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04). In 

CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in 

individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p < 0.0001). In 

particular, the TMPRSS6 736 V variant was associated with higher hepcidin levels (p = 0.017). At 

multivariate analysis, HFE and A736V TMPRSS6 genotypes predicted serum hepcidin 

independently of ferritin and C reactive protein (p = 0.048). In patients without acute inflammation 

and overt iron deficiency (C reactive protein <1 mg/dl and ferritin >30 ng/ml; n = 86), hepcidin 

was associated with lower mean corpuscular volume (p = 0.002), suggesting that it contributed to 

iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation 

and severe iron deficiency the “high hepcidin” 736 V TMPRSS6 variant was associated with 

higher erythropoietin maintenance dose (p = 0.016), independently of subclinical inflammation (p 

= 0.02). 

Conclusions: The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and 

anemia management in CHD patients. Evaluation of the effect of TMPRSS6 genotype on clinical 

outcomes in prospective studies in CHD may be useful to predict the outcomes of hepcidin 

manipulation, and to guide treatment personalization by optimizing anemia management. 
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Background 

Patients with end stage renal disease (ESRD) undergoing chronic hemodialysis (CHD) are 

commonly affected by anemia, which is related to erythropoietin (Epo) deficiency, blood losses, 

and chronic inflammation1. Treatment is based on erythropoiesis stimulating agents in association 

with intravenous (i.v.) iron formulations, but is of often difficult to achieve and maintain the 

desired hemoglobin (Hb) levels without incurring in side effects2,3. 

ESRD is characterized by major alterations in iron metabolism including low transferrin saturation 

(TS), resulting in reduced iron availability for the erythroblasts, and hyperferritinemia2,4. 

Upregulation of serum levels of hepcidin, the hepatic hormone regulating systemic iron 

metabolism, has been proposed to explain the alterations of iron metabolism of CHD patients and 

the resistance to anemia treatment5,6. Increased serum levels of hepcidin have indeed been reported 

in ESRD and CHD2,5,7-11. In response to increased iron stores, hepcidin inhibits intestinal iron 

absorption and iron recycling from monocytes by binding and inactivating the iron exporter 

Ferroportin-1. The consequent inhibition of iron export from duodenocytes and macrophages 

results in decreased TS, and increases serum ferritin as a result of iron entrapment into 

macrophages. Increased hepcidin in ESRD may result from reduced glomerular filtration, 

subclinical inflammation, as hepcidin is an acute phase reactant, and increased iron stores due to 

chronic supplementation. On the other hand, hepcidin is downregulated by anemia, hypoxia, and 

erythropoietin12. 

The upregulation of hepcidin transcription in response to iron is mediated by a mechanism 

depending on the interaction of various proteins including the hereditary hemochromatosis protein 

HFE, and matriptase-2 (TMPRSS6). We previously reported that in CHD patients common HFE 

mutations that alter hepatic iron sensing13 were associated with lower hepcidin levels relatively to 

iron stores6,14, achievement of target Hb levels for lower doses of iron, and with reduced mortality 

due to sepsis and cardiovascular disease, previously linked to more intense iron supplementation15-

18. These initial results are in line with the hypothesis that inhibition of hepcidin in CHD may 

improve anemia control, and even survival in CHD patients2,3,19,20. 

The TMPRSS6 gene encodes for matriptase-2, a membrane-bound protease that decreases hepcidin 

transcription by cleaving hemojuvelin. Rare loss-of-function germline mutations of TMPRSS6 

cause iron-refractory iron-deficiency anemia related to extremely high hepcidin levels, whereas the 

common rs855791 polymorphisms resulting in the p.A736V substitution is a major determinant of 

iron status in healthy subjects. Indeed, in the general population the p.736 V allele (henceforth 736 

V) has been associated with lower serum iron, higher hepcidin20,21, and decreased Hb22-24, due to a 

less efficient inhibition of hepcidin transcription21. Furthermore, the p.A736V polymorphism has 

been shown to influence iron overload in hereditary hemochromatosis and nonalcoholic fatty liver 

disease25,26. However, it is not known whether the A736V variant influences iron metabolism 

during chronic inflammation and renal failure. 
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In the hypothesis that increased hepcidin is involved in the deregulation of iron metabolism and the 

anemia of CHD, the aim of this study were to evaluate whether the TMPRSS6 A736V 

polymorphism influences hepcidin levels and erythropoiesis parameters in CHD patients. 

 

Methods 
Subjects 

We considered 199 CHD patients treated at the Fondazione IRCCS Ca’ Granda Ospedale Maggiore 

Policlinico from June 2006 to June 201114. Patients were dialyzed with synthetic biocompatible 

membranes and bicarbonate dialysate thrice in week (t.i.w.), and given i.v. recombinant human Epo 

(EprexW) t.i.w., at a dose aimed to maintain hemoglobin (Hb) between 10.5 and 12 g/dl. Iron was 

administered i.v. as Fe3+-gluconate (FerlixitW) when TS was less than 30% or ferritin <200 ng/ml, 

and suspended when ferritin was above 500 ng/ml 27. Iron infusion was started once weekly and 

titrated according to requirements. 

Baseline venous blood samples for complete blood count, iron parameters, and markers of 

inflammation (tested by standard methods) were collected in the morning before hemodialysis (the 

first weekly session) at standardized times after the last administration of therapies potentially 

altering iron status and hepcidin release: one week after the last dose of i.v. iron, and 3 days after 

the last dose of Epo (all these conditions were contemporarily satisfied for all patients). Aliquots of 

serum samples for hepcidin-25 and hepcidin-20 measurement, which were stored at −80°C until the 

analysis, were available in a subset of 157 and 99 patients, respectively 6. Transferrin (TF) levels 

were only available from 2007, so that this variable could not be included in multivariate analyses. 

We further selected a subgroup of 86 patients without inflammation or severe iron deficiency at 

baseline evaluation, arbitrarily defined on the basis of C reactive protein (CRP) levels <1 mg/dl and 

serum ferritin concentration >30 ng/ml, to avoid the confounding effect of acute inflammation and 

severe iron deficiency. 

As reference population for hepcidin levels and for the prevalence of the genetic variants under 

study, we randomly selected 188 unrelated controls from the database of Val Borbera study [20]. 

Controls were unrelated subjects, with normal Hb (12–16 g/dl in females, 14–18 g/dl in males), 

ferritin (30–200 ng/ml in females, 40–300 ng/ml in males), and TS (16-45%), absence of 

homozygosity for the C282Y HFE mutation, and normal kidney function (estimated glomerular 

filtration rate according to simplified MDRD >60 ml/min), matched for age (± 5 years) and sex 

with CHD patients (for 11 patients, no match could be found). 

 

 

 

 

Table 1. 
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Clinical, genetic and demographic features of subjects included in the study are shown in Table 1. 

Each patient gave written informed consent. The study was conducted according to the principles 

contained in the Declaration of Helsinki. The protocol was approved by the Institutional Review 

Board of the Fondazione IRCCS Ca’ Granda hospital of Milan. 

Genetic analysis and serum hepcidin assay 

DNA was extracted from peripheral blood by the phenolchloroform method. HFE genotype 

(C282Y and H63D variants) and the TMPRSS6 rs855791 C > T polymorphism, (p.A736V variant) 

were assessed by sequence allele specific PCR as previously described 25,28. Random samples were 

confirmed by direct sequencing. Quality controls were performed to verify the reproducibility of 

the results. 

 

Table 2.  

 
 

Valid genotypic data were obtained for 100% of subjects analyzed. For 13 patients (6.5%) only 

HFE genotype was available from a previous study, due to the lack of possibility to get the consent 

for new genetic studies. 
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Table 3. 

 
 

For hepcidin measurement, we used a protocol based on SELDI-TOF mass spectrometry and 

copper-loaded immobilized metal-affinity capture ProteinChip arrays (IMAC30-Cu2+)29, 

extensively validated in previous studies13,20,21. Concentrations of serum hepcidin-25 and hepcidin-

20 were expressed as nM. 

 

Statistical analysis 

Results are expressed as means ± SD for normally distributed variables and as median 

{interquartile range} for non-normally distributed variables. Variables were correlated by 

Spearman’s rho test, and data compared between groups by t-test or Wilcoxon test, according to 

data distribution. Frequencies were compared by Chi-square test. We also evaluated the hepcidin-

25/ferritin ratio (H/F), an established marker of adequacy of hepcidin response to iron stores. 

Independent predictors of serum hepcidin-25 and Epo requirements were evaluated by multivariate 

analysis (generalized linear model, GLM) including the variables identified as significantly 

associated with hepcidin at univariate analysis and available for all subjects, as specified in the 

result section. Log transformations were applied to normalize skewed variables before multivariate 

analysis. Results were considered significant when p was lower than 0.05 (two-tailed). 
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Results 
Frequency distribution of HFE and TMPRSS6 variants and hepcidin levels in patients and controls 

The frequency distribution of the C282Y and H63D HFE variants and A736V of the TMPRSS6 

variant did not violate Hardy-Weinberg equilibrium in both patients and controls (p > 0.1; Table 2), 

and was not significantly different between the two groups (p=ns). Serum hepcidin-25 levels were 

not significantly different between the whole group of CHD patients and controls (Table 1), 

whereas H/F ratio was lower in patients (Table 1). One hundred-four (52.3%) of CHD patients 

were classified as “iron-deficient” on the basis of guidelines for iron treatment in CHD, which 

takes into account the effect of inflammation on ferritin (ferritin <200 ng/ml and TS <30%) [27]. 

After the exclusion of these subjects, hepcidin-25 was higher in patients (9.31 {3.11-22.4} nM) 

than in controls (p = 0.04). 

 

Table 4. 

 
 

Clinical determinants of hepcidin in CHD patients 

Clinical variables associated with hepcidin-25 levels in CHD patients are shown in Table 3. 

Hepcidin-25 was correlated with ferritin and CRP levels, and negatively associated with TF. In 

patients without severe iron deficiency and with normal CRP levels (Table 4), hepcidin-25 was 

correlated with ferritin, and inversely correlated with TF and mean corpuscular volume (MCV) 

values. The method used for the assessment of hepcidin-25 allows also the quantification of 

hepcidin-20, an amino-terminal truncated isoform, which is postulated to represent a degradation 

product of hepcidin-25 with no activity on iron metabolism, but possibly involved in antimicrobial 

response. Regarding the truncated hepcidin isoform (hepcidin-20)30, the absolute levels were 
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slightly lower in the whole CHD group than in controls, but these data were available in a limited 

subgroup of patients, and the prevalence of detectable hepcidin-20 levels was the same as in 

controls. On the other hand, absolute hepcidin-20 levels were slightly higher in the CHD subgroup 

of patients without functional iron deficiency (Table 1), while the difference did not reach 

statistical significance. Because of the small subgroups that could be analyzed, it is possible that 

these nominal differences represent false positive results, and no definite conclusion can be drawn. 

Variables associated with hepcidin-20 levels are shown in Table 5.  

 

Table 5.  

 
 

The major determinant of hepcidin-20 was hepcidin-25, but active smoking was also independently 

associated with lower hepcidin-20. In control subjects, serum hepcidin-20 levels were not 

significantly lower in active smokers vs. non-smokers and previous smokers (median 0, IQR {2.99-

6.38}, vs. 1.67 {3.68-6.59} nM, respectively; p = 0.17), even after correction for hepcidin-25 (p = 

0.08). 

 

Effect of TMPRSS6 and HFE variants on hepcidin, iron, and erythropoiesis 

The effect of HFE genotype (wild-type, heterozygosity for C282Y and H63D mutations, and other 

genotypes) on hepcidin-25 in CHD patients is shown in Figure 1A. Hepcidin-25 was lower in 

patients with HFE mutations than in those without (p=0.01), in particular in those carrying the 

C282Y mutation or homozygous for the H63D mutation (p = 0.0004). The effect of HFE genotype 

on the H/F ratio is shown in Figure 1B. The H/F ratio was lower in patients with HFE mutations 
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than in those without (p = 0.04). Therefore, we grouped together patients with any HFE mutation in 

further analyses, in order to better characterize the effect of TMPRSS6 genotype. 

The combined HFE (presence or absence of HFE mutations) and TMPRSS6 A736V genotypes 

influenced serum hepcidin-25 levels (p < 0.0001; Figure 2A). In line with the hypothesized 

negative effect of HFE mutations and of the 736A allele on hepcidin transcription, patients 

negative for HFE mutations had higher hepcidin-25 levels than patients with 736A/A and positive 

for HFE mutations (p < 0.05). Furthermore, in patients with HFE mutations, those with the 736 

V/V genotype had higher hepcidin-25 than those with the 736A/A genotype (p = 0.017). Similar 

results were obtained for the H/F ratio in CHD patients, i.e. the 736 V/V genotype was associated 

with significantly higher H/F than the 736A/A genotype in patients with, but not in those without 

HFE mutations (not shown). At multivariate analysis (Table 3), the HFE positive 736A/ A genetic 

status was associated with lower hepcidin-25 levels independently of ferritin and CRP levels (p = 

0.048). Patients negative for HFE mutations had higher hepcidin-20 levels than patients with 

736A/A plus HFE mutations (Figure 2B). At multivariate analysis (Table 5), the effect of genetic 

factors on hepcidin-20 levels was not independent of hepcidin-25 levels. 

 

 
Figure 1. Effect of HFE C282Y and H63D genotype status (wild-type, heterozygosity for the H63D mutation, other 

genotypes) on hepcidin-25 levels (panel A), and hepcidin-25 / ferritin ratio (panel B) in 155 CHD patients from 

Northern Italy. doi:10.1186/1471-2369-14-48 
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Figure 2. Combined effect of HFE C282Y and H63D and TMPRSS6 rs855791 (A736V) polymorphisms on 

hepcidin-25 levels in 143 (panel A), and on hepcidin-20 in 99 (panel B) CHD patients from Northern Italy. # p  <  0.05 vs. 

TMPRSS6 A/A and HFE mutations present. doi:10.1186/1471-2369-14-48 

 

Besides with hepcidin-25 values, as in the general population20 the presence of HFE mutations was 

associated with lower TF levels (p = 0.03), and with a lower dose of iron supplementation to 

achieve the Hb target (p = 0.03). 

TMPRSS6 A736V polymorphism was not associated with Hb levels and iron parameters in the 

overall CHD cohort. In order to avoid the confounding effect of acute inflammation and severe iron 

deficiency, we analyzed whether the TMPRSS6 A736V polymorphism influenced iron parameters 

and erythropoiesis in patients with CRP < 1 mg/dl and ferritin > 30 ng/ml. Results are presented in 

Table 6. In this subset of patients, the number of “high hepcidin” 736 V alleles was correlated with 

higher Epo requirement to control anemia (p = 0.027). In line with the negative effect of increased 

hepcidin on iron availability and erythropoiesis, there was also a trend for an association between 

the 736 V allele and lower iron and MCV values. At multivariate analysis adjusted for CRP levels, 

the number of 736 V TMPRSS6 alleles carried by CHD patients was associated with the weight- 

adjusted Epo dosage required to achieve the target Hb levels (p = 0.02, estimate coefficient 45, 

95% c.i. 7–82). 

 

Discussion 
In CHD patients, it is usually difficult to control anemia because of a complex derangement of iron 

metabolism, which is due to chronic inflammation, blood losses, and concomitant Epo 

administration2. Increased serum levels of hepcidin, the hepatic hormone regulating iron 

metabolism, have been suggested to contribute to the functional iron deficiency that limit 

erythropoiesis in CHD [2,3,31]. Differently from what reported in smaller series of patients with 

unmatched controls, including previous studies from our group5-8,32,33, we found that hepcidin-25 

levels were not significantly increased in the whole CHD population. Nevertheless, accordingly to 

the previous reports5-8,32,33, the major determinants of hepcidin were serum ferritin and CRP levels. 

The failure to confirm a relative hyper-hepcidinemia in the overall CHD cohort could be explained 
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by a number of reasons: i) the inclusion of a large and less selected CHD population compared to 

previous studies, more closely reflecting patients observed in clinical practice, including those 

requiring high doses of Epo and with relative iron deficiency (factors both known to reduce 

hepcidin), as suggested by higher hepcidin levels in patients without functional iron deficiency; ii) 

the relatively low average iron stores in this cohort (as reflected by median serum ferritin levels of 

only 265 ng/ml, Table 1) because of a local policy aimed at minimizing iron supplementation, due 

to long standing interest in iron metabolism and the side effects of iron overload; and iii) at 

variance with previous studies, e.g. Zaritsky et al. 32, the meticulous matching of the controls for 

age and gender, recently established as major determinants of hepcidin-25 at population level20,34, 

as well as the systematic exclusion of even subclinical iron deficiency in controls, which both 

contributed to a more realistic comparison of hepcidin-25 levels than those made until now. 

Accordingly with these considerations, however, when CHD patients with relative iron deficiency 

were excluded from these analyses, hepcidin-25 was actually higher in CHD than in controls. 

Anyway, the comparison of hepcidin levels between CHD patients and controls was not the main 

aim of the present study, which was not therefore specifically designed to achieve this goal. Our 

results in this sense need to be confirmed in similarly large patient populations and matched 

controls. 

Table 6. 

 
 

Clearance of hepcidin by hemodialysis29 may possibly compensate for increased production, and 

explain the reduced H/F ratio in patients compared to controls. Notwithstanding, in patients without 

severe iron deficiency and active inflammation at the time of evaluation, hepcidin was associated 

with lower MCV, i.e. with iron-restricted erythropoiesis, suggesting that it negatively influences 
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iron availability to the erythron, and that it represents a potential therapeutic target to improve 

anemia management. 

The specific aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism 

regulating hepcidin transcription, a determinant of iron-restricted erythropoiesis in the general 

population21,35, influences hepcidin levels and erythropoiesis in CHD. To increase the power of this 

analysis, patients were stratified for the presence of loss-of-function HFE mutations, that we pre- 

liminarily confirmed to influence hepcidin in this series6. The major finding was that the 736 V 

TMPRSS6 loss-of -function variant appears to modulate the effect of HFE mutations on hepcidin. 

Indeed, the A736V polymorphism influenced serum hepcidin in patients positive for HFE 

mutations. This suggests that the 736 V variant with defective proteolytic activity determining 

increased hepcidin transcription21 may abrogate the inhibitory effect of HFE mutations on hepcidin. 

Thus, the A736V TMPRSS6 variant appears as a modifier of the phenotypic expression of HFE 

mutations in patients with CHD, who are characterized by chronic subclinical inflammation. 

Furthermore, in patients without overt iron deficiency and acute inflammation, the 736 V variant 

was associated with higher hepcidin levels and with higher requirement of Epo for anemia 

management, thus suggesting that the effect of TMPRSS6 genotype translates into clinically 

detectable differences in erythropoiesis. Importantly, at multivariate analysis the association 

between TMPRSS6 genotype and Epo maintenance dose was independent of subclinical 

inflammation, as indicated by CRP levels. These data are in line with the association between 

TMPRSS6 736 V with hepcidin levels, and in turn with the positive association of hepcidin with 

the Epo maintenance dose in the same subgroup. Therefore, inhibition of hepcidin might be helpful 

for a better control of anemia in patients predisposed to high hepcidin release19. Evaluation of the 

impact of HFE and TMPRSS6 genotype on the survival of CHD patients after adequate follow-up 

would be instrumental to fully define their clinical impact. 

 

Conclusions 
In conclusion, in CHD patients the A736V TMPRSS6 genotype influences hepcidin levels, and in 

the absence of acute inflammation and severe iron deficiency, also erythropoiesis and anemia 

management. Evaluation of the effect of TMRPSS6 genotype on clinical outcomes in prospective 

studies in CHD patients may be useful to predict the outcomes of hepcidin manipulation, to 

develop new approaches to optimize anemia management, and to guide treatment personalization. 
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Part III 
 

Identification of novel loci affecting the storage and 

distribution of body iron: a genetic approach 

 
The following chapters report GWAS performed on hepcidin and iron traits, risk factor for 

common genetic disorders of iron homeostasis, to highlight the role of known loci and to 

find novel loci involved in iron metabolism. 

The first study dissects the association of HFE and TMPRSS6 to erythroid traits and iron 

parameters and the role of hepcidin. For the first time hepcidin was measured in a large 

population and variantion in its level could be associated to HFE and TMPRSS6 variants 

and studied in correlation with the other iron parameters. 

To highlight novel loci associated to hepcidin levels in healthy individuals, a first meta-

analysis has been organized on 6,000 European individuals from the VB cohort and two 

Dutch cohorts and the results are shown in the second study. 

The third analysis reports genetic association studies of serum iron, ferritin, transferrin and 

transferrin saturation in a large international study. Meta analysis of GWAS of eleven 

cohorts of european origin, including 48,000 individuals, have been carried out and several 

novel loci affecting iron homeostasis and lipid metabolism in humans were highlighted, 

confirming the correlation between iron and lipid metabolism. 

In the last study a subset of cohorts from the meta-analysis  has been used to quantify the 

level of serum iron in Parkinson patients and the possible effect of the known HFE and 

TMPRSS6 variants as predictor of Parkinson disease (PD) risk. 
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Abstract 
Background Hepcidin is the main regulator of iron homeostasis: inappropriate production of 

hepcidin results in iron overload or iron deficiency and anaemia. 

Aims To study variation of serum hepcidin concentration in a normal population. 

Results Hepcidin showed age and sex dependent variations that correlated with ferritin but not 

with serum iron and transferrin saturation. The size of the study population was underpowered to 

find genome wide significant associations with hepcidin concentrations but it allowed to show that 

association with serum iron, transferrin saturation and erythrocyte traits of common DNA variants 

in HFE (rs1800562) and TMPRSS6 (rs855791) genes is not exclusively dependent on hepcidin 

values. When multiple interactions between environmental factors, the iron parameters and 

hepcidin were taken into account, the HFE variant, and to lesser extent the TMPRSS6 variant, were 

associated with ferritin and with hepcidin normalised to ferritin (the hepcidin/ferritin ratio). 

Conclusions The results suggest a mutual control of serum hepcidin and ferritin concentrations, a 

mechanism relevant to the pathophysiology of HFE haemochromatosis, and demonstrate that the 

HFE rs1800562 C282Y variant exerts a direct pleiotropic effect on the iron parameters, in part 

independent of hepcidin. 
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Introduction 
 
Iron is essential for multiple biological functions in all tissues, but especially for haemoglobin 

synthesis, as shown by anaemia that results from iron deficiency. Excess iron is toxic, because it 

favours oxidative stress and cell damage1. For this reason, the amount of plasma iron is maintained 

within narrow limits and is tightly regulated by the liver peptide hepcidin according to the body’s 

needs2. Hepcidin controls the surface expression of the iron exporter ferroportin on enterocytes and 

iron recycling macrophages3. Genetic disorders of the hepcidineferroportin pathway lead to 

opposite conditions. Haemochromatosis is caused by mutations in genes which encode upstream 

hepcidin activating proteins (HFE, TFR2, hemojuvelin) or mutations in hepcidin itself. All these 

forms of haemochromatosis are characterised by inappropriately high iron absorption, elevated 

transferrin saturation and serum ferritin, and inappropriately low/undetectable hepcidin 

expression4. More rarely mutations affect ferroportin, the downstream target of hepcidin; as a 

consequence, either iron is not recycled and remains sequestered in macrophages or the mutant is 

not internalised because is hepcidin resistant5. Iron refractory, iron deficiency anaemia (IRIDA) is 

caused by mutations of TMPRSS6, which encodes the liver expressed hepcidin inhibitor serine 

protease matriptase-2. Mask mice homozygous for a truncated matriptase-2 lacking the serine 

protease domain6, Tmprss6 null mice7, and patients with IRIDA8 do not efficiently absorb oral iron 

because they are unable to fully suppress hepcidin activation9,10. They display very low transferrin 

saturations but moderately decreased serum ferritin because of iron retention in macrophage 

stores11. Genetic variants of two of the hepcidin regulatory genes, TMPRSS6 and HFE, affect 

serum iron concentration12 and transferrin saturation13,14 in normal populations. Furthermore, single 

nucleotide polymorphisms (SNPs) at TMPRSS6 and HFE loci were found to be associated with 

quantitative variations of haemoglobin (Hb) concentrations and erythrocyte traits.15-18 However, it 

remains uncertain whether the association is iron mediated or dependent on a direct effect of the 

variants on erythropoiesis. In addition, the effect of the ‘iron gene’ variants was ascribed to 

variations in hepcidin concentrations15,16,18, but serum hepcidin was not measured. 

We report here the analysis of serum hepcidin concentrations, measured by a mass spectrometry 

based method19, in 1657 normal individuals from the Val Borbera (VB) genetic isolate in Northern 

Italy. We explored relationships between hepcidin and a set of anthropometric, haematologic, and 

iron parameters and tested the association of two common variants rs1800562 and rs855791 in the 

HFE and TMPRSS6 genes, respectively, with iron, erythrocyte parameters and hepcidin values in 

1545 genotyped individuals. We demonstrate a reciprocal control of serum hepcidin and ferritin 

concentrations that may be relevant to the pathophysiology of HFE haemochromatosis, and 

demonstrate that the HFE C282Y variant exerts a direct pleiotropic effect on several of the iron 

parameters, partly independent of hepcidin. 
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Methods 

Study subjects 

The VB population has been previously described20. Only individuals aged 18 years or older were 

eligible to participate in the study. The study was approved by the San Raffaele Hospital and 

Regione Piemonte ethical committees. The health status of the population was assessed as 

reported20. Blood tests Fasting blood samples were obtained in the early morning. Blood was 

analysed the same day or aliquoted and stored at -80°C for further analysis. Blood cell counts and 

erythrocyte indexes were determined with an automated cell counter21. Other blood tests, serum 

iron, transferrin, and ferritin were determined by standard methods. Transferrin saturation was 

calculated dividing serum iron by transferrin (mg) X 1.4222. Serum hepcidin assay Serum hepcidin 

was measured in all samples with a validated mass spectrometry based method, that is surface 

enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) using a 

PCS4000 (Bio-Rad, Hercules, California, USA) mass spectrometer, copper loaded immobilised 

metal affinity capture ProteinChip arrays (IMAC30-Cu2+), and a synthetic hepcidin analogue 

(hepcidin-24, Peptides International, Louisville, Kentucky, USA) as an internal standard19, with 

recent technical improvements23. The lower limit of detection was 0.55 nM. The intra- and inter-

assay coefficient of variations of this method ranged from 6.1-7.3% and from 5.7-11.7% (mean 

7.7%), respectively. In order to produce comparable results and to override the circadian rhythm of 

hepcidin24,25, measurements were performed on samples obtained in all cases after an overnight 

fast. 

 

Statistical analysis  

Statistical analyses were performed by using STATA V.9 (StataCorp). Comparisons of all 

measured parameters in men and women were performed using the t test. Sex specific correlation 

analysis was used to assess the linear relationship between s-hepcidin and all other parameters. 

Subsequently, simple and multiple linear regression analyses were employed to find best predictors 

of serum hepcidin. 

 

Heritability analysis. 

The heritability analysis was performed using SOLAR (Sequential Oligogenic Linkage Analysis 

Routines ver. 4.1.2) (http://solar.sfbrgenetics.org/), as described20. As the distributions were not 

normal, a log10 transformation was performed for hepcidin, hepcidin/ferritin, and ferritin. For all 

phenotypes, individuals presenting values more than four SDs from the mean were removed.  

 

Genotyping and association analysis. 

 One thousand six hundred and sixty-four DNAs from the VB population were genotyped using the 

Illumina 370 Quad-CNV array, v3. DNAs with more than 10% missing genotypes, SNPs that failed 
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the Hardy-Weinberg Equilibrium test (p<10-6) and with minor allele frequency <0.01 were 

removed. 343 866 SNPs, which included common SNPs in HFE, TMPRSS6 and transferrin (TF) 

genes, were used in the analyses. Genome-wide association analysis (GWAS) was done on the 

directly genotyped SNPs using the GenABEL package26 that takes into account the relatedness 

among the VB population, using genomic kinship. To account for multiple testing, the p value cut-

off for GW significance was 1.5E-7. An additive model was used on the standardised residuals of 

each quantitative trait adjusted for the effects of sex, age, sex*age, squared age and sex*square age. 

Each trait was checked for normality with non-parametric tests. A log10 transformation was 

performed for hepcidin, hepcidin/ferritin ratio, and ferritin. All the other traits (serum iron, 

transferrin, transferrin saturation) did not require normalisation. For all phenotypes, individuals 

with values more than four SDs were removed. All the analyses were done on the whole sample 

and on a selected subset (subset 1) where individuals affected by acquired conditions known to 

alter iron metabolism and hepcidin concentrations were omitted. This includes subjects with C 

reactive protein (CRP) >1 mg/dl (as marker of clinical inflammatory conditions) and serum ferritin 

<30 ng/ml (as marker of iron deficiency). 

 

Results 
Serum hepcidin concentrations show age and sex related changes and strongly correlate with serum 

ferritin Serum hepcidin was determined in 1657 subjects, 929 females and 728 males, age range 

18e98, mean age 55.4617.8 years (supplemental figure S1). Anthropometric data, red cell 

parameters, serum iron, transferrin, transferrin saturation, and ferritin concentrations were available 

for all samples (supplemental table S1). 

Hepcidin and most iron parameters showed striking age and sex dependent variations (figure 1 and 

supplemental table S2), particularly evident for ferritin (figure 1B), hepcidin (figure 1C) and, to a 

lesser extent, for transferrin saturation (figure 1A). Ferritin concentrations were lower in females 

aged <50 years and significantly higher in older females, while they remained stable across the 

different age groups in males (figure 1B). Serum hepcidin concentrations showed variations 

analogous to those of ferritin in individuals <50 years old, were similar in males and females aged 

50e70, whereas among the elderly they were lower in females. The hepcidin/ferritin ratio, used to 

correct for hepcidin changes according to iron stores27,28, clearly indicated the large difference 

between young males and females that sharply decreased with ageing (figure 1D). 
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Figure 1. Age and sex dependent variations of transferrin saturation (A), serum ferritin (B), serum 

hepcidin (C), and hepcidin/ferritin ratio (D) in the whole population. Males are indicated by a continuous 

line, females by a dotted line. Bars indicate SEs. 

 

 
 

Serum hepcidin correlation analysis by sex (supplemental table S3) showed that Pearson’s 

correlations were negligible for all measured parameters except for ferritin (r=0.32 and r=0.53 in 

men and women, respectively) and CRP (r=0.25 in women) and were always greater in females. 

Hepcidin concentrations are known to be decreased or even suppressed by iron deficiency and 

increased by iron overload and inflammatory cytokines. To reduce the effect of these confounding 

environmental variables, 41 males and 296 females with iron deficiency defined by ferritin <30 

ng/ml and 75 subjects with CRP values >1 mg/dl (eight with concomitant iron deficiency) or 

individuals missing the information were excluded from the analyses. We also excluded 50 

individuals with undetectable hepcidin who had multiple causes that might account for hepcidin 

suppression, such as heavy alcohol intake, ß-thalassaemia trait, blood donations, and advanced age. 
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The remaining 1203 individuals (642 males and 561 females, mean age 56.86±17) are indicated as 

subset 1. To study correlations between hepcidin and iron and red cell parameters, separate linear 

regression analysis were performed in males and females from subset 1, using log transformed 

hepcidin and age as covariate (supplemental table S4). Significant variables were tested in multiple 

regression models (table 1). Age, ferritin, Hb and mean corpuscular haemoglobin concentration 

(MCHC) were independent predictors of hepcidin concentrations in males, accounting for 13.5% of 

the total hepcidin variability; in females age, ferritin and total cholesterol accounted for 17.7% of 

the total phenotypic variation. Only age and ferritin were common to both sexes. Serum iron, 

transferrin, and transferrin saturation lost their correlations with hepcidin, when adjusted for the 

other parameters. Consistent with serum ferritin being a predictor of hepcidin concentrations, when 

we clusterised the subjects according to ferritin values in three classes corresponding to iron 

deficiency (Ft<30 ng/ml), normal iron balance (30≤Ft≤200 ng/ml in females and 30≤Ft≤300 ng/ml 

in males) and iron overload (Ft>200 ng/ml in females and >300 ng/ml in males), mean hepcidin 

concentrations increased progressively and differed significantly among the three groups (p<0.001) 

(figure 2A). Considering classes of transferrin saturation that define iron deficiency (<16%), 

normal iron status (16-45%), and iron overload (>45%), no significant differences in hepcidin 

concentrations were observed (figure2B).  
 

Hepcidin heritability is low and increases when hepcidin is corrected for ferritin 

concentrations.  

The genetic component of the variability (heritability=H2) of all iron parameters is quite relevant 

and was estimated also for the VB population, thanks to the availability of a complete genealogy20. 

The heritability of hepcidin, even calculated in subset 1, devoid of acquired confounding factors, 

was instead very low (H2=0.098) and non-significant (table 2). In this analysis ferritin was the most 

significant covariate (p=1.5E-28). Accordingly, if the serum hepcidin concentrations were 

normalised to ferritin and the hepcidin/ ferritin ratio was considered, the heritability increased 

(H2=0.219). Age and sex explained about 12% of the variability. None of the other iron parameters 

contributed to the model. We calculated the heritability of ferritin in the same dataset. Ferritin H2 

was significantly higher in subset 1 (H2=0.455) than in the whole population (H2=0.27) (table 2). 

Consistent with the correlation between hepcidin and ferritin, the heritability of ferritin decreased 

(H2=0.381) in subset 1 if hepcidin was included as a covariate. In this case the covariates sex and 

hepcidin explained 29.9% of the variability. None of the other iron parameters was a significant 

covariate for ferritin heritability. 

 

Association of TMPRSS6 and HFE variants with iron and erythrocyte parameters is 

replicated in the Val Borbera population. 
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The size of the study population was underpowered to find GW significant associations with 

hepcidin or hepcidin/ferritin ratio values (supplemental figure S2). However the availability of the 

hepcidin concentrations allowed us to evaluate better the effect of the common variants in two 

genes, TMPRSS6 and HFE, involved in monogenic disorders of iron metabolism1. These variants 

were previously found associated with iron parameters and red blood cells traits12-14 and their effect 

was hypothesised to be dependent on hepcidin variation. Most findings of previous GWAS for iron 

parameters and erythrocyte traits were replicated in the VB population (supplemental table S5). In 

our series HFE rs1800562, corresponding to the C282Y variant, which at the homozygous state is 

responsible of hereditary haemochromatosis, was associated with serum iron (p¼3.95E-9), 

transferrin (p=4.95E-11), and transferrin saturation (p=2.64E-15) at GW significance and to lesser 

extent to mean corpuscular haemoglobin (MCH), mean corpuscular volume (MCV) and MCHC. 

rs855791, corresponding to the A736V of the serine protease TMPRSS6,13 was associated at GW 

significance with serum iron (p=9.41E-11) and transferrin saturation (p=3.89E-9). rs3811647 in the 

TF gene was associated only with transferrin concentrations (p=2.1E-16)14.  

 
 

Figure 2. Serum hepcidin in groups of individuals classified according to serum ferritin (A) or 

transferrin saturation (TfSat) (B) concentrations. Three classes are shown: iron deficiency (ferritin <30 

ng/ml and TfSat <=16%), normal iron status (intermediate values), and iron overload (ferritin >200 ng/ml in 

females/ >300 ng/ml in males and TfSat >45%). Mean values are age and sex adjusted by ANOVA (95% 

CI). 
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Association analysis of subset 1 showed an increased genetic effect of HFE and TMPRSS6 SNPs 

on iron and transferrin saturation and a smaller increase of TMPRSS6 effect on MCV and MCH 

(supplemental table S5). A large increase of the genetic effect was also found for the Tf SNP on 

iron and particularly on Tf. The association of TMPRSS6 rs855791 variant to red cell traits was 

reported as mostly dependent on the amount of iron available for erythropoiesis13. By using iron 

parameters as covariates in the regression analysis for MCV, MCH, and MCHC we found that iron, 

transferrin saturation and ferritin reduced the effect of both the HFE and TMPRSS6 in subset 1 

while transferrin did not. Considering together iron, transferrin saturation and ferritin, HFE 

association was abolished and that of TMPRSS6 greatly reduced (supplemental table S6).  

 

Association of common TMPRSS6 and HFE variants with iron parameters is not 

dependent on hepcidin concentrations. 

Based on the results described above we were able to assess whether the effect of the two common 

genetic variants in TMPRSS6 and HFE considered was mediated by hepcidin. We used hepcidin as 

covariate in the association analysis of 1545 genotyped individuals that had serum hepcidin 

measured. For all iron and red blood cells parameters, the association of the HFE and TMPRSS6 

SNPs did not change significantly (supplemental table S7), suggesting that the two variants may 

exert a direct effect on these parameters. 

 

A novel association of hepcidin/ferritin ratio to TMPRSS6 and HFE variants. 

The association of HFE rs1800562 variant with ferritin, which was GW borderline significant in 

the whole cohort (p=3.06E-7), became highly significant (p=7.49E-10) in subset 1, and the 

significance further increased if hepcidin was used as covariate (p=1.64E-10). TMPRSS6 rs855791 

association with ferritin was nominally significant and did not greatly change after adjusting for 

covariates (table 3). We also tested whether the HFE and TMPRSS6 variants were associated with 

hepcidin. As expected from the heritability results, hepcidin was not associated unless it was 

normalised to ferritin (table 3). The hepcidin/ferritin ratio was associated with both variants in 

subset 1: the HFE rs1800562 variant was significantly associated (p=6.36E-04) but the effect was 

smaller than that observed for the other iron parameters. It explained only 1% of the variance 

compared to around 4% for ferritin and 3% for the other iron parameters (supplemental table S5). 

The VB cohort does not have enough statistical power to definitively demonstrate association of 

the TMPRSS6 rs855791 that was only nominally associated (p=1.49E-02). 

 

Discussion 
We report here the first large scale epidemiological and genetic study of serum hepcidin, the main 

regulator of plasma iron concentration, in the general adult population. 
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Hepcidin concentrations under normal iron homeostasis showed striking gender differences and 

variation across ages. While in males concentrations were rather stable, in females more dynamic 

changes were observed, paralleling the well known age related ferritin changes. Young females had 

significantly lower concentrations than males. Females aged 50-60 years showed hepcidin 

concentrations comparable to those of age matched males, but had significantly lower serum 

ferritin. This underlines that the threshold for hepcidin increase in response to body iron is lower in 

females. Among the elderly, hepcidin concentrations decreased in both genders paralleling ferritin 

reduction, even if the hepcidin decrease was more evident in females (figure 1). Hepcidin 

regulation was studied in human disorders of iron metabolism and in animal models: it is known to 

respond rapidly to increased circulating iron loaded transferrin3,29 (measured by transferrin 

saturation) and tissue iron, whose surrogate index is serum ferritin. In our series serum hepcidin 

strongly correlated with serum ferritin in both sexes, confirming results previously observed in a 

small number of individuals25,30 , but did not correlate with serum iron, transferrin, and transferrin 

saturation. Thus, although an acute increase in transferrin saturation triggers an hepcidin 

response27,29,31, in steady conditions hepcidin appears mainly influenced by stored iron. 

Accordingly, hepcidin concentrations differed in groups of individuals whose iron status was 

assessed according to ferritin values, but not in groups classified according to transferrin saturation. 

The strong correlation between hepcidin and ferritin underscores the relevance of normalising the 

hepcidin concentrations using the hepcidin/ ferritin ratio, as proposed in hereditary 

haemochromatosis27,28. The correlation between hepcidin and ferritin concentrations was positive, 

reflecting the response of hepcidin to iron stores concentrations, likely through increased BMP6 

and activation of the BMP signalling pathway32,33. However, the reverse might also be true as 

hepcidin might modulate the concentration of serum ferritin by degradation of the iron exporter 

ferroportin3, thus favouring iron retention in macrophages and an increase in cytosolic and serum 

ferritin34. The previously reported associations of two common TMPRSS6 and HFE variants to iron 

were replicated in the VB cohort where they reached GW significance. We confirmed that 

association of the TMPRSS6 rs855791variant with all red cell traits was mostly dependent on the 

amount of iron available for erythropoiesis13 and we showed that HFE C282Y association with all 
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red cell traits was abolished if iron, transferrin saturation and ferritin were considered together as 

covariates in association analysis. The availability of serum hepcidin concentrations allowed us to 

directly test whether hepcidin could be the molecule mediating the association of the two 

TMPRSS6 and HFE variants. Our results showed that this was not the case. Since including 

hepcidin as a covariate in association analysis did not change the results, we suggest that the 

association of TMPRSS6 and HFE variants to iron parameters could result from a direct pleiotropic 

effect on the iron parameters. Alternatively, as hepcidin concentrations are homeostatically 

regulated by iron and erythropoietic activity, genetic effects may be masked by the hormone nature 

of hepcidin, which controls iron by a negative feedback and is strongly influenced by 

environmental factors. Accordingly, the heritability of hepcidin was negligible. The heritability 

was higher for the hepcidin/ferritin ratio (H2=0.219), confirming that genetic factors modifying 

hepcidin values may be masked by the rapid changes of hepcidin concentration in response to 

increased body iron stores or to other factors.  

 

 
 

Figure 3. Model of the effect of HFE C282Y on transferrin saturation and hepcidin (see text for details). 

The dotted line indicates the hypothetical effect of reduced hepcidin on serum ferritin. 

 

We therefore tested association of the hepcidin/ ferritin ratio to the HFE and TMPRSS6 variants 

considered. This resulted in a significant association of the hepcidin/ferritin ratio with HFE (and 

borderline with TMPRSS6) (table 3), demonstrating that the HFE C282Y mutation can indeed 

affect hepcidin, but with a modest effect that could not account for the strong effect of the same 

mutation on the other iron parameters.  
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Altogether, the two common variants considered appear to affect iron in part through hepcidin, 

likely through modulation of the BMP signalling pathway that integrates signals from 

erythropoiesis and iron stores to activate or repress hepcidin transcription.1 However, it is quite 

difficult to account for the direct and strong effect of the HFE C282Y mutation on transferrin.  

We cannot exclude the possibility that the HFE C282Y mutation affects additional and novel 

pathway(s) (figure 3) able to regulate iron homeostasis in normal situations and cause transferrin 

downregulation independently from hepcidin. We also studied association of the two variants to 

ferritin. HFE C282Y was previously reported to be associated with ferritin in a single study35. In 

our whole cohort it was borderline significant, but became significant at GW levels (p=7.49E-10) 

with a strong effect (ß=0.556, SE=0.090) in subset 1, strengthening the importance of excluding, in 

this type of analysis, acquired conditions that modify iron metabolism and particularly hepcidin 

and ferritin concentrations. In addition, the effect of HFE association on ferritin in subset 1 was 

increased (p=1.64E-10, ß=0.576, SE=0.090) after adjusting for hepcidin concentrations. This 

finding further confirmed the mutual control between the two variables and suggests that the 

positive effect of HFE C282Y on total body iron (and thus on ferritin) is in part antagonised by its 

negative effect on hepcidin. HFE C282Y increases transferrin saturation and cell iron uptake. 

However, the concomitant hepcidin downregulation favours iron release from macrophages. On 

one side this translates into the vicious cycle of further enhancing transferrin saturation, but on the 

other side, if the secreted ferritin is related to macrophage iron content36, it would reduce serum 

ferritin (figure 3). In conclusion, our study shows a complex interplay between hepcidin and 

ferritin and points to the high transferrin saturation in C282Y HFE haemochromatosis as the major 

cause of iron loading through increased cell iron uptake, despite increased iron release due to the 

low hepcidineferroportin interaction. The results also show a new association between HFE and 

TMPRSS6 variants with hepcidin/ferritin ratio, that could represent an index of potential clinical 

utility to assess adequate hepcidin secretion.  
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Abstract 
 
Serum hepcidin concentration is regulated by iron status, inflammation, erythropoiesis and 

numerous other factors, but underlying processes are incompletely understood. To obtain better 

insights, we aimed to identify common genetic determinants of serum hepcidin in the general 

population.. We meta-analyzed genome-wide association results on serum hepcidin from three 

European population-based studies (total N up to 6,096), the only three cohorts worldwide with 

both hepcidin measurements and genome-wide single nucleotide polymorphism (SNP) data. We 

measured six genetic variants that were among the top findings in up to 3,826 additional 

independent samples. Our study revealed one interesting locus (linkage disequilibrium region from 

EML6 to SPTBN1 (alias ELF), lead SNP rs354202) potentially associated with serum hepcidin 

concentration (discovery beta (SE)= -0.17 (0.03), p=7.0E-08; in silico replication beta (SE)= -0.15 

(0.10), p=0.12; discovery and in silico replication combined beta (SE)= -0.17 (0.03), p=2.1E-08). 

The ELF protein is essential in TGF-β signaling by son of mothers against decapentaplegic 

(SMAD) proteins in mice, and the bone morphogenetic protein-SMAD pathway is central in 

hepcidin regulation. The known common variants rs1800562 (p.Cys282Tyr) in HFE and rs855791 

(p.Ala736Val) in TMPRSS6 showed strong associations with the ratio hepcidin/ferritin.  

Our findings for rs354202 and serum hepcidin concentration warrant follow up in additional 

association studies and functional studies. We recommend extension of this study once additional 

cohorts become available to increase power to identify common variants with small effects on 

serum hepcidin.  
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Introduction 

Iron is an essential trace element for fundamental metabolic processes in humans1,2. Iron deficiency 

limits hemoglobin synthesis and leads to anemia, whereas an excess of free iron is toxic because it 

catalyzes the production of free radicals resulting in tissue damage1,2. In addition, iron imbalances 

have been associated with other diseases, e.g. diabetes mellitus3,4, inflammation5 and diseases of 

aging6. Hence, the iron balance in the human body is tightly controlled, with hepcidin as key 

regulator of systemic iron homeostasis7,8. Hepcidin controls the absorption, storage and tissue 

distribution of iron by binding to the cellular iron exporter ferroportin and inducing its 

internalization and degradation9. In this way, hepcidin regulates the uptake of dietary iron from the 

intestine and the release of iron from macrophages involved in recycling of iron from senescent 

erythrocytes7,8. 

In the last few years, several genome-wide association studies have revealed genetic variants 

associated with iron status in the general population, including common variants in the hereditary 

hemochromatosis gene (HFE), transferrin gene (TF), transferrin receptor 2 gene (TFR2) and 

transmembrane serine protease 6 gene (TMPRSS6). On the contrary, little is known about genetic 

determinants of hepcidin. Mutations in hepcidin antimicrobial peptide (HAMP), the hepcidin 

encoding gene, lead to strongly decreased hepcidin levels and a severe juvenile form of the iron 

storage disorder hereditary hemochromatosis (HH), but HAMP mutations are very rare10. In 

addition, mutations in HFE, TFR2 and TMPRSS6 have been related to hepcidin expression10-16. 

Until now, however, no common genetic variants for hepcidin have been identified. The only 

published genome-wide association study (GWAS) on serum hepcidin in the Val Borbera genetic 

isolate was underpowered to find genome-wide significant associations with hepcidin17. In 

addition, the single nucleotide polymorphisms (SNP) rs1800562 (p.Cys282Tyr) in HFE and 

rs855791 (p.Ala736Val) in TMPRSS6, which were thought to be associated with hepcidin as an 

explanation for their effects on iron, ferritin, transferrin and transferrin saturation (TS), did not 

show association with serum hepcidin in recent studies by our groups17,18. Nevertheless, these 

variants did show association with the ratios hepcidin/ferritin and hepcidin/TS17,18, which express 

the dependence of hepcidin concentration on stored and circulating iron, respectively1,7,8,19.  

The aim of the current study was to identify common genetic determinants of serum hepcidin in the 

general population. We studied hepcidin as well as the ratios hepcidin/ferritin and hepcidin/TS. We 

performed a meta-analysis using data from the only three cohorts worldwide that have, to the best 

of our knowledge, both hepcidin measurements and genome-wide SNP data: the Nijmegen 

Biomedical Study (NBS) (Nijmegen, The Netherlands), Prevention of REnal and Vascular ENd-

stage Disease (PREVEND) (Groningen, The Netherlands) and Val Borbera (VB) (Milan, Italy). 

This was followed by replication of six top hits in additional independent samples of the NBS and 

PREVEND. 
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Methods 
Study populations 

In this meta-analysis, we combined genome-wide association results for hepcidin and the ratios 

hepcidin/ferritin and hepcidin/TS based on up to 6,096 individuals from three population-based 

cohorts (Supplemental Table 1). Data for replication were obtained from up to 3,826 additional 

independent samples from two of the three cohorts. Information on laboratory methods, genotype 

methods, imputation, quality control, and phenotypes is shown in Supplemental Tables 2-4. All 

three studies were approved by appropriate ethical committees, and all participants gave informed 

consent.  

 

Genome-wide association analysis 

Genome-wide association analyses were performed in each cohort separately according to a set 

protocol. A subset analysis was performed in which individuals with ferritin <30 ng/mL and CRP 

≥10 mg/L were excluded as to remove individuals with iron deficiency and clinical inflammation, 

which are acquired conditions known to alter iron metabolism20. Hepcidin and the ratios 

hepcidin/ferritin and hepcidin/TS were log-transformed and thereafter adjusted for age and squared 

age, separately for males and females. For NBS, time of blood sampling was used as an additional 

covariate (three categories: before 12 PM, between 12 and 5 PM and after 5 PM). For VB, 

principal components were used to adjust for family structure. Sex‐specific residuals were 

calculated and merged into one variable. Outliers, defined as values that differed more than four 

times the SD from the mean, were excluded. The association between the single nucleotide variants 

and the trait was tested using genotype probabilities and an additive model on the standardized 

residuals (Z score).  

 

Meta-analysis 

The GWAS results from the three cohorts were combined in a fixed-effects meta-analysis using 

METAL21. The standard-error based approach was used, which weighs effect size estimates using 

the inverse of the corresponding standard errors. Variants with a minor allele frequency <1% and a 

SNPtest info value or MACH RSQR <0.4 were excluded prior to the meta-analysis. Genomic 

control correction was applied to the individual cohorts.  

 

Replication 

Five SNPs were measured with single SNP assays in additional independent samples from 

PREVEND (N=2,876) and NBS (N=1018). Single-SNP genotyping in PREVEND samples was 

performed by KBiosciences (KBiosciences, Herts, UK) utilizing the SNPline system. Single-SNP 

genotyping in NBS samples was carried out by deCODE Genetics using the Centaurus (Nanogen) 

platform22. The quality of each Centaurus SNP assay was evaluated by genotyping each assay on 
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the CEU samples and comparing the results with the HapMap data. All assays had mismatch rate 

<0.5%. One SNP for which the genotyping assay failed was carried forward to in silico replication 

in the additional samples from the NBS that were genotyped with the HumanOmniExpress-12v1-

1_B (N=524). 

 
Results 
Combination of GWAS results from three cohorts (Supplemental Tables 1-4) revealed two loci that 

were genome-wide significantly associated (p<5E-08) with serum hepcidin (Table 1 and 

Supplemental Figures 1-8). The first one (rs118031191 on chromosome 10, nearest gene FOXI2) 

showed genome-wide significant association in all individuals, but not in the subset (p=1.4E-05). 

The second locus showed genome-wide significant association in the subset (four SNPs on 

chromosome 2 in EML6 with lead SNP rs354202). This latter signal covers a region that also 

includes SPTBN1, which encodes spectrin, beta, non-erythrocytic 1 and is the left flanking gene of 

EML6 approximately 50 kbp away (Supplemental Figure 8). Conditional analysis in NBS data 

showed no additional independent signals at the chromosome 2 locus after adjustment for rs354202 

(Supplemental Figures 9-10).  

The ratio hepcidin/ferritin in all individuals and in the subset showed genome-wide significant 

association with the previously known genes HFE and TMPRSS6 (Supplemental Table 5). No new 

statistically significant loci for hepcidin/ferritin were identified; the new locus with the lowest p-

value in the subset (rs1594673 on chromosome 5, nearest gene PRELID2) also appeared in the top 

results for serum hepcidin in the subset (Table 1). The associations of the ratio hepcidin/ferritin 

with rs354202 and rs118031191 in all individuals and in the subset were far from significant 

(rs354202: p=6.7E-03 and 1.6E-02, respectively; rs118031191: p=3.8E-02 and 1.9E-02). However, 

directions of the effect estimates were the same as for the association with hepcidin [beta (SE) 

rs354202: -0.09 (0.03) in all individuals and -0.09 (0.04) in the subset; beta (SE) rs118031191: -

0.14 (0.07) in all individuals and -0.18 (0.08) in the subset].  

The ratio hepcidin/TS was genome-wide significantly associated with the TMPRSS6 locus in the 

subset, but not with HFE (Supplemental Table 6). No novel significant loci were found for 

hepcidin/TS. SNP rs354202 showed the most significant novel signal in the subset (p=1.6E-07) and 

was also among the top results for hepcidin/TS in all individuals (p=3.0E-6). Directions of the 

effect estimate were the same as for the association with hepcidin [beta (SE) -0.15 (0.03) in all 

individuals and -0.18 (0.04) in the subset]. SNP rs118031191 was also among the top results for 

hepcidin/TS in all individuals (p=2.4E-07), but not in the subset (p=3.4E-05). Directions of the 

effect estimate were the same as for the association with hepcidin [beta (SE) -0.35 (0.07) in all 

individuals and -0.32 (0.08) in the subset]. 

Six SNPs were brought forward to replication. SNPs rs354202, rs118031191, rs56281245 and 

rs12289793 were selected based on p<1E-06 for association to hepcidin in all individuals and/or in 

the subset. Two additional SNPs were selected, although not present in the top with p<1E-06, 
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because they showed hepcidin association p-values close to 1E-06, their MA results were based on 

three cohorts, they lie inside genes, and their MAF is >10%. These were rs1835473 (p =1.9E-06 for 

hepcidin in all individuals), which lies in the gene PKIB encoding protein kinase (cAMP-

dependent, catalytic) inhibitor beta, and rs12441903 (p=4.3E-06 for hepcidin in all individuals), 

which lies in the gene LRRK1 encoding leucine-rich repeat kinase 1. SNPs rs117568227 and 

rs141939445 showed p<1E-06 but were not selected because the MA results were based on only 

one or two cohorts, they lie in intergenic regions, and have MAF~1%. Replication analysis 

revealed no significant associations at p=0.05 (Table 2). The p-value for discovery and replication 

analyses combined became stronger for rs354202 only. 

 

Discussion 
This is the first meta-analysis of GWAS for serum hepcidin, which is based on analysis of up to 

9,917 individuals. It revealed a potentially interesting locus on chromosome 2 with lead SNP 

rs354202.  

SNP rs354202 is located on chromosome 6 in an intron of EML6, encoding echinoderm 

microtubule associated protein like 6. The linkage disequilibrium region of rs354202 stretches from 

EML6 to SPTBN1 [alias ELF (embryonic liver fodrin)], encoding spectrin, beta, non-erythrocytic 1. 

This gene is a member of a family of beta-spectrin genes, which are involved in linking the plasma 

membrane to the actin cytoskeleton. The ELF protein was shown to be essential in TGF-β signaling 

by son of mothers against decapentaplegic (SMAD) proteins in mice23. Central in hepcidin 

regulation is the bone morphogenetic protein-SMAD pathway24, and the ELF protein is thus a 

plausible candidate to influence hepcidin expression. In addition, a recent genome-wide RNA 

interference screen provided a large number of putative hepatic hepcidin regulators; results also 

pointed to adaptor proteins as hepcidin activators25. Based on current knowledge, spectrins could 

be considered as adaptor proteins26, but results of the RNA screen did not specifically point to β-

spectrins. Furthermore, rs354202 showed association with hepcidin in both all study individuals 

and in the subset, suggesting that this signal is not driven by extreme iron deficiency or 

inflammation. It also showed strong associations with the ratio hepcidin/TS, but not with the ratio 

hepcidin/ferritin. Finally, the direction of effect of rs354202 on all traits was the same, i.e. the A 

allele of rs354202 is associated with a decrease in hepcidin, hepcidin/ferritin and hepcidin/TS.  

We confirmed the association of the ratio hepcidin/ferritin with common variants in HFE and 

TMPRSS6. We previously reported on the associations of rs1800562 in HFE and rs855791 in 

TMPRSS6 with the ratio hepcidin/ferritin via independent studies both in the VB and NBS 

population17,18. As expected, we further substantiated these associations here and found an even 

stronger signal. The association signal of the ratio hepcidin/TS with common variants in HFE and 

TMPRSS6 was less strong. Of note, the association of rs1800562 in HFE with the ratio 

hepcidin/TS, previously found in the NBS18, disappeared upon meta-analysis of results of NBS, 
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PREVEND and VB in all individuals (p=0.13), but still showed a relatively weak signal in the 

subset (p=3.7E-04). Also rs855791 in TMPRSS6 showed a stronger signal for association with the 

ratio hepcidin/TS in the subset compared to analysis based on all individuals. The stronger signal 

of rs1800562 and rs855791 with the ratio hepcidin/ferritin compared to the ratio hepcidin/TS 

indicates that these SNPs have a larger influence on hepcidin response to body iron stores than on 

hepcidin response to circulating iron.  

Recently, a meta-analysis on iron status in up to 48,972 subjects was completed by the Genetics of 

Iron Status Consortium, which also incorporated the three cohorts included in the current study 

(Benyamin et al 2014). This meta-GWAS identified 12 SNPs that were significantly associated 

with one or more of the iron parameters, i.e. serum iron, ferritin, transferrin, and TS. The top 

findings of the current study do not show any overlap with the 12 SNPs of the iron status meta-

GWAS. This is unexpected, as hepcidin and iron metabolism are clearly intertwined1,7,8,19, as also 

indicated by the strong and positive correlation between serum hepcidin and serum ferritin in the 

NBS and the VB population17,27. 

The fact that our meta-analysis revealed only one locus that potentially affects serum hepcidin 

suggests that there are no common variants that explain a large proportion of phenotypic variation 

in serum hepcidin. Indeed, with our N of 6,096 we had 80% and 99.4% chance of detecting (at 

alpha 5E-08) a variant that explains 0.62% and 1% of hepcidin variance, respectively. For 

comparison, the well-known iron-related SNPs rs1800562 in HFE and rs855791 in TMPRSS6 

explain ~1% of serum iron variation. In addition, (narrow-sense) heritability of hepcidin was 

previously estimated to be 9.8% (non-significant) in the VB population and genome-wide SNP 

explained variance was estimated at ~37% (SE~20%) in the NBS (data not shown), suggesting that 

a large part of hepcidin variability is caused by variation in environmental factors. Future studies 

that aim to detect common variants with small effects on serum hepcidin could increase power by 

further enlarging sample size and/or reducing the hepcidin variability by adjustment for non-

genetic factors associated with serum hepcidin, like we did for age, gender17,27, and diurnal 

rhythm7,28, but also for e.g. alcohol consumption29, and pregnancy30. Studies into rare variants using 

exome or whole genome sequencing and gene-gene and/or gene-environment interactions could 

further increase insights into the genetic etiology of hepcidin.  

In conclusion, our study revealed one interesting locus (lead SNP rs354202) potentially affecting 

serum hepcidin concentration. Furthermore, our results indicate that there are no common genetic 

variants that explain more than 1% of phenotypic hepcidin variation. We recommend to measure 

rs354202 in additional independent samples in order to confirm its association with serum hepcidin 

and to follow-up this locus with fine mapping and functional studies to obtain insight into the 

underlying mechanism of association.  
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Table 1.  

	
  
Analyses were performed for all individuals with a hepcidin measurement above the detection limit of the hepcidin assay. 
*A1 is the effect allele in the association analysis.  
#Order of direction: PREVEND, NBS, VB. A question mark (?) indicates that the variant had a minor allele frequency 
<1%, and/or a SNPtest info value or MACH RSQR <0.4, and/or was not imputed in a cohort.  
‡These SNPs lie in intergenic regions.  
$Closer than LLPH lies RNA, 5S ribosomal pseudogene 362 (RNA5SP362). 

 

Table 2.  

 
HWE p-values in PREVEND and NBS, respectively, were for rs12289793: p=0.71 and 0.89; for rs1835473 p=0.001 and 
0.90; for rs56281245 p=0.12 and 0.90; for rs118031191 p=0.04 and 0.29; for rs12441903 p=0.04 and 0.95; and for 
rs354202 p=0.83 (NBS only). 
*A1 is the effect allele in the association analysis.  
#Order of direction: NBS, PREVEND. 
†Order of direction: discovery MA, NBS, PREVEND. 
‡Result of of in silico replication for rs354202 in additional NBS samples. 
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Abstract 
 

Variation in body iron is associated with or causes diseases, including anaemia and iron overload. 

Here, we analyse genetic association data on biochemical markers of iron status from 11 European-

population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We 

find 11 genome-wide-significant (P<5x10-8) loci, some including known iron-related genes (HFE, 

SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, 

TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk 

for hemochromatosis. There is substantial overlap between our iron loci and loci affecting 

erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in 

disease. 
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Introduction 
Absorption, transport and storage of iron are tightly regulated, as expected for an element, which is 

both essential and potentially toxic. Iron deficiency is the leading cause of anaemia1, and it also 

compromises immune function2 and cognitive development3. Iron overload damages the liver and 

other organs in hereditary hemochromatosis4, and in thalassaemia patients with both transfusion 

and non-transfusion-related iron accumulation5. Excess iron has harmful effects in chronic liver 

diseases caused by excessive alcohol, obesity or viruses6. There is evidence for involvement of iron 

in neurodegenerative diseases7–9 and in Type 2 diabetes10,11. Variation in transferrin saturation, a 

biomarker of iron status, has been associated with mortality in patients with diabetes12 and in the 

general population13. All these associations between iron and either clinical disease or pathological 

processes make it important to understand the causes of variation in iron status. Importantly, 

information on genetic causes of variation can be used in Mendelian randomization studies to test 

whether variation in iron status is a cause or consequence of disease14,15. 

We have used biomarkers of iron status (serum iron, transferrin, transferrin saturation and ferritin), 

which are commonly used clinically and readily measurable in thousands of individuals, and 

carried out a meta-analysis of human genome-wide association study (GWAS) data from 11 

discovery and eight replication cohorts. These phenotypes show significant heritability in normal 

adults16,17, and previous population-based studies have identified relevant single-nucleotide 

polymorphisms (SNPs) and gene loci (HFE, TF, TFR2 and TMPRSS6 (refs 18,19)) for iron status 

biomarkers. HFE and TMPRSS6 have also been shown to affect red cell count, haemoglobin and 

erythrocyte indices20, most likely by affecting iron availability20–22. 

Our aims were to identify additional loci affecting markers of iron status in the general population 

and to relate the significant loci to information on gene expression to identify relevant genes. We 

also made an initial assessment of whether any such loci affect iron status in HFE C282Y 

homozygotes, who are at genetic risk of HFE-related iron overload (hereditary hemochromatosis 

type 1, OMIM #235200). 

Combination of results from discovery and replication stages of our analysis shows significant 

effects on one or more of the iron biomarkers at 11 loci. Those primarily affecting serum iron and 

transferrin saturation include, or are close to, genes whose products have recognized roles in iron 

homeostasis; HFE (the haemochromatosis gene), TMPRSS6 (transmembrane protease, serine 6) 

and TFR2 (transferrin receptor 2). Those mainly affecting serum transferrin, apart from the TF 

(transferrin) gene itself and TFRC (transferrin receptor), and those mainly affecting ferritin (apart 

from SLC40A1, solute carrier family 40 (iron- regulated transporter), member 1) are unexpected. 

There is a significant overlap between the genes or loci affecting iron biomarkers and those known 

to affect erythrocyte numbers or size, which is reasonable given the importance of iron for 

erythropoesis. We also find significant overlap between genes or loci affecting iron biomarkers and 



 Chapter 8 

	
  

134 

known loci affecting plasma lipids or lipoproteins, showing an unexplained link between these 

areas of metabolism. 

 

Results 
SNP and gene associations 

The combination of allelic association data from 11 discovery and eight replication cohorts 

(Supplementary Tables 1–3) showed 11 loci with significant effects on one or more of the iron-

related phenotypes (Table 1, Fig. 1, Supplementary Figs 1 and 2, Supplementary Table 4). Four of 

these (HFE, TF, TFR2, TMPRSS6) were previously known to affect iron biomarker variation in the 

general population18,19. 

Genes at two newly significant loci, SLC40A1, which codes for the cellular iron exporter 

ferroportin and TFRC, which codes for the iron importer transferrin receptor 1, are known to be 

important for cellular iron homeostasis23. The other five loci (chromosome 8 at 18.3 Mbp, nearest 

gene NAT2; chromosome 9 at 136.2 Mbp, nearest gene ABO; chromosome 11 at 13.4Mbp, nearest 

gene ARNTL; chromosome 11 at 61.6Mbp, nearest gene FADS2; chromosome 17 at 54.1Mbp, 

nearest gene TEX14) were not previously known to affect any of these phenotypes. These affect 

either transferrin (NAT2, ARNTL, FADS2) or ferritin (ABO, TEX14). 

Conditional analysis on the discovery cohorts (Table 1, Supplementary Fig. 4) showed additional 

independent signals at the TF locus for transferrin and transferrin saturation and at TMPRSS6 for 

iron. Gene-based analysis in the discovery cohort (Supplementary Table 5) gave significant results 

(critical P-value for testing of 17,000 genes <3x10- 6) for ferritin in a region covering two genes 

(C15orf43 and SORD) on chromosome 15, where individual SNPs gave only suggestive 

associations. Allelic associations across this region are also shown in Supplementary Fig. 2. This 

locus did not show any SNPs with genome-wide significance in the combined 

discovery+replication data. 

In the replication cohorts, the lead SNPs at the 11 significant loci explained 3.4, 7.2, 6.7 and 0.9% 

of the phenotypic variance for iron, transferrin, saturation and (log-transformed) ferritin, 

respectively. Allelic association results for all SNPs tested will be available from 

http://genepi.qimr.edu.au/. 

 

 

 



Novel loci affecting iron homeostasis  

    

 135 

 
 

Figure 1. Location of regions showing significant association with one or more of serum iron, 

transferrin, transferrin saturation and ferritin. The –log(p) values on the y-axes are truncated at 20. For 

SNPs taken forward for replication, the –log(p) values are from the combined Discovery + Replication 

datasets. Genes are assigned to the loci as follows: 1 SLC40A1; 2 TF; 3 TFRC; 4 HFE; 5 TFR2; 6 NAT2; 7 

ABO; 8 ARNTL; 9 FADS2; 10 TEX14; 11 TMPRSS6. 
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Figure 2. Comparison of results for serum iron with regulatory features at the chromosome 7 (TFR2) locus. From 

bottom: regional association plot with recombination rate and –log(P.value) for serum iron; documented eQTL locations 

for TFR2 expression (from left to right: rs10247962, rs4729598, rs7457868, rs4729600, rs1052897); ENCODE data on 

histone modification. P-values for serum iron at rs7385804 and rs2075672 are shown as text (Final p) for the discovery + 

replication dataset, but positions for all SNPs on the y-axis are determined by the discovery dataset only. 
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Secondary analyses 

In view of the known association between ferritin concentration and inflammatory conditions, we 

repeated the discovery meta-analysis of ferritin including C-reactive protein (CRP, a marker of 

inflammation) as a covariate. This resulted in a decrease in effect sizes (expressed as standardized 

regression slopes or betas in an additive-allelic-effect model) for the lead SNPs at significant and 

suggestive loci, to an average of 73% (s.d. 15%) of the previous betas (Supplementary Fig. 5). The 

P-values became less significant, partly because of the decrease in effect size and partly because 

the number of subjects with CRP data was less than the number available for the initial analysis. 

To check whether results were similar after excluding people with iron deficiency, we removed 

subjects with serum ferritin concentration below 30µgl-1 and repeated the meta-analyses for all four 

phenotypes. This decreased effect sizes for transferrin and transferrin saturation, but had negligible 

effects for SNPs, which were significant or suggestive for ferritin or iron compared with those from 

the all-subjects analysis (Supplementary Table 6). 
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We also examined the association between serum transferrin concentration and FADS2 variation. 

Because this gene is known to be associated with other phenotypes related to lipids and 

components of the metabolic syndrome, we included high- density lipoprotein cholesterol (HDL-C) 

as a covariate and repeated the association meta-analysis for transferrin and the most significant 

SNP at the FADS2 locus, rs174577. (HDL-C was chosen because it was available for a greater 

proportion of subjects than either triglycerides or glucose, which are also associated with FADS 

polymorphisms.) This conditional analysis resulted in a 35% reduction in the effect size for this 

SNP, from ß=0.068±0.011 to 0.044±0.009. 

 

 
 

Effects on gene expression and regulation 

We next checked for data that may help explain the biological role of the significant SNPs or 

identify the causal variants which they tag, using sources listed in Methods. The synthesis of 

information from our results and external sources is exemplified in Fig. 2, which shows the 

alignment of data at the TFR2 locus. The region that includes genome-wide-significant SNPs (after 

replication) for serum iron contains documented eQTLs for TFR2, and H3K27Ac histone 

modification sites (documented in data from ENCODE). In this case, there is striking alignment at 

the region around 100.2 Mbp at one end of the TFR2 gene, which includes the most significant 

SNPs at this locus, documented eQTLs for this gene, and the histone modification in K562 

(erythroleukaemia) cells. 

A similar approach was taken for the other significant loci, as summarized in Supplementary Table 

7. SNPs identified through the GWAS had significant cis-effects on expression of SLC40A1, 

TFRC, ARNTL and FADS1/FADS2. At the C15orf43-SORD locus on chromosome 15, 

rs16976620 (allelic association with ferritin P = 4.52x10-7) affected expression of SORD at 

P=4.02x10-4. The chromosome 22 region near TMPRSS6 contains eQTLs for the hepatic 

expression of TMPRSS6 (ref. 24). However, the chromosome 3 locus near TF contains eQTLs for 

SRPRB but not for TF; and SNPs at the loci identified as TFR2, ABO and TEX14 are eQTLs for 

multiple other genes. The ENCODE regulatory data show potential regulatory sequences or histone 

marks in the regions where we found SNP associations on chromosome 2 near SLC40A1, 

chromosome 11 near the FADS genes, and at the chromosome 17 locus near TEX14. 
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Some lead SNPs from our significant loci also showed trans- effects on more distant genes 

(Supplementary Table 7). Most notably, the three non-synonymous coding SNPs in HFE and 

TMPRSS6 (rs1800562, rs1799945 and rs855791) had strong effects on expression of ALAS2 

(aminolevulinate, delta-, synthase 2), which catalyses the initial step in haem synthesis in erythroid 

tissues. 

 

 
 

Figure 3. Deviation from the expected distribution of association p-values for iron, transferrin and ferritin at loci 

previously reported to be significant for (a) erythrocyte phenotypes 25 and (b) plasma lipid phenotypes26. For 

clarity, the y-axes only extend to p < 10-8 or p < 10-6 so that two associations with observed p < 10-8 for erythrocyte loci 

(at HFE and TMPRSS6) and four associations with p < 10-6 for lipid loci (at ABO, FADS2, HFE and NAT2) are not 

plotted. The interrupted line in each plot is the line of equivalence, observed = expected. 
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Overlap with other phenotypes and disease associations 

Because of previous data showing that iron-related loci overlap with loci affecting erythrocyte 

phenotypes, and because several of our significant loci have been reported to affect lipid 

phenotypes, we compared our results against published meta-analysis data on erythrocytes and 

lipids. Results are summarized in Supplementary Table 8. Among the 75 significant loci for 

erythrocyte phenotypes25, we found associations with one or more of our iron phenotypes after 

Bonferroni correction for multiple testing at P<6.7x10-4 (P<0.05 adjusted for testing of 75 SNPs) 

for ABO, HFE, TFR2, TFRC and TMPRSS6, and additionally for HBS1L (P=9.78x10-7 for 

transferrin saturation) and PGS1 (P=1.84x10-4 for ferritin). For the 157 lipid loci reported by the 

Global Lipids Genetics Consortium26, two loci (HFE and HBS1L) gave P<3.18x10-4 (Po0.05 

adjusted for testing of 157 loci) for iron and saturation, six (FADS1/2/3, GCKR, HFE, NAT2, 

SNX5 and TRIB1) for transferrin, and six (ABO, HFE, LOC84931, LRP1, PGS1 and TRIB1) for 

ferritin. Moreover, plots of observed versus expected P-value distributions for the iron phenotypes 

(Fig. 3) showed that even the erythrocyte and lipid loci not reaching statistical significance do 

affect iron biomarkers to a greater degree than can be explained by chance. 

 

The SNP association results were also analysed using Ingenuity Pathway Analysis, selecting SNPs, 

which showed associations at P<0.01, <0.001 and <0.0001 for transferrin saturation, and similarly 

for ferritin. Results for these two phenotypes, chosen as markers of iron availability and iron stores, 

showed substantial overlap. The P<0.01 threshold identified an excess of genes that have been 

reported to affect or be associated with lung cancer, cardiovascular disease and diabetes; and also 

with a range of developmental and nerve cell functions (Supplementary Fig. 6). 

Results for the P<0.001 threshold were similar but showed lesser statistical significance, as 

expected because of the smaller number of genes included. 

 

Effects on iron status in HFE C282Y homozygotes 

We tested whether the lead SNPs at loci that affect iron-related biomarkers in the general 

population also explain variation in iron status in C282Y homozygotes who are at genetic risk of 

HFE-related iron overload. These comprised 76 homozygotes from the QIMR Adult cohort (one of 

the discovery cohorts), plus 277 homozygotes from the HEIRS study27. Results are shown in Table 

2 for significant associations, and more fully in Supplementary Table 9. 

The strong association between rs8177240 in the TF gene and serum transferrin was clearly present 

in HFE YY homozygotes (P=1.93x10-9). The YY group showed association between serum iron 

and rs7385804 at TFR2 (ß=0.178±0.053, P=0.00076, critical P-value=0.005 after adjusting for 

testing of ten loci). The standardized beta for this SNP was approximately three times as great in 

the YY sample as in the overall meta-analysis (0.178±0.053 against 0.055±0.010). There was also a 

significant association (P=0.0022) between rs6486121 in ARNTL and ferritin. When we checked 
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for associations between a genetic risk score calculated from the significant and suggestive SNPs in 

the population-based meta-analysis results, and the biomarker phenotypes in the HEIRS sample, 

only transferrin showed a significant association and this was stronger among the men than the 

women (Supplementary Table 10). 

 

Discussion 
Our meta-analysis of GWAS on iron-related phenotypes from up to 48,000 people of European 

descent showed multiple significant associations. Some increased the significance of loci known 

from previous studies or showed significant associations with additional phenotypes (TF, TFR2, 

HFE, TMPRSS6); some were at loci containing genes whose products have known roles in iron 

homeostasis, including the transferrin receptor TFRC and the iron transporter ferroportin 

(SLC40A1); and others were novel (near to ARNTL, FADS2 and NAT2 for transferrin, ABO and 

TEX14 for ferritin). Significant associations were found for biomarkers of iron status that reflect 

both cellular iron metabolism and systemic regulation of iron23. 

There was variation in the phenotypes affected by the significant loci, as summarized in 

Supplementary Fig. 3. Three of the loci mainly affected serum ferritin (ABO, SLC40A1, TEX14); 

three others mainly affected serum iron and transferrin saturation (HFE, TFR2, TMPRSS6); and 

five mainly affected serum transferrin (ARNTL, FADS2, NAT2, TF and TFRC). The loci with the 

strongest effects on serum iron (HFE, TMPRSS6) had significant, but smaller, effects on serum 

ferritin and it is likely that this is due to higher circulating concentrations of iron leading over time 

to higher iron stores and hence higher serum ferritin. 

We note that there are factors that can modify the relationships between these biomarker 

phenotypes and whole-body or tissue-specific iron status. Ferritin has been criticized as a marker of 

iron stores because it is an acute-phase protein increased by inflammation, but comparisons with 

independent methods28,29 have validated it sufficiently for use in epidemiological studies. 

Moreover, the loci that affected ferritin in this study have not been reported in GWAS for 

inflammatory biomarkers or CRP30, and SLC40A1, which showed a highly significant association 

with ferritin, has strong biological plausibility because it codes for ferroportin. Including CRP as a 

covariate in the ferritin association analysis changed the effect size similarly for all the significant 

or suggestive SNPs (Supplementary Fig. 5), whereas effects related to both inflammation and iron 

status would be expected to alter betas for some SNPs and not others. 

We also note that matching of significant loci to genes is subject to uncertainty. For some, the 

location of the peak association close to a gene with a known and relevant physiological function 

gives confidence in the gene assignment. For others, data from previous reports or databases on 

association between SNPs and gene expression will identify a probable gene, but in other cases 

expression data are consistent with any of several genes or else no relevant data are available. If so, 
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the name of the nearest gene may be provided for identification of the locus but this may require 

revision as more information becomes available. 

Five confirmed loci contain genes (TF, TFR2, HFE, TMPRSS6, SLC40A1) that were already 

known to affect iron homeostasis. These genes have been previously identified via monogenic 

diseases or from functional studies. Interestingly, no association has been identified with genes for 

several other important players in iron homeostasis such as ferritin, the protein that safely stores 

excess iron, or hepcidin and hemojuvelin, which are essential in the hepcidin signalling pathway 

and when mutated cause severe juvenile-onset hemochromatosis (type 2A, 2B). Mutations at the 

loci identified cause late-onset (HFE, type 1) or less severe (TFR2, type 3 and SLC40A1, type 4A) 

hemochromatosis. 

SNPs at HFE and TMPRSS6 that mainly affect iron and transferrin saturation showed interesting 

trans-effects on gene expression for ALAS2. As this gene is on the X chromosome and we only 

analysed GWAS data for autosomes, we do not know whether ALAS2 variation affects our 

phenotypes. However, ALAS2 activity controls the initial and rate-limiting step in porphyrin 

synthesis so a co-ordinated effect on both iron and protoporphyrin availability for formation of 

haem is an interesting possibility. 

SLC40A1 is a prime candidate for affecting iron stores, as it codes for ferroportin and mutations in 

this gene are associated with the autosomal dominant type 4 hemochromatosis, characterized by 

high ferritin levels. The most significant SNPs near SLC40A1 in our study are about 45 and 60 kbp 

from the gene, but are known to affect SLC40A1 expression. Variation near SLC40A1 also affects 

transferrin, probably through an effect on cellular iron availability. 

Genome-wide studies of erythrocyte traits known to vary with iron status20–22,25 have previously 

found associations with many of these loci: erythrocyte volume (MCV) and haemoglobin content 

(MCH) with HFE, TFR2, TFRC and TMPRSS6; haematocrit with HFE, TFR2, and TMPRSS6; 

and erythrocyte count with TFR2 (ref. 25). The results for our iron data at loci known to affect 

erythrocyte phenotypes are illustrated in Fig. 3a; an unexpectedly high proportion of them affect 

iron, transferrin and ferritin. 

New associations were found for ferritin near ABO and TEX14. The ABO blood group locus has 

shown significant associations for several phenotypes; rs651007 has a particularly strong effect on 

E-selectin31 and has also been found in GWAS on low-density lipoprotein cholesterol32, coronary 

artery disease33 and red blood cell count25. The latter is relevant to our ferritin finding, but whether 

ABO variation primarily affects iron stores and therefore erythrocyte count, or vice versa, is 

unclear. 

TEX14 codes for a testis-expressed protein, but there was no evidence for male–female 

heterogeneity in the effect on ferritin (pHet for the lead SNP, rs368243, was 0.45). The most 

significant SNPs are within the TEX14 gene but the suggestive-significance region extends across 

other genes. Expression data suggest that variation affecting RAD51C may be important, but the 
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function of this gene (in DNA repair and meiosis) also has no obvious connection with iron status. 

The same holds for SEPT4, for which rs411988 is an expression QTL. Another gene within the LD 

block, MTMR4, deserves consideration because it changes SMAD phosphorylation, with possible 

effects on the BMP-SMAD pathway affecting control of hepcidin34. The region on chromosome 15 

identified in the gene-based analysis is centred on C15orf43 but also overlaps with SORD (sorbitol 

dehydrogenase). SORD has no obvious connection with iron status and the function of the protein 

coded by C15orf43 is unknown, although there is some evidence that it is present in human plasma 

(http://pax-db.org/#!protein/986968, accessed 2014-03-27). These two loci illustrate the difficulty, 

which may be encountered in interpreting allelic associations; in some cases, the region containing 

the most significant results overlaps with several genes, there may be unrecognized regulatory 

regions with effects on more distant genes, and data on gene expression may not reflect expression 

in the relevant tissue. For all these reasons, assignment of significant effects to specific genes must 

often be provisional. 

Effects on transferrin were seen for most of the loci, which affect serum iron, including HFE, TF, 

TFRC, and TMPRSS6. Contrary to the result for TFRC, variation at the other transferrin receptor 

gene TFR2 did not affect transferrin concentration; this may reflect the different functions of the 

two receptors. TfRC is involved in cellular iron uptake, which may directly affect the regulation of 

transferrin expression. TfR2 on the other hand has been reported to be involved in hepatocyte 

sensing of circulating iron and signalling to hepcidin production, which may subsequently affect 

circulating levels of iron and the transferrin saturation. TfR2 variation could also affect these iron 

parameters through its effect on erythropoiesis35. 

Transferrin was also affected by SNPs near ARNTL, NAT2 and FADS2. The role of these in iron 

homeostasis is uncertain; transferrin is central to iron transport and receptor-mediated uptake by 

cells but these loci did not affect serum iron or ferritin. ARNTL, and its product BMAL1, is mainly 

known for interactions with CLOCK genes and generation of circadian rhythm. Notably, serum 

iron16,36, liver iron37, hepcidin38 and TfR1 gene expression39 all show circadian variation. The 

region affecting transferrin on chromosome 8 contains the NAT2 gene, which again has no obvious 

relevance for iron. It has been shown to affect lipids32 and cardiovascular risk (see Supplementary 

Table 8 of ref. 40). The gene product is important for xenobiotic metabolism; NAT2 codes for an 

N-acetyl transferase, which determines fast- or slow-acetylator status. At FADS2, the significant 

SNPs for transferrin are intronic but they affect expression of FADS genes. FADS1/2/3 variation 

affects a wide range of phenotypes including serum lipids32,41, polyunsaturated fatty acid content of 

serum phospholipids42; fatty acid composition of membranes and phospholipids43; fasting glucose 

and insulin response44,45 and liver enzymes46. The most significant FADS SNPs for lipids are 

rs174546, rs174547 and rs174548 (refs 32,41,47) and each gave significant or near- significant P-

values for transferrin in our data (P=7.43x10-10, 8.47x10-10 and 7.29x10-8, respectively). This, 

together with the decrease in the locus effect on transferrin after inclusion of HDL-C as a covariate, 
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suggests a common basis for effects on lipids and transferrin. The pathways involved are unknown, 

but iron homeostasis and lipid metabolism show overlap in the literature32,48–51 as well as in our 

data. It has recently been shown, for example, that signalling pathways for the protein kinase 

mTOR, which regulates energy metabolism and lipid synthesis among other functions52, affect 

transcriptional control of hepcidin and therefore potentially affect iron uptake and distribution53. 

Despite the varied functions of these three genes (ARNTL, FADS2, NAT2), which unexpectedly 

affect transferrin, they have the common feature of significant effects on plasma triglycerides26. 

Detailed comparison of our results against published lipid loci showed that a high proportion of 

lipid loci (not only for triglycerides) have detectable effects on our iron phenotypes, especially on 

transferrin (Fig. 2b, Supplementary Table 8). The pleiotropic effects at such loci, connecting iron 

homeostasis not only with erythropoiesis but also with lipids and possibly with cardiovascular risk, 

deserve further investigation. 

One important clinical question about iron overload is why some HFE C282Y homozygotes 

develop biochemical evidence of iron overload and clinical symptoms of hemochromatosis, while 

most do not54. A systematic review of longitudinal studies found that 38–76% of homozygous 

people have increased ferritin and transferrin saturation (biochemical penetrance)55. However, 

clinical symptoms are less common at 2–38% in men and 1– 10% in women56,57. We therefore 

evaluated the effects of our lead SNPs in HFE C282Y homozygotes, combining data from the 

largest of our Discovery cohorts with available phenotypic information and DNA from participants 

in the HEIRS study. 

Because of limited numbers of C282Y homozygotes (total N available for data analysis was 353), 

we had limited power to detect relevant effects. Among our results, the association between two 

SNPs in TFR2 and serum iron seems the most relevant. There is both clinical and experimental 

evidence for interaction between the gene products of HFE and TFR2. Severe juvenile 

hemochromatosis occurred in a family carrying mutations in both HFE and TFR2 (ref. 58). In 

mice, homozygosity for deletion of both Hfe and TfR2 greatly decreases hepcidin levels59 and 

causes massive iron overload60. These reports are consistent with evidence that TFR2 and HFE 

proteins interact in control of hepcidin signalling; they may form an iron-sensing complex that 

modulates hepcidin expression in response to blood levels of diferric transferrin61,62. Overall, there 

was a lack of correlation between effect sizes for lead SNPs at the significant loci identified in the 

general population, and in the YY homozygotes. Similarly, a predictor based on allele count and 

effect size for SNPs taken forward for replication and genotyped in the HEIRS subjects did not 

significantly predict iron, saturation or ferritin in the HEIRS C282Y homozygotes (Supplementary 

Table 10 and Supplementary Fig. 7). The exception, transferrin, was due to the strong effects at the 

TF locus. 

Previous studies have proposed determinants of HFE clinical or biochemical penetrance. Apart 

from age, sex and probably alcohol intake63, the focus has been on genetic modifiers but no 



Novel loci affecting iron homeostasis  

    

 145 

candidate has been convincingly identified64. Since iron23,65 homeostasis involves a complex 

regulating network , it seems probable that any genetic effects on penetrance are either highly 

polygenic (in which case large genome-wide studies on HFE C282Y homozygotes will be needed) 

or result from rare variants, which have not yet been examined in sufficient detail. TFR2 variation 

as a modifier of HFE C282Y risk has statistical support and biological plausibility but confirmation 

is needed. 

Our results have revealed genes or loci whose effects on iron status were previously unsuspected 

and which need to be integrated into our understanding of iron homeostasis. Discovery of SNPs 

that significantly affect iron status, and compilation of genomic scores, will allow Mendelian 

randomization studies on the multiple conditions associated with variation in iron load and help to 

clarify a potential causal role of iron in such conditions (for example, Parkinson’s14 or 

Alzheimer’s66 diseases). However, the existence of pleiotropic effects, with many loci affecting 

both iron and lipid phenotypes, shows the need for caution in selecting SNPs or scores for such 

applications. 

 

Methods 
Subjects. 

We established the Genetics of Iron Status Consortium to coordinate our efforts in understanding 

the causes and consequences of genetic variation in biochemical markers for iron status, that is, 

serum iron, transferrin, transferrin saturation and ferritin. Discovery samples consisted of summary 

data on genome-wide allelic associations between SNP genotypes and iron markers from 23,986 

subjects of European ancestry gathered from 11 cohorts in nine participating centres 

(Supplementary Table 1). Replication samples to confirm suggestive and significant associations 

were obtained from up to 24,986 subjects of European ancestry in 8 additional cohorts (also in 

Supplementary Table 1). There was no systematic selection whether a cohort was allocated into the 

discovery or replication samples. This allocation was based on the availability of data when the 

analyses were conducted. Information on phenotypic means, methods for phenotype measurement, 

and genotyping methods for each contributing cohort are shown in Supplementary Tables 2 and 3. 

Each participating study was approved by the appropriate human research ethics committee, as 

listed for each study in Supplementary Table 1, and all subjects gave informed consent. 

 

GWAS 

Genome-wide association tests, genotype imputation and associated quality control procedures 

(QCs) were performed in each cohort separately. Within each cohort, QCs were applied to 

individual samples and SNPs before imputation into HAPMAP II (Release 22, NCBI Build36, 

dbSNP b126) or, for InterAct, 1,000 Genomes. These include removing individuals based on 

missingness, relatedness, population and ethnic outliers. Poor-quality SNPs were also removed 
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based on missingness, minor allele frequency, Hardy–Weinberg equilibrium test and Men- delian 

errors for family data. These QCs for each cohort are summarized in Supplementary Table 3. 

The association between genotyped and imputed SNPs and each iron phenotype was performed 

using an additive model for allelic effects, on the standardized residuals of the phenotype after 

adjusting for age, principal component scores and other study specific covariates, for each sex 

separately. The details of the association analysis and imputation method for each cohort are 

presented in Supplementary Table 3. 

 

Meta-analysis 

We conducted meta-analysis of GWAS results from the discovery cohorts in the Metal package67 

using a standard error-based approach, which weights the SNP effect size (standardized regression 

slope, beta) using the inverse of the corresponding squared s.e. SNPs were included in the meta-

analysis if they met the following conditions: imputation quality score either Rsq (which estimates 

the squared correlation between imputed and true genotypes) for MACH software Z0.3, or the 

‘info’ measure for IMPUTE software 40.5; Hardy–Weinberg Equilibrium Test P-value (pHWE) 

Z10 � 6; minor allele frequency Z0.01; genotyping Call Rate Z0.95 and if they survived QCs in 

all cohorts to avoid disproportionate contribution of a single cohort to the meta-analysis. In total, 

B2.1 million SNPs met these conditions. A genomic control correction was applied to all cohorts. 

Heterogeneity of effect sizes between cohorts or between sexes was also assessed using Cochran’s 

Q statistic within Metal. Loci containing SNPs with Po5 � 10 � 6 were carried forward for in 

silico replication in independent samples, again using Metal for the meta-analysis. The threshold P-

value for choice of SNPs for replication is conventional and based in part on data for European 

populations in Duggal et al.68 

Power to detect allelic effects was estimated using the Genetic Power Calculator 

(http://pngu.mgh.harvard.edu/Bpurcell/gpc/). Under reasonable assumptions about allele 

frequencies for causative and marker polymorphisms (QTL increaser allele frequency = 0.2, 

marker allele frequency = 0.2, linkage disequilibrium between them d’=0.8, a alpha=5x10-8), the 

Discovery dataset with N=24,000 gives 77% power to detect allelic effects which each account for 

0.25% of the phenotypic variance. 

 

Gene-based analysis 

Gene-based analysis considers all SNPs within a gene as a unit for the association analysis. We 

performed gene-based analysis on SNP association P-values from the meta-analysis of discovery 

samples using VEGAS (http://gump.qimr.edu.au/VEGAS/, accessed 2014-03-27) (ref. 69). The 

significance of gene-based analysis was based on Bonferroni correction of testing ~17,000 genes 

(that is, P<3x10-6). 
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Conditional analysis 

To find independent signals within each significant locus, we performed conditional analysis in 

each cohort by repeating the association analysis but including the most significant SNP at each 

significant locus (in the initial meta-analysis) as covariates. We performed meta-analysis of the 

conditional association results using the same approach as in the main meta-analysis. 

 

Gene expression 

The eQTL look-up was based on a meta-analysis of expression data for known disease-associated 

loci in non-transformed peripheral blood cells, from 5,300 samples from seven cohorts. The 

original analysis used HapMap2 imputed SNPs and a cis-window of ±250 kb from the transcription 

start-site. More details can be found in the paper by Westra et al.70 

Information on gene expression in macrophages and monocytes was based on results obtained by 

the Cardiogenics consortium, on 758 samples, as described in the Supplementary Note33. 

Online resources for gene expression and regulation included http:// eqtl.uchicago.edu/cgi-

bin/gbrowse/eqtl/, http://genenetwork.nl/bloodeqtlbrowser/ and Schadt et al.24 for eQTL data, 

http://genome.ucsc.edu/ENCODE/ for information on histone modification and 

http://ecrbrowser.dcode.org/ for comparison of DNA sequences across species. 

Bioinformatic analyses. Pathway analysis and assessment of known disease associations or 

biological functions was performed using Ingenuity Pathway Analysis (IPA; Ingenuity Inc., 

Redwood City, CA, 94063), selecting SNPs, which showed associations at P<0.01,<0.001 and 

<0.0001 for transferrin saturation, and similarly for ferritin. IPA compares the list of genes 

associated with the selected SNPs against a proprietary library of gene-disease and gene-function 

associations and test frequencies of observed and expected occurrences. 

 

Analysis in HFE C282Y homozygotes 

Data and DNA samples from HFE C282Y homozygotes in the HEIRS study27 were obtained from 

the NIH Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) 

(https:// biolincc.nhlbi.nih.gov/home/). HEIRS was a population-based survey of the prevalence 

and effects of HFE polymorphisms, and subjects were not selected for having a diagnosis or 

positive family history of hemochromatosis. Selected SNPs (those showing significant or 

suggestive results in our primary meta-analysis) were genotyped by primer-extension mass 

spectrometry (MassArray, Sequenom Inc, San Diego CA); all samples were confirmed as being 

homozygous for the minor allele of rs1800562 by this method. Allelic association results for the 

QIMR adults and HEIRS C282Y homozygotes were combined by meta-analysis. 
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Abstract 
Background 

Although levels of iron are known to be increased in the brains of patients with Parkinson 

disease (PD), epidemiological evidence on a possible effect of iron blood levels on PD risk 

is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer 

from problems of confounding and reverse causation, and mendelian randomization (MR) 

represents an alternative approach to provide unconfounded estimates of the effects of 

biomarkers on disease. We performed a MR study where genes known to modify iron 

levels were used as instruments to estimate the effect of iron on PD risk, based on 

estimates of the genetic effects on both iron and PD obtained from the largest sample meta-

analyzed to date. 

 

Methods and Findings 

We used as instrumental variables three genetic variants influencing iron levels, HFE 

rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum 

iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while 

estimates of their effect on PD risk were obtained through meta-analysis of genome-wide 

and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR 

estimates of the effect of iron on PD were obtained for each variant and pooled by meta-

analysis. We investigated heterogeneity across the three estimates as an indication of 

possible pleiotropy and found no evidence of it. The combined MR estimate showed a 

statistically significant protective effect of iron, with a relative risk reduction for PD of 3% 

(95% CI 1%–6%; p = 0.001) per 10 µg/dl increase in serum iron. 

 

Conclusions 

Our study suggests that increased iron levels are causally associated with a decreased risk 

of developing PD. Further studies are needed to understand the pathophysiological 

mechanism of action of serum iron on PD risk before recommendations can be made. 
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Introduction 
Iron is involved in fundamental biochemical activities, such as oxygen delivery, mitochondrial 

respiration, and DNA synthesis in almost all cell types. In the brain, iron is a cofactor for a large 

number of enzymes, including key enzymes of neurotransmitter biosynthesis, such as the tyrosine 

hydroxylase, which represents the rate-limiting enzyme of dopamine synthesis1. However, iron is 

also potentially toxic as an excess of free iron contributes to the generation of reactive oxygen 

species and can favor oxidative tissue damage1. In the brains of patients with Parkinson disease 

(PD), increased levels of iron in the substantia nigra (SN) and the lateral globus pallidus have been 

observed, and yet the mechanisms responsible for this phenomenon are not completely 

understood2,3. PD is characterized by the rather selective loss of dopaminergic neurons4 and the 

presence of α-synuclein-enriched Lewy body inclusions in the SN5, and several studies have 

demonstrated that free iron in the SN can enhance the aggregation of α-synuclein and may thus 

promote the formation of Lewy bodies1. 

Limited epidemiological evidence on the relationship between peripheral blood levels of iron and 

PD risk is available. A recent meta-analysis of ten studies, with a total of 520 PD cases and 711 

controls, showed a trend for lower serum iron levels in PD patients compared with controls, 

although the difference in iron levels was not statistically significant (standardized mean 

difference: −0.45; 95% CI −0.98 to 0.08; p = 0.09)6. However, the very large degree of 

heterogeneity observed across studies (I2: 93%; p<0.0001) makes it difficult to interpret these 

findings. 

A major limitation of observational studies is the difficulty in distinguishing between causal and 

spurious associations due to problems of confounding and reverse causation. Mendelian 

randomization (MR) is an approach based on the use of genes as instrumental variables, which has 

been proposed to assess causality and provide estimates of the effect of modifiable intermediate 

phenotypes on disease unaffected by classical confounding or reverse causation, whenever 

randomized clinical trials are not feasible7. Genes are randomly allocated at conception, so that 

genetic effects on the intermediate phenotype cannot be affected by classical confounding, such as 

lifestyle factors, or reverse causation, as in the situation where the phenotype level is influenced by 

the presence of the disease8. For this reason, demonstration that a genetic polymorphism known to 

modify the phenotype level also modifies the disease risk represents indirect evidence of a causal 

association between phenotype and disease. 

The MR estimate of the effect of the intermediate phenotype on the disease is derived from the 

estimates of the associations of the polymorphism with both intermediate phenotype and disease. 

MR, as any other instrumental variable approach, has low statistical power and therefore requires 

very large sample sizes9. The recent availability of large collections of genome-wide data on 

intermediate phenotypes, such as blood biomarkers, and disease traits within international consortia 
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represents a great opportunity to exploit the potentials of this approach, and indeed MR studies 

have become increasingly popular over the last few years. 

The validity of the MR approach relies on the crucial assumption that the polymorphism acts on the 

disease only through the intermediate phenotype of interest and not through others (assumption of 

no pleiotropy)8. Evaluating the possibility of pleiotropic effects of the polymorphism is therefore 

fundamental when using MR, and yet pleiotropy can only be excluded with confidence if the 

function of the gene and its polymorphisms is completely known, which is rarely the case. This 

problem can be addressed by using multiple instruments (polymorphisms in multiple genes 

influencing the same intermediate phenotype), since in the absence of pleiotropy, similar MR 

estimates should be obtained regardless of the instrument used, so that differences across MR 

estimates beyond what can be expected by chance can indicate the presence of pleiotropy10. 

In this study, we provide evidence on the presence, direction, and magnitude of a causal effect of 

serum iron levels on PD risk by performing a MR study, based on iron data in 21,567 individuals 

from the general population and PD data from 20,809 PD cases and 88,892 controls. We used three 

polymorphisms as instruments in order both to increase statistical power by combining their MR 

estimates and to investigate the possible presence of pleiotropy. 

 

Methods 
Mendelian Randomization Approach 

The selection of the genes modifying iron levels to be used as instruments in our MR study was 

based on published results showing that polymorphisms in the hemochromatosis (HFE, 

ENSG00000010704) gene and the transmembrane protease 6 (TMPRSS6, ENSG00000187045) 

gene have the strongest effects on serum iron in the general population of European ancestry11. The 

choice of the polymorphisms within these two genes was based on the findings of a recent large 

meta-analysis of genome-wide association (GWA) studies on iron levels in the general population 

(unpublished data). We selected the polymorphisms with the strongest statistical evidence, two for 

the HFE gene, rs1800562 (C282Y) and rs1799945 (H63D), which are not in linkage disequilibrium 

(HapMap CEU r2<0.01) and therefore represent independent signals of association, and one for the 

TMPRSS6 gene, rs855791 (V736A) (Figure 1). 

Our MR approach was based on the use of aggregate results for both the gene–iron and gene–PD 

associations: for each polymorphism, we performed a meta-analysis of studies investigating its 

effect on iron levels and a meta-analysis of studies investigating its effect on PD risk, with no 

studies contributing to both meta-analyses (see next sections). Three separate MR estimates of the 

effect of iron on PD were obtained for the three polymorphisms, and they were subsequently 

pooled by meta-analysis to provide a single MR estimate. Heterogeneity between the three MR 

estimates was investigated to detect the possible presence of pleiotropy. 
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Data on Gene Associations with Iron 

Estimates of the effect sizes of the three polymorphisms in HFE and TMPRSS6 on total serum iron 

levels was based on the findings of a recent GWA meta-analysis on iron parameters performed by 

the Genetics of Iron Status (GIS) Consortium (Table 1) (unpublished data). The GIS meta-analysis 

includes ten cohorts from eight participating research groups. The individual datasets included in 

the meta-analysis are described in Table S1. 

 

Data on Gene Associations with PD Risk 

To estimate the association of the three polymorphisms with PD risk, we performed a meta-

analysis of both candidate gene and GWA studies (Table 1). 

Candidate gene studies were identified using PDGene (http://www.pdgene.org), a database 

providing a regularly updated synopsis of genetic association studies performed in PD12. These 

studies provided data for the two polymorphisms in HFE, rs1800562 and rs1799945. A total of 

nine studies were included in our analysis for both rs180056213-20 and rs1799945 13-17,19-21 (Tables 1 

and S2). 

 

 
Figure 1. Graphical representation of the MR approach, with all estimates used to derive the final MR 

estimate. *Reported is the allele that increases iron levels, together with its frequency (AF). **This 

corresponds approximately to an OR per unit mg/dl increase in iron of 0.997 (95%CI 0.994–0.999), that is 

0.3% (0.1%–0.6%) relative reduction in PD risk per 1 mg/dl increase in iron. 

doi:10.1371/journal.pmed.1001462.g001 

 



 Chapter 9 

	
  
158 

Three large international GWA studies recently published, the PD GWAS Consortium22, the 

23andMe study23, and the International Parkinson's Disease Genomics Consortium (IPDGC)24,25 

provided data for all three polymorphisms (Table 1). The PD GWAS Consortium includes data 

from five studies: PROGENI/GenePD26, NIA Phase I27, NIA Phase II28, HIHG29, and NGRC30. The 

23andMe data come from a slightly expanded version of the cohort used in23, including more than 

4,000 PD cases and 60,000 controls. From the IPDGC, four GWA studies were included in our 

analysis, together with five studies genotyped with a custom genotyping array (Immunochip 

Illumina iSelect array); the USA-NIA and the USA-dbGAP studies were not included because of 

overlap with the PD GWAS dataset, and the Icelandic study was not available for analysis. 

A detailed description of the individual datasets is reported in Text S1 and in Table S2. 

 

Table 1. 

 
Details on individual datasets are reported in Text S1 and in Tables S1 and S2. 
aUnpublished data. The original sample size was 22,444, but genotype and phenotype data were available 
only for 21,567. 
b23andMe: slightly expanded version of the cohort used in [23]. 
cIPDGC: USA-NIA and USA-dbGAP studies were not included in our analysis due to overlap with PD 
GWAS Consortium; the Icelandic dataset was not available for analysis. 
 

 

Statistical Analyses 

GIS meta-analysis results for the gene–iron association were expressed in terms of Z-score, that is 

the number of standard deviations (SDs) above the mean iron level associated with each copy of 

the allele. 

Study results for the candidate gene studies investigating the gene–PD risk association were 

obtained either from the PDGene website or directly from the original papers18-20 . For two studies, 

estimates of the associations of interest were not provided, but they could be calculated from the 

data reported, by performing a per-genotype analysis based on an additive genetic model19, or a 

per-allele analysis when genotype data were not available20. For the gene–PD meta-analysis, 

estimates of the (log) odds ratio (OR) were combined across studies using an inverse-variance-

weighted fixed-effect model and assuming an additive genetic model, consistently with the gene–

iron meta-analysis. 
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As for the instrumental variable analysis, an MR estimate of the effect of iron on PD risk was 

obtained for each of the three instruments separately, and the three estimates were combined using 

an inverse-variance-weighted fixed-effect meta-analysis. We evaluated the presence and magnitude 

of heterogeneity across the three instruments with the I2 statistics, a measure defined as the 

percentage of total variation in study estimates explained by heterogeneity rather than sampling 

error31. MR estimates were derived using the Wald-type estimator32: 

 

 
 

where log ORPD/iron is the (log) increase of PD risk by SD unit increase in iron (MR estimate), 

log ORPD/allele is the (log) increase in PD risk per allele (gene–PD association), and 

betairon/allele is the number of SDs above the mean iron level per allele (gene–iron association). 

The standard error of the MR estimate was derived using the Delta method33,34 . The MR estimate is 

presented in terms of OR, by exponentiating the log ORPD/iron. 

 

We evaluated the strength of each instrument using the F statistics, which is a function of the 

magnitude and precision of the genetic effect on the biomarker (iron): 

 

 
 

where R2 is the variance of iron blood levels explained by the genetic variant and n is the sample 

size for the gene–iron association. We also evaluated the overall F statistics for the three combined 

instruments assuming that their effects were independent, as are expected to be given that the three 

gene variants are not in linkage disequilibrium. 

A sensitivity analysis was performed to investigate the possible impact on our findings of 

population stratification in any of the studies included in the gene–iron or gene–PD analyses, by 

excluding studies which had not adjusted for population stratification. 

All analyses were performed using Stata 10 (StataCorp LP). 

 

Results 
Gene Association with Iron 

The GIS meta-analysis for iron levels included 21,567 individuals from Europe and Australia 

(Table S1). The effect on iron levels, expressed as number of SDs from the mean, was 0.37 (95% 

CI 0.33–0.41; p = 4.0×10−77) for each copy of the A allele of HFE rs1800562, 0.19 (95% CI 0.17–

0.21; p = 1.7×10−42) for the G allele of HFE rs1799945, and 0.19 (95% CI 0.17–0.21; p = 

4.3×10−77) for the G allele of TMPRSS6 rs855791 (Figure 1; Table S3). With a SD for serum iron 
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levels of 37.6 µg/dl, these figures correspond to an increase in iron per allele of approximately 

13.9, 7.1. and 7.1 µg/dl, respectively. HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791 

explained 1.7%, 0.9%, and 1.7% of iron total variance, respectively (Table S3). 

The F statistics was very high for all genetic variants, as can be expected given the sample size of 

more than 21,000 individuals35: 382, 199, and 379 for HFE rs1800562, HFE rs1799945, and 

TMPRSS6 rs855791, respectively. The F statistics for all combined instruments was 987. 

 

Gene Association with PD Risk 

All datasets available for the analysis of the effects of the three genetic polymorphisms on PD risk 

(Table S2) were checked for the presence of overlapping studies, and duplicates were removed. 

The meta-analysis, which included a total of 20,809 PD cases and 88,892 controls from Europe and 

North America (Table S2), revealed a significant association for TMPRSS6 rs855791 with PD risk, 

with an OR of 0.97 (95% CI 0.94–0.99; p = 0.034) per copy of the G allele. As shown in the Forest 

plot of the meta-analysis for this polymorphism (Figure S3), there was no statistical evidence of 

heterogeneity across studies, with a heterogeneity test p-value of 0.86 and an I2 of 0% (95% CI 

0%–85%). In particular, although the 23andMe study was based on self-reported disease status and 

therefore differed from the rest, its results were consistent with those of the other PD studies. The 

association with PD risk for the two polymorphisms in HFE was not statistically significant, with 

an OR of 0.97 (95% CI 0.92–1.02; p = 0.281) for the A allele of rs1800562 and 0.99 (95% CI 

0.96–1.03; p = 0.715) for the G allele of rs1799945 (Figures 1, S1, and S2; Table S4). This might 

be explained by the much lower statistical power for the two HFE variants compared with the 

TMPRSS6 variant due to their lower minor allele frequency (1,000 Genomes project: 0.02 and 0.08 

versus 0.40), as suggested by their wide confidence intervals. 

 

Mendelian Randomization Estimate of Iron Association with PD Risk 

The meta-analysis of the three MR estimates resulted in a statistically significant combined 

estimate of 0.88 (95% CI 0.82–0.95; p = 0.001), representing the OR for PD per SD unit increase 

in iron (Figure 1). Again, with a SD for iron levels of 37.6 µg/dl, this corresponds approximately to 

an OR of 0.997 (95% CI 0.994–0.999) per 1 µg/dl increase in iron, that is a 0.3% (95% CI 0.1%–

0.6%) relative risk reduction. The Forest plot in Figure 2 shows how the meta-analysis result was 

driven by the TMPRSS6 rs855791 variant, and that there was no statistical evidence of 

heterogeneity across instruments (p = 0.54; I2: 0%, 95% CI 0%–90%), suggesting that the 

assumption of no pleiotropy might hold. 

 

The sensitivity analysis investigating the impact of population stratification excluded the nine 

studies from PDGene, which had not reported any adjustment for population stratification, while 

there were no exclusions from the GIS consortium on iron since all studies had adjusted for 
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population stratification (Table S2). The result of the sensitivity analysis was similar to that of the 

main analysis, with a combined MR estimate of 0.91 (95% CI 0.83–0.99; p = 0.032) (Figure S4). 

 

 
Figure 2. Forest plot of the MR estimates from the three instruments. The size of the squares is 

proportional to the precision of the MR estimates for each polymorphism, with the horizontal lines indicating 

their 95% confidence intervals. The combined MR estimate is represented by the centre of the diamond, with 

the lateral tips indicating its 95% confidence interval. The solid vertical line is the line of no effect. 

doi:10.1371/journal.pmed.1001462.g002 

 

Discussion 
Our study shows a protective effect of serum iron levels on PD, with a 3% (95% CI 1%–6%; p = 

0.001) relative reduction in PD risk per 10 µg/dl increase in iron. If we hypothesise increasing 

serum iron levels of one SD unit (38 µg/dl in our study) in a population of Caucasians older than 

60, where PD risk is around 1%36, a corresponding relative risk reduction of 12% would translate to 

a decrease in PD cases from 100/10,000 to 88/10,000. Since genotype influences on serum iron 

levels represent differences that generally persist throughout adult life, the estimate of our MR 

study reflects an effect of iron over the course of a lifetime. These findings are important since 

evidence on the association between serum iron levels and PD risk collected so far has been 

controversial. Although iron is generally thought of as a risk factor for PD, in line with the well-

known phenomenon of iron accumulation in the brain of PD patients2,3, epidemiological studies 

have shown effects of iron in opposite directions. A recent meta-analysis of epidemiological 

studies suggests a possible protective role of serum iron levels on PD risk, but its findings are 

difficult to interpret owing to the very large degree of heterogeneity across studies6. 
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Epidemiological studies suffer from confounding and reverse causation, which are intrinsic to their 

observational nature, so that they can hardly provide conclusive evidence on the causality of an 

observed association. Tobacco smoking and coffee drinking, which have been suggested as 

protective factors for PD37,38, represent two potential confounders for the association between iron 

and PD, since both might have an effect on iron levels. Nicotine might decrease the availability of 

free reactive iron39, and coffee is known to inhibit the intestinal absorption of iron40,41. Reverse 

causation could also produce spurious associations in epidemiological studies if the phenotype 

level can be influenced by the presence of the disease. An example is that of monoamine oxidase 

(MAO) inhibitors used to treat PD. MAO inhibitors may have iron-chelating effects and thus 

reduce iron blood levels, which could lead to spurious epidemiological evidence of a difference in 

iron levels between PD cases and controls42. Although causality is usually assessed by use of 

randomized clinical trials, the MR approach represents a valuable alternative whenever these are 

not feasible7. It is based on the concept that genetic variation modifying the concentration of a 

biomarker should also affect the disease risk if (and only if) the biomarker is directly and causally 

involved in the disease pathogenesis. Being genes randomly allocated at conception, their effects 

on biomarkers are unaffected by classical confounding factors and reverse causation8. 

 

The protective effect of higher serum iron levels on PD risk found in our study may seem 

somewhat counterintuitive at first sight. However, there are several reports in the literature in line 

with our findings. A recent study showed a negative correlation between SN echogenicity, a 

marker for increased SN iron content43, and serum iron levels in PD patients44. A case-control study 

suggested an increased risk of PD in men who reported multiple recent blood donations and thus 

experienced depleted systemic iron stores45, and another study showed an association of anemia 

experienced early in life with increased PD risk, with the authors hypothesizing that anemia could 

be a surrogate marker for iron deficiency46. Finally, in dietary iron-restricted mice impaired motor 

behavior and a marked decrease of striatal dopamine levels was observed, which was explained 

with the fact that iron is essential for the activity of tyrosine hydroxylase, the rate-limiting enzyme 

in the dopamine synthesis47. Consistent with these findings, a recent study performed in Japan 

found an association between higher iron intake and reduced PD risk48. 

The underlying mechanisms of the protective effect of iron on PD risk observed in our study 

remains unclear, as does the mechanism that regulates the relationship between serum and brain 

iron levels. Low peripheral iron levels may reduce the functioning of neuronal enzymes or 

receptors, since iron is a crucial cofactor of tyrosine hydroxylase49, plays a role in the synthesis of 

monoamine neurotransmitters, and is involved in dopaminergic neurodevelopment50. Furthermore, 

low iron levels may decrease neuronal iron storage in the form of ferritin51, which was found to be 

inappropriately low in SN neurons in PD1. A reduction in ferritin could decrease neuronal iron 

utilization by decreasing the pool of iron available for neuronal enzymes47, thus leading to the 
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accumulation of free iron in SN1. Similar large-scale MR studies investigating other markers of 

iron metabolism, such as ferritin and transferrin, could contribute to our understanding of the role 

of peripheral iron homeostasis in the pathophysiology of PD. 

To our knowledge, this is the first MR study aimed at estimating the magnitude of the effect of 

serum iron levels on PD risk. Previous case-control studies have tried to assess causality and 

direction of the association by investigating the effect on PD risk of genes involved in iron 

metabolism and homeostasis, although their findings are somewhat inconsistent with only some 

supporting the hypothesis of a causal association. Among the many genes evaluated, which include 

FTL, FTH1, TF, TFRC, IREB2, LTF, CP, FXN, HFE52, HPX, HAMP, HFE253, and FTMT54, only 

the G258S polymorphism in the TF gene showed a statistically significant association with PD17, 

although the finding was not replicated in a subsequent study55, and a haplotype in the SLC11A2 

gene was found to occur more frequently in PD56. However, all these previous studies were 

relatively small and therefore underpowered to detect modest genetic effects on PD risk. Our MR 

study used three polymorphisms in the HFE and TMPRSS6 genes as instruments. Evidence on 

their association with PD risk was obtained through meta-analysis of several candidate gene studies 

and three large GWA studies, including a total of more than 20,000 patients and 88,000 controls, 

which represents the largest PD case-control sample with genetic data meta-analyzed to date. 

Similarly, estimates of the effect of the three polymorphisms on serum iron levels were based on 

results from a recent GWA meta-analysis including more than 21,000 individuals. Unlike similar 

MR investigations that have combined multiple instruments into a single allele score using 

individual data analyses from all contributing studies, our analyses required only aggregate results 

for the effect of each genetic variant on both biomarker and disease. This may have practical 

importance, since it allows inclusion of results from ongoing genetic consortia without requiring 

further analyses, as well as inclusion of previous findings from published reports. However, 

methodological work will be needed to assess the relative benefits of the two approaches under 

different scenarios. 

The crucial aspect of a MR study, and more generally of any study based on an instrumental 

variable approach, is the choice of the gene (instrument) that needs to have a strong effect on the 

intermediate phenotype of interest. We used three polymorphisms as instrumental variables, since 

the use of multiple instruments influencing the intermediate phenotype of interest can increase the 

statistical power of the MR analysis10. The instrument strength was high for all of them, as shown 

by their very large F-statistic values. Two of them, rs1800562 (C282Y) and rs1799945 (H63D), are 

non-synonymous polymorphisms in HFE, a gene with well known effects in the modulation of iron 

blood levels57. The third non-synonymous polymorphism, rs855791 (V736A), is located in 

TMPRSS6, a gene whose role in iron regulation was demonstrated more recently58. The two 

variants in the HFE gene are responsible for most cases of hereditary hemochromatosis59,60, and 

they are associated with iron overload when present in the homozygous (C282Y/C282Y) or 
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compound heterozygous (C282Y/H63D) state. The C282Y variant prevents the altered HFE 

protein from reaching the cell surface and interacting with the transferrin receptor (TfR)61,62. As a 

result, iron regulation is disrupted. The exact functional effect of the H63D variant is as yet 

unclear, but some evidence suggests that it may alter an intramolecular salt bridge, possibly 

affecting the interaction of the HFE protein with the TfR63. The TMPRSS6 V736A variant was 

found associated with iron-deficiency anemia64. Furthermore, the A allele has been shown to 

inhibit hepcidin more efficiently than the V allele in in vitro experiments, and to affect hepcidin 

levels in healthy individuals65. Interestingly, TMPRSS6 rs855791 was by far the most influential 

and was the one driving the result of the meta-analysis of MR estimates from the three instruments. 

The wide confidence intervals of the MR estimates for HFE rs1800562 and rs1799945 suggest that 

the power of their MR analysis was very limited due to their low allele frequency. This illustrates 

the importance of balancing the strength of the effect on the intermediate phenotype with allele 

frequency and statistical power when choosing the instruments for a MR study. 

 

A potential source of bias specific to MR studies is pleiotropy, whereby the HFE or TMPRSS6 

genotypes could influence PD risk through another mechanism that is independent of their effect 

on serum iron levels. Although we cannot completely exclude pleiotropic effects of the three 

polymorphisms used in our study because of incomplete knowledge of the underlying biology, we 

can indirectly investigate the presence of such effects through the simultaneous use of the three 

polymorphisms as multiple instruments. In a MR study, if all instruments are valid, their MR 

estimates should differ only as a result of sampling error10, so that there should be no heterogeneity 

in the meta-analysis of MR estimates. In our meta-analysis of MR estimates there was no evidence 

of heterogeneity, although the statistical power to detect heterogeneity is limited when only three 

estimates are included in the meta-analysis66. As more evidence on genes influencing iron blood 

levels becomes available, MR studies investigating the effects of iron on the risk of PD and other 

diseases will be able to include many more genetic variants as instruments. This will ensure that 

pleiotropy can be ruled out with greater confidence. Selection of genes to be used as instruments 

requires careful consideration, since inclusion of variants with small genetic effects on the 

biomarker may introduce a “weak instrumental variable” bias35. Another potential issue in MR 

investigations is developmental canalization, the ability to produce the same phenotype regardless 

of genetic (or environmental) variation. If a genetic polymorphism is expressed during fetal 

development, compensatory processes may influence development in a way that can protect against 

the effect of the polymorphism8. Although canalization of genetic effects needs to be considered 

when interpreting MR findings, this problem is very difficult to investigate. Finally, one could 

speculate that the observed association of the subject's iron-related genotype with PD risk might 

actually reflect an intrauterine effect of iron due to a similar iron-related maternal genotype. Some 



Serum iron levels and the risk of Parkinson disease  

    

 165 

evidence suggests that maternal iron deficiency could result in an altered iron status of the 

newborn, with possible negative effects on the neurophysiologic development67. 

Despite all the possible limitations discussed above, MR offers a valuable approach to derive 

causal effect estimates whenever randomized trials are very difficult to perform, as in the case of 

iron and PD. A trial investigating the long-term effect of changes in a subject's iron status, obtained 

by some means, on the risk of developing PD would require not only a very long follow-up but also 

a huge sample size, given the low frequency of the disease and the magnitude of the effect that 

might realistically be expected. 

In our study, the MR analysis to combine the OR of the gene–PD association with the effect of the 

gene–iron association was based on a Wald-type estimator, which works under a “rare disease 

assumption” that is appropriate in the case of PD. However, the use of a Wald-type estimator for 

the MR analysis of binary outcomes represents only an approximate method and may produce 

biased MR estimates32. Although such bias has been recently shown to be small, typically within 

10% of the MR estimate68, methods in this area are still under active development. 

In summary, our MR study suggests a causal association between increased serum iron levels and 

decreased risk of developing PD, suggesting that disrupted iron metabolism may be an important 

factor in the pathogenesis of PD. However, further research is needed to elucidate the 

pathophysiological mechanism of action underlying our findings. The effect of dietary iron or 

drugs capable of altering the balance between serum iron and iron storage compartments, might 

prove to be suitable to test in experimental models. The development of such disease models is 

therefore necessary before any public health or clinical recommendation can be made for primary 

prevention in subjects at high risk of developing PD. 
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The genetic architecture of iron homeostasis parameters  
The studies described in this thesis aimed at highlighting novel and causative variants in loci that 

have a role in hepcidin-iron pathway as regulators of iron homeostasis. 

Iron is a key element for humans’ homeostasis involved in many cellular and tissue processes. The 

storage and distribution of iron are tightly regulated by a complex pathway in which the liver 

hormone hepcidin plays a critical role. 

Iron is absorbed by the enterocytes in duodenum and derived by the recycling of exhausted 

macrophages, bound to transferrin and exported to the bloodstream depending on the needs of iron-

consuming cells, tissues and organs.  The distribution of iron in the bloodstream is strictly 

regulated by transmembrane protein ferroportin-hepcidin interaction and genetic disorders that 

affect this fundamental interaction are known to  damage body iron homeostasis. 

The clarification  of the role of known loci and the findings of novel loci involved in the regulation 

of iron homeostasis can help to clarify the effect of unbalanced iron on humans and the onset of 

genetic iron disorders that causes iron overload (hereditary hemocromatosis or HH) and iron 

deficiency (iron-refractory iron deficiency anemia or IRIDA). Having measured hepcidin level in 

the entire population of Val Bobera we could study several novel aspects of the biology of hepcidin 

as well as of the hepcidin isoforms present in serum. Hep-25 processing can result in the generation 

of two amino-terminal truncated isoforms, hepcidin-22 (hep-22) and hepcidin-20 (hep-20). Only 

Hep-20 can be measured by Mass Specrometry (MS). in serum.. The truncated forms have lost the 

ability to bind ferroportin and they may be degradation products of hep-25. Recent studies however 

showed a strong antimicrobial activity of hep-20 in respect to hep-25 and relatively high levels of 

hep-20 were detected in heterogeneous pathological conditions like acute myocardial infarction 

(AMI)1, anemia of chronic disease (ACD)2 and chronic kidney disease (CKD)3-5. Our study is the 

first description of hep-20 levels of in a large normal population: we showed that Hep-20 is 

detectable mainly in older individuals that show high transferrin saturation and ferritin levels. It 

correlates in a gender specific manner: with age, haemoglobin and C-Reactive Protein in males and 

with age, BMI, ferritin, C-Reactive Protein and creatinine in females. We could show a negative 

correlation between ferritin and hep-20 suggesting that hep-20 is not only a product of degradation 

of hep-25 but instead an active regulation of hep-25 degradation according to body iron need. The 

proteases responsible has to be identified. 

We also focused on the variation of hepcidin level in different human genetic disorders in which 

iron could be unbalanced. The correlation between iron parameters and metabolic syndrome 

(MetS) is quite accepted but pathophysiological link between iron and MetS remains unclear. To 

better understand their relationship the levels of hepcidin have been analysed in MetS cases with at 

least three pathological conditions that define metabolic syndrome (MetS) affection (abdominal 

obesity, high fasting plasma, elevated serum triglycerides, low serum HDL cholesterol or high 

blood pressure) and in controls collected in Val Borbera population to characterize the levels by 
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sex and age. As known serum ferritin levels are often elevated in MetS in a condition known as 

dysmetabolic hyperferritinemia or DHF6 and are sometimes associated with a true mild-to-

moderate hepatic iron overload (dysmetabolic iron overload syndrome or DIOS)7. In Val Borbera 

MetS cases show significantly higher serum levels of both ferritin and hepcidin as compared to 

controls linearly with the increase of the five MetS features for both sexes. We observed an 

independent influence of hepcidin in women: MetS affection is associated with hepcidin adjusted 

for ferritin and age only in females and the increase of hepcidin in MetS cases is higher in females 

with lower ferritin levels, in particular with iron deficiency. The strong association between 

hepcidin and ferritin, as well as their parallel behaviour observed as a function of increasing 

number of MetS features provides the first evidence that hyperhepcidinemia may occur mainly in 

response to mild-to-moderate increase of body iron stores. The high levels of hepcidin in MetS 

suggest future investigations on the possible role of this hormone in promoting the cardiovascular 

complications of MetS. 

The most common genetic disorders of iron homeostasis hemochromatosis (HH) and iron-

refractory-iron deficiency anemia (IRIDA) are caused by the two known loci HFE and TMPRSS6 

and their genetic variants are known to affect serum iron concentration8, transferrin saturation9,10, 

haemoglobin (Hb) concentrations and erythrocyte traits11-14 in normal populations. We performed 

genome-wide association studies on Val Borbera population with the aim to clarify whether the 

association of HFE and TMPRSS6 to hematological traits could be iron mediated or dependent on 

a direct effect of the variants on erythropoiesis.  

Val Borbera cohort replicated the association of HFE and TMPRSS6 to iron and erythrocytes 

parameters. Considering the total effect of iron, transferrin saturation and ferritin on erythrocytes 

parameters, HFE association was abolished and that of TMPRSS6 greatly reduced whereas the 

association of HFE and TMPRSS6 to iron parameters did not change significantly when hepcidin is 

used as covariate. These results suggest that associations to erythroid traits are mostly dependent on 

the amount of iron available but the association to iron parameters is not only mediated by 

hepcidin. 

The genetic characterization on hepcidin trait highlights also remarkable effects of environmental 

factors as acquired iron deficiency and inflammation: when multiple interactions between 

envinronmental factors, iron parameters and hepcidin were taken into account, the HFE and 

TMPRSS6 variants were associated with ferritin and with hepcidin normalised to ferritin levels.  

The levels of iron, ferritin, transferrin, hemoglobin, hepcidin, hepcidin adjusted for transferrin 

saturation and ferritin were further measured in homozygotes for the Caucasian major allele 736A 

and the minor allele 736V of rs855791, the causative variants in TMPRSS6 catalytic domain, to 

assess their inhibitor effect on hepcidin in vitro and in vivo. The levels of hepcidin, normalized 

hepcidin on ferritin and on transferrin saturation are significantly higher in homozygotes 736A in 

respect to 736V in Val Borbera healthy individuals after exclusion of samples with acquired 



General discussion and perspectives  

    

 177 

confounding factors. No difference was found for ferritin, transferrin and Hb levels but only for 

transferrin and iron as expected. The data show that TMPRSS6 rs855791 has a functional role in 

determining the protease activity and regulating hepcidin expression both in vitro and in normal 

subjects, suggesting that it influences hepcidin response to the increase of both circulating and total 

body iron.  

Other human common pathologies as chronic renal diseases present concomitant alteration of iron 

metabolism as anemia due to erythropoietin deficiency, blood losses and inflammation and as 

hyperferritinemia due to low transferrin saturation. Probably these alterations are due to 

TMPRSS6-dependent upregulation of hepcidin, whose elevated levels are ascertained in patients. 

To clarify whether TMPRSS6 variant rs855791 influences iron metabolism and anemia during 

chronic inflammation and renal failure a case-controls study in patients with chronic hemodialysis 

(CHD) has been done in Val Borbera. The results showed differences in hep-25 levels between 

cases and controls after acquired iron deficient individuals exclusion and lower levels in CHD 

patients stratified for carrying HFE mutations. The combined presence of HFE and A736V 

TMPRSS6 mutation shows that the A736V polymorphism influenced serum hepcidin in patients 

positive for HFE mutations. This suggests that the 736V variant with defective proteolytic activity 

determining increased hepcidin transcription may abrogate the inhibitory effect of HFE mutations 

on hepcidin. In patients without acute inflammation and severe iron deficiency 736V TMPRSS6 

variant is also associated with higher requirement of erythropoietin (Epo) for anemia. The 

evaluation of the impact of HFE and TMPRSS6 genotype on CHD patients in prospective studies 

may be useful to optimize anemia management and personalized therapies. 

These findings clarified how HFE and TMPRSS6 modulate the hepcidin and iron levels but 

highlighted the need to uncover the missing fraction of genetic variability to reconstruct the 

biological processes of iron homeostasis and the mechanism of the onset of iron-related disorders.  

No novel significant candidate genes were highlighted by genome-wide association analysis 

performed due to the low statistical power of Val Borbera sample to detect unknown genetic 

factors for hepcidin and iron parameters. 

Thanks to the collaboration with other two Dutch groups (Nijmegen Biomedical Study or NBS and 

Prevention of REnal and Vascular ENd-stage Disease or PREVEND) a meta-analysis of GWAS for 

serum hepcidin levels has been performed in the three cohorts (the only available worldwide with 

both phenotype and genotypes) with a total sample size of 6,096 individuals. Of European origin 

Thanks to our previous findings, the study focused on hepcidin and hepcidin adjusted for ferritin 

and transferrin saturation levels.	
  Data for replication were obtained from up to 3,826 additional 

independent samples from the Dutch cohorts. Combination of GWAS results from three cohorts 

revealed two loci that were associated with serum hepcidin at genome-wide significance (p<5x10-

8): rs118031191 on chromosome 10, nearest gene FOXI2 on the whole dataset and rs354202 on 

chromosome 2 in the EML6 gene, encoding echinoderm microtubule associated protein like 6 and 
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near SPTBN1 (alias ELF) a member of a family of beta-spectrin genes, which are involved in 

linking the plasma membrane to the actin cytoskeleton. The ELF protein was shown to be essential 

in TGF-β signaling by son of mothers against decapentaplegic (SMAD) proteins in mice15. Central 

in hepcidin regulation is the bone morphogenetic protein-SMAD pathway16, and the ELF protein is 

a plausible candidate to influence hepcidin expression. 

The associations of the causative variants rs1800562 in HFE and rs855791 in TMPRSS6 to the 

hepcidin/ferritin ratio as previously independently reported in Val Borbera17 and in NBS18 are high 

also in the current analysis. In hepcidin adjusted for transferrin saturation the association is less 

strong. This difference indicates that these SNPs have a larger influence on hepcidin response to 

body iron stores than on hepcidin response to circulating iron. 

To focus on the missing genetic factors that affect the parameters commonly used to determine the 

clinical iron metabolism status (serum ferritin, transferrin, iron and transferrin saturation) the 

Australian Genetic Iron Status (GIS) consortium planned and performed the largest meta-analysis 

on 48,000 individuals of European ancestry with the aim to identify additional loci affecting 

markers of iron status in the general population. 

The study showed more significant associations or pleiotropic effects of the previous population-

based findings in several loci (HFE, TF, TFR2 and TMPRSS6) and five novel associated loci at 

significative levels. 

Three of the loci mainly affected serum ferritin (ABO, SLC40A1, TEX14), three others mainly 

affected serum iron and transferrin saturation (HFE, TFR2, TMPRSS6) and five mainly affected 

serum transferrin (ARNTL, FADS2, NAT2, TF and TFRC). 

The ABO blood group locus has shown significant associations for several phenotypes: on low-

density lipoprotein cholesterol19, coronary artery disease20 and red blood cell count21 but whether 

ABO variation primarily affects iron stores and therefore erythrocyte count, or vice versa, is 

unclear. 

The second associated genomic region contains TEX14 and other genes. TEX14 codes for a testis-

expressed protein, but there was no evidence for male–female heterogeneity in the effect on 

ferritin. The most significant SNPs are within the TEX14 gene but the suggestive-significance 

region extends across other genes in the same LD block. Expression data suggest that variation 

affects RAD51C and SEPT4 but the connection with iron status is unclear and MTMR4 that 

changes SMAD phosphorylation, with possible effects on the BMP-SMAD pathway affecting 

control of hepcidin. The gene-based analysis identified a further region on chromosome 15 centred 

on C15orf43 and SORD (sorbitol dehydrogenase) with no obvious connection with iron status.  

Transferrin is affected by SNPs near ARNTL, NAT2 and FADS2. The role of these in iron 

homeostasis is uncertain. ARNTL is known to interact with CLOCK gene for the generation of 

circadian rhythm and iron, hepcidin and TfR1 gene expression showed circadian variations. 
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NAT2 encodes a N-acetyl transferase and its genomic region is associated to lipids affections and 

cardiovascular risk and FADS2 variations affect several phenotypes as lipids fatty acids, fasting 

glucose and liver enzyme. 

In particular the top hit rs174548 on FADS2 for transferrin decrease its effect using HDL as 

covariate and all these genes affect plasma triglycerides highlighting a common effects on iron and 

lipids metabolisms and a possible involvement in cardiovascular diseases. The substantial overlap 

between iron loci and loci affecting erythrocyte and lipid phenotypes could integrate our 

understanding on iron homeostasis.  

The large sample from GIS consortium and from PDGene database have been involved in an 

epidemiological study to dissect the knowledge about Parkinson diseases (PD) and its correlation 

with iron. As previously shown in literature the levels of iron increase in brain of Parkinson 

patients but today the studies on serum iron are inconclusive. This Mendelian randomization study 

provided unconfounded estimates of the effects of iron on PD using the known variants in HFE and 

TMPRSS6. A meta-analysis on 20,809 PD cases and 88,892 controls from GIS and candidate gene 

studies showed a protective effect of serum iron with 3% of reduction in PD risk of onset. The 

molecular mechanism is not completely clear: low iron levels may decrease the iron storage as 

ferritin in neurons as found in substantia nigra (SN) neurons in PD patients and this may provoke 

the decrease of iron available for neuronal enzymes and the accumulation of iron in SN. These 

findings assess that the disorders of iron metabolism could be important in the pathogenesis of 

Parkinson diseases. 

All the results obtained on hepcidin and iron parameters contribute to the understanding of the 

molecular mechanism of iron homeostasis and iron associated diseases highlighting the strong 

correlation of hepcidin and ferritin and the link between iron homeostasis and lipid metabolism that 

could have implication on the onset of cardiovascular disorders. 

These findings confirm that Val Borbera genetic isolate represents a suitable model for genetic 

study on common diseases and for replication of known associated loci but the reduced number of 

samples represents a limitation to highlight strong associations in novel loci for iron parameters 

and hepcidin. 

 

Insight into low-frequency and rare variants and prospects for genetic studies. 

The Val Borbera and other Italian cohorts participate in the Italian network of Genetic Isolates 

(INGI) including about 6,000 individuals. Among other projects, the INGI cohorts are involved in a 

international collaboration with Wellcome Trust Sanger Institute in UK, to identify and determine 

the role and the genetic impact of rare and low-frequency variants on common diseases. 

The approach used is the innovative whole generation sequencing (WGS) at low coverage (4X-

10X) to discover population-specific and Italian specific markers (SNPs and INDELs) as well as to 

identify rare variants that may be enriched in the isolated cohorts. 
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To investigate the distribution of rare and novel variants in INGI population a first group of 225 

samples from Val Borbera and 250 from Friuli Venezia Giulia cohorts have been sequenced at the 

Wellcome Trust Sanger Institute and variants have been identified using an ad hoc pipeline. The 

quality controls of the sequences concerned the read depth of the calling per situ in the overall 

samples and the analysis of the overlapping dataset between WGS and GWAS genotypes: the read 

depth is congruent with the coverage and homogeneous along the genome and the sequences and 

genotypes showed an overall concordance of about 99.5%. After validation the final set of called 

variants show an enrichment in variants with MAF <=5% as expected in genetic isolates: 59% in 

Val Borbera and 52% in Friuli Venezia Giulia (Figure 10). 

 

 
Figure 10. Minor allele frequency distribution in Val Borbera (VBI) and in Friuli Venezia Giulia (FVG) cohorts 

on a sample of about 500 whole genome sequences at low coverage. Thanks to Massimiliano Cocca et al [in 

preparation] 

 

The distribution of variants in the two cohorts is shown in Figure 11. Val Borbera is enriched in 

singleton SNPs respect to FVG cohorts (21% vs 12%) and it shows a higher number of SNPs 

although VBI sample size is slightly smaller (225 vs 250 individuals). 

 

 
Figure 11. SNPs and INDELs distributions observed in Friuli Venezia Giulia (FVG) and in Val Borbera (VBI). 

Thanks to Massimiliano Cocca et al [in preparation] 
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The final set of FVG and VBI called variants has been compared to the complete set of called 

variants in all the population collected by 1000 Genome Project22 (TGP). 

In Figure 12 the distribution in ten different categories of frequency of the number of called 

variants shared between FVG and TGP and between VBI and TGP showed a large number of INGI 

variants shared with 1000Genome populations ranged between 43%-95% in FVG and 35%-95% in 

VBI. The large part of low-frequency variants (MAF <0.5%) called in FVG or VBI are unique and 

never called in 1000 Genomes populations. These data highlighted that INGI cohorts are enriched 

in novel population-specific rare variants. 

 
Figure 12.  Number of unique variants in 10 different bin of frequency in Friuli Venezia Giulia (FVG) 

and in Val Borbera (VBI) cohorts and shared with the variants called in all the cohorts collected in 

1000 Genome Project (TGP). Thanks to Massimiliano Cocca et al [in preparation] 

 

These preliminary results are very promising and will allow the design of an Italian specific panel 

of variants based on about 1,000 INGI samples to be used as a reference enriched in lower 

frequency high quality variants in imputations of the entire Italian isolates cohorts and of other 

Italian general population such as the INCIPE dataset from University of Verona. Accordingly, we 

expect to definitely improve the genetic association studies on the large set of phenotypes collected 

as risk factors for common diseases, and in particular in Val Borbera to focus on the genetics of 

hepcidin and iron parameters to highlight significant novel loci involved in iron homeostasis 

pathway. 
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SUPPLEMENTAL TABLES AND FIGURES. 
 

Supplementary Table S1. Main characteristics of subjects stratified according to hepcidin isoforms 

detectable. 

 
* : variables not normally distributed are expressed as geometric means with 95% CIs 
 
 
 
Supplementary Table S2. Main characteristic of subjects stratified according to hepcidin-20 detectable.  
 

 
 
* : variables not normally distributed are expressed as geometric means with 95% CIs. 

**: geometric mean of hep-20 and hep-25 with 95% CIs calculated on whole population (1,577 subjects). 

***: geometric mean of hep-25 with 95% CIs calculated on 1,405 subjetcs (with hepc-25 detectable). 
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Supplementary Figure S1. Behaviour of hep-20 and hep-25 according to iron status. 
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SUPPLEMENTAL TABLES AND FIGURES. 
 

Supplementary Figure S1. Percentage of subjects with hepcidin levels in the top quartile. (A) Males and (B) 

Females. 
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Supplementary Figure S2. Serum ferritin levels in the Val Borbera population according to increasing 

number of MetS features. (A) whole population, (B) males and (C) females. 
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Supplementary Figure S3. Correlation between hepcidin-25 and ferritin. 

 
 

 

 

Supplementary Figure S4. Hepcidin levels in females according to ferritin levels and presence/absence of 

MetS. 
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Supplementary Figure S5. Prevalence of MetS in females according to hepcidin levels (A), and the relative 

ORs for MetS, adjusted for age and ferritin (B). 

 
 

Supplementary Table S1. Prevalence of MetS features in the VB population. 
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Supplementary Table S2. Associations with hepcidin at univariate analyses. 
 

 
 
 

Supplementary Table S3. Predictors of hepcidin in males and females, considering the individual MetS 

features as covariates.  
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SUPPLEMENTAL TEXT, TABLES AND FIGURES. 
 
Cell culture and plasmids 
Cell-culture media and reagents were from Invitrogen (Carlsbad, CA) and from Sigma-Aldrich (St Louis, 
MO). HeLa and Hep3B cells were cultured respectively in Dulbecco modified Eagle medium (DMEM) and 
in Earl’s minimal essential medium (EMEM) supplemented with 2 mM L-glutamine, 200 U/mL penicillin, 
200 mg/mL streptomycin, 1 mM sodium pyruvate, and 10% heat-inactivated fetal bovine serum (FBS) at 
37°C in 95% humidifier air and 5% CO2. 
The TMPRSS6 variant, encoding alanine at position 736 (MT2736A) was obtained by mutagenesis of MT2736V 
encoding plasmid by using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA), 
according to the manufacturer’s protocol. 
 
Luciferase assay 
Hep3B cells were transiently transfected with 0.25 µg of pGL2-basic reporter vector (Promega, Madison, 
WI, USA) containing the 2.9 Kb fragment of the human hepcidin promoter 23 in combination with pRL-TK 
Renilla luciferase vector (Promega) and 0.01 or 0.002 µg of cDNA encoding MT2736V or MT2736A expressing 
vectors and with 0.05 µg of HJV expressing vector, as described 6,23. The luciferase activity was determined 
according to the instructions of the manufacturer of the assay kit (Promega Dual Luciferase Reporter Assay). 
Relative luciferase activity was calculated as the ratio of firefly (reporter) to renilla luciferase (transfection 
control) activity and expressed as a multiple of the activity of cells transfected with the reporter alone. 
Experiments were performed in triplicate. 
 
Cell-surface protein quantification by binding assay 
Quantification of cell-surface expression of MT2 was performed as described, with minor modifications 6. In 
brief, 104 HeLa cells were seeded in 48-well plates and transfected with 0.4 mg of plasmid DNA complexed 
with 1 ml of Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. After 12 hours, 
the medium was replaced and, 24 hours later, cells were fixed with 4% paraformaldehyde for 45 minutes at 
room temperature. Cells were washed with PBS, blocked with 5% nonfat milk in PBS, and incubated with 
rabbit anti-FLAG antibody (1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA) and then with the relative 
secondary HRP antibody at 37 °C. For total MT2 expression, cells were permeabilized with 0.1% Triton X-
100 in PBS, prior to blocking and incubation with anti-FLAG. Peroxidase activity was measured with an 
HSR substrate (o-phenylenediamine dihydrochloride). Surface MT2 was calculated for each sample as the 
absorbance ratio of unpermeabilized and permeabilized cells after substraction of background absorbance. 
 
Western blot 
HeLa cells, seeded in 100-mm-diameter dishes up to 70–80% confluency, were transiently transfected with 
10 µg of HJV expressing vector in the presence of 1 µg of MT2736V or MT2736A expressing vectors using the 
liposomal transfection reagent Lipofectamine 2000 (Invitrogen) in 3 ml of OptiMem (Invitrogen) according 
to the manufacturer's instructions. After 18 hours the medium was replaced with 4 ml of OptiMem and 24 
hours later media were collected and concentrated using 5 kDa molecular weight cutoff ultrafiltration 
(Amicon Ultra; Millipore, Billerica, MA). Cells were lysed in lysis buffer (200 mM Tris-HCl [pH 8]; 1 mM 
EDTA; 100 mM NaCl; 10% Glycerol; 0,5% NP-40). Proteins were quantified by using the Bio-Rad Protein 
Assay (Bio-Rad, Hercules, CA). Equal amount of total proteins (50 µg) were subjected to 10% SDS-PAGE 
and then transferred to Hybond C membrane (Amersham Biosciences Europe GmbH, Freiburg, Germany) by 
standard western blotting technique. Blots were blocked with 2% ECL Advance Blocking Agent (Amersham 
Biosciences) in TBS (0.5 M Tris-Hcl [pH 7.4] and 0.15 M NaCl) containing 0.1% Tween-20 (TBST), 
incubated 2 hours with rabbit anti-HJV (1:1000) or rabbit anti-FLAG (1:1000). After washing with TBST, 
blots were incubated 1 hour with relevant HRP-conjugated secondary antisera and developed using a 
chemiluminescence detection kit (ECL, Amersham Biosciences). 
 
Pi-PLC cleavage of membrane HJV 
A total of 106 HeLa cells, transiently transfected with HJV- and matriptase-2- expressing constructs or the 
empty vector were incubated in DMEM plus 
0.3 U/ml phosphatidylinositol-specific phospholipase C (Pi-PLC) at 37 °C in 
a 5% CO2 incubator. After 2 hrs, the supernatants were collected. Proteins were precipitated with cold 
acetone and resuspended in Laemmli sample buffer. Samples were then boiled for 10 min and loaded on a 
10% SDS-PAGE. 
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Supplementary Table S1. Serum hepcidin and iron parameters levels according to AA, AV, VV in VB 

whole cohort and subset. All mean values are corrected for sex, age, squared age and their interaction by 

ANOVA (95%CI). 
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Supplementary Table S2. Frequency of TMPRSS6 rs855791 alleles in different populations 
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Supplementary Figure S1. In vitro characterization of the processing and of the cleavage activity of 

matriptase-2 variants ���. HeLa cells were transiently transfected with the TMPRSS6 cDNA encoding MT2736V 

or MT2736A, the empty vector (mock) and HJV. Cellular MT2 and serine protease domain of MT2736V 
and 

MT2736A
 

released in the culture supernatant (upper panel) and cellular and membrane HJV and HJV 

fragments released in the cell culture media by the two MT2 variants (lower panel) were analyzed using 

western blot. CL= Cell lysate, CM= supernatant, Pi-PLC= Pi- PLC supernatant. Scales refer to relative 

molecular weight in kilodaltons. 
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Supplementary Figure S2. Log10(ferritin) (A), MCV (B) and MCH (C) mean levels in AA, AV and VV 

groups of individuals from subset 1. All mean values are corrected for sex, age, squared age and their 

interaction by ANOVA (95%CI). P-values are refer to the comparison between AA and VV homozygotes. 

NS: not significant. CI = Confidence Intervals. 
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SUPPLEMENTAL TABLES AND FIGURES. 
 

Supplementary Figure S1. Age and sex distribution of the VB individuals included in the whole series. In 

blue are males, in pink are females. 

 
 

Supplementary Figure S2. A. Manhattan and Q-Q plots of hepcidin/ferritin ratio GWAS in the whole 

cohort. B. Manhattan and Q-Q plots of hepcidin/ferritin ratio GWAS in subset 1. Red continuous line 

indicates Bonferroni threshold (p=1.5E-7), blue continuous line indicates suggestive threshold (p=1E-5). 

Pvalues are corrected by genomic control and indicated as ‘pgc’. 
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Supplementary Table S1. Characteristics of the population by sex. 
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Supplementary Table S2. Serum hepcidin levels by age and sex* 
 

 
 
 
Supplementary Table S3. Sex-specific correlation analysis of serum hepcidin 
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Supplementary Table S4. Simple regression analysis of serum hepcidin by sex. 
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Supplementary Table S5. Replication of association of rs1800562 and rs855791 to iron parameters. 
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Supplementary Table S6. Effect of iron parameters in association analysis of rs1800562 and rs855791 to 

red blood cells traits. 
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Supplementary Table S7. Association of rs1800562, rs855791and rs3811647 to iron parameters adjusted 

for serum hepcidin. 
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SUPPLEMENTAL TEXT, TABLES AND FIGURES. 
Supplementary Figure S1. Q-Q plots for iron, transferrin, saturation and ferritin in the Discovery meta-
analysis. The genomic inflation factors (λ) are 1.035, 1.092, 1.051 and 1.067 for serum iron, transferrin, 
transferrin saturation and ferritin, respectively. 
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Supplementary Figure2. Regional association plots for loci with significant results in meta- analysis of data 
from the Discovery cohorts or the Discovery + Replication cohorts. 

DISCOVERY 

 
 

 



Appendix: Supplemental data of Chapter 8  

    

 219 

 

 
 

 

 

 

 

 

 

 



 Appendix: Supplemental data of Chapter 8 

	
  
220 

DISCOVERY + REPLICATION (data from Discovery meta-analysis only, but these loci become 
significant in the combined data) 
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Supplementary Figure 3. Patterns of allelic effects on the four phenotypes, serumiron, transferrin, 
transferrin saturation and ferritin, for the most significant SNP at each locus (from the Discovery + 
Replication data). The top row shows loci which mainly affect ferritin, the second row shows loci which 
mainly affect iron and transferrin saturation, and loci in the bottom row mainly affect transferrin. 

 
 
 
Supplementary Figure 4. Results from conditional analysis, in which original results (top panels) are 
compared with results obtained after including the lead SNP from the initial analysis as a covariate. 
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Supplementary Figure 5. Effect of adjusting for C-reactive protein (CRP) concentration on effect sizes for 
ferritin, showing effect sizes (beta) for the most significant SNP at loci where any SNP shows p < 5x10-6 for 
ferritin in the Discovery dataset. Error bars show standard errors of betas, the continuous line shows the line 
of best fit, the interrupted line shows equivalence between y and x. 
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Supplementary Figure 6. Summary of disease and biological process overlap with genes identified through 
transferrin saturation and ferritin associations at p < 0.01 and p < 0.001, using Ingenuity Pathway Analysis.  

 
 

Supplementary Figure 7. Comparison of allelic effects in Discovery + Replication meta-analysis and in 
C282Y homozygotes from the HEIRS study. Error bars show standard errors for betas. 
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Supplementary Table 4. Initial meta-analysis; lead SNP at loci showing suggestive results (p < 5 x 10-6) 
from meta-analysis of the Discovery datasets. Statistical tests and numbers of subjects are as described in the 
paper. 
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Supplementary Tables S2, S3, S5, S6, S7, S8, S9 and S10 are available at: 
http://www.nature.com/ncomms/2014/141029/ncomms5926/extref/ncomms5926-
s1.pdf 
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SUPPLEMENTARY TEXT: COHORT INFORMATION 
 
Discovery Cohorts: 
Australia- Adult 
Study participants comprised (a) adult twins, their spouses and first- degree relatives who 
volunteered for studies on risk factors or biomarkers for physical or psychiatric conditions; (b) 
people with self- reported migraine or endometriosis and unaffected relatives. These studies were 
approved by The Queensland Institute of Medical Research Human Research Ethics Committee 
and, for the studies on alcohol and nicotine genetics, also by Washington University School of 
Medicine Human Subjects Committee. 
Benyamin et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte 
volume. Nat Genet. 2009;41:1173-5. PMID 19820699 
Painter et al. Genome-wide association study identifies a locus at 7p15.2 associated with 
endometriosis. Nat Genet. 2011;43:51-4. PMID: 21151130 
Anttila et al. Genome-wide association study of migraine implicates a common susceptibility 
variant on 8q22.1. Nat Genet. 2010;42:869-73. PMID: 20802479 
We acknowledge funding from the Australian National Health and Medical Research Council 
(NHMRC grants 241944, 389875, 389891,389892, 389938, 442915, 442981, 496739 and 552485), 
US National Institutes of Health (NIH grants AA07535, AA10248 and AA014041) and the 
Australian Research Council (ARC grant DP0770096). D.R.N. and G.W.M . are supported by the 
NHMRC Fellowship Scheme. 
Australia-Adolescent 
Adolescent twins and their non-twin siblings who participated in studies on skin cancer risk factors 
at ages 12 and 14, and on cognition at age 16. These studies were approved by The Queensland 
Institute of Medical Research Human Research Ethics Committee, and both the participants and 
their parents or guardians gave informed consent. 
Middelberg RPS, Martin NG, Whitfield JB. A longitudinal genetic study of plasma lipids in 
adolescent twins. Twin Research and Human Genetics 2007;10:127-135. 
Powell JE, Henders AK, McRae AF, et al. The Brisbane Systems Genetics Study: genetical 
genomics meets complex trait genetics. PLoS One. 
Financial support for aspects of the adolescent studies was provided by grants from the National 
Health and Medical Research Council of Australia, and the National Institute on Alcohol Abuse 
and Alcoholism (AA007535, AA014041). 
Estonian Biobank (original cohort) 
The Estonian cohort comes from the population-based biobank of the Estonian Genome Project of 
University of Tartu (EGCUT). The project is conducted according to the Estonian Gene Research 
Act and all participants have signed the broad informed consent (www.biobank.ee). In total, 52 000 
individuals aged 18 years or older participated in this cohort (33% men, 67% women). The 
population distributions of the cohort reflect those of the Estonian population (83% Estonians, 14% 
Russians and 3% other). General practitioners (GP) and physicians in the hospitals randomly 
recruited the participants. A Computer-Assisted Personal interview was conducted during 1–2 h at 
doctors’ offices. Data on demographics, genealogy, educational and occupational history, lifestyle 
and anthropometric and physiological data were assessed. These studies were approved by the 
Research Ethics Committee of the University of Tartu. 
Website: http://www.biobank.ee/ 
Leitsalu L, et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of 
Tartu. Int J Epidemiol. 2014 Feb 11. 
This work was supported by the Targeted Financing from the Estonian Ministry of Science and 
Education [SF0180142s08]; the US National Institute of Health [R01DK075787]; the Development 
Fund of the University of Tartu (grant SP1GVARENG); the European Regional Development 
Fund to the Centre of Excellence in Genomics (EXCEGEN; grant 3.2.0304.11-0312); and through 
FP7 grant 313010. 
We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyzes 
were carried out in part in the High Performance Computing Center of University of Tartu. 
Kora (F3, F4) 
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The KORA study is a series of independent population-based epidemiological surveys of 
participants living in the region of Augsburg, Southern Germany. All survey participants are 
residents of German nationality identified through the registration office and were examined in 
1994/95 (KORA S3) and 1999/2001 (KORA F4). In the KORA S3 and S4 studies 4,856 and 4,261 
subjects have been examined implying response rates of 75% and 67%, respectively. 3,006 subjects 
participated in a 10-year follow-up examination of S3 in 2004/05 (KORA F3), and 3080 of S4 in 
2006/2008 (KORA F4). Individuals for genotyping in KORA F3 and KORA F4 were randomly 
selected. The age range of the participants was 25 to 74 years of recruitment. Informed consent has 
been given by all participants. The study has been approved by the local ethics committee (Ethik-
Kommission der Bayerische Landesärztekammer). 
Holle R, Happich M, Löwel H, Wichmann HE (2005) KORA–a research platform for population 
based health research. Gesundheitswesen 2005 Aug;67(Suppl 1): S19–25. 
Wichmann H-E, Gieger C, Illig T (2005) KORA-gen–resource for population genetics, controls 
and a broad spectrum of disease phenotypes. Gesundheitswesen 2005Aug ;67(Suppl 1): S26–30. 
The KORA research platform (KORA, Cooperative Health Research in the Region of Augsburg) 
was initiated and financed by the Helmholtz Zentrum München - German Research Center for 
Environmental Health, which is funded by the German Federal Ministry of Education and Research 
and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center 
of Health Sciences (MC Health), Ludwig- Maximilians-Universität, as part of LMUinnovativ. 
Val Borbera 
The INGI‐Val Borbera population is a collection of 1,664 genotyped samples collected in the Val 
Borbera Valley, a geographically isolated valley located within the Appennine Mountains in 
Northwest Italy1. The valley is inhabited by about 3,000 descendants from the original population, 
living in 7 villages along the valley and in the mountains. Participants were healthy people 18-102 
years of age that had at least one grandfather living in the valley. The study plan and the informed 
consent form were reviewed and approved by the institutional review boards of San Raffaele 
Hospital in Milan. 
Traglia, M. et al. Heritability and demographic analyses in the large isolated population of Val 
Borbera suggest advantages in mapping complex traits genes. PLoS One 4, e7554 (2009).† 
Colonna V, et al. Small effective population size and genetic homogeneity in the Val Borbera 
isolate. Eur J Hum Genet. 2):89-94. 2013 
The research was supported by funds from Compagnia di San Paolo, Torino, Italy; Fondazione 
Cariplo, Italy and Ministry of Health, Ricerca Finalizzata 2008 and CCM 2010, PRIN 2009 and 
Telethon, Italy to DT. The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript. 
We thank the inhabitants of the VB that made this study possible, the local administrations, the 
Tortona and Genova archdiocese and the ASL-22, Novi Ligure (Al) for support. 
We also thank Fiammetta Viganò for technical help, Corrado Masciullo and Massimiliano Cocca 
for building the analysis platform. 
NBS (Nijmegen Biomedical Study) 
The Nijmegen Biomedical Study (NBS; http://www.nijmegenbiomedischestudie.nl) is a 
population-based survey conducted by the Department for Health Evidence and the Department of 
Laboratory Medicine of the Radboud University Medical Centre, Nijmegen, The Netherlands. The 
study has been described before (1). Briefly, in 2002, 22,451 age and sex-stratified randomly 
selected adult inhabitants of Nijmegen, a city located in the eastern part of the Netherlands, 
received an invitation to fill out a postal questionnaire (QN) including questions about lifestyle, 
health status, and medical history, and to donate a blood sample for DNA isolation and biochemical 
studies. A total of 9350 (43%) persons filled out the QN, of which 6468 (69%) donated blood 
samples. A second, third and fourth questionnaire were sent out in 2005, 2008 and 2012, 
respectively. Approval to conduct the NBS was obtained from the Radboud University Medical 
Centre Institutional Review Board. All participants gave written informed consent for participation 
in the NBS. For this study we used the subset of 1980 NBS participants that was selected to serve 
as controls in GWAS (2). 
1. Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA, Swinkels 
DW, Sweep FC, den Heijer M. Thyroid function and prevalence of anti-thyroperoxidase antibodies 
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in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 
2006;52:104-11. 
2. Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to 
urinary bladder cancer. Nat Genet 2008;40:1307-12. 
This work was sponsored by the Stichting Nationale Computerfaciliteiten (National Computing 
Facilities Foundation, NCF) for the use of supercomputer facilities, with financial support from the 
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for 
Scientific Research, NWO). 
The Nijmegen Biomedical Study is a population-based survey conducted at the Department for 
Health Evidence, and the Department of Laboratory Medicine of the Radboud University Medical 
Centre. Principal investigators of the Nijmegen Biomedical Study are Lambertus A. Kiemeney, 
Martin den Heijer, André L.M. Verbeek, Dorine W. Swinkels and Barbara Franke. 
Cambridge 
The UK Blood Services (UKBS) Common Controls Panel 1 and 2 (UKBS ‐ CC1 and UKBS ‐ 
CC2) is a national collection of 3,000 DNA samples from the 12 health regions of Great Britain 
established in 2005 ‐ 2006 by a partnership between NHS Blood and Transplant (NHSBT) of 
England, the Scottish National Blood Transfusion Service and the Welsh Blood Service. The 
Common Controls collection was established for use as the shared controls in the WTCCC 
Genome ‐ Wide Association Studies (WGAS), and was approved by the Peterborough & Fenland 
Local Research Ethics Committee 
Wellcome Trust Case Control Consortium. Genome ‐ wide association study of 14, 000 cases of 
seven common diseases and 3,000 shared controls. Nature 447 , 661 ‐ 78 (2007). 
Research in the Ouwehand laboratory is supported by program grants from the National Institute 
for Health Research (NIHR) to WHO and the British Heart Foundation (to AR) under numbers RP- 
PG-0310-1002 and RG/09/12/28096. 
Micros/EURAC 
The MICROS study is part of the genomic health care program 'GenNova' and was carried out in 
three villages of the Val Venosta, South Tyrol (Italy), in 2001-2003. It comprised members of the 
populations of Stelvio, Vallelunga and Martello. A detailed description of the MICROS study is 
available elsewhere (Pattaro et al. 2007). Briefly, study participants were volunteers from three 
isolated villages located in the Italian Alps, in a German-speaking region bordering with Austria 
and Switzerland. Owing to geographical, historical and political reasons, the entire region 
experienced a prolonged period of isolation from surrounding populations. Information on the 
participant’s health status was collected through a standardized questionnaire. Laboratory data 
were obtained from standard blood analyses. The study participants are connected among each 
other in a unique genealogy for the three villages. The study was approved by the 
Landesethikkomitee (ethics committee) of the autonomous province of Bolzano. 
Pattaro C, Marroni F, Riegler A, Mascalzoni D, Pichler I, Volpato CB, Dal Cero U, De Grandi A, 
Egger C, Eisendle A, Fuchsberger C, Gögele M, Pedrotti S, Pinggera GK, Stefanov SA, Vogl FD, 
Wiedermann CJ, Meitinger T, Pramstaller PP. The genetic study of three population microisolates 
in South Tyrol (MICROS): study design and epidemiological perspectives. BMC Med Genet. 2007 
Jun 5;8:29. 
The study was supported by the Ministry of Health and Department of Educational Assistance, 
University and Research of the Autonomous Province of Bolzano and the South Tyrolean 
Sparkasse Foundation. 
For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, 
Toni Pizzecco, Josef Plangger, Ugo Marcadent and the personnel of the Hospital of Silandro 
(Department of Laboratory Medicine) for their participation and collaboration in the research 
project. 
ERF/Rotterdam 
The Erasmus Rucphen Family study is part of the Genetic Research in Isolated Populations (GRIP) 
program. It is a cross-sectional population- based study that includes over 3000 participants 
descending from 22 couples who lived in the Rucphen region in the southwest Netherlands and had 
at least 6 children baptized in the community church between 1850 and 1900 . All living 
descendants of these pairs (as well as their spouses), ascertained on the basis of municipal and 
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baptismal records, were traced and invited to participate (n = 3000 ). Selection of the study 
participants was not based on any disease. The Medical Ethical Committee of the Erasmus Medical 
Center, Rotterdam approved the study and informed consent was obtained from all participants. 
Aulchenko YS, Heutink P, Mackay I, et al. Linkage disequilibrium in young genetically isolated 
Dutch population. Eur J Hum Genet 2004;12:527-34. PMID:15054401 
ERF: The genotyping for the ERF study was supported by EUROSPAN (European Special 
Populations Research Network) and the European Commission FP6 STRP grant (018947; LSHG-
CT-2006-01947). The ERF study was further supported by grants from the Netherlands 
Organisation for Scientific Research, Erasmus MC, the Centre for Medical Systems Biology 
(CMSB) and the Netherlands Brain Foundation (HersenStichting Nederland). We are grateful to all 
participating individuals and their relatives, general practitioners and neurologists for their 
contributions and to P. Veraart for her help in genealogy, Jeannette Vergeer for the supervision of 
the laboratory work and P. Snijders for his help in data collection. 
Busselton Health Study 
Residents of the town of Busselton in the southwest of Western Australia have been involved in a 
series of health surveys since 1966.a The population is predominantly of European origin. In 
1994/95 there was a follow-up study involving a subset of those who had attended any of the 
previous surveys. Cases of asthma were defined as those who reported doctor-diagnosed asthma at 
any survey that they attended from 1966 to 1994 (answer ‘Yes’ to ‘Has your doctor ever told you 
that you had asthma?’).b Controls are those who have consistently answered ‘No’ to ‘Has your 
doctor ever told you that you had asthma?’ at all previous surveys that they have attended from 
1996 to 1994. For the GWA study, a case control sample of unrelated individuals was selected. 
After QC a total of 1,207 subjects were retained in the GWAS analyses. Ethical approval was 
obtained through the Human Research Ethics Office, University of Western Australia 
Website: http://www.busseltonhealthstudy.com/ 
James AL, Knuiman MW, Divitini ML et al. Changes in the prevalence of asthma in adults since 
1966: the Busselton Health Study. Eur Respir J 2009. 
The Busselton Health Study (BHS) acknowledges the generous support for the 1994/5 follow-up 
study from Healthway, Western Australia and the numerous Busselton community volunteers who 
assisted with data collection and the study participants from the Shire of Busselton. The Busselton 
Health Study is supported by The Great Wine Estates of the Margaret River region of Western 
Australia. 
 
Replication Cohorts: 
Estonian Biobank (replication cohort) 
The Estonian cohort comes from the population-based biobank of the Estonian Genome Project of 
University of Tartu (EGCUT). The project is conducted according to the Estonian Gene Research 
Act and all participants have signed the broad informed consent (www.biobank.ee). In total, 52 000 
individuals aged 18 years or older participated in this cohort (33% men, 67% women). The 
population distributions of the cohort reflect those of the Estonian population (83% Estonians, 14% 
Russians and 3% other). General practitioners (GP) and physicians in the hospitals randomly 
recruited the participants. A Computer-Assisted Personal interview was conducted during 1–2 h at 
doctors’ offices. Data on demographics, genealogy, educational and occupational history, lifestyle 
and anthropometric and physiological data were assessed. These studies were approved by the 
Research Ethics Committee of the University of Tartu. 
Website: http://www.biobank.ee/ 
Leitsalu L, et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of 
Tartu. Int J Epidemiol. 2014 Feb 11. 
This work was supported by the Targeted Financing from the Estonian Ministry of Science and 
Education [SF0180142s08]; the US National Institute of Health [R01DK075787]; the Development 
Fund of the University of Tartu (grant SP1GVARENG); the European Regional Development 
Fund to the Centre of Excellence in Genomics (EXCEGEN; grant 3.2.0304.11-0312); and through 
FP7 grant 313010. 
We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyzes 
were carried out in part in the High Performance Computing Center of University of Tartu. 
InCHIANTI 
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The InCHIANTI study is a population-based epidemiological study aimed at evaluating the factors 
that influence mobility in the older population living in the Chianti region in Tuscany, Italy. The 
details of the study have been previously reported[1]. Briefly, 1616 residents were selected from 
the population registry of Greve in Chianti (a rural area: 11,709 residents with 19.3% of the 
population greater than 65 years of age), and Bagno a Ripoli (Antella village near Florence; 4,704 
inhabitants, with 20.3% greater than 65 years of age). The participation rate was 90% (n=1453), 
and the subjects ranged between 21-102 years of age. Overnight fasted blood samples were for 
genomic DNA extraction, and measurement of iron-related traits. Illumina Infinium HumanHap 
550K SNP arrays were used for genotyping [2]. The study protocol was approved by the Italian 
National Institute of Research and Care of Aging Institutional Review, and Medstar Research 
Institute (Baltimore, MD). 
1. Ferrucci, L., et al., Subsystems contributing to the decline in ability to walk: bridging the gap 
between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc, 2000. 
48(12): p. 1618-25. PMID: 11129752 
2. Melzer, D., et al., A genome-wide association study identifies protein quantitative trait loci 
(pQTLs). PLoS Genet, 2008. 4(5): p. e1000072. PMID: 18464913 
 
The InCHIANTI study baseline (1998- 2000) was supported as a "targeted project" 
(ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on 
Aging (Contracts: 263 MD 9164 and 263 MD 821336). 
SardiNIA 
The SardiNIA study is a longitudinal study which recruited and phenotyped 6,148 individuals, 
males and females, aged 14–102 y, from a cluster of four towns in the Lanusei Valley [Pilia et al 
Plos Genetic 2006], located in the central east coast of the Sardinia island, Italy. During physical 
examination of each individual, a blood sample was collected and divided into two aliquots. One 
aliquot was used for DNA extraction and the other to characterize several blood phenotypes. 
During the study, we genotyped, by common GWAS arrays (Affymtrix 10K, Affymetrix 500K and 
Affymetrix 6.0), 4,694 individuals selected from the whole sample to represent the largest available 
families, regardless of their phenotypic values. Genotyping protocol and quality checks for the 
genotyping arrays were described previously [Naitza et al Plos Genet 2012]. The quality controlled 
731,209 autosomal markers were used to estimate genotypes for additional 1,594,772 polymorphic 
SNPs assessed in the CEU HapMap population (release 22) by genotype imputation. The SardiNIA 
study was approved by both the IRB at the National Institute on Ageing and the local Italian 
Ethical Committee "Azienda Unita' Sanitaria Locale (U.S.L.) N 4, Lanusei. 
We thank the many individuals who generously participated in this study. We are also grateful for 
the important computing resources made available for imputation and analysis by the CRS4 HP 
Computing Cluster in Pula (Cagliari, Italy), and in particular to Lidia Leoni, Luca Carta e Michele 
Muggiri. This work was supported by the Intramural Research Program of the National Institute on 
Aging (NIA), National Institutes of Health (NIH). The SardiNIA (“Progenia”) team was supported 
by Contract NO1-AG-1– 2109 from the NIA. 
CoLAUS 
The CoLaus study is a population-based cohort study in Lausanne, Switzerland and has been 
described previously [Firmann M, BMC Cardiovascular Disorders, 2008, PMID 18366642]. 
Briefly, the baseline study was conducted between 2003 and 2006, recruiting over 6,000 subjects. 
The following inclusion criteria were applied: a) voluntary participation in the examination, 
including blood sample, b) aged 35-75 years, and c) Caucasian origin defined as having both 
parents and grand-parents Caucasian (determined by birth place). A follow-up visit took place from 
2009-2012, hence 5 years after the baseline study, (n=5,228, 78% follow-up) and similar 
measurements were repeated. The Institutional Review Board of the Centre Hospitalier 
Universitaire Vaudois (CHUV) in Lausanne and the Cantonal Ethics Committee (Commission 
Cantonale d’éthique de la recherche sur l’être humain) approved the study protocol for both the 
baseline and follow-up studies and signed informed consent was obtained from participants. 
The CoLaus study was supported by research grants from GlaxoSmithKline, the Faculty of Biology 
and Medicine of Lausanne, Switzerland, and the Swiss National Science Foundation (grant no: 
33CSCO-122661, 33CS30-139468). ZK was supported by the Leenaards Foundation and the Swiss 
National Science Foundation (31003A-143914). 
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The authors thank Peter Vollenweider, Vincent Mooser and Dawn Waterworth, Co-PIs of the 
CoLaus study. Special thanks to Murielle Bochud, Yolande Barreau, Mathieu Firmann, Vladimir 
Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, 
Jeanne Ecoffey and Sylvie Mermoud for data collection. 
PREVEND 
The PREVEND Study is a prospective, observational cohort study, focussed to assess the impact of 
elevated urinary albumin loss in non-diabetic subjects on future cardiovascular and renal disease. 
PREVEND is an acronym for Prevention of REnal and Vascular ENd- stage Disease. This study 
started with a population survey on the prevalence of micro-albuminuria and generation of a study 
cohort of the general population. The goal is to monitor this cohort for the long-term development 
of cardiac-, renal- and peripheral vascular end-stage disease. For that purpose the participants 
receive questionnaires on events and are seen every three/four years for a survey on cardiac-,renal- 
and peripheral vascular morbidity. 'The PREVEND study was approved by the medical ethics 
committee of the University Medical Center Groningen and conducted in accordance￼with the 
guidelines of the Declaration of Helsinki. All participants gave written informed consent. Website: 
http://www.prevend.org/index.php 
This work was supported by the following grants: PREVEND genetics is supported by the Dutch 
Kidney Foundation (Grant E033), the National Institutes of Health (grant LM010098), The 
Netherlands Organization for Scientific Research (NWO-Groot 175.010.2007.006, NWO VENI 
grant 916.761.70, ZonMW 90.700.441), and the Dutch Inter University Cardiology Institute 
Netherlands. N. Verweij is supported by the Netherlands Heart Foundation (grant NHS2010B280). 
'The PREVEND study was approved by the medical ethics committee of the University Medical 
Center Groningen and conducted in accordance with the guidelines of the Declaration of Helsinki. 
All participants gave written informed consent. 
FENLAND 
The Fenland study is a population based cohort in Eastern England (UK) designed to analyse gene-
lifestyle interactions on intermediate quantitative traits related to obesity and type 2 diabetes risk. It 
combines detailed measurement of the lifestyle exposures with accurate metabolic and 
anthropometric phenotyping. More than 10,000 men and women born between 1950 and 1975 have 
been recruited since 2004 and is still ongoing. Exclusion criteria were people suffering from a 
psychotic illness, pregnant and lactating females, people unable to walk unaided, individuals with 
diagnosed diabetes or a prognosis of less than 1 year. GWAS data is currently available on 1,500 
randomly selected participants. The study was approved by Cambridge Local Research Ethics 
Committee (NHS). 
De Lucia Rolfe E, Am J Clin Nutr, 2010, PMID 21248185 The Fenland Study is funded by the 
Medical Research Council (MC_UU_12015/1). Clara Podmore is funded by the Wellcome Trust 
(097451/Z/11/Z). 
We are grateful to all the volunteers for their time and help, and to the General Practitioners and 
practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland 
Study Co- ordination team and the Epidemiology Field, Data and Laboratory teams. Biochemical 
assays were performed by the National Institute for Health Research, Cambridge Biomedical 
Research Centre, Core Biochemistry Assay Laboratory, and the Cambridge University Hospitals 
NHS Foundation Trust, Department of Clinical Biochemistry. 
INTERACT 
The InterAct study is a case-cohort study of incident cases of type 2 diabetes (T2D) from eight of 
the ten countries involved in the European Prospective Investigation into Cancer and Nutrition 
(EPIC) cohorts [Langenberg C, Diabetologia 2011 PMID 21717116]. In brief, 12,403 verfied 
incident cases of T2D occured between 1991 and 2007 among the participants eligible for inclusion 
in InterAct, and a centre-stratified subcohort of 16,154 individuals was defined for comparative 
analysis. As part of EPIC, standardised information had been collected on participants, including 
information on lifestyles exposures, diet, physical activity, standard anthropometric data and 
biomarker measurements on stored blood samples. The study was approved by the Internal Review 
Board of the International Agency for Research on Cancer, in addition to the local ethics 
committees in the participating countries. 
InterAct was funded by the EU Integrated Project LSHM-CT-2006- 037197. 
We thank all EPIC participants and staff for their contribution to the study.  
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SUPPLEMENTAL TEXT, TABLES AND FIGURES. 
 
Supplementary Figure S1. Forest plot of the meta-analysis of the studies included for the effect of 
HFE rs1800562 on PD risk. The boxes indicate the genetic (additive) effects of individual studies, 
with the size of the box being inversely proportional to the variance and horizontal lines indicating 
95% confidence intervals. The diamond indicates the pooled effect estimate, obtained using 
inverse-variance weighted fixed-effect meta-analysis, and its 95% confidence interval. The full 
vertical line shows the value for no effect, as opposed to the dashed line indicating the estimated 
pooled effect. 
 

 
Supplementary Figure S2. Forest plot of the meta-analysis of the studies included for the effect of HFE 
rs1799945 on PD risk. The boxes indicate the genetic (additive) effects of individual studies, with the size of 
the box being inversely proportional to the variance and horizontal lines indicating 95% confidence intervals. 
The diamond indicates the pooled effect estimate, obtained using inverse-variance weighted fixed-effect 
meta-analysis, and its 95% confidence interval. The full vertical line shows the value for no effect, as 
opposed to the dashed line indicating the estimated pooled effect. 
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Supplementary Figure S3. Forest plot of the meta-analysis of the studies included for the effect of 
TMPRSS6 rs855791 on PD risk. The boxes indicate the genetic (additive) effects of individual studies, with 
the size of the box being inversely proportional to the variance and horizontal lines indicating 95% 
confidence intervals. The diamond indicates the pooled effect estimate, obtained using inverse-variance 
weighted fixed-effect meta-analysis, and its 95% confidence interval. The full vertical line shows the value 
for no effect, as opposed to the dashed line indicating the estimated pooled effect. 
 

 

 
 

 
Supplementary Figure S4. Sensitivity analysis: Forest plot of the mendelian randomization estimates after 
exclusion of nine studies from the PDGene dataset that had not adjusted for population stratification (see 
Table S2). 
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Supplementary Table S1. Characteristics and sample size of the individual studies included for the gene–
iron association. In all studies, the analyses were adjusted for age and sex, as well as for the first five MDS 
(multidimensional scaling) or principal components to control for population stratification. 

 
 
1 The original sample size was 22,444, but genotype and phenotype data were available only for 21,567 (see 
Table S3). 
2 Personal communication B. Benyamin. 

 
Supplementary Table 2. Characteristics and sample size of the individual studies included for the gene–PD 
association. 

 
PC: principal components 
1 23andMe: slightly expanded version of the cohort used in [9]. 
2 IPDGC (International Parkinson’s Disease Genomics Consortium): USA-NIA and USA-dbGAP studies 
were not included in our analysis due to overlap with PD GWAS Consortium; the Icelandic dataset was not 
available for analysis. 
 
 
Supplementary Figure S3. Gene–iron association: GIS-consortium meta-analysis. The effect size for the 
genetic effects on iron levels is expressed as number of SDs from the mean (Z-scores). 
 

 
Chr., chromosome; SE, standard error; ref. allele, reference allele. 
% Var., percentage variance explained. 
Frequency ref. allele from 1000 Genomes project. 
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Supplementary Table S4. Gene–PD association: meta-analysis of all available candidate gene and GWA 
studies 

 
Chr., chromosome; SE, standard error; ref. allele, reference allele. 
Frequency ref. allele from 1000 Genomes project. 
 
Supplementary Text S1. Detailed description of the studies included in the three GWA investigations of PD 
risk. 
 
PD GWAS Consortium 
For this dataset (4,238 cases and 4,239 controls), two publicly available and three additional GWA studies  
were meta-analyzed. All studies employed standard UK Brain Bank criteria for the diagnosis of PD, with a 
modification to allow cases with a family history of PD to be included. PD cases with a reported age of onset 
below 18 years of age were removed (n=17). When data were available, any PD cases known to carry a 
causative mutation, either two Parkin mutations or a single LRRK2 mutation, were excluded from the 
analysis (n=57). 
PROGENI/GenePD  
PD cases were selected from the PROGENI and GenePD studies of familial PD. Both studies ascertained 
multiplex PD families consisting of at least a sibling pair, both of whom were reported to be affected with 
PD. Control samples were obtained from the NINDS Human Genetics Resource Center at the Coriell 
Institute, Coriell Cell Repositories (Camden, NJ). 
NIA Phase I 
PD samples were derived from the NINDS Neurogenetics repository hosted by the Coriell Institute for 
Medical research (NJ, USA). For the PD cohort, blood was obtained from unique and unrelated white 
individuals with idiopathic PD. Both those with and without a reported family history of PD were included. 
For the control population, blood samples were drawn from neurologically normal, unrelated, white 
individuals at many different sites within the USA. 
NIA Phase II  
PD patients were derived from the NINDS Neurogenetics Repository at the Coriell Institute for Medical 
research (NJ, USA). In addition, 75 PD cases collected by a movement disorders specialist in the Laboratory 
of Neurogenetics were included. All patients were Caucasian individuals with idiopathic PD from the USA.  
MIHG  
Samples in the MIHG GWAS include individuals with PD collected by one of 13 ascertainment centers in 
the PD Genetics Collaboration or by the Morris K. Udall Parkinson Disease Center of Excellence 
ascertainment core. These participants were recruited by participating movement disorder and neurology 
clinics, referrals, and advertisements. Unaffected spouse and friend controls were recruited when available 
and willing to participate. 
NGRC  
PD patients and control subjects were recruited from eight NGRC-affiliated neurology clinics in Oregon, 
Washington, Georgia and New York. Controls were community volunteers and patient spouses.  
 
23andMe 
PD patients of the 23andMe study were recruited through a targeted email campaign together with the 
Michael J. Fox Foundation, the Parkinson’s Institute and Clinical Center, and many other PD patient groups 
and clinics. Patients who stated in an online screening questionnaire that they had been diagnosed with PD 
were offered the 23andMe Personal Genome Service. Controls were drawn from the customer database of the 
23andMe company. Individuals included in the PD GWA study were selected for being of primarily 
European ancestry, and overlapping samples with publically available PD studies from dbGAP were 
removed. The dataset available for our study included 4,127 cases and 62,037 controls from this growing 
study.  
 
International Parkinson’s Disease Genomics Consortium, IPDGC 
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From IPDGC, we included four GWA studies (United Kingdom, German, French, and Dutch datasets) with a 
total of 4,258 cases and 10,152 controls in our meta-analysis. In addition, five studies genotyped with a 
custom genotyping array (Immunochip Illumina iSelect array) with genotypes for all three genetic variants 
were available for our study. These studies consisted of a total of 5,802 cases and 5,556 control samples from 
USA, United Kingdom, Netherlands, Germany, and France. Details of the studies included are reported 
below and summarized in Table S2. 
United Kingdom (UK) dataset  
For the UK dataset sample recruitment mostly targeted sporadic cases without familial history of PD. Half of 
the case collection was tested for the highly penetrant G0219S variant in the LRRK2 gene and carriers were 
excluded from the GWA scan. The control set is a shared resource of UK samples (1958 British Birth Cohort 
and blood donors recruited by the National Blood Services) genotyped by the Wellcome Trust Case Control 
Consortium.  
German dataset 
The German dataset was collected by movement disorder specialists of the Universities of Munich and 
Tübingen in Southern Germany. The control dataset was derived from the population based studies KORA 
and Popgen. 
French dataset 
The patients for the French dataset were recruited through the French network for the study of Parkinson’s 
disease Genetics (GPD). The patients were enriched for cases with a positive family history of PD. The 
controls were derived from the French Three-City (3C) cohort, a population-based, prospective study of 
relationship between vascular factors and dementia.  
Dutch dataset 
The PD patients were recruited from four different centers within the Netherlands (Scales for Outcomes in 
Parkinson's disease, SCOPA, http://www.scopa-propark.eu; the Academic Medical Center Amsterdam, 
AMC, http://www.amc.uva.nl; the Parkinson Centrum Nijmegen, ParC, http://www.umcn.nl; and the VU 
University medical centre, VUmc, http://www.vumc.nl). Genotyping data from control participants from the 
Rotterdam study III (ERGO Young) were used as control population. 
Studies genotyped with Immunochip 
The US dataset consisted of samples collected in the Parkinson’s, Genes and Environment (PAGE) and 
PostCept Studies, as well as additional samples from the Washington University of Saint Louis and the 
Coriell Repository. The UK dataset consisted of samples contributed by the University College London, 
Cardiff University and Wellcome Trust population control samples. In addition, Dutch, German, and French 
case-control samples were available.  
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