
European Transport \ Trasporti Europei n. 34 (2006): 88-104

 88

Formal development and evaluation of narrow
passageway system operations

Evangelos Kaisar 1∗, Mark Austin 2, Stratos Papadimitriou 3

1 Department of Civil Engineering, Florida Atlantic University, USA.

2 Department of Civil and Environmental Engineering and Institute for Systems Research,

University of Maryland, USA.

3Department of Maritime Studies, University of Piraeus, Piraeus, Greece

Abstract

This study applies a new intelligent transportation methodology for transforming informal operations
concepts for narrow passageway systems into system-level designs, which will formal enough to support
automated validation of anticipated component- and system-level behaviours. Models and specifications
of behaviour are formally designed as labelled transition systems. Each object is the management system
is assumed to have behaviour that can be defined by a finite state machine; thus, the waterway
management system architecture is modelled as a network of communicating finite state machines.
Architecture-level behaviours are validated using the Labelled Transition System Analyzer (LTSA). We
exercise the methodology by working step by step through the synthesis and validation of a high-level
behaviour model for a vessel passing through a waterway network (i.e., canal).

Keywords: Synthesis; Validation; Verification; Narrow Waterways Management; System Behaviour
Model.

Introduction

Narrow passageway systems (e.g., waterway, work zone, tunnel, one-lane bridge and

railroad applications) are large multidisciplinary complex systems characterized by
geographically distributed system structures, concurrent subsystem-level behaviours,
and end-to-end system life-cycles that may last decades. From a performance
perspective, sophisticated techniques for engineering analysis are justified by adverse
economics of poor system throughput. Within the waterways domain, for example,
recent research has focused on assessment of overall system performance, congestion
and delays in single and adjacent locks - see, for example, references (DeSalvo and

∗ Corresponding author: Evangelos Kaisar (ekaisar@fau.edu)

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 89

Lave, 1968; Dai and Schonfeld, 1998; Zhu et al. 1998; Ting and Schonfeld, 1998; Wang
et al., 2006). Unfortunately, performance studies address only part of the problem - with
traffic volumes expected to increase significantly into the foreseeable future (Austin and
Kaisar, 2002; Maniccan, 2004), the effective management of passageways is needed to
mitigate the undesirable impact of bottlenecks (perhaps caused by adverse weather
conditions or accidents) on system safety, performance and cost.

As management systems become progressively diverse in their functionality, and
solutions increasingly reliant on high technology, the challenge in creating good system-
level designs will steadily increase unless new approaches are developed. In past
decades, systems have been viewed from an operations point of view, where
information and communication have been regarded as services necessary for the
system to operate in pre-defined ways. Nowadays, there is a rapidly evolving trend
toward large-scale information-dominated systems which exploit commercial off-the-
shelf technologies and communications, have superior performance and reliability, and
are derived in response to various types of information drawn from a wide array of
sources (Austin, 2004). It is well known that concurrent behaviours increase complexity
in scheduling activities to improve performance, while avoiding system failure.
Nevertheless, there are now a growing number of application domains for which these
difficulties are justified because of additional functionality that would not be possible
without and ability to gather and work with data/information. For example, Turkey
(Bosporus Straights), Korea (Tsushima Strait), and the Suez and Panama Canals have
already made large investments to develop traffic management systems for narrow
waterways where decision making is guided by GIS and data collected by land (sensors)
centres (Paul, 1997; Gribar, 1999; Moore, 2000).

A fundamental tenet of our research is that new methodologies for system synthesis
and validation are a prerequisite to software environments for front end system-level
design of information-centric transportation management systems. For our purposes,
synthesis of engineering systems is a process whereby provisional and plausible
concepts are developed to the point where traditional engineering and design can begin.
Synthesis is particularly important for systems that are quite unlike their predecessors;
engineers need to return to first principles, rethink established ideas, and identify
potential problems downstream in the development. The terms system validation and
verification refer to two basic concerns, “are we building the right product?” and “are
we building the product right?” Satisfactory answers to both questions are a prerequisite
to customer acceptance.

To keep system developments on course and to prevent serious design flaws, today
we seek validation and verification procedures that are an integral part of the
development process (rather than a postscript to development) and support pre-
deployment reasoning about system requirements and design. The complexity of design
activities can be kept in check with system-level design methodologies that: (1) Strive
to orthogonalise concerns (i.e., achieve separation of various aspects of design to allow
more effective exploration of the space of potential design solutions) and (2) Employ
formal design representation that enable early predictions of behaviour and detection of
errors (Sangiovanni-Vincentelli, 2003). Moreover, to minimize the possibility of
unforeseen failure we need models of system-level development that will help designers
clearly articulate what the system must provide and what must be prevented. Engineers
also need to understand the extent to which a system provides functionality beyond
what is actually required.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 90

Scope and objectives

Established approaches to behaviour modelling focus on the simulation of complete
system descriptions (modelled to a certain degree of abstraction). Typical modelling
objectives include performance assessment and identification of cause-and-effect
relationships between system inputs and outputs (Cassandras, 1993; Fishwick, 1995). In
a departure from this trend, this work focuses on the early stages of development where
system descriptions may still be incomplete, but opportunities for improvement to the
system design are greatest. Our primary goal is synthesis of high-level models of
behaviour that can be used to verify correctness of partial system descriptions and guide
the incremental elaboration of system descriptions. We note that while visual modelling
languages, such as the Unified Modelling Language (UML, 2003) are useful for
documentation and informal analysis, generally, they lack the precise interpretation of
scenarios needed for rigorous analysis and formal verification of system compliance. A
second problem is the failure of present-day techniques and tools to specify gaps in the
specification which, if not detected, could result in costly design errors in the system
development downstream.

Using ideas from object-based and systems-engineering development, this paper
proposes a methodology for the incremental transformation of informal operations
concepts into system-level designs, the latter being formal enough to support automated
validation of anticipated component- and system-level behaviours. The methodology is
inspired by our work on systems engineering methodologies (Austin, 2004; Kaisar et
al., 2004) and, in part, the work of Magee and co-workers (Magee, 1999; Uchitel, 2004)
on behaviour modelling for concurrent and distributed software systems.

Figure 1: Two Key Elements of Hybrid Object-Oriented/Systems-Development. Objects communicate
through message passing (Source: Austin (2004)).

To exercise the methodology, we work step by step through the synthesis and

validation of a high-level behaviour model for a ship passing through a waterway
network. We assume that the waterway management system architecture can be
modelled as a network of communicating objects, as shown on the left-hand side of
Figure 1. Management systems achieve their purpose with object/module having well
defined functionality, well defined interfaces for connectivity to other modules and the
surrounding environment, and message passing. We assume that each object will have

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 91

behaviour that can be defined by a finite state machine; thus, the management system
will be modelled as an ensemble of interacting finite state machines. Scenario
specifications and models of behaviour are formally modelled as labelled transition
systems (LTSs) (Alur, 2000; Keller, 1976). At the component level, the nodes of a
labelled transition system represent states the component can be in. At the architecture
level, labelled transition system nodes represent system-level states, which, in turn,
correspond to specific combinations of component-level states. Transitions are labelled
with messages that components send to each other. The key advantage of this approach
is that models of system-level behaviour can be automatically synthesized through the
parallel composition of component-level behaviour models. A symbolic representation
of this process is shown on the right-hand side of Figure 1. We validate behaviour using
the Labelled Transition System Analyser (LTSA), a verification tool for concurrent
systems (LTSA, 2004). In LTSA, processes correspond to sequences of actions. The
textual representation is the finite state process (FSP) language. Labelled transition
systems (LTSs) are the graphical representation. The properties required of the system
are also modelled as state machines. LTSA mechanically checks that the specification
of a concurrent system satisfies the properties required of its behaviour.

Frontend development

The methodology follows the step-by-step development procedure shown in Figure 2.

Component- and architecture-level models of behaviour are synthesized using a
combination of top-down and bottom-up strategies. A top-down decomposition strategy
is used to develop component-level models of behaviour from use cases and scenario
specifications. Models of architecture-level behaviour are developed through a bottom-
up parallel composition of component-level behaviours. Downstream in the
development (not covered by the methodology described here), system-level design
alternatives are created by linking models of system-level behaviour to the high-level
structure, and imposing constraints on performance and operation (e.g., control logic).
To identify the major subsystems/objects and the details of message communication that
a system-level design will need to support, we systematically work through the
following steps: (1) Use cases and scenarios, (2) Basic- and high-Level message
sequence charts, (3) System requirements, (4) Component- and architecture-level
behaviours, an (5) Model checking and incremental improvement. The details of each
step are as follows:

Use cases and scenario

Top-down development of system-level models begins with use cases, and proceeds
to fragments of system functionality, expressed as activity and sequence diagrams (i.e.,
UML-based methods). Use cases are high-level representations of system functionality
that do not reveal the details of implementation. Use case diagrams are a convenient
way in which a real world actor (i.e., entities that are external to the system) will
interact with the system, the use cases with which they are involved, and the boundary
of the application. In a departure from established approaches to use case modelling

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 92

(Amour, 2001, Kulak 2000), the methodology organizes functionality according to
aspects.

Figure 2: Step-by-step procedure for synthesis and validation of concurrent Object-Based Models for
management of narrow passageways. Adapted from Austin (2004).

Aspects are viewpoints for handling concerns that cut across the details of
implementation, particularly at the architecture level (Arnautovic, 2003; Jacobson,
2003). We employ aspects to represent the concurrent functionality of the main
waterways management subsystems. The upper left-hand corner of Figure 2 shows, for
example, functionality of the waterways system viewed from management- and vessel-
system perspectives. Within each perspective, elements of system functionality can be
partitioned into two parts: (1) Those concerned with operation of the viewpoint alone,
and (2) Interactions between the management and vessel systems. Scenarios are partial
descriptions of behaviour. Together they describe how the system components, the
surrounding environment, and users interact in order to provide the system-level
functionality. Several scenarios may be connected to each use case, explaining how the
system will function under normal operations and alternative circumstances. Expecting
stakeholders to produce a complete set of scenarios with complete coverage in one go is
unrealistic.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 93

To help designers articulate what must be provided by the system and what must be
prevented, the methodology employs a combination of positive, negative and implied
scenarios to guide incremental improvement of system-level descriptions (Uchitel,
2003; Uchitel, 2004). See Figure 3.The detailed model partitions scenarios into three
categories. Positive scenarios specify the intended system behaviour. Negative scenarios
specify undesirable behaviours the system is expected not to exhibit (e.g., operations
that are unsafe). Implied scenarios correspond to gaps in the scenario-based
specification. These gaps can occur in two ways. First, when models of architecture-
level behaviour are composed from component-level behaviours, gaps in the scenario
description will occur when individual component-level behaviour have an inadequate
view of intended system-level behaviour. A second possibility is that the system
architecture may contain feasible of traces of behaviour that are not detailed in the
scenario specification (i.e., the system architecture might do something that the user is
unaware of). An implied scenario may simply mean that an acceptable scenario has
been overlooked and that the scenario specification need to be completed.

Figure 3: Flowchart for incremental synthesis of positive and negative scenarios, architecture trace and
constraint models.

By detecting and validating implied scenarios it is possible to drive the elaboration of
scenario-based specifications and behaviour models and possibly converge to a state
where there are no more implied scenarios to be validated: (1) If a positive scenario is
added as the result of accepting an implied scenario, then the specification for
acceptable system behaviour is extended, (2) If a negative scenario is added as the result
of rejecting an implied scenario, then the specification is strengthened. The decision to
accept or reject a scenario depends on the problem domain at hand and will require
consultation with the project stakeholders.

Basic and high-level message sequence charts

Figure 2 shows that activity and sequence diagrams can be derived directly from

textual scenario descriptions. In UML nomenclature, activity diagrams show flows of
task completion without revealing the details of internal implementation. Sequence

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 94

diagrams show flows of communication among objects needed to implement system
functionality (i.e., sequences of messages to complete a task), and in doing so, provide a
high-level outline of the system architecture showing which components are involved in
the implementation of fragments of behaviour.

Figure 4: Elements of basic- and high-level message sequence charts.

Figure 5: Synthesis of component-level model for object 1 from basic- and high-level sequence diagrams.

The methodology captures the dual benefit of sequence and activity diagram views by

assuming that models of system-level behaviour correspond to a directed graph of
nodes, with each node referencing either an individual task (i.e., sequence diagram) or a
lower-level graph (i.e., activity diagram). For the purposes of behaviour model

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 95

development, we adopt the notation of Alur (Alur, 2000) and Uchitel et al. (Uchitel,
2004), where basic- and high-level message sequence charts are used in lieu of sequence
and activity diagram constructs, respectively. Basic message sequence charts depict
sequences of messages (or traces) that components send to each other in order to
complete a task. As illustrated in Figure 4, the vertical lines, called instances, are used
to describe independent entities (e.g., Object 1, Object 2, Object 3). Messages represent
interactions between the instances. Events correspond to observation of an interaction
by the instances. Time in bMSCs is represented top-down -- that is, an event is
considered to occur strictly after all the events that occur further up the instance
timeline. We assume that message passing is synchronous; send and receive events are
considered to occur simultaneously. This assumption keeps the analysis of behaviour
models tractable.

The edges in high-level message sequence charts (hMSC) show how the system can
evolve from once scenario to another, thereby allowing stakeholders to reuse scenarios
within a specification and to introduce sequences, loops and alternatives to bMSCs. For
example, behaviour of the hMSC in Figure 4 might correspond to one or more
executions of Task 1, Task 2, one or more executions of Task 1, and so forth.
Unfortunately, the interpretation of system-level behaviour is complicated by two
possible interpretations of this evolution. One possibility is to assume that all
components wait until all events in a bMSC have been completed before moving onto
the next bMSC. As pointed out by Uchitel et al. (Uchitel, 2004) in order for this model
to work, components need to know when a scenario has finished in order to the next to
start - this implies components are, at a minimum, partially synchronized in their
behaviour. The preferred approach, called weak sequential composition, assumes that
components move into subsequent scenarios in an unsynchronized manner.

System requirements

Systems requirements correspond to constraints on system functionality, system

interfaces, and non-functional concerns, such as safety and reliability. They are
generated, in part, from features in the activity and sequence diagrams. For example,
sequence diagrams also imply component interfaces needed to support the passing of
message between components.

Component- and architecture-level behaviour

Models of component-level behaviour are built directly from the bMSC and hMSC
specifications. Basic- and high-level specifications are translated in the form of finite
sequential processes (FSPs), and graphically represented as labelled transition systems
(LTSs). Briefly, the procedure for creating a component-level behaviour model is as
follows: (1) Build one FSP process for each bMSC in the specification, (2) Build a
process that models the behavior defined by the hMSC, (3) Define several auxiliary
processes for each hMSC node. One process models the mapping of hMSC nodes to
bMSC nodes. A second process is used to model continuations of the node according to
connectivity relations in the hMSC. If concurrent scenarios have common elements,
then there will be an interleaving of bMSC behaviours. Figure 5 shows, for example, the

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 96

assembly procedure for creating a labelled transition system for Object 1. First, finite
state process models are created for Task 1 and Task 2. The label “intAction” is used to
specify connectivity of nodes in the hMSC. The last step in assembly of the component
model is the make “intAction” unobservable and to minimize the model with respect to
trace equivalence. Similar component-level models can be constructed for Objects 2 and
3.

Models of architecture-level behaviour are obtained through the parallel composition
of concurrent processes at the component level. Given two labelled transition systems
(LTSs) P1 and P2, we denote the parallel composition P1 \| P2 as the LTS that models
their joint behaviour. By extension, the architectural-level behaviour model is defined
by:

\begin{initial state}
 {states that may be reached}
 {From 0 we have the transition for P1 and P2}
\hbox {Architecture-Level Behaviour Model} = P1 \| P2 \| P3 \cdots Pn
\end{Necessarily satisfied: equation}

where Pi is the finite state model for the i-th component among “n” interacting
components. Joint behaviour is the result of all LTSs executing asynchronously, but
synchronizing on all shared message labels. From an analysis perspective a good
system: (1) exhibits safety and liveliness, and (2) avoids deadlocks. A safety property
asserts that nothing bad will happen during the system execution. A liveliness property
asserts that something good eventually happens (e.g., suppose that ships are
approaching a narrow passageway. Liveliness would assert that, eventually, all of them
will be able to pass through the passageway safely). A system state is deadlocked when
there are no eligible actions that a system can perform.

Model checking and incremental improvement

Formal model checking procedures make sure that the architecture-level design: (1)

does what it is supposed to do; (2) prevents certain behaviours from occurring; and (3)
does not support un-intended behaviours. If any one of these aspects is violated, then we
have a gap between the intended system and the actual system design. We can close
gaps in the system design by refining the scenarios. This, in turn, leads to more detailed
diagrams and a modified system-level architecture.

The analysis needs to include detection of traces that are exhibited by the architecture
model, but have not been specified in the set of scenarios, and have not been explicitly
rejected by stakeholders. The trace model is built from the set of positive system traces,
ignoring the specified architecture (i.e., the components that make up the system
architecture). The constraint model captures properties that the architecture model
should comply with if it is to avoid the negative scenarios and provide only the
specified behaviours. It is built from the set of negative traces - it captures the
complement of traces the system should not exhibit.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 97

Waterways application
In this section, we apply the methodology to the synthesis and validation of a

simplified system-level behaviour model for a vessel passing through a narrow
passageway, such as canals in the European inland waterway system. The behaviour
model is assembled from two decoupled, but loosely interacting viewpoints: (1)
Functionality of the vessel as it approaches and passes through the passageway, and (2)
Functionality of the management system as it controls vessels passing through the
narrow passageway. We assume that the management system will have at its disposal a
variety of state-of-the-art technologies for collection and transmission of data (e.g.,
computers, cameras, GPS, sensors, and radio communications). Synthesis of the system-
level behaviour model begins with a narrative description of system functionality. When

Figure 6: Use case diagrams for the vessel and Waterway Management Systems.

the vessel is approaching the narrow point, the control centre will ask the vessel for
information on its position. Initially, the vessel will be in a stand-by state. The driver of
the vessel will send an inquiry to the control centre for transit availability, and remain in
a stand-by state until it receives a command to proceed from the control centre. The
control centre handles the request for transit availability by querying the control centre
database for appropriate data/information, and any relevant events, such as accidents
and delays. Eventually, the control centre will inform the driver on a decision about
transit availability. Throughout this process, the vessel will send information on its
position to the database. The database is automatically updated. In an alternative course
of action, the control centre receives data from the database, and decides what it is
going to be the next step for transit availability. Commands are sent to drivers of the
appropriate vessels. Drivers will either move the vessel to the next control point and/or
halt. When the transit procedure is complete, the vessel will send a terminate message to
the control centre.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 98

Use case model

Figure 6 shows high-level use case diagrams for the vessel system and a general

purpose traffic management system. The names of the actors (which are drawn as stick
figures) are Vessel, Driver, Traffic Controller, and Coast Guard At the heart of the
traffic management system is the control centre. To maintain safety, ensure security and
law enforcement, protect the environment, the control centre monitors weather
conditions, tracks traffic in passageways, as well as scheduling and optimizing traffic
operations. The major points of contact for a control centre are the traffic controllers,
who implement the traffic policies imposed by the control centre. Controllers are
physically located at the narrow passageway and can either be humans or automated
devices. Points of contact also exist for the drivers/vessels who transit the narrow
passageways. Drivers can register their presence with the control centre, and request
guidance on traversal of the passageway. Periodically, the vessel will update the control
centre on its geographical position.

This use case model provides a simplified view of functionality. A more realistic case
study - details are not shown on Figure 6 - would include a transit-entry, transit-
fullfilment, and channel advisory subsystems, supported by a geographic information
system (GIS). The transit-entry subsystem would have use cases for looking up transit
availability of the waterway, creating a new transit request, and updating the transit
schedule. Transit-fulfillment takes care of scheduling and traffic control policies.
Channel advisory subsystems send updates on channel conditions to operators,
controllers, drivers and the coast guard. These additional features contribute to the safe
and efficient use of large-scale waterway systems.

Scenarios

Functionality of each use case can be elaborated into detailed scenarios represented in

textual and graphical formats. As a case in point, from the left-hand side of Figure 6 the
Transit Inquiry use case expands to:

Primary Actor(s): Driver.
 Description
 The control centre analyzes the driver's inquiry for transit.
 Pre-conditions:
 The onboard technology of transiting vessels includes
 GPS receivers and telecommunication equipments.
 Flow of Events:
 1.The driver uses the onboard equipment to send an inquiry
 to the control centre.
 2.The control centre receives the inquiry.
 3.The control centre queries the management database for
 most up-to-date information.
 4.Information is sent from the database to the control centre.
 5.The control centre resolves the “transit request”
 and sends the decision result to the driver.
 Post-conditions:
 Information about the transit is updated.
 The control centre returns to standby mode.
 Alternative flow of Events:
 None.
 Assumptions:
 Waterway is in use.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 99

Textual scenarios provide an effective way of eliciting system-level objects that will be
involved in the execution of the scenario. For the Transit Inquiry use case, the driver
will interact with a control centre, which, in turn, will communicate with a database.

Figure 7: Basic- and high-level message sequence chart (MSC) specifications for waterway system
functionality.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 100

Sequence and activity diagrams

As a prerequisite to modelling system-level behaviour in LTSA, we create a two-level

message sequence chart (MSC) for a graphs of tasks that need to be completed when a
vessel passes through the passageway. System-level behaviour corresponds to a directed
graph of tasks. The left-hand side of Figure 7 shows sequences of messages passed
among four entities - the vessel, the driver, a control centre, and a database - for
execution of the tasks Initialize, Transit Inquiry, GPS Position, Analysis, Drive, Hall,
and Terminate. Each box and vertical line in the sequence diagram corresponds to an
object in the system. Horizontal arrows correspond to messages passed between the
objects, which will need to be part of the system structure. The right-hand side of Figure
7 shows a directed graph of tasks, from which system-level behaviour emerges. Notice
that the vessel and drivers are actors in the use case model. The control centre and
database are components in the management system. The GPS system sends a
continuous stream of data to the database. The control centre unit performs decisions
and send commands to the vessel and driver. The database receives queries from the
control centre and returns appropriate data/information.

Component- and system-level architectures

Finite state models of component- and architectural-level behaviour are composed
directly from the message sequence chart. First, finite state representations for
component behaviour are obtained using the procedure outlined earlier in this paper.

Figure 8: Component models in waterways application.

Figure 8 shows the behaviour of each component (such as vessel, driver, GPS

position, and database) is exactly the same as described in the activity diagram. Models

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 101

of system-level behaviour (also termed architecture-level behaviour) are obtained
through a parallel composition of component finite state machines. The architecture
model has 43 nodes, and is too large to be shown here. The trace model has 15 states
and it is shown in Figure 9. At the component level, the numbered nodes in the
graphical representation correspond to permissible states. At the architecture level, the
numbered nodes correspond to specific combinations of states at the component level.

Figure 9: Trace model in waterways application.

Implied scenarios

An implied scenario is a sequence of message labels that appear as a trace prefix in
the architecture model, but are neither a prefix of positive- nor negative- traces. Figure
10 shows, for example, a trace (the basic sequence chart syntax for clarity) that can be
executed in our system model, but hasn't been explicitly classified as being a positive or
negative scenario. By looking back at Figure 7 we see that the message sequence on,
position, terminate1, on, and query corresponds to the task sequence Initialize, GPS
Position, Terminate, Initialize and Analysis. From the textual description of behaviour it
is clear that Terminate is intended to only occur after the ship has traversed the
passageway. Hence, we classify this scenario as undesirable behaviour -- it is registered

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 102

as a negative scenario and added as a constraint in the model checking procedure.
Formally, this negative scenario has a basic format, consisting of the message sequence

Figure 10: Implied scenario in model of waterways behaviour.

Figure 11: Representation of basic negative scenario.

(p,l), where “p” is a basic MSC for the pre-condition and “l” is the proscribed
(prohibited) message. See Figure 11. Uchitel and co-workers have developed an
ensemble of progressively expressive formats for describing various types of negative
scenarios.

Conclusions and future work

In this paper we have demonstrated how ideas from object-based development and

systems engineering can be combined to create a methodology for the incremental
transformation of informal operations concepts (represented by use cases and positive,
negative and implied scenarios) into formal representations for system-level behaviour
(represented by labelled transition systems). The latter representation is formal enough
to support automated evaluation of operational and safety concerns. These concerns
complement engineering estimates of system performance. However, the methodology
presented in this paper is simply a first step.

Looking ahead, as waterway management systems become more complex and reliant
on high-technology (software and hardware), we anticipate a strong need emerging for
formal procedures that can help engineers move in a systematic manner from use cases

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 103

and scenarios to requirements, to architecture-level (logical) representations of a system,
followed by the detailed (physical) design and testing. Appropriate forms of
validation/verification need to be weaved into each step of this development process.
One issue this paper did not address is testing. It should be possible, in principle, to use
the architecture-level (logical) specification of a system to guide the generation of test
suites needed for the lower level physical design. In the present investigation,
refinements to the use-case and scenario models are driven by discrepancies in traces
through the system-level architecture that are not supported by the message-sequence
chart specification. Due to the large number of components in a transportation system
and, in part, the uncertainty in human behaviour, devising a complete list of working
scenarios can be very difficult. To mitigate this shortcoming, there is a need to explore
the use of ``waterways simulators'' for the generation of scenarios (Mahmassani, 2004).
Finally, nowhere in the model do we talk about operations whose correctness depends
on time. To overcome this limitation, we are currently exploring the potential benefits
of timed automata and systems analysis/verification of concurrent behaviours with
UPPAAL (UPPAAL, 2004).

References

Alur, R., Etessami, K., and Yannakakis, M. (2000) “Inference of Message Sequence Charts”,
International Conference on Software Engineering (ICSE'00), Limerick, Ireland.

Armour, F. and Miller, G. (2001) Advanced Use Case Modelling, Addison-Wesley, New York.
Arnautovic, E. and Kaindl, H. (2003) “Aspects for Crosscutting Concerns in System Architectures”, In

CSER: Conference on Systems Engineering Research, University of Southern California, Los Angeles,
April.

Austin, M. A. and Kaisar, E. (2002) “Multi-Level Analysis of Congested Transportation Systems”, 6th
world Multiconference on Systemics, Cybernetics and Informatics, July 14-18, Orlando, Florida.

Austin, M. A. (2004) “An Introduction to Information-Centric Systems Engineering”, Tutorial F06,
INCOSE, Toulouse, France, June.

Cassandras, C. G. (1993) Discrete Event Systems: Modeling and Performance Analysis, Irwin and Aksen
Associates.

Dai, M. D. and Schonfeld, P. (1998) “Metamodels for Estimating Waterway Delays Through a Series of
Queues”, Transportation Research, Vol. 32, No. 1, pp. 1-19.

DeSalvo, J. S. and Lave, L. B. (1968) “An Analysis of Towboat Delays”, Journal of Transportation
Economic Policy, pp. 232-241.

Fishwick, P. A. (1995) Simulation Model Design and Execution: Building Digital Worlds, Prentice-Hall,
New York, New York.

Gribar, J. C., and Bocanegro, J. A. (1999) “Passage to 2000 (Modernization of the Panama Canal)”, Civil
Engineering Magazine, December.

Jacobson, I. (2003) “Use Cases and Aspects Working Seamlessly Together”, Journal of Object
Technology, Vol. 2, No. 4, pp. 7-28.

Kaisar, E., Austin, M. A. and Haghani, A. (2004) “An Object-Oriented Approach for the Architecture
Design of the Management of Narrow Passageways”, In International Workshop on Harbour,
Maritime and Multinodal Logistics, Modelling and Simulation, Copacabana, Rio de Janeiro, Brazil,
September 16-18.

Keller, R. (1976) “Formal Verification of Parallel Programs”, Communications of the ACM, Vol. 19, No.
7, pp. 371-384.

Kulak, D. and Guiney, E. (2000) “Use Cases: Requirements in Context”, Addison-Wesley, New York,
New York.

Magee, J. L. and Kramer, J. (1999) Concurrency: State Models and Java Programs, John Wiley and
Sons.

Magee, J. L., Kramer, J. and Uchitel, S. (2004) “Labelled Transition System Analyzer (LTSA) Home
Page.” See:http://www.doc.ic.ac.uk/~jnm/book/ltsa/LTSA.html.

European Transport \ Trasporti Europei n. 34 (2006): 88-104

 104

Mahmassani, H. (2004) “Personal Communication”, Department of Civil and Environmental
Engineering, University of Maryland, College Park, November.

Maniccan, S. (2004) “Congestion of point-to-point mobile objects,'' Physica A: Statistical Mechanics and
its Applications, Volume 331, Issues 3-4, 15, January, pp. 669-681.

Moore, M. (2000) “The Bosporus: A Clogged Artery”, The Washington Post, 16th November.
Paul, L. (1997) “Aressel Traffic System Analysis for Korea/Tsustima Strait”, Energy-Related Marine

Issues in the Regional Seas of Northeast Asia, Berkeley, CA, USA.
Sangiovanni-Vincentelli, A. (2003) “Electronic-System Design in the Automobile Industry”, IEEE

Computer Society, pp. 8-18, May-June.
Ting, C. J. and Schonfeld, P. (1998) “Integrated Control For Series of Waterway Locks”, Journal of

Waterway, Port, Coastal, and Ocean Engineering, ASCE, 124(4), pp. 199-206.
Uchitel, S. (2003) “Incremental Elaboration of Scenario-Based Specifications and Behavior Models using

Implied Scenarios”, Ph.D. Thesis, Imperial College, London, England.
Uchitel, S., Kramer, J., and Magee, J. (2004) “Incremental Elaboration of Scenario-Based Specifications

and Behaviour using Implied Scenarios”, ACM Transactions on Software Engineering and
Methodology, Vol. 13, No. 1, pp. 37-85, January.

Unified Modelling Language (UML) (2003). See http://www.omg.org/uml.
UPPAAL: An integrated tool environment for modelling, validation and verification of real-time systems

modelled as networks of timed automata. (2004). See http://www.uppaal.com/.
Wang, S., Tao, X. and Schonfeld, P. (2006) “Shippers Response to Scheduled Waterway Lock Closures”,

85th Annual Transportation Research Board Meeting, Washington DC.
Zhu, L., Schonfeld, P., Kim, Y., Flood, I. and Ting, C. J. (1998) “Queuing Network Analysis for

Waterways with Artificial Neural Networks”, Artificial intelligence for Engineering Design, Analysis
and Manufacturing, pp. 365-275.

