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Singular Behavior of the Dirichlet

Problem in H�older Spaces

of the Solutions to the

Dirichlet Problem in a Cone

Rabah Labbas, Mohand Moussaoui

and Mohamed Najmi (�)

Summary. - In the present study we consider the solution of the
Dirichlet problem in conical domain. For general elliptic prob-
lems in non Hilbertian Sobolev spaces built on Lp; 1 < p <1, the
theory of sums of operators developed by Dore-Venni[8] provides
an optimal result. H�older spaces, as opposed to Lp spaces, are not
UMD. Using the results of Da Prato-Grisvard[6] and Labbas[14]
we cope with the singular behaviour of the solution in the frame-
work of H�older and little H�older spaces.

1. Introduction

The following problem

� ��u = f in Q
u = 0 on @Q;

(1)
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where Q is an open set of R3 has been studied by several authors
in the Sobolev spaces built on Lp (Q) for 1 < p < 1: See for in-
stance, Agmon-Douglis-Nirenberg [1][2] for regular open sets and
Grisvard[10], Dauge[7] and Kontradiev[12] for open sets with con-
ical points. The variational solution can be written as a sum

u = ur + us; (2)

where ur has the optimal regularity W 2;p (Q) and us is written ex-
plicitly near the singular points for a simple geometry.

For Q being a cone, the technique used in the hilbertian case
(p = 2) is based on the Fourier's partial transform and Plancherel's
theorem. For p 6= 2, the decomposition (2) was obtained by Cl�ement-
Grisvard[4] relying on two approaches for the sum of linear operators
taken from Da Prato-Grisvard[6] and Dore-Venni[8]. The �rst one
provides a strong solution of (1), (not necessarily coinciding with
a variational solution u), and the second makes use of the UMD
character of Lp(Q) and yields the optimal regularity of ur:

In the present study, problem (1) is considered in the in�nite
cone

Q = f�� = � > 0; � 2 Gg ; (3)

where G is a regular open set of the sphere S2: For k 2 N; we denote
by UCk

�
Q
�
the space of the functions with uniformly continuous

and bounded derivatives up to the order k in Q and by C�
�
Q
�
;

for 0 < � < 1; the space of the bounded and uniformly � -H�older
continuous functions u de�ned on Q and endowed with the norm

kukC�(Q) = Max
x2Q

ju(x)j+ Max
�� 6=�0�0

ju(��)� u(�0�0)j
k�� � �0�0k�2

(4)

= Max
x2Q

ju(x)j+ [u]�;Q : (5)

kk2 denotes the euclidian norm: Ck+�
�
Q
�
is the subspace of UCk

�
Q
�

of functions whose k-th order derivatives belong to C�
�
Q
�
: Similarly

we de�ne the spaces UCk
�

;X

�
; C�

�

;X

�
and Ck+�

�

;X

�
where

X is a Banach space and 
 is any open set in Rn : These spaces are
naturally normed. We shall consider also the following subspaces
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little H�older continuous functions:

h�
�

;X

�
=

(
u 2 UC

�

;X

�
= lim
�!0

sup
kx�yk��

ku(x)� u(y)kX
kx� yk� = 0

)
;

h�
�
Q
�
=

(
u 2 UC

�
Q
�
= lim
�!0

sup
kx�yk��

ju(x)� u(y)j
kx� yk�2

= 0

)
;

which are endowed respectively with the norms of C�
�

;X

�
and

C�
�
Q
�
: The subspace h�

�

;X

�
can be characterized as the clo-

sure of UC1
�

;X

�
in C�

�

;X

�
or as the closure of C�

�

;X

�
in

C�
�

;X

�
for � > �; see Sinestrari[19], Lunardi[15].

We then show the validity of decomposition (2) if f 2 h�0
�
Q
�
;

here, h�0
�
Q
�
(resp. C0

�
G
�
) denotes the space of functions of h�

�
Q
�

(respectively of C
�
G
�
) vanishing on @Q (resp. on @G).

We prove that

ur 2 C2+�
�
Q
�
;

and we describe precisely the behavior of the singular part us near
the vertex O.

Our study in the H�older spaces is motivated by the fact that
this framework allows us the use of theorems on multipliers and the
Banach algebra structure and leads to the resolution of many non
linear problems via linearization and precise control of the solution
near the singular points, in L1-norm.

The techniques we use are essentially based on the theory of the
sums of linear operators in Banach spaces developed in Da Prato-
Grisvard[6] as well as on the results for an abstract two points bound-
ary problems of elliptic type studied in Labbas[14].

In paragraph 2 we present the main result of the theory of the
sums by Da Prato-Grisvard[6] in the commutative case. In paragraph
3, we write equation (1) in the cylinder � = R�G by using the spher-
ical coordinates. In paragraphs 4 and 5, we apply the sum's strat-
egy to the transformed equation respectively in the Banach spaces
E = L1

�
R; h�0

�
G
��

and E = h�
�
R; C0

�
G
��
. In paragraph 6, some

regularity results in Labbas[14] are recalled and applied to the trans-
formed problem. Finally in section 7 we go back to our problem in
the cone and give the �nal theorem which speci�es decomposition 2.
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2. Sums of linear operators

Let us consider a complex Banach space E and two closed linear
operators A and B of domainsD(A) and D(B). Their sum is de�ned
by

Sx = Ax+Bx; x 2 D(S) = D(A) \D(B): (6)

We assume that these two operators verify the following hypotheses:

(H:1)

8>>>>>>>>>>><
>>>>>>>>>>>:

9r; CA; CB > 0; �A; �B 2 ]0; �[ such that
i) �(A) �P�A

= fz = jzj > r; jArg(z)j < � � �Ag
and

(A� zI)�1

L(E)

6 CA= jzj 8z 2
P

�A

ii) �(B) �P�B
= fz = jzj > r; jArg(z)j < � � �Bg

and
(B � zI)�1


L(E)

6 CB= jzj 8z 2
P

�B

iii) �A + �B < �:
iv) D(A) +D(B) is dense in E

(H:2)

(
(A� �I)�1 (B � �I)�1 � (B � �I)�1 (A� �I)�1

=
h
(A� �I)�1 ; (B � �I)�1

i
= 0 ; 8� 2 �(A);8� 2 �(B)

(7)

and

(H:3) �(A) \ �(�B) = ;; (8)

where �(A) and �(�B) denote respectively the spectrum of A and
�B and �(A); �(�B) their resolvent sets.
According to Da Prato-Grisvard[6], under hypotheses (H:1); (H:2);

(H:3) the sum S = A+B is closable and the linear operator de�ned
by the following Dunford's integral

x 7�! � 1

2i�

Z
�
(B + zI)�1 (A� zI)�1 xdz (9)

coincides exactly with
�
S
��1

where S = A+B is the closure of
A + B; � is a simple sectorial curve enclosing the spectrums of A
and (�B) and lying in �(A) \ �(�B): We then have the essential
following result proved in [6]:
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Theorem 2.1. Let us assume that (H.1), (H.2) and (H.3) hold. If
F is a Banach subspace continuously imbedded in E and there exists
a constant K such that for some � 2]0; 1[ we have

kxkF 6 K
�
kxkE + kxk1��E kAxk�E

�
8x 2 D (A) ;

then D
�
A+B

� � F:

The unique solution v of the equation

Sv =
�
A+B

�
v = f

is usually called a strong solution of the equation Sv = f:

3. The problem in the cylinder

We assume in all this study that f 2 h�0
�
Q
�
: The condition f = 0

on @Q is necessary in the case of Dirichlet's problem in H�older
spaces on regular open sets (see a counterexample given in Von
Wahl [21]). Equation (1) is written in spherical coordinates �� =
(� sin' cos �; � sin' sin �; � cos') as�

D2
�u+

2
�D�u+

1
�2
�0u = f in Q

u = 0 on @Q;
(10)

where �0 denotes the Laplace-Beltrami operator on the unit sphere
S2 d�e�ned by

�0u =
1

sin'

@

@'

�
sin'

@u

@'

�
+

1

sin2 '

@2u

@�2
: (11)

Equation (10) may be written in the form�
(�D�)

2u+ (�D�)u+�0u = �2f = g in Q
u = 0 on @Q;

and the natural change of variable � = et gives�
D2
t u+Dtu+�0u = e2tf = g in �

uj@� = 0;
(12)
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where � = R �G: We thus set, for (t; �) 2 R �G,

V (t; �) = e�(2+�)tu(et�);

H(t; �) = e��tf(et�); (13)

and de�ne the following vector-valued functions which take their
values on some Banach space X

v : R ! X; t 7�! v(t); v(t)(�) = V (t; �);

h : R ! X; t 7�! h(t); h(t)(�) = H(t; �);

(where X shall be speci�ed later). Then v satis�es the abstract
equation�

D2
t v(t) + (1 + 2�)Dtv(t) + � (� + 1)v(t) + �0(v(t)) = h(t); t 2 R

v(t) 2 D(�0) � X;

(14)

with

� = 2 + �:

Equation (14) may be written as a sum of two linear operators
not acting with the same variable. This allows us to predict the
application of the commutative case of the sum theory.
We shall need the useful following lemmas which specify the rela-

tion between a global, partial and abstract little h�olderianity in the
cylinder �.

Lemma 3.1. We have

i) h 2 h�
�
R; C0

�
G
��

if and only if H 2 UC(R�G) and H(:; �) 2
h�(R) uniformly in � 2 G:

ii) h 2 UC
�
R; C0

�
G
��\ L1

�
R; h�0

�
G
��

if and only if H 2 UC(R�
G) and H(t; :) 2 h�0 (G) uniformly in t 2 R:

This lemma can be proved as in lemma 6.2 of Sinestrari[19].

Lemma 3.2. Let f 2 h�0 (Q); then the function H(t; �) = e��tf(et�)
veri�es
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i) H 2 UC(R �G) and H(:; �) 2 h�(R) uniformly in � 2 G:

ii) H 2 UC(R �G) and H(t; :) 2 h�0 (G) uniformly in t 2 R:
Proof. i) Let �; t such that �1 < � < t < +1; then

H(t; �)�H(�; �)

=
�
e��t � e��t

�
f(e��) + e��t

�
f(et�)� f(e��)

�
=
�1
�

Z t

�
e���d� (f(e��)� f(0)) + e��t

�
f(et�)� f(e��)

�
= �1 +�2:

and

j�1j 6 1

�
jt� � j e��� jf(e

��)� f(0)j
ke��k�2

e�� 6
1

�
jt� � j kfkC�(Q) ;

which implies that �1(:; �) 2 h�(R) uniformly in � for all � 2]0; 1[:
For �2;we have

j�2j 6 e��t
et� � e��

�
2

��f(et�)� f(e��)
��

ket� � e��k�2
6 e��t

��et � e�
��� ��f(et�)� f(e��)

��
ket� � e��k�2

6 e��t
�Z t

�
e�d�

�� ��f(et�)� f(e��)
��

ket� � e��k�2
6 e��te�t (t� �)�

��f(et�)� f(e��)
��

ket� � e��k�2
;

from which we deduce that

lim
�!0

sup
jt�� j6�

j�2j
(t� �)�

= 0

uniformly in �; therefore �2(:; �) 2 h�(R).
ii)

H(t; �) = e��tf(et�) = 0;8� 2 @G;

jH(t; �)j = e��t
��f(et�)� f(0)

�� 6 kfkC�(Q) ;8� 2 G;



162 R. LABBAS, M. MOUSSAOUI and M. NAJMI

and

��H(t; �)�H(t; �0)
�� = e��t

��f(et�)� f(e��0)
��

6 e��t
et� � et�0

�
2

��f(et�)� f(et�0)
��

ket� � et�0k�2
6

� � �0
�
2

��f(et�)� f(et�0)
��

ket� � et�0k�2
;

hence

lim
�!0

sup
k���0k6�

jH(t; �) �H(t; �0)j
k� � �0k� = 0:

Lemma 3.3. Let � 2 L1
�
R; h�0

�
G
��\h� �R; C0 �G�� ; then the func-

tion z de�ned by z(t; �) = �(t)(�) belongs to h�0
�
�
�
:

We have z = 0 on @�: Let now (t; �) , (t0; �0) 2 R � G (t 6= t0,
� 6= �0) such that k� � �0k2 6 �=2 and jt� t0j 6 �=2 for some �xed
� > 0; then

��z(t; �)�z(t0; �0)��
6
��z(t; �)�z(t; �0)��+ ��z(t; �0)�z(t0; �0)��

6
� � �0

�
2

jz(t; �)�z(t; �0)j
k� � �0k�2

+
��t� t0

��� jz(t; �)�z(t0; �)j
jt� t0j�

6
�� � �0

�
2
+
��t� t0

����� jz(t; �)�z(t; �0)j
k� � �0k�2

+
jz(t; �) �z(t0; �)j

jt� t0j�
�

6 K
(t; �)� (t0; �0)

�
2

� j�(t)(�) � �(t)(�0)j
k� � �0k�2

+
j�(t)(�) � �(t0)(�)j

jt� t0j�
�
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therefore

jz(t; �)�z(t0; �0)j
k(t; �)� (t0; �0)k�2
6 K

� j�(t)(�)� �(t)(�0)j
k� � �0k�2

+
j�(t)(�) � �(t0)(�)j

jt� t0j�
�

6 K

 
sup

k���0k��=2

j�(t)(�) � �(t)(�0)j
k� � �0k�2

+ sup
kt�t0k��=2

j�(t)(�)� �(t0)(�)j
jt� t0j�

!

which implies that

sup
k(t;�)�(t0 ;�0)k2��

jz(t; �)�z(t0; �0)j
k(t; �)� (t0; �0)k�2

6K

 
sup

k���0k��=2

j�(t)(�) � �(t)(�0)j
k� � �0k�2

+ sup
kt�t0k��=2

j�(t)(�)� �(t0)(�)j
jt� t0j�

!
:

Since � 2 L1
�
R; h�0

�
G
�� \ h� �R; C0 �G�� ; it follows that

lim
�!0

sup
k(t;�)�(t0 ;�0)k2��

jz(t; �)�z(t0; �0)j
k(t; �)� (t0; �0)k�2

= 0;

from which we deduce that z 2 h�
�
�
�
.

Note that, in virtue of assumption on f; the abstract function h
de�ned by h(t)(�) = H(t; �) = e��tf(et�) is exactly in the space
L1

�
R; h�0

�
G
�� \ h� �R; C0 �G��.

4. First application of the sums

We shall apply the results of section 2 to equation (14) in the Banach
space E = L1

�
R; h�0

�
G
��

normed by kfkE = supt2R kf(t; :)kC�(G) :
Let us de�ne the three operators A, B and C by�

D(A) = L1 (R; D(�0))
(Av) (t) = �0 (v(t; :)) ;

(15)
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with D(�0) =
�
w 2 C�

0

�
G
�
= �0w 2 C�

0

�
G
�	
,

�
D(B) =W 2;1

�
R; h�0

�
G
��

Bv = D2
t v + (1 + 2�)Dtv +

�
�2 + �

�
v;

(16)

and �
D(C) =W 1;1

�
R; h�0

�
G
��

Cv = Dtv:
(17)

Equation (14) is then equivalent to

Av +Bv = h

in E:

4.1. Spectral properties of B

Note, at �rst, that D(B) 6= E. Moreover we have B = P (C) where
P is the polynomial

P (z) = z2 + (1 + 2�)z + (�2 + �);

using the spectral mapping theorem, we have

�(B) =
���2 + (1 + 2�)�i+ (�2 + �) ; � 2 R	 ; (18)

which is the parabolic curve cutting the real axis at the point �(� +
1) 2]6; 12[, oriented in the direction of the negative values of x and
given by the equation

y2 = � (1 + 2�)2 [x� �(� + 1)] : (19)

The two tangents at the points (0;��(� + 1)) and (0; �(� + 1)) in-
tersect on the real axis at the point 2�(�+1) 2]12; 24[ with the angle
�B 2]0; �=2[ such that tan �B = (1+2�)2

2 . So the resolvent set �(B)
contains the sector

S� = fz 2 C = jzj > 2�(� + 1) , jArg(z)j < � � �Bg
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On the other hand, for all given complex � in this sector, the equation
P (z) = � has the two complex roots

z�(�) =
� (1 + 2�)�p4�+ 1

2
; (20)

which implies that

(B � �I)�1 = (C � z+(�)I)
�1 (C � z�(�)I)

�1 : (21)

However we know that �(C) = iR and for � 2 E

h
(C + �I)�1 �

i
(t; �) =

(
� R1t e�(s�t)�(s; �)ds if Re� < 0;R t
�1 e��(t�s)�(s; �)ds if Re� > 0;

from which we obtain the estimate

(C + �I)�1

L(E)

6
1

jRe�j 8� =2 iR :

From (21) one �nally obtains

(B � �I)�1

L(E)

= O

0
B@ 1�

Re
p
�
�2
1
CA 8� 2 S�:

Therefore the operator B veri�es the statement i) of hypothesis
(H.1).

4.2. Spectral properties of A

The operator A has the same properties as its realization �0: The
domain D(A) is dense in E since the closure of D(�0) in the norm of
C�
0

�
G
�
coincides with h�0

�
G
�
; see Sinestrari[19]. So the statement

iv) of (H:1) is veri�ed. Thanks to Campanato[3], we know that �0

generates an analytic semigroup strongly continuous on h�0
�
G
�
; the

same is true for A; therefore there exists �A 2]0; �=2[ such that A
veri�es i) of (H:1) with r = 0: One notices that the condition �A+�B
< � of iii) is veri�ed. Hypothesis (H:1) is proved.
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It is known that, in L2(G); (��0) is a non negative, self-adjoint
and anti-compact operator (see Courant and Hilbert [5]), thus �(�A)
contains only non negative isolated eigenvalues

0 < �1 < �2 � �3 : : :

from which we deduce that hypothesis (H:3) is veri�ed if however
there are no �j which coincides with �(� + 1) 2]6; 12[: So we shall
assume that

�(� + 1) = (�+ 2) (�+ 3) 6= �j 8j > 1; (22)

which is possible since �j are isolated, even if it means replacing �
by some �0 < �:
There remains to check the hypothesis of commutativity (H:2). In

virtue of (21) it is enough to prove that the resolvents of A and C
commute. It follows easily from the formula of the resolvent of (�C)
andh

(A� �I)�1 '
i
(t; �) =

X
j>1

1

�j � �

�Z
G
'(t; �)wj(�)d�

�
wj(�);

where wj is the eigenfunction associated to the eigenvalue �j and '
belonging to a dense subspace of E.

4.3. First choice of the subspace F

Due to section 2 and under the condition that (�+ 2) (�+ 3) 6=
�j 8j > 1; the previous results implies that (A+B) is closable
and that the closure A+B is invertible. In order to have more
regularity on the strong solution it su�ces to �nd a subspace F such
that the convexity inequality of theorem 2.1 holds. Let us consider

F =W 1;1
�
R; h�0

�
G
�� � E;

then by virtue of Lions-Peetre spaces of class K� (see the appendix)
there exists a constant C such that(

kv0kL1(R;h�0 (G)
� C kvk1=2

L1(R;h�0 (G)
: kv00k1=2

L1(R;h�0 (G)
8v 2W 2;1

�
R; h�0

�
G
��

= D(B):

Theorem 2.1 yields the following proposition.
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Proposition 4.1. For any h 2 L1
�
R; h�0

�
G
��

problem (14) admits
a unique strong solution v: Moreover v 2 W 1;1

�
R; h�0

�
G
��
:

4.4. Second choice of the subspace F

Now, let us choose the space

F = L1
�
R; C1+�

�
G
� \ h�0 �G�� � E;

It is known that there exists a constant C such that

kwkC2+�(G) � C
�0w


C�0 (G)

8w 2 D(�0);

(see Campanato[3] for example). Interpolation yields

kv(t; :)kC1+�(G)

� C kv(t; :)k1=2
C�0 (G)

�0 (v(t; :))
1=2
C�0 (G)

8v(t; :) 2 D(�0);

and hence

kvkF � C kvk1=2E kAvk1=2E 8v 2 D(A):

Theorem 2.1 leads to Proposition 4.2

Proposition 4.2. For any h2L1�R; h�0 �G�� problem (14) admits
a unique strong solution v which belongs to L1

�
R; C1+�

�
G
� \ h�0 �G��.

From propositions 4.1 and 4.2 it follows that

v 2W 1;1
�
R; h�0

�
G
�� \ L1 �R; C1+�

�
G
� \ h�0 �G�� : (23)

5. Second application of the sums

Let us now consider the Banach space E = h�
�
R; C0

�
G
��

and set

�
D(A) = h� (R;D(�0))
(Av) (t) = �0 (v(t; :)) ;

(24)
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where

D(�0) =
�
w 2 C0

�
G
� \W 2;q (G) ; q > 3 , �0w 2 C0

�
G
�	

; (25)

and �
D(B) = C2+�

�
R; C0

�
G
��

Bv = D2
t v + (1 + 2�)Dtv +

�
�2 + �

�
v:

(26)

Here we have D(B) = E: The same previous spectral properties are
true; for the operator A, we use Stewart[19]. The convexity inequal-
ity of theorem 2.1 is respectively true for F = C1+�

�
R; C0

�
G
��

and

F = h�
�
R;W 1;q

0

�
G
��

; 8q > 3, (see Lunardi[16]). A consequence is

the following proposition 5.1

Proposition 5.1. For any h 2 h�
�
R; C0

�
G
��

problem (14) admits
a unique strong solution v verifying

v 2 C1+�
�
R; C0

�
G
�� \ h� �R;W 1;q

0 (G)
�
;8q > 3: (27)

Summing up we have proved

Theorem 5.2. For any h 2 L1
�
R; h�0

�
G
�� \ h�

�
R; C0

�
G
��

there
exists a unique strong solution v of problem (14) such that (23) and
(27) hold.

So v is a unique solution of equation

Sv =
�
A+B

�
v = h (28)

verifying (23) and (27). In the case E = h�
�
R; C0

�
G
��
; it means

from equation (28) that there exists a sequence

vn 2 D(A) \D(B) = C2+�
�
R; C0

�
G
�� \ h� �R; D ��0

��
;

(D (�0) is de�ned in (25)), such that8><
>:

vn
E�! v

D2
t vn + (1 + 2�)Dtvn + � (� + 1) vn +�0vn

E�! h
vn = 0 on @�:

(29)
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Similarly, in E = L1
�
R; h�0

�
G
��
; there exists

'n 2 D(A) \D(B) =W 2;1
�
R; h�0

�
G
�� \ L1 �R; D ��0

��
;

(D (�0) is de�ned in (15)), such that8><
>:

'n
E�! v

D2
t'n + (1 + 2�)Dt'n + � (� + 1)'n +�0'n

E�! h
'n = 0 on @�:

(30)

which implies that v is a distribution solution of (14).

6. The strong solution

6.1. Recall

For �0 > 0; set

Q�0 = Q \ f�� = � 6 �0g ;

then problem (1) and so problem (14) admits a unique variational
solution u in Q�0 which does not necessarily coincide with the strong
solution v on this bounded open set. In order to analyse u near the
vertex of the cone we need the optimal regularity of v: Therefore,
Labbas' results[14] will be essential, and we briey recall them.

Let us consider the non homogenous abstract second order di�er-
ential equation 8<

:
y00(t) + Ly(t) = l(t) 2 X
y(0) = y0
y(1) = y1;

(31)

where y0; y1 2 X and L is a closed linear operator of domain D(L)
not necessarily dense in a complex Banach space X and verifying the
following unique hypothesis of ellipticity in the Krein's sense[13]:

9C > 0 8r > 0 9(L� rI)�1 =
(L� rI)�1


L(X)

� C

1 + r
: (32)
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For � 2]0; 1[ , let us consider the real interpolation Banach space
characterized in Grisvard[9] by

DL(�;+1) =

�
x 2 X = sup

r>0
r�
L(L� rI)�1x


X
<1

�
;

and its closed subspace DL(�) (See Sinestrari[19] and Lunardi[15])
de�ned by

DL(�) =
n
x 2 X = lim

r!1
r�
L(L� rI)�1x


X
= 0
o
:

Let � be �xed in ]0; 1=2[: Then from Labbas[14] one has:

Theorem 6.1. For y0, y1 2 D(L), l 2 C2� ([0; 1];X) there exists a
unique solution y of problem (31) such that

i) y 2 C2 ([0; 1];X) \ C ([0; 1];D(L)) if and only if l(0) �Ly0 and
l(1) �Ly1 belong to D(L):

ii) y00 , Ly belong to C2� ([0; 1];X) if and only if l(0) �Ly0 and
l(1)� Ly1 belong to DL(�;+1).

iii) y00 2 L1 (0; 1;DL(�;+1)) if and only if l(0) �Ly0 and l(1)
�Ly1 belong to DL(�;+1):

Theorem 6.2. For l 2 C ([0; 1];X) \ L1 (0; 1;DL(�;+1)) and y0,
y1 2 D(L), there exists a unique solution y of problem (31) such that

i) y 2 W 2;1 (0; 1;X) \ L1 (0; 1;D(L)) if and only if l(0) � Ly0
and l(1)� Ly1 belong to D(L):

ii) y00 and Ly belong to L1 (0; 1;DA(�;+1)) if and only if l(y0)
�Ly1 and l(1) � Ly1 belong to DL(�;+1).

iii) Ly 2 C2� ([0; 1];X) if and only if l(0)�Ly0 and l(1)�Ly1 belong
to DL(�;+1).
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The same results are true if we replace C2� ([0; 1];X) by h2�([0; 1];
X) and DL(�;+1) by DL(�): By using the same techniques as in
[14] for the same equation on the semi-in�nite interval [0; +1[8<

:
y00(t) + Ly(t) = l(t) 2 X
y(0) = y0
y bounded on [0;+1[:

(33)

one has the following theorem

Theorem 6.3. For y0 2 D(L) , l 2 C2� ([0;+1[;X) ; there exists a
unique solution y of problem (33) such that

i) y 2 C2 ([0;+1[;X)\C ([0;+1[;D(L)) if and only if l(0)�Ly0
belongs to D(L).

ii) y00 and Ly belong to C2� ([0;+1[;X) if and only if l(0) � Ly0
belongs to DL(�;+1).

iii) y00 2 L1 ([0;+1[;DL(�;+1)) if and only if l(0) � Ly0 belongs
to DL(�;+1).

We have an analogous theorem if we replace C2� by h2� and
DL(�;+1) by DL(�): The problem on ]�1; 0]) is similar.

6.2. Back to the strong solution v

We recall that the solution v of (14) veri�es

v00(t) + �0 (v(t)) = h(t)� (1 + 2�)v0(t)� (�2 + �)v(t) = k(t);
(34)

and thus, from (23) and (27), we have

k 2 C�
�
R; C0

�
G
�� \ L1 �R; h�0 �G�� : (35)

We are going to study the equation (34) on the two half-axis [t0;+1[,
]�1; t0] for some �xed t0 > 0 : Let 	 be a scalar function in C1 (R)
verifying �

	 � 1 if t > t0
	 � 0 if t 6 0;



172 R. LABBAS, M. MOUSSAOUI and M. NAJMI

then the function w = 	:v veri�es the equation8>><
>>:

w00(t) + �0 (w(t)) = 	(t)k(t) + 	0(t)v0(t) + 	00(t)v(t)
= l(t) on (0;1)

w(0) = 0
w bounded on [0;1[;

(36)

where we have, in virtue of (35),

l 2 C�
�
[0;1[; C0

�
G
�� \ L1 �0;1;h�0

�
G
��
:

We obtain a similar equation on ]�1; 0]:
In X = C0

�
G
�
we de�ne L by�

D(L) =
�
w 2 C0

�
G
� \W 2;q (G) ; q > 3 ;�0w 2 C0

�
G
�	

Lw = �0w:
(37)

Then theorem 6.3, as well as the �rst regularity of l; that is l 2
C�
�
[0;1[; C0

�
G
��

lead to the following optimal regularity result
for the strong solution v.

Proposition 6.4. The strong solution v veri�es

i) v00 and �0v belong to C�
�
[0;1[; C0

�
G
��
;

ii) v00 belongs to L1 (0;1;D�0 (�=2;+1)).

In fact it is enough to verify hypothesis (32) and the compatibility
condition

l(0) 2 D�0 (�=2;+1) : (38)

In the case of real-valued functions, (32) is a simple application
of maximum principle whereas in the complex �eld it comes from
Miranda[17] and Stewart[20]. The interpolation spaceD�0 (�=2;+1)
coincides withC�

0

�
G
�
(see Lunardi [15]): Since v 2W 1;1

�
R; h�0

�
G
��

we have

v(t) ; v0(t) 2 h�0
�
G
�
a-e in t 2 R;

and hence l(0) 2 h�0
�
G
�
= D�0 (�=2) � D�0 (�=2;+1) :

Now from the second regularity of l; that is l 2 C
�
[0;1[; C0

�
G
��\

L1
�
R; h�0

�
G
��

and the equivalent of theorem 6.3 we deduce the
following proposition in a same way as above.
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Proposition 6.5. The strong solution v veri�es

i) v00 and �0v belong to L1
�
0;1;h�0

�
G
��
,

ii) �0v belongs to h�
�
[0;1[; C0

�
G
��
:

After the analogous study on ]�1; 0] we summarize all the regu-
larities8>>><
>>>:

i) v 2W 1;1
�
R; h�0

�
G
�� \ L1 �R; C1+�

�
G
� \ h�0 �G�� ;

ii) v 2 C1+�
�
R; C0

�
G
�� \ h� �R;W 1;q

0

�
G
��

;8q > 3;

iii) v 2 C2+�
�
R; C0

�
G
�� \ C (R;D(�0)) \W 2;1

�
R; h�0

�
G
��
;

iv) �0v 2 L1
�
R; h�0

�
G
�� \ h� �R; C0 �G�� :

(39)

The statements iii) and iv) and Najmi's results[18] imply that

V (t; �) = v(t)(�) 2 C2+�
�
�
�
:

Summing up we have proved

Theorem 6.6. Let h 2 L1
�
R; h�0

�
G
�� \ h�

�
R; C0

�
G
��

with � 2
]0; 1[ such that

(2 + �) (3 + �) 6= �j 8j > 1;

where the �j , j = 1; 2; ::: are the eigenvalues of the operator (��0)
on G under Dirichlet's condition. Then the problem�

D2
t v + (5 + 2�)Dtv + (�+ 2) (�+ 3) v +�0v = h in �

vj@� = 0;
(40)

has a unique solution v such that V (t; �) = v(t)(�) 2 C2+�
�
�
�

\C0
�
�
�
.

Remark 6.7. Let us set u0 = e(�+2)tv , so by only using the regu-
larity properties in (23) and (27) on v; we deduce that u0 is solution
of equation (1) in the sense of distributions. The cut o� function 	
allows to study u0 far from the vertex O:
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7. Back to the problem in the cone

Equation (36) has been obtained by the following change of variables
and functions

� = et ; V (t; �) = e�(�+2)tu(et�) ; H(t; �) = e��tf(et�)

where, in virtue of assumption on f; we have H 2 L1
�
R; h�0

�
G
��\

h�
�
R; C0

�
G
��
: The previous theorem implies the existence of u0 =

e(�+2)tv; solution of (1) and verifying the following converse proper-
ties:

1

�2
u0 2 C�

�
Q \BR

�
;

1

�
Diu0 2 C�

�
Q \BR

�
and

Diju0 2 C�
�
Q \BR

�
;

where BR = B(O;R): This implies that

u0 2 C2+�
�
Q \BR

�
:

If now u is a variational solution (whenever it exists) of the problem

�
�u = f 2 C�

0

�
Q
�

u 2 H1
0 (Q) ;

then, in BR \Q; the function de�ned by

Z = u� u0

is harmonic and belongs to H1 (BR \Q) : Consequently it can be
expanded, near the neighborhood of the origin, over the system of
the eigenfunctions wj of (��0) in L2 . So there exists two sequences
(aj)j>1 and (bj)j>1 such that

Z =
X
j>1

aj�
� 1

2
+�jwj(�) +

X
j>1

bj�
� 1

2
��jwj(�)
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with

�2j = �j + 1=4:

Since Z 2 H1
loc (Q) ; all the coe�cients bj are necessarily zero. On

the other hand we knows that

��wj 2 C2+� () Re � > 2 + �;

from which it follows that the variational solution u may be written
as

u = u0 + Z

=
�
u0 +

�
Z �

X
j2I

aj�
� 1

2
+
q
�j+

1
4wj(�)

��
+
�X
j2I

aj�
� 1

2
+
q
�j+

1
4wj(�)

�

= ur + us;

where

ur = u0 +
�
Z �

X
j2I

aj�
� 1

2
+
q
�j+

1
4wj(�)

� 2 C2+�
�
Q \BR

�
;

us =
X
j2I

aj�
� 1

2
+
q
�j+

1
4wj(�)

and

I = fj > 1 = �j < (�+ 2) (�+ 3)g :
The �nal conclusion is summarized by

Theorem 7.1. Let u be the variational solution of the problem ��u
= f in the cone Q = f�� = � > 0; � 2 Gg where G is an open regular
set of the unit sphere S2 and f 2 h�0

�
Q
�
: Let (�j)j>1 be the sequence

of eigenvalues of (��0) on G under Dirichlet's condition and wj their
corresponding eigenfunctions. Assume that (�+ 2) (�+ 3) 6= �j for
all j > 1: Then there exists a sequence (aj) such that2

4u� X
�j<(�+2)(�+3)

aj�
� 1

2
+
q
�j+

1
4wj(�)

3
5 2 C2+�

�
Q \BR

�

for every R > 0:
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Remark 7.2. Our study can be extended to conical open sets 
 of
Rn ; n > 3: The condition on � becomes (�+ 2) (�+ n) 6= �j ,
8j > 1: Notice that (�+ 2) is the Sobolev exponent corresponding
to H�older spaces C2+�: This condition allows us to think that the
sum considered in equation (14) is not closable for � 2 ]0; 1[ such
that �j = (�+ 2) (�+ 3) for some j:

Remark 7.3. Let f be a function in C�
0

�
Q
�
with compact support

with � 2 ]0; 1[: Suppose that a function u in H1
0 (Q) is a variational

solution of problem (1). Choose � = �� � with � > 0 arbitrary small

in such a way that (22) holds. Then f 2 h�0
�
Q
�
and decomposition

of the solution given in theorem 7.1 apply for u.

Appendix.

In this paragraph we recall the de�nition of the spaces of classes
K 0
� and the proof of the convexity inequality given in section 5 in the

case of the Banach space C�
�
R; C0

�
G
��
:

Let E0 and E1 be two Banach spaces imbedded in a separate topo-
logical space T: According to Lions-Peetre the Banach space X be-
longs to class K 0

� (E0; E1) if and only if

�
i) E0 \E1 � X � E0 +E1

ii) 9C > 0 = kxkX 6 C kxk1��E0
kxk�E1

8x 2 E0 \E1:

The following proposition describes a frequent situation where we
obtain examples of X verifying i) and ii):

Proposition 7.4. Let � be a closed linear operator of domain D(�)
� E ,where E is a Banach space. Assume that � (�) � R+ and there
exists C� > 0 such that

(�� �I)�1

L(E)

6
C�
�

8� > 0;

then D (�) 2 K 0
1=2

�
D
�
�2
�
; E
�
:

Indeed for x 2 D
�
�2
�
, x 6= 0; one has for every � > 0

x = (�� �I)�1 �x� � (�� �I)�1 x;
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and thus

�x = (�� �I)�1 �2x� �� (�� �I)�1 x

k�xk 6
C�
�

�2x+ (C� + 1) � kxk :

Now for

� = �0 =

s
C�

C� + 1

k�2xk
kxk ;

we get

k�xk 6 2
p
C� (C� + 1)

�2x1=2 kxk1=2 ;
the proposition is then proved. Notice that D(�) and D(�2) are
equiped with their respective graph norm.

Let us go back to section 5. Put E = C�
�
R; C0

�
G
��

and de�ne
� by �

D(�) = fu 2 E = u0 2 Eg = C1+�
�
R; C0

�
G
��

�u = u0;

then �
D(�2) = C2+�

�
R; C0

�
G
��

�2u = u00;

and it is easy to see that � is a closed linear operator such that for
any � > 0h
(�� �I)�1 f

i
(x) = �

Z 1

x
e��(s�x)f(s)ds = �

Z 1

0
e���f(x+ �)d�;

from which it follows that:(�� �I)�1 f

C(R;C0(G))

6
1

�
kfkC(R;C0(G))

and���h(�� �I)�1 f
i
(x)�

h
(�� �I)�1 f

i
(y)
���

6

Z 1

0
e��� jf(x+ �)� f(y + �)j d� 6 1

�
jx� yj� [f ]� :
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Thus (�� �I)�1 f

C�(R;C0(G))

6
1

�
kfkC�(R;C0(G)) :

Using the above proposition, there exists C > 0 such that

u0
C�(R;C0(G))

6 C kuk1=2
C�(R;C0(G))

u001=2
C�(R;C0(G))

8u 2 C2+�
�
R; C0

�
G
��

and then

kukC1+�(R;C0(G))

6 sup (1; C)

�
kukC�(R;C0(G)) + kuk

1=2

C�(R;C0(G))

u001=2
C�(R;C0(G))

�
:
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