
UNIVERSITÀ DEGLI STUDI DI TRIESTE
Sede Amministrativa del Dottorato di Ricerca

Posto di dottorato attivato grazie al contributo di ES.TEC.O.

XX CICLO DEL

DOTTORATO DI RICERCA IN

INGEGNERIA DELL’INFORMAZIONE

Performance Control of Internet-based

Engineering Applications

(Settore scientifico-disciplinare ING-INF/05)

DOTTORANDO COORDINATORE DEL COLLEGIO DEI DOCENTI

Paolo Vercesi Chiar.mo Prof. Alberto Bartoli
Università degli Studi di Trieste

FIRMA: .

RELATORE

Chiar.mo Prof. Alberto Bartoli
Università degli Studi di Trieste

FIRMA: .

Contents

Contents i

1 Introduction 7
1.1 Scenario and Motivations . 7
1.2 Contribution . 10

2 Literature Overview 13
2.1 Grid Workflows . 13
2.2 Parallel Computing . 14
2.3 Transaction Processing Systems . 15
2.4 Services and Applications on the Web 16
2.5 Computer Systems Control . 17
2.6 Service Composition Virtualization 19
2.7 Grid Computing and Scientific Workflows 20

3 Design Optimization 21
3.1 Introduction . 21
3.2 Synopsis . 22
3.3 Strategies for Design Optimization 23
3.4 Engineering Workflows . 24
3.5 Inter-organizational Design Optimization 24

4 Workflows and Service Composition 27
4.1 Definitions . 27
4.2 Execution . 28
4.3 Model Design . 29
4.4 Performance Metrics . 30
4.5 Communication Computation Overlap Pattern 31

4.5.1 NoPipe . 31
4.5.2 InputPipe . 32

i

ii CONTENTS

4.5.3 FullPipe . 33
4.5.4 OutputPipe . 34
4.5.5 Discussion . 34
4.5.6 Centralized and Distributed Engines 35

4.6 Grid Workflows Challenges . 36

5 Multiprogramming Level Control 37
5.1 Fundamental Issues . 38
5.2 Overview of Our Proposal . 40
5.3 Adaptive Invocation Controller . 43

5.3.1 TIMED Controller . 44
5.3.2 Derivative Controller . 45
5.3.3 TCP Like Controller . 47
5.3.4 Parabola Controller . 47

6 Experiments and Results 49
6.1 Simulator Design and Implementation 49

6.1.1 Introduction . 50
6.1.2 Workflow Description . 50
6.1.3 Computing Resources . 50
6.1.4 Networking . 51
6.1.5 Workflow Execution . 51
6.1.6 Related Works . 53

6.2 Static Experiments . 53
6.2.1 Results for NoPipe . 55
6.2.2 Results for FullPipe . 56
6.2.3 Aggregated Results . 59
6.2.4 Discussion . 60

6.3 Controller with Static Environment 62
6.3.1 Results for Constant Multiprogramming Level 63
6.3.2 Results for Adaptive Multiprogramming Level 66

6.4 Perturbations . 68
6.5 Controller with Dynamic Environment 70

6.5.1 Results for One Stage Perturbation 71
6.6 Complete Suite of Experiments . 72

Bibliography 81

List of Figures 89

List of Tables 91

Acknowledgments

I would like to express my sincere gratitude to all the people who helped me during
these years. First of all, I feel sincerely grateful to my tutor Prof. Alberto Bartoli.
I want to express my thanks to him for all the efforts lavished in motivating me
and in addressing my work toward interesting scientific topics.

A special thanks is for my colleagues: Cyril and Eric, despite working on
different topics we shared many worthwhile discussions in the laboratory and in
front of countless coffees. It is always nice to speak with them.

This thesis has been made possible thanks to the financial support of Esteco,
besides this I want to thank Prof. Carlo Poloni and Luka Onesti for their un-
limited and unreserved understanding. Finally, I would like also to thank my
friends, all the people working at Esteco and all the people who belonged to the
“Laboratorio di programmazione delle reti di calcolatori” in these three years.
Last but not least, a heartfelt thanks to my family, for its lovely and full support.

1

Abstract

Thanks to technologies able to simplifying the integration among remote pro-
grams hosted by different organizations, engineering and scientific communities
are embodying service oriented architectures to aggregate, share and distribute
their computing resources to process and manage large data sets, and to execute
simulations through Internet. Web Service, for example, allow an organization
to expose the functionality of its internal systems on the Internet and to make it
discoverable and accessible in a controlled manner.

Such a technological advance may enable novel applications also in the area
of design optimization. Current design optimization systems are usually confined
within the boundary of a single organization or department. Modern engineering
products, on the other hand, are assembled out of components developed by sev-
eral organizations. Composing services from the involved organizations, a model
of the composite product can be described by an appropriate workflow. Such
composite service can then be used by a inter-organizational design optimization
system.

The design trade-offs that have been implicitly incorporated within local envi-
ronments, may have to be reconsidered when deploying these systems on a global
scale on the Internet. For example: i) node-to-node links may vary their ser-
vice quality in an unpredictable manner; ii) third party nodes retains full control
over their resources including, e.g., the right to decrease the resource amount
temporarily and unpredictably.

From the point of view of the system as a whole, one would like to maximize
the performance, i.e. throughput the number of candidate design evaluations
performed per unit of time. From the point of view of a participant organization,
however, one would like to minimize the cost associated with each evaluation.
This cost can be an obstacle to the adoption of this distributed paradigm, be-
cause organizations participating in the composite service share they resources
(e.g. CPU, link bandwidth and software licenses) with other, potentially un-
known, organizations. Minimizing such cost while keeping performance delivered
to clients at an acceptable level can be a powerful factor for encouraging organi-

3

4 CONTENTS

zations to indeed share their services.
The scheduling of workflow instances in such a multi-organization, multi-

tiered and geographically dispersed environment have strong impacts on perfor-
mance. This work investigates some of the fundamental performance and cost
related issues involved in such a novel scenario. We propose an adaptive admis-
sion control to be deployed at the workflow engine level that limits the number
of concurrent jobs. Our proposal can be implemented very simply: it handles the
service as black-boxes, and it does not require any hook from the participating
organizations.

We evaluated our technique in a broad range of scenarios, by means of discrete
event simulation. Experimental results suggest that it can provide significant
benefits guaranteeing high level of throughput and low costs.

Estratto

Grazie alle tecnologie capaci di semplificare l’integrazione tra programmi re-
moti ospitati da differenti organizzazioni, le comunità scientifica ed ingegneristica
stanno adottando architetture orientate ai servizi per: aggregare, condividere e
distribuire le loro risorse di calcolo, per gestire grandi quantità di dati e per ese-
guire simulazioni attraverso Internet. I Web Service, per esempio, permettono
ad un’organizzazione di esporre, in Internet, le funzionalità dei loro sistemi e di
renderle scopribili ed accessibili in un modo controllato.

Questo progresso tecnologico può permettere nuove applicazioni anche nell’a-
rea dell’ottimizzazione di progetti. Gli attuali sistemi di ottimizzazione di progetti
sono di solito confinati all’interno di una singola organizzazione o dipartimento.
D’altra parte, i moderni prodotti manifatturieri sono l’assemblaggio di compo-
nenti provenienti da diverse organizzazioni. Componendo i servizi delle organiz-
zazioni coinvolte, si può creare un workflow che descrive il modello del prodotto
composto. Questo servizio composto può a sua volta essere usato da un sistema
di ottimizzazione inter-organizzazione.

I compromessi progettuali che sono implicitamente incorporati per architet-
ture locali, devono essere riconsiderati quando questi sistemi sono messi in opera
su scala globale in Internet. Ad esempio: i) la qualità delle connessioni tra i nodi
può variare in modo impredicibile; ii) i nodi di terze parti mantengono il pieno
controllo delle loro risorse, incluso, per esempio, il diritto di diminuire le risorse
in modo temporaneo ed impredicibile.

Dal punto di vista del sistema come un’entità unica, si vorrebbero massimiz-
zare le prestazioni, cioè, per esempio, il throughput inteso come numero di progetti
candidati valutati per unità di tempo. Dal punto di vista delle organizzazioni
partecipanti al workflow si vorrebbe, invece, minimizzare il costo associato ad
ogni valutazione. Questo costo può essere un ostacolo all’adozione del paradigma
distribuito, perché le organizzazioni partecipanti condividono le loro risorse (cioè
CPU, connessioni, larghezza di banda e licenze software) con altre organizzazioni
potenzialmente sconosciute. Minimizzare questo costo, mentre si mantengono le
prestazioni fornite ai clienti ad un livello accettabile, può essere un potente fat-

5

6 CONTENTS

tore per incoraggiare le organizzazioni a condividere effettvivamente le proprie
risorse.

Lo scheduling di istanze di workflows, ovvero stabilire quando e dove eseguire
un certo workflow, in un tale ambiente multi-organizzazione, multi-livello e ge-
ograficamente disperso, ha un forte impatto sulle prestazioni. Questo lavoro
investiga alcuni dei problemi essenziali di prestazioni e di costo legati a questo
nuovo scenario. Per risolvere i problemi inviduati, si propone un sistema di
controllo dell’accesso adattativo davanti al workflow engine che limita il numero
di esecuzioni concorrenti. Questa proposta può essere implementata in modo
molto semplice: tratta i servizi come black-box e non richiede alcuna interazione
da parte delle organizzazioni partecipanti.

La tecnica è stata valutata in un ampio spettro di scenari, attraverso simu-
lazione ad eventi discreti. I risultati sperimentali suggeriscono che questa tecnica
può fornire dei significativi benefici garantendo alti livelli di throughput e bassi
costi.

Chapter 1

Introduction

Thanks to Internet technologies, engineering and scientific communities are em-
bodying service oriented architectures to aggregate, share and distribute their
computing resources in order to process and manage large data sets [7], and to
execute simulations through Internet [40, 59, 54, 64]. Many examples come from
the workflow management and scientific computing areas. The scientific commu-
nity is also adopting the workflow technology and it is facing the challenges of
the scientific workflows [31]. The engineering community is testing and using this
novel paradigm also [54].

1.1 Scenario and Motivations

The widespread diffusion and acceptance of protocols for programmatic inter-
actions across different organizations connected to the Internet (e.g. web ser-
vices, and grid computing), along with the plenty of software implementing
these protocols, has made it feasible the composition of services across the Inter-
net [19, 55, 60, 9]. Services can be aggregated together, even when exported by
different and remote organizations, to compose workflows that provide stream-
lined functionality. A service participating in a composite service could be, in
turn, a composite service described by its own workflow.

In this thesis, issues related to Internet-based composition of services for de-
sign optimization are explored. The work of this thesis has been funded with
a scholarship offered by Esteco (Engin Soft Tecnologie per l’Ottimizzazione).
Esteco (http://www.esteco.com) is an Italian company founded in 1999 to
transfer the knowledge acquired by its founders while working on an European
Union sponsored project on design optimization (FRONTIER) into a success-
ful commercial product. Esteco turned a research-stage product into a world-
class, industrial-strength, multi-objective optimization platform: modeFRON-

7

http://www.esteco.com

8 CHAPTER 1. INTRODUCTION

TIER. modeFRONTIER is a multi-objective optimization and design environ-
ment, designed to enable easy coupling to almost any computer aided engineer-
ing (CAE) tool whether commercial or in-house. It provides an environment
which allows product engineers and designers to integrate their various CAE
tools, such as CAD, finite element structural analysis and computational fluid
dynamics (CFD) software. Using a variety of state-of-the-art optimization tech-
niques, ranging from gradient-based methods to genetic algorithms, the process
or design of interest can be optimized by specifying objectives and defining vari-
ables which affect factors such as geometric shape and operating conditions. In
practice, modeFRONTIER becomes a wrapper around the CAE tool, perform-
ing the optimization by modifying the value assigned to the input variables and
monitoring the outputs. So far, the software modeFRONTIER has been widely
used in different application fields such as: aerospace, appliances, bioengineering,
pharmaceutics, civil engineering, manufacturing, marine engineering, crash tests,
structural analysis, vibro-acoustics and turbo-machinery.

The work in this thesis is motivated by the observation that design opti-
mization is one of the key problems to be faced in nearly all industrial sectors.
Optimizing, or simply improving, the design of a component or a system is a
complex and time-consuming job, but it is also a necessity to stay competitive.
Satisfying this requirement while achieving faster product development times,
faster product innovation and turnaround, lower costs is becoming more and
more difficult.

In many cases, the use of specialized simulation software has become the only
practical way for addressing such conflicting goals. In particular, simulation-
based optimization systems [62, 8, 6], and design-optimization environments al-
low exploring efficiently the design search space: they generate a set of candidate
designs, evaluate each design by means of simulation and then generate a new
set of better designs, based on specific search optimization strategy. The simu-
lation techniques used for evaluating each “virtual prototype” include disparate
applications. The entire process proceeds automatically and iterates until one or
more satisfactory designs are found. At this point, the results are given to human
specialists, e.g., a team of engineers, for further analysis and evaluation.

This approach is now widely used and has become a key component of many
CAD/CAE tools. Concerning the specific system with which are more famil-
iar [27], significant successful applications have been performed in a number of
different sectors: aerospace & defense [29], appliances, architectural, automo-
tive [28], biomedical [63], experimental data, food & beverage, manufacturing,
marine & off-shores [48, 14], turbo-machinery and casting [35]. Other applica-
tions can be found in multi-disciplinary design optimization [30, 13].

Recent developments in software technology have opened a new range of pos-
sibilities for design optimization systems. Technologies capable of greatly simpli-

1.1. SCENARIO AND MOTIVATIONS 9

fying the integration among remote programs hosted by different organizations
are now widely available. Web service technology [32, 61, 4], for example, allows
an organization to expose (some of) the functionality of its internal systems on
the Internet and to make it discoverable and accessible through the World Wide
Web in a controlled manner. Multiple organizations can be involved in the simu-
lation of a candidate design, by composing their respective simulation modules on
the Internet. It has thus become possible to build inter-organizational services
by combining multiple services exported by single organizations. As a result,
one can build complex services resulting from the Internet-based integration of
simpler building blocks, possibly consisting of simple adapters wrapped around
existing systems.

Contemporary design optimization systems are usually confined within the
boundary of a single organization. Modern engineering products, on the other
hand, are assembled out of components developed by several organizations. One
may devise a scenario in which each organization makes available on the Inter-
net services for simulating its own components and, based on such services, an
inter-organizational service that simulates the behavior of the whole product is
constructed. Such a composite service could then be used by a design optimiza-
tion system. This approach could lead to more accurate results, simplify the
tailoring of generic designs to specific scenarios, allow identifying fundamental
design problems earlier, make it easier the management of product upgrades and
so on.

Engineering and scientific workflows are the basis for this scenario. Current
research on scientific workflows is aimed at creating a science of workflows [31].
More specifically scientific workflows and service oriented computing research are
oriented toward service semantics and coherent service composition, for example
focusing on: reconfigurable architectures, end-to-end security, infrastructures for
data and processing integration, automated semantical service discovery, analysis
of composability for replaceability, dynamic and adaptive processes, QoS aware
service composition, business-driven automated composition, autonomous (self-
configuring, self-adapting, self healing, self optimizing, self protecting) manage-
ment services, service applications engineering, flexible gap-analysis techniques,
service versioning, adaptivity and governance [52].

This thesis is concerned with performance issues related to integration of engi-
neering services. The fundamental design trade-offs that have been incorporated,
perhaps implicitly, within design optimization systems for local environments,
may have to be reconsidered when such systems are deployed on a global scale,
or are integrated with similar systems distributed geographically on the Inter-
net. The Internet affects distributed systems in multiple ways: i) node-to-node
links are subject to Internet traffic and, consequently, they may vary their ser-
vice quality in an unpredictable manner; ii) third party nodes may share their

10 CHAPTER 1. INTRODUCTION

computing resources with other organizations, while retaining full control over
those resources including, e.g., the right to decrease their amount temporarily
and unpredictably.

Motivated by the above considerations, this thesis explores such novel appli-
cations of simulation by focusing on some of its fundamental performance-related
issues. For example, a system involving several remote organizations can be man-
aged in a centralized way, by an engine that moves data back and forth among
all modules involved, or in a distributed way, with data flowing from one module
to the next. The former is much simpler to implement, but the latter may be
much more efficient depending on the bandwidth available and the size of the
data. Gaining insight in this area is crucial for understanding how to structure
design optimization systems spanning multiple organizations.

There are also fundamental questions to be answered regarding the desirable
trade-offs. For example, from the point of view of the system as a whole, one
would like to maximize throughput, i.e., number of number of candidate designs
evaluated per unit of time. From the point of view of a participant organization,
however, one would like to minimize the execution time of its services. These
points of view may conflict because such services are usually associated with
expensive software licenses that cannot be held by more than one process at a
time and because an organization usually has many internally generated jobs that
need such services. It follows that overlapping communication with computation
at a node, a simple strategy for improving throughput, may lead to longer times
in which a license is kept busy, thereby subtracting precious resources for the
execution of internally generated jobs.

1.2 Contribution

In this thesis, autonomous mechanisms and policies for controlling the scheduling
of jobs in such a highly dynamic environment are proposed. The main goal is
the minimization of the resource usage at the participating organizations while
maintaining the performance delivered to clients at an acceptable level. To be
feasible and attractive, solutions cannot require major modification to current
organization computing infrastructure, organizations and their services must be
threated as black-boxes.

The approach proposed in this thesis consists of a form of admission control at
the entrance point of the application workflow that is simple to deploy in practice
and does not need any hook from the participating organizations. The maximum
number of jobs that can be injected within the grid of services is simply varied
dynamically, based on performance measures taken on line.

This thesis proposal can be implemented very simply, the proposed admission
control places an upper bound on the multiprogramming level and it delays excess

1.2. CONTRIBUTION 11

jobs. The number of jobs that can be injected into the composite service is varied
dynamically with an adaptation policy driven by the current estimates of latency
and throughput for the composite service as a whole. The key feature of this
approach is that it does not require any hook from the participating organizations
and it treats the entire workflow as a black-box. Furthermore this solution does
not affect in any way current web service middleware, it requires only to expose
the composite service as a regular service and to interpose the admission control
module between the composite service entry point and the workflow engine.

The technique has been evaluated in a broad range of scenarios, by means
of a detailed event driven simulator. This proposal is indeed capable of finding
automatically a suitable trade-off between throughput and resource usage, even
in such a dynamic scenario. Experimental results suggest that the proposal can
indeed provide significant benefits to service providers.

Chapter 2

Literature Overview

The work of this thesis shares some similarities with other works in the following
fields: Grid Workflows, Parallel Computing, Transaction Processing Systems,
Services and Applications on the Web, Computer Systems Control and Service
Composition Virtualization.

2.1 Grid Workflows

A large number of research papers address the question of mapping sets of tasks
onto sets of processors in a view to minimizing overall makespan. Many of these
papers address the case where tasks are independent. Several of the recent papers
in this field also take into account data storage issues.

In [18] they consider parameter sweep applications executed on the Grid. A
parameter sweep application is a set of n independent sequential task, each task
works on a set of input files and produces one output file, the task structure is
no further detailed. In order to minimize the overall makespan (i.e. the time
between the first input files is sent to a computational server and the last output
file is returned to the user), they integrate existing scheduling heuristics into a
general adaptive scheduling algorithm.

While makespan minimization is also one of our objectives, there are some
differences with our work: i) each sweep application task is assigned to a specific
host, they do not consider assigning subtasks to other hosts, ii) all tasks are inde-
pendent, in contrast in our domain the parameter configurations depend on the
results of previous tasks, iii) the scheduler need to know the status of all com-
puting and communication resources, iv) in addition to makespan minimization
we also try to minimize the cost incurred by the organizations participating in
the grid, v) to account for the Grid dynamic nature the plan refinement is called
repeatedly with a period fixed by the scheduler itself while in our approach the

13

14 CHAPTER 2. LITERATURE OVERVIEW

period is not fixed. Furthermore they require the complete and precise knowledge
of i) current topology of the Grid (i.e. number of clusters, number of hosts in
those clusters, network and CPU loads), ii) the number and location of copies
of all input files, and iii) the list of computations and the transfers currently
underway or already completed.

Large scale applications expressed as a set of tasks with data dependencies
between them are known as application workflows. In [59] they reduce application
workflows completion time not only by finding optimal task allocation but also
considering the overhead induced by the workflow engine. The experiments, they
performed, have been done in a stable execution environment, resources have
been provisioned in advance and no alteration affected the running system. The
proposed system is manually tuned and cannot adaptively react to resource load
or availability changes.

In [64] they consider scientific workflow systems for analysis and processing of
large data sets. They propose an optimized run-time support system to support
scientific data-intensive workflow execution on a distributed environment. The
system requires a persistent data storage manager coordinating data between
nodes, the workflow meta-data manager is always aware about data placement.

In [54] they describe the ASP system, a testbed based on Web Services for
coupled multi-physics simulations. Their results suggest that potential perfor-
mance bottlenecks identified in the literature may not be major issues in practice,
and that a standards-compliant implementations can delivery excellent scalable
performance even on coupled problems. They found that previous studies on
SOAP and XML, reporting that the use of SOAP and XML without sophisti-
cated optimizations impose a large performance penalty in scientific applications,
are misleading. They do not address the scheduling of composite web service nor
the conflicts arising when running multiple instances of the same service.

In [20] they investigate build time and runtime issues related to decentralized
orchestration of composite web services. They improve the system throughput
by using a decentralized execution approach, but they do not use any type of
scheduling nor admission control.

2.2 Parallel Computing

The effect of limited network resources on parallel applications has been recently
studied in [39]. They determined the network-related properties of different dis-
tributed computing applications: i) how the performance of an individual appli-
cation is influenced by the network resources (e.g. link bandwidth and latency);
ii) how traffic generated by individual applications affect the state of the net-
work resources (e.g. packet-drop rate and RTT). They considered canonical (i.e.
LU Decomposition, Task Allocation, Jigsaw Puzzle and N Queen problem) par-

2.3. TRANSACTION PROCESSING SYSTEMS 15

allel applications using message passaging interface running on a WAN. In our
work we investigated the effect of limited link bandwidths on the performance
of application workflows and in spite of the differences between the considered
applications we found similar results.

2.3 Transaction Processing Systems

Adaptive algorithms for setting an optimal multi programming level in transac-
tion processing systems and database management system has been studied since
a long time. The works described in this section contemplate a non-mutable set
of resources and they adapt the multi-programming level considering the current
load. Multi programming limiting is almost always implemented by an admission
control module.

A locking-based concurrency control algorithm to avoid the trashing problem
has been described in [15]. The algorithm determines when (and when not) to
admit new transactions into the system based on its knowledge of the current
system state. This algorithms operates almost without any assumption on the
system but the number of expected locks for each transaction.

In [34] they prevent trashing in transaction processing by controlling the num-
ber of concurrently running transactions. Because the optimal concurrency level
strongly depends on the workload characteristics which may change in time, they
propose two adaptive algorithms the adjustment of an upper bound for the con-
currency level.

As in our work they are not concerned about any internal details of the system,
they are solely interested in the functional relationship of the concurrency level
n as the input and the resulting performance P as the output of the system. The
throughput T is used as the performance index P . However they point out that
alternative quantities with similar shape are eligible. In particular they assume
that this function P (n) at each time has a shape that is monotonically increasing
up to a maximum at nopt, and then decreasing. In other words, they assume the
existence of a local maximum that is also a global one.

They assume performance to be a function of the time allowing for almost
arbitrary changes of the load characteristics. They also require the dynamic
behavior to have some locality in the sense that the shape of the curve at time ti
is a good estimate for its shape at time ti+l.

They informally describe the algorithm as follows: starting at time t = 0 with
an arbitrary load value, the algorithm has to find the “ridge” of the “mountain”
and to track it along the time axis. Additionally, they do not know the shape of
the mountain in total but all information we can obtain is the series of realized
load/performance pairs from the past.

They studied also the problem of selection of the sample interval amplitude, it

16 CHAPTER 2. LITERATURE OVERVIEW

should be large enough to allow an accurate estimation of the relevant quantities
and should be small enough to allow the assumption of stationary behavior.
Because our control module is practically self-clocked, in our work we do not
need to address this problem.

In [49] they present an adaptive distributed middleware for data replication
that is able to adjust to changes in the amount of load submitted to the differ-
ent replicas and to the type of workload submitted. It combines load-balancing
techniques with feedback drive adjustments of multiprogramming levels. Current
applications cannot be described with static parameters, at each replica they use
the same parabola approach described in [34] and they implement a load balanc-
ing between replicas

Differently from the other works in [58] they set a lower bound, instead of
an upper bound, for the multiprogramming limit this strategy is necessary to
render more effective the external scheduling of the queued DBMS transactions.
They maintain the most of the transaction in a queue that can be ordered by
the application. So the application is free to schedule the queued transactions in
accord with its preferences.

The performance of external scheduling are strongly affected by the multi-
programming limit i.e. the number of concurrent transaction processed by the
DBMS. If the multiprogramming limit is too low, throughput will suffer, since not
all DBMS resources will be utilized. On the other hand, if the multiprogramming
limit is too high, there is insufficient control on scheduling.

The question of how to adjust the multiprogramming limit to achieve both
goals simultaneously is an open problem, not just for databases but in system
design in general. They studied the problem in the context in a transactional
workload using both simulation and theoretical techniques. They develop a feed-
back based controller, augmented by queuing theoretic models for automatically
adjusting the multiprogramming limit. In the controller they use a model for
jump-start to the near-optimal value and then they control the system with small
variations.

2.4 Services and Applications on the Web

In [25] they consider the execution of composite web services and they compare
the throughput and the response time obtained by the following scheduling poli-
cies: Processor Sharing, transparent admission control (FIFO) and Shortest Job
First (and other scheduling policies). With the transparent admission control
policy they need to measure the provider overload, but in that work they do not
specify how they evaluate such overload, furthermore admission control function
is performed by a proxy that is tightly couple with the application server.

In a first part, using traces from the TPC-App benchmark [65] they investigate

2.5. COMPUTER SYSTEMS CONTROL 17

the possibility of job size estimation for database centric Web Services. Such job
size estimation capability is essential for the operation of the SJF algorithm. In
a second part they study the impact of SJF scheduling on a standalone Web
Service considering throughput and average response time as main performance
metrics.

In papers considering interactive web services [45, 3, 21, 73, 26, 57] the re-
sponse time is the only considered performance metric. They usually tend to
guarantee a good response time in presence of overload, this good response time
is not the minimum attainable but a value fixed by a service level agreement or
a value determined by relative differences between different service classes. In
general these works address the overload control problem.

In particular, in [21] they perform session based overload control for http
requests. They have proposed and evaluated a scheduling algorithm which dis-
criminates the scheduling of requests on the basis of the probability of completion
of the session that the requests belong to.

In [73] they present a set of techniques for managing overload in complex,
dynamic interactive Internet services. These techniques are based on an adaptive
admission control mechanism that attempts to bound the 90th-percentile response
time of requests flowing through the service. This is accomplished by internally
monitoring the performance of the service, which is decomposed into a set of
event-driven stages connected with request queues. They fix a response time
target and they focus on the response time of the applications and not on the
overall throughput that is limited by the link bandwidths.

A method for admission control and request for scheduling for multiply-tiered
e-commerce web sistes is presented in [26]. They achieve both stable behavior
during overload and improved response times. Their proposal does not require
any modifications to the host operating system, web server, application server or
database, it can be implemented on a proxy. Their admission control requires two
estimates: the load that a particular job will impose to the system and the capac-
ity of that system. Load is estimated by recent system observations, to estimate
the capacity of the system they use the method of incremental step described in
[34]. Changes in the system hardware require system capacity recomputation.
There is no dynamic adaption in this system.

2.5 Computer Systems Control

Feedback control theoretic model of web server are used in [45, 3, 57] to achieve
overload protection, performance guarantees and service differentiation. Such
control theoretic approaches require definition of the system model and identifi-
cation of its parameters, on the other hand they provide guarantees of robustness
and stability.

18 CHAPTER 2. LITERATURE OVERVIEW

In contrast to the absolute guarantee and to the best effort differentiation.
in [45] they propose an architecture to support the proportional differentiated
service model for a Web server. With proportional differentiation performance
level of differentiated classes maintain always the same proportion. They for-
mulate the adaptive resource allocation problem as one of feedback control and
apply feedback control theory to develop the resource allocation algorithm. The
controller implementation require modification of the system subjected to control
and the identification of the system itself modeled as a second order difference
equation.

In [3] they describe performance control of a Web server using classical feed-
back control theory. They describe how to model a general Web server for
purposes of performance control, present the equivalents of sensors and actu-
ators, formulate a simple feedback loop, describe how it can leverage on real-time
scheduling and feedback-control theories to achieve per-class response-time and
throughput guarantees. In [57] they investigate a nonlinear discrete-time model-
ing of a Web server system. They develop and validate a control theoretic model
for the admission control of a general single server queue. Their measurements in
the laboratory setup show the robustness of the implemented controller, and how
it corresponds to the results from the theoretical analysis and the simulations.

Control theoretic approaches to other software systems are presented in [53,
2, 38, 74, 11]. In particular in [53] they describe a methodology for designing
controllers that manipulate tuning parameters of software system (e.g., an email
server). They base identification on a statistical model fitting to historical mea-
surements of the target being controlled. And they apply this methodology to a
Lotus Notes groupware server to maintain a reference queue length to the desired
level.

In [2] they describe an online control framework to design self-managing dis-
tributed computing systems that continually optimize their performance in re-
sponse to changing computing demands and environmental conditions. They use
an online control technique in conjunction with predictive filters to tune the per-
formance of individual system components based on their forecast behavior. The
system react to varied environmental and operating conditions by applying an
online model learning online. They assume that the new parameters affecting
component behavior are known, and their values are measurable. Then they
estimate the incremental changes to the model due to the new environmental
parameters.

In [38] they explore the properties that are necessary for performance model
estimation of black-box computer systems when used together with adaptive feed-
back loops. They show that the method of least-squares estimation in conjunction
with Self Tuning Regulators often gives rise to models that make the control loop
perform the opposite action of what is desired. They propose extensions to con-

2.6. SERVICE COMPOSITION VIRTUALIZATION 19

trollers that make them perform well, even when the model estimated would have
degraded performance. Their approach is intended to help meet a service level
agreement (SLA) goal (using latency as the metric) but only to get as close as
possible to the SLA requirement without exceeding it, rather than maximizing
performance.

In [74] they consider the use of artificial intelligence (AI) based solutions for
reconfiguring distributed systems online to optimize for dynamically changing
workloads. They present one approach to address the need to decide when and
how to reconfigure. In particular, they learn to identify, from only low-level
system statistics, which of a set of possible configurations will lead to better
performance under the current unknown workload. This approach requires no
instrumentation of the systems middleware or operating systems. They demon-
strate that their adaptive configuration is able to outperform any single fixed
configuration in the set over a variety of workloads, including gradual changes
and abrupt workload spikes. They focus on the hardware of partitionable servers
and they do not consider admission control or the multi programming level.

In [11] they recognize that efficient and robust data streaming are a critical
requirement of emerging Grid applications, which are based on seamless interac-
tions and coupling between geographically distributed application components.
Furthermore the dynamism of Grid environments and applications requires that
these services should be able to continually manage and optimize their opera-
tion based on system state and application requirements. They propose a self-
managing data-streaming service based on online control strategies. The control
strategy combines model-based limited look-ahead controllers [2] with rule-based
managers to dynamically achieve adaptive behavior in Grid applications under
various operating conditions. They also impose requirements for the live use of
the results generated by the simulation workflow.

2.6 Service Composition Virtualization

In [43] a service bus is described, the main functionality of this bus is virtualiza-
tion. This virtualization layer hides from a user of a service the implementation
details of a service like the programming language used for its implementation,
the hosting application server, the underlying operating system platform, and so
on. Requests refer to the service interface, described in Web Service Description
Language (WSDL) [72], the service bus virtualizes services based on interface de-
scription or semantic descriptions as well as based on non-functional properties.
The service bus can optimize incoming requests according to various set of crite-
ria, for example it might consider the workload of the overall environment, and
the cost of mediating the request. To enable optimization the service bus must
be able to retrieve information required for the various kind of optimizations like

20 CHAPTER 2. LITERATURE OVERVIEW

state data and so on. Similarly, the service bus must be able to influence the
state of services, e.g. it should be able to restart a certain service. For this pur-
pose, services have to support corresponding interface in addition to the interface
providing the proper (application) functions. Data that is providing the context
for performing a request offered by a service is referred to as a WS-Resource [22].
An element of this data context is called a “resource property”.

2.7 Grid Computing and Scientific Workflows

In engineering, assembling components into a compound product is a well known
and ubiquitous practice. Software systems are built on reusable components too
while workflows are composed of services available in the Internet. Services can
provide both computing and storage resources, and they are the fundamental
bricks of Grid applications. Thanks to the standardization efforts and to web
services related technologies [32, 72, 50], interoperability across heterogeneous
components is no more an issue. Anyway this work is not concerned with any
specific component or service technology, thus conclusion and results have a gen-
eral and broad applicability. Nor this work is concerned with languages for service
composition nor with systems for discovering or aggregating services, those are
already active research fields [31].

Grid computing has established itself as the dominant paradigm for wide-
area high-performance distributed computing [11]. As Grid technologies and
testbeds mature, they are enabling a new generation of scientific and engineering
application formulations based on seamless interactions and couplings between
geographically distributed computational, data, and information services. Simu-
lation codes generate large amounts of data, which must be streamed efficiently
and effectively between the distributed components.

Chapter 3

Design Optimization

Design optimization plays a fundamental role in any engineering product design
and it has been rendered effective by use of computer aided tools. Design op-
timization frameworks or PIDO (Process Integration and Design Optimization)
tools provide engineers with a set of building blocks to enable the creation of
sophisticated workflows to integrate all the software components of a design pro-
cess, as well as a set of state-of-the-art algorithms and extensive post-processing
and decision support capabilities.

3.1 Introduction

The use of PIDO tools is gaining in popularity as a way to automate and drive
simulation-based design processes. Product design and development rely heavily
on computer aided engineering (CAE) software, such as tools for design (CAD),
Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), and even
proprietary software written within organizations to address particular needs.
Usually these analysis are run separately from each other; even in the case where
the result of one simulation is to be fed to another (an example would be running
a CFD analysis to provide thermal boundary conditions for an FEA analysis)
there is often a manual process of extracting the data of interest, and passing the
file to the user who will perform the next step of the process.

Companies are now recognizing that such procedures should be automated
in a way which allows all CAE tools to be run without human intervention, and
provides for the transfer of the necessary data files between the components. This
is not always a trivial task: in today environment, product development is often
a global activity, distributed among research and development centers in different
countries, and even on different continents. It is not uncommon to have CAE

21

22 CHAPTER 3. DESIGN OPTIMIZATION

tools installed in multiple locations as well; hence process integration in such
cases must involve seamless file transfers, using protocols already in place.

Once the chain of simulations has been automated, it does not take much
extra effort to convert it into an optimization process. The user, having specified
which design inputs are to be the variables, will also define certain goals, or
objectives; for example, to maximize efficiency and minimize cost. Often in real
life applications the goals may be conflicting, which brings us to the concept
of trade-off: by keeping the objectives separate, multi-objective optimization
frequently gives rise to a Pareto Frontier of designs, all of which can be considered
to be candidates for the optimum.

Once objectives have been defined (e.g. minimize weight, maximize efficiency,
etc), and an optimization algorithm selected, the optimization software will take
over, searching for configurations which provide the best compromise between
goals which may well be in conflict. By combining ease-of-use with powerful,
state-of-the-art optimization algorithms and process integration techniques, the
optimization software provides the user with an invaluable aid for product design
and development.

3.2 Synopsis

Design optimization is an iterative process where each step is divided in two
phases: the first phase is the evaluation of a set of proposed designs through
simulation, the second phase is the generation of a new set of hopefully better
designs. Each design represents a virtual prototype of an engineering product.

The particular strategy or optimization algorithm [56] for producing new de-
signs based on the evaluations of prior attempts is irrelevant to this discussion.
The only distinction we made is for population based algorithms, e.g. genetic
algorithms, these algorithms require the parallel evaluation of a current popula-
tion, within this algorithms we distinguish between steady and block algorithms.
Said n the number of individuals in the population, steady algorithms synthesize
a new individual as soon as the evaluation of another individual terminates, on
the other side, block algorithms synthesize a new entire population only after
the evaluation of the previous n individuals. Thus for a steady algorithms the
number of individuals currently under evaluation is n, for block algorithms it is
initially n and then decreases till 0.

The process terminates when a termination condition is met, e.g. when either
a satisfactory design is found or a predefined maximum number of designs have
been evaluated. Evaluation of each design is performed according to a simulation
workflow representing the sequence of tasks necessary for the analysis of the
virtual prototype. As shown in Figure 3.1 design evaluation starts from the
design variables x and leads to the performance measure y = f(x).

3.3. STRATEGIES FOR DESIGN OPTIMIZATION 23

Figure 3.1: Simulation based optimization.

In the domain of our interest, design optimization systems are composed
of two main functional blocks: the optimization scheduler, and the workflow
engine. The optimization scheduler is responsible for the synthesis of new designs
based on the results from the prior ones, it is also responsible for submitting
evaluation requests to the workflow engine. The optimization scheduler schedules
the evaluation requests in accord to the optimization algorithm. The workflow
engine receives evaluation requests from the scheduler (or from any other client)
and executes the simulation workflow with the specified data.

The simulation workflow describes which services are to be executed, in which
order and on which data (see Figure 4.1: Composite service logic view.) In other
words, the simulation workflow appears to its clients as a single composite service,
internally composed by multiple services. A job consists of an execution of the
composite service on a specified set of input data and it produces a set of output
data.

The actual execution of jobs is orchestrated by the workflow engine, that
invokes the relevant composing services as appropriate. This activity usually
involves the movements of large amount of data. Both the optimization sched-
uler and the workflow engine are internal modules of the composite service that
need not be exposed to clients. In the inter-organizational scenario, the compos-
ing services are exported by potentially different organizations. Communication
between services and optimization machinery occurs through the Internet.

3.3 Strategies for Design Optimization

The optimization scheduler may submit new tentative designs for evaluation ac-
cording to several different policies. We explored the two policies most commonly
used, as follows. With the block submission policy the scheduler first generates
a batch of n workflow instances (designs), submits all these instances to the
workflow engine and waits for completion of all of them. The scheduler then gen-
erates a new batch based on the results of the previous batch, and so on. This
submission pattern is typical of optimization schedulers based on generations of
population such as genetic algorithms and evolutionary strategies [16]. With the

24 CHAPTER 3. DESIGN OPTIMIZATION

steady (or steady-state) policy the scheduler starts a batch of n instances and
then submits a new evaluation as soon as a previous one has completed. Note
that submission policies are largely independent of the specific search strategy
implemented by the scheduler.

3.4 Engineering Workflows

Engineering products can be described by a parametric model, this parametric
model has inputs and outputs values, those values can in general be of any type:
real values, strings, arrays, multidimensional quantities or files, there is no any
specific requirement on this aspect. On the other hand the optimization process
works in general with numerical quantities, but this requirement is specific to
the particular optimization algorithms, the most diffused algorithms: genetic
algorithms, evolutionary strategies [56], gradient based algorithms, mixed integer
algorithms work with numeric values.

The optimization process deal with decision variables and goals, decision vari-
ables define the design search space while goals define the objectives to obtain
and the constraint to meet. In general input values are function of the decision
variables while constraints and objectives are function of the decision variables
and of the output values.

Depending on the required level of details and depending on the specific anal-
ysis, an engineering product can have more parametric models. The more ad-
vanced is the design stage the more detailed is the model. Detailed models take
in account many physical aspect of the product, different analysis are conducted
by different tools that must be integrated into the simulation workflow.

3.5 Inter-organizational Design Optimization

Many factors influence the performance of inter-organizational design optimiza-
tion systems [67], in particular: node-to-node link quality, storage architecture,
optimization strategy, and communication computation overlap pattern, all have
a significant impact on performance. Other factors are the computing power at
the computing nodes (i.e. number of CPUs), the number of available licenses for
each solver, the number of concurrent evaluations allowed.

A crucial observation is that most of these factors are beyond the control of the
entity building the inter-organizational design optimization system. Other factors
cannot be known and cannot even be estimated (without significant intrusion into
third party systems). Finally, nearly all of these factors may vary unpredictably
during execution amount of resources available at each organization, bandwidth
of the links, load imposed by other systems on the organizations and on the links,
just to name a few.

3.5. INTER-ORGANIZATIONAL DESIGN OPTIMIZATION 25

Current design optimization systems do not suffer from these uncertainties,
because the optimization is performed on local hardware (e.g. on a local cluster)
and with dedicated resources fully allocated to the optimization task. In such a
kind of environment manual fine tuning usually guarantees the best arrangement
between the considered performance indexes. In summary, what makes this sce-
nario challenging is that performance may heavily depends on a myriad of factors,
that may be unknown, may vary unpredictably and are beyond the control of the
scheduling machinery.

Chapter 4

Workflows and Service

Composition

4.1 Definitions

Based on Workflow Management Coalition [75], a workflow is: “The automation
of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of
procedural rules”. Scientific and engineering workflows adhere to this definition
although they represent engineering simulations or scientific calculations rather
than business processes. Each workflow is defined by a workflow process definition
also called workflow schema [1]. A schema specifies which application programs
need to be executed, in what order and on which data. Each application program
appears as a service that can be invoked by its clients [51]. A workflow instance
or job consists of an execution of a schema on a specified set of input data and
it produces a set of output data.

In other words a workflow is a set of tasks with data dependencies between
them. Composite services can be internally modeled as workflows, i.e., workflows
implemented by means of services exported by potentially different organizations
connected to the Internet. For ease of discussion but without loss of generality the
focus can be stressed on a single composite service exporting one single schema.
Input data is composed of input parameters and input files, similarly output data
is composed of output parameters and output files.

Usually, parameters are enclosed in the job whereas files are not. Files are
uploaded/downloaded when needed, based on directives enclosed in the job. Ex-
ecution of jobs is orchestrated by a workflow engine, that interprets a high-level
description of a schema and invokes the relevant composing services as appro-

27

28 CHAPTER 4. WORKFLOWS AND SERVICE COMPOSITION

priate. This involves the movements of large amount of data over a wide-area
network. Conceptually, the workflow engine is an internal module of the com-
posite service that needs not be exposed to clients.

Figure 4.1: Composite service logic view.

Figure 4.1 shows the logic view of a typical composite service for the evaluation
of a scientific workflow. The scientific workflow is defined by the workflow schema
in the gray area, the schema is composed of four serially connected services. The
schema specifies also the input data and the output data needed to carry out the
workflow evaluation. Input and output data take the form of files and parameters.
From the depicted schema files created by one service are used by the next service,
so the next service needs to download the files while the previous service has to
make available those files. The simulation workflow is wrapped by the composite
service, that is a service like the others, but it masks the simulation workflow
details, there is no limit to the recursion level.

4.2 Execution

The execution of workflow instances is performed by a workflow engine, that
interprets a high-level description of a schema for example defined in the BPEL
language [10]. Description of workflow schemes and their execution is usually
performed under control of a workflow management system (WfMS). The client
application requests the execution of a workflow to the workflow management
system which instantiates a workflow engine to fulfill the client request. For
the sake of this thesis the optimization scheduler plays the role of the client
application.

This schema could be implemented as shown in Figure 4.2. Each service can
be provided by a different organization, different organizations could correspond
to different department or branches of the same organization are they can belong
to different enterprises or institutions. Communication across organizations oc-
cur, in general, through the Internet, which is the case of main interest in this
work, and not through dedicated links. Obviously, a given organization could

4.3. MODEL DESIGN 29

Figure 4.2: Grid workflow sample physical layout.

provide more services and similar, or functionally equivalent, services could be
provided by more organizations [23, 47], this option is no further analyzed in this
work. The figure does not explicitly shows the scheduler that can be represented
by any of the clients, the workflow engine also communicate through the Internet.

The optimization scheduler is the closest process to the end users. An end
user selects an optimization scheduler, feeds a simulation workflow to the op-
timization scheduler, and asks the scheduler to perform the optimization. In
turn, the optimization scheduler submits workflow evaluations to the workflow
management system.

Workflows are used in several fields of science and engineering, usually for
elaborating data coming from experiments [12, 37, 46]. Although this thesis
focuses on workflows for design optimization systems, much of our analysis may
be applied also to such contexts, in particular, whenever the delay incurred for
transferring data between services is comparable to the computation time spent
in services (see Section 6.2.4).

4.3 Model Design

At the core of the simulation workflow there is a set of solvers. A solver is an
application code specialized in a specific computer aided engineering task, e.g.,
computer aided design applications, finite element analysis solvers, computational
fluid dynamics solvers or proprietary software. Often it is a commercial licensed
software. A solver execution usually proceeds as follows:

1. it obtains an available license (the maximum number of solver instances
that can be run simultaneously is bounded by the license agreement),

2. reads the input data,

30 CHAPTER 4. WORKFLOWS AND SERVICE COMPOSITION

3. performs the specific computation without any interaction with other enti-
ties, in particular, without interacting with other solvers,

4. and finally it produces the corresponding output data.

Input and output take the form of files. A solver is exposed to clients of an
organization in the form of a service. A service takes care of all the necessary com-
munication and synchronization activities, including the transfer of input/output
data. Data is exchanged through a pull protocol, i.e., each service is responsible
for downloading the data it needs. In most real-world settings, each server is tied
to a specific solver.

4.4 Performance Metrics

Optimization latency is defined as the time required for completing the optimiza-
tion session, throughput is defined as the number of evaluated workflow instances
divided by the optimization latency. The solver time (or solver lifespan) is the
time required for one solver execution: it includes the reading of all the input
data of a job from the local disk, their processing and the writing of all the output
data for the job on the local disk. Analogously service time (or service lifespan)
is defined as the time required for one service execution. This time includes the
downloading of input data, the solver latency, the uploading of output data.

A key element of the analysis performed in this thesis is the cost incurred
by each organization participating in the workflow. The service cost is assumed
proportional to the service time, whereas the solver cost is proportional to the
solver time — a solver performs a license check-in as soon as it starts and the
corresponding license checkout when it is about to finish. These definitions of
the service cost and of the solver cost are associated with one workflow instance.
The cost associated with the complete workflow is simply the sum of the cost
associated with all the instances.

A job is a workflow instance with its related input data and input parame-
ters. The workload is considered consisting of a specified number of jobs, called
a session. The number of jobs concurrently being processed is referred as mul-
tiprogramming level. The job latency is the time required for completing a job,
from its submission to the composite service to its termination. Finally, the com-
posite service time is the sum of the service times for each service involved in the
workflow.

The job latency is different from the composite service time because of the
time spent along the links and because, in general, a schema could have some
branches running in parallel. Note also that predicting in advance the relation
between these indexes is hard because the transfer of data may overlap with
computation and because the system may be concurrently executing several jobs.

4.5. COMMUNICATION COMPUTATION OVERLAP PATTERN 31

Regarding the experiments presented in Chapter 6 all the latency and time results
refer to the average values computed in a session.

This work takes also in account the point of view of the organizations partic-
ipating in the composite service implementation. A key element of the analysis
is the cost incurred by each organization. For each organization, the cost in
processing a job is assumed proportional to the service time for that job, i.e.,
to the time actually spent by the job at that organization. In the experiments
(described in Chapter 6) the cost globally incurred by all the organizations, i.e.,
the composite service time is considered.

The main assumption underlying this work is that the cost incurred by an
organization for executing a job is proportional to the time spent by the job
at that organization. This assumption is justified by the application domain of
our interest, characterized by many large and resource-consuming jobs that are
submitted in batches and do not require interaction with human users. Another
important assumption is that the scheduling machinery should not rely on any
dedicated hook from the composing services. So, for example, the composite
service machinery cannot know whether one of the composing services is about
to begin the execution of another heavy workload. While this assumption may
limit the performance that can be obtained, we believe it is a practical way to
facilitate the aggregation of organizations. Knowing that the composite service
will properly balance performance and cost, moreover, may be a powerful factor
for encouraging organizations to indeed share their services.

4.5 Communication Computation Overlap Pattern

The term communication computation overlap pattern is used to indicate the
actions involved in the transfer of the output data produced by a source service
to the target service that needs those input data. Services basically perform
three major activities: i) download input data, ii) elaborate the data and iii)
upload the output data. In current engineering workflows there is no overlap
between these three activities, thus data elaboration does not start before the
end of input data downloading. This pattern is very simple and does not leave
room to performance optimizations. In this thesis are described and evaluated
three more communication computation overlap patterns, currently these new
patterns are not used in engineering services.

Working with engineering workflows we have identified four communication
computation overlap pattern: NoPipe, InputPipe, FullPipe and OutputPipe.

4.5.1 NoPipe

NoPipe is the simplest communication computation overlap pattern, with this
pattern there is no any overlap between communication and computation, this

32 CHAPTER 4. WORKFLOWS AND SERVICE COMPOSITION

is the pattern currently used by engineering services. Figure 4.3 shows the UML
sequence diagram for the services with no overlap. When the service is invoked it
starts the downloader and waits for the data arrival. At data arrival, the service
logic starts the solver and wait for its termination. At solver termination, data
is available for next services and the service invoke the uploader for the arriving
requests. The license use depends only on the solver process.

Figure 4.3: Sequence diagram for NoPipe.

With this pattern, the solver cost depends only on the local resources, e.g. it
is not affected by links congestion or by the rate at which previous services are
working. The service cost is roughly approximated by the sum of the time for
downloading data, uploading data and the solver time. We expect this pattern
to yield the best performances in terms of solver cost.

4.5.2 InputPipe

The InputPipe communication computation overlap pattern extends the NoPipe
pattern introducing a pipeline between the dowloader and the solver, i.e. data
elaboration is started as soon as the input data downloading starts. Figure 4.4
shows the UML sequence diagram for the services with the InputPipe communi-
cation computation overlap.

With this overlap pattern, the solver time is no more constant and it could
be greatly affected, in a negative way, by the speed at which data is downloaded,
in other terms the solver time depends on external factors such as links state or
previous services upload speed. On the other hand while the downloader is still
downloading data the solver is able to elaborate previous data chunks. Under
the same external conditions the service time is expected to be lower than the
NoPipe case. This pattern, should also positively affect the overall throughput.

4.5. COMMUNICATION COMPUTATION OVERLAP PATTERN 33

Figure 4.4: Sequence diagram for InputPipe.

4.5.3 FullPipe

The FullPipe communication computation overlap pattern is the most complex
overlap pattern and it provides that downloading, elaboration and uploading start
at service invocation. Figure 4.5 shows the UML sequence diagram for the services
with the FullPipe communication computation overlap. The services functioning
is pointed out showing two consequent services. As long as the previous services
is ready to upload data, the workflow engine starts the next service, this service
starts the downloader that in turn issues an upload request, the service starts the
solver also, and issues and output start signal to the workflow engine. At this
time the next service become a stage of the pipeline.

Figure 4.5: Sequence diagram for FullPipe.

With this overlap pattern, as for the InputPipe case, the solver time is no
more constant, and it could be greatly affected, in a negative way, by external
factors such as links congestion or previous services upload speed. On the other
hand while the downloader is still downloading data the solver is able to elab-
orate previous data chunks and the uploader is able to upload such elaborated
data. Under the same external conditions, thanks to elaboration and transmis-
sion overlap, we expect this pattern to provide better performance in terms of

34 CHAPTER 4. WORKFLOWS AND SERVICE COMPOSITION

overall throughput, but we also expect it to give worse results in terms of solver
cost. The service time is expected to be lower than the NoPipe and the InputPipe
case. This pattern, should also positively affect the overall throughput.

4.5.4 OutputPipe

Figure 4.6 show the UML sequence diagram for the services using the OutputPipe
communication computation overlap. With this overlap degree the solver process
starts when input data downloading is terminated.

Figure 4.6: Sequence diagram for OutputPipe.

Similarly to the NoPipe pattern, because the solver works only on local data,
the solver time is expected to be relatively constant.

4.5.5 Discussion

Figure 4.7: Communication computation overlap patterns.

Figure 4.7 grahically shows the overlap between the process involved in a ser-
vice invocation. The choice of the computation communication overlap pattern is
not always free. While the pipeline between the solver and the uploader is almost

4.5. COMMUNICATION COMPUTATION OVERLAP PATTERN 35

always feasible in pratice, the feasibility of the pipeline between the downloader
and the solver depends on the format of the input files and how the solver access
the data contained in the file. A sequential access will be always compatible with
the input pipeline while a random access will, in general, never be compatible
with the input pipeline.

As will be showed in Chapter 5 and in Chapter 6, even in the case when the
overlap pattern can be freely chosen, the trade-off between cost and speed must
be considered, e.g. the FullPipe pattern allow (in general) a greater throughput,
and a faster execution than NoPipe which is the pattern providing the lowest
cost in terms of solver time.

4.5.6 Centralized and Distributed Engines

Engineering and scientific workflows must deal with data management [11], data
management services have minimal impact on the execution of the workflow, they
must satisfy stringent space and time constraints, and guarantee that no data is
lost. Data management services must be first class services [41] or they can be
included into other services, in both cases data management issues cannot be
neglected.

In engineering workflows data is usually exchanged through a pull protocol,
i.e., each service is responsible for downloading the data it needs. Of course, the
workflow engine must notify services about the location of the respective input
files.

In a distributed environment application, data associated to workflow pro-
cesses need to “travel” along with the process. However, the application data
should not be stored in the WfMS itself, for reason of efficiency, and hence a data
manager is required. Specific data nodes can be needed for providing access to
the data itself [5]. The activities manipulated by control node do not contain any
data per se except a few simple variables (integer and real numbers, booleans,
strings) used to evaluate control flow conditions. Part of these variables will be
references (documents id’s) to data stored in the data node. Thus, control nodes
only need to transfer simple variables.

In the work of this thesis centralized and distributed data exchange between
web services are evaluated [67]. In traditional service composition frameworks,
the data-flow and the control-flow are centrally coordinated, and the composed
service operates as the hub for all data communications. Infrastructures, support-
ing the service composition paradigm, employs a distributed data-flow approach
that supports direct data exchanges among web services [44].

The distributed data-flows can avoid many performance bottlenecks attend-
ing centralized processing. Their prototype implementation demonstrates that
distributed data-flow, combining with active mediation, is effective and more ef-
ficient than centralized processing when integrating large engineering software

36 CHAPTER 4. WORKFLOWS AND SERVICE COMPOSITION

Figure 4.8: Centralized and distributed storage architectures.

services.
A design optimization system is usually implemented in a centralized way, as

follows. There is a single repository that can be accessed by all modules (i.e.,
workflow engine, optimization scheduler, services). The workflow engine stores
input and output data generated by the services in this repository. Each service
reads input data from the repository, stores them on local storage and writes the
final output data back to the repository.

When the services are distributed geographically, as in a multi-organizational
system, it makes sense to explore a distributed storage architecture, in which the
output data of a service are passed directly to the service that needs that data, i.e.,
without moving such intermediate results back and forth to the workflow engine.
In this case, the repository at the workflow engine stores only the final results
produced by each instance. The two alternatives are depicted in Figure 4.8.

4.6 Grid Workflows Challenges

Significant challenges arise from achieving performance objectives in large-scale,
heterogeneous and highly dynamic Grid environments with shared computing and
communication resources, and where the application behavior and performance
is highly variable. There are many performance related parameters that must be
dynamically tuned to match the Grid operating conditions and the application
performance requirements.

As Grid applications grow in scale and complexity, and with many of these
applications running in batch mode with limited or no direct runtime access to
the application components maintaining the desired performance objectives using
approach based on ad hoc manual tuning and heuristics is not just tedious and
error prone, but unfeasible [11, 36, 70]. Services composed of other services or
using Grid resources on the Internet must be largely self-managing, they must
dynamically detect and respond, quickly and correctly, to changes in application
behavior and state of the Grid.

Chapter 5

Multiprogramming Level Control

The number of concurrent workflow invocations, i.e. the number of concurrent
design evaluations in design optimization terminology, is usually manually set by
an expert operator. The multiprogramming level (MPL) is defined as the number
of concurrent workflow invocations being executed by the workflow engine. The
multiprogramming level has a strong impact in performances of design optimiza-
tion system, and, in local systems, it is usually set considering the availability of
computing and storage resources: software licenses, disk space, number of CPUs.

In the case of a static environment, the relation of the most interesting per-
formance indexes with the multiprogramming level can be inferred by simple ar-
gumentations. The throughput is expected to raise quite linearly with the MPL
for low MPL values, until it reaches a saturation level, after the saturation the
throughput reaches a trashing area where it decreases because of the contention
on shared resources. In general throughput it is considered a convex function of
the MPL. On the other hand workflow latency is monotonic with MPL, composite
service time is monotonic with the MPL too.

The composite solver time behaves differently with different patterns of com-
munication computation overlap. For example when the communication compu-
tation overlap pattern does not affect the solver execution the composite solver
time is expected to be almost constant, this is the case of the NoPipe (see Sec-
tion 4.5.1) and OutputPipe (see Section 4.5.4) overlap pattern. With the other
two pattern: InputPipe (see Section 4.5.2) and FullPipe (see Section 4.5.3) the
solver execution depends on the input data, which in turn arrives with a rate
bounded by the previous services and links throughput.

37

38 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

Figure 5.1: Throughput vs. MPL.

5.1 Fundamental Issues

It is important to understand the relation between throughput, composite ser-
vice time and multiprogramming level. To explain the choices for the control
of the multiprogramming level, this section anticipates some results presented in
Chapter 6.

Figure 5.1 shows the throughput plotted against the multiprogramming level
under several working conditions, working conditions differ from number of avail-
able licenses, link quality, size of exchanged data and communication computation
overlap pattern. The considered multiprogramming levels are in the range from
1 to 100. The actual shape of the curve—including initial slope, saturation point,
maximum throughput—greatly depends on a myriad of factors.

In brief, in case A throughput grows linearly with MPL and reach saturation
for a average MPL. In case B, throughput never reach saturation and will increase
far beyond the maximum MPL. In case C, throughput reaches saturation for low
MPL values and then starts to decrease with a marked thrashing. In case D
throughput suddenly reaches the saturation for very low MPLs, then it does not
reach any thrashing condition. In case E throughput grows almost linearly with
MPL, then it reaches the saturation area and then starts to decrease. Finally
in case F, throughput grows very fast for low MPLs and then, after saturation,
starts to decrease.

Figure 5.2 shows the composite service time plotted against the multipro-
gramming level under a variety of working conditions. Recall that composite
service time has to be minimized to minimize the cost incurred by organizations
participating in the workflow. In case A, the composite service time grows almost

5.1. FUNDAMENTAL ISSUES 39

Figure 5.2: Composite service time vs. MPL.

linearly with the MPL, this suggests that in case A shared resources are always
saturated. In case B composite service time is almost independent from the MPL
for a wide range of MPL values, then it starts a slow growth, till reaching a linear
growth. In case C the composite service time is almost constant in the considered
multiprogramming level range. In case D the transition from constant composite
service time to linear growth is much sharper than in case B.

It is clear from the above considerations that the choice of the multiprogram-
ming level has a great impact on performances. The choice of the best MPL
value is not univocally determined, even with only two goals such as maximiz-
ing throughput and minimizing cost we must deal with a trade-off. Use of a
sufficiently high multiprogramming level, could be a simple yet effective way to
maximize throughput, without having to figure out the shape of the curve in
the specific, potentially unknown, environment∗. Unfortunately, such a naive
strategy would lead to high composite service time—thus to high cost globally
incurred by the participating organizations. On the other hand the use of a very
small multiprogramming level is the simplest way to minimize the cost but also
the throughput.

We remark that, in practice, the actual shape of these curves is not known,
because the values of the numerous relevant parameters is also unknown. More-
over, the values of these parameters may vary during execution, which obviously
provoke a reshaping of the curves. It follows that determining a suitable value
for the MPL in advance is not feasible.

∗Depending on the system parameters, though, the system could exhibit a form of thrashing,
i.e., throughput may collapse with a large MPL value. This point is irrelevant to our discussion,
however.

40 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

Figure 5.3: Throughput vs. composite service time with almost each multipro-
gramming level belonging to the pareto frontier (green dots).

The above considerations may be illustrated also by means of Figures 5.3,
5.4 and 5.5 shows three scatter plot under different scenarios. There is a dot for
each multiprogramming level from 1 to 100. Optimal multiprogramming levels
are represented by green dots. In particular Figure 5.3 shows a scenario where
the considered MPL range does not reach the throughput saturation and thus,
because increasing MPL leads to increased throughput, almost each MPL belongs
to the pareto frontier. Figure 5.4 shows a similar situation, the only difference is
that in this case throughput reaches saturation but it does not trash. In these
two cases almost all MPL values (in the range between 1 and 100) are optimal.
Finally in Figure 5.5 throughput produces a trashing behavior for large MPL
values.

5.2 Overview of Our Proposal

Figuring out what are the performances in advance is very hard and nearly im-
possible, because of the myriad of factors involved that may influence the actual
shape of the curves [59]. Moreover, these factors could even change dynamically
and unpredictably due to the very nature of the Internet and of Internet-based
services, where fluctuations in load and traffic are rather common events. In
the approach presented in this thesis the multiprogramming level is varied dy-

5.2. OVERVIEW OF OUR PROPOSAL 41

Figure 5.4: Throughput vs. composite service time with throughput exhibit
saturation but with almost each multiprogramming level belonging to the pareto
frontier (green dots).

Figure 5.5: Throughput vs. composite service time with thrashing throughput.

42 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

namically and automatically to obtain a good trade-off between throughput and
cost.

Figure 5.6: Invocation controller details.

The workflow engine is threated as a black box and an invocation controller
is placed in front of it (Figure 5.6). Jobs submitted by clients to the workflow
engine are intercepted by the invocation controller. The invocation controller
selects dynamically a value for the multiprogramming level and implements a
form of admission control to ensure that the number of in-progress jobs does not
exceed that value. Excess jobs are queued by the invocation controller, that will
inject them into the workflow engine as prior jobs complete. The current value
for the MPL is provided by a control algorithm whose inputs are estimates of the
current latency and throughput provided by dedicated sensors.

The key problems in this approach are how to enable the invocation controller
to: i) select a suitable value for the MPL; and ii) vary that value dynamically
if necessary. The basic idea underlying the solution is based on the following
observations. The ratio throughput

job latency (called objective index) usually varies with
multiprogramming level according to a bell-shaped curve (Figure 5.7). The actual
curve depends on many factors, but its shape is of the form in the figure.

This curve has two key features. First, its peak occurs at a multiprogramming
value very close to the cost-optimal value. By varying the multiprogramming level
dynamically so as to maximize the objective index, thus, the multiprogramming
level becomes very close to its cost-optimal value. Second, the composite service
machinery may measure the objective index on-line, by measuring the current
values for throughput and job latency. Note that measuring the composite service
time on-line is not possible, because there are no hooks from the composing
services.

The control algorithm maximizes the objective index automatically and dy-
namically, thereby leading the multiprogramming level to a value close to the
optimal one. This approach treats the system as a black box. The invocation
controller does not need any prior or run-time knowledge about the static or

5.3. ADAPTIVE INVOCATION CONTROLLER 43

Figure 5.7: Objective index vs. multiprogramming level (batch size).

dynamic factors affecting performance: it simply observes, through its sensors,
start time and completion time of each job. Note also the the composing services
does not need to provide any hook to the invocation controller.

Essentially, each control algorithm starts with a low value for the multipro-
gramming level and increase this value until the measurements show that the
objective index starts to decrease. At this point the multiprogramming level
should be decreased (details in the next section.) This simple approach would
not work by reasoning on either throughput or job latency taken in isolation. The
curve throughput vs. MPL exhibits a flat or nearly-flat region beyond the satu-
ration, thus maximizing throughput would lead to very wide oscillations of the
MPL value. The job latency instead grows more or less steadily, thus minimizing
this index would invariably keep the MPL to the minimum value.

5.3 Adaptive Invocation Controller

The controller algorithms work with the aid of two dedicated sensors. The latency
sensor measures the job latency averaged across the last MPL of jobs that have
completed. The throughput sensor measures the throughput across the same set
of jobs.

The two sensors are notified by the invocation controller whenever a job is in-
jected into the workflow engine and whenever a job completes (Figure 5.6). They
use these events to build estimates for the current job latency and the current
throughput dynamically. Such estimates, along with the corresponding estimate
for the current objective index, are used by the MPL controller as described
below.

The job latency estimate is an average of the observed job latency, evaluated
over a number of observations equal to the current MPL. The throughput estimate

44 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

Figure 5.8: Timed controller psedo-code.

is also built over a number of observations equal to the current MPL. The details
of the sensors include some additional complexity needed to cope with scenarios
in which the number of available observations does not match the current MPL.
In such cases a sensor may provide either the last computed estimate or a new
estimate constructed optimistically. An optimistic estimate is constructed by
taking optimistic values for the missing observations. If, for example, the number
of available observations is k units below the current MPL, it is assumed that the
next k jobs will complete immediately. Further details are omitted as irrelevant
to the discussion.

We have experimented with four different policies for the adaptive invocation
controller, called: TIMED, Derivative, TCP Like, and Parabola. We describe
each of them in detail in the next subsections.

5.3.1 TIMED Controller

The controller runs periodically, with a period equal to the current job latency
(as measured by the sensor). At each run it updates the mpl as follows. The
update algorithm determines the current value for the objective index as provided
by the sensors and determines the relative difference with the prior value (rel).

5.3. ADAPTIVE INVOCATION CONTROLLER 45

The algorithm also maintains a boolean state variable (delta) that is true when
the MPL is growing and false otherwise. To follow the bell-shaped curve of the
objective index, mpl is increased when rel is positive and delta is true, or when
rel is negative and delta is false. Conversely, mpl is decreased in the two other
cases. The amount of the variation applied to mpl is proportional to rel (10
times in our experiments) and bounded by 5. In order to filter out changes in the
measured objective index that are too small to be truly significant, we actually
modify mpl only when the absolute value of rel is greater than 10% of the current
objective index value.

In order to accommodate scenarios in which the objective index changes very
slowly with the MPL, we also accumulate the observed changes whenever we do
not modify the MPL (cumulatedRel). In case the accumulated changes consis-
tently denote a growth (or decrease) of the objective index, we update the MPL
accordingly. In this case, the threshold that triggers the update has been set to
20% of the objective index value.

The working of the TIMED controller is shown in Figure 5.8. Note that
mpl starts from the minimum possible value. The MPL controller executes the
main() method in the figure, that updates the MPL with a period equal to the
current job latency. The update algorithm takes as input the current value for
the objective index as provided by the sensors (newIndex) and determines the
relative difference with the prior value (rel). To follow the bell-shaped curve
of the objective index, when rel is positive (i.e., newIndex ≥ index) mpl is
incremented, whereas when rel is negative mpl is decremented. All the variations
are of the same fixed quantity, delta. In order to filter out changes in the observed
objective index that are too small to be truly significant, we actually modify mpl
only when the change is greater than 10% of the current objective index value.

5.3.2 Derivative Controller

Similarly to the Timed controller, the Derivative Controller is based on the dif-
ference of the objective index between the last two observations. The multipro-
gramming level is updating is based on the sign of the difference and on the
relative difference. The controller runs periodically, with a period equal to the
current job latency (as measured by the sensor).

Figure 5.9 shows the pseudo code describing the working of the derivative
algorithm. At each run it updates the mpl as follows. The update algorithm
determines the current value for the objective index as provided by the sensors
and determines the difference with the prior value (diff). The algorithm also
maintains a boolean state variable (delta) that is true when the MPL is growing
and false otherwise. To follow the bell-shaped curve of the objective index, mpl
is increased when diff is positive and delta is true, or when diff is negative and
delta is false. Conversely, mpl is decreased in the two other cases. The amount

46 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

Figure 5.9: Derivative controller pseudo-code.

of the variation applied to mpl is proportional to the estimated derivative deriv
(10 times in our experiments).

In order to follow steep and lasting slopes, the algorithm maintains the accel-
erator value, that is the minimum variation amount for the MPL, the accelerator
value is doubled each time the delta maintains its value and it reset when delta
change its value. To early recognize changes in the environment conditions, the
algorithm compares the current objective index estimate with the optimistic es-
timate, whenever the current index is greater than the optimistic estimate the
algorithm reset the accelerator and reduce the MPL to a safer value.

5.3. ADAPTIVE INVOCATION CONTROLLER 47

5.3.3 TCP Like Controller

The TCP like controller incorporates some ideas of the TCP congestion control
algorithm. The controller includes a state variable called threshold which deter-
mines the amount of the increment. If the current MPL is below the threshold,
the controller increments the MPL by one (which mimics the slow start phase of
TCP congestion control). If the current MPL is above the threshold, the con-
troller increments the MPL by 1/mpl (which mimics the congestion avoidance
phase of TCP congestion control).

Whenever a job starts, the controller associates a timeout with the job, when-
ever the number of jobs not completing whitin the associated timeout exceeds 50%
of the current bach size the controller halves the MPL and it sets the threshold
to the current MPL. Initially, the MPL is 1 and the threshold is set to maximum
MPL allowed by the admission controller (100 in our experiments). In early ex-
periments we adopted an approach closer to that of TCP, i.e., one single timeout
was enough to trigger a MPL decrease, but we found this approach to be exces-
sively conservative. In other words, the MPL decreases when too many of the
jobs that have been injected do not complete by their timeout.

The timeout choice is done as follows. This controller also works with a la-
tency sensor and a throughput sensor. In this case, however, the former measures
the latency of the last completed job whereas the latter provides a throughput
estimate that is updated whenever a job completes. When a job J completes, the
current throughput estimate becomes the MPL that was current when J started
divided by the latency experienced by J .

This controller attempts to follow the bell-shaped curve of the objective index
in a way quite different from the previous ones (TIMED and Derivative). The
value of objIndex at step i, denoted objIndexi, is mpli

lat2i
(this follows immediately

from the working of the sensors). If one requires that objIndexi+1 > objIndexi,
straightforward calculations lead to mpli+1 > objIndexi×lat2i+1, thus to lati+1 <√

mpl
objIndexi

. The timeout for the i-th job is set to the calculated lati+1. The reason
is because if the job has not completed by that deadline then the objective index
will not increase. In order to increase the stability of the controller, the above
formulas actually make use of a low-pass filtering of the objective index estimates.

5.3.4 Parabola Controller

The Parabola controller is based on the Parabola Approximation [34]. With
this control algorithm the objective index is approximated with a polynomial
of degree 2 of the multiprogramming level, objIndex = α0 + α1mpl + α2mpl

2.
The coefficients αi are calculated using a recursive least square estimator with
exponentially fading memory [76].

The multiprogramming level is updated as follows:

48 CHAPTER 5. MULTIPROGRAMMING LEVEL CONTROL

• if α2 >= 0, the approximation has not the correct concavity, then mpli+1 =
mpli − 1;

• if α1 <= 0, the parabola vertex correspond to a negative value, then
mpli+1 = mpl1 − 1;

• else mpli+1 = −α1
2∗α2

Chapter 6

Experiments and Results

In this work, performances of an inter-organizational design optimization system
have been evaluated in a variety of scenarios. Predicting the relation between
these indexes is hardly feasible, even in a system where relevant parameters
never change during execution — e.g., the transfer of data may overlap with
computation and the system may be concurrently executing several jobs.

6.1 Simulator Design and Implementation

This section describes the design and the implementation of the discrete event
simulator, introduces the reasons behind the choice of the discrete event option
and compares the simulator with other simulators developed by the scientific
community. The final section introduces some technological issues regarding the
coupling of the implemented simulator with the simgrid framework [17].

The discrete event simulator is based on the DESMO–J framework [24], a
general purpose framework for rapid building of event driven simulation models
in Java. In the simulator we have realized several components, these components
belong to the following areas:

• computing resources;

• networking;

• admission control;

• workflow schema;

• perturbation;

• workflow execution.

49

50 CHAPTER 6. EXPERIMENTS AND RESULTS

6.1.1 Introduction

To evaluate the performance of distributed applications we considered several
methods. Analytical models, such as Queuing Networks [42], are almost impos-
sible to use to rank different algorithms or to compare different architectural
choices. At a first sight the simplest strategy would be to perform actual exper-
iments by implementing real applications on real resources. This is not feasible
for at least three reasons, first real applications might run for long periods and
thus is not viable to perform a statistically significant number of experiments.
Second, using real applications make it difficult to explore a wide variety of con-
figurations. Third the environment is not controllable and variations in resource
availability or load over time make it difficult to obtain repeatable results. In dis-
tributed computing, simulation is the most useful approach to effectively evaluate
and compare algorithms and other configuration choices [17].

6.1.2 Workflow Description

Workflows are described by a workflow schema. A workflow schema contains a
list of activities, for each activity is defined a dependency set, the first activity
of a workflow schema has no dependency. A dependency set specifies which data
and from which activity must be supplied to the activity.

Two kinds of data have been identified: transfer file and support file, transfer
files are data file produced by an activity and used by next activities, their loca-
tion is relative to the activity that has generated them; on the other side support
files are files that do not depend on any activity for creation, they already ex-
ists when the workflow engine enacts a workflow schema. Dependencies between
activities define the data flow, the process flow is implicitly defined by the data
flow.

6.1.3 Computing Resources

Computing resources are composed of licenses, CPUs, memory and disk space.
This four quantities take in account four kind of resources: cost of software, time,
volatile space, permanent space. The main entity is the host, a host is a server
composed of a file system and a certain number of CPUs. The file system entity
is composed of a disk, a buffer cache and a list of files. Each operation on the
disk is mediated through the buffer cache, the buffer cache has a fixed size and
buffers are replaced using a last recently used (RLU) policy.

The disk entity represents an unlimited logical disk characterized by: sector
size, read time, write time, and a list of allocated sectors. The processes access
local data via files, because files are part of the file system every read or write
request is mediated by the file system and the buffer cache. File system metadata
is not stored on the disk. Read and write operations are queued in the same fifo

6.1. SIMULATOR DESIGN AND IMPLEMENTATION 51

queue. A file is modeled as an array of disk sectors, we have implemented two
kind of file: regular and fifo. The host filesystem is shared among all the processes
running on that host. Within our modeling any host can run any application.

License managers are the container for the licenses. Licenses are available on
a per-activity base, so each activity specifies to which license manager is bounded.
Several activities can be bounded to the same license manager and thus they will
share the use of the available licenses.

For the sake of our study the number of disk sectors and the memory at each
host are considered unlimited, furthermore the major costs in setting up a server
reside in the number of CPUs and in the license acquisition. Because the cost
associated to license acquisition can be considerer the major part of the total cost
for running a server, we assume that in each host there are unlimited resources
(memory, disk space and CPUs), or in other words there are enough resources
to run solvers, services and accessory processes (downloader and uploader) in a
smooth way.

6.1.4 Networking

The network is implemented as a graph in which vertex are represented by hosts
and edges are represented by unidirectional links. Each link is characterized by
two static parameters: i) capacity and ii) delay and it is dynamically charac-
terized by three properties:i) the set of the open connections, ii) the set of data
chunks entering the link and iii) the set of chunk travelling through the link.
Delay represents the time spent by data chunks through the link while capacity
represents the speed at which data enter the link. Multiple processes can send
data through an open connection and they share the link capacity that is equally
shared by the processes.

Processes create connections over a specified link in respond to a file transfer
request, then they write and read data to and from the connection a chunk at
time. A chunk is a unit of data with a size equal to the disk sector size.

6.1.5 Workflow Execution

The workflow management system (WfMS) is the main entity involved in work-
flows execution. The same WfMS can handle more requests and more workflow
schema. A WfMS contains a list of known workflow schema with the associated
admission control. The admission control is the module responsible for control-
ling the number of the instance or enactment of the same workflow schema for
that WfMS. Each admission control module contains the logic for queuing the
incoming evaluation requests and it contains a specific control algorithm. The
control algorithm monitors the progress of evaluation invocation an adapt the
multiprogramming level of the admission control in accord with the implemented

52 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.1: Input/Output files kind and communication computation overlap.

policy.
Clients require the WfMS to execute a specific workflow schema, the WfMS

identifies the admission control for that workflow schema and forward an exe-
cutable workflow instance to it. Then the admission control enqueues the work-
flow instance. When the number of workflow instances running is below the mul-
tiprogramming level for that admission control workflow instances are fetched
from queue and they are started.

Workflow instance execution starts with the invocation of the service binded
to the start activity. Then according with the workflow execution advance, work-
flow schema and the communication computation overlap pattern, the workflow
engine invokes the next services. Services are wrapper to solvers, each service
is responsible for downloading input data from previous services, invoking the
solver and uploading output data toward next services. Solvers represent the
specific software to invoke to transform input data into output data. Depending
on the communication computation overlap pattern solvers read and write to
regular files (in absence of pipelining) or to fifo files (when using pipelines), see
Figure 6.1.

Solvers are characterized by three static parameters: startup time and elabo-
ration speed. Startup time is the time required to start the solver and elaboration
speed is the speed at which the solver elaborates input data. Furthermore for
each solver output file is specified the size ratio when compared with the solver
input file. The solver works as follows, the solver is invoked by the service wrap-
per, it waits for the specified startup time, then till there is input data reads a
chunk of data from the input file, checkouts a license, elaborates the input data
at the specified elaboration speed, checks-in the license to the license manager,
and then writes the elaborated data to the output file.

To simulate variations in available resources we have introduced some pro-
cesses with the aim of perturbing the available resources. The optimization pro-
cess is modeled as a client of a specific WfMS. This process require workflows
evaluation in order with its submission policy as described in Section 3.2.

6.2. STATIC EXPERIMENTS 53

The model can be defined in two ways: i) via a Java API or ii) via an
XML description. The Java API lets us to program the simulator using the Java
language, while the XML definition let us to define a model without the need to
compile the definition itself and it simplifies the experiments parameterization.

6.1.6 Related Works

Simgrid is a simulation toolkit for the study of scheduling algorithms for dis-
tributed applications [17]. This toolkit is oriented toward the optimization of the
assignment of a set of tasks onto a set of resources. They define a schedule as the
assignment (in both time and space dimensions) of task to resources. Simgrid is
written in the C language, and it is based on an event-driven simulation.

There are three major components in the Simgrid models: i) resources, ii)
topology, and iii) tasks. Resources are modeled by two performance character-
istics: latency that is the time needed to access the resource and service rate
that is the speed at which the resource elaborates work units. Topology defines
the interconnection between resources. In Simgrid there are two types of tasks:
computing and transfer tasks. Computing task are CPU bounded while transfer
tasks are bandwidth bounded, aside this distinction the simulator does not differ-
entiate between computing and transfer task. At this time, the Simgrid toolkit
does not provide any facility to simulate file-systems and disk.

The whole Simgrid toolkit is composed a several layers, to take advantage of
the resource and the topology management our simulator have been interfaced
with the MSG layers. While the different implementation technologies, Java
and C, did not prove to be an obstacle to the integration, the very different
nature of the two event-driven simulator engine threading model revealed that the
integration could deal with only a very limited number of concurrent processes.

GridSim is a Grid simulation toolkit for resource modeling and application
scheduling for parallel and distributed computing [33]. This Java-based toolkit
is aimed at the investigation of effective resource allocation techniques based on
computational economy over large scale grids. Simgrid provides a very limited
network implementation that is not able to describe all the aspects considered in
this thesis.

6.2 Static Experiments

This scenario and suite of experiments have been included in [67]. We consider
a workload consisting of a specified number of jobs. We conducted experiments
on a simple workflow schema, composed of four identical services serially con-
nected as shown in Figure 6.2. In each scenario, we study the behavior of a block
optimization scheduler, i.e., one injecting a batch of candidate designs when the
previous batch has been completed, and that of a steady optimization scheduler,

54 CHAPTER 6. EXPERIMENTS AND RESULTS

i.e., one injecting a new design as soon as evaluation of the previous one has
completed.

Moreover, we study all these scenarios under two different patterns for com-
munication computation overlap, one in which a service starts only when all input
data have been downloaded (NoPipe) and one in which a service starts as soon as
the first chunk of input data is available (FullPipe). Our analysis provides useful
insights into the numerous trade-offs involved in the implementation of such a
complex scenario. We assume that at each stage the size of the output data is
equal to the product of the size of input data for the output/input ratio, each
service behaves as described in Section 4.3.

We performed a number of experiments around a working point described by
the parameter values in Table 6.1. The buffer cache size is expressed in number of
disk sectors. We modeled the disk access times as random variables with uniform
distribution. We modeled link delay and bandwidth as random variables with
normal distribution, with standard deviation equal to 1/10 of the mean value.

Figure 6.2: Serial workflow schema.

Table 6.1: Working Point

Parameter value
Buffer Cache Size 100000
Minimum Disk Read Time [s] 0.001
Maximum Disk Read Time [s] 0.002
Minimum Disk Write Time [s] 0.0002
Maximum Disk Write Time [s] 0.0004
Sector Size [B] 8192
Initial Data Size [B] 1000000
Multiprogramming Level 10
StartUp Time [s] 30
Elaboration Speed [B/s] 65536
Output/Input Ratio 1.1
Mean Link Delay [s] 0.001
Number of Batches 20

All the experiments have been conducted with both storage architectures

6.2. STATIC EXPERIMENTS 55

(centralized vs. distributed), with both scheduler policies (block vs. steady) and
with two computation communication overlap pattern: NoPipe and FullPipe.
This analysis has enabled us to gain insights into the relationships between the
numerous systems available. We remark, however, that the modules used in con-
temporary design optimization systems may restrict such choices. In particular,
some optimization algorithms are inherently steady while others are inherently
block based. Moreover, the majority of solvers do not support the FullPipe com-
munication computation overlap pattern.

The following three subsections show the obtained results. The first is related
to the NoPipe pattern, the second is related to the FullPipe pattern and the third
describes the results in an aggregated way. Each plotted value on the charts is
the mean of 20 simulation runs.

6.2.1 Results for NoPipe

Figure 6.3 shows throughput as a function of link bandwidth (note the logarithmic
scale on the Y-axis). For small network bandwidth values, bandwidth is the
system bottleneck then for larger values system throughput becomes independent
from the bandwidth, the storage architecture and the scheduler policy. The
steady policy achieves greater throughput than the block policy, the distributed
storage achieves greater throughput than the centralized one.

It can be seen that when the link bandwidth is the system bottleneck, a
Steady scheduler achieves better throughput than a Block scheduler. The im-
provement is about 200% for bandwidth in the range 10000-100000 B/sec, which
may be representative of the bandwidth available in a WAN environment. As
expected, when the bandwidth is no longer an issue, throughput is limited by
other bottlenecks and becomes independent of both the storage architecture and
scheduler policy.

Figure 6.4 describes the effect of the storage architecture. It shows the ratio
of throughput with distributed storage to throughput with centralized storage. It
can be seen that a distributed storage is always beneficial for a block scheduler,
whereas for a steady scheduler the difference in the two cases is less sensible.
Obviously, when the link bandwidth is no longer a bottleneck, whether the ar-
chitecture is distributed or centralized becomes irrelevant from the point of view
of throughput (ratio tends to 1).

Figure 6.5 shows the service lifespan measured on the fourth stage of the
workflow schema versus the link bandwidth. It can be seen that the centralized
storage guarantees a lower lifespan (note that the Y-axis has a logarithmic scale).
The improvement over the distributed storage is about 100% for bandwidth in
the range 10000-100000 B/sec, which may be representative of the bandwidth
available in a WAN environment.

Figure 6.6 shows the effect of the storage architecture, in terms of ratio of

56 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.3: NoPipe throughput.

Figure 6.4: NoPipe throughput ratio (Distributed/Centralized).

service lifespan in the distributed case vs. service lifespan in the centralized case.
Once again, distribution is more beneficial for a block scheduler especially when
the available bandwidth is small. The solver latency is not shown because with
the NoPipe pattern it is essentially independent of the link bandwidth.

6.2.2 Results for FullPipe

Figure 6.7 shows the throughput versus the link bandwidth, almost all curves
are superimposed (on a logarithmic scale) within an envelope less than 10%.
Figure 6.8 shows the throughput speedup and it confirms that the maximum

6.2. STATIC EXPERIMENTS 57

Figure 6.5: NoPipe service lifespan.

Figure 6.6: NoPipe service lifespan ratio (Distributed/Centralized).

throughput difference between centralized and distributed storage is around 10%.
Figure 6.9 shows the service lifespan versus the link bandwidth, Figure 6.10 shows
the latency ratio of the service lifespan measured with the distributed and the
centralized storage. With the considered bandwidth range and with the FullPipe
pattern, throughput and service lifespan are practically unaffected by the sched-
uler and the storage architecture.

Figure 6.11 shows the solver latency versus the link bandwidth. The solver
latency with the block scheduler is greater than the solver latency with the steady
scheduler, and the solver latency with the distributed storage is greater than

58 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.7: FullPipe throughput.

Figure 6.8: FullPipe throughput ratio (Distributed/Centralized).

solver latency with the centralized storage. Note that Figure 6.11 also includes
the solver latency for the NoPipe pattern (this value is constant for the entire
bandwidth range).

Figure 6.12 shows the solver latency ratio of the solver latency measured with
the distributed and the centralized storage. For low bandwidth values distributed
storage with the steady scheduler experiences a slowdown ranging from about 20%
to about 90%.

6.2. STATIC EXPERIMENTS 59

Figure 6.9: FullPipe service lifespan.

Figure 6.10: FullPipe service lifespan ratio (Distributed/Centralized).

6.2.3 Aggregated Results

Figure 6.13 shows the ratio of throughput with the FullPipe pattern to the NoPipe
pattern. This Figure says to us that, as long as the bandwidth is a bottleneck, we
could have a significant throughput improvement when connecting the services
in a data pipeline. On the other hand Figure 6.14 shows that the communication
computation pattern has not a great impact on the service lifespan, the ratio of
FullPipe to NoPipe pattern is never greater than 1.5 and in certain conditions
it is lower than 1. Under such condition the FullPipe pattern is preferable also
from the point of view of the service cost.

60 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.11: FullPipe solver latency.

Figure 6.12: FullPipe solver latency ratio (Distributed/Centralized).

6.2.4 Discussion

A first significant finding is that when link bandwidth is an issue storage architec-
ture, scheduler policy, communication computation overlap pattern may all have
a significant impact on performance. Although this result is not completely un-
expected, it was not obvious whether the performance implications of the various
implementation options are indeed significant. In particular, we found it difficult
to predict the effect of the interactions between them. According to our analysis,
on the other hand, it seems evident that when one moves to a bandwidth-limited
environment, the previously mentioned options do have a strong impact on per-

6.2. STATIC EXPERIMENTS 61

Figure 6.13: Throughput ratio (FullPipe/NoPipe).

Figure 6.14: Service lifespan ratio (FullPipe/NoPipe).

formance and thus they have to be analyzed carefully.
Said this, it would be useful to provide useful rules for selecting the implemen-

tation options most suitable for a given scenario. It is evident, though, that these
results cannot be used for predicting exactly the performance of any possible sce-
nario, because of the large numbers of parameters involved and, perhaps most
importantly, because the behavior of the overall system may be largely dependent
on the specific workflow schema used.

Having warned that these results cannot be generalized easily, the key advices
that we can be drawn from these simulations follow. Recall from the introduction

62 CHAPTER 6. EXPERIMENTS AND RESULTS

that throughput is the key performance index from the point of view of the user
of the design optimization system, whereas service cost and solver cost are the
indexes most relevant for the organizations that cooperate in the implementation
of the system.

• When bandwidth
elaborationspeed > mpl, it basically does not matter how the system is

implemented: all the options that we have analyzed exhibit more or less
the same performance. When bandwidth

elaborationspeed < mpl, on the other hand,
different options may lead to strong differences in performance.

• To maximize system throughput one should use a FullPipe overlap pattern.
From this point of view, this strategy is always to be preferred to NoPipe
even when bandwidth is not an issue (Figure 6.13). If FullPipe cannot be
used (recall that many existing solvers do not support this option), then
use of a steady scheduler is to be preferred over use of a block scheduler
(Figure 6.3). In this case, whether storage is centralized or distributed is not
very significant although distributed storage could provide some advantage.

• To minimize service cost one should use a centralized storage (Figure 6.5
and Figure 6.9). This conclusion is particularly useful, because a centralized
storage is far simpler to develop, deploy and manage than a distributed one.
A steady scheduler is to be preferred over a continuous one (Figure 6.6 and
Figure 6.10). The choice between NoPipe and FullPipe is not univocally
determined (Figure 6.14).

• To minimize solver cost one should use a NoPipe overlap pattern. We note,
also in this case, that NoPipe is much simpler to implement than FullPipe
and, in particular, directly supported by most existing solvers. Alterna-
tively we can obtain some minor improvements using a steady scheduler
(Figure 6.11).

• The steady scheduler is almost always preferable to the block scheduler.
Many generation based optimization schedulers have variations to run in a
steady–state way [66].

6.3 Controller with Static Environment

This scenario and suite of experiments have been partially included in [69]. This
section describe experiments and result for evaluating the behavior of two con-
trollers in a static environment. First of all performances have been evaluates, in
a variety of different scenarios, as a function of a constant multiprogramming level
(by keeping the invocation controller disabled.) Finally, the control algorithms
performances have been compared with the multiprogramming level leading to
the maximum throughput.

6.3. CONTROLLER WITH STATIC ENVIRONMENT 63

Table 6.2: Link parameters

Link Bandwidth Bandwidth Latency Latency
Speed Mean [KB/s] StdDev Mean [ms] StdDev
High 977 97.7 0.1 0.01
Normal 97.7 9.77 1 0.1

Table 6.3: Working point

Parameter Value
Buffer Cache Size 100000
Minimum Disk Read Time [s] 0.001
Maximum Disk Read Time [s] 0.002
Minimum Disk Write Time [s] 0.0002
Maximum Disk Write Time [s] 0.0004
Sector Size [B] 8192
Initial Data Size [B] 1000000
Start Up Time [s] 30
Elaboration Speed [B/s] 65536
Output/Input Ratio 1.1

We considered a workflow schema composed of four identical services con-
nected as a pipeline (Figure 6.2). Each experiment is characterized by the follow-
ing parameters: i) communication computation overlap pattern, either NoPipe
or FullPipe Section 4.5; ii) number of licenses, either 1, 10, 20 or 100; iii) link
quality, either Normal, High (Table 6.2.) The remaining parameters are sum-
marized in Table 6.3, buffer cache size is expressed in number of blocks. Each
experiment refers to a session composed of 10000 jobs. It is assumed that at any
time, there is always at least one job submitted at the composite service and
waiting to be executed (except when the session is about to complete).

6.3.1 Results for Constant Multiprogramming Level

The throughput results with constant multiprogramming level and invocation
controller disabled are summarized in Figure 6.15 and 6.16, for the Normal and
High link type, respectively. Each graph contains 8 curves, one for each combi-
nation of the pair communication computation overlap (NoPipe, FullPipe) and
number of licenses (1, 10, 20, 100). Recall that throughput is measured across
all jobs composing a session, thus the time for completing a session is the inverse
of the throughput.

By comparing the values for the maximum throughput in the two figures

64 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.15: Throughput for constant multiprogramming level (batch size) with
normal quality links.

Figure 6.16: Throughput for constant multiprogramming level (batch size) with
high quality links.

(note the different scale on the Y-axis) we deduce that with the Normal link
type throughput is ultimately bounded by the capacity of the links. With the
High link type, instead, the bottleneck is the number of licenses. We also note
that: i) with the High link type, the saturation point for 100 licenses is reached
for multiprogramming levels beyond those analyzed in our experiments; ii) the
FullPipe pattern generally reaches the maximum throughput with a multipro-
gramming level smaller than the NoPipe pattern; iii) with the Normal link type
and a large number of licenses, increasing the multiprogramming level may (very
slightly) result in a form of thrashing.

The most important observation, though, is this: the minimum multipro-
gramming level leading to saturation depends significantly on the communica-
tion computation overlap pattern, the number of licenses, the link properties.

6.3. CONTROLLER WITH STATIC ENVIRONMENT 65

Figure 6.17: Composite service time for constant multiprogramming level (batch
size) with normal quality links.

Figure 6.18: Composite service time for constant multiprogramming level (batch
size) with high quality links.

We made similar experiments by varying the size of a job (in terms of input and
output data) and obtained qualitatively identical results. Indeed, the effects of a
larger job are very similar to those of a slower link.

The composite service time results with constant multiprogramming level
and invocation controller disabled are summarized in Figure 6.17 and 6.18, for
normal and high quality links, respectively. Each graph contains eight curves,
with the same notation as above. The composite service time grows linearly with
the multiprogramming level, the slope being dependent on the actual system
parameters. The worst results (i.e., highest slope) are consistently those with 1
license.

These results confirm and corroborate the points made in Section 5.1. The
value for the multiprogramming level must be a trade-off between two conflict-

66 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.19: Throughput ratio (adaptive/best constant.)

ing needs, namely maximizing throughput while minimizing the composite ser-
vice time (which determines the overall cost at the participating organizations).
Unfortunately, selecting a suitable value is very hard. The minimal multipro-
gramming level leading to maximum throughput depends on many factors in a
way that is hardly predictable; and, some of these factors may be unknown or
changing in a hardly predictable way (e.g., link properties).

6.3.2 Results for Adaptive Multiprogramming Level

In this section the results obtained with invocation controller enabled are pre-
sented. To simplify their understanding we present them by using those found in
the previous section as baseline.

Figure 6.19 shows the throughput results. There is one row for each scenario
analyzed in the previous section. The value in each row is the ratio between
i) throughput obtained with invocation controller enabled and ii) the maximum
throughput that could be achieved with invocation controller disabled and con-
stant multiprogramming level. For example, for the scenario with 10 licenses,
NoPipe and normal quality links, the maximum throughput is 6.56E-2 while
with the invocation controller the throughput reached 5.41E-2, thus the ratio is
0.83.

It can be seen that with 1 and 10 licenses the invocation controller reached a
throughput quite close to the maximum attainable throughput (that, we remark
once again, may be obtained with a multiprogramming level value that could not
be known in advance). The worst throughput is that of the scenario “NoPipe, 10
licenses, High link type”, slightly below 75% of the optimal value. With 20 and
100 licenses, similar remarks can be made for all the scenarios with a normal link
type.

With a High link type and more than 20 licenses, instead, the loss in through-

6.3. CONTROLLER WITH STATIC ENVIRONMENT 67

Figure 6.20: Composite service time ratio (adaptive/best constant.)

put is more substantial: less than 50% of the maximum throughput. The reason
for this this unsatisfactory behavior is that the control algorithm increases the
multiprogramming level in a very conservative way. When the optimal value is
very high (recall the shape of Figure 6.16 with 20 and 100 licenses) reaching a
good multiprogramming level value may take a long time.

Figure 6.20 shows the composite service time results in the same scenarios
as above. Timed controller performances have been evaluated by using the same
operating condition as in the previous table. That is, the baseline is the time
corresponding to the minimum multiprogramming level leading to the maximum
throughput (i.e., the throughput assumed as baseline in the previous table). The
value in each row is the ratio between i) composite service time with invocation
controller enabled and ii) baseline composite service time. For example, for the
scenario with 10 license, NoPipe and a normal quality link, the composite service
time related to the maximum throughput is 1530s while using the invocation
controller the composite service time is 414s, thus the ratio is 0.27.

In other words, the figure shows the reduction in cost (across all the organiza-
tions) when using the adaptive invocation controller. This is the most meaningful
comparison, as one could minimize the cost (composite service time) by simply
using a very small multiprogramming level, e.g., by injecting only one job at a
time. Of course, in that case throughput would collapse.

Consistent reduction of the cost is observed in nearly all cases. The only ex-
ception being two of the scenarios with 1 license. In these two cases, however, we
may argue that the increase is very moderate and could be more than compen-
sated for by the ability of finding a “sufficiently good” multiprogramming level
value in a fully automatic and adaptive way. We plan to address also this issue,
however.

To summarize, the mechanism is indeed capable of trading off a small loss

68 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.21: Resource availability level with linear decrease perturbation.

Figure 6.22: Resource availability level with linear increase perturbation.

in throughput against a decrease in the cost at the participating organizations.
From the point of view of clients, completing a session would thus take slightly
longer. From the point of view of the participating organizations, however, ex-
ecuting a session would consume less resources. Each organization would thus
need less resources for executing a given amount of work, thereby enabling the
accommodation of further additional workloads, either within the organization
or submitted from the outside.

6.4 Perturbations

Real world conditions are never static, in this thesis, to mime perturbations on
resource availability, four types of perturbation on the working conditions are
considered:

• linear decrease,

• linear increase,

• correlated decrease,

• correlated increase.

With the linear decrease perturbation (see Figure 6.21) the level of a re-
source is decreased with a fixed periodicity, similarly with linear increase (see
Figure 6.22) the level of a resource is increased with a fixed periodicity. Instead
with the correlated decrease (see Figure 6.23) the level of the resource is decreased

6.4. PERTURBATIONS 69

Figure 6.23: Resource availability level with correlated decrease perturbation.

Figure 6.24: Resource availability level with correlated increase perturbation.

for a time dependent on the optimization process advancing, similarly with the
the correlated increase (see Figure 6.24) the level of the resource is increased for
a time dependent on the optimization process advancing.

To have a better evaluation of the control algorithms, the algorithms have
been tested with these perturbations. These perturbations do not pretend to
represent a real world case but they represent some repeatable patterns in which:
resources decrease or increase in a fixed way or in which resources temporarily
increase or decrease.

In the performed experiments the variated resource is the number of licenses at
the second stage of the four stage sequential workflow (see Figure 6.2). With the
correlated perturbations each experiment has been subdivided in three intervals,
during the middle subdivision the perturbation takes place: the number of licenses
available at the second stage is decreased to 10% of its initial (and final) value,
or is increase to 10 times the initial value. For example, in an experiment with
at maximum 20 licenses, the perturbation reduces the number of licenses from
20 to two (with the decrease perturbation) or it increases the number of licenses
from two to 20 (with the increment perturbation).

With the linear perturbations after a number of completed evaluations equals
to one third of the total number of evaluations, the perturbation start to take
places, it acquire or release one license at time with a fixed period, the period
is independent on the other condition of the experiment. Based on the speed
at which elaborations proceed certain experiments could end before the pertur-
bation termination while other could terminate after the transient part of the

70 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.25: Throughput for 2nd stage perturbation: low quality links (up), high
quality links (down).

perturbation.

6.5 Controller with Dynamic Environment

This scenario and suite of experiments have been included in [68]. The focus of
this section is the ability of controllers to react and adapt to changes in the envi-
ronment, i.e., to unexpected changes to parameters that may affect performance.
The unexpected changes are simulated by a correlated decrease perturbation de-
scribed in Section 6.4. The setting of the simulation is the same as in previous
Section 6.3, each experiment refers to a session composed of 10000 jobs.

In order to interpret the results a baseline for each experiment has been
determined, the baseline is defined on an hypothetical controller using a statically
defined and immutable multiprogramming level. Each combination of parameters
produces a curve throughput vs. MPL and composite service time vs. MPL.
These curves enable to identify the throughput-optimal multiprogramming level

6.5. CONTROLLER WITH DYNAMIC ENVIRONMENT 71

Figure 6.26: Composite service time for 2nd stage perturbation: low quality links
(up), high quality links (down).

value for that combination of parameters. In practice, this value cannot be known,
as it would require the knowledge of the perturbation that will affect the session.
We also remark that the performance baseline is not necessarily the best that
can be achieved: it is the best choice only when the multiprogramming level is
selected statically.

6.5.1 Results for One Stage Perturbation

Figure 6.25 and 6.26 show throughput and composite service time in all the 24
analyzed scenarios. These scenarios are all the combinations of: link quality
(low, high), available licenses (10, 20, 100), and the communication computation
overlap patterns (NoPipe, FullPipe, InputPipe, OutputPipe).

It can be seen that, broadly speaking, the controllers are indeed capable
of delivering reasonably good throughput even without any apriori knowledge
about the system parameters. Moreover, they do so in spite of the substantial
perturbation injected into the system.

72 CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.4: Link parameters

Link Bandwidth Bandwidth Latency Latency
Speed Mean [KB/s] StdDev Mean [ms] StdDev
Very High 9770 977 0.01 0.001
High 977 97.7 0.1 0.01
Normal 97.7 9.77 1 0.1

With regard to throughput (Figure 6.25) it can be seen that the TIMED
controller obtains always greater throughput than TCP like controller for all
scenarios. In many cases the TIMED controller throughput is comparable with
the baseline and it reaches the 95% of the baseline for 10 FullPipe for both low
and high quality links. For low quality links TCP like controller throughput is
always above 60% of the baseline. It can be seen that the benefits of our proposal
are less significant for high quality links and when the number of license is high.

Concerning the composite service time, Figure 6.26 shows that for low quality
links the TCP like controller composite service time is similar to the TIMED
controller composite service time, with the exception of 10 FullPipe they are
always lower than the baseline. For high quality links the composite service
times obtained by the Timed and the TCP like controller are considerably lower
than the baseline, ranging from 10% to 70% of the baseline.

6.6 Complete Suite of Experiments

This scenario and suite of experiments have been included in [71]. To improve
and to further test controller algorithms behavior, the suite of experiments have
been augmented to include all the four perturbations described in Section 6.4 and
all the four controller algorithms described in Section 5.3.

The test case is similar to the one described in the previous sections. We con-
sidered a workflow schema composed of four identical services serially connected
(Figure 6.2). Each experiment is characterized by the following parameters:
i) communication computation overlap pattern: NoPipe, InputPipe, FullPipe
or OutputPipe; ii) number of licenses, either 10 or 100; iii) links quality: Nor-
mal, High or Very High (see Table 6.4); iv) perturbation: linear increase, linear
decrease, correlated increase or correlated decrease. The remaining parameters
are summarized in Table 6.5, buffer cache size is expressed in number of blocks.
Each experiment refers to a session composed of 1000 jobs. It is assumed that at
any time, there is always at least one job submitted at the composite service and
waiting to be executed (except when the session is about to complete).

6.6. COMPLETE SUITE OF EXPERIMENTS 73

Table 6.5: Working point

Parameter Value
Buffer Cache Size 100000
Minimum Disk Read Time [s] 0.001
Maximum Disk Read Time [s] 0.002
Minimum Disk Write Time [s] 0.0002
Maximum Disk Write Time [s] 0.0004
Sector Size [KB] 64
Initial Data Size [MB] 64
Start Up Time [s] 30
Elaboration Speed [B/s] 65536
Output/Input Ratio 1.1

Figure 6.27: Performances in static environment (10 licenses, Very High quality
links, FullPipe.)

74 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.28: Performances in environment with correlated decrease perturbation
(10 licenses, Very High quality links, FullPipe.)

Figure 6.29: Performances in environment with linear decrease perturbation (10
licenses, Very High quality links, FullPipe.)

6.6. COMPLETE SUITE OF EXPERIMENTS 75

Figure 6.30: Performances in environment with correlated increase perturbation
(10 licenses, Very High quality links, FullPipe.)

Figure 6.31: Performances in environment with linear increase perturbation (10
licenses, Very High quality links, FullPipe.)

76 CHAPTER 6. EXPERIMENTS AND RESULTS

For the sake of brevity we show only the results for the combination of 10 li-
censes, with links of Very High quality and FullPipe communication computation
overlap pattern. Results for the other combinations of parameters are similar to
those described in the previous sections.

Figures 6.27, 6.28, 6.29, 6.30, and 6.31 contains two charts. The chart on
the left plots the considered performance indexes (throughput, latency, compos-
ite service time, composite solver time, and objective index) against a static
multiprogramming level. The chart on the right is a scatter chart plotting the
throughput against the composite service time, green dots represent multipro-
gramming level values belonging to the pareto frontier. Furthermore, the scatter
chart contains a point for each controller algorithm, this point represents the
performance of the algorithm in terms of final throughput and service composite
time.

Both for the static case (Figure 6.27) and the cases affected by perturbation
(Figures 6.28, 6.29, 6.30, and 6.31), it can be seen that because of the very high
links quality, the throughput does not denote any trashing, i.e. throughput curves
are almost always monotonic. Other performance indexes behave as described in
Section 5.1.

Results for the correlated decrease (see Figure 6.23) and correlated increase
(see Figure 6.24) are quite similar both in terms of scale and shape. With the
correlated decrease perturbation, throughput ranges from 2,1E-3 to 7,7E-3 and
service composite time ranges from 3,7E2 to 5,2E3, while with the correlated
increase perturbation, throughput ranges from 2,1E-3 to 6,1E-3 and composite
service time ranges from 3,7E2 to 6,1E3. Because for these two perturbations the
amount of resources is equivalent for 2/3 of the simulated sessions, this similarity
is not totally unexpected.

The most interesting case, shown in Figure 6.29, is with the linear decrease
perturbation. With this perturbation, the number of licenses, for executing the
solver at the second stage of the workflow, are decreased at a constant rate. At
the beginning of the session there are much more resources than at the end.
Quite surprisingly, composite service time is no more monotonic, this means that
a higher constant multiprogramming level could lead to a greater throughput
and a lesser composite service time. This perturbation makes more difficult
the manual choice of a good multiprogramming level. As stated in Chapter 5,
medium values of multiprogramming level usually give a good trade-off between
the reduction of the cost and the speed up, but in this case they give the worst
results.

As shown in Figure 6.27, because of their transient and dynamic behavior,
controllers cannot outperform a constant multiprogramming level in a static en-
vironment. Constant multiprogramming level is always the best choice in a static
environment. On the other hand inter-organizational and Internet-based appli-

6.6. COMPLETE SUITE OF EXPERIMENTS 77

cations do not deal with static environments.

Table 6.6: Dominating multiprogramming levels, for 10 licenses, Very High qual-
ity links and FullPipe overlap pattern.

Perturbation Parabola Derivative TIMED TCP Like
Static 5 4 4 9
Correlated Decrease 1 0 3 0
Linear Decrease 3 0 0 0
Correlated Increase 7 0 0 0
Linear Increase 0 0 0 0

Table 6.7: Dominated multiprogramming levels, for 10 licenses, very high quality
links and FullPipe overlap pattern.

Perturbation Parabola Derivative TIMED TCP Like
Static 0 0 0 0
Correlated Decrease 0 1 0 6
Linear Decrease 0 6 6 3
Correlated Increase 0 0 2 6
Linear Increase 0 4 4 5

With respect to each controller algorithms and for each scenario, we define
the number of dominated MPLs as the number of multiprogramming levels that
exhibits a throughput lower and a composite service time greater than the con-
troller. Similarly we define the number of dominating MPLs as the number of
multiprogramming levels that exhibits a throughput greater and a composite
service time lower than the controller.

Table 6.6 shows the number of dominating MPLs for each combination of
controller algorithm and perturbation. Especially in the static environment, as
stated above, we expect a certain number of MPLs be able to dominate the
controllers algorithms. For example, there are five levels of multiprogramming
dominating the Parabola controller, four dominating both the TIMED and the
Derivative controllers, and nine dominating the TCP Like controllers. When per-
tubations affect the system performances, the Parabola controller is still domi-
nated by constant MPLs for all perturbations but linear decrease, this algorithm
suffers a sort of overfitting. Other controllers start to behave as expected and,
excluding the TIMED controller with the correlated decrease perturbation, no
constant multiprogramming level is able to dominate the algorithms.

Table 6.7 shows the number of dominated MPLs for each combination of con-
troller algorithm and perturbation. Again, in the static environment, controllers

78 CHAPTER 6. EXPERIMENTS AND RESULTS

are not able to dominate constant multiprogramming levels. Moving toward ex-
periments with perturbations, the controller algorithms start to dominate some
multiprogramming levels.

Conclusion

Organizational-wide and inter-organizational computing systems cannot rely on
human tuning and should be able to tune themselves to maximize performance
on a continuous basis and in a non-intrusive fashion, monitoring the system
load and performance. To do so underlying middleware should be based on au-
tonomic management. Autonomic management encompasses several attributes
such as self-healing, self-provisioning, self-optimizing (load-balancing), and self-
configuring. Ideally, human administrators only need to set high level goals in
form of utility functions to hint the system in which dimensions to maximize first.

The scheduling of jobs in application-level workflows may have substantial
effects on performance. Workflows resulting from the Internet-based aggregation
of resources exported by multiple organizations are especially challenging from
this point of view. The task is complicated further by the very same nature of
this scenario, in which there are many performance critical parameters whose
values can hardly be known in advance and that can change dynamically and
unpredictably.

Additional workloads injected by other competing activities are just one of
the many possible causes for this dynamism. In this thesis the above scenario
has been addressed by proposing job scheduling policies capable of controlling
job scheduling adaptively, based on simple measures on the current status of the
system. These policies are based on a mechanism simple to deploy in practice
that, in particular, does not need any hook from the organizations participating
in the workflow.

This proposal has been evaluated in detail, by simulation, and this work
proves that it is indeed capable of finding automatically a suitable trade-off be-
tween throughput and cost, in spite of the fact that both parameters and their
variations are unknown. Although this analysis needs to be broaden toward fur-
ther forms of perturbation, such results are quite encouraging. This proposal
may be an effective way to cope efficiently and automatically with the myriad of
performance-critical factors that may be unknown, may vary unpredictably and
are beyond the control of the scheduling machinery.

79

Bibliography

[1] W. Aalst. The application of petri nets to workflow management. The Journal of
Circuits, Systems and Computers, 8(1):21–66, 1998. [cited at p. 27]

[2] S. Abdelwahed, N. Kandasamy, and S. Neema. A control-based framework for self-
managing distributed computing systems. In WOSS ’04: Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems, pages 3–7, New York, NY,
USA, 2004. ACM Press. [cited at p. 18, 19]

[3] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web server
end-systems: A control-theoretical approach. IEEE Trans. Parallel Distrib. Syst.,
13(1):80–96, 2002. [cited at p. 17, 18]

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Springer Verlag, 2004. [cited at p. 9]

[5] G. Alonso, B. Reinwald, and C. Mohan. Distributed data management in workflow
environments. In 7th International Workshop on Research Issues in Data Engineer-
ing (RIDE ’97) High Performance Database Management for Large-Scale Applica-
tions, page 82, Los Alamitos, CA, USA, 1997. IEEE Computer Society. [cited at p. 35]

[6] J. April, F. Glover, J. P. Kelly, and M. Laguna. Simulation-based optimization:
practical introduction to simulation optimization. In WSC ’03: Proceedings of the
35th Winter simulation conference, pages 71–78, 2003. [cited at p. 8]

[7] W. Y. Arms, S. Aya, M. Calimlim, J. Cordes, J. Deneva, P. Dmitriev, . G. Jo-
hannes Gehrke2, L. Gibbons, C. D. Jones, V. Kuznetsov, D. Lifka, M. Riedewald,
D. Riley, A. Ryd, and G. J. Sharp. Three case studies of large-scale data flows. In
ICDEW’06: 22nd International Conference on Data Engineering Workshops, pages
66–75, Los Alamitos, CA, USA, 2006. IEEE Computer Society. [cited at p. 7]

[8] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete–Event System Simu-
lation. Prentice–Hall, Upper Sadder River, New Jersey, 4d edition, 2005. [cited at p. 8]

[9] A. Bartoli, R. Jiménez-Peris, B. Kemme, C. Pautasso, S. Patarin, S. Wheater, and
S. Woodman. The adapt framework for adaptable and composable web services.
IEEE Distributed Systems On Line, Sep 2005. Web Systems Section. [cited at p. 7]

81

82 BIBLIOGRAPHY

[10] BEA, IBM, Microsoft, SAP AG and Siebel Systems. Business Process Exe-
cution Language for Web Services Version 1.1, 2003. http://www.ibm.com/

developerworks/library/specification/ws-bpel/. [cited at p. 28]

[11] V. Bhat, M. Parashar, H. Liu, N. Kandasamy, M. Khandekar, S. Klasky, and S. Ab-
delwahed. A self-managing wide-area data streaming service. Cluster Computing,
10(4):365–383, Dec 2007. [cited at p. 18, 19, 20, 35, 36]

[12] R. Bose and J. Frew. Lineage retrieval for scientific data processing: a survey. ACM
Comput. Surv., 37(1):1–28, 2005. [cited at p. 29]

[13] K. Botros, D. Sennhauser, K. Jungowski, G. Poissant, H. Golshan, and J. Stoffregen.
Effects of dynamic penalty parameters on the convergence of moga in optimization
of a large gas pipeline network. In 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Aug. 2004. [cited at p. 8]

[14] E. K. Boulougouris, A. D. Papanikolaou, and G. Zaraphonitis. Optimization of
arrangements of ro-ro passenger ships with genetic algorithms. Ship Technology
Research, 51(3):99–105, 2004. [cited at p. 8]

[15] M. J. Carey, S. Krishnamurthi, and M. Livny. Load control for locking: the
“half-and-half” approach. In PODS ’90: Proceedings of the ninth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 72–84, New
York, NY, USA, 1990. ACM Press. [cited at p. 15]

[16] Y. Carson and A. Maria. Simulation optimization: methods and applications. In
WSC ’97: Proceedings of the 29th Winter simulation conference, pages 118–126,
New York, NY, USA, 1997. ACM Press. [cited at p. 23]

[17] H. Casanova, A. Legrand, and M. Quinson. Simgrid: a generic framework for large-
scale distributed experimentations. In UKSIM/EUROSIM ’08: Proceedings of the
10th IEEE International Conference on Computer Modelling and Simulation, 2008.
[cited at p. 49, 50, 53]

[18] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for scheduling
parameter sweep applications in grid environments. In HCW ’00: Proceedings of the
9th Heterogeneous Computing Workshop, page 349, Washington, DC, USA, 2000.
IEEE Computer Society. [cited at p. 13]

[19] F. Casati, S. Ilnicki, L. jie Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive
and dynamic service composition in eflow. In CAiSE ’00: Proceedings of the 12th
International Conference on Advanced Information Systems Engineering, pages 13–
31. Springer-Verlag, 2000. [cited at p. 7]

[20] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized orchestration
of composite web services. In WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, pages 134–143,
New York, NY, USA, 2004. ACM Press. [cited at p. 14]

[21] H. Chen and P. Mohapatra. Session-based overload control in QoS-aware Web
servers. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE INFOCOM 2002), volume 2, pages 516–524.
IEEE, June 2002. [cited at p. 17]

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/

BIBLIOGRAPHY 83

[22] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Frame-
work, 2004. http://www-106.ibm.com/developerworks/library/wsresource/

ws-wsrf.pdf. [cited at p. 20]

[23] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, 1(1):25–39, 2003.
[cited at p. 29]

[24] DESMO–J. The DESMO–J homepage, 2000. http://www.desmoj.de. [cited at p. 49]

[25] D. Dyachuk and R. Deters. Optimizing performance of web service providers. In 21st
International Conference on Advanced Networking and Applications (AINA ’07),
volume 0, pages 46–53, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
[cited at p. 16]

[26] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for transparent
admission control and request scheduling in e-commerce web sites. In WWW ’04:
Proceedings of the 13th international conference on World Wide Web, pages 276–
286, New York, NY, USA, 2004. ACM Press. [cited at p. 17]

[27] Esteco. modeFRONTIER, 2007. [cited at p. 8]

[28] Y. Fu, B. Kachnowski, and E. Lee. Occupant model correlation using a multiob-
jective evolution strategy. In 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2004. [cited at p. 8]

[29] A. Gaiddon, D. D. Knight, and C. Poloni. Multicriteria design optimization of a
supersonic inlet based upon global missile performance. Journal of Propulsion and
Power, 20(3):542–558, 2004. [cited at p. 8]

[30] A. Giassi, F. Bennis, and J. J. Maisonneuve. Multidisciplinary design optimisa-
tion and robust design approaches applied to concurrent design. Structural and
Multidisciplinary Optimization, 28(5):356–371, 2004. [cited at p. 8]

[31] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers. Examining the challenges of scientific workflows.
Computer, 40(12):24–32, Dec. 2007. [cited at p. 7, 9, 20]

[32] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to web services
architecture. IBM Sys. Journal, 41:170–177, 2002. [cited at p. 9, 20]

[33] GridSim. Gridsim: A grid simulation toolkit for resource modeling and applica-
tion scheduling for parallel and distributed computing. http://www.gridbus.org/
gridsim/, 2008. [cited at p. 53]

[34] H.-U. Heiss and R. Wagner. Adaptive load control in transaction processing systems.
In VLDB ’91: Proceedings of the 17th International Conference on Very Large Data
Bases, pages 47–54, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers
Inc. [cited at p. 15, 16, 17, 47]

http://www-106.ibm.com/developerworks/library/wsresource/ws-wsrf.pdf
http://www-106.ibm.com/developerworks/library/wsresource/ws-wsrf.pdf
http://www.desmoj.de
http://www.gridbus.org/gridsim/
http://www.gridbus.org/gridsim/

84 BIBLIOGRAPHY

[35] E. Hepp, O. Lohne, and S. Sannes. Extended casting simulation for improved mag-
nesium die casting. Magnesium: Proceedings of the 6th International Conference on
Magnesium Alloys and Their Applications, pages 669–674, Apr. 2005. [cited at p. 8]

[36] R. Jiménez-Peris, M. Patiño-Mart́ınez, and B. Kemme. Enterprise grids: Challenges
ahead. Journal of Grid Computing, 5(3):283–294, Sep. 2007. [cited at p. 36]

[37] W. E. Johnston. Semantic services for grid-based, large-scale science. Intelligent
Systems, 19(1):34–39, 2004. [cited at p. 29]

[38] M. Karlsson and M. Covell. Dynamic black-box performance model estimation
for self-tuning regulators. In ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing, pages 172–182, Washington, DC, USA, 2005.
IEEE Computer Society. [cited at p. 18]

[39] Y. Kitatsuji, K. Yamazaki, H. Koide, M. Tsuru, and Y. Oie. Influence of network
characteristics on application performance in a grid environment. Telecommunica-
tion Systems, 30(1-3):99–121, Nov 2005. [cited at p. 14]

[40] G. Kola, T. Kosar, J. Frey, M. Livny, R. Brunner, and M. Remijan. Disc: A system
for distributed data intensive scientific computing. In Proc. of First Workshop on
Real, Large Distributed Systems, December 2004., Dec 2004. [cited at p. 7]

[41] T. Kosar and M. Livny. Stork: making data placement a first class citizen in the
grid. In ICDCS’04: Proceedings of the 24th Internation Conference on Distributed
Computing Systems, pages 342–349, 2004. [cited at p. 35]

[42] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative Sys-
tem Performance - Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., 1984. [cited at p. 50]

[43] F. Leymann. The (service) bus: Services penetrate everyday life. In B. Benatallah,
F. Casati, and P. Traverso, editors, ICSOC 2005: Third International Conference
on Service-Oriented Computing, 2005. [cited at p. 19]

[44] D. Liu, J. Peng, K. H. Law, G. Wiederhold, and R. D. Sriram. Composition of
engineering web services with distributed data-flows and computations. Advanced
Engineering Informatics, 19:25–42, 2005. [cited at p. 35]

[45] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback control approach
for guaranteeing relative delays in web servers. In RTAS ’01: Proceedings of the
Seventh Real-Time Technology and Applications Symposium, page 51, Washington,
DC, USA, 2001. IEEE Computer Society. [cited at p. 17, 18]

[46] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039–1065, 2006.
[cited at p. 29]

[47] B. Ludäscher, I. Altintas, and A. Gupta. Compiling abstract scientific workflows
into web service workflows. In Conference on Scientific and Statistical Database
Management, 2003. 15th International, pages 251–254, 9-11 July 2003. [cited at p. 29]

BIBLIOGRAPHY 85

[48] J. J. Maisonneuve, S. Harries, J. Marzi, H. C. Raven, U. Viviani, and H. Piippo.
Towards optimal design of ship hull shapes. In Proceedings of the 8th International
Marine Design Conference, pages 31–42, 2003. [cited at p. 8]

[49] J. M. Milan-Franco, R. Jiménez-Peris, M. P. no Mart́ınez, and B. Kemme. Adap-
tive middleware for data replication. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 175–194, New
York, NY, USA, 2004. Springer-Verlag New York, Inc. [cited at p. 16]

[50] Oasis. UDDI Committee Specification, 2002. http://uddi.org/pubs/

ProgrammersAPI-V2.04-Published-20020719.htm. [cited at p. 20]

[51] M. P. Papazoglou and D. Georgakopoulos. Service oriented computing. Commun.
ACM, 46(10):24–28, 2003. [cited at p. 27]

[52] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-
puting: State of the art and research challenges. Computer, 40(11):38–45, Nov.
2007. [cited at p. 9]

[53] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using
control theory to achieve service level objectives in performance management. Real-
Time Syst., 23(1-2):127–141, 2002. [cited at p. 18]

[54] K. Pingali and P. Stodghill. A distributed system based on web services for computa-
tional science simulations. In ICS ’06: Proceedings of the 20th annual international
conference on Supercomputing, pages 297–306, New York, NY, USA, 2006. ACM
Press. [cited at p. 7, 14]

[55] S. Ponnekanti and A. Fox. SWORD: A developer toolkit for web service compo-
sition. In WWW2002: Proceedings of the 11th International WWW Conference,
2002. [cited at p. 7]

[56] D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors. Genetic Algorithms
and Evolution Strategies in Engineering and Computer Science. John Wiley and
Sons, West Sussex, England, 1997. [cited at p. 22, 24]

[57] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson. Design and evalu-
ation of load control in web server systems. In Proceedings of American Control
Conference, 2004. [cited at p. 17, 18]

[58] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and A. Wierman. How
to determine a good multi-programming level for external scheduling. In ICDE
2006: Proceedings of the 22nd International Conference on Data Engineering, Los
Alamitos, CA, USA, April 2006. IEEE Computer Society. [cited at p. 16]

[59] G. Singh, C. Kesselman, and E. Deelman. Optimizing grid-based workflow execu-
tion. Journal of Grid Computing, 3(3):201–219, 2005. [cited at p. 7, 14, 40]

[60] B. Srivastava and J. Koehler. Web service composition current solutions and open
problems. In In Proceedings of ICAP 03, 2003. [cited at p. 7]

[61] M. Stal. Web services: beyond component-based computing. Communications of
the ACM, 45(10):71–76, 2000. [cited at p. 9]

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

86 BIBLIOGRAPHY

[62] J. R. Swisher, P. D. Hyden, S. H. Jacobson, and L. W. Schruben. A survey of sim-
ulation optimization techniques and procedures. In J. Joines, R. Barton, K. Kang,
and P. Fishwick, editors, WSC ’00: Proceedings of the 32th Winter Simulation Con-
ference, pages 119–128, December 2000. [cited at p. 8]

[63] I. Taga, A. Funakubo, and Y. Fukui. Design and development of an artificial im-
plantable lung using multiobjective genetic algorithm: Evaluation of gas exchange
performance. ASAIO Journal, 51(1):92–102, 2005. [cited at p. 8]

[64] G. Teodoro, T. Tavares, R. Ferreira, T. Kurc, W. M. Jr., D. Guedes, T. Pan,
and J. Saltz. A run-time system for efficient execution of scientific workflows
on distributed environments. In SBAC-PAD ’06: Proceedings of the 18th Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’06), pages 81–90, Washington, DC, USA, 2006. IEEE Computer Soci-
ety. [cited at p. 7, 14]

[65] Transaction Processing Performance Council. TPC-App, 2007. http://www.tpc.

org/tpc_app/default.asp. [cited at p. 16]

[66] F. Vavak and T. C. Fogarty. Comparison of steady state and generational genetic
algorithms for use in nonstationary environments. In ICEC ’96: Proceedings of the
1996 IEEE International Conference on Evolutionary Computation, pages 192–195.
IEEE Press, 20-22 May 1996. [cited at p. 62]

[67] P. Vercesi and A. Bartoli. On the performance of inter-oganizational design optimiza-
tion systems. In WSC ’06: Proceedings of the 38th Winter simulation conference,
pages 1177–1186, 2006. [cited at p. 24, 35, 53]

[68] P. Vercesi and A. Bartoli. Adaptive performance control of internet-based grids in
a dynamic environment. In ICCCN 2007: Proc. of 16th International Conference
on Computer Communications and Networks, Workshop on Advanced Networking,
2007. [cited at p. 70]

[69] P. Vercesi and A. Bartoli. Adaptive performance tuning for internet-based work-
flows. In COMPSAC 2007: Proc. of 31st Annual IEEE International Computer
Software and Applications Conference (COMPSAC 2007), 2007. [cited at p. 62]

[70] P. Vercesi and A. Bartoli. Performance-related issued in internet-based integration
of cae systems. In MITIP 2007: Proc. of the 9th International Conference on the
Modern Information Technology in the Innovation Process of the Industrial Enter-
prises, Sep. 2007. [cited at p. 36]

[71] P. Vercesi and A. Bartoli. Runtime performance optimization of grid-workflows
execution. In preparation for submission to international journal, 2008. [cited at p. 72]

[72] W3C. Web Services Description Language (WSDL) 1.1, 2001. http://www.w3.

org/TR/wsdl. [cited at p. 19, 20]

[73] M. Welsh and D. Culler. Adaptive overload control for busy internet servers. In
Proceedings USENIX of the 2003., 2003. [cited at p. 17]

http://www.tpc.org/tpc_app/default.asp
http://www.tpc.org/tpc_app/default.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

BIBLIOGRAPHY 87

[74] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin. Machine learning for on-line
hardware reconfiguration. In IJCAI-07: Proceedings of the 20th international joint
conference on artifical intellingence, pages 1113–1118, 2007. [cited at p. 18, 19]

[75] Workflow Management Coalition. Workflow Management Coalition Terminology
& Glossary. Workflow Management Coalition, 1999. Document No. WFMC-TC-
1011.3. [cited at p. 27]

[76] P. Young. Recursive estimation and time-series analysis: an introduction. Springer-
Verlag New York, Inc., New York, NY, USA, 1984. [cited at p. 47]

List of Figures

3.1 Simulation based optimization. 23

4.1 Composite service logic view. 28
4.2 Grid workflow sample physical layout. 29
4.3 Sequence diagram for NoPipe. 32
4.4 Sequence diagram for InputPipe. 33
4.5 Sequence diagram for FullPipe. 33
4.6 Sequence diagram for OutputPipe. 34
4.7 Communication computation overlap patterns. 34
4.8 Centralized and distributed storage architectures. 36

5.1 Throughput vs. MPL. 38
5.2 Composite service time vs. MPL. 39
5.3 Throughput vs. composite service time with almost each multipro-

gramming level belonging to the pareto frontier (green dots). 40
5.4 Throughput vs. composite service time with throughput exhibit satu-

ration but with almost each multiprogramming level belonging to the
pareto frontier (green dots). 41

5.5 Throughput vs. composite service time with thrashing throughput. . . 41
5.6 Invocation controller details. 42
5.7 Objective index vs. multiprogramming level (batch size). 43
5.8 Timed controller psedo-code. 44
5.9 Derivative controller pseudo-code. 46

6.1 Input/Output files kind and communication computation overlap. . . 52
6.2 Serial workflow schema. 54
6.3 NoPipe throughput. 56
6.4 NoPipe throughput ratio (Distributed/Centralized). 56
6.5 NoPipe service lifespan. 57
6.6 NoPipe service lifespan ratio (Distributed/Centralized). 57

89

90 LIST OF FIGURES

6.7 FullPipe throughput. 58
6.8 FullPipe throughput ratio (Distributed/Centralized). 58
6.9 FullPipe service lifespan. 59
6.10 FullPipe service lifespan ratio (Distributed/Centralized). 59
6.11 FullPipe solver latency. 60
6.12 FullPipe solver latency ratio (Distributed/Centralized). 60
6.13 Throughput ratio (FullPipe/NoPipe). 61
6.14 Service lifespan ratio (FullPipe/NoPipe). 61
6.15 Throughput for constant multiprogramming level (batch size) with

normal quality links. 64
6.16 Throughput for constant multiprogramming level (batch size) with

high quality links. 64
6.17 Composite service time for constant multiprogramming level (batch

size) with normal quality links. 65
6.18 Composite service time for constant multiprogramming level (batch

size) with high quality links. 65
6.19 Throughput ratio (adaptive/best constant.) 66
6.20 Composite service time ratio (adaptive/best constant.) 67
6.21 Resource availability level with linear decrease perturbation. 68
6.22 Resource availability level with linear increase perturbation. 68
6.23 Resource availability level with correlated decrease perturbation. . . . 69
6.24 Resource availability level with correlated increase perturbation. . . . 69
6.25 Throughput for 2nd stage perturbation: low quality links (up), high

quality links (down). 70
6.26 Composite service time for 2nd stage perturbation: low quality links

(up), high quality links (down). 71
6.27 Performances in static environment (10 licenses, Very High quality

links, FullPipe.) . 73
6.28 Performances in environment with correlated decrease perturbation

(10 licenses, Very High quality links, FullPipe.) 74
6.29 Performances in environment with linear decrease perturbation (10

licenses, Very High quality links, FullPipe.) 74
6.30 Performances in environment with correlated increase perturbation

(10 licenses, Very High quality links, FullPipe.) 75
6.31 Performances in environment with linear increase perturbation (10

licenses, Very High quality links, FullPipe.) 75

List of Tables

6.1 Working Point . 54
6.2 Link parameters . 63
6.3 Working point . 63
6.4 Link parameters . 72
6.5 Working point . 73
6.6 Dominating multiprogramming levels, for 10 licenses, Very High qual-

ity links and FullPipe overlap pattern. 77
6.7 Dominated multiprogramming levels, for 10 licenses, very high quality

links and FullPipe overlap pattern. 77

91

	Contents
	1 Introduction
	1.1 Scenario and Motivations
	1.2 Contribution

	2 Literature Overview
	2.1 Grid Workflows
	2.2 Parallel Computing
	2.3 Transaction Processing Systems
	2.4 Services and Applications on the Web
	2.5 Computer Systems Control
	2.6 Service Composition Virtualization
	2.7 Grid Computing and Scientific Workflows

	3 Design Optimization
	3.1 Introduction
	3.2 Synopsis
	3.3 Strategies for Design Optimization
	3.4 Engineering Workflows
	3.5 Inter-organizational Design Optimization

	4 Workflows and Service Composition
	4.1 Definitions
	4.2 Execution
	4.3 Model Design
	4.4 Performance Metrics
	4.5 Communication Computation Overlap Pattern
	4.5.1 NoPipe
	4.5.2 InputPipe
	4.5.3 FullPipe
	4.5.4 OutputPipe
	4.5.5 Discussion
	4.5.6 Centralized and Distributed Engines

	4.6 Grid Workflows Challenges

	5 Multiprogramming Level Control
	5.1 Fundamental Issues
	5.2 Overview of Our Proposal
	5.3 Adaptive Invocation Controller
	5.3.1 TIMED Controller
	5.3.2 Derivative Controller
	5.3.3 TCP Like Controller
	5.3.4 Parabola Controller

	6 Experiments and Results
	6.1 Simulator Design and Implementation
	6.1.1 Introduction
	6.1.2 Workflow Description
	6.1.3 Computing Resources
	6.1.4 Networking
	6.1.5 Workflow Execution
	6.1.6 Related Works

	6.2 Static Experiments
	6.2.1 Results for NoPipe
	6.2.2 Results for FullPipe
	6.2.3 Aggregated Results
	6.2.4 Discussion

	6.3 Controller with Static Environment
	6.3.1 Results for Constant Multiprogramming Level
	6.3.2 Results for Adaptive Multiprogramming Level

	6.4 Perturbations
	6.5 Controller with Dynamic Environment
	6.5.1 Results for One Stage Perturbation

	6.6 Complete Suite of Experiments

	Bibliography
	List of Figures
	List of Tables

