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Abstract 

 
An Equilibrium Problem with an Equilibrium Constraint (EPEC) is a mathematical construct that can 

be applied to private competition in highway networks. In this paper we consider the problem of finding a 

Nash Equilibrium in a situation of competition in toll pricing on a network utilising two alternative 

algorithms. In the first algorithm, we utilise a Gauss Seidel fixed point approach based on the cutting 

constraint algorithm for toll pricing. The second algorithm that we propose, a novel contribution of this 

paper, is the extension of an existing sequential linear complementarity programming approach for 

finding the competitive Nash equilibrium when there is a lower level equilibrium constraint. Finally we 

develop an intuitive approach to represent collusion between players and demonstrate that as the level of 

collusion goes from none to full collusion so the solution maps from the Nash to monopolistic solution. 

However we also show that there may be local solutions for the collusive monopoly which lie closer to 

the second best welfare toll solution than does the competitive Nash equilibrium. 

 
Keywords: Sequential Linear Complementarity Programming (SLCP); EPEC; Competition; Nash 

Equilibrium; Collusion. 

 

 

 

1. Introduction 

 

The motivation of the research in this paper stems from the observation that in recent 

years there has been increasing amount of private sector participation within areas that 

are conventionally the privy of the public purse. The driving force behind this change is 

the assumed higher efficiency of the private sector coupled with increasing public 

pressures on governments for accountability and the corresponding need to derive value 

for money from their various budgetary commitments which are ultimately funded by 

the tax paying public. 

In highway transportation, privately operated roads are not novel concepts (Viton, 

1995). However there has been little analysis on this topic in terms of the competition 

between private sector providers and the equilibrium outcomes, save for theoretical 
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studies often restricted to networks with two parallel links (e.g. Verhoef et al, 1996; de 

Palma and Lindsey, 2000). In reality, there have already been examples of private sector 

involvement in road construction and operation around the world (Fisher and Babbar, 

1996; Roth, 1996)
1
. In return for the private capitalists funding large amounts of initial 

capital investments for the construction of the road, they are contractually allowed to 

collect tolls, for some agreed duration from users when the road is finally opened (Engel 

et al, 2002). In an era when government budgets are becoming increasingly tight and 

with traffic congestion becoming more of a problem in many major cities, the private 

sector is recognised as having an increasing role to play in the provision of traditional 

highway transportation investment. When the private sector is tasked with the provision 

of such services and in competition with others simultaneously doing the same, the 

concept of Nash equilibrium (Nash, 1950) can be used to model the equilibrium 

decision variables offered to the market.  

In this paper we consider the problem of toll optimisation in modelling the situation of 

private sector participation in the operation of transportation services. In the case of toll 

only competition, we provide two heuristics for the solution of the problem. The first is 

simply a Gauss Seidel fixed point approach based on the cutting constraint algorithm for 

toll pricing which builds on our previous work (Koh et al, 2009). The second algorithm 

that we propose, a novel contribution of this paper is an extension of the existing 

Sequential Linear Complementarity Programming Approach (SLCP) for finding the 

competitive Nash equilibrium when there is a lower level equilibrium constraint. 

Although SLCP has previously been formulated for a general Nash game (Kolstad and 

Mathiesen, 1991), we believe this to be the first application of the approach to an EPEC 

problem where the toll operators compete at the upper level but are bound by the lower 

level equilibrium of the user response in terms of demand and route choice. This 

application of SLCP to an EPEC should be useful in other fields such as the electricity 

market. We present various examples from the same network to illustrate the 

performance of these heuristics and compare the competitive solutions with both 

monopolistic and second best welfare maximising regimes. These examples include 

both parallel and serial links in competition. Finally, we consider how to model 

collusive behaviour between operators and propose an intuitive structure which allows 

this response to be modelled. With this natural structure we show that when moving 

from no collusion through partial collusion to full collusion a path is drawn between the 

Nash and monopoly solutions. Where an un-priced substitute link is present local 

optima may exist which we suggest may be more likely than a true global solution 

which has interesting implications for policy-makers and the behaviour of toll operators. 

The structure of this paper is as follows. In the next section, we define the problem 

considered along with the concept of Nash Equilibrium from Nash (1950) which serves 

as the foundation of non-cooperative games that we discuss. Section 3 then outlines two 

heuristic algorithms for the problem. Section 4 utilises numerical examples to illustrate 

the performance of the algorithms. In Section 5 we relax the notion of non-cooperative 

behaviour and consider if it is possible for the players to signal, through their selection 

of strategic variables, to their competitor, their intention to collude such that they end up 

in a monopolistic equilibrium. Finally in Section 6, we summarise our results and 

provide directions for further research. 

                                                 
1
 There are in fact real world examples of such competition, in Australia, private operators compete with 

public operators for toll revenues on the Sydney Orbital Motorway Network. See 

http://www.rta.nsw.gov.au/usingroads/motorwaysandtolling/index.html, accessed July 2009. 
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2. Problem Context 

 

Our problem is to find an optimal equilibrium toll for each private operator
2
 who 

separately controls a predefined link on the traffic network under consideration. We can 

consider this problem to be a Cournot-Nash game between these individual operators. 

The equilibrium decision variables can be determined using the concept of Nash 

equilibrium (Nash, 1950) which we define as follows: 

 

2.1. Nash Equilibrium 

 

In a single shot normal form game with N players indexed by i,j∈{1,2,...,N}, each 

player can play a strategy ui∈Ui which all players are assumed to announce 

simultaneously. Let u=(u1,u2,…,uN)∈U be the combined strategy space of all players in 

this game and let ψi(u) be some payoff or profit function to player i∈{1,2,...,N} if the 

combined strategy is played. The combined strategy tuple is a Nash Equilibrium 

u
*
=(u

*
1,u

*
2,…,u

*
N)∈U for the game if the following holds 

 
* * *( , ) ( , ) , , {1,2,... },i i j i i j i iu u u u u U i j N i jψ ψ≥ ∀ ∈ ∀ ∈ ≠  (1) 

 

Equation (1) states that a Nash equilibrium is attained when no player in the game has 

an incentive to deviate from his current strategy. She is therefore doing the best she can 

given what her competitors are doing (Pyndyck and Rubinfeld, 1992). 

 

2.2. Problem Definition 

 

We now outline the problem we wish to solve as viewed by each operator with 

equilibrium conditions imposed on the users’ route choice. 

 

Define: 

A: the set of directed links in a traffic network, 

B: the set of links which have their tolls, B A⊂  

K: the set of origin destination (O-D) pairs in the network 

v : the vector of link flows [ ],av a A= ∈v   

τ : the vector of link tolls [ ],a a Bτ= ∈τ  

c(v) : the vector of monotonically non decreasing travel costs as a function of link 

flows on that link only 
[ ( )],a ac v a A= ∈c  

µ : the vector of generalized travel cost for each OD pair [ ],k k Kµ= ∈µ  

d : the continuous and monotonically decreasing demand function for each O-D pair 

as a function of the generalized travel cost between OD pair k alone, [ ],kd k K= ∈d  and 
−1D : the inverse demand function 

Ω : feasible region of flow vectors, defined by a linear equation system of flow 

conservation constraints. 

                                                 
2
 As the research transcends both game theory and market structures in the context of highway 

transportation, we will use the terms “private operators” and “players” interchangeably throughout.  
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If we assume that each player is able to control
3
 only a single i

th
 link in the network 

then, following Yang et al (2009), the optimisation problem for each i
th

 player, which 

represents the maximisation of the profit for the operator,
4
 is formulated as follows: 

 

( ) ( ) ,Max
i

i i iv i N
τ

ψ τ= ∀ ∈τ τ  (2) 

 

Where vi is obtained by solving the variational inequality (see Smith, 1979;  

Dafermos, 1980) 

 

( ) ( ) ( ) ( ) ( )* * * *, , 0  for ,
T T

−⋅ − − ⋅ − ≥ ∀ ∈1c v τ v v D d τ d d v d Ω  (3) 

 

The objective for each firm (payoff) is the toll revenue obtained by charging tolls on 

the link operated by the i
th

 player. 

 

Note that the vector of link flows can only be obtained by solving the variational 

inequality given by (3). This variational inequality represents Wardrop’s user 

equilibrium condition which states that no road user on the network can unilaterally 

benefit by changing routes at the equilibrium (Wardrop, 1952). Throughout this paper, 

we make the additional simplifying (yet not uncommon) assumption that the travel cost 

of any link in the network is dependent only on flow on the link itself so that the above 

variational inequality in (3) can be solved by means of a convex optimisation problem 

(Beckmann et al, 1956). 

 

 

3. Two Heuristic Algorithms for EPECs 

 

The problem we have defined in the previous section is in fact an Equilibrium 

Problem with Equilibrium Constraints (EPEC) (Mordukhovich, 2005, 2006; Su 2005). 

In essence the EPEC’s are problems of finding equilibrium points of players when they 

are bound by constraints specifying an overall system equilibrium. The study of EPECs 

has only recently surfaced as an important research area within the field of mathematics 

but has significant practical applications e.g. in deregulated electricity markets (Ralph 

and Smeers, 2006). 

In this paper, we propose two alternative heuristics for the resolution of the problem. 

The first algorithm is the diagonalisation algorithm which is a modified version of the 

non-linear Gauss-Seidel method (as discussed in e.g. Ortega and Rheinboldt (1970); 

Judd, 1998). The second algorithm is a novel heuristic derived from reformulating the 

standard Nash game from economics as a complementarity problem and solving it using 

a Sequential Linear Complementarity Programming approach (SLCP). The extension is 

to apply this SLCP approach within the EPEC setting as described earlier.  

                                                 
3
 Control is used as a short hand to imply that the firm has been awarded some franchise for operating the 

link. 
4
 Here we have assumed no costs of toll operation for ease of presentation, however these can be 

introduced quite easily. 
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3.1. Diagonalization Algorithm (Algorithm 1) 

 

One of the first algorithms introduced for this problem was that of decomposing the 

problem into a series of interrelated optimisation problems and subsequently solving 

each individually. This is also known as a fixed point iteration algorithm which has also 

been referred to as the Gauss-Jacobi algorithm. In economics, Harker (1984) 

popularised this algorithm for solving a Cournot-Nash game. In a similar fashion, 

Cardell et al (1997) and Hobbs et al (2000) have used the diagonalisation algorithm to 

solve EPECs arising in the deregulated electricity markets. 

 

The algorithm is presented as follows: 

 

Diagonalisation Algorithm 

Step 0: Set iteration counter k=0. Select a convergence tolerance 

parameter, ε(ε>0). Choose a strategy for each player. Let the 

initial strategy set be denoted 
1 2( , ,..., )

N

k k k k
u u u u= . Set k=k+1 and go 

to Step 1. 

Step 1: For the i
th

 player i∈{1,2,...,N}, solve the following optimization 

problem: 
1 max ( , ) , {1, 2,... },

i i

k k

i i i j
u U

u u u i j N i jψ+

∈
= ∀ ∈ ≠  

Step 2: 
If 1

1

N

k k

i i

i

u u ε+

=

− ≤∑  terminate, else set 1k k= +  and return to Step 1. 

 

In step 1, we utilise the Cutting Constraint Algorithm (CCA) (Lawphongpanich and 

Hearn, 2004) to solve the optimisation problem for each player holding the other 

player’s strategic variables fixed. Further details regarding the CCA are provided in the 

appendix to this paper.  

The convergence proof of the diagonalisation algorithm when applied to single level 

Nash equilibrium problems can be found in Pang and Chan (1982) or Dafermos (1983). 

However the proof depends on certain conditions that may not be satisfied in an EPEC, 

particularly the concavity of the payoff functions. In fact, convergence of the algorithm 

relies on the concept of diagonal dominance of the Jacobians of the payoff functions 

(Gabay and Moulin, 1980, Theorem 4.1 p. 280), which intuitively requires that a player 

has more control over his own payoff than do his competitor(s). Therefore we propose 

this algorithm to be a heuristic approach for the EPEC at hand. 

 

3.2. Sequential Linear Complementarity Programming Algorithm (Algorithm 2) 

 

Since the game between the operators in this paper is akin to a Nash game, the second 

algorithm reformulates the Nash game as a complementarity problem. Adopting this 

approach, Kolstad and Mathiesen (1991) developed a Sequential Linear 

Complementarity Programming (SLCP) approach to solve the resulting reformulation. 

The extension below is to re-formulate this within the EPEC framework whereby the 

Nash game is played out at the upper level between the toll operators while the user 

equilibrium conditions are respected at the lower level – hence and equilibrium problem 

with equilibrium constraints. At each iteration, the main problem is linearised (using a 
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first order Taylor expansion) at a given starting point. Then the sub problem is solved as 

a linear complementarity problem for which the algorithm of Lemke (1965) can be 

applied. As far as we are aware, this is the first application of the algorithm to the EPEC 

and should be useful in other fields.  

To demonstrate the approach, recall that the profit of the firm i  is given by (2). The 

first order conditions of a profit maximum for each firm are therefore given by (4)-(6) 

as follows: 

 

0i
i

i

f
ψ

τ

∂
= − ≥

∂
 (4) 

0i
i

i

ψ
τ

τ

∂
=

∂
 (5) 

0iτ ≥  (6) 

 

These first order conditions define a complementarity problem (CP) as characterized 

by the system (7) which is to: 

Find Nτ +∈ℜ given : N Nf R R+ →  such that 

 
( ) 0

( ) 0

0

T τ

≥

=

≥

f τ

τ f

τ

 (7) 

 

If we linearise f  at 0τ (some arbitrary starting vector of tolls) using the first order 

Taylor expansion, then we obtain 0 0 0 0( / ) ( ) ( )( )Lf f fτ τ τ τ τ τ= + ∇ − . Hence, following 

(Kolstad and Mathiesen, 1991), the resulting Linear Complementarity Program (LCP) is 

to find jτ +∈ ℜ  such that 

 
0( / ) 0,

( ) 0,

0

T

Lf q M

q M

τ τ τ

τ τ

τ

= + ≥

+ =

≥

 (8) 

 

Where 0 0 0( ) ( )q f fτ τ τ= − ∇  and 0( )M f τ= ∇ . 

 

In summary the proposed algorithm is as follows: 

 

Sequential Linear Complementarity Programming Algorithm 

Step 0: Choose some starting vector of tolls τ
0
. Select a convergence 

tolerance parameter, ε(ε>0), and set k=k+1 and go to Step 1. 

Step 1: Solve the traffic assignment problem (3) with τ
k
. 

Step 2: Employ finite differencing to approximate f(τ
k
) and ( )k

f τ∇  

Step 3: Solve the LCP (8) to obtain τ
k+1

 

Step 4: Check convergence: If max 1( )kf τ ε+ < , terminate else set k=k+1 

and go to Step 1. 
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Note that in order to solve the LCP
5
, we require both the Jacobian of the profit 

function f(τ
k
) for each firm in the game at iteration k and the Hessian (M). To do so, we 

solve a traffic assignment problem at kτ and perturb the tolls by using the method of 

central differences (i.e. via a combination of forward and backward differencing) to 

approximate the gradients. The underlying assumption here is that the derivatives exist 

and can be approximated in this way
6
.  

As with the diagonalisation approach, the convergence proof of this algorithm relies 

specifically on the concavity of the payoff functions of each firm (Kolstad and 

Mathiesen, 1991, Theorem 1, p 741). While this assumption is usually acceptable in 

modelling the classical Nash game for which it was developed, it may not be satisfied in 

a general EPEC setting.  

 

 

4. Numerical Examples 

 

In this section, we provide examples of how the proposed heuristics are used to solve 

for the optimal tolls. In addition, we compare the equilibrium outputs under the 

scenarios of competition, monopoly and under the policy of (second best) social welfare 

maximisation. 

In the case of monopoly, we assume there is a single private operator controlling the 

predefined links in the network. Hence this is a simpler problem that can be solved 

directly using the CCA (see the Appendix) or any derivative free direct search method 

(e.g. Hooke Jeeves direct search (Hooke and Jeeves, 1961) or Nelder Mead Simplex 

algorithm (Nelder and Mead, 1965)). For the results presented here, the CCA was 

utilised. 

Similarly in the case of social welfare maximisation by levying toll charges only, the 

central planner solves the following problem. 

 

( )

1

0

Max ( ) ( )

. .

,

0

kd

a a a

k K a A

d x c v v

s t

τ

τ τ

−

∈ ∈

−

∈ Ω

≤ ≤

∑ ∑∫

v d

 (9) 

 

Where τ is the pre-specified upper bound on tolls on tolled links, [ ],a a Bτ τ= ∈ . The 

CCA algorithm can be utilised for this problem as in Koh et al (2009). 

 

The example used is taken from Koh et al (2009). The link specific parameters and 

the elastic demand functions can be found therein. This network has 18 one way links 

with 6 origin destination pairs (1 to 5, 1 to 7, 5 to 1, 5 to 7, 7 to 1 and 7 to 5).  

                                                 
5
 In terms of implementation, to solve the SLCP in Step 2, we used the PATH solver (Ferris and Munson, 

2000) within MATLAB. 
6
 We have made use of finite differencing to obtain first and second order derivatives despite there being 

alternative methods based on sensitivity analysis (Yang and Huang, 2005) proposed for obtaining these 

derivatives. We apply finite differences as this is simple to apply and is often used in the estimation of 

gradients in much numerical work. 
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Two parallel link scenarios are considered in this numerical example. In Scenario 1, 

Links 3 and 4 in Figure 1 are the only links in this network that are subject to tolls. In 

Scenario 2, Links 7 and 10 are the only links subject to tolls in the network. Note that in 

all which follows we set the maximum allowable toll to be 5000 seconds. The bound of 

5000 was chosen as this translates into a practical toll level of approximately £6 which 

is considered to be reasonable maximum on the basis of acceptability for a toll on one 

link. As we demonstrate later this upper bound will only apply to one link in the 

monopolistic case. We also look at serial link scenarios with Scenario 3 tolling links 3 

and 7 where there is an element of route choice for the users to avoid both links and 

Scenario 4 tolling links 1 and 3 where there is no route choice to avoid the toll on link 1. 
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Figure 1: Network for Example 1. 

Source: Koh et al (2009). 

Table 1: Comparing Solution by Alternative Algorithms for competitive tolls. 

 Diagonalisation
7
 SLCP

8
 

 Link Toll 
(secs) 

Iterations CPU Time 
(secs) 

Toll 
(secs) 

Iterations CPU Time 
(secs) 

Scenario 1 
 

3 
4 

530.63 
505.65 

25 
 

1213.7 
 

530.55 
505.62 

6 
 

9.8 
 

Scenario 2 
 

7 
10 

141.37 
138.29 

25 
 

1200.8 
 

141.36 
138.29 

6 
 

9.5 
 

Scenario 3 
 

3 
7 

248.62 
   97.84 

23 
 

1211.2 
 

248.65 
   98.52 

5 
 

8.3 
 

Scenario 4 
 

1 
3 

    5000 
   35.20 

19 
 

  914.9 
 

    5000 
   35.20 

5 
 

8.8 
 

 

Table 1 shows the resulting tolls, number of iterations and CPU
9
. times required for 

each algorithm to converge to the Nash solution. As shown the resulting tolls are almost 

identical and any differences are due to the convergence criteria used. The proposed 

SLCP algorithm uses fewer iterations and is much faster than the diagonalisation based 

approach – requiring less than 1% of the CPU time. 

                                                 
7
 Using the diagonalisation algorithm with CCA (Algorithm 1) and a termination tolerance of ε  = 1e-06 

8
 Using the SLCP algorithm (Algorithm 2) with a termination tolerance of ε  = 1e-06. 

9
 CPU time refers to the time taken by the central processing unit of the computer to perform the 

evaluation using of the respective algorithms to the precision tolerances specified. 
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Table 2 shows the tolls, the revenues collected and the change in social welfare for 

each toll pair under (a) the competitive case, (b) the monopoly case and (c) the second-

best welfare case where operators are assumed to co-operate to maximise social welfare. 

Firstly, the table shows that when there are no alternative routes available (as in the case 

of Scenario 1 where Links 3 and 4 are tolled), the monopolist can charge the maximum 

toll allowable for link 3. In fact the upper bound of the toll here is a binding constraint 

on the toll in the monopoly case. The toll on link 4 is lower due to the slightly longer 

free-flow travel time. A check with both tolls set at 5000 seconds showed that the total 

revenue was indeed lower than shown in table 2 (being only 3,555,289 seconds). As 

may be expected with the monopolistic case the impact on welfare is negative. However 

in the case of two competing operators, each player has no alternative but to succumb to 

the strategy charged by the other and hence ultimately both are only able to charge a 

much lower toll (around 10% of the monopolist’s toll). The overall welfare change for 

Scenario 1 under competition is reasonably close to that of second best social welfare 

maximisation, but is as expected lower. 

Table 2: Tolls, Revenues and Social Welfare under Alternative Market Structure Assumptions (Tolls in 

seconds, Revenue and Welfare Change in seconds per hour). 

  
Competition: Revenue 

Maximisation 
Monopoly: Revenue 

Maximisation 
Second Best Welfare 

Maximisation 

 Link Toll Revenue Welfare 
Change 

Toll Revenue Welfare 
Change 

Toll Revenue Welfare 
Change 

Scenario 1 3 530.63 461,882 87,633 500010 2,543,530 -1,581,256 510.93 449,583 87,818 

Parallel 4 505.65 420,293  4986.73 1,013,577  488.13 407,301  

Total Revenue   882,175   3,557,108   856,883  

           

Scenario 2 7 141.37 105,295 187,422 713.19 280,255 150,587 181.83 116,209 202,311 

Parallel 10 138.29 100,848  709.53 266,465  179.30 110,580  

Total Revenue   206,143   546,720   226,783  

           

Scenario 3 3 248.65 146,756 -88,020 242.01 147,209 -76,956 0 0 95,795 

Serial 7 98.52 54,309  92.54 54,275  141.89 74,027  

Total Revenue   201,065   201,482   74,027  

           

Scenario 4 1 5000 3,552,057 -1,590,050 5000 3,553,670 -1,585,945 488.21 836,935 87,818 

Serial 3 35.20 11,122  26.73 10,513  22.74 20,008  

Total Revenue   3,563,179   3,564,184   856,943  

 

The more interesting case emerges in Scenario 2 when there is an un-tolled alternative 

(Link 17 in Figure 1) available for travel into destination Zone 5. In this situation, even 

a monopolist controlling both Links 7 and 10 together cannot charge the maximum 

allowed toll of 5000 seconds on each link to maximise his revenue. Here the tolls are 

                                                 
10

 As the original network parameters included an elasticity of -0.58 for this case (with constant elasticity 

demand function) a true unbounded toll would tend to infinity. To create a reasonable unbounded solution 

with an interior solution we would have to increase the elasticity of demand. A test with elasticity of -2.0 

was conducted and this gave an interior solution with tolls of 751 and 728 seconds which are well within 

the bound of 5000 seconds. 
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limited to around 700 seconds (though the impact on welfare is positive). In the case of 

competition, Table 2 shows that the tolls charged and the total revenue earned are even 

lower than under that of a central planner attempting to maximise social welfare. So we 

may conclude that where there is an un-tolled alternative, competition has the effect of 

driving tolls down below the socially optimal toll level which was not the case for 

scenario 1 where there was no un-tolled alternative. The change in social welfare is still 

as expected lower under competition. 

Furthermore, the tolls are lower under competition than under monopoly. Since 

parallel links are the equivalent of substitutes in the route choice, this supports the 

general observation by Economides and Salop (1992) that competition between 

substitute products would lead to lower prices (vis-à-vis monopoly). 

The first two scenarios have focused on parallel competing links. In the case of serial 

links, economic theory suggests that the tolls would be higher under competition than 

under a single monopoly (Economides and Salop, 1992; Small and Verhoef, 2007). 

Under scenarios 3 and 4 where we have serial links in competition we verify this result 

that the tolls are indeed higher under the competitive solution than under the single 

monopoly and hence result in a greater loss in welfare. It is also worth noting that where 

there are alternative free routes as in scenario 3 then the tolls are relatively low even 

under monopoly, whereas under scenario 4 where the toll on link 1 has no free 

substitute route, then the upper bound constrains the solution and the operator of link 1 

exerts power over the operator of link 3. In these serial cases, both the competitive and 

monopolistic solution results in a negative welfare change compared to the second best 

welfare maximising tolls implying that with competition, society is worse off which has 

crucial implications for policy makers. They should consider carefully whether to allow 

direct competition in the serial link case. 

 

 

5. Possibilities for Collusion between Operators 

 

This section of the paper investigates collusion and considers whether it is possible 

for operators to receive signals from a competitor to achieve the revenues associated 

with monopoly control over their networks. In this section of the paper, our examples 

are restricted to games with two players. To this effect, we introduce a scalar, α  

(0 ≤ α ≤ 1) which represents the degree of co-operation between the players when they 

optimise their toll revenues for links under their control.  

With α, we can consider a more general form of the expression for the payoff 

function (2) as given in (10) 

 

( ) ( ) ( ( ) ), , ,i i i j jv v i j N i jψ τ α τ= + ∀ ∈ ≠τ,β τ,β τ,β  (10) 

 

Equation (10) reduces to the familiar form of (2) when α = 0; and when α = 1 the 

objective of each player is to maximise the total toll revenue of both players. Note that 

she can only however change tolls on links under her control and continues to take the 

other player’s toll as exogenous. Thus whilst the thi  player is in the process of 

optimising her revenue, she is taking into account a proportion represented by α  of 

the thj  player’s toll revenue. In doing so via the diagonalisation algorithm, she is 
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effectively “signalling” to her competitor that she wishes to “collude” to maximise total 

revenue. It is implicitly assumed that players reciprocate the actions of their competitors 

and would do likewise. Thus the α term represents some intuitive level of collusion 

between players, ranging from no collusion, through partial collusion to full collusion.  

Consider the network shown in Figure 1 and recall the two separate scenarios 

developed therein with Scenario 1 being toll revenue competition on links 3 and links 4 

while Scenario 2 represented toll revenue competition on links 7 and links 10. 

 

5.1. Collusion in Scenario 1  

 

Figure 2 shows, for the case depicted in Scenario 1, how the toll solution moves from 

the non-cooperative Nash Solution when (α = 0) towards the monopoly solution (α = 1) 

as the level of collusion is increased. In particular, when α = 1, we obtain exactly the 

same solution as the monopoly operator’s tolls as shown in Table 2. 
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Figure 2: Scenario 1: Tolls set by each operator as collusion parameter (α) varies. 

 

It can also be observed that with slightly “less than full collusion” (α= 0.95 or 0.99) 

the toll levels are also much lower thereby suggesting that less than full collusion can 

lead to substantial losses (in revenues) for both players. Figure 3 shows the revenues for 

operators of links 3 and 4 and the total revenue as the collusion parameter is varied. 

Notice that when going from a collusion level of 0.99 to 1.0 the upper bound on the toll 

becomes active which means that to generate more total revenue the operator of link 4 

must accept a reduction in revenue. This is due to the higher free flow travel time on 

link 4 and the interaction with the upper bound on tolls on link 3. Obviously this upper 

bound is theoretic here but in practical applications, there could be some upper bound 

set as part of some franchise agreement with a regulator. If this were the case then it 

would not be in the interests of the second operator to collude unless there was some 

contract to share out the resulting revenues. We therefore suggest that under such cases 



European Transport \ Trasporti Europei  n. 44 (2010): 3-22 

 14 

there may be a limited collusion aspect which would bring down the tolls compared to 

the true monopolistic solution. 
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Figure 3: Scenario 1: Revenues as collusion parameter (α) varies. 

 

5.2. Collusion in Scenario 2 

 

In the case of Scenario 2, where there is an additional route (Link 17) that is not 

subject to tolls, this form of implicit collusion however does not obtain the solution 

under monopoly. In particular, consider the situation when α=1, then employing the 

diagonalisation algorithm, the equilibrium tolls obtained are as shown in Table 3. 

Table 3: Tolls and Revenues for Scenario 2 considering collusion with α=1. 

Link Toll (seconds) Revenues (seconds) 

Link 7 189.76 116,816 

Link 10 186.58 111,216 

Total Revenues  227,402 

 

Figure 4 illustrates however that the above solution is in fact a local optimum of the 

total revenue function. The results reported in Table 3 are plotted together in Figure 3 

where it is compared against the global optimum which is in fact the solution obtained 

under monopoly (see Table 2). 
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Figure 4: Total Revenue Surface as Tolls on Link 7 and 10 vary. 

 

This illustrates the general difficulty with optimisation algorithms and the potential 

for a local equilibrium to be located. There is also a possibility that in Scenario 2, there 

continues to be a link (number 17 in Figure 1) available that is in competition with the 

tolled links and hence even under collusion, there could exist an incentive to capture 

that untolled traffic by reducing the toll charge and breaking the collusion which may 

result in an alternative local solution rather than a global one. In Koh (2008), we 

presented a global optimisation algorithm to locate this global optimum based on 

particle swarm optimisation (PSO). However it is not clear whether the behaviour of the 

operators would allow them to find the global optimum in this case. PSO is based on 

some learning scheme – but to learn how such a surface operates requires an element of 

trust in your competitor. It is our view that the diagonalisation approach better 

reproduces realistic behaviour of operators and tests with other initial toll levels or 

starting points all result in the local rather than global solution. This suggests that the 

local monopoly solution may be the more likely of the two outcomes which has 

significant implications for both policy-makers and operators as here the tolls are lower 

and closer to second best welfare maximisation. 

To reinforce this claim we show in Figure 5 that as the collusion parameter is 

increased then the tolls on links 7 and 10 do in fact move from the Nash tolls to this 

local monopolistic toll set. This time, as the tolls remain within bounds, the move 

towards the monopoly solution is smooth and the revenues increase for both operators 

as α is increased. 
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Figure 5: Scenario 2: Tolls as collusion parameter (α) varies. 

 

5.3. Collusion in Scenario 3 

 

For the serial links 3 and 7 the benefits of collusion are small as the users have the 

opportunity to avoid the second toll and so there is little common traffic between the 

links. The tolls move smoothly between the competitive solution and the monopoly 

solution reported in table 2. 

In passing it is worth mentioning that serial links 7 and 12 or 10 and 11 result in the 

same optimal tolls for the competitive and monopolistic cases. This is because the links 

have no common traffic and can be considered as independent so there is no possibility 

of monopoly here. This shows that at the extreme the serial link result is that the 

competitive tolls are greater than or equal to the monopoly tolls. 

 

5.4. Collusion in Scenario 4 

 

In this case, as the collusion parameter (α) varies, the toll on Link 1 remains constant 

at 5000 seconds (the upper bound). However, the toll for Link 3 decreases smoothly 

towards the monopolistic toll as shown in Figure 6. Figure 6 also shows the revenue for 

link 3 which decreases as the level of collusion increases. This is the same effect as was 

seen for scenario 1 as the stronger operator is bound by the upper limit on the toll. In 

order to generate more revenue in total the weaker operator must accept a lower 

revenue, so there is no incentive to collude here without a revenue sharing agreement. 

Thus we can say for both the serial and parallel case where one operator becomes 

limited by some upper bound on the toll level then there will be no incentive to collude 

for the second operator. 
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Figure 6: Scenario 4: Toll and revenue on link 3 as collusion parameter (α) varies. 

 

 

6. Summary and Conclusions 

 

The first element of this paper demonstrated the use of two heuristics to solve the toll 

competition problem which is basically an Equilibrium Problem with Equilibrium 

Constraints or EPEC. The first was simply a Gauss Seidel fixed point approach based 

on the cutting constraint algorithm for toll pricing which builds on our previous work 

(Koh et al, 2009). The second algorithm which is a novel contribution of this paper is 

the extension of an existing Sequential Linear Complementarity Programming approach 

for finding the competitive Nash equilibrium when there is a lower level equilibrium 

constraint. Although SLCP has previously been formulated for a general Nash game 

(Kolstad and Mathiesen, 1991), we believe this to be the first application to an EPEC 

problem where the toll operators compete at the upper level but are bound by the lower 

level equilibrium of the user response in terms of demand and route choice. This 

application of SLCP to an EPEC was shown to give the same solution as the 

diagonalisation approach but with significantly lower computation time. (We believe 

this approach could prove useful also in other fields such as analysing deregulated 

electricity markets.) 

The second element of the paper compared the competitive, monopolistic and second 

best welfare maximising solutions for both parallel and serial link toll operation. These 

tests confirmed that in the parallel link case competitive tolls are lower than monopoly 

tolls and are reasonably close to second best welfare tolls. In the serial link case we also 

confirmed that the competitive tolls were greater than (or equal to) the monopoly tolls 

and that the welfare level is lower under competition than under monopoly. This would 

suggest that regulators should not allow direct competition in the serial link case. 

However for both the serial and parallel cases it was also shown that the presence of un-
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tolled alternatives reduces the toll levels and so reduces opportunities for monopolistic 

behaviour. 

The third element of the paper introduced an intuitive formulation of collusive 

behaviour. To this effect, we introduced a collusion parameter to reflect the degree of 

cooperation between operators. Implicit in the assumption was that operators would be 

willing to reciprocate the action of the other and we have ignored the associated issues 

of stability of coalitions formed. Nevertheless, even for the simple examples presented 

in this paper, we have found the potential for multiple equilibria to be obtained. 

Furthermore we demonstrated that in all cases as collusion increases from none through 

to full collusion then the tolls map from the Nash solution to the monopoly solution in a 

smooth manner. Where a local monopoly solution exists then the collusive behaviour 

can also map toward this local monopoly rather than the global one which is by 

definition more acceptable to the public in terms of welfare change. 

 However for both the serial and parallel cases where the first operator is limited by an 

upper bound on the toll level then to increase total revenue the second operator must 

accept a reduction in revenue. Thus there is no incentive to collude in this case unless 

there is some form of agreement to share revenues set up in advance. 

There is much scope to develop this work further considering the case of asymmetric 

collusion where one operator colludes more than the other which takes us into the area 

of leader-follower games such as Stackelberg. In terms of algorithms there is the 

obvious extension to the case of more than two operators which raises the question of 

whether the heuristics will converge with more complex tolling systems. In addition, the 

analysis presented in this paper can be employed to study competition between cities 

intending to introduce road pricing and/or other demand management or capacity 

enhancement measures. These serve as topics for further research which could build on 

the findings presented here. 
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Appendix 

 

The Cutting Constraint Algorithm (CCA) 

 

Mathematical Program with Equilibrium Constraints 

 

In the case of a single operator (operator is a used here generically) who sets tolls 

and/or capacities to optimise some objective function which could be to maximise social 

welfare in the case of a local authority or to maximise profit in the case of a private 

firm. This optimisation problem is effectively a Mathematical Program with Equilirium 

Constraints (MPEC). The economic paradigm for a generic MPEC is based on the 

setting of a Stackleberg game where the leader sets his strategic decision variables and 

the road users on the network follow. In optimising his objective the decision maker has 

to take into account the responses of the road users whose route choice is given by 

Wardrop’s Equilibrium Condition. A large amount of development has occurred in this 

branch of mathematical optimisation (Luo et al 1996) which has applications in e.g. 

mechanics, robotics and transportation analysis. The primary difficulty with the MPEC 

is that they fail to satisfy certain technical conditions (known as constraint 

qualifications) at any feasible point (Chen and Florian, 1995; Scheel and Scholtes, 

1995). In recent research, Koh et al (2009) investigated the use of the cutting constraint 

algorithm (CCA) (Lawphongpanich and Hearn, 2004) to solve an MPEC in the context 

of second best congestion pricing and capacity optimisation. 

 



European Transport \ Trasporti Europei  n. 44 (2010): 3-22 

 21 

Reinterpretation of Variational Inequality Condition  

 

Let us define the 2 additional variables 

 

aβ : a pre-specified upper bound on capacities, [ ],a a Bβ β= ∈  

τ : a pre-specified upper bound on tolls, [ ],a a Bτ τ= ∈  

 

As we have defined in the main paper, the feasible region of flow vectors, Ω, is a 

linear equation system of flow conservation constraints. 

From convex set theory, e.g. (Bazaraa et al 2008, Theorem 2.1.6 p.43), (v,d) ∈Ω can 

be defined as a convex combination of a set of extreme points. Hence we can rewrite the 

equilibrium condition (3) using the following: 

 

( ) ( ) ( ) ( )* * * *, , , , 0  for 
T T

e e e Eτ β τ β−⋅ − − ⋅ − ≥ ∀ ∈1c v u v D d q d  

 

Where (u
ε
,q
ε
) is the vector of extreme link flow and demand flow indexed by the 

superscript e, and E is the set of all extreme points of Ω. 

 

A Cutting Constraint Algorithm for the MPEC 

 

The Cutting Constraint Algorithm redefines the variational inequality using the 

extreme points. Together with the initial extreme point, generated by an initial shortest 

path problem, and the constraints defining feasible flows, the master problem is solved 

to find the optimal tolls and capacities at each iteration. Subsequently new extreme 

points (“cuts”) are found by solving a sub problem using the results for the current 

iteration. 

 

The CCA Algorithm is as follows:  

 

CCA Algorithm 

Step 0: Initialise the problem by finding the shortest paths for each O-D 

pair; set l (iteration counter) = 0; define the aggregated link flow and 

demand flow (u
l
,q

l
); and include (u

l
,q

l
) into E. 

Step 1: Set l=l+1. Solve the Master Problem with all extreme points in E 

and obtain the solution vector (v,d,τ,β); then set (v
l
,d

l
,τ

l
,β

l
). 

Step 2: Solve the Sub Problem with (v
l
,d

l
,τ

l
,β

l
) and obtain the new extreme 

point (u
l
,q

l
). 

Step 3: Convergence Check:  

If ( ) ( ) ( )( ) ( )1, , , , 0
TT

l l l l l l l l l lτ β τ β−⋅ − − ⋅ − ≥c v u v D d q d , terminate and 

(v
l
,d

l
,τ

l
,β

l
) is the solution, otherwise include (u

l
,q

l
) into E and return 

to Step 1. 
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The Master Problem in Step 1 is defined as follows:  

( )
( )

( )

( ) ( ) ( ) ( )

1
, , ,

* * * *

min , , ,

. .

0                                            for given  and 

0                                          for given  and 

,

, , 0  for

a a

a a

T T
e e

s t

a B

a B

τ β
ψ τ β

τ τ ε

β β γ

τ β −

≤ ≤ ∀ ∈

≤ ≤ ∀ ∈

∈ Ω

⋅ − − ⋅ − ≥

v d

1

v d

v d

c v u v D d q d  e E∀ ∈

  

 

The sub problem of Step 2 is a shortest path problem which is formulated as follows:  

( )
( ) ( )( )

( )

1

,
min , , , ,

. .

,

TT

s t

τ β τ β−⋅ − ⋅

∈ Ω

u q
c v u D d q

u q

 
 

 

Further details of our implementation of the algorithm can be found in Koh et al 

(2009). Our numerical experiments indicate that for a small network tested in that paper, 

CCA obtained the global solution in a large number of test instances (as verified against 

a multi-start derivative free Hooke Jeeves (Hooke and Jeeves, 1961) method. Instances 

where it failed could be resolved by modifying the variable bounds which is recognised 

as a common obstacle in applying gradient based non linear programming methods to 

solve MPECs. 


