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Abstract 
 

Modellers are increasingly relying on the use of continuous random coefficients models, such as Mixed 
Logit, for the representation of variations in tastes across individuals. In this paper, we provide an in-
depth comparison of the performance of the Mixed Logit model with that of its far less commonly used 
discrete mixture counterpart, making use of a combination of real and simulated datasets. The results not 
only show significant computational advantages for the discrete mixture approach, but also highlight 
greater flexibility, and show that, across a host of scenarios, the discrete mixture models are able to offer 
comparable or indeed superior model performance. 
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1. Introduction and context 

 

Allowing for variations in behaviour across decision makers is one of the most 

fundamental principles in discrete choice modelling, given that the assumption of a 

purely homogeneous population cannot in general be seen to be valid.  

The typical way of allowing for such variation is through a deterministic approach, 

linking the taste heterogeneity to variations in socio-demographic factors such as 

income or trip purpose. While appealing from the point of view of interpretation (and 
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especially for forecasting), it is often not possible to represent all variations in tastes in a 

deterministic fashion, for reasons of data quality, but also due to inherent randomness in 

choice behaviour. For this reason, random coefficient structures, such as the Mixed 

Multinomial Logit (MMNL) model, which allow for random variations in behaviour 

across respondents, have an important advantage in terms of flexibility. In general, such 

models have the disadvantage that their choice probabilities take on the form of 

integrals that do not possess a closed form solution, such that numerical processes, 

typically simulation, are required during estimation and application of the models. This 

greatly limited the use of these structures for many years after their initial 

developments. Over recent years, gains in computer speed and the efficiency of 

simulation based estimation processes (see for example Hess et al. 2006) have however 

led to increased interest in the MMNL model in particular, by researchers and, to a 

lesser degree, also practitioners.  

Despite the improvements in estimation capability, the cost of using the MMNL 

model remains high. While this might be acceptable in many cases, another important 

issue remains, namely the choice of distribution to be used for representing the random 

variations in tastes across respondents. Here, there is a major risk of producing 

misleading results when making an inappropriate choice of distribution, as discussed by 

Hess et al. (2005).  

In this paper, we explore an alternative approach, based on the idea of replacing the 

continuous distribution functions by discrete distributions, spreading the mass among 

several discrete values. Mathematically, the model structure of a discrete mixture (DM) 

model is a special case of a latent class model (cf. Kamakura and Russell, 1989; 

Chintagunta et al., 1991), assigning different coefficient values to different parts of the 

population of respondents, a concept discussed in the field of transport studies for 

example by Greene and Hensher (2003) and Lee et al. (2003). Latent class approaches 

make use of two sub-models, one for class allocation, and one for within class choice. 

The former models the probability of an individual being assigned to a specific class as 

a function of attributes of the respondent and possibly of the alternatives in the choice 

set. The within class model is then used to compute the class-specific choice 
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probabilities for the different alternatives, conditional on the tastes within that class. The 

actual choice probability for individual n  and alternative i  is given by a sum of the 

class-specific choice probabilities, weighted by the class allocation choice probabilities 

for that specific individual.  

The latent class approach is appealing from the point of view that it allows for 

differences in sensitivities across population groups, where the group allocation can be 

related to socio-demographic characteristics. However, in practice, it may not always be 

possible to explain group allocation with the help of a probabilistic model relating the 

outcome to observed variables. This situation is similar to the case where taste 

heterogeneity cannot be explained deterministically, leading to a requirement for using 

random coefficients models. As such, in this paper, we explore the use of models in 

which the class allocation probabilities are independent of explanatory variables, and 

are simply given by constants that are to be estimated during model calibration. As 

such, the resulting model exploits the class membership concept in the context of 

random coefficients models, with a limited set of possible values for the coefficients.  

Thus far, there have seemingly been only two main applications of this approach in 

the area of transport research, by Gopinath (1995), in the context of mode choice for 

freight shippers, and by Dong and Koppelman (2003), who made use of discrete 

mixtures of MNL models in the analysis of mode choice for work trips in New York, 

referring to the resulting model as the “Mass Point Mixed Logit model”. Although the 

properties of DM models have been discussed by several other authors (e.g. Wedel et 

al., 1999), the model structure does not seem to have received widespread exposure or 

application, despite its many appealing characteristics. Given this observation, part of 

the aim of this paper is to re-explore the potential advantages of DM models, with the 

hope of encouraging their more widespread use. Additionally, the paper aims to offer a 

systematic comparison of the performance of discrete and continuous mixture models 

across a host of situations, making use of simulated data.  

The remainder of this paper is organised as follows. The next section sets out the 

theory behind DM models. Section 3 presents a case study using real data, while Section 
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4 uses four different simulated datasets in a systematic comparison of discrete and 

continuous mixture models. Finally, Section 5 presents the conclusions of the paper.  
 

 

2. Methodology 

 

Let inx  be a vector defining the attributes of alternative i  as faced by respondent n , 

and let β  be a vector defining the tastes of the decision maker, where, in purely 

deterministic models, β  is constant across respondents. Furthermore, let nx  be a vector 

grouping together the individual vectors jnx  across the alternatives contained in the 

choice set of respondent n . We can then define ( )|n n nP i x C β, ,  to give the choice 

probability of alternative i  for individual n , with a choice set nC , conditional on the 

observed vector nx , and for given values for the vector of parameters β (to be 

estimated).  

In a discrete mixture context, the number of possible values for the taste coefficients 

β  is finite. Here, we divide the set of parameters β  into two sets; β  represents a part 

of β  containing deterministic parameters, while β  is a set of K  random parameters 

that have a discrete distribution. Within this set, the parameter 
kβ  has km  mass points 

j

kβ , 1 kj … m= , , , each of them associated with a probability j
kπ , where we impose the 

conditions that1  
 

 0 1 1 1j
k kk K j mπ≤ ≤ , = , , ; = , , ,… …  (1) 
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, where jα  with 1j J= , ,…  are estimated 

without constraints. While avoiding the need for constraints, this formulation becomes highly non-linear 

and difficult to handle in estimation. 
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For each realisation 1

1
Kj j

K
…β β, ,  of β , the choice probability is given by  

 ( )1

1
| Kj j

n n n K
P i x C β β β β, , = 〈 , , , 〉 ,…  (3) 

where the deterministic part of β  stays constant across realisations of the vector β .  

The unconditional choice probability for alternative i  and decision maker n  can now 

be written straightforwardly as a mixture over the discrete distributions of the various 

elements contained in β  as:  
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β β π πβ β
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= , , = 〈 , , , 〉 ⋅ ⋅ ,∑ ∑ … …
 (4) 

 

where β , β  and π  ( 11 1
1 1

Km m
K Kπ π π π π= 〈 , , , , , , 〉… … … ) are vectors of parameters to be 

estimated in a regular maximum likelihood estimation procedure. An obvious advantage 

of this approach is that, if the model (3) used inside the mixture has a closed form, then 

so does the DM itself.  

In this paper, we focus on the simple case where the underlying choice model is of 

MNL form; however, the form given in equation (4) is appropriate for any underlying 

model (e.g. Nested Logit). The approach can easily be extended to the case of combined 

discrete and continuous random taste heterogeneity, by partitioning β  into three parts; 

the above defined parts β  and β , and an additional part β , whose elements follow 

continuous distributions2. This however leads to a requirement to use simulation, as 

with all continuous mixture models.  

Finally, a treatment of repeated choice observations analogous to the standard 

continuous mixture treatment, with tastes varying across individuals, but not across 

observations for the same individual, is made possible by replacing the conditional 

choice probabilities for individual observations in equation (4) by probabilities for 

sequences of choices, and by using the resulting DM term inside the log-likelihood 

function.  

                                                 
2This approach can then also be used to include error components for correlation or heteroscedasticity. 
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Several issues arise in the estimation of DM models. Firstly, the non-concavity of the 

log likelihood function does not allow the identification of a global maximum, even for 

discrete mixtures of MNL. Given the potential presence of a high number of local 

maxima, performing several estimations from various starting points is advisable. Also, 

it is good practice to use starting values other than 0 or 1 for the j
kπ  parameters. 

Secondly, constrained maximum likelihood must be used to account for constraints (1) 

and (2). Thirdly, clustering of mass points (for example around the mode of the true 

distribution) is a frequent phenomenon with DM models, and the use of additional 

bounds on the mass points can be useful, based on the definition of (potentially 

mutually exclusive) a priori intervals for the individual mass points. In this context, a 

heuristic is needed to determine the optimal number of support points in actual 

applications. Some of these issues have caused problems in past applications of DM 

models, see for example Dong and Koppelman (2003). Given these problems in past 

research, the results of our analysis should ideally be reconfirmed in future work.  

For the purpose of this analysis, the model was coded into BIOGEME (Bierlaire, 

2003), where various constraints on the parameters can be imposed to address the issues 

described above. This also allows modellers to test the validity of specific assumptions, 

such as a mass at zero for the VTTS, a concept discussed for example by Cirillo and 

Axhausen (2006).  
 

 

3. VTTS case study 

 

In this section, we present the findings of an analysis making use of real world data. 

We first give a brief description of the data in Section 1, before looking at model 

specification in Section 2. The estimation results are presented in Section 3.  
 
 

3.1 Data 
 

The study presented here makes use of Stated Preference (SP) data collected as part of 

a recent value of time study undertaken in Denmark (Burge and Rohr, 2004). 
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Specifically, we make use of data describing a binary choice process for car travellers, 

with alternatives described only in terms of travel cost and travel time. This may be seen 

as a simple design for a SP survey. However, this is now a standard SP format for 

VTTS studies in Europe (e.g. Mackie et al., 2003). In any case, the design of the survey 

should have no direct impact on the comparison between DM and MMNL models in 

this analysis.  

Each respondent was presented with 9  choice situations, including one with a 

dominating alternative. After eliminating the observations with a dominating 

alternative, as well as additional data cleaning (removing non-traders and respondents 

who did not choose the dominating alternative3), a sample of 13,386 observations from 

1,723 respondents was obtained. This equates to 3,037 observations from 392 

commuters, 1,081 observations from 142 respondents travelling for education purposes, 

1,767 observations from 230 people on shopping trips, 3,155 observations from 404 

people travelling to visit friends or relatives, 1,752 observations from 224 general 

leisure travellers and 2,594 observations from 331 respondents travelling for other 

purposes.  

To allow us to gauge the stability of the results, multiple random subsamples of 

around 80%  of the original sample size were generated for each of the above listed six 

purpose segments4.  
 

 

3.2 Model specification 

 

The models used in this paper were estimated in log-WTP (willingness to pay) space, 

avoiding the effect of heterogenous scale (cf. Fosgerau and Bierlaire, 2006), while 

allowing us to represent random variations in the VTTS without the issue of calculating 

                                                 
3The dominating alternative was both cheaper and faster. Respondents observed to choose the slower and 

more expensive alternative were deemed not to have correctly understood the survey, and were removed 

from the analysis. The number of non-traders in the data was fairly low, but their removal was in line with 

previous studies using the same data (cf. Fosgerau, 2006). 
4The selection was performed at the individual-specific level, rather than the observation-specific level. 
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the VTTS on the basis of separate randomly distributed coefficients for travel time and 

travel cost. This was found to be the best specification for this dataset by Fosgerau 

(2006).  

Details of the specification are given by Fosgerau (2006). In summary, we let iT  and 

iC  define the time and cost attributes of alternative i , and rearrange the data such that 

1 2T T>  and 1 2C C< , i.e., the first alternative is slower but cheaper than the second 

alternative. By further setting ( )lnLV VTTSα = , we get the following utility functions:  
 

 1 1ln C

T

U λ ε
 ∆

= − + ∆ 
 (5) 

 
and  

 

 2 2LVU λα ε= + ,  (6) 

 

where 1 2C C C∆ = −  and 1 2T T T∆ = − , while 1ε  and 2ε  give the usual type I iid extreme 

value terms. The scale λ  is estimated in addition to LVα , and, with travel costs given in 

Danish Krona (DKK) and travel times given in minutes, the actual VTTS in DKK per 

hour is obtained by ( )60 exp LVα⋅ . The specification set out above can now be used in a 

standard discrete choice framework, with either a fixed estimate for LVα , or with 

random variation across respondents.  
 

 

3.3 Model results 

 

During the analysis, four different types of model were estimated on the data; a 

simple MNL model, a MMNL model using a Normal distribution, and two DM 

specifications, one with two support points, DM(2), and one with three support points, 

DM(3)5. In the MMNL and DM models, the repeated choice nature of the data was 

taken into account by specifying the likelihood function with the integration 
                                                 
5Models with more than three support points collapsed back to the more basic specifications. 
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(respectively summation in the DM models) outside the product over replications for the 

same respondent.  

Each of these models was estimated across the six population segments, with 10  

different random subsamples for each segment. Given this wealth of results, we 

presented detailed results only for a single subsample for shopping trips (Section 1), and 

give summary results for the remaining five population segments (Section 2). It should 

be said that, across segments and models, the results were very stable across 

subsamples, where a similar observation was also made with slightly smaller 

subsamples, allowing for smaller overlap.  
 

 

3.3.1 Detailed results for shopping trips 

 

The results for the various models estimated on the data for shopping trips are 

summarised in Table 1. Several differences arise across models in the presentation of 

the results. As such, for the MNL model, only LVα  and λ  are estimated. For the 

MMNL model, LVα  follows a Normal distribution, with mean LV µα ,  and standard 

deviation LV σα , . For the two DM models, the value of LVα  is spread across several 

support points LV kα ,  with associated probabilities 0 1kπ≤ ≤ , such that 
1

1K
kk

π
=

=∑ , 

with 2K =  and 3K =  in DM(2) and DM(3) respectively.  

The table also shows the calculated VTTS. For the MNL model, the mean VTTS is 

simply obtained through ( )60 exp LVα⋅ . However, for the three mixture models, the non-

linearity in the exponential means that a different approach is required. With 

( )LV N α αα µ σ,∼  in the MMNL model, the actual VTTS follows a log-normal 

distribution with mean ( )2

2expVTTS
ασ

αµ µ= +  and standard deviation 
2exp 1VTTS ασ µ σ 

 
 

= − . Both VTTSµ  and VTTSσ  can then be multiplied by 60  to obtain 

hourly values. For the DM models, a slightly different approach was used. As such, with 

K  support points LV kα ,  and associated probabilities kπ , a sequence of draws was 

generated that contained k Nπ ⋅  points with a value equal to exp LV kα 
 , 

, with 

1k … K= , , . The sample mean and standard deviation from this sequence were then used 
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as estimates of the mean and standard deviation for the actual VTTS. For the results 

presented here, the value of N  was set to 100 000, , beyond which no visible differences 

were observed for VTTSσ . Finally, along with the results for individual subsamples, the 

table also shows some overall measures, namely the average of the adjusted 2ρ  

measure, the average estimation time, and the average for VTTSµ  and VTTSσ  (together 

with a standard deviation of this mean across subsamples).  
 

Table 1: Estimation results on Danish shopping data. 

 Model MNL  MMNL  DM(2)  DM(3)   

Final LL -880.96 -880.96  -849.65  -845.40  

adj. 2ρ  0.1036 0.1036  0.13433  0.136613 

Estimation time (s) 1 1  75  1  

est. -1.1100  -1.0800  -  -   
LV µα ,  

asy. t-ratio -14.20  -11.30  -  -   

est. -  0.8950  -  -   
LV σα ,  

asy. t-ratio -  8.75  -  -   

est. -  -  0.5410  0.7770   
1LVα ,  

asy. t-ratio -  -  1.89  2.26   

est. -  -  0.2130  0.1560   
1π  

asy. t-ratio ( )i  -  -  3.73  2.69   

est. -  -  -1.4700  -1.7800  
2LVα ,  

asy. t-ratio -  -  -13.40  -5.40   

est. -  -  0.7870  0.4550   
2π  

asy. t-ratio ( )i  -  -  13.80  1.53   

est. -  -  -  -0.9100  
3LVα ,  

asy. t-ratio -  -  -  -2.09   

est. -  -  -  0.3890   
3π  

asy. t-ratio ( )i  -  -  -  1.35   

est. 0.8380  1.0300  1.0100  1.0300   
λ  

asy. t-ratio 11.50  12.10  12.30  12.10   

Mean VTTS (DKK/hour) 19.77  30.41  32.81  34.29   

VTTS standard deviation -  33.70  36.55  41.86   
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The first observation that can be made from Table 1 is that all three mixture models 

offer significant improvements in model fit over the base MNL model. Given the 

structural differences between the continuous and discrete mixture models, the 

comparison between these models is carried out using the adjusted 2ρ  measure rather 

than the log-likelihood function. Here, we can see that DM(2) offers the best 

performance, ahead of DM(3) and the MMNL model. While the model with three 

support points obtains slightly better model fit than the model with two support points, 

the gains are not large enough to be significant when taking into account the additional 

cost in terms of the number of parameters. In other words, the model with three support 

points is not able to retrieve significant amounts of additional heterogeneity when 

compared to the model with two support points. This can partly be seen as a reflection 

of the success of the model with two support points, but is also an illustration of the 

difficulties of estimating models with more than two support points, as alluded to in 

Section 2.  

The next observation relates to the much lower estimation cost for the DM(2) model, 

with an average estimation time of one second, compared to seventy-five with the 

MMNL model. This much lower estimation cost would give the DM models a 

significant advantage in the case of larger datasets, where the absolute estimation times 

would be more substantial. Furthermore, the estimation time for the MMNL model was 

in this case kept low through the use of only 250 Halton draws in the estimation.  

In terms of substantive results, the mean VTTS measures obtained by the three 

mixture models are significantly higher than the point estimate obtained with the MNL 

model. This is at least partly a result of the asymmetrical distribution of the VTTS in the 

mixture models. While there are also some differences between the three mixture 

models in the estimates for VTTSµ , these are much smaller than the difference when 

compared to the MNL estimates. Finally, the estimate for VTTSσ  is much higher in the 

DM(3) model, while the estimate for the DM(2) model and the MMNL model are very 

similar.  
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3.3.2 Other results 
 

Table 2 summarises the results for the various models estimated on the remaining five 

purpose segments. The results are very similar to those obtained on the data for 

shopping trips. As such, all three mixture models outperfom the MNL model, where the 

best performance is consistently obtained by the DM(2) model. Again, the DM(3) 

model is not able to retrieve significant levels of additional taste heterogeneity to 

warrant the estimation of two additional parameters. In fact, the estimates for VTTSµ  and 

VTTSσ  are almost universally equivalent across the two models6. As in the case of 

shopping trips, the advantages of the DM models in terms of estimation time are again 

very significant, across all five purpose segments. Finally, while there are almost no 

differences in the estimates for VTTSµ  between the three different mixture models (where 

the estimates are again significantly higher than those for the MNL models), the 

estimates for VTTSσ  are now lower in the DM models, something that was not the case in 

the shopping segment.  
 

Table 2: Summary of results for commuters, education trips, leisure trips, other purposes and visits. 

 Commuters Education Leisure Other Visit 
adj. 2ρ : 0.1017  0.1282  0.1102  0.0888  0.1007  

estimation time (s): 1  1  1  1  1   

M
N

L 

Mean VTTS (DKK/hour): 29.08  29.32  26.40  22.73  23.82   
adj. 2ρ : 0.1263 0.1599 0.1395 0.1127  0.1294  

estimation time (s): 131  51  74  107  127   
Mean VTTS (DKK/hour): 39.51  37.28  37.62  34.76  35.83   

M
M

N
L 

 

Std.dev. VTTS 35.90  29.24  38.43  39.85  39.61   
adj. 2ρ : 0.1291 0.1609 0.1433 0.1156  0.1337  

estimation time (s): 2  1  1  2  2   
Mean VTTS (DKK/hour): 39.78  36.96  37.03  34.43  37.36   D

M
(2

)  

Std.dev. VTTS 30.50  24.01  28.03  29.17  36.28   
adj. 2ρ : 0.1279 0.1576 0.1412 0.1142  0.1326  

estimation time (s): 4  1  2  3  4   
Mean VTTS (DKK/hour): 39.78  37.04  37.03  34.43  37.18   D

M
(3

)  

Std.dev. VTTS 30.50  24.36  28.03  29.17  36.16   

                                                 
6It is worth noting that, with the exception of the education segment, the adjusted 2ρ  measure is higher 

for the DM(3) model than for the MMNL model. 
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4. Simulated data case studies 

 

The application presented in Section 3 has shown the potential advantages of using a 

discrete mixture approach. However, it is clearly impossible to generalise these results, 

which could well be specific to the data at hand. For this, a systematic comparison 

between discrete and continuous mixture models is required; this is the topic of this 

section, which presents the findings of four case studies making use of simulated data.  

In each of the four case studies, the generation of the data is based on the Danish VOT 

data used in the case study described in Section 3. Specifically, we use 10 776,  

observations from 1 347,  respondents, and generate choices based on the attributes used 

in the original survey data. For each of the four different true models, ten sets of choices 

are generated for each observation, allowing us to gauge the stability of results across 

different samples. With the exception of the first case study, where the MMNL model 

had slightly higher variation across samples, the results were relatively stable, such that 

we only present results for the first subsample in each case7.  

Unlike in the case study described in Section 3, we now work in preference space, 

with separate coefficients for travel time and travel cost. In each case, the travel cost 

coefficient is kept fixed while some random distribution is used for the travel time 

coefficient, with distributions chosen so as to give realistic ranges for the VTTS 

distribution. Finally, the data generation was in each case carried out under the 

assumption of constant tastes across replications for the same individual, and the same 

approach was later used in model estimation.  

In the first two case studies, the true model is a discrete mixture, while in the final two 

case studies, the true model is a continuous mixture. This allows us to gauge the relative 

difficulties of the two types of model in dealing with data for which the other model 

type is more appropriate.  

Before proceeding to the discussion of the results, it should be noted that all MMNL 

models presented here make use of a Normal distribution. Attempts to use alternative 

continuous distribution functions, such as Johnson’s BS , did not lead to consistent 

                                                 
7Detailed results are available from the first author on request. 
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results on the data used here. While the findings from this analysis are thus limited to a 

comparison between a discrete mixture and a normal mixture, it should be remembered 

that the vast majority of MMNL studies make use specifically of this Normal 

distribution, such that the results are still relevant.  
 

 

4.1 Case study 1: discrete mixture with two support points 

 

The first case study makes use of data generated with the help of a discrete mixture 

model with two mass points for Tβ , at 1−  and 0 5− . , with probabilities of 0 25.  and 

0 75.  respectively. The travel cost coefficient is fixed at a value of 1− , such that we 

obtain a mean VTTS of 37 5.  DKK per hour with a standard deviation of 13 33.  DKK 

per hour.  

Table 3 presents detailed results for the first of the ten subsamples generated for this 

case study. In addition to a basic MNL model, we estimated a MMNL model using a 

Normal distribution and a discrete mixture model with two support points on this 

dataset8. In both cases, we allowed for random variations in Cβ  as well as Tβ . 

Consistent with the true model, no variations were observed for Cβ  in the discrete 

mixture model, labelled DM(2) A , such that a second model, DM(2) B , was estimated, in 

which Cβ  was kept fixed.  

In a comparison between the three remaining models, MNL, MMNL and DM(2) B , 

we observe that the discrete mixture model outperforms the continuous mixture model, 

which in turn outperforms the MNL model. In terms of estimation time, DM(2) B  has 

clear advantages over the MMNL model, and the higher estimation cost when compared 

to MNL is well justified on the basis of the improvements in model performance. All 

three models offer very good performance in retrieving the mean VTTS, while the two 

mixture models additionally offer good performance in the estimation of the standard 

deviation.  
 

 
                                                 
8No further gains in model performance were obtained by allowing for more than two support points. 



European Transport \ Trasporti Europei  n. 37 (2007): 35-61 

 49

Table 3. Estimation results for first simulated dataset. 

 MNL MMNL DM(2) A   DM(2) B    
Final LL  -4565.42  -4122.22  -4007.05  -4007.05   

par.  2  4  8  5   
adj. 2ρ   0.3885  0.4476  0.4625  0.4629   

est.time (s)  2  234  17  6   
est.  asy.t-rat.  est. asy.t-rat. est. asy.t-rat. est.  asy.t-rat.  

Tβ   -0.4081 -36.16 - - - - - - 

T µβ ,   - - -0.6409 -36.28 - - - - 

T σβ ,   - - 0.1553 10.31 - - - - 

1Tβ ,   - - - - -0.5050 -40.99 -0.5050 -40.99 

1Tπ ,   - - - - 0.7258 50.22 0.7258 50.22 

2Tβ ,   - - - - -1.0231 -40.81 -1.0231 -40.81 

2Tπ ,   - - - - 0.2742 18.97 0.2742 18.97 

Cβ   -0.6424 -34.09 - - - - -1.0083 -42.20 

C µβ ,   - - -1.0613 -36.64 - - - - 

C σβ ,   - - 0.2071 9.66 - - - - 

1Cβ ,   - - - - -1.0083 -12.20 - - 

1Cπ ,   - - - - 0.3035 0.00 - - 

2Cβ ,   - - - - -1.0083 -24.03 - - 

2Cπ ,   - - - - 0.6965 0.00 - - 

VTTSµ  38.11 37.81 38.50 38.50 

VTTSσ  - 12.75 13.75 13.75 

 

A final point deserves some special attention. As mentioned above, we initially 

allowed for random variation in Cβ  as well as Tβ . The estimation of the first discrete 

mixture model, DM(2) A , offered no evidence of such heterogeneity, such that the 

model was replaced by DM(2) B . However, for the continuous mixture model, MMNL, 

we retrieved significant heterogeneity for Cβ  as well as for Tβ , despite the fact that Cβ  

was kept fixed in the generation of the data. This offers clear evidence of confounding; 

by being unable to retrieve the correct patterns of heterogeneity for Tβ , the MMNL 

model explains part of the remaining error in the model through heterogeneity in Cβ . 

As such, while the model is able to correctly retrieve the mean and standard deviation of 

the VTTS, it does so by incorrectly indicating a variation across respondents in the 

sensitivity to changes in travel cost.  
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The findings from Table 3 are confirmed by a graphical analysis of the shape for the 

distribution of Tβ  in Figure 1, where this comparison is made possible by the fact that 

the mean estimate for Cβ  is essentially equal to 1−  in all models.  
 

 

Figure 1: Cumulative distribution function for Tβ  for first simulated dataset. 

 

 

4.2 Case study 2: discrete mixture with three support points 

 

In the second case study, the true model is again a discrete mixture of a MNL model, 

where this time, three support points are used for Tβ , at 1− , 0 7− .  and 0 4− . , with 

probabilities of 0 3. , 0 35.  and 0 35. . This leads to a true mean VTTS of 41 1.  DKK per 

hour, with a standard deviation of 14 48.  DKK per hour. Four different models were 

estimated on these data; along with the usual MNL and MMNL models, we estimated a 
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DM with two support points, and a DM with three support points9. Again, the DM 

models were estimated with two different specifications, using a randomly distributed 

Cβ  coefficient in DM(2) A  and DM(3) A , and a fixed Cβ  coefficient in DM(2) B  and 

DM(3) B . The detailed results for the first sample are presented in Table 4.  
 

Table 4: Estimation results for second simulated dataset.  

                                                 
9No further gains could be made by using more than three support points. 

 
MNL MMNL DM(2) A  DM(2) B  DM(3) A  DM(3) B  

Final LL -4721.69 -4155.65 -4126.23 -4227.43 -4120.96 -4120.99 

par. 2 4 8 5 12 7 

adj. 2ρ  0.3676 0.4431 0.4465 0.4334 0.4467 0.4473 

est.time (s) 1 346 16 6 151 13 

 est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat

Tβ   -0.3925 -33.72 - - - - - - - - - - 

T µβ ,   - - -0.6817 -34.78 - - - - - - - - 

T σβ ,   - - 0.2423 25.15 - - - - - - - - 

1Tβ ,   - - - - -0.8561 -36.56 -0.4005 -36.62 -0.3930 -29.72 -0.7015 -34.17 

1Tπ ,   - - - - 0.6210 27.38 0.5028 27.72 0.3185 14.88 0.4069 14.02 

2Tβ ,   - - - - -0.4221 -28.99 -0.8084 -39.33 -0.7031 -32.76 -0.3927 -29.84 

2Tπ ,   - - - - 0.3790 16.71 0.4972 27.41 0.4093 13.50 0.3187 14.89 

3Tβ ,   - - - - - - - - -1.0262 -32.13 -1.0234 -34.26 

3Tπ ,   - - - - - - - - 0.2723 10.94 0.2744 11.64 

Cβ   -0.5732 -33.39 - - - - -0.8783 -40.98 - - -1.0084 -39.31 

C µβ ,   - - -0.9965 -37.48 - - - - - - - - 

C σβ ,   - - 0.0591 4.51 - - - - - - - - 

1Cβ ,   - - - - -1.2023 -35.79 - - -1.0015 -23.66 - - 

1Cπ ,   - - - - 0.5357 13.28 - - 0.8114 0.69 - - 

2Cβ ,   - - - - -0.8469 -33.57 - - -1.0454 -6.67 - - 

2Cπ ,   - - - - 0.4643 11.51 - - 0.1886 0.16 - - 

3Cβ ,   - - - - - - - - -1.2583 0.00 - - 

3Cπ ,   - - - - - - - - 0.0000 0.00 - - 

VTTSµ   41.08 41.18 41.22 41.25 41.18 41.09 

VTTSσ   - 14.86 14.68 13.94 14.41 14.44 
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The results show major improvements for the MMNL and various DM models when 

compared to the MNL model. All six models perform very well in terms of retrieving 

the mean VTTS, while the five mixture models also obtain a good approximation to the 

true standard deviation of the VTTS. We now look in more detail at the differences 

between the various mixture models. As was the case in the case study discussed in 

Section 1, the MMNL model again falsely recovers some random variation for Cβ , 

where the level of variation is however much lower than was the case in the first case 

study. When only allowing for two support points, the DM models also retrieve 

significant variation for Cβ , as reflected in the drop in model fit observed from DM(2) A  

to DM(2) B  when constraining Cβ  to a fixed value. This is no longer the case when 

using three support points. Finally, as was the case in Section 1, the DM models again 

have a significant advantage over the MMNL model in terms of estimation cost.  

Figure 2 shows the cumulative distribution functions for Tβ  in the MMNL model, as 

well as in DM(2) A  and DM(3) B . The advantages of the DM models are again very 

obvious, especially in the case of the model with three support points.  

 

Figure 2: Cumulative distribution function for Tβ  for second simulated dataset. 
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4.3 Case study 3: normal mixture 
 

For the third case study, a MMNL model with a normally distributed travel time 

coefficient was chosen as the true model. Specifically, Cβ  is still fixed to a value of 1− , 

while Tβ  now follows a Normal distribution with mean of 0 8− .  and a standard 

deviation of 0 3. , leading to a mean VTTS of 48  DKK/hour, with a standard deviation 

of 18  DKK.  

The results for the first subsample of the third simulated dataset are summarised in 

Table 5. A slightly different strategy was employed in the model estimation in this case 

study. From the experience of the first two case studies, it had to be assumed that some 

of the distribution of Tβ  would erroneously be picked up as heterogeneity in Cβ . This 

would apply especially in the discrete mixture models with a low number of support 

points. As such, alongside the MNL model, two different MMNL models were 

estimated, one with Cβ  kept fixed, and one with a randomly distributed Cβ . In the 

discrete mixture models, 2  support points were used for Cβ , while the number of 

support points for Tβ  was gradually increased up to the point where no heterogeneity 

was retrieved for Cβ , i.e. the random taste heterogeneity in the data is captured 

correctly by Tβ  on its own. It was found that this point was reached between five and 

six support points for Tβ . No further gains in model performance could be obtained by 

increasing the number of support points for Tβ  any further, independently of the 

treatment of Cβ .  

Again, all the different models offer good performance in retrieving the true mean 

value of the VTTS, while the various mixture models additionally offer a good 

approximation to the true standard deviation. The six mixture models offer significant 

improvements in model performance when compared to the MNL model. As in the 

other examples, the DM models again have computational advantages over the MNL 

model. Given the results from the other case studies, it is of interest to look at the issue 

of confounding between the heterogeneity for Tβ  and Cβ . In the MMNL model and the 

DM model with six support points, the reductions in model fit resulting from using a 

fixed Cβ  coefficient are not significant. With only five support points, the drop in 
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model fit is slightly more visible (DM(5) A  vs DM(5) B ), yet still not significant when 

taking into account the cost of estimating three additional parameters. However, in 

earlier models, using fewer than five support points for Tβ , this was not the case, and 

there were significant amounts of confounding10.  

 

 

Figure 3: Cumulative distribution function for Tβ  for third simulated dataset. 

Finally, it is of interest to look at the specific patterns of heterogeneity retrieved by 

the discrete mixture models, where we focus on MMNL B , DM(5) A  and DM(6) B . Here, 

it can be seen from Figure 3 that the two DM models offer a very good approximation 

to the Normal distribution.  
 

 

 

 

 
                                                 
10Detailed results available on request. 
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4.4 Case study 4: mixture of two normals 

 

For the fourth case study, a more complex mixture was used. As such, the true 

distribution is now a mixture of two Normal distributions, where 
1 21 2T T Tβ π β π β= + , 

with 1 2 0 5π π= = . , and with 
1

( 0 8 0 2)T Nβ − . , .∼  and 
2

( 0 3 0 1)T Nβ − . , .∼ . The cost 

coefficient Cβ  was again kept fixed at 1− . With this, we obtain a true mean VTTS of 

33  DKK/hour, with a standard deviation of 17 76.  DKK. In model estimation, the 

strategy from the third case study was again adopted, gradually increasing the number 

of support points for Tβ  in the DM models, while maintaining the number of support 

points for Cβ  fixed at 2 . Again, the issue of confounding largely disappeared when 

using five or more support points.  

The results for the first subsample are presented in Table 4. Along with the MNL 

model, two MMNL models were estimated, where MMNL A  and MMNL B  again differ 

by using a randomly distributed and fixed Cβ  coefficient respectively. Although the 

standard deviation for Cβ  is significantly different from zero in model MMNL A , it is 

very small compared to the mean value, such that it is no surprise that the effect of using 

a fixed coefficient is very small, with very similar model performance for MMNL B . In 

the DM models, we experience a very small, and insignificant drop in model fit when 

constraining Cβ  to a single value. Here, two further observations can be made. In model 

DM(5) A , the difference between 1Cβ ,  and 2Cβ ,  is not significant beyond the 48%  level 

of confidence, while, in model DM(6) A , it is not significant beyond the 50%  level of 

difference. It can also be seen that, on average, when moving from DM(5) A  to DM(5) B  

and from DM(6) A  to DM(6) B , the standard errors associated with the various T kπ ,  

parameters decrease. Finally, model DM(6) B  can be seen to reduce to model DM(5) B ; 

the additional support point, as well as its associated probability, are not significantly 

different from zero. All seven models again offer good performance in the retrieval of 

the true mean VTTS, where the six mixture models also perform well for the standard 

deviation. The DM models maintain their advantages in terms of estimation cost, where 

these are naturally smaller than before given the higher number of parameters. In terms 
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of model performance, the MMNL models clearly outperform the MNL model, while 

the various DM models have a small advantage over the MMNL models. 

When looking at the retrieval of the true shape for the distribution of Tβ , it can be 

seen that the MMNL models using a single Normal distribution produce a mean that is 

the weighted average of the mean of the two Normal distributions. The DM models on 

the other hand do recover the multi-modality of the true distribution11. These findings 

are reflected in the shape of the distributions for Tβ  in Figure 4, where the DM models 

(DM(5) A  and DM(6) B ) are better able to account for the multi-modality of the true 

distribution.  

 

Figure 4: Cumulative distribution function for Tβ  for fourth simulated dataset. 

 

 

                                                 
11It should be noted that, in the retained DM model, DM(5) B , two of the probabilities for support points, 

1Tπ ,  and 3Tπ , , are only significant at the 85%  level of confidence. 
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In closing, it should be noted that, in this example, the uni-modal MMNL model still 

manages to retrieve the true mean and standard deviation of the multi-modal true 

distribution of the VTTS. This can be explained by the fact that the probabilities for the 

two Normal distributions were set evenly to 0 5. , where the difference in the standard 

deviation for 
1Tβ  and 

2Tβ  was also rather small. Different patterns could be expected in 

a more asymmetrical scenario. 
 

 

5. Summary and conclusions 

 

With the availability of powerful computers and estimation tools, researchers and 

practitioners are increasingly making use of continuous mixture structures, such as 

Mixed Logit, in the representation of random taste heterogeneity across respondents. 

Despite the gains in estimation power, the cost of using such mixture models remains 

high, especially in large scale studies. Furthermore, several issues arise due to the 

models’ reliance on specific distribution functions, whose shape is not necessarily 

consistent with that of the true, unobserved distribution. 

In this paper, we have discussed an alternative approach for the representation of 

random taste heterogeneity, making use of discrete mixtures instead of continuous 

mixtures. Although several issues can also arise in the estimation of such models, they 

have the advantage of a closed form solution, and can hence be estimated and applied 

without relying on simulation processes. Furthermore, the models are free from a priori 

assumptions as to the shape of the true distribution. 

The paper presents several case studies offering an in-depth comparison of the two 

modelling approaches, making use of real data as well as four separate simulated 

datasets. The results of these analyses clearly show the major advantage of the discrete 

mixture approach in terms of estimation cost. They also show that, across scenarios, the 

discrete mixture models are able to attain similar or indeed better performance than their 
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continuous counterparts. Finally, they are better able to deal with complicated true 

distributions, such as the presence of multiple modes. 

Although further comparisons between the two modelling approaches are required, 

the results from this paper do suggest that discrete mixture models present a viable 

alternative, partly thanks to their lower cost in estimation and application, but also due 

to the absence of a priori shape assumptions, which is of great interest in the context of 

recent discussions of the issue of the specification of continuous heterogeneity by Hess 

et al. (2005).  
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