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Abstract 

Amongst current societal challenges sustainability is certainly a priority. The possibility of 

building a sustainable future, while maintaining high standards in the quality of life and 

preserving environment and resources, strongly relies on the availability of methods for the 

green production of energy and chemicals. The production of chemicals together with the on-

demand power generation can be achieved in Direct Liquid Fuel Cells (DLFCs), devices in 

which the chemical energy of a liquid fuel is converted into electrical energy. DLFCs usually 

employ Small Organic Molecules (SOMs), such as alcohols or formic acid, as fuels. These 

fuels can be obtained from biomass feedstock. Consequently their use generates a 

significantly lower atmospheric CO2 with respect to the use of fossil fuels, resulting in a 

potential mitigation of the ―greenhouse effect‖. 

At the present stage, DLFCs rely on the use of the rare and costly platinum. This is for 

two reasons: i) platinum is a good catalyst for both SOMs oxidation and Oxygen Reduction 

Reaction (ORR); ii) platinum is stable in acidic environment. It is worth mentioning that most 

of DLFCs employ proton exchange membranes as electrolytes and need strongly acidic 

conditions for achieving low resistivity. In these systems also the water management can be a 

problem, as it is attracted to the cathode side for polarization and water is frequently 

introduced in the feed stream to the fuel cell. At present acidic DLFCs operate with a 

platinum content largely exceeding 1 mg cm
-2

, a fact that severely hampers the diffusion of 

such devices.  

In this investigation, thanks to a low resistivity Anion Exchange Membranes (AEM), the 

Tokuyama A-201, we have developed efficient alkaline direct liquid fuel cells (AEM-DLFCs). 

This has been done with the purpose of eliminating platinum from the devices. Indeed it is 

known that palladium effectively catalyzes SOMs oxidation in alkali; besides, oxygen 

reduction reaction can also be effectively achieved by using iron and cobalt phtalocyanines 

(Pc). Consequently the membrane electrode assembly (MEA) of a AEM-DLFC can be 

assembled using: i) a palladium based anode, ii) a Tokuyama A-201 membrane and iii) a 

cathode containing FePc-CoPc/C as electrocatalyst obtained from the high temperature 

pyrolysis of FePc-CoPc. An important fact is that FePc-CoPc/C is not active at all for the 



oxidation of SOMs. This has the major implication that fuel crossover through the membrane 

does not result in significant potential (and so energy efficiency) drop in fuel cells. 

The experimental part of this thesis starts with a chapter devoted to the analysis of the 

energy performance of platinum-free AEM-DLFCs fueled with ethanol (Chapter 3). This 

work is the first exhaustive analysis of the energy performance of such devices. Particularly 

we have determined the major parameters that characterize the fuel cell operations: i) 

maximum power density, ii) energy efficiency and iii) energy delivered per single fuel batch. 

All these parameters have been determined as a function of the fuel composition. We have 

discovered that the fuel concentration that maximizes one of the parameters can be 

detrimental to the others with the fundamental consequence that fuel composition must be 

selected according to the selected application. The effect of adding a promoting oxide, CeO2, 

to the anode catalyst has also been investigated. In some cases efficiency can be improved up 

to the 100% by simply adding cerium oxide to the anode catalyst. We have also proved that 

DEFCs are suitable candidates for the µ-fuel cells technology as we have shown their ability 

to operate with no or little performance degradation for 3 months at low power density (< 1 

mW cm
-2

).  

Chapter 4 is dedicated to the Direct Formate Fuel Cells (DFFCs). Nanostructured Pd/C 

and FePc-CoPc/C have been employed at the anode and cathode side respectively. A large 

open circuit voltage (≥1.0 V) was obtained. This has been attributed to the larger (as 

compared with DEFCs) Nernst potential of the DFFCs and the use of FePc-CoPc/C as 

cathode electrocatalyst to restrain the reduction of cell voltage by fuel crossover. Our DFFCs 

have shown maximum power density larger than state of the art AEM-DLFCs and also Direct 

Formic Acid Fuel Cells (DFAFCs). AEM-DFFCs are also very effective in exploiting the 

energy content of the fuel. Indeed we have shown that DFFCs energy efficiency is four times 

the energy efficiency of analogous DEFCs. This point is very important to exploit the 

technology as the energy efficiency is the key issue for achieving sustainability and the major 

constraints for systems devoted to massive energy production. Again we have found that fuel 

composition is essential for the performance. The best power density was obtained by the cell 

fuelled with 2 M formate plus 2 M KOH, while best delivered energy, fuel utilization and 

energy efficiency were delivered by cell equipped with 4 M formate plus 4 M KOH.  

To enhance the ability of palladium to catalyze SOMs oxidation in alkaline environment, 

we have developed an original electrochemical treatment (Chapter 5). The treatment consisted 



of the application of a Square-Wave Potential (SWP) to the electrode and resulted in surface 

roughening and change in the distribution of the crystal surface terminations. Particularly we 

have found that after SWP an increase of the density of low coordination (Coordination 

Number < 8) Pd surface atoms occurs. We have found significant activity enhancement (from 

4 to 5.6 times as compared to untreated surface) for the oxidation of all the investigated 

alcohols. Furthermore, FTIR spectra have shown that the reaction products distribution was 

also affected. Particularly we determined an increased tendency of the SWP treated Pd surface 

to cleave the C-C bond as compared to the untreated ones.  

A tailored SWP treatment for enhancing the catalytic activity of platinum was also 

developed (Chapter 6). The essential reason behind the study is to provide a tool for reducing 

Pt content in fuel cells when it cannot be completely eliminated. For platinum, it has turned 

out that the period of the square wave is the most important parameter. The most active 

platinum surface for Ethanol Oxidation Reaction (EOR) in alkali has been produced with a 

square wave period of 120 min, while the maximum stability of the catalytic performance has 

been obtained with the sample produced with a period of 360 min. Via in situ FTIR we have 

also found that the treated samples limit C-C cleavage as compared to the untreated ones. This 

suggests that SWP on Pt could provide an effective strategy to minimize the formation of CO, 

a major poisoning agent for platinum based catalysts. 

Chapter 7 is devoted to the investigation of the degradation mechanism of palladium 

electrocatalysts in platinum-free AEM-DLFCs. This is among the main issues still preventing 

the full exploitation of palladium in DLFCs. We have demonstrated that palladium oxide 

formation is the major cause for the catalytic performance degradation. We came to this 

conclusion by combining the information derived from electrochemical measurements and 

synchrotron light experiments (X-ray Absorption Spectroscopy). X-ray Absorption Near Edge 

Structure (XANES) spectra of the Pd Kα edge before and after DEFC run have shown that Pd 

is present in its metallic form in the pristine catalyst, while it is almost completely oxidized 

after work in an ethanol fed fuel cell. This has enabled us to conclude that to extend the 

service life of palladium electro-catalysts in alkali, the anode potential has not to exceed 0.7 V. 

In practice this can be achieved with a simple electronic control of the device. 

Increasing the operating temperature of fuel cells is an alternative strategy to improve the 

performance of fuel cells fed with SOMs containing fuels. In chapter 8, palladium has been 

investigated as a catalyst for ethanol oxidation at intermediate temperatures (> 100 °C) in a 



pressurized vessel. We have found that the increase of the temperature dramatically enhances 

the ability of catalyzing EOR in alkali. This fact has been ascribed to the improved adsorption 

of the hydroxyl species on the palladium surface. The same enhancement has not been 

observed in acidic environment. A few experiments on the use of tungsten carbide in a cobalt 

matrix (WC-Co) have also been performed. We have proved that WC-Co does not catalyze 

significantly the ethanol oxidation reaction in alkaline media, while it does in acidic 

electrolyte at medium temperature (~50 °C). At larger temperature the stability in acidic 

environment is not enough to allow a reliable assessment of the catalytic performance. Larger 

stability has been achieved in alkali where tungsten carbide is a potential candidate for 

supporting other active phases such as noble metals.  

 

Keywords: Nanostructure; Electrocatalyst; Fuel cell; Portable power supply; Anion exchange 

membrane 

  



 

Scopo del lavoro 

Lo sviluppo sostenibile è una sfida prioritaria per la nostra società. La possibilità di costruire 

un futuro sostenibile, mantenendo al contempo alti standard nella qualità della vita e 

preservando risorse e ambiente, dipende dalla disponibilità di metodi per la produzione verde 

di energía e prodotti chimici. La produzione simultanea di prodotti chimici ed energía può 

essere ottenuta nelle celle a combustibile che impiegano combustibili liquidi (Direct Liquid 

Fuel Cells – DLFC), dispositivi in cui l’energia chimica contenuta nelle molecole di 

combustibile è convertita direttamente in energía elettrica. Le DLFC impiegano solitamente 

combustibili a  base di piccole molecole organiche quali ad esempio alcoli ed acido formico. 

Questi combustibili sono di particolare interesse, dal momento che possono essere ottenuti a 

partire da biomassa, con un impatto minore sulle emissioni di gas serra rispetto ai 

combustibili fossili.  

Allo stato attuale le DLFC impiegano platino in quantità elevate. Questo per due ragioni: 

i) il platino è un buon catalizzatore sia per l’ossidazione di composti organici che per la 

riduzione dell’ossigeno e ii) il platino è stabile in ambiente acido. E’ importante sottolineare 

che le attuali DLFC impiegano membrane a scambio protonico come elettroliti e dunque 

richiedono ambienti fortemente acidi per avere un’adeguata conducibilità. Le DLFC 

impiegano carichi di platino maggiori di 1 mg cm
-2

, un fatto che ne limita molto la possibilità 

di diffusione commerciale. 

In questo lavoro, grazie alla disponibilità di membrane a scambio anionico ad elevata 

conducibilità (Tokuyama A-201), abbiamo sviluppato delle DLFC alcaline (Anion Exchange 

Membrane Direct Liquid Fuel Cells – AEM-DLFC). Ciò e’ stato fatto con l’obiettivo di 

eliminare il platino dai dispositivi. E’ infatti noto che il palladio è un catalizzatore molto 

attivo per l’ossidazione delle piccole molecole organiche in ambiente alcalino e che la 

reazione di riduzione dell’ossigeno puo’ essere catalizzata da composti di ferro e cobalto (es. 

ftalocianine). La tecnología qui riportatata si basa sull’impiego di anodi di palladio supportati 

da carbon black (Vulcan XC-72), membrane a scambio anionico e ftalocianine di ferro e 

cobalto subbortate da carbon black con maggiore area superficiale rispetto a quello impiegato 

all’anodo (Ketjen Black 600).  Un fatto importante è che le ftalocianine di ferro e cobalto non 

sono attive per l’ossidazione di molecole organiche. Ciò è particolarmente rilevante per le fuel 



cells perché il cross-over del combustibile attraverso la membrana non produce significative 

cadute di potenziale e quindi dell’efficienza energetica. 

La parte sperimentale della tesi inizia con un capitolo in cui si decrivono le prestazioni di 

AEM-DLFC esenti da platino ed alimentate ad etanolo. Questa parte del lavoro è 

particolarmente rilevante dal momento che è la prima e completa caratterizzazione della 

performance energetica di questi dispositivi. In particolare si sono determinati i seguenti 

parametri: i) massima densità di potenza, ii) efficienza energetica e iii) l’energia prodotta per 

singolo batch di combustibile. Tutti questi parametri sono stati determinati in funzione della 

composizione del combustibile. Abbiamo scoperto che la composizione del combustibile che 

massimizza uno dei parametri sopra riportati generalmente ha effetti negativi sugli altri. E’ 

dunque necesario definire la composizione del combustibile in funzione della particolare 

applicazione cui il dispositivo è destinato. Abbiamo inoltre studiato l’effetto dell’aggiunta di 

un ossido promotore, la ceria, al catalizatore anódico, mostrando che le prestazioni migliorano 

significativamente. In alcuni casi l’efficienza energetica può essere migliorata anche di più del 

100% grazie alla semplice aggiunta di dell’ossido promotore. 

Il capitolo successivo e’ dedicato alle celle a combustile che impiegano combustibili a 

base di formiato (Direct Formate Fuel Cells – DFFC). In questo caso si sono impiegati 

catalizzatori nanostrutturati di Pd supportato da Vulcan XC-72 e ftalocianine di ferro e 

cobalto, rispettivamente all’anodo ed al catodo, ottenendo un potenziale di circuito aperto 

superiore ad 1 V.  Le celle alcaline al formiato hanno prodotto una densità massima di 

potenza superiore alle celle alcaline che impiegano metanolo ed etanolo, ed anche alle celle 

acide che impiegano acido formico. In particolare l’efficienza energetica delle celle al 

formiato è stata superiore di un fattore 4 a quella delle migliori celle alcaline ad etanolo. 

Questo e’ un punto cruciale per l’applicazione pratica della tecnología proposta. Infatti 

l’efficienza energetica e’ uno dei cardini per il raggiungimento della sostenibilità e, senza 

dubbio, il vincolo principale per i sistemi che devono produrre grandi quantita’ di energía, 

come la generazione stazionaria di energía elettrica. Anche nel caso delle celle al formiato, 

abbiamo osservato che la composizione del combustibile è essenziale nel definire la 

performance energetica. Abbiamo mostrato che la massima densità di potenza si ottiene con 

un combustibile che contiene formiato 2 M e KOH 2 M, mentre l’energia per singolo batch di 

combustibile, la migliore conversione del combustibile e l’efficienza energetica sono migliori 

per il formiato 4 M e KOH 4 M.  



Al fine di migliorare la capacità del palladio di catalizzare l’ossidazione elettrochimica di 

composti organici rinnovabili, abbiamo sviluppato un metodo elettrochimico originale per il 

trattamento delle superfici degli elettrodi. Il trattamento consiste nell’applicazione di un 

potenziale ad onda quadra (Square Wave Potential – SWP) che produce un aumento della 

rugosità superficiale e una modifica della distribuzione delle terminazioni cristalline della 

superficie, incrementando la densità degli atomi di Pd superficiali a basso numero di 

coordinazione (< 8). Il trattamento si è rivelato efficace nel migliorare la cinetica di 

ossidaizione dell’etanolo, dell’etilen glicole e del glicerolo. I trattementi sviluppati hanno 

prodotto incrementi dell’attività fino ad un fattore 5.6. L’analisi FTIR dei processi di 

ossidazione ha dimostrato che anche la distribuzione dei prodotti di ossidazione e’ affetta dal 

trattamento. In particolate abbiamo riscontrato un incremento nella capacità dei catalizzatori 

ottenuti per SWP di rompere il legame C-C. 

Il trattamento elettrochimico con potenziale ad onda quadra è stato sviluppato anche per 

le superfici di platino, con l’obbiettivo di fornire uno strumento per ridurne il contenuto nelle 

fuel cells quando non sia possibile eliminarlo completamente. Nel caso del platino si è 

riscontrato che il parámetro piu’ importante per l’efficienza del trattamento è il periodo 

dell’onda quadra. Le superfici più attive si sono ottenute con un periodo di trattamento di 120 

minuti, mentra la stabilità massima si e’ avuta per campioni trattati con onde quadre con 

periodo di 360 minuti. Tramite esperimenti FTIR si è inoltre concluso che nel caso del platino 

il trattamento inibisce la rottura del legame C-C. Questo fatto è importante perchè limita la 

formazione di frammenti CO che sono le principali specie che avvelenano gli 

elettrocatalizzatori a base di platino.  

Il capitolo 7 è dedicato allo studio dei meccanismi di deattivazione dei catalizzatori di 

palladio per l’ossidazione elettrochimica in ambente alcalino di alcoli. L’argomento è 

rilevante poichè la deattivazione è una delle principali cause che limita la diffusione di questi 

dispositivi.  Abbiamo dimostrato che la formazione di ossidi è la causa che determina 

maggiormente la degradazione della performance catalítica. Siamo giunti a questa 

conclusione combinando le informazioni proveniente da indagini elettrochimiche ed 

esperimenti che impiegano la radiazione di sincrotrone. L’analisi degli spettri XANES (Near 

Edge X-ray Absorption Spectroscopy) ha mostrato che il palladio è presente nella sua forma 

metallica nei catalizzatori freschi, mentre è completamente ossidato dopo l’impiego in fuel 

cells. Nello studio si conclude che per allungare la vita degli anodi a base di palladio è 



necesario che il catalizzatore anodico non sia esposto a potenziali superiori a 0.7 V. Ciò è 

possibile in pratica con una semplice elettronica di controllo da abbinare alla cella.  

Al fine di aumentare la cinetica di ossidazione abbiamo provveduto ad effettuare 

esperimenti di ossidazione dell’etanolo a temperatura intermedie (> 100 °C) in autoclave. 

Abbiamo osservato che l’incremento della temperatura aumenta in misura significativa la 

capacità dei catalizzatori di ossidare l’etanolo in ambiente alcalino. Questo fatto è stato 

ascritto prevalentemente al miglioramento della capacità di adsorbire specie idrossido alla 

superficie del palladio. Lo stesso miglioramento non è stato osservato per esperimenti 

condotti in ambiente acido. Si sono inoltre realizzati esperimenti di ossidazione dell’etanolo 

su superfici di carburo di tungsteno in matrice di cobalto. Si è provato che questo materiale 

non mostra un’attività significativa per l’ossidazione di etanolo in ambiente alcalino. In ogni 

caso si è osservato che il materiale è stabile in ambienti alcalini, in un range di temperatura 

compreso tra 100 e 200 °C. Questo fatto unitamente all’elevata conducibilità  suggerisce che 

il carburo di tungsteno in matrice di cobalto possa essere impiegato come supporto per la fase 

attiva dei catalizzatori, quali appunto il palladio. Lo stesso materiale ha mostrato una debole 

attività nell’ossidazione dell’etanolo ad una temperatura di 50 °C in ambiente acido. La 

stabilità non era però suficiente per permettere la caratterizzatione delle proprietà catalitiche 

in soluzioni acide a temperatura superiori.  

 

Parole chiave: Nanomateriali; Elettrocatalisi; Celle a combustibile; Alimentatore portatile; 

Membrana a scambio anionico 
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1. Introduction 

1.1 Current situation of energy resources 

Fossil fuels, which take up more than 80% of the world energy resources (Figure 1-1 

1
), are formed by natural processes such as anaerobic decomposition of buried dead organisms. 

The transformation of organisms to their resulting fossil fuels takes millions of years, which 

makes fossil fuels as non-renewable resources since their viable reserves are being depleted 

much faster than new ones made. As shown in Figure 1-2, the production of utilizable fossil 

fuels will peak around 2025 and then begin to decrease 
2
. As calculated by E. Topal 

3
, oil, coal 

and gas will be run out around 35, 107 and 37 years, respectively. 

 

 

Figure 1-1. Worldwide energy resources. 

http://en.wikipedia.org/wiki/Anaerobic_decomposition
http://en.wikipedia.org/wiki/Organism


 

2 

 

 

Figure 1-2. Fuel production data and projection, 1965 to 2100. 

 

Fossil fuels are usually extracted from minerals. The extraction-rate was high early in the 

history. However the Energy Returned On Energy Invested (EROEI) of fossil fuels decreases 

and eventually goes to zero as the constantly consumption of relatively easily extractable 

minerals. 

Besides the issue of depletion and the decrease of EROEI, the use of fossil fuels raises 

serious environmental concerns. The burning of fossil fuels produces around 21.3 billion tons 

of carbon dioxide per year. Carbon dioxide, one of the main greenhouse gases, boosts 

radiative forcing and contributes to global warming. 

Seeking for a sustainable development is a priority. Developing renewable energy 

sources, such as wind, solar and biomass, meets the need to some extent. On the other hand, it 

might be wise to find a way to improve the efficiency of end-use equipment. At this point, 

combination energy sources with the fuel cell conversion system may be a beneficial option 

for future power generation. The main advantage of fuel cells in this respect are their higher 

efficiency compared to the internal combustion engines. Beyond all that ethanol converted 

from biomass can be directly used in direct ethanol fuel cells to generate electricity. 

Furthermore, fuel cell as green energy equipment emits zero contaminant as operating on pure 

hydrogen. Some stationary fuel cells use natural gas or hydrocarbons as a hydrogen feedstock. 

But even these systems produce far fewer emissions than conventional power plants. 
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1.2 Fuel cells 

 

Figure 1-3. Schematic diagram of a fuel cell. 

A fuel cell is a device that converts chemical energy directly into electricity through a 

chemical reaction (Figure 1-3). Typical reactants of fuel cells are hydrogen and oxygen; 

however, neither has to be in its pure form, except in rare cases. Hydrogen may be presented 

in a mixture with other gases. For greater efficiency, hydrocarbons, such as natural gas and 

alcohols, can be used directly. Ambient air containing enough oxygen may be used in the 

other side of fuel cells. 

1.2.1 History 

The first crude fuel cell, made by William Grove, is as far back to 1838. However, the 

technological development of fuel cells fell behind the more well-known steam engines and 

internal combustion engines. The real progress and development of fuel cells started after one 

century. 

In 1939, Francis Thomas Bacon successfully developed a 5 kW stationary fuel cell. In 

1955, W. Thomas Grubb, a chemist working for the General Electric Company (GE), further 

modified the original fuel cell design by using a sulphonated polystyrene ion-exchange 

membrane as the electrolyte. Three years later another GE chemist, Leonard Niedrach, 

devised a way of depositing platinum onto the membrane, which served as catalyst for the 

necessary hydrogen oxidation and oxygen reduction reactions. GE went on to develop this 

technology with NASA and McDonnell Aircraft, leading to its use in Project Gemini. This 

was the first commercial use of a fuel cell.  

http://en.wikipedia.org/wiki/Chemical_energy
http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Francis_Thomas_Bacon
http://en.wikipedia.org/wiki/GE
http://en.wikipedia.org/wiki/Project_Gemini
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The successful use of alkaline fuel cell in space program was also the start of a new era 

for fuel cells. Many research groups started to focus on fuel cells development. Meanwhile, 

their applications extension from space system to portable power and vehicle began soon 

afterwards. 

1.2.2 Thermodynamics 

Fuel cells are galvanic cells, in which the free energy of a chemical reaction is converted into 

electrical energy. The Gibbs free energy change of a chemical reaction is related to the cell 

voltage: 

                                                                                                                               (1-1) 

Where 

n is the number of electrons involved in the reaction; 

F is the Faraday constant; 

ΔU0 is the cell voltage for thermodynamic equilibrium in the absence of a current flow. 

The anode reaction in fuel cells is either the direct oxidation of hydrogen or the oxidation 

of alcohol. The cathode reaction in fuel cells is oxygen reduction. 

While using H2/O2 as the fuel, the overall reaction is: 

   
 

 
                                                                                                (1-2) 

The thermodynamic equilibrium cell voltage     for standard conditions at 25 °C is as 

following: 

    
   

  
                                                                                                                    (1-3) 

The equilibrium cell voltage is the difference of the equilibrium electrode potentials of 

cathode and anode which are determined by the electrochemical reaction taking place at the 

respective electrode: 

                                                                                                                           (1-4) 

1.2.3 Reaction kinetics 

Electrochemical reactions involve both a change in Gibbs energy and a transfer of electrical 

charge. The speed of an electrochemical reaction proceeding on the electrode surface is the 
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rate of the electrons released or consumed, which is the electrical current. Current density is 

the current per unit area of the surface. 

For a redox reaction, the current density (j) is given by the Butler-Volmer equation: 

    {   [
     

  
]     [ 

     

  
]}                                                                                   (1-5) 

j0 is the exchange current density at equilibrium where the net current is equal to zero. 

Exchange current density is a measure of an electrode’s readiness to proceed with 

electrochemical reaction. If the exchange current density is high, the surface of the electrode 

is more active. 

Η is the overpotential, which is the deviation of actual potential from the equilibrium 

value. 

                                                                                                                                 (1-6) 

1.2.4 Voltage losses 

When a fuel cell is supplied with reactant but the electrical circuit is open, the cell potential is 

expected to be at the theoretical value. In fact, this potential, named as open circuit potential, 

is significantly lower than the theoretical potential. When the electrical circuit is closed, the 

potential will drop even further due to unavoidable losses. Theses voltage losses are mainly 

caused by the following factors: 

First, activation polarization. Some voltage difference from equilibrium is needed to get 

the electrochemical reaction going. This is called activation polarization, and it is associated 

with sluggish electrode kinetics. The higher the exchange current density, the lower the 

activation polarization losses. 

Second, crossover losses. Although the electrolyte is not electrically conductive and is 

practically impermeable to reactant, some small amount of hydrogen will diffuse from anode 

to cathode, and some electrons may also find a shortcut through the membranes. Each 

diffused hydrogen molecule, which reacts with oxygen on the cathode side, results in two 

fewer electrons in the generated current of electrons that travels through an external circuit. 
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Third, ohmic losses. Ohmic losses are caused from the resistance of the ions flow in the 

electrolyte and resistance of the electrons flow through the electrically conductive fuel cell 

components. 

Fourth, concentration polarization. Concentration polarization occurs when a reactant is 

rapidly consumed at the electrode by the electrochemical reaction so that concentration 

gradients are established. 

Figure 1-4 shows the proportions between three types of losses in the fuel cell. 

Activation loss is the largest loss at any current density. Figure 1-5 shows how the cell 

polarization curve is formed, by subtracting the activation polarization losses, ohmic losses, 

and concentration polarization losses from the equilibrium potential. 

 
Figure 1-4. Voltage losses in a fuel cell 

4
. 
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Figure 1-5. Polarization curve as the function of voltage losses 

4
. 

 

                                 

1.2.5 Types of fuel cells 

Fuel cells come in many varieties. One way is by the operating temperature, low and high 

temperature fuel cells. Low temperature fuel cells are the Direct Alcohol Fuel Cell (DAFC), 

the Proton Exchange Membrane Fuel Cell (PEMFC), the Alkaline Fuel Cell (AFC), and the 

Phosphoric Acid Fuel Cell (PAFC). The high temperature fuel cells are classed into two types, 

the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). An overview 

of the fuel cell types is given in Figure 1-6. 
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Figure 1-6. Types of Fuel Cells 
5
. Anode and cathode reaction, charge carrier in the 

electrolyte, operating temperature are presented. 

 

A number of these fuel cell types are commercially available today. Each fuel cell type 

has its own unique chemistry, such as different operating temperatures, catalysts, and 

electrolytes. 

1.2.5.1 Direct Liquid Fuel Cell  

The Direct Liquid Fuel Cell (DLFC) is a special form of low-temperature fuel cells based on 

PEM technology. In the DLFC, small organic molecules are directly fed into the fuel cell 

without the intermediate step of reforming the alcohol into hydrogen. The low operating 

temperature makes DMFCs attractive for miniature applications such as cell phones, laptops, 
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and battery chargers for consumer electronics, to mid-size applications powering electronics 

on RVs, boats, or camping cabins. The electrolyte used in DLFC is a solid polymer membrane. 

Cation and anion exchange membranes are used in acid and alkaline separately. 

The detailed information of DLFC is described in 1.3.1. 

1.2.5.2 Proton Exchange Membrane Fuel Cell  

PEMFC uses a proton conductive polymer membrane as an electrolyte. It is a type of fuel 

cell being developed for portable applications as well as for stationary fuel cell applications. 

Their distinguishing features include lower temperature ranges (50 to 100 °C) and a special 

polymer electrolyte membrane.  

In a very basic form it has only two catalyst layers and a proton exchange membrane. 

The proton conductivity of the membrane is a very important factor in PEM technology. 

Nafion
®
, a sulfonated tetrafluoroethylene based fluoropolymer-copolymer discovered in the 

late 1960s by Walther Grot of DuPont 
6
, is probably the most studied and employed 

electrolyte for PEMFC.  

1.2.5.3 Alkaline Fuel Cell 

The alkaline fuel cell is one of the most developed fuel cell technologies. NASA has used 

alkaline fuel cells since the mid-1960s, in Apollo-series missions and on the Space Shuttle. 

The oxygen reduction kinetics is much faster in alkaline electrolyte than in acid, which makes 

the AFC a more efficient system. 

AFCs use an aqueous solution of potassium hydroxide as the electrolyte, with typical 

concentrations of 30-45%. The AFC has the highest electrical efficiencies of all fuel cells but 

it only works properly with very pure gases, which is considered a major drawback in most 

applications. In the presence of CO2, carbonates form and precipitate: 

            
                                                                                                    (1-7) 

The carbonates can lead to potential blockage of the electrolyte pathways and electrode pores. 

http://en.wikipedia.org/wiki/Fuel_cell
http://en.wikipedia.org/wiki/Fuel_cell
http://en.wikipedia.org/wiki/Stationary_fuel_cell_applications
http://en.wikipedia.org/wiki/Tetrafluoroethylene
http://en.wikipedia.org/wiki/Fluoropolymer
http://en.wikipedia.org/wiki/Copolymer
http://en.wikipedia.org/wiki/DuPont
http://en.wikipedia.org/wiki/Fuel_cell
http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/Project_Apollo
http://en.wikipedia.org/wiki/Space_Shuttle_program
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However, despite its early success and leadership role in fuel cell technology, AFCs have 

fallen out of favor with the research community and have been eclipsed by the rapid 

development of the PEMFC as the technology of choice for vehicular applications. 

1.2.5.4 Phosphoric Acid Fuel Cell 

Phosphoric acid fuel cells are a type of fuel cell that uses liquid phosphoric acid as 

an electrolyte. They were the first fuel cells to be commercialized. Since the 1970s, more than 

500 PAFC power plants have been installed and tested around the world. 

The operating temperature of the PAFC is typically between 150 and 200 °C 
7
. The 

operating temperature is found to be a compromise between the electrolyte conductivity (that 

increases with temperature) and cell life (that decreases when the temperature is increased). 

At an operating range of 150 to 200 °C, waste heat from SOFC systems may be captured and 

reused, increasing the theoretical overall efficiency to as high as 80%. PAFCs are CO2-

tolerant which broadens the choice of fuels they can use. 

Despite the excellent technical characteristics, the large diffusion of PAFC in the market 

has slowed down because of economic issues. A study survey shows that the number of 

power plant installations grew from 1990 to 2000, while, after 2000, more attention has been 

given to other fuel cell technologies, such as molten carbonate fuel cells, solid oxide fuel cells 

and proton exchange membrane fuel cells. 

1.2.5.5 Molten Carbonate Fuel Cell  

In 1960 G.H.J. Broers and J.A.A. Ketelaar reported a high temperature fuel cell 
8
 employing 

an electrolyte comprising a mixture of alkali metal carbonates constrained within a sintered 

disk of magnesium oxide. Cells of this type can be run continuously for several months, 

operating between 600 and 800 °C. Following the early work in Netherlands, development of 

MCFC was taken up by many groups. Materials of construction have become well established.  

One advantage of the MCFC is its ability to internally reform methane due to the high 

operating temperatures. In addition to this, the waste heat can be used in combined cycle 

power plants. The high temperatures also increase the oxygen reduction kinetics dramatically, 

to eliminate the need for precious metal catalysts. MCFC can operate on a wide range of 

different fuels and are not prone to CO2 or CO contamination. 

http://en.wikipedia.org/wiki/Fuel_cell
http://en.wikipedia.org/wiki/Phosphoric_acid
http://en.wikipedia.org/wiki/Electrolyte
http://en.wikipedia.org/wiki/Carbon_dioxide
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The primary disadvantage of current MCFC technology is durability. The high 

temperatures and the corrosive electrolyte used accelerate component breakdown and 

corrosion, decreasing cell life. 

1.2.5.6 Solid Oxide Fuel Cell  

The solid oxide fuel cell was conceived following the discovery of solid oxide electrolytes in 

1899 by Nernst 
9
. Nernst reported that the conductivity of pure metal oxides rose only very 

slowly with temperature and remained only relatively low, whereas mixtures of metal oxides 

can possess dramatically higher conductivities. 

SOFC, which employs a solid oxide material as electrolyte, are more stable than the 

MCFC because no leakage problems can occur. SOFC is a gas-solid system, so it has neither 

problem with water management nor flooding of the catalyst layer. SOFC operates at very 

high temperatures, typically between 500 and 1,000 °C. Therefore, it has the same advantages 

as MCFC, such as less internally reform, no CO2 or CO contamination, less precious metal 

catalysts. 

Up to the present, large scale SOFC units have been operated at around 1000 °C 
10

. 

Technology of intermediate temperature SOFCs is still in a developmental stage and several 

technological challenges remain to be solved before this type of fuel cell can find practical 

applications. A SOFC that uses hydrocarbon or methanol and operates at < 500 °C may 

eventually become an attractive power source for electric vehicles 
11

. 
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1.2.6 Application of fuel cells 

Overall fuel cell system shipments (excluding toys and education kits) in 2012 were 45,700 

and annual megawatts shipped reaching a total of 166.7 MW 
12

. Application of Fuel cell can 

be categorized into three broad areas, defined as follows: Stationary, Electric Vehicle and 

Portable (Table 1-1). 

 

Table 1-1.  Scheme of application type of fuel cells. 

Application Type Stationary Electric Vehicle Portable 

Typical Power Range 0.5 kW ~ 400 kW 1 kW ~ 100 kW 5 W ~ 20 kW 

Typical Technology DAFC, PEMFC, 

MCFC, PAFC, 

SOFC, AFC 

DAFC, PEMFC, 

AFC 

DAFC, PEMFC 

 

1.2.6.1 Stationary Power 

Stationary fuel cells are used for commercial, industrial and residential primary and backup 

power generation. Fuel cells are very useful as power sources in remote locations, such as 

spacecraft, remote weather stations, large parks, communications centers, rural locations and 

military applications. A fuel cell system running on hydrogen can be compact and lightweight, 

and have no major moving parts.
 

Both low and high temperature fuel cells could be utilized for stationary applications. 

The low temperature fuel cells are advantageous in a quicker start-up time. The high 

temperature systems generate high grade heat, which can directly be used as in a heat cycle 

steam or indirectly by incorporating the fuel cell system into a combined cycle. 

1.2.6.2 Electric Vehicle 

Fuel cells in vehicles create electricity to power an electric motor, generally 

using oxygen from the air and hydrogen. A fuel cell vehicle that is fueled with hydrogen emits 

http://en.wikipedia.org/wiki/Electric_motor
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Hydrogen
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only water and heat, but no tailpipe pollutants; therefore it is considered a Zero Emission 

Vehicle. 

For vehicle applications, the available space is much more critical and fast response and 

start-up times are required. Thus, only the low temperature systems are applicable. 

The controversial AFC has been proven to be a suitable system for hybrid vehicles as 

long as a circulating electrolyte is used and pure hydrogen is supplied to the fuel cell. Pure 

hydrogen distribution centers are not widely spread over the world and, thus, it is to be 

predicted that AFC vehicles will be limited to specified types (e.g., fleet buses and other 

centralized vehicles).  

The PEMFC is regarded as ideally suited for transportation applications due to its high 

power density, high energy conversion efficiency, compactness, lightweight, and low-

operating temperature (below 100 °C). However, among all applications for fuel cells the 

transportation application involves the most stringent requirements regarding volumetric and 

gravimetric power density, reliability, and costs. 

1.2.6.3 Portable Power 

For small power applications like laptops, camcorders, and mobile phones the requirements of 

the fuel cell systems are even more specific than for vehicle applications. Low temperatures 

are necessary and therefore PEM fuel cells are chosen. Possibilities for fuel cell systems are 

the combination of PEM with hydrogen evolution from hydrolysis of metal hydrides. Other 

fuel cells are, therefore, not suitable for this kind of applications. 

1.2.7 Summary 

Fuel cells will make a valuable contribution to future power generation facilities. They 

improve the flexibility and increase the options for many applications. Their main property is 

the high electrical efficiency compared to other energy conversion devices. Both the low-

temperature and the high-temperature fuel cells have their advantages and disadvantages 

depending on the application. The best suited fuel cell depends on the requirements of the 

application. A certain type of fuel cell is superior for a certain application. 

http://en.wikipedia.org/wiki/Zero_Emission_Vehicle
http://en.wikipedia.org/wiki/Zero_Emission_Vehicle
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Fuel cell systems are commercial products in many areas, such as stationary application 

and some small power devices. The imminent commercialization of fuel cells in areas of high 

turnover, such as vehicle propulsion, battery replacement, and stationary power generation, 

has accelerated the research and development dynamics considerably. 

1.3 Anion Exchange Membrane Direct Liquid Fuel cells 

1.3.1 Direct Liquid Fuel Cells  

Fuel cells, the energy converting devices with a high efficiency and low/zero emission, have 

been attracting more and more attention due to high-energy demands, fossil fuel depletions, 

and environmental pollution throughout the world. For hydrogen gas fed fuel cells at the 

current technological stage, hydrogen production, storage, and transportation are the major 

challenges in addition to cost, reliability and durability issues. The Direct Liquid Fuel Cell 

(DLFC) is a special form of low-temperature fuel cells based on PEM technology. In the 

DLFC, small organic molecules (SOMs) are directly fed into the fuel cell without the 

intermediate step of reforming the fuel into hydrogen. SOMs, the fuel used in DLFCs, have 

advantages compared to hydrogen as they can be easily handled, stored and transported using 

the present gasoline infrastructure with only slight modifications. Furthermore, their energy 

densities are higher, e.g. 16 MJ/L and 23 MJ/L for methanol and ethanol, than liquid 

hydrogen which is 9 MJ/L. 

 

Figure 1-7. Schematic diagram of reactions and processes taking places inside DMFC 
13

. 
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During all those low molecular weight molecules (e.g. methanol, ethanol, ethylene 

glycerol, propanol and propanodiol, formic acid), methanol has been mostly investigated in 

depth. The basic operating principle of Direct Methanol Fuel Cell (DMFC) is shown in Fig. 1-

7. The chemical reactions for the DMFC system can be expressed as follows: 

Anode:                                                                                                          (1-8) 

Cathode:   
 

 
                                                                                                (1-9) 

Overall:        
 

 
                                                                                       (1-10) 

The common operating temperature of DMFC is in the range 50 – 120 °C, where high 

temperatures are usually pressurized. 

Current DAFCs are limited in the power they can produce, but can still store high energy 

content in a small space. This means they can produce a small amount of power over a long 

period of time. This makes them ideal for smaller vehicles and portable devices. 

1.3.2 Direct Ethanol Fuel Cells  

There are several disadvantages of DMFCs. First, methanol is toxic for human beings and 

especially for optical nerve. Second, the sluggish anode kinetics and methanol crossover are 

still the main challenges to DMFC’s commercialization despite that extensive efforts have 

been devoted. But most of all, the main source of methanol is fossil resources which is non-

renewable. Therefore, finding the replacement of methanol is urgent. During the attempts to 

identify fuels for DAFC, ethanol is considered to be an attractive and promising one at least 

for the following reasons: (i) natural availability, (ii) renewability, (iii) higher power density, 

(iv) non-toxicity. 

1.3.2.1 How ethanol is made?  

Ethanol is produced both as a petrochemical, through the hydration of ethylene and, via 

biological processes, by fermenting sugars with yeast. Which process is more economical 

depends on prevailing prices of petroleum and grain feed stocks. 

Ethylene hydration 
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About 5% of the ethanol produced in the world in 2003 was actually a petroleum product. 

Ethanol is made from petrochemical feed stocks, primarily by the acid-catalyzed hydration of 

ethylene, represented as following: 

                                                                                                                (1-11) 

The catalyst is most commonly phosphoric acid, adsorbed onto a porous support such as 

silica gel or diatomaceous earth. 

Fermentation 

The vast majority of ethanol for use as fuel is produced by fermentation of biomass (Figure 1-

8). When certain species of yeast metabolize sugar in reduced-oxygen conditions they 

produce ethanol and carbon dioxide. The chemical equations below summarize the conversion: 

                                                                                                           (1-12) 

                                                                                                  (1-13) 

Fermentation is the process of culturing yeast under favorable thermal conditions to 

produce alcohol. This process is carried out at around 35 – 40 °C. 

To produce ethanol from starchy materials such as cereal grains, the starch must first be 

converted into sugars. For fuel ethanol, the hydrolysis of starch into glucose can be 

accomplished more rapidly by treatment with dilute sulfuric acid, fungal amylase production, 

or some combination of the two. 

Cellulose 

Cellulosic ethanol is produced from wood, grasses, or the inedible parts of plants. Production 

of ethanol from cellulosic materials has the advantage of abundant and diverse raw material 

compared to sources such as corn and cane sugars, but requires a greater amount of 

processing to make the sugar monomers available to the microorganisms typically used to 

produce ethanol by fermentation. The two ways of producing ethanol from cellulose are under 

development. The first type uses enzymes to break complex cellulose into simple sugars, 

followed by fermentation and distillation. The second way is called gasification which 
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transforms the cellulosic raw material into gaseous carbon monoxide and hydrogen. These 

gases can be converted to ethanol by fermentation or chemical catalysis. 

 

Figure 1-8. Production of ethanol from biomass 
14

. 

 

1.3.2.2 The carbon cycle of direct ethanol fuel cells  

As using biomass to produce ethanol, and the energy discharged from direct ethanol fuel cells 

can charge the vehicle or portable device releasing CO2. Then the CO2 can be absorbed by 

biomass. In the end, the whole carbon cycle is totally clean (Figure 1-9). 

Hence, ethanol is a sustainable, carbon-neutral fuel source, and DEFC is clearly the best 

choice for producing sustainable energy in the future. 
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Figure 1-9. The schematic of carbon cycle of direct ethanol fuel cells. 

 

1.3.2.3 Research status and current bottlenecks of DEFCs 

Great attention has been paid the last decade to the DEFCs. Past research on the development 

of DEFC has focused mainly on the PEM-DEFCs that use PEM as the electrolyte. The 

advantage of PEM-DEFC is that the entire system setup and all the components can be the 

same as those in current DMFC technologies that also use PEMs. Lots of researches have 

been focused on the Ethanol Oxidation Reaction (EOR). Zhou et al. 
15

 showed that the 

sequence of catalytic activity for the EOR is PtSn>PtRu>PtW>PtPd>Pt, which is the state-of-

the-art anode catalyst for DEFCs. Although tremendous efforts have been expended on 

developing EOR catalysts for PEM-DEFC, the performance of PEM-DEFC remains low even 

at relatively high operating temperature. The low performance of this type of fuel cell is 

mainly because the kinetics of the EOR in acid media is slow, leading to a large activation 

loss. Another critical obstacle that limits the wide application of PEM-DEFC is the cost of the 

system, not only because a considerable amount of Pt-based catalysts at both the anode and 

cathode is required but also because acid electrolyte membranes (typically Nafion
®

) are 

expensive. 
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1.3.3 State of the art—Anion Exchange Membrane Direct Ethanol Fuel cells 

Unlike in acid media, the kinetics of both the EOR and ORR in alkaline media is much faster 

and allows the use of non-precious metal catalysts to reduce the cost of the fuel cell. Similar 

to the use of PEM in acid fuel cells, the use of an anion-exchange membrane instead of a 

caustic alkaline liquid electrolyte in an alkaline fuel cell can solve carbonation and other 

related problems, such as electrolyte leakage and precipitation of carbonate salts. AEM-

DEFCs have recently attracted increasing attention due to the above reasons. 

1.3.3.1 Principle 

 

Figure 1-10. Schematic of alkaline direct ethanol fuel cell 
16

. 

 

Figure 1-10 illustrates a typical alkaline DEFC setup which consists of a membrane electrode 

assembly (MEA) sandwiched by an anode and a cathode bipolar plate. The MEA, which is 

regarded as an integrated multi-layered structure, is composed of Diffusion Layer (DL), 

Catalyst Layer (CL) and an AEM. The function of the membrane is to conduct hydroxyl ions 

from the cathode to the anode and act as a separator between the anode and cathode electrodes.  

At the anode side, ethanol is oxidized to generate electrons, water, and CO2 according to: 
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                                                                                            (1-14) 

The water in ethanol solution, along with that produced from the EOR, diffuses through 

the membrane to the cathode CL, while the electrons travel through an external circuit to the 

cathode. On the cathode, the oxygen/air provided by the cathode flow field is transported 

through the cathode DL to the cathode CL, where the oxygen reacts with water from the 

anode to produce hydroxide ions according to: 

                                                                                                             (1-15) 

However, it should be noted that with the state-of-the-art anode catalysts, the complete 

oxidation of ethanol expressed by Eq. (1-14) is not achieved. The main product of the reaction 

is acetate rather than CO2 as following: 

                                                                                         (1-16) 

Hence, the actual overall reaction in the alkaline DEFC is: 

                                                                                          (1-17) 

1.3.3.2 Membrane 

In terms of the ionic conduction mode within the polymer structure, anion-exchange 

membranes can be classified into two types: the polyelectrolyte membrane and the alkali-

doped polymer membrane. The development of these two types of AEM, including its 

composition, ionic conductivity, ethanol permeability, and thermal and chemical stability, is 

described below. 

The polyelectrolyte membrane is essentially an ionomer. The ionic function groups 

(typically quaternary ammonium) are grafted on the skeleton of the polymer backbone, and 

the mobile hydroxyl ions are associated to each ionic function groups to maintain membrane 

electro-neutrality. A typical commercial product of polyelectrolyte membranes is the A201 

membranes by Tokuyama; it is composed of quaternary ammonium groups grafted on a 

hydrocarbon polymer backbone. To date, a number of polymer materials as the backbone 

have been investigated, including chitosan 
17

, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) 

18
, poly(vinylbenzyl chloride) (PVBCl) 

19
, poly(tetrafluoroetheneco-hexafluoropropylene) 
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(FEP) 
20

, and poly(ethylene-co-tetrafluoroethylene) (ETFE) 
21

. The quaternary ammonium 

group-based AEMs have particularly low thermal and chemical stability. There are mainly 

two degradation mechanisms: direct nucleophilic displacement and Hoffmann elimination 

reaction. 

The alkali-doped polymer membrane is composed of electronegative heteroatoms 

(typically nitrogen) that interact with the cations of alkali by a donoracceptor link. A typical 

sample for alkali-doped polymer membranes is the KOH-doped polybenzimidazole (PBI) 

membrane. Savadogo et al. 
22

 reported that the ionic conductivity of KOH-doped PBI 

membrane is in the range of 5*10
-5

 – 10
-1

 S/cm. In addition, the KOH-doped PVA membrane 

exhibited excellent thermal and chemical stability to high KOH concentration (10 M) at a 

high temperature of 120°C. The stability of the alkali-doped polymer membranes is superior 

to the polyelectrolyte membranes. Leykin et al. 
23

 showed that the ethanol permeability of 

KOH-doped PBI membrane first increased and then decreased with the increase in the KOH 

concentration. Ethanol permeability through KOH-doped PBI membrane was 6.5×10
-7

 cm
2
/s, 

which is much lower than that of Nafion
®
 membrane. The reason is that Nafion membranes 

swelled more significantly than KOH-doped PBI membranes. 

In summary, the ionic conductivity and the thermal and chemical stability of both types 

of membranes are still low. Hence, significant work is required to improve membrane 

performance.  

1.3.3.3 EOR electrocatalysts 

Platinum is the best known material for the dissociative adsorption of small organic molecules 

at low temperatures. PtRu/C and PtSn/C have been widely accepted as the most effective 

catalysts for EOR in acid media 
24-25

. However, Pt is scarce and expensive. Palladium has 

recently attracted attention as an alternative catalyst for the ethanol oxidation reaction. Unlike 

the Pt-based catalysts, the Pd-based catalysts show better tolerance to the CO-containing 

intermediates. Moreover, Pd is 50 times more abundant than Pt on earth. Above all, Pd shows 

higher catalytic activity for EOR than Pt in alkali. To further enhance the performance of Pd 

for the EOR in alkali, many efforts have been made. The crucial important parameters for Pd 

catalytic activity are the size, morphology, shape, dispersity and the nature of the support 

material. 
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There are continues efforts to improve the electrocatalytic performance of Pd towards 

EOR in alkali. Morphology-controlled Pd, such as spherical sponge-like Pd 
26

, nano-porous 

Pd 
27

, Pd nanowires 
28

, Tetrahexahedral Pd nanocrystals 
29

, have been synthesized and 

investigated. The other way to increase the activity is to deposit Pd in highly dispersed form 

on various supports, namely Ti 
30

, multi-walled carbon nanotube 
31

, graphene oxide 
32

, 

titanium nitride 
33

, titania nanotube array 
34

. In addition, some effort has been devoted to 

employ Pd-alloys looking for a synergetic effect between Pd and the alloying element. So far, 

such an effect has been observed on Pd–Au 
35-36

, Pd–Ag 
37-38

, Pd–Ni 
39-40

. Furthermore, Pd-

based catalysts have been decorated with oxides (CeO2 
41-42

, NiO 
41

, MnO2 
41

, Co3O4 
41

, TiO2 

43
, In2O3 

44
) to get significant promotion effect on the catalytic activity and stability for EOR. 

Unlike the methanol oxidation reaction, EOR undergoes both parallel and consecutive 

oxidation reactions, resulting in more complicated adsorbed intermediates and byproducts. 

Most importantly, the complete oxidation of ethanol to CO2 requires the cleavage of C–C 

bond, which is between two atoms with little electron affinity or ionization energy, making it 

difficult to break the C-C bond at low temperatures. Zhao et al. 
45

 studied the mechanism of 

EOR on the Pd catalyst using the cyclic voltammetry method and suggested that the 

dissociative adsorption of ethanol was rather quick and that the rate-determining step was the 

removal of adsorbed ethoxi species by the OHads groups on Pd. At higher potentials, the 

kinetics was affected by both the adsorption of OHads groups and the formation of the inactive 

oxide layer on Pd. The theoretical analysis using the first-principles method based on the 

density functional theory 
46

 showed that EOR on the Pd catalyst in acid media was difficult 

due to the lack of OHads groups; however, in alkaline media, both ethanol and sufficient OHads 

groups could adsorbed on the Pd catalyst, leading to continuous ethanol oxidation. In-situ 

Fourier transform infrared spectroscopy combined with cyclic voltammetry investigation 

shows that the main oxidation product was acetate when the OH
–
 concentration was higher 

than 0.5 M; CO2 formation was observed only at a pH value equal or smaller than 13 
47

. The 

selectivity for ethanol oxidation to CO2 was determined as low as 2.5% in the potential region 

of −0.60 to 0.0 V vs. SCE 
48

. NMR spectroscopy was also used to observe anode exhaust and 

proved that ethanol was selectively oxidized to acetate on the Pd catalyst in alkali 
31

. 

1.3.3.4 ORR electrocatalysts 
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Cathode performance in alkaline media is generally higher than that in acid media. The 

improved performance can be attributed to both the inherently faster kinetics of the ORR and 

the lower degree of the adsorbed ions from the supporting electrolyte onto the electrode 

surface in alkaline media 
49

. 

Alkaline electrolytes present many opportunities for non-Pt catalysts for the ORR. 

Materials that have little or no measurable activity for the ORR in acid have substantial levels 

of activity in alkaline solution. Thus far, a variety of materials have been investigated for the 

ORR in alkaline media, including Ag 
50

, manganese oxide 
51

, Co3O4 
52

. Carbon has also been 

noted to show catalytic activity toward the ORR in alkaline media 
53

. 

Metal complexes of organic compounds have received considerable attention recently as 

possible catalysts for the cathodic reduction of oxygen 
54-55

. Metal phthalocyanines (Pc), in 

particular, are known to be electrochemically active for ORR. The electrocatalytic activity of 

metal Pc has been found to depend considerably on the nature of the central metal ion 
56

. The 

order of decreasing electrocatalytic activity is: Fe > Co > Ni > Cu > H2. The electrocatalytic 

activity also depends to some extent on the degree of polymerisation, on the substitution of 

the ligand, and on the nature of the support on which the catalyst is carried.  

In summary, under alkaline conditions, the kinetics of both EOR and ORR become more 

facile than in acidic media, making it possible to use non-platinum catalysts. 

1.3.3.5 Single cell design and performance 

The ionic conductivity of anion-exchange membranes and the catalytic activity of anode 

catalysts are still low. The applications of the state-of-the-art membranes and catalysts to the 

alkaline DEFC setup still cannot result in a satisfactory performance. An effective approach to 

increase the kinetics of both EOR and ORR and enhance the ionic conductivity of the 

membrane is to add an alkali (typically the KOH) to the fuel solution. A number of works that 

used A201 membranes with added alkaline ethanol solutions have been reported 
42, 57-58

. 

Fujiwara et al. 
57

 compared cell performance between acid- (using the Nafion-117 membrane) 

and alkaline-based (using A201 membrane) DEFCs with PtRu and Pt as the anode and 

cathode catalysts, respectively. The maximum power density of DEFCs significantly 

increased from 6 mWcm
−2

 to 58 mWcm
−2

 at room temperature and atmospheric pressure 

when the electrolyte membrane was changed from CEM to AEM. The anode and cathode 

polarization curves showed a decrease in the anode potential and an increase in the cathode 
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potential for AEM-type DEFCs compared to CEM-type. This suggests that AEM-type DEFCs 

have superior catalytic activity toward both ethanol oxidation and oxygen reduction in 

alkaline medium than in acidic medium. Using Pd as anode and non-noble metal as cathode 

instead of Pt, the performance is comparable and even better. Bianchini et al. 
58

 using the Pd-

(Ni-Zn)/C anode catalyst and Fe–Co K-14 Hypermec™ as cathode, the passive alkaline 

DEFC at room temperature could yield a power density of as high as 55 mW/cm
2
, whereas the 

active AEM DEFC delivered up to 160 mW/cm
2
 with an oxygen flow rate of 200 sccm at 

80 °C. Cell performance based on the alkali-doped PBI membrane has also been studied. 

Modestov et al. 
59

 reported the performance of the air-breading alkaline DEFC using RuV/C 

anode and TMPhP/C cathode, and the peak power density of was 100 mW/cm
2
 at 80 °C. 

To enhance cell performance further, significant research should also be conducted in the 

aspects of understanding species transport mechanisms and designing new electrode 

structures. 

1.3.4 Summary 

Ethanol is a sustainable, carbon-neutral transportation fuel source. It is an ideal fuel source for 

direct oxidation fuel cells for portable and mobile applications because it offers multiple 

advantages over hydrogen and methanol, including higher energy density and ease of 

transportation, storage, and handling. However, conventional DEFCs that use Nafion 

membranes and platinum-based catalysts exhibit extremely low performance. When going 

from acid to alkali, DEFC can use non-platinum catalysts both at anode and cathode showing 

considerable performance. This alkaline DEFC offers the advantage of low cost resulting 

from relatively cheaper membranes and non-platinum catalysts compared with those in acid 

DEFC. However, the power output of the alkaline DEFCs must be substantially improved 

before widespread commercialization is possible. Such improvement depends on finding 

solutions for many critical issues. The electrode design must be optimized, which critically 

depends on a clear understanding of mass/charge transport in nano-sized electrode structures. 

The following are some of the critical issues that need to be addressed in the future: 

1) The cell performance, not only the power density but also the long time delivered 

energy and energy efficiency, of alkaline DEFCs should be better understood. 

2) Cell design in connection with the KOH concentration and ethanol concentration 

should be investigated in order to optimize the cell performance of alkaline DEFCs. 
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3) Anode catalysts: Pd-based catalysts show appreciable performance toward the EOR in 

alkaline media. Nevertheless, both the activity and durability of Pd catalyst for the EOR in 

alkaline media need to be enhanced further, and the design of multi-metallic electro-catalysts 

is essential. 

4) Cathode catalysts: A challenging issue in the cathode material is how to enhance the 

catalytic activity of non-Pt catalysts and make them comparable with that of Pt.  

5) Membranes: The significant improvement is needed to upgrade OH
–
 conductivity and 

thermal stability of existing membranes. 
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2. Electrocatalyst Synthesis and Characterization 

2.1 Electrocatalyst synthesis 

2.1.1 Nanoparticle 

2.1.1.1 Pd/C anode catalyst 

Electrocatalysts with two different metal loading, 5 and 20 w.t.%, have been synthesized. 

Pd (5 w.t. %)/C: 4.5 g of Vulcan XC-72 was suspended in 250 ml of ethylene glycol and 

sonicated for 20 min in a 500 ml three-neck round-bottomed flask. Then an aqueous solution 

of H2O (50 ml) and ethylene glycol (50 ml) and 6 ml HCl (37%) with 445 mg of dissolved 

PdCl2 were added drop by drop to the resulting solution under stirring in a N2 stream. After 

adequately stirring, an alkaline solution of NaOH (5 g) in H2O (10 ml) and ethylene glycol 

(35 ml) was introduced in the reactor which then was heated at 125 °C for 3 h again under a 

N2 atmosphere. Then the mixture was cooled down to room temperature. The solid product 

was filtered off and washed with H2O to neutral pH. The final product was dried in vacuum 

oven at 40
 o
C. An amount of 4.47 g of catalyst was obtained. This electrocatalyst was used in 

in the experiments presented in chapter 3 and 7. Pd content = 5.2 wt. % (ICP-AES). 

Pd (20 w.t. %)/C: 6.0 g of Vulcan XC-72 was suspended in 250 ml of ethylene glycol 

and sonicated for 20 min in a 1 l three-neck round-bottomed flask. Then an aqueous solution 

of H2O (50 ml) and ethylene glycol (50 ml) and 20 ml HCl (37%) with 2 g of dissolved PdCl2 

were added drop by drop to the resulting solution under stirring in a N2 stream. After 

adequately stirring, an alkaline solution of NaOH (13.2 g) in H2O (10 ml) and ethylene glycol 

(35 ml) was introduced in the reactor which then was heated at 140 °C for 3 h again under a 

N2 atmosphere. Then the mixture was cooled down to room temperature. The solid product 

was filtered off and washed with H2O to neutral pH. The final product was dried in vacuum 

oven at 40 °C. An amount of 7.79 g of catalyst was obtained. This electrocatalyst was used in 

the experiment presented in the chapter 4. Pd content = 20.3 wt. % (ICP-AES). 
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2.1.1.2 Pd-CeO2/C anode catalyst 

Vulcan XC-72 (4 g) was added to a solution of Ce(NO3)3.6H2O (5.31g) in H2O (250ml). The 

mixture was stirred for 30 min and then sonicated for 30 min at room temperature. After 

adjusting the pH to 12 with 1.5 M KOH, the resulting suspension was stirred for 2 h. The 

product was separated by filtration and washed with H2O until neutral pH was obtained. The 

product was dried at 65 °C under vacuum oven to constant weight. After physical milling, the 

product was calcined in a tube furnace at 250 °C for 2 h and cooled down in Ar stream. The 

product is CeO2/C with a ceria content of 35 w.t. % (yield: 6.02 g). Following from that 

CeO2/C was suspended in water (500 mL), and the resulting slurry was sonicated for 10 min. 

And then a solution of K2PdCl4 (0.93 g, 2.84 mmol) in water (250 mL) was slowly added (ca. 

3 h) to this mixture under vigorous stirring, followed by an aqueous solution of 1M KOH 

(14.5 mL). Next, ethanol (100 mL) was added to the resulting mixture and then refluxed for 

30 min. The desired product Pd–CeO2/C was filtered off and washed several times with 

distilled water to neutrality and finally dried under vacuum at 40 °C until constant weight 

(yield: 6.25 g). This electrocatalyst was used in the experiment presented in the chapter 3. Pd 

content = 4.6 wt. % (ICP-AES). 

2.1.1.3 FePc–CoPc/C cathode catalyst 

Ketjen Black (5 g) was added to an equimolar mixture of FePc (1.15 g) and CoPc (1.15 g) in 

THF (100 mL) that had previously stirred for 30 min at room temperature and further 

sonicated for 30 min. The solvent was then removed under reduced pressure and the solid 

residue of FePc–CoPc/C was dried under high vacuum and then weighed up as the yield of 

7.2 g. FePc–CoPc/C (7.0 g) was introduced into to a quartz tube and heated at 600 °C (heated 

up as 20 °C/min from room temperature) under a flow of nitrogen (1 L/min) for 2 h. After 

cooling to room temperature under a nitrogen flow, the resulting black material of FePc–

CoPc/C (600) (yield 6.8 g) was removed and stored under nitrogen. This electrocatalyst was 

used in the experiments presented in the chapter 3, 4 and 7. 
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2.1.2 Nanostructured foil 

2.1.2.1 Nanostructured palladium foil 

The Square-Wave Potential (SWP) treatment has been performed through potentiostatic 

oxidation and reduction cycles respectively at 4.55 V for oxidation (180 s) and  -1.95 V (vs. 

RHE) for reduction (180 s) respectively (Fig. 2-1). The whole red-ox sequence has been 

repeated three times. This material was used in the experiment presented in the chapter 5. 

 

Figure 2-1. Schematics of the square wave potential treatment with three cycles. The period 

(P) of the square wave potential is 6 min. 

 

2.1.2.2 Nanostructured platinum foil 

The platinum activation by square wave potential treatment is performed according to the 

schematic in Figure 2-2. The treatment of the polycrystalline Pt foil was performed with a 

fixed duration of 360 minutes through a repetitive square wave potential bounded between 

4.55 V and -1.95 V in 2 M KOH electrolyte. Wave periods of 6 min (60 full waves), 120 min 

(3 full waves), and 360 min (1 full wave) were selected for the synthesis of the samples. This 

material was used in the experiment presented in the chapter 6. 



 

30 

 

 

Figure 2-2. Schematic of the square wave potential treatment. Roughness is enhanced by the 

application of the square wave potential. All the treatments applied have duration of 360 min. 

The period (P) of the square wave is varied between 6 min and 360 min. 

2.2 Morphology and structure of electrocatalyst 

2.2.1 Electron microscopy 

An electron microscope is a microscope that uses accelerated electrons as a source of 

illumination. Because the wavelength of an electron can be up to 100,000 times shorter than 

that of visible light photons, the electron microscope has a higher resolving power than a light 

microscope and can reveal the structure of smaller objects. 

2.2.1.1 Transmission Electron Microscope (TEM) 

The original form of electron microscope, the transmission electron microscope (TEM) uses 

a high voltage electron beam to create an image. The electron beam is produced by 

an electron gun, commonly fitted with a tungsten filament cathode as the electron source. The 

electron beam is accelerated by an anode typically at +100 keV with respect to the cathode, 

focused by electrostatic and electromagnetic lenses, and transmitted through the specimen that 

is in part transparent to electrons and in part scatters them out of the beam. When it passes 

through the specimen, the electron beam carries information about the structure of the 

specimen that is magnified by the objective lens system of the microscope. 

We use TEM to characterize the morphology of our electrocatalysts. TEM was 

performed on a Philips CM12 microscope at an accelerating voltage of 100 kV. The 

microscope was equipped with an EDAX energy dispersive microanalysis system. 
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2.2.1.2 Scanning Electron Microscope (SEM) 

Unlike the TEM, where electrons of the high voltage beam carry the image of the specimen, 

the electron beam of the scanning electron microscope (SEM) does not carry a complete 

image of the specimen. The SEM produces images by probing the specimen with a focused 

electron beam that is scanned across an area of the specimen. The electrons interact with 

atoms in the sample, producing various signals that can be detected and that contain 

information about the sample's surface topography and composition. Specimens can be 

observed in high vacuum, in low vacuum, in dry conditions (in environmental SEM), and at a 

wide range of cryogenic or elevated temperatures. 

We use SEM to characterize the surface morphology of our electrocatalysts. SEM was 

performed by using a HITACHI S4800 microscope operating at 15 kV. Field Emission 

Scanning Electron Microscopy (FMSEM) was performed by using Zeiss Gemini 1530, 

capable of a spatial resolution 2.1 nm at 1.0 kV. 

2.2.2 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a well-established analytical technique that reveals detailed 

information about the chemical composition and type of molecular bond of crystalline phase. 

It is an efficient technique to expose the crystallographic material structure. 

Diffraction is a scattering phenomenon. When X-rays are incident on crystalline solids, 

they are scattered in all directions. In some of these directions, the scattered beams are 

completely in phase and reinforce one another to form the diffracted beams. The Bragg law 

describes the conditions under which this would occur. It is assumed that a perfectly parallel 

and monochromatic X-ray beam, of wavelength λ, is incident on a crystalline sample at an 

angle θ. The concept of x-ray diffraction can be described by the Bragg's Law. 

                                                                                                                                 (2-1) 

Where d is the interplanar spacing between atomic planes. 

We use X-ray powder diffraction to characterize the chemical composition and 

crystalline structure of our electrocatalysts. XRD spectra was acquired at room temperature 

with a PANalytical X’PERT PRO diffractometer, employing CuKa radiation (l=1.54187) and 

http://en.wikipedia.org/wiki/Scanning_electron_microscope
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a PW3088/60-graded multilayer parabolic X-ray mirror for Cu radiation. The spectra was 

acquired in the 2q range from 5.0 to 120.08, using a continuous scan mode with an acquisition 

step size of 2q=0.02638 and a counting time of 49.5 s. 

2.2.3 X-ray Absorption Spectroscopy (XAS) 

X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local 

geometric and/or electronic structure of matter. The experiment is usually performed 

at synchrotron radiation sources, which provide intense and tunable X-ray beams. 

X-ray Absorption Spectroscopy includes both Extended X-Ray Absorption Fine 

Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES). The normalized 

absorption spectra are often called XANES spectra. These spectra can be used to determine 

the average oxidation state of the element in the sample. The XANES spectra are also 

sensitive to the coordination environment of the absorbing atom in the sample. 

EXAFS spectra are displayed as graphs of the absorption coefficient of a given material 

versus energy, typically in a 500 – 1000 eV range beginning before an absorption edge of an 

element in the sample. XAS methodology can be broadly divided into four experimental 

categories that can give complementary results to each other: Metal K-edge, metal L-

edge, ligand K-edge, and EXAFS. 

We have investigated the palladium state in the Pd/C electrocatalyst by X-ray Absorption 

Spectroscopy (XAS), particularly by the analysis of the near edge structure (X - ray Near 

Edge Structure – XANES) in order to investigate the chemical state of the metal in the 

catalyst before and after having operated in a complete direct ethanol fuel cell. XAS data were 

collected at GILDA beamline (European Synchrotron Radiation Facility, ESRF, Grenoble 
60

 

at the palladium-K edge (24350 eV). A Si (311) double crystal monochromator was used in 

dynamical focusing mode; the harmonic rejection was realized by a pair of Pt mirrors, having 

a cutoff energy of 32 keV. Data collection was carried out in fluorescence mode using an 

energy resolving (energy resolution about 300 eV) 13-elements Ge fluorescence detector. 

2.2.4 Inductively coupled plasma atomic emission spectroscopy (ICP-AES) 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is an analytical 

technique used for the detection of trace metals. It is a type of emission spectroscopy that uses 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Synchrotron_radiation
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/XANES
http://en.wikipedia.org/wiki/XANES
http://en.wikipedia.org/wiki/Absorption_spectrum
http://en.wikipedia.org/wiki/Absorption_coefficient
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Electron_volt
http://en.wikipedia.org/wiki/Absorption_edge
http://en.wikipedia.org/wiki/Metal_K-edge
http://en.wikipedia.org/wiki/Metal_L-edge
http://en.wikipedia.org/wiki/Metal_L-edge
http://en.wikipedia.org/wiki/Ligand_K-edge
http://en.wikipedia.org/wiki/EXAFS
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the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic 

radiation at wavelengths characteristic of a particular element. The intensity of this emission 

is indicative of the concentration of the element within the sample. 

The metal content in all electrocatalysts was determined by ICP-AES by using an 

Intrepid Iris instrument (Thermo Elemental). The electrocatalyst (50 mg) was treated in a 

microwave-heated digestion bomb in sealed PTFE vessels with concentrated HNO3 (2.0 mL) 

and 98% H2SO4 (2 mL). The heating program comprised preheating steps and a final 10 min 

digestion step at 220 °C. The resulting residual solutions were diluted with water to a constant 

volume. The solutions were then analyzed for the metal content. 

2.3 Electrocatalytic properties 

2.3.1 Half-cell (Three-Electrode Electrochemical Cell) 

 

 Figure 2-3. (A) Schematic representation of the typical three-electrode electrochemical cell 

and (B) the corresponding circuit connections.  

 

A conventional three-electrode electrochemical cell was employed in our studies (Fig. 2-3).  

In potentiostatic mode, a potentiostat/galvanostat (PGSTAT) will accurately control the 

potential of the Counter Electrode (CE) against the Working Electrode (WE) so that the 

potential difference between the working electrode (WE) and the Reference Electrode (RE) is 

well defined, and correspond to the value specified by the user. In galvanostatic mode, the 

http://en.wikipedia.org/wiki/Inductively_coupled_plasma
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current flow between the WE and the CE is controlled. The potential difference between the 

RE and WE and the current flowing between the CE and WE are continuously monitored. By 

using a PGSTAT, the value specified by the user (i.e. applied potential or current) is 

accurately controlled. The potentiostat used in this work is a Princeton 2273A 

Potentiostat/Galvanostat, equipped with Electrochemical PowerSuite software.  

The counter electrode is used to close the current circuit in the electrochemical cell. It is 

usually made of an inert material (e.g. Pt, Au, graphite, glassy carbon) and usually it does not 

participate in the electrochemical reaction. Because the current is flowing between the WE 

and the CE, the total surface area of the CE (source/sink of electrons) must be higher than the 

area of the WE so that it will not be a limiting factor in the kinetics of the electrochemical 

process under investigation. 

The reference electrode has a stable and well-known electrode potential and it is used as 

a point of reference in the electrochemical cell for the potential control and measurement. The 

high stability of the reference electrode potential is usually reached by employing a redox 

system with constant (buffered or saturated) concentrations of each participants of the redox 

reaction. Moreover, the current flow through the reference electrode is kept close to zero 

(ideally, zero) which is achieved by using the CE to close the current circuit in the cell 

together with a very high input impedance on the electrometer (> 100 GOhm). 

During our experimental section, electrochemical Measurements with iR drop correction 

were performed with PARSTAT 2273 potentiostat/galvanostat (Princeton Applied Research) 

in a three electrode cell. There are two ways to prepare the working electrode. For the 

nanoparticle, glassy carbon (Sigradur G; 0.867 cm
2
) covered by the electrocatalyst was loaded 

at the top end of the cylinder. The ink of catalyst was consisted of electrocatalyst (22 mg) and 

2-propanol (2 g). The ink was sonicated for 120 min with a Branson 3200 bath. The metal 

loading on each electrode was determined by weighting the amount of ink deposited on the 

glassy carbon disk. For the nanostructure foil, the working electrode is a polycrystalline Pd/Pt 

disk embedded in a Teflon cylinder. Pd/Pt electrode surface has been mechanically polished 

with Metadi
®
 polycrystalline diamond suspension from Buehler Company with size down to 

1µm and then washed in a FALC sonic bath. An Ag/AgCl electrode was used as reference, 

while counter electrode was consisted of a platinum wire (0.5 mm diameter). All the solutions 

were purged with N2 for 30 min before any electrochemical experiments. 
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The ink of cathode electrocatalyst was consisted of FePc-CoPc/C (24 mg) with 2.2 g of 

iso-propanol and 95 mg of a TokuyamaTM OH-type anion exchange resin in alcohol solution. 

The resulting suspension was sonicated for 2 h with a FALC sonic bath and then introduced 

into a 5mm (A = 0.1963 cm
2
) teflon potted glassy-carbon rotating disk electrode tip 

(PINETM). Each electrode was dried for 30 min before it was mounted on the rotating disk 

electrode shaft and then immersed into the electrolyte. Linear sweep voltammetry of FePc-

CoPc/C were carried out at an electrode rotating speed varied from 400 to 2600 rpm. The 

potential was swept from 1.164-0.064 V. A scan rate of 5 mV/s was applied, which is slow 

enough to ensure a steady state in each point of the curve.  

2.2.1.1 Cyclic Voltammetry (CV) 

Cyclic voltammetry is a type of potentiodynamic electrochemical measurement. In a cyclic 

voltammetry experiment the working electrode potential is ramped linearly versus time. After 

the set potential is reached in a CV experiment, the working electrode's potential is ramped in 

the opposite direction to return to the initial potential. These cycles of ramps in potential may 

be repeated as many times as desired. The current at the working electrode is plotted versus 

the applied voltage (i.e., the working electrode's potential) to give the cyclic voltammogram 

trace. 

In cyclic voltammetry, the electrode potential ramps linearly versus time in cyclical 

phases as shown in Figure 2-4. The rate of voltage change over time is known as the 

experiment's scan rate (V/s). The potential is applied between the working electrode and the 

reference electrode while the current is measured between the working electrode and the 

counter electrode. These data are plotted as current (i) vs. applied potential.  

 

http://en.wikipedia.org/wiki/Working_electrode
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Figure 2-4. Cyclic voltammetry waveform. 

 

2.2.1.2 Chronoamperometry 

Chronoamperometry is an electrochemical technique in which the potential of the working 

electrode is stepped and the resulting current from faradaic processes occurring at the 

electrode (caused by the potential step) is monitored as a function of time. Limited 

information about the identity of the electrolyzed species can be obtained from the ratio of the 

peak oxidation current versus the peak reduction current. However, chronoamperometry 

generates high charging currents, which decay exponentially with time as any resistor–

capacitor circuit. The Faradaic current--which is due to electron transfer events and is most 

often the current component of interest--decays as described in the Cottrell equation. In most 

electrochemical cells this decay is much slower than the charging decay--cells with no 

supporting electrolyte are notable exceptions. Most commonly investigated with a three 

electrode system. Since the current is integrated over relatively longer time intervals, 

chronoamperometry gives a better signal to noise ratio in comparison to other amperometric 

technique. 

 

http://en.wikipedia.org/wiki/Working_electrode
http://en.wikipedia.org/wiki/Working_electrode
http://en.wikipedia.org/wiki/Cottrell_equation
http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Voltammetry


 

37 

 

 

Figure 2-5. Double-pulsed chronoamperometry waveform showing integrated region for 

charge determination. 

 

2.2.1.3 Chronopotentiometry 

Chronopotentiometry is, as chronoamperometry, a voltammetry variant. The only difference 

is that, instead of time-controlled potential alteration, a constant current density is applied to a 

stationary working electrode and the change in potential is measured as a function of time. 

The chronopotentiometric curve is shown in Figure 2-6. 

 

Figure 2-6. Potential-time curve for chronopotentiometry. 

 

  



 

38 

 

2.2.1.4 In situ Fourier Infrared spectroscopy (In situ FTIR) 

Infrared spectroscopy (IR spectroscopy) is the spectroscopy that deals with the infrared region 

of the electromagnetic spectrum. It covers a range of techniques, mostly based on absorption 

spectroscopy. As with all spectroscopic techniques, it can be used to identify and 

study chemicals. For a given sample which may be solid, liquid, or gaseous, the method or 

technique of infrared spectroscopy uses an instrument called an infrared spectrometer to 

produce an infrared spectrum. A common laboratory instrument that uses this technique is 

a Fourier transform infrared (FTIR) spectrometer. 

The reaction mechanisms of alcohol oxidation are complex involving several adsorbed 

intermediates and the formation of numerous products and by-products. The elucidation of the 

reaction mechanism, thus, needs to combine pure electrochemical method (cyclic 

voltammetry) with other physicochemical methods, such as ―in situ‖ spectroscopic methods 

(infrared and UV–VIS reflectance spectroscopy) to monitor the adsorbed intermediates and 

―on line‖ chromatographic techniques to analyze quantitatively the reaction products and by-

products. During all, infrared spectroelectrochemical techniques have been developed to 

observe surface energetic changes spectroscopically as a function of the reaction driving force. 

 

 

 

 

 

 

 

 

 

 

Figure 2-7. Reflectance arrangement for infrared spectroelectrochemistry employing a thin 

layer. 
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Infrared spectrometers are required for the detection of adsorbed and double or diffusion 

layer species. Two major problems affect the sensitivity of the measurements. The first is the 

large absorption of most of the radiation by the bulk solvent, especially water, which absorbs 

strongly throughout most of the mid and far-infrared regions. The second problem is that the 

number of molecules under study is usually very small, usually less than a monolayer. To 

overcome those problems, a special cell was designed and a special way was used to get 

spectra acquisition. The problem of solvent absorption is minimized by using a thin-layer cell 

(Figure 2-7). An infrared transparent window (calcium fluoride, silicon, zinc selenide) is 

mounted at the end of the cell. The working electrode is positioned close to the window to get 

a thin-layer solution. 

The working electrode mounting procedure involves affixing a mirror disk of the 

electrode at the end of a PTFE holder, with the back side of the disk being electrically 

connected to a wire leading out of the cell (Fig. 2-8). A luggin reference probe is positioned 

about 1 mm from the edge of the working electrode. The counter electrode is typically a 

platinum wire or foil placed just next the working electrode to minimize solution resistance 

and provide a current distribution to the working electrode. 

 

 

Figure 2-8. Three-electrode half-cell used in in-situ Fourier Transform Infrared (FTIR) 

spectroscopy. 

 

The thin-layer cell arrangement still exhibits large solvent and electrolyte absorption. 

Signal-to-noise enhancement is accomplished through the signal-averaging techniques, which 

averaging several interferograms. The variation of reflectance with frequency is monitored at 

constant potential. Usually a few number of interferograms are obtained at two different 
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potentials. The two single-beam spectra are differenced and ratioed to the intensity at 

referenced potential to obtain the final normalized spectrum. The result is a difference 

spectrum with magnitude    ⁄ , defined as following equation 
61:  

  

 
 

       

    
                                                                                                                           (2-2) 

For small values of     ⁄ , this quantity is proportional to absorbance. Both positive and 

negative bands may be observed. Positive bands are due to absorbance from species present at 

the referenced potential Rref, while negative bands are due to absorbers prevalent at the 

detected potential Rd. The measured spectrum shows only changes in reflectance caused by 

changes in potential. 

Electrochemical in-situ FTIR reflection spectroscopy has been performed on a Nicolet 

6700 spectrometer equipped with a DTGS detector. During the in-situ FTIR 

spectroelectrochemical experiments, the electrode was pressed against the CaF2 window to 

form a thin layer solution. Each infrared spectrum was recorded from averaging 128 

interferograms at the resolution of 4 cm
-1

. The reference spectrum was collected at 0 V vs. 

RHE. The working electrode potentials were increased by 0.1 V intervals from the reference 

potential up to 1.2 V. Each final spectrum was reported using Eq. 2-2.  

2.2.1.5 Fixed energy X-ray absorption voltammetry 

X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local 

geometric and electronic structure of matter. The experiment is usually performed 

at synchrotron radiation sources, which provide intense and tunable X-ray beams. 

For the need of synchrotron radiation, the main limit of XAS is the time needed for the 

recording of spectra and their interpretation. Besides, the need of quick XAS analysis is 

prompted by the kinetics of the reaction under study, such as potential change which is crucial 

for electrochemical investigations. 

Fixed energy X-ray absorption voltammetry (FEXRAV) 
62

 is a novel rapid XAS 

technique applied to electrochemical systems for the in situ XAS study of electrode materials. 

The energy is chosen on the absorption edge in order to give the maximum contrast between 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Synchrotron_radiation
http://en.wikipedia.org/wiki/X-ray
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different oxidation states of a given element. It follows that any shift from the original 

oxidation state determines a variation of the absorption coefficient. This procedure requires 

the acquisition of XANES spectra of standard samples for the correct choice of the X-ray 

energy. 

In our experiment, electrocatalyst was deposited onto a custom-made carbon disposable 

electrode (DRP-P-C11XX, Dropsens) as the working electrode. A PTFE cell that contains the 

electrolyte solution, a Pt foil counter electrode, and the reference electrode (AgCl/Ag in 0.1 M 

KCl). One side of the cell includes a hole that matches with the working electrode area. The 

working electrode is held between the PTFE cell and a polypropylene plate that also includes 

a hole for the X-ray beam. Fluorescence XAS data were collected at GILDA beamline 

(European Synchrotron Radiation Facility, ESRF, Grenoble) at the palladium edge (24370 eV 

and 24347 eV). A Si (311) double crystal monochromator was used; the harmonic rejection 

was realized by Pd mirrors, having a cutoff energy of 20 keV, and a 13-element Ge 

fluorescence detector. All the electrochemical measurements were carried out using a CHI 

potentiostat/galvanostat (model 633D) and a spectroelectrochemical cell. CV curves are 

recorded at 5 mV/s. All measurements were carried out at room temperature. 

2.3.2 Full-cell  

The heart of a fuel cell is a polymer, ion-conductive membrane. On both sides of the 

membrane there is a porous electrode. The electrodes must be porous because the reactant 

gases are fed from the back and must reach the interface between the electrodes and the 

membrane, where the electrochemical reactions take place in the so-called catalyst layers. The 

multilayer assembly of the membrane sandwiched between the two electrodes is called the 

Membrane Electrode Assembly (MEA). The MEA is then sandwiched between the collector-

separator plates. At the same time, in multicell configuration they physically connect the 

cathode of one cell to the anode of the adjacent cells, and that is why they are also called the 

bipolar plates. They provide the pathways for flow of reactant gases and the cell structural 

rigidity. A schematic fuel cell component is shown in Fig. 2-9. 
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Figure 2-9. Main fuel cell components. 

2.2.2.1 Polarization curve 

Fuel cell performance is characterized by its polarization curve, which is a plot of cell 

potential vs. current density. Three distinct regions of a fuel cell polarization curve are 

noticeable (Figure 2-10): 

 At low current densities, the cell potential drops sharply as a result of the activation 

polarization (slow reaction). 

 At intermediate current densities, the cell potential drops linearly with current as a 

result of ohmic losses (cell resistance). 

 At high current densities, the cell potential drop departs from linear relationship with 

current density as a result of more pronounced concentration polarization (slow mass 

diffusion). 
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Polarization curve is typically recorded by starting at the open circuit potential and then 

increasing current and taking measurements at prescribed potential or current intervals. The 

sweep may be done at different speeds. 

 
Figure 2-10. A fuel cell polarization curve and power performance curve. 

2.2.2.2 Power performance curve 

When a fuel cell is connected to a circuit it becomes the power source for the external load. 

The fuel cell is a dc power source, like a battery. To change the current through an external 

load, or power delivered to an external load requires changing the resistance, or impedance, of 

the external load, or changing the voltage of the power source. The power delivered to the 

external load (or useful power) is simply the product of the steady state current through the 

external load and voltage drop across the external load; the useful power is a function of the 

external load impedance. The data for the polarization curve can be simply re-plotted as 

power delivered to the external load as a function of the external load resistance. 
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2.2.2.3 Galvanostatic curve 

There are good reasons for using current control in polarization curve measurements. These 

include the following: 

1. Current control allows the superposition of multiple source and measurement 

instruments on a single cell or stack of cells. 

2. Fuel cells are low impedance devices and can be measured with lower noise by 

sourcing current and measuring voltage rather than vice versa. 

3. Current sources are more stable than voltage sources with the highly capacitive load of 

a fuel cell, resulting in precise interrupts and high frequency AC impedance information. 

Low internal resistance argues against potentiostatic control in fuel cell testing. Fuel 

cells (especially large ones) have internal resistance in the mΩ to μΩ range when measured at 

high frequency (short interrupt). 

Since potentiostatic control fixes the cell potential with respect to the voltage measure 

terminals, noise in the potential driving the cell will generate significant noise current through 

the cell’s low impedance. 

By contrast, under galvanostatic control, a relatively large current is forced through the 

cell, which is measured as a voltage across an instrument’s internal current sensing resistor. 

Since this resistance is decades larger in value than a cell’s internal resistance, noise in the 

measurement is a much smaller percentage of the signal. Similarly, a relatively large voltage 

signal can be accurately measured across the cell terminals.  

Galvanostatic control allows the separation of the polarization current and the test 

current by taking advantage of high current source output impedance and applying 

superposition. 
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Figure 2-11. The home-made oxygen-breathing DEFC. (a) The pictorial diagram; (b) 

exploded view showing the MEA. 

 

In our experiment, the home-made, oxygen-breathing fuel cell was used (Figure 2-11). 

The device is made of plexiglas and the electricity collectors are stainless steel plated with 

gold. The MEA was realized using a anode composed of electrocatalyst, a commercial 

Tokuyama A-201 anion exchange membrane and a cathode containing FePc-CoPc/C electro-

catalyst. The membrane was conditioned in 1 M KOH solution for 1 min before assembling 

the MEA. The fuel loading of the anode compartment was 12 ml for each experiment. The 

anode catalytic ink was prepared mixing the electrocatalyst (100 mg) with water (400 mg) and 

a 5 w.t. % nafion solution. The resulting ink was spread onto a 5.13 cm
2
 nickel foam plate to 

obtain a Pd loading of 1 mg cm
-2

. The MEA was obtained by mechanically pressing anode, 

membrane and cathode. Silicone-rubber gaskets were employed to seal the system. 

Polarization and galvanostatic curves were determined on a ARBIN BT-2000 5A-4 channels 

potentiostat/galvanostat. All the experiments had been performed at room temperature. New 

MEAs were used for each experiment and then just changed the fuel on the same MEA to test 

the effort of aging. 
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3. Non-platinum Electrocatalysts for Anion Exchange 

Membrane Direct Ethanol Fuel Cells  

3.1 Introduction 

Direct alcohol fuel cells (DAFCs), especially direct methanol fuel cells (DMFCs), have been 

technologically exploited for both powering small portable electronics and even automotive 

engine. Concerns about the overall energy efficiency of DMFCs have also been recently 

raised 
63-64

. However, the toxicity of methanol together with its flammability and high vapor 

pressure at room temperature severely hamper the full technological exploitation. Moreover 

its oxidation occurs via pathways involving the formation of adsorbed CO, causing 

electrocatalyst poisoning which ultimately resulting significant performance degradation.  

For what reported above the substitution of methanol with ethanol has been proposed. 

Ethanol is far less toxic and volatile as compared to methanol and it can be easily obtained 

from biomass conversion with low energy processes. Bio-ethanol energy convenience has 

been recently supported by a variety of Life Cycle Analysis (LCA) that have shown energy 

return of the invested energy higher than 8 when sugarcane or cellulose are used as feedstock 

65
. Furthermore the bio-ethanol industry is now continuously expanding with prediction that 

global ethanol supply will exceed 100 million tonnes in 2018  
66

. 

The development of efficient direct ethanol fuel cells appears to be an issue of 

outstanding importance. In the last few years the subject has experienced a continuously 

rising interest substantiated by the continuous growth of the published paper. Most of the 

studies on DEFCs reported up till now have concerned with the assessment of power density 

performances 
42, 57-58

 and the activity and stability accounting for the half-cell test of the anode 

electrocatalyst 
26, 28-29, 33, 35-40

. The focus on the anode electrocatalyst is essential as the 

activation potential for ethanol oxidation is the largest contribution to the potential drop in 

DEFCs. 

Maximum power density and stability in half-cell are parameters whose importance is 

fundamental. Nevertheless for a variety of applications energy efficiency as well as delivered 
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energy may be critical important as well. There are several reasons: i) highly efficient fuel 

cells minimize volume and weight through the reduction of the size of the storage systems 
67

 

which is crucial for automotive and portable applications; ii) high fuel cell efficiency 

contributes to improve the energy efficiency of the whole systems thereby improving the 

sustainability of the technology; iii) the delivered energy in full-cell which directly show the 

performance of the cell and the cell life which is greatest important for the real application. 

In the present investigation we aim at determining the energy performance of alkaline 

direct ethanol fuel cells based on platinum-free electrocatalysts. The possibility of avoiding 

the use of Pt is related to the alkaline environment where less expensive materials are even 

effective for both ethanol oxidation and oxygen reduction reaction. On the one hand, 

palladium has been demonstrated as one of the most effective metals for ethanol electro-

oxidation and consequently has been selected as catalytically active phase for the anode 
26-29, 

32-34, 41, 43-48
. On the other hand, metal–N4 macrocycles, such as Fe- and Co-macrocycles, are 

important non-noble catalysts which have attracted attention due to their reasonable activity 

and remarkable selectivity towards the ORR 
68-69

. In addition, this class of electrocatalysts 

usually shows inertness to ethanol oxidation 
68

 and thereby restrains the reduction of cell 

voltage by the ethanol crossover. This can be explained as below: The overall cell voltage for 

DEFCs can be written as 
70-72

: 

         
                                                                                                   (3-1) 

Where: 

   
  denotes the standard electromotive force, which is 1.145V for ethanol. 

   and    are the anode and cathode overpotential, respectively. 

       is the overpotential due to ohmic drop in the system. 

       is the overpotential due to ethanol crossover through membrane.  

Without applying current,   ,    and        are not existing. Therefore, the open circuit 

voltage (OCV) can be defined as: 

       
                                                                                                                     (3-2) 
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ηohmic can be reduced dramatically when we use Fe- and Co-macrocycles as cathode 

catalyst instead of Pt/C or PtRu/C, as Fe- and Co-macrocycles are inert to ethanol oxidation. 

In consequence, the OCV is much higher. It is worth noting that this kind of catalyst has very 

low stability in acidic media. 

Another important element in favor of the use of DEFCs operating in alkaline media is 

the fact that Pd oxidizes ethanol to acetate without C-C cleavage for pH higher than 13 
47

. At 

a first look this is an evident drawback. In fact having a complete oxidation would be 

beneficial with a better exploitation of the energy content of ethanol. Nevertheless the 

complete oxidation kinetic is usually very sluggish, ultimate resulting in high anodic over-

potential. Partial oxidation of ethanol to acetate is much faster and occurs at high specific 

current densities even at reasonably low over-potentials 
73

. Furthermore C-C cleavage 

elimination means that no CO is produced, even as an intermediate, avoiding a possible 

source of poisoning. The advantage of alkaline DEFCs of having together stability, fast 

kinetic and no potential drops due to ethanol crossover may override the advantages of having 

complete oxidation in acidic DEFCs.  

Pd-based catalysts have been decorated with oxides (CeO2 
41-42

, NiO 
41

, MnO2 
41

, Co3O4 

41
, TiO2 

43
, In2O3 

44
) to get significant promotion effect on the catalytic activity and stability 

for EOR. These oxides significantly lower the onset potential for the oxidation reaction with 

ceria being amongst the most promising ones. The reason for such an enhancement can be 

easily understood by the mechanisim of EOR on Pd represented as below 
45： 

                                                                         (3-3) 

                                                                                                             (3-4) 

                                 +Pd                                                 (3-5) 

Eq. 3-4 is also the rate determining step of ethanol oxidation in alkali 
45

. The addition of 

an alternative oxide such as ceria to Pd promotes the formation of hydroxide on the Pd surface. 

In a previous investigation we have shown that adding ceria to Pd double the energy 

efficiency of alkaline DEFCs 
42

. 



 

50 

 

Here, we provide a detailed analysis of the energy performance of alkaline DEFCs. The 

analysis has been performed on DEFCs equipped with nanostructured palladium based anode 

electrocatalysts, Pd-CeO2/C and Pd/C. At the cathode side, a proprietary FePc-CoPc/C has 

been employed. The analysis has been focused on the determination of the following three 

parameters: 

1) Maximum power density 

2) Delivered energy density 

3) Energy efficiency  

We believe that such an analysis deserves a special attention. As a matter of fact, the 

experimental conditions may maximize one of the parameters at the expense of the others. 

Such peculiarity is analyzed and discussed which provides the first detailed investigation of 

the energy performance of platinum free alkaline direct ethanol fuel cells. 

 

3.2 Results and discussion 

3.2.1 Anode electrocatalyst characterization 

Table 3-1. Chemical composition of the investigated electrocatalysts. 

Catalyst 

Element 

Pd/C 

(w.t.%) 

Pd-CeO2/C 

(w.t.%) 

C 94.8 62.0 

Pd 5.2 4.6 

CeO2 -.- 33.4 

 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to test the 

chemical composition of Pd/C and Pd-CeO2/C. The data are reported in Table 3-1. 
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The crystal structure of the Pd/C and Pd-CeO2/C electro-catalysts were investigated by 

X-ray diffraction (XRD) technique (Figure 3-1). Graphite carbon and metallic palladium are 

identified in the XRD pattern of both catalysts. Cerium oxide is also observed in Pd-CeO2/C. 

In addition, no characteristic peaks of palladium oxide are detected. Nevertheless the presence 

of small amount of amorphous oxides cannot be completely excluded, as generally the surface 

oxide and hydroxide is amorphous which prevents its identification from XRD. In the Pd-

CeO2/C sample the XRD pattern reveals that cerium is present prevalently in form of Ce(IV) 

oxide, which intensity is much larger as compared to those of carbon and palladium. This can 

be due to the crystallization of ceria.  

 

Figure 3-1. Electrocatalyst structure revelation.  XRD diffraction patterns of Pd/C and Pd-

CeO2/C. 

 

The morphology and structure of Pd/C and Pd-CeO2/C has been demonstrated by TEM 

investigation. TEM micrographs of the Pd/C reveal palladium particle size ranging between 2 

and 10 nm, as shown in Figure 3-2a and 3-2b. Figures 3-2c,d report the TEM image of the Pd-

CeO2/C catalyst. They appear that the contrast is not enough to distinguish between cerium 

oxide and Pd, preventing from a safe determination of the particle size. 
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Figure 3-2. Electrocatalyst morphology. Low and high magnification TEM micrographs of 

a,b) Pd/C and c,d) Pd-CeO2/C. 

 

3.2.2 Half-cell characterization 

Cyclic voltammetry studies (Figure 3-3) have been performed on two inks, containing Pd/C 

and Pd–CeO2/C respectively, in accordance with the catalysts employed in the fuel cell 

characterization.  

Figure 3-3a shows the CV of Pd/C in the 2M KOH electrolyte. At the beginning of 

positive-going scan, a broad anodic peak (A1) due to oxidation of the adsorbed and absorbed 

hydrogen is observed. The oxidation of the palladium surface is accompanied with a gentle 

increase of the current density. At the reversed scan a well-defined cathodic peak C1 at 0.69 V 

which is related to the reduction of Pd-O 
74

. The cathodic peak C2 at 0.20 V can be assigned to 

the adsorption and absorption of hydrogen. The CV of the Pd–CeO2/C in 2 M KOH shows a 
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much more evident peak due to hydrogen desorption (A1 and A2), as shown in Figure 2-4b. At 

the reverse scan, the cathodic peak at 0.78 V (C1) can be assigned to the reduction of Pd-O, 

whereas the broad cathodic region at 0.22 V (C2) is attributable to the hydrogen uptake by 

both Pd and ceria. 

The CV experiment performed on the Pd/C electrode in 2 M ethanol + 2 M KOH 

electrolyte (Figure 3-3c) shows the ethanol oxidation peak (A1) at 0.78 V with an intensity 

controlled by the progressive coverage of the electrode surface by Pd-O. At potentials higher 

than 1 V, the anodic current was analogous to which observed in 2 M KOH alone (Figure 3-

3a), indicating that only a negligible fraction of the catalyst sites remain active for ethanol 

oxidation. The reverse scan shows an anodic peak A2 occurring at 0.65 V due to the oxidation 

of ethanol on the catalyst surface free from Pd oxide. The CV of the Pd–CeO2/C (Figure 3-3d) 

shows an ethanol oxidation peak culminating at 0.82 V with a current density of 85.5 mA/cm
2
 

which is higher than that measured from the Pd/C electrode (59.9 mA/cm
2
). And furthermore, 

a lower onset potential for ethanol oxidation can be observed at Pd–CeO2/C than Pd/C. At a 

fixed potential of 0.5 V, current densities of 19.7 and 3.5 mA/cm
2
 for Pd–CeO2/C and Pd/C 

were measured, respectively. In the end, the better performance of the Pd–CeO2/C catalyst has 

been assigned to the ability of ceria of promoting the formation of Pd-OHads species. 
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Figure 3-3. Cyclic voltammograms of Pd/C (■) and Pd-CeO2/C (●) in a,b) 2 M KOH and c,d) 

2 M Ethanol + 2 M KOH electrolytes. 

 

3.2.3 Air-breathing Direct Ethanol Fuel Cells performance 

Table 3-2. Anode electrolyte composition. KOH and Ethanol concentrations. 

Ethanol KOH 

2 M 2 M 

4 M 2 M 

4 M 4 M 

4 M 6 M 

6 M 6 M 

 

Fuel cell performance has been evaluated with the fuel compositions reported in Table 3-2. 

Each of the reported fuel compositions has been tested in two DEFCs equipped respectively 

with the Pd/C and the Pd-CeO2. Performance evaluation has been performed on the basis of 

polarization and galvanostatic (20 mA cm
-2

) curves. From polarization we have extracted the 
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maximum power density, while from galvanostatic data the energy delivered in a single fuel 

batch and the energy efficiency have been respectively obtained. 

Particularly, the delivered energy has been evaluated using Eq. 3-6 which integrating the 

galvanostatic curve over the time up till a negligible cell potential (0.1 V) is reached. 

   ∫                                                                                                                             (3-6) 

Where: 

I = current flowing through the cell 

V(t) = time dependent cell potential 

Energy efficiency determination has been done according to Eq. 3-7: 

   
 ∫    

  

  

  
   

  
 

 

    
                                                                                                                   (3-7) 

Where: 

ηE is the energy efficiency for the ethanol complete oxidation to carbonate; 

I is the constant current of the galvanostatic experiment (0.102 A); 

V(t) is the transient potential in the constant current discharge experiment; 

     
  

  represents the enthalpy for ethanol oxidation to carbonate (-1326 kJ/mol); 

    
  is the total number moles of fuel in the cell. 

It is worthwhile mentioning that such an energy efficiency definition is comprehensive 

as it accounts for the thermodynamic efficiency, the potential drop of the cell and the faradaic 

efficiency which is usually lower that 1 as the conversion is usually not complete.  

The performance of passive DEFCs with Pd/C and Pd-CeO2/C anode catalysts is shown 

in Figure 3-4. 2 M Ethanol + 2 M KOH was chosen as the fuel which balances the kinetics 

and long time performance. At first glance (Figure 3-4a) we may notice that both cells show a 

high OCV, about 0.9 V. This fact is attributed to the use of the FePc-CoPc/C catalyst at the 

cathode side which has no activity toward ethanol oxidation 
68

. Taking a deeper look, we can 
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find that all of the potential, current density and power density exhibit a tremendous increase 

as replacing Pd/C by Pd-CeO2/C as anode catalyst. In particular, at the beginning part of 

polarization curve, which is much important for potable electronics, the DEFC equipped with 

Pd-CeO2/C anode shows much higher potential than the Pd/C anode DEFC. This fact can be 

interpreted recalling CVs which show a much lower onset potential of the ceria promoted 

electrode as compared to Pd/C.  

Figure 3-4b shows the comparison of the galvanostatic curve between Pd/C and Pd-

CeO2/C in 2M KOH + 2M ethanol. At a constant current of 20 mA/cm
2
, the cell with Pd-

CeO2/C exhibits a considerably higher voltage than the cell with Pd/C. As a consequence the 

energy density released by a single fuel batch is 201.2 J/cm
3
 for the system employing the Pd-

CeO2/C and 112.3 J/cm
3
 for the system using Pd/C. Following from that, the energy 

efficiency increasing has nearly doubled, from 3.67 to 6.57%. The good performance of Pd-

CeO2/C can be ascribed to the ability of ceria of promoting the formation of Pd-OHads species. 

As we know, the amount of Pd-OHads is a crucial parameter determining the electro-oxidation 

of ethanol, which does not occur on Pd-O 
45

. 

 

 

Figure 3-4. Comparision on the performance of the passive DEFCs containing the Pd/C (■) 

and Pd-CeO2/C (●) anode catalysts and fueled with 2 M Ethanol + 2 M KOH. a) Polarization 

and power density curves and b) galvanostatic curves with the constant current density of 20 

mA/cm
2
. 
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The influence of fuel composition on the polarization is shown in Figure 3-5a. To meet 

the requirement of long time running of portable power sources, high concentration of ethanol 

in DEFCs is demanded. Following from that, 2, 4 and 6M ethanol were chosen. At the same 

time, the same concentration of KOH was added to the electrolyte as the demand of best 

performance of energy output and energy utilization. Both the limiting current density (Figure 

3-5a) and the peak power density (Figure 3-5b) exhibit a tremendous increase when the 

ethanol concentration is increased from 2 to 4 M. This can be attributed to the fast kinetic of 4 

M ethanol. Conversely, the power density drops markedly when the ethanol concentration is 

increased from 4 to 6 M. A maximum power density of 47.1 mW/cm
2
 and a minimum of 18.7 

mW/cm
2
 are obtained with 4.0 M and 6.0 M ethanol separately, as shown in Figure 3-5b. The 

poor performance of 6 M ethanol may be due to the high resistance of electrolyte or the high 

level of ethanol crossover from anode to cathode. It is worth mentioning that the use of FePc-

CoPc/C can prevent the reduction of cell voltage by ethanol crossover; even so, we cannot 

deny the fact of fuel loss by ethanol crossover membrane to cathode. 

Galvanostatic curves at 20 mA cm
-2

 follow different trends (Figure 3-5c). The best 

performance, at least in terms of energy delivered for single cell, has been achieved with the 

most concentrated electrolyte (6 M ethanol + 6 M KOH). The cell fuelled with 2 M Ethanol + 

2 M KOH lasts 16.4 h and releases the energy of 2.41 KJ; while the same cell propelled with 

6 M Ethanol and 6 M KOH releases 3.95 J in 39.7 h. Hence we conclude that the long-term 

performance of the cells may benefit from the use of concentrated electrolyte even if high 

concentration of ethanol and KOH can be detrimental to get high power density. 

Same benefits cannot be obtained at the side of the energy efficiency. Moving from 2 M 

to 6 M, fuel efficiency drops from 6.57 to 3.31%. This is mainly attributed to the high ethanol 

adsorption blocking the adsorption of Pd-OHads. In addition, the less use ratio of ethanol 

caused by the high adsorption of ethanol on Pt surface cannot be eliminating. In addition, the 

high crossover of fuel at high concentration is also an important reason of the lower energy 

efficiency at higher ethanol concentration. The energy efficiency of the passive DEFCs 

decreased with increasing ethanol concentrations consist with the passive DMFCs. In brief, 

the increase of discharge power by increasing ethanol concentration at the cost of loss of 

energy efficiency. 
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Figure 3-5. Effect of ethanol concentration on the performance of the air-breathing AEM-

DEFCs containing the Pd-CeO2/C anode electrocatalyst. a) Polarization curves, b) Power 

density curves, c) galvanostatic curves and d) discharge energy curves. 

 

It’s worth noting that OH
-
 takes a pivotal role for the oxidation of ethanol. It is well 

known that in alkaline DEFC, selective oxidation of 1 M ethanol to acetate consumes 5 

hydroxyl ions which reported in Eq. 3-8. 

                                                                                           (3-8) 

Of particular note is that the oxidation of ethanol results in the formation of acetate 

instead of acetic acid. Hence a hydroxyl ion, from the fuel rather than cathode reaction 
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be consumed at the same rate of ethanol. Ultimately, alkaline DEFCs operate under a 

progressive reduction of the pH. At the side of the kinetics, OH
-
 adsorption plays a crucial 

role in the oxidation mechanism at low overpotential. Such aspect has been investigated in 

half-cell experiments. Nevertheless, there is a lack of information of the effect of OH
-
 

concentration on devices’ performance. For this reason we have performed a series of 

experiments (polarization and galvanostatic curves) where ethanol concentration of has been 

kept constant (4 M) with varying OH
-
 concentration from 2 to 6 M (Figure 3-6). 

  

Figure 3-6. Effect of KOH concentration on the performance of the air-breathing AEM-

DEFCs containing the Pd-CeO2/C anode electrocatalyst. a) Polarization curves, b) Power 

density curves, c) galvanostatic curves and d) discharge energy curves. 
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The highest potential and peak power density during polarization were found in the fuel 

cell equipped with 4 M KOH. Increasing KOH concentration from 4 to 6 M results in the 

dramatic decrease of power density, shown in Figure 3-6b. As previously reported, this may 

be a consequence of the reduction of the electrolyte conductivity at high alkaline 

concentration.  

On the side of the galvanostatic curves, Figure 3-6c shows that duration is benefited as 

increasing the concentration of KOH. This fact results in a 100% increase in the discharge 

energy in the cell with 6 M KOH fuel as compared to 2 M KOH. Furthermore, the energy 

efficiency of the cells jumps from 2.77 (KOH 2 M) to 4.65% (KOH 6 M).  

The superiority of high KOH concentration can be explained in two aspects. On the one 

hand, the first step of the ethanol oxidation reaction on Pd, the dehydrogenation process, can 

be accelerated at higher OH
－
 concentration.  

                                                                                                     (3-9) 

On the other hand, the increasing of the OH
－
 concentration leads to a higher coverage of 

the reactive Pd-OHads, which facilitates the ethanol oxidation reaction by the removal of the 

adsorbed ethanol. The equation, which is the rate-determining step, is shown in Eq. 3-4. 

Figure 3-7 shows an overview performance of all the cells equipped with the two 

different anode electro-catalysts and fueled with different electrolytes. Three critically 

important parameters, peak power density (Fig. 3-7a), discharge energy density (Fig. 3-7b) 

and energy efficiency (Fig. 3-7c) have been reported as a function of the fuel composition and 

the anode material. These three parameters show completely different trends indicating that 

care should be taken when selecting the factor for performance assessing. Highest power 

density can be gotten at suitable concentration of ethanol and KOH. For some application, 

such as military, the power density is the overriding factor. But for the application as portable 

power source, standby or remote power, discharge capacity is the most relevant factor. Fig. 3-

7b shows that high concentration of ethanol and KOH is required for high discharge energy. 

However, high concentration of fuel results in low energy efficiency.  

We have observed that the performance of Pd-CeO2/C is better than Pd/C for all the 

reported experiments irrespectively of the fuel composition. We would also like to mention 
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that energy efficiency are still rather low indicating that much more efforts should be made on 

the developing electro-catalysts with high catalytic activity and the better design of cell, etc. 

 

Figure 3-7. Maximum power density, discharge energy density and energy efficiency of the 

passive DEFCs fueled with ethanol and KOH at different concentrations. 

3.2.4 Micro Air-breathing Direct Ethanol Fuel Cells Durability 

As the potential of DEFCs for portable devices application, the assessment of micro DEFCs 

performance, especially stability, is imperative. A micro air-breathing DEFC with 1 cm
2
 MEA 

(which is composed of Pd-CeO2/C as anode, FePc-CoPc/C as cathode, and Tokuyama A201 

as anion exchange membrane) was assembled. Longest duration fuel, 6 M Ethanol plus 6 M 

KOH, was chosen to fuel the device. The constant current density, 1 mA/cm
2
, was selected to 

test the stability of our micro cell. As seen from Figure 3-8, the cell has run for 87 days with a 
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potential drop of 3 mV/day. After 2000 hours, the cell still ran at 380 mV. The delivered 

energy during 2000 hours is 3.89 kW while the power density moved from 0.63 µW/cm
2
 at 

the beginning to 0.38 µW/cm
2
 at the end. The oscillation of the curve is attributed to the 

temperature variation during the day and night and during the weekend which became more 

pronounced in the winter season. 

 

Figure 3-8. Stability test at 1 mA/cm
2
 of micro air-breathing DEFC fueled with 6 M ethanol 

and 6 M KOH. 

 

3.3 Conclusions 

We have investigated platinum-free alkaline direct ethanol fuel cells fuelled with a variety of 

electrolytes in order to determine how the fuel composition affects maximum power density, 

discharge energy density and energy efficiency. We have found that these parameters showed 

a different dependence on the fuel composition. Particularly we have noticed that in order to 

increase the maximum power density appropriate alkaline concentration should be chosen. 

The best power density has been obtained with a balanced electrolyte containing 4 M ethanol 

and 4 M KOH. An increase in KOH concentration results in a dramatic decrease of the 

maximum power density that occurs independently of ethanol concentration. Unlike 

maximum power density, discharge energy is benefited from increasing in both KOH and 

ethanol concentration. 
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We have also found that at even ethanol concentration (4 M) the increase in the KOH 

concentration produces an increase in the energy efficiency. On the contrary, energy 

efficiency decreased with increasing the ethanol concentration. 

The DEFCs equipped with the Pd/C and Pd-CeO2/C show the same trend with respect to 

all the different electrolytes. Nevertheless, the performance of the Pd-CeO2/C is better as 

compared to Pd/C. This is attributed to the kinetics of the anodic reaction. Ethanol oxidation 

reaction requires the adsorption of hydroxyl ions at the palladium surface. This reaction is the 

rate determining step at low over-potential. The addition of ceria to Pd speeds up such step 

through the primary oxide spillover. According to this mechanism the hydroxide is first 

formed at the surface of ceria and then quickly transferred to the surface of Pd. This 

interaction requires the two species to be in contact in order to allow the surface diffusion. 

As the different effect of electrolyte composition on DEFCs parameters, optimization of 

performance varies with specific practical applications. Furthermore energy efficiency are still 

rather low (6.57% at maximum in this study), suggesting that much more efforts should be 

made on the developing electro-catalysts with high catalytic activity. 

In the end the performance of micro direct ethanol fuel cells was evaluated. Membrane 

electrode assembly with a size of 1 cm
2
 has been test under constant current of 1 mA/cm

2
 for 

2000 hours with a slowly gradual potential drop. As thus the potential of DEFCs to provide 

power to portable devices has been further confirmed.  
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4. Non-platinum Electrocatalysts for Air-breathing Direct 

Formate Fuel Cells 

 

4.1 Introduction 

Polymer electrolyte membrane fuel cells, in particular, the direct liquid fuel cells (DLFCs) are 

viewed as viable candidates to replace batteries in portable power devices. Formic acid has 

recently attracted attention as an alternative fuel for DLFCs due to their considerably 

advantages over methanol and ethanol. The rate of formic acid cross-over is two orders of 

magnitude smaller than that of methanol, allowing for high fuel concentrations and thinner 

electrolytes 
75-76

. The formic acid also has a higher theoretical open circuit voltage (OCV), as 

shown by Eq. 4-1,2,3, than either hydrogen or direct methanol fuel cell. The chemical 

reactions for the direct formic acid fuel cells (DFAFCs) system can be expressed as follows: 

Anode:                                                                        
                               (4-1) 

Cathode:   
 

 
                                                            

                          (4-2) 

Overall:        
 

 
                                                                              (4-3) 

In addition, formic acid is a naturally-occurring substance and a relatively benign chemical 

that is used as a food additive at lower concentrations. As a result, direct formic acid fuel cells 

are expected to be among the first commercial small fuel cells to appear on the consumer 

market 
77

. 

A critical obstacle that limits the wide application of DFAFCs is the cost of the system, 

because a considerable amount of Pt-based catalysts at both the anode and cathode is required 

78-80
. Unlike in acid media, the kinetics of both the formate oxidation and oxygen reduction 

reaction in alkaline media is much faster and allows the use of non-precious metal catalysts to 

reduce the cost of the fuel cells. On the one hand, palladium has been demonstrated as one of 

the most effective metals for small organic molecules electro-oxidation and consequently has 

been selected as catalytically active phase for the anode 
27, 32, 81

. On the other hand, metal–
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N4 macrocycles, such as Fe- and Co-macrocycles, are important non-noble catalysts which 

have attracted attention due to their reasonable activity and remarkable selectivity towards the 

ORR 
68-69

. In addition, this class of catalysts usually shows inertness to organic molecules 

oxidation 
68

 and thereby restrains the reduction of cell voltage by the fuel crossover. The 

effectiveness of alkaline direct formate fuel cells (DFFCs) is also related to the use of 

dedicated anion exchange polymer electrolyte such as those produced by Tokuyama. 

For the above mentioned reasons the assessment of DFFCs appears to be an issue of 

importance. However, relatively little work has been reported about the evaluation of DFFCs 

especially with non-platinum electrocatalysts. Particularly worth mentioning is that the power 

density and energy efficiency of DEFCs, as a potential portable electronic device, is in badly 

need of investigation. High energy efficiency and high power density fuel cells are vitally 

needed for portable power source applications to minimize fuel consumption, weight, volume 

and capital cost of power plants 
67

. In some extent the energy efficiency is more critical than 

the power density because the weight and volume of the energy storage systems are crucial 

important in portable power source. 

 In this paper we present the comprehensive assessment of passive air-breathing DFFCs, 

in which fuel and oxidant are passively delivered without any moving parts such as pumps, 

fans, or blowers. The analysis has been performed on DFFCs equipped with nanostructured 

palladium based anode catalysts, Pd/C. At the cathode a proprietary FePc-CoPc/C, cobalt and 

iron complexes with phthalocyanines (Pc) supported on carbon black, has been employed. 

The analysis has been focused on the determination of the following parameters: maximum 

power density, delivered energy, faradic efficiency, and energy efficiency. We believe that 

such an analysis deserves a special attention. 

4.2 Results and discussion 

4.2.1 Electrocatalyst characterization 

Transmission electron microscopy (TEM) images of the Pd/C electrocatalyst are shown in 

Figure 4-1a. The Pd nanoparticles are generally well distributed over the carbon support and 

are of an even size distribution with most of the particles below 10 nm in diameter (mean 

3.2±0.8 nm). The morphology of the as-synthesized FePc-CoPc/C was observed by TEM 

(Figure 4-1b). All Ketjen Blacks appear as nanoparticles with a diameter of about 30 nm. 

javascript:popupOBO('CMO:0000080','C2NR32612D')
javascript:popupOBO('CMO:0001099','C2NR32612D')
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Most of the compartments were empty which indicates that neither metals nor Fe-Co alloy 

were formed. 

 

 
Figure 4-1. Representative TEM micrograms of a) Pd/C and b) FePc-CoPc/C. 

 

Information about the nature of the structure of the investigated electrocatalysts has been 

obtained by powder X-ray diffraction (XRD) (Figure 4-2). Pd nanoparticles supported on 

carbon black exhibit the characteristic XRD pattern of a face-centered-cubic (fcc) lattice 

structure as shown in Fig. 4-2a. The strong diffraction peaks at the Bragg angles of 40.16°, 

46.54°, 68.31°, 82.05° and 86.83° are respectively assigned to the (1 1 1), (2 0 0), (2 2 0), 

(311) and (222) Bragg reflections of metallic Pd. The Sherrer equation applied to the Pd 

(1 1 1) reflection has returned an average crystallite size of 6.1 nm. Apart from the broad peak 

attributed to C (0 0 2) no peaks other than those of metallic Pd have been detected. 

The XRD of FePc–CoPc/C shows the typical pattern of the carbon support with two very 

broad diffraction peaks centered at ca. 25.31 and 43.38°, which are attributed to the presence 

of an amorphous phase of the MPc species 
69

. No metallic particles were generated on the 

carbon surface. 
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Figure 4-2. Powder XRD diffraction patterns of a) Pd/C and b) FePc-CoPc/C. 

 

4.2.2 Half-cell characterization 

Cyclic voltammetry (CV) of the Pd/C was undertaken in N2-saturated electrolyte at room 

temperature. The CV of a single Pd/C electrode in 2 M KOH is shown in Figure 4-3. The 

EASA of Pd in the single electrode was calculated using the charge associated with the 

reduction peak of the first monolayer of PdO 
74

. A value of 51.6 m
2
/gPd was obtained. 

 

Figure 4-3. Cyclic voltammograms of Pd/C in 2 M KOH electrolyte with a scan rate of 50 

mV/s. 
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Figure 4-4. a) Cyclic voltammograms of Pd/C in 2 M Ethanol + 2 M KOH with a scan rate of 

50 mV/s; b) Rotating-disk voltammograms of FePc-CoPc/C electrocatalysts in O2-saturated 

0.1 M KOH with a scan rate of 5 mV/s. 

 

The activity of Pd/C toward formate oxidation reaction has been determined by acquiring 

CV in 2M KOH plus 2M formate electrolyte. The electrolyte has been selected for the fact of 

having been practically exploited in real anion exchange membrane fuel cells as well as in 

electrochemical reforming devices 
42, 82-83

. 

Fig. 4-4a shows the formate oxidation peak at 0.74 V with an intensity controlled by the 

progressive coverage of the electrode surface by Pd-O. At potentials higher than 1 V, the 

anodic current was comparable to that observed for the 2 M KOH alone (Figure 4-3), 

indicating that only a negligible fraction of the electrocatalyst sites remains active for formate 

oxidation. The reverse scan shows a further anodic peak occurring at 0.76 V due to the 

oxidation of fresh formate on the electrocatalyst surface freed from Pd oxide. 

The electrochemical activity of FePc–CoPc/C for the oxygen reduction reaction (ORR) 

was investigated by linear sweep voltammetry at room temperature using a rotating disc 

electrode (RDE). The polarization curves are shown in Figure 4-4b. The experimentally 

determined limiting currents were within the ±10% limit theoretically established by the 

Levich equation 
84

. From the data reported in Figure 4-4b, one may readily realize that the 

FePc-CoPc/C electrocatalyst shows superior ORR activity which is comparable with the Pt-

based electrocatalysts 
69

. A superior performance of Fe and Co electrocatalysts, as compared 
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to Pt, for the ORR has been previously observed in alkaline media 
68-69

. As pointed out by 

literatures, nitrogen functionalities in the carbon support may have a role in the ORR activity 

in alkaline media 
85-86

. Therefore, we cannot rule out that the functionalized Ketjen Black may 

contribute to the observed ORR activity. 

4.2.3 Air-breathing Direct Formate Fuel Cells performance 

The fuel cell performance has been evaluated in single cell fed with formate and KOH 

solution. Different fuel compositions, reported in Table 4-1, have been employed. 

 

Table 4-1. Anode electrolyte composition. Formate and KOH concentrations. 

Anode electrolyte composition 

Formate KOH 

2 M 2 M 

3 M 3 M 

4 M 2 M 

4 M 4 M 

4 M 6 M 

5 M 5 M 

6 M 6 M 

 

Performance evaluation has been performed on the basis of potentiodynamic and 

galvanostatic (20 mA cm
-2

) curves. From potentiodynamic we have extracted the maximum 

power density, while from galvanostatic data the delivered energy, faradic efficiency and 

energy efficiency have been respectively obtained. 

The delivered energy has been evaluated applying equation 4-4 by integrating the 

galvanostatic curve over the time up till a negligible cell potential was reached. 

   ∫       
 

 
                                                                                                                        (4-4) 

Where: 
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I is constant current flowing through the cell, 102 mA; 

V(t) is transient cell voltage. 

To investigate the fuel utilization, we define the Faradic efficiency as: 

   
                  

                              
 

∫       
 
 

      
                                                                           (4-5) 

Where: 

I(t) is the transient discharge current; 

CF is the initial formate concentration; 

VF is the formate solution volume; 

F is the Faraday constant. 

The Faradic efficiency defined in Eq. 4-5 indicates the ratio of the actual discharging capacity 

to the theoretical discharging capacity. 

Energy efficiency determination has been done according to equation 4-6: 

   
 

                                                                                                                                 (4-6) 

Where: 

E is the delivered energy from the single cell; 

M is molarity of formate in the cell; 

V is the volume of formate fuel; 

ΔH
0
 represents the enthalpy change of formate oxidation reaction as shown by equation 4-7. 

      
 

 
                                                                                             (4-7) 

The relevant standard enthalpy of formation of chemicals in Eq. 4-7 is shown in Table 4-2. 

Then the enthalpy change of formate oxidation reaction can be figured out as -254.14 KJ/mol. 
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Table 4-2. Standard enthalpy of formation of chemicals in Eq. 4-7 (at 25 °C, 298 K). 

Formula Phase ΔfH
0 (KJ/mol) 

HCOOK aqueous -679.9 

O2 gaseous 0 

KOH aqueous -482.4 

K2CO3 aqueous -1130.6 

H2O liquid 285.8 

 

It is worthwhile mentioning that such an energy efficiency definition is comprehensive 

as it accounts for the thermodynamic efficiency, the potential drop of the cell and the faradaic 

efficiency which is usually lower that 1 as the conversion is usually not complete.  

The influence of formate concentration was investigated through polarization and 

constant current test, shown in Figure 4-5. The corresponding detailed parameters were 

collected in Table 4-3.  

To meet the requirement of long time running of portable power sources, high 

concentration of formate in DFFCs is demanded. Following from that, 2, 3, 4, 5 and 6 M 

formate were chosen. At the same time, the same concentration of KOH with formate was 

added to the electrolyte as the demand of best performance of energy output and energy 

utilization 
45, 47

. 
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Figure 4-5. Effect of formate concentration on the performance of the air-breathing direct 

formate fuel cell. a) Polarization curves, b) Power density curves, c) galvanostatic curves and 

d) discharge energy curves. 
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Table 4-3. The performance of the air-breathing DFFC with different electrolytes. 

 Electrolyte 

2 M Formate 

2 M KOH 

3 M Formate 

3 M KOH 

4 M Formate 

4 M KOH 

5 M Formate 

5 M KOH 

6 M Formate 

6 M KOH 

Open Circuit 

Voltage (V) 

1.00 1.04 1.03 1.06 1.13 

Current 

density at 0.5 

V (mA/cm
2
) 

154.80 129.26 102.71 52.70 10.96 

Maximum 

Power Density 

(mW/cm
2
) 

96.33 90.84 89.07 47.21 7.25 

Discharge 

Energy (KJ) 

1.36 2.47 3.94 4.61 3.68 

Faradic 

Efficiency (%) 

53.15 59.59 71.42 70.51 68.98 

Energy 

Efficiency (%) 

22.30 27.00 32.30 30.23 20.11 

 

In the present research a method of constant current discharge is employed to examine 

the long-term performance. The influence of formate concentration for constant current 

discharge and the relevant discharge energy are shown in Figure 4-5c and 4-5d respectively. 

Both the duration and discharge energy density increased more than three times as 

increasing the concentration of ethanol from 2 to 5 M. Differently, single cell fueled with 6 M 

formate has delivered less energy compared to the cell with 6 M formate, which is due to the 

lower potential of 6 M cell. 

Fuel utilization factor has been calculated by equation 4-5. The corresponding results are 

shown in Table 3. Different from the DMFCs and DEFCs, the faradic efficiency of DFFCs 

increased as increasing the fuel concentration from 2 to 4 M and decreased from 4 to 6 M 
64, 87

. 
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Particularly, the efficiency of the DFFC, fueled with 4 M Formate and 4 M KOH, reaches up 

to 71.42%, which is much higher than the highest utilization of DMFC, 52.0% 
64

. 

In addition, energy efficiency of air-breathing DFFCs has been calculated by equation 4-

6. The highest energy efficiency was obtained at the cell with 4 M Formate plus 4 M KOH 

electrolyte. Surprisingly, the number, 32.3%,  is pretty higher than the DMFCs (6.8-15.4%) 
64

 

and DEFCs (6.0%) 
42

. 

 

Figure 4-6. Effect of KOH concentration on the performance of the air-breathing direct 

formate fuel cell. a) Polarization curves, b) Power density curves, c) galvanostatic curves and 

d) discharge energy curves.  
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Table 4-4. The performance of the air-breathing DFFC with different electrolytes.  

 Electrolyte 

4 M Formate 

2 M KOH 

4 M Formate 

4 M KOH 

4 M Formate 

6 M KOH 

Open Circuit Voltage (V) 1.01 1.03 1.03 

Current density at 0.5 V 

(mA/cm
2
) 

125.25 102.71 54.26 

Maximum Power 

Density (mW/cm
2
) 

94.40 89.07 53.16 

Discharge Energy (KJ) 2.43 3.94 3.33 

Faradic Efficiency (%) 49.01 71.42 63.59 

Energy Efficiency (%) 19.92 32.30 27.30 

 

It has been recognized that OH
- 
has a fundamental role in the oxidation of formate. To 

understand better, it is necessary to recall the anode and cathode reaction in DFFCs. 

              
                                                                                       (4-8) 

 

 
                                                                                                                 (4-9) 

The formation of carbonate consumes 3 hydroxyl ions at the anode while only 2 

hydroxyl ions are formed from cathode. Hence a hydroxyl ion has to be consumed to balance 

the charge. A consequence is that as formate is consumed during the experiment, OH
-
 is 

consumed at the same rate. Ultimately alkaline DFFCs operate under a constant and 

progressive reduction of the pH. On the side of the kinetic, OH
-
 adsorption plays a crucial role 

in the oxidation mechanism so much that at low overpotential the formation of adsorbed 

hydroxyl is the rate determining step. For this reason we have performed a series of 

experiments where ethanol concentration of has been kept constant (4 M) varying OH
-
 

concentration between 2 and 6 M (Figure 4-6). The relevant parameters were collected in 

Table 4-4. 



 

77 

 

The peak power density has exhibited its maximum when the KOH concentration is 2 M 

(94.40 mW/cm
2
). When the concentration is increased from 2 to 6 M the power density drops 

markedly leading to a peak power density of (53.16 mW/cm
2
). This can be ascribed to the 

conductivity of KOH electrolytes but kinetic reasons such as very strong OH
-
 adsorption 

could also concur to the performance degradation.  Galvanostatic curves at 20 mA cm
-2

 follow 

different trends. The best performance has been achieved with the middle concentrated KOH 

(4M). The cell fuelled with different concentrations of KOH 2.43, 3.94, 3.33 KJ, separately. 

The trend of KOH concentrations works same on the faradic efficiency and energy efficiency. 

Hence we conclude that the cell performance benefits with the concentration of formate and 

KOH at the same level. 

4.3 Conclusions 

Pd/C was synthesized with an even size of 3.2±0.8 nm. Iron and cobalt phthalocyanines on 

Ketjen Black were synthesized giving materials containing arrays of single metal ions 

coordinated by four nitrogen atoms (M-N4 units). Both electrocatalysts were characterized by 

XRD, TEM, and cyclic voltammetry in half cell, polarization and constant current test in 

passive air-breathing direct formate fuel cells. 

The polarization investigation shows that the assembled DFFC shows high current 

density, high OCV and high power density. Particularly, the high OCV, ≥ 1.0 V, is mainly 

attributed to the higher theoretical electromotive force of DFFCs.  And the using of FePc-

CoPc/C as cathode electrocatalyst to restrain the reduction of cell voltage by fuel crossover is 

another key factor. In addition, the highest power density, 96.33 mW/cm
2
, was obtained 

which is much higher than the similar equipped air-breathing direct methanol fuel cells and 

direct ethanol fuel cells. In particular, this maximum power density is relatively higher than 

the passive DFCFCs but using much inexpensive electrocatalysts instead of Pt-based 

electrocatalysts. Furthermore, the energy efficiency of DFFCs is more than 1 time higher than 

DMFCs and 4 times higher than DEFCs. 

We have also examined this non-platinum direct formate fuel cells fuelled with a variety 

of electrolytes in order to determine how the fuel composition affects OCV, maximum power 

density, discharge energy, faradic efficiency and energy efficiency. We have found that those 

parameters show a different dependence on the fuel composition. The highest OCV was 
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gotten in the cell with 6 M formate plus 6 M KOH. We have found that both the current 

density and power density exhibit a tremendous decrease as increasing the fuel concentration. 

This is mainly due to the high ohmic losses at high fuel concentrations. The best current 

density and power density were obtained in the cell fueled with 2 M Formate plus 2 M KOH, 

while the highest delivered energy, fuel utilization and energy efficiency have been found in 

the single cell equipped with 4 M formate plus 4 M KOH. The parameters show completely 

different trends indicating that care should be taken when selecting the specific factor for 

performance assessing. The targeted application should always kept in mind in order to 

optimize the fuel composition.  

Combining the superiority of low crossover, high open circuit voltage, high current 

density, high power density, high fuel utilization, and high energy efficiency, DFFCs are 

expected to be among the first commercial fuel cells as portable devices. 
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5. Electrochemical Growth of Palladium Nanostructures 

for Enhanced Alcohols Oxidation  

5.1 Introduction 

5.1.1 Crystal structure affects catalytic activity 

The catalytic action of the solid surface involves the adsorption of the reactant molecules at 

certain sites where bond breaking (C—H, C—C and H—H) occurs followed by 

rearrangement of the adsorbed reaction intermediate. After that, the product molecule will be 

desorbed from the catalyst surface so that the process could be constantly repeated 
88

. 

The chemically active solid surface is structurally heterogeneous and may be viewed as 

shown by the model in Fig. 5-1, which illustrates the names for the atomic positions and point 

defects on a surface for a simple cubic lattice. 

 

 

Figure 5-1. The names for the various atomic positions. 

 

There are atoms in terraces surrounded by the largest numbers of nearest neighbors. 

There are surface irregularities, steps and kinks, in which atoms have less nearest neighbors. 

Among them, the atoms with less neighbors, such as steps and kinks, on catalyst surfaces are 

active in breaking C—H, C—C and H—H bonds.  

http://en.wikipedia.org/wiki/Crystal_lattice
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5.1.2 High index facets 

High-index facets, which are denoted by a set of Miller indices with at least one index greater 

than unity, are considered as one kind of open structures 
89

. The different types of polyhedron 

and their surface facets is shown in Fig. 5-2. At the three vertices are polyhedrons enclosed by 

three low-index facets: octahedron with 8 (111) facets, cube with 6 (100) facets, and rhombic 

dodecahedron with 12 (110) facets. Among them, the (100) and (111) planes have closely 

packed surface, whereas the (110) planes have stepped atoms. The polyhedrons in three 

sidelines and interior of the triangle represent four types of polyhedrons, tetrahexahedra 

(THH), trapezohedra (TPH), trisoctahedra (TOH), and hexoctahedra (HOH), with high 

indexed facets. Each polyhedron type is associated with a specific class of high-index facets. 

THH are bounded by 24 (hk0) (h > k > 0) facets, TPH by 24 (hkk) (h > k > 0), TOH by 24 

(hhl) (h > l> 0), and HOH by 48 (hkl) (h > k>l> 0) facets.  

 

 

Figure 5-2. Triangular diagram of polyhedral fcc metal bounded by different crystallographic 

facets 
90

. 

 

These facets possess a high density of low-coordinated atoms such as steps, edges, and 

kinks, serving as large amount active sites. As a result, noble metal catalysts with high-index 
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facets usually exhibit significantly enhanced activities compared with those close-packed low-

index facets. Consequently, high-indexed noble metal nanocrystals are expected to possibly 

serve as a new generation of catalysts. The synthesis of nanocrystals enclosed by high-index 

facets remains a challenge because of high index facets normally grow faster during a growth 

stage and thus are preferentially eliminated to minimize total surface energies of the final 

nanocrystals. Apparently, it is a challenge to produce high-indexed noble metal nanocrystal. 

During all kinds of synthetic methods of nanocrystals enclosed by high-index facets, the 

square-wave potential (SWP) treatment shows unique advantages of simple and effective 
29, 34, 

91
. The electro-oxidation of metal and reduction of its surface oxide lead to changes in the 

surface morphology and roughness. Repetitive oxide growth and reduction increase the 

electrode’s real surface area and also the structure, which include high index facets, through 

the formation of surface defects, such as clusters of ad-atoms, vacancies, rearrangement of 

atoms at grain boundaries, etc. These morphological changes translate into modified 

electrocatalytic properties of the metal/electrolyte interphase 
74

. 

5.1.3 Anion exchange membrane direct alcohol fuel cells 

Direct alcohol fuel cells are devices that the free energy of alcohols can be converted into 

electrical energy, with contemporaneous release of high added-value products. A crucial role 

for achieving this goal is played by the anode electrocatalysts which must promote the partial 

oxidation of renewable alcohols, such as ethanol, glycerol, ethylene glycol, to carboxylic 

compounds, preferentially in a selective way and with fast kinetics. It is known that alcohol 

partial oxidation is particularly effective in alkaline electrolyte. Table 5-1 summarizes the 

electrooxidation of alcohols in alkaline medium studied in this work. 
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Table 5-1. Electrochemical oxidation of alcohols in alkali. 

Alcohol Reaction Equation 
E

0
 (vs. 

RHE) 

Energy 

Density 

(Wh/kg) 

Ethanol 

                              

                               

                   
              

-0.77 8030 

Ethylene 

Glycol 

                     
            

                   
              

-0.72 5200 

Glycerol 

                    

                         

                         
              

-0.69 5000 

 

5.1.4 Main work of this chapter 

The previous study shows that high index faceted palladium is effective for small organic 

molecules oxidation 
34

. In that work, Pd nanoparticles deposited on TiO2 nanotube arrays 

have been treated by square wave potential followed by formation of high index faceted Pd 

which further enhance the activity toward alcohols electro-oxidation. 

Here we show an analogous treatment magnifies alcohols electro-oxidation at 

polycrystalline bulk palladium electrodes investigating the effect of the treatment on the 

oxidation of ethanol, ethylene glycol and glycerol. 

5.2 Results and discussion 

5.2.1 Surface characterization 

Alteration of the palladium electrode morphology has been demonstrated by SEM inspection 

of the electrode surface. Fig. 5-3a and 5-3b show the low and high magnification SEM images 

of the polycrystalline Pd foil surface after its polishing with diamond suspension. Fig. 5-3c 
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and 5-3d show the low and high magnification SEM micrographs of the same surface after the 

SWP treatment. Image comparison reveals dramatic surface roughening after treatment. 

 

Figure 5-3. Scanning Electron Microscopy images of Pd surfaces before (low magnification 

(a), high magnification (b)) and after the SWP treatment (low magnification (c), high 

magnification (d)).  

 

5.2.2 Voltammetric studies 

Electrochemical roughening of polycrystalline palladium foil as a result of SWP 

treatment has been previously observed and it has been used to demonstrate the surface-

enhanced Raman scattering activity as high as three orders of magnitude 
92

. Here, we used 

different potential and frequency of SWP (Fig. 2-1). In addition, the roughing solution was 

changed from 1 M H2SO4 to 2 M KOH. 

The extent of roughening has been quantified by the Electrochemically Active Surface 

Area (EASA) determination. EASA measurements have been performed by CV through the 

quantification of the cathodic peak corresponding to the reduction of a complete PdO 
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monolayer (1.4 V vs. RHE according to what reported in 
74

). Table 5-2 shows the SWP 

treatment results in a twofold increase of the EASA.   

 

Table 5-2. Parameters for the catalytic activity assessment 

 Before SWP treatment After SWP treatment 

EASA (cm
2
) 2.8 7.0 

Onset potential  

(V vs. RHE) 

Ethanol  0.39 0.19 

Ethylene glycol 0.50 0.37 

Glycerol 0.59 0.40 

Peak current density / 

EACA peak current 

density (mA/cm
2
) 

Ethanol  34.4 / 3.5 193.9 / 7.8 

Ethylene glycol 52.4 / 5.3 207.3 / 8.4 

Glycerol 28.7 / 2.9 124.9 / 5.0 

 

To characterize the other electrochemical properties of this treated electrode, other cyclic 

voltammetric studies were carried out. Fig. 5-4a gives cyclic voltammograms obtained from 

smooth and SWP treated Pd in 2 M KOH at a scan rate of 50 mV/s over the potential range 

from 0 to 1.2 V. It shows that the reduction of PdO occurs between 0.6 and 0.8 V. It is worth 

noting that the asymmetry of the CV after treatment (Fig. 5-4a), the positive cathodic current, 

should be ascribed to the oxidation processed being enhanced after treatment. 
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Figure 5-4. Cyclic voltammograms of Pd in a) 2 M KOH; b) 0.1 M HClO4; c) 10 w.t.% 

Ethanol + 2 M KOH; d) 5 w.t.% ethylene glycol + 2 M KOH; e) 5 w.t.% glycerol + 2 M KOH. 

Scan rate: 50 mV/s. 
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CVs in 0.1 M HClO4 were also tested to investigate oxygen adsorption/desorption 

electrochemical features before and after treatment (Fig. 5-4b). Specially, we display the 

current density normalized by EASA. Then we can find that the roughened Pd electrode 

presents essentially the same features as the smooth electrode except that the roughened Pd 

gives better-resolved hydrogen adsorption and desorption peaks in the negative potential 

region. Moreover, the current density of palladium oxide formation is much larger and 

happens at earlier potential (0.65 V). The Pd oxide reduction happened at the range of 0.6-0.8 

V is also larger on treated Pd compared to smooth Pd. Both large current of the Pd oxide 

formation and reduction on SWP treated Pd reveals an increase in the density of low 

coordinated palladium atoms. The origin of such increased density may be ascribed to the rise 

of the number of exposed high index facets, as explained in 
34

. The formation of crystal 

defects may not be excluded. 

The electrocatalytic activity of palladium towards the alcohol oxidation (Fig. 5-4 c-e) has 

been estimated by CVs in 2M KOH electrolytes containing 10 w.t. % of ethanol, and 5 w.t. % 

of ethylene glycol and glycerol. Such fuel compositions have been found to be effective for 

powering alkaline DAFCs 
42, 93

. From Fig. 5-4 c-e, we can find that the SWP treated Pd 

electrode provides lower onset potentials of alcohol oxidation as compared to the non-treated 

one for all the investigated electrolytes. In the same time, the dramatic increase of the peak 

current density for the alcohol oxidation can also be observed. The relevant quantitative value 

of alcohol oxidation current density was summarized in Table 5-2. The ratio between the 

current densities after and before the treatment is 5.6, 4.0 and 4.4 for the oxidation of ethanol, 

ethylene glycol and glycerol, respectively. Such ratios are much larger than the ratio of the 

EASA after and before the treatment, 2.5. Therefore, the much higher activity of SWP treated 

palladium cannot be explained solely by surface roughening. 

To better understand the source of the good performance of SWP treated Pd, we’d like to 

trace back to the report in 
34

. Over there, the same potential and frequency of SWP was used 

on the Pd particle which was deposited on TiO2 nanotube array. High Resolution 

Transmission Electron Microscopy (HRTEM) analysis of the TiO2 supported Pd after SWP 

treatment demonstrates the existence of high index facets (Fig. 5-5,6). The acquisition of 

HRTEM images under different focus allowed the assignment of the surface structure. Fig. 5-

5 shows the presence of high index facets (210), (410) along the <100> direction. Figure 5-6 
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shows (211) and (311) facets along <110> direction. In addition, along the <110> direction 

one may also notice the presence of twinning and stacking faults. 

 

 

Figure 5-5. HRTEM image of Pd nanoparticles along <100> direction after SWP treatment 

and the corresponding facets identification. (a) HRTEM image and boundary identification; (b) 

Fourier Transform of the image for the determination of the axis of observation direction; (c) 

Sketch of the particle boundary for angle measurement; (d) Particle atomic model with facets 

assignment. 
34
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Figure 5-6. HRTEM image of Pd NP along <110> direction after SWP treatment and the 

corresponding facets identification. (a) HRTEM image of treated Pd; (b) Particle atomic 

model with facets assignment; (c,d) Fourier Transform of the image for the determination of 

the axis of observation direction of the top and bottom highlighted region of picture (a) 

respectively. 
34

 

 

In the end, combining the report in 
34

, we can ascribe the activity enhancement to a 

convolution of effect of the enlarged surface area and the increase in the density of low 

coordinated surface. 

5.2.3 In situ FTIR spectroscopy 

To detect the intermediate and products during alcohol oxidation on Pd, the in-situ FTIR 

spectroscopy was used. At the beginning, we would like to compare the difference of ethanol 

oxidation products on Pd before and after SWP treatment. Fig. 5-7 a,b, recorded in 10% 

ethanol + 2 M KOH, show the four downward bands at 1550, 1415, 1346 and 1018 cm
-1

 

which allow a safe assignment to CH3COO
-
 
47-48

. Nevertheless, it is known that the symmetric 
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stretching of COO
-
 (1415 cm

-1
) is less intense than the asymmetric stretching band occurring 

at 1550 cm
-1 

(Fig. 5-8) 
48

. Unlike the normal way, Fig. 5-7 b shows the band intensity at 1415 

cm
- 1 

is significantly larger as compared to the band at 1550 cm
-1

. This effect can be ascribed 

to the formation of carbonate (1390 cm
-1

) merged together with 1415 cm
-1

. This evidence may 

indicate a larger tendency of the SWP treated Pd surfaces to produce C-C cleavage. The 

change may also be ascribed to local change in the pH for the larger activity of the system 

after treatment. 

Figure 5-7 c,d show FTIR of the ethylene glycol oxidation on Palladium. At potential 

lower than 0.7 V on untreated Pd surface, we obtained oxidation bands with very low 

intensity which does not allow a safe assignment. At potential of 0.7 V and higher, we 

observe the formation of mixed carboxylates such as glycolate (1574  and 1406 cm
-1

) 
94

 and 

oxalate (1570 and 1310 cm
-1

) 
95-96

. The formation of CO3
2-

 cannot be excluded due to the 

superimposition of the carbonate bands to carboxylates. The electrooxidation of ethylene 

glycol on treated Pd at potential higher than 0.7V leads to the formation of glycolic acid (1732, 

1436, 1083 cm
-1

), oxalic acid (1732, 1240 cm
-1

), glyoxylic acid (1736, 1240, 1095 cm
-1

) and 

glyoxal (1415, 1083 cm
-1

) 
96-98

. At the same time, the final oxidation product, CO2, is 

observed at 2343 cm
-1

. A former report in 
99

 shows the influence of pH on the products of 

ethylene glycol oxidation. They proved that the lower pH is preferred to break C-C and then 

produce the CO2. But it showed that quite small amount of CO2 was formed on the 

polycrystalline Pd foil under 1.2 V even at the pH of 12. Compare the intensity of peak at 

2343 cm
-1

 in Fig. 5-7d with the result in 
99

, we can easily distinguish that the treated Pd 

oxidizes ethylene glycol to much more amount of CO2. In the end we conclude that the 

observed variation in the selectivity due to a convolution of the larger tendency of the SWP 

treated Pd to produce C-C cleavage, which accounts for the main reason, and the local change 

in the pH. 
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Figure 5-7. In situ FTIR spectra obtained under potential step polarization in a,b) 10% 

ethanol + 2 M KOH on Pd before and after SWP treatment; in c,d) 5% ethylene glycol + 2 M 

KOH on Pd before and after SWP treatment; e,f) 5% glycerol + 2 M KOH on Pd before and 

after SWP treatment. 
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Figure 5-8. Identification of carbonate as product of ethanol oxidation. (A) In situ FTIR 

spectrum of the electrooxidation of 0.1 M ethanol; (B,D) Transmission IR spectra of 0.1 M 

CH3COONa and 0.1 M Na2CO3 separately; (C) The resulting spectrum of A − 0.18 × B.
48

 

 

Figure 5-7 e,f show FTIR of the glycerol oxidation on Palladium. The electrooxidation 

of glycerol on untreated Pd results in the formation of glycerate (1581, 1387 and 1309 cm
-1

) 

100
 at potential higher than 0.7 V. Carbonate formation cannot be excluded for the 

superimposition of the COO
-
 symmetric stretching band of glycerate. Instead, after the 

treatment, the formation of mixed carboxylic acids at potentials higher than 0.6V have been 

detected together with CO2 (2343 cm
-1

) formation.  

Ethylene glycol and glycerol electrooxidation on treated Pd (Figure 5-7 d,f) results in the 

presence of carboxylic acids and CO2 instead of carboxylates and carbonate which indicates 

pH decrease in the probed thin layer solution. The pH decrease originates from the OH
-
 

consumption during alcohol oxidation reaction, which happened with larger intensity on 

treated Pd. 

In brief, FTIR data not only supports the CV evidence for the increase in the 

electrocatalytic activity of Pd after SWP treatment, but also may suggest the difference in the 

selectivity of alcohol oxidation.   
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5.3 Conclusions 

Palladium has been actively explored in recent years due to its unique properties and 

applications related to catalysis. Like other systems, the catalytic activity of Pd is strongly 

dependent on both size and shape, with the shape playing a more important role in 

determining the selectivity.  

A simple square wave potential treatment has been used to change the size and also the 

crystal shape of polycrystalline palladium foil. The potential, frequency and the treating 

solution has been optimized selected as a former work about Pd nanoparticles deposited on 

TiO2 nanotube array. Consequently, our polycrystalline palladium foil shows enhanced 

electrocatalytic activity for alcohol oxidation which was investigated by cyclic voltammetry. 

Three alcohols, ethanol, ethylene glycol and glycerol were chosen. 

The CVs tested in alkaline medium show that the current density of alcohol oxidation is 

about 5 times higher on treated Pd than the untreated one. It is worth noting that the 

electrochemical active surface area is only 2.5 times. The phenomenon can be ascribed by 

both the roughness of surface and the change of the crystal shape, which includes the high 

index facets. In situ FTIR was used to test the intermediate and products of alcohol oxidation 

on Pd. The results reveal that a larger tendency of breaking C-C bond was happened on 

treated Pd towards alcohol oxidation. It proves that the treated Pd with changed crystal shape 

has the different selectivity of alcohol oxidation. 

Our square wave potential treatment works effectively on palladium, which indicates that 

this treatment may be applied on the other metal surfaces to enhance their catalytic activity. 

Furthermore, this treatment leads to improve of the anode activity and then promote the 

higher efficiency of alkaline direct alcohol fuel cell. 
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6. Electrochemical Growth of Platinum Nanostructures for 

Enhanced Ethanol Oxidation 

6.1 Introduction 

To date platinum is still the most commonly exploited material in electrocatalysis. This is 

because of its good catalytic activity in a variety of energy related electrochemical reactions 

together with remarkable resistance to corrosion, even at high temperatures 
101-104

. Polymer 

Electrolyte Membrane Fuel Cell (PEMFC) technology, which has a bright application aspect 

in electric vehicle and portable power, heavily relies on platinum for catalyzing both 

hydrogen oxidation and oxygen reduction reaction 
105

. 

Platinum has also been proved to be effective for the catalysis of electrochemical 

oxidation of a variety of small molecules 
106-109

, which are more likely to be used as power 

sources for portable application as compared to hydrogen (Fig. 6-1). In particular, ethanol is 

extremely attractive for direct small molecule oxidation fuel cells operating at lower 

temperature values, as represented in 1.3.2. 

 

Figure 6-1. Theoretical energy storage densities for fuels considered for use in small fuel 

cells. 
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Platinum and PtRu have been shown to be effective catalysts for ethanol electrooxidation 

100, 102, 105
. Recently PtSn alloys have been proved to be even more performing high activity in 

complete direct ethanol fuel cells tests 
24-25, 110-111

. Nevertheless, the use of platinum generates 

two main issues hindering its practical exploitation: i) the need for high metal loadings 
108, 112

 

and ii) CO poisoning 
113-114

. The need for high Pt loadings poses severe limitations, as the 

scarcity of platinum resources limits its use to applications which is unavoidable. The 

European Union has classified platinum among the so-called ―critical raw materials‖, 

stressing both on its technological relevance and rarity 
115-116

. The US Department of Energy 

periodically publishes reports on future technology targets 
117

. Lately a platinum content of 

0.125 mg cm
-2

 for automotive PEMFCs has been fixed as an objective to be achieved by 2017. 

This is reasonably good to guarantee the sustainability of platinum supply for a full 

technological and commercial exploitation. At present only nanostructured thin films have 

been shown to be active enough to meet the requirements 
118

. On the other hand, CO 

poisoning of platinum is critical for direct ethanol fuel cell performance. It is well known that 

the electrooxidation of ethanol undergoes parallel reactions producing CH3CHO, CH3COOH 

and CO2 (Figure 6-2). CO, as an intermediate product of C-C breaking to further produce CO2 

during ethanol oxidation, strongly adsorbs at the platinum surface slowly poisoning the 

catalyst performance. The addition of ruthenium to platinum promotes CO oxidation and 

elimination, but CO poisoning is still an issue 
119-125

.  

 

 

 

 

 

Figure 6-2. Schematic representation of the parallel pathways for ethanol oxidation. 

 

In order to overcome the problem of CO production it has been demonstrated, at least 

with Pd catalysts 
48

, that it is convenient to operate in alkaline conditions, where the C-C 

cleavage of ethanol has been shown to be hampered resulting in negligible production of C1 
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fragments. This could appear a limitation, in principle, as only four electrons are transferred. 

On the contrary, it is worth mention that to date the most energy efficient direct ethanol fuel 

cells are those operating in alkaline conditions resulting in the production of acetate. This is 

because no catalyst that produces effective C-C cleavage is actually known. Moreover, the 

complete oxidation of ethanol to CO2 or carbonate has very sluggish kinetics 
126-130

. These 

kinetic drawbacks lower fuel cell performance despite the fact of having 12 exchanged 

electrons.  

In the present work we introduce a new approach to the activation of platinum surfaces 

for application in ethanol electro-oxidation in alkaline environment. Inspiration was taken 

from a previous paper reporting an analogous procedure for Pd. In that work a square wave 

potential with fixed frequency was chosen to activate the Pd surface. The procedure was 

successful in generating nanostructured highly active Pd electrocatalysts 
34, 131

. Moreover, 

square wave potential treatment also has been used for Pt activation 
106, 132-134

. Particularly, the 

nanoparticle Pt supported on carbon was treated by SWP and formed high index faceted Pt 

which exhibited catalytic selectivity for C-C cleavage 
134

. The activation mechanism of Pt by 

SWP can be summarized as follow: 

                                                                                                            (6-1) 

                                                                                                                   (6-2) 

                                                                        (6-3) 

Reaction (6-1) is a fast process which behaves in a reversible way. Pt(OH) species is 

considered as the starting material for producing the hydrated platinum oxide layer. Reactions 

(6-2), (6-3) are the O electro-adsorption process on platinum. The activity of the platinum 

electrode, which is usually assigned to dissolved oxygen in the metal during anodizing, 

should be primarily associated with the expansion of the metal lattice during the anodic 

potential treatment which facilitates oxygen penetration into the metal, at least in the order of 

a few metal layers 
132

.  

The final modification of the active surface and the increase in the real surface area of 

platinum electrodes is produced by the electroreduction of the hydrated oxide layer generated 

by the SWP treatment. 
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                                                                                           (6-4) 

Unlike the former palladium activation procedure, we worked with different frequency 

and duration time of square wave potential treatment on platinum. The ultimate goal is to get 

nanostructured Pt with specific crystal shape to enhance the catalytic activity for ethanol 

oxidation with selectivity to produce acetate product to minimize the CO poisoning. 

6.2 Results and Discussion 

6.2.1 Surface characterization 

Surface evolution as a result of the SWP treatment with various periods was investigated by 

field emission scanning electron microscopy. A set of three samples obtained with 6, 120 and 

360 min periods was selected for such characterization. Fig. 6-3 clearly shows that surface 

nano-structuring occurs from a period of 6 minutes.  

 

Figure 6-3. Microscopy reveals morphology changes induced by the treatment. 

Representative FESEM images of Pt surfaces after electrochemical treatment with different 

treated cycle time: a) pristine Pt surface, after square wave treatment with period of a) 6 min, 

b) 120 min, c) 360 min. 
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The roughness evolution results as a consequence of the morphology evolution occurring 

during platinum oxidation. It have been proven that there is an appreciable time effect of 

continuing growth of oxide film companied by the rearrangement of the surface structure 
135

. 

In addition, the corresponding time of oxide reduction should be achieved. But conversely, for 

the time shorter than the induction time, the oxide formation scale is too low to produce 

significant alteration of the roughness. Longer oxidation time, usually longer than a few 

minutes, produce the formation of columnar islands which is revealed by a net increase in the 

oxidation current. Furthermore roughening may also be ascribed to platinum dissolution and 

re-deposition. Platinum dissolution may occur at high potentials 
136

. Consistently re-

deposition of dissolved platinum could be considered responsible for the formation of the 

largest nanostructure shown in Fig. 6-3 d. This also indicates that the metal dissolved can be 

recovered from the solution by subsequent electrodeposition. 

6.2.2 Voltammetric studies 

To give a quantitative assessment of the extent of roughening, CVs in 0.5 M H2SO4 was 

recorded (Fig.6-4). The EASA has been determined 
137

 from the hydrogen adsorption and 

desorption charge after stabilization (10 cycles). Table 6-1 shows that even the samples 

treated with the shortest square-wave period (6 min) the EASA is enhanced by a factor of 2.45. 

A fourfold enhancement was obtained for the 360 min square-wave period.  

 

Table 6-1. Active surface area of SWP treated Pt. 

Period (min) Active Surface Area (cm2) 

0 1.806 

6 4.433 

120 6.177 

360 7.246 
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A more detailed analysis of the CVs in the hydrogen adsorption/desorption region (<0.35 

V) reveals changes in the distribution of the crystal terminations (Figure 6-4a).  The two 

peaks, observed at the anodic scan of 0.11 and 0.22 V, in Under Potential Deposition (UPD) 

of hydrogen of the untreated sample can be attributed to H desorption on (110) and (100) sites 

respectively 
138-140

. No clear H-desorption peak but a weak shoulder at 0.29 V possibly 

corresponding to the large (100) domains can be observed 
141-142

. The hydrogen adsorption 

peaks position and current density change as a result of the treatment indicating the changing 

of the distribution of facets 
143

.  

   

Figure 6-4. Cyclic voltammetry explains the surface modifications by SWP treatment. CVs in 

0.5 M H2SO4 at a scan rate of 50 mV/s normalized by geometric area (a) and normalized by 

the EASA (b).  
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Surface structure evolution is also supported by the analysis of the CVs in the Pt 

oxidation region of 0.8 - 1.4 V. Pt oxidation is known as proceeding via a two-step 

mechanism according to equation 6-1 and 6-2. Eq. 6-1 is referred to the formation of a surface 

hydroxide while eq. 6-2 represents the formation of the surface Pt oxide. Two equations 

together are the electrochemical reactions that account for the anodic current density in the Pt 

oxidation region of the CV. Peculiarly, the detailed information of the Pd oxide reduction in 

Fig. 6-4 has been shown in Fig. 6-5. We observe that an extension of cycle time results in (a) 

larger current density of the peak of oxide reduction which indicates the formation of thicker 

oxide film; (b) the reduction peak potential which consistently shifts towards less-positive 

values is due to the more stable formation of Pd oxide. 

 

 

 

Figure 6-5. The relationship of the peak potential and charge density of Pd oxide reduction 

with SWP cycle time. 

 

To have an insight into the detailed surface structure evolution of SWP treated platinum, 

we compared the CVs with EASA normalized current density (Fig. 6-4b). As we know, an 

increase in the EASA normalized current density for Pt oxidation at potential lower than 1.0 
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addition, platinum sites with low coordination number show much higher tendency of oxide 

formation as compared to high coordination sites. The larger stability of platinum oxide 

results in the cathodic shift of the peak of the platinum oxide reduction 
135

. The high density 

of low coordination surface atoms has been proved to promote the electro-catalytic oxidation 

of small organic molecules 
91, 106

. In Fig 6-4b it is evident that amongst all the investigated 

samples the 120 min shows the largest EASA normalized current density under 1.0 V. 

Notably this is also the sample showing the largest ethanol oxidation activity which will be 

shown later. According to this we can conclude that the sample obtained with the cycle of 120 

min is the one showing the largest density of low coordinated Pt surface atoms 
91

. For SWP 

period larger than 120 min, such a density slightly diminishes. This could be attributed to the 

way that longer time produces a thicker oxide scale whose reduction results in the formation 

of larger nanostructures. Furthermore, as observed by FESEM investigation, re-deposition of 

dissolved platinum cannot be excluded leading to a completely different mechanism which, in 

principle could favor to form more thermodynamically stable surfaces. 

Electrocatalytic activity of a series of SWP treated Pt was assessed toward ethanol 

electrooxidation in alkaline medium. It has been reported that higher ethanol and KOH 

concentration are required to get higher adsorption of ethoxy and hydroxyl yielding an 

increase in an oxidation current of EOR 
45, 47

. Hence, we chose 2 M Ethanol 2M KOH 

solution electrolyte instead of low concentration electrolyte. In addition, another reason of 

choosing this 2 M Ethanol 2M KOH electrolyte is because it has been shown to be the most 

performing electrolytes in Direct Alcohols Fuel Cells 
42, 73, 131

.  

The first voltammetric half-cycle sweeping between 0.05 and 0.70 V, are shown in Fig. 

6-6a. The positive potential limit was chosen before the onset of surface oxidation to avoid 

surface disordering due to the formation and subsequent reduction of irreversible surface 

oxides 
144

. It can be seen that the currents are monotonously increasing with increasing 

potential. Different voltammetric profiles can be found for Pt with different SWP treated 

period. The changes in the onset potential of the ethanol oxidation reaction and in the total 

current can both be found in Fig. 6-6a. All the treated Pt surfaces show lower onset potential 

of EOR. Particularly, the onset potential of Pt with treatment of 120 min shifts more than 100 

mV negatively compared to other samples. This is consistent with the CV result of Pt 

oxidation in Fig. 6-4. As we know, platinum shows lower activity than palladium for ethanol 
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electrooxidation in alkaline media 
145-146

. The current density of 3.0 mA/cm
2
, which is shown 

at 0.7 V of untreated Pt in Fig. 6-6a, is lower compared to Pd towards ethanol oxidation in 

similar electrolyte reported in 
45, 47

. However, Pt after treatment shows much higher current 

density towards ethanol oxidation compared to Pd. Especially, the current density of 9.1 

mA/cm
2
 on 0.7 V is found at the 120 min sample. 

 

Figure 6-6. Electrocatalytic performance improves as a result of the surface modifications 

induced by the treatment. First positive sweep of the CVs in 2 M Ethanol 2 M KOH 

electrolyte (a) and current density ratio between the first and the fortieth cycle at 0.50 V and 

0.60 V (b). The current is normalized by geometric area. 
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To see clearly through the CV performance of different treated samples, the current 

density at 0.50 and 0.60 V of Figure 6-6a was summarized in Table 6-2. A current density of 

6.05 mA/cm
2
 at 0.6 V was recorded for the 120 min sample while the untreated sample only 

delivered 1.75 mA/cm
2
. And not only that, this current density of 120 min sample is even 

larger than the 360 min sample (2.80 mA/cm
2
). This indicates that the peculiar structural 

modification, which can be identified by the CVs in H2SO4, plays a major role in ethanol 

oxidation catalytic activity. It can be explained that, surface defects, steps and kinks with their 

low coordination numbers (CN<8), usually exhibit very high chemical reactivity and catalytic 

activity for electro-oxidation of small organic molecules 
134

. 

Cyclic voltammetry was also used to test the stability of the series of Pt samples. A total 

of forty cycles of CVs were measured. Fig. 6-6b reports the current ratio between the first and 

the fortieth cycle at 0.5 and 0.6 V respectively. And the original data of current density at 0.50 

and 0.60 V of the positive-going scan of the 1
st
 and 40

th
 voltammetry cycles are shown in 

Table 6-2. The current of the 120 min sample drops significantly after 40 cycles. This sample 

lost more than 60% activity both at 0.50 and 0.60 V. This aspect can be related to the 

evolution of surface structure as a result of CV cycling, and can be possibly ascribed to the 

lower thermodynamic stability of open shell structures 
135

. The lowest degradation rate has 

been obtained with the 360 min sample. After 40 cycles the activity of this sample was 

reduced of 37% and 47% at 0.5 and 0.6 V respectively.  
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Table 6-2. Current density at 0.50 and 0.60 V of the positive-going scan of the 1
st
 and 40

th
 

voltammetric cycles for the electro-oxidation of 2 M Ethanol 2 M KOH electrolyte. 

Period 

(min) 

J (mA/cm
2
) at 0.50 V J (mA/cm

2
) at 0.60 V 

1
st
 cycle 40

th
 cycle 1

st
 cycle 40

th
 cycle 

0 0.76158 0.35670 1.74697 0.90146 

6 0.98782 0.46006 2.83116 0.98772 

120 2.92976 1.18278 6.05378 2.23189 

360 1.14237 0.75847 2.80075 1.54492 

 

 

To further investigate the stability of SWP treated platinum, the ethanol oxidation 

reaction was also studied over longer time-scales with chronoamperometry measurements, as 

shown in Figure 6-7. In these measurements, the potential was stepped from 0 to 0.50 V at t = 

0, after which the potential was kept constant for 1 hour. The potential of 0.50 V was chosen 

because it was well in the potential region where all surfaces show oxidation currents. In 

addition, the choosing of 0.50 V is of practical significance to portable application of direct 

ethanol fuel cells. It can be seen that the final activity trend qualitatively mirrors the trend 

found in the voltammetric measurements. All surfaces show a monotonously decaying current 

over time, with the rate of decay being the lowest for Pt 360 min and the highest for untreated 

Pt. At the end of the experiment, the current density for the 360 min sample was still 119 

µA/cm
2
 while the untreated sample couldn’t deliver any appreciable current density indicating 

the almost complete exhaustion of the electrocatalytic activity. Therefore, Pt with the longest 

treated period is the optimal surface as balancing the catalytic activity and the catalytic 

stability. 
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Figure 6-7. Enhanced electrocatalyst stability. Chronoamperometric curves recorded in 2 M 

Ethanol 2 M KOH electrolytes at 0.50 V. The current is normalized by geometric area. 

 

6.2.3 In-situ FTIR spectroscopy 

In situ Fourier Transform Infrared spectroscopy measurements were performed in order 

to shed more light on the electrochemical intermediate and product of ethanol oxidation on Pt 

surfaces. Two Pt were chosen as the working electrode, untreated Pt and SWP treated Pt with 

the 360 min cycle time. The latter one was selected as it showed the best performance in 

voltammetric measurement (combining catalytic activity and stability). Spectra have been 

recorded in an electrolyte containing 2 M KOH plus 2 M ethanol solution in the 0.1 - 1.2 V 

range. A series of typical in-situ FTIR spectra of ethanol oxidation are shown in Fig. 6-8.  

For potential up to 0.2 V, the only detected oxidation product, even if in tiny amount, 

was CO3
2-

 (1390 cm
-1

) for both the examined surfaces. Formation of acetate starts at 0.3 V. It 

is worth noticing that the symmetric stretching vibration of COO
-
 (1415 cm

-1
) cannot be 

resolved from the CO3
2-

 (1390 cm
-1

) 
48

. The integrated band intensity ratio between 1415 cm
-1

 

and 1550 cm
-1

 was shown in Table 6-3. The ratio for the treated sample is in a very steady 

state, around 0.84. Oppositely, the ratio for the untreated sample dropped from 1.104 to 0.889 
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with the potential increasing from 0.4 to 1.0 V. In particular, all the ratios of untreated sample 

are larger than treated one. This indicates that at most of the explored potential range, the 

FTIR spectra show that the formation of carbonate is negligible in the treated sample (Figure 

6-8b). This is distinct from the pristine polycrystalline platinum foil which produces 

carbonate during the whole potential window (Figure 6-8a).  

As we know, the formation of CO2/CO3
2-

 requires C-C cleavage and further CO 

formation which strongly adsorbs on the surface of platinum and occupies the activate atoms 

for ethanol adsorb and oxidation. Ultimately, this affects the stability of the device 

performance and limits technological exploitation. Two other downward bands at 1346 and 

1018 cm
-1

 are also assigned to CH3COO
-
 vibration modes. The two upward bands at 1093 and 

1050 cm
-1

 are characteristic of ethanol (C-O stretching vibration), indicating its consumption 

as a result of the electro-oxidation. It is particularly important to compare the intensity of the 

bands, especially 1550 and 1415 cm
-1

, in Figure 6-8a and Figure 6-8b. The latter one shows 

significantly more intense as compared to the former one. This is in good agreement with the 

results of chronoamperometry and CV.  
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Figure 6-8. Spectroelectrochemistry investigation. In situ FTIR spectra obtained under 

potential step polarization in 2 M Ethanol 2 M KOH solution on Pt a) before treatment; b) 

after SWP treatment with the treating cycle of 360 min. 
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Table 6-3. The integrated band intensity ratio between the symmetric stretching vibration of 

COO
-
 (1415 cm

-1
) and the asymmetric stretching vibration of COO

-
 (1550 cm

-1
) in Figure 6-8. 

Potential (V) Band intensity ratio on Pt 

before treatment 

Band intensity ratio on Pt after 

treatment with the treating cycle 

of 360 min 

0.4 1.104 0.853 

0.5 0.972 0.820 

0.6 0.969 0.845 

0.7 0.977 0.856 

0.8 0.930 0.855 

0.9 0.902 0.841 

1.0 0.889 0.827 

 

 

6.3 Conclusions 

We have successfully demonstrated that oxidation and subsequent reduction can be used for 

enhancing the electrocatalytic activity of platinum surfaces. The application of square wave 

potential with high anodic (4.55 V) and high cathodic polarization (-1.95 V) enhances the 

active surface area up to a factor of 4 as compared to pristine Pt. The frequency of the square 

wave potential treatment has major profound implications in the evolution of the Pt surface 

morphology and structure. We have found that the sample obtained with the longest treating 

period results in highest active surface area while the sample of 120 min shows the biggest 

structure evolution. 

Elctro-activity of the series of Pt surfaces was investigated for ethanol oxidation by 

voltermmetric measurements. The most active surface has been produced with a treating 
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period time of 120 min. Nevertheless, the 360 min sample has been found to be the most 

performing of stability. Structural effects may also be advocated for such an electro-catalytic 

activity enhancement. This is analogous to what has been previously shown by applying 

similar treatment on polycrystalline Pd. 

Furthermore, in-situ FTIR measurements have shown that treated Pt surface has a 

significantly lower tendency to provoke C-C cleavage as compared to pristine Pt. This is 

especially important for practical applications as without C-C cleavage no production of 

adsorbed CO occurs, avoiding CO poisoning. This may explain the high stability of the 

surface which has been shown both by cyclic voltammetry and chronoamperometry. 

This investigation is important for technological exploitation as it indicates that the 

proposed treatment allow a strategy to increase the stability of the performance of alkaline 

direct ethanol fuel cells for portable power application. 
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7. Deactivation of Palladium Electrocatalysts for Alcohols 

Oxidation in Basic Electrolytes 

7.1 Introduction 

7.1.1 Application of palladium as electrocatalysis 

Palladium nanocrystals have been actively explored in recent years due to their unique 

properties and applications related to electrocatalysis. The main two application of Pd can be 

divided into two groups: as anode electrocatalyst in alkaline direct alcohol fuel cells and as 

electrocatalyst to get hydrogen production in water electrolyzer. 

7.1.1.1 Palladium in alkaline direct alcohol fuel cells 

As a less expensive and much larger abundant material than platinum, palladium shows better 

electrocatalytic activity in alkaline especially for ethanol oxidation reaction 
145-146

. 

Nanostructured palladium has been recently employed as anode electrocatalyst in fuel cells 

fed with liquid alcohol electrolytes 
42, 93, 147-149

. Fuel cells equipped with palladium anode 

deliver power densities even exceeding 100 mW cm
-2

 from alkaline alcohols electrolyte 
42, 93, 

149
. Such power densities are sufficient to support small portable devices.  

Alkaline Direct Alcohol Fuel Cells (DEFCs) are also a completely Pt-free technology 
150

. 

This is because non-noble metals are much stable in alkaline electrolytes compared to acid. 

Therefore, non-noble metals can be employed for catalyze the oxygen reduction reaction 
68, 151

. 

This is a net advantage over concurring acidic technologies. Not only that, such non-noble 

metal electrocatalysts don’t show any open circuit potential drop from fuel crossover 
71

, 

which owe to their completely inactive property for alcohol oxidation reaction. 

7.1.1.2 Palladium in hydrogen production by electrochemical reforming 

Hydrogen, as an efficient energy carrier, can be produced by two main trends, reforming of 

organic feedstock and water electrolysis. 
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Water electrolysis has the advantage of producing extremely pure hydrogen which 

makes it have a good application prospect. Especially, water electrolysis with a polymer 

electrolyte membrane possesses certain advantages compared with the classical alkaline 

process like: increased energy efficiency and specific production capacity and a simple 

system with a solid electrolyte at a low temperature. Nevertheless, its application is still 

limited by two major obstacles: high cost of catalyst material and high cost of electrical 

energy consumption. 

One efficient strategy for reducing energy consumption of PEM electrolysis is the 

replacement of water with a soluble substrate which has a much lower oxidation potential. 

Compounds such as ammonia, methanol, ethanol, and glycerol have been investigated in 

PEM electrolysis. As the unique catalytic acivity of palladium in alkaline medium, Pd 

catalysts have been employed in the electrochemical reforming, achieving hydrogen 

productivity with energy saving higher than 50% as compared to the most advanced PEM 

electrolyzers 
152-153

. 

7.1.2 Limitation of palladium exploitation 

The main issue hampering the full exploitation of Pd as catalytic material for electrochemical 

oxidation of alcohols is the lack of stability. 

A few previous papers have speculated that degradation can be ascribed to the adsorption 

of CO which is similar with what happens in acidic environment. We believe that such CO 

adsorption is not the primary cause in alkaline medium. It is a consolidated fact that C-C 

cleavage in ethanol oxidation does not occur at pH larger than 13 on Pd catalysts 
47

. So we 

conclude that no possible pathways lead to CO adsorption occurs; or if it is so, it happens only 

in a very limited and undetectable amount.  

In previous papers we have hypothesized that Pd oxidation could be the possible reason 

45, 154
. We formulated this hypothesis from indirect evidence obtained from electrochemical 

measurements. Particularly we have noticed that the addition of tiny amount of sodium 

borohydride, a strong reducing agent, to the fuel compartment is beneficial to the DEFCs 

stability 
155

. This investigation supports the assumption of Pd oxidation as the degradation 

reason but CO poisoning as the possibility of degradation cannot be excluded. 
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7.1.3 Main work of this chapter 

With the present work we aim at identification of the Pd deactivation mechanism. A smart 

selection of the anode catalyst architecture and the operating conditions has been done to 

maximize the stability of the performance.  

On the one hand, half-cell studies, including cyclic voltammetry and chronoamperometry, 

were investigated in the electrolyte containing ethanol. On the other hand, full-cell studies 

were performed in passive direct ethanol fuel cell. In particular, both half-cell and full-cell 

tests were fixed in alkaline medium because it is well known ethanol can be selectively 

oxidized to acetate without C-C cleavage which lead to the formation of CO poisoning 

adsorbents at pH above 13 
47

. Oppositely, C-C cleavage may occur on heavier alcohols, such 

as ethylene glycol, even at pH larger than 13 
99

. 

Furthermore, we have focused on the effect of a concentration of the electrolyte and the 

effect of the anode potential for the performance degradation. 

Moreover we have investigated the palladium oxidation state in the anode catalyst by 

Fixed Energy X-Ray Absorption Voltammetry (FEXRAV) which keeps the detected energy 

constant while observing the variation of the X-ray mass absorption coefficient as a function 

of the applied electrode potential 
62

. Here we applied FEXRAV to investigate the evolution of 

the palladium chemical evolution during cyclic voltammetry both in alkaline electrolytes with 

and without ethanol. 

7.2 Results and discussion 

7.2.1 Electrocatalyst characterization 

The crystal structure of the resulting Pd/C electro-catalyst was investigated by XRD technique. 

The Pd nanoparticles supported on carbon black exhibits an XRD pattern of a typical face-

centered-cubic (fcc) lattice structure as shown in Fig. 7-1. The strong diffraction peaks at the 

Bragg angles of 40.16°, 46.54°, 68.31°, 82.05° and 86.83° correspond to the (1 1 1), (2 0 0), 

(2 2 0), (311) and (222) facets of Pd crystal. The Pd (1 1 1) peak was used to calculate the 

particle size of Pd according to the Scherrer Equation. The average Pd nanoparticle size of 

Pd/C is 8.4 nm. The result indicates that palladium particles are well dispersed on carbon. In 

addition, no characteristic peaks of other impurities such as palladium oxide are detected. 
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Figure 7-1. X-ray powder diffraction patterns of Pd/C. 

 

Meanwhile, the crystal structure of FePc–CoPc/C, which is used as cathode catalyst of 

passive DEFC, was also investigated by XRD (Fig. 7-2). XRD spectra show the absence of 

any crystalline phase deriving from the decomposition of the metal complexes. Only the 

typical pattern of the carbon with two very broad diffraction peaks centered at ca. 25 and 43◦ 

can be observed. 

 

Figure 7-2. X-ray powder diffraction patterns of FePc-CoPc/C. 
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The morphology and structure of Pd/C has been demonstrated by TEM investigation, as 

shown in Fig. 7-3. Palladium particles are immobilized in a well-dispersed way on the outer 

surface of carbon. It can be observed that the diameter of palladium particles is about 5–

10 nm, which is in accordance with the XRD result. 

 

 

Figure 7-3. Low and high magnification TEM micrographs of  Pd/C. 

 

 

Figure 7-4. Low and high magnification TEM micrographs of FePc-CoPc/C. 

 



 

114 

 

In addition, the morphology of FePc-CoPc/C has also been demonstrated by TEM 

investigation, as shown in Fig. 7-4. The material is dispersed uniformly at the whole detective 

range. No obvious particle belongs to any metal or alloy can be found. 

7.2.2 Half-cell investigation 

The activity and degradation of Pd/C was assessed by cyclic voltammetry (Fig. 7-5). The CVs 

of the Pd/C in 2 M KOH are shown in Fig. 7-5a. 0 - 0.40 V is the area of adsorption and 

desorption of hydrogen. A shoulder on the positive sweep around 0.60 V is attributable to pre-

monolayer hydrous oxide formation 
156

. Firstly Pd reacts with adsorbed OH
-
 to form Pd-OHads, 

and then Pd-OHads is further oxidized to Pd oxide 
74

, which can be expressed as Eq. 7-1,2. 

                                                                                                              (7-1) 

                                                                                               (7-2) 

Pd-OHads is a reactive specie and its formation is highly reversible 
156

. For this reason it 

cannot be advocated as a possible reason of performance degradation.  The onset potential of 

Pd electro-oxidation is shown at about 0.70 V, which agrees well with the former reports 
157-

158
. Its reduction, observed in the reverse scan, usually occurs in the potential range of 0.45-

0.90 V as clearly seen in Fig. 7-5a. 

 

 

Figure 7-5. Cyclic voltammograms of Pd/C in (a) 2 M KOH and (b,c) 2 M Ethanol + 2 M 

KOH. Scan rate: 50 mV/s. 
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If the CV range is extended to 1.45 V, the reduction peak can be used for quantifying the 

real surface area of the catalyst (Fig. 7-6). It is recognized that the formation of the first 

monolayer of palladium oxide is achieved at 1.45 V 
74

. The real surface area of the Pd/C 

catalyst calculated by this way is 81.8 m
2
/g. 

 

 

Figure 7-6. Cyclic voltammograms of Pd/C in 2 M KOH electrolyte. Scan rate: 50 mV/s. 
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159
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catalyst degradation from the last two hypotheses and the question cannot be resolved only 

with cyclic voltammetry.  

The growth of oxides on Pd is complex and proceeding with the formation of a few 

layers of conformal oxide over the Pd surface (alpha oxide) then producing roughening (beta 

oxides) 
74

. The oxide classification is based on their morphology rather than on their chemical 

state. It is known that the beta form is far less reversible than the alpha form. Furthermore, 

Pd(II) ions are formed by chemical dissolution of the oxides and during their electrochemical 

reduction 
159

. Such transformation signifies the deactivation of active sites for electro-

oxidation reaction of ethanol. This phenomenon can be confirmed by Figure 7-5b, c. 

We have evaluated the catalytic activity of Pd/C by CVs in 2M KOH plus 2M ethanol 

electrolyte cycling for 200 times at 50 mV s
-1

. We chose this composition because it shows 

good performance in alkaline direct ethanol fuel cells 
42, 82

. Figure 7-5b and 7-5c report the 

CVs obtained with two different upper potential limits, 0.7 and 1.2 V (only forward scans 

reported). These data clearly show that larger potential limit implies a faster degradation rate.  

In fact, curves appear significantly more depressed after cycling in Fig. 7-5c (0 - 1.2 V) 

as compared to Fig. 7-5b (0 - 0.7 V) in agreement with the electrochemical active surface area 

evolution as determined in bare KOH (Fig. 7-5a). We conclude that the anodic stress of the 

catalyst is a significant parameter in determining the evolution of the performance. More 

importantly it has been reported that CO adsorption does not occur on Pd at potentials larger 

than 0.75 V RHE in alkaline environment 
160

. According to this reason, if CO was the 

problem we should be expected to observe greater degradation in the cyclic voltammetry with 

the limit potential of 0.70 V as compared to the CVs with upper potential at 1.20 V. 
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Table 7-1. Electrochemical active surface area of Pd/C at different voltammetric cycles in 2 

M KOH. 

Voltammetric Cycle Number Electrochemical Active Surface Area (cm
2
) 

1 1.451 

10 1.405 

20 1.321 

50 1.161 

100 1.042 

200 0.939 

 

 

The electrochemical stability of Pd/C for ethanol electro-oxidation was investigated by 

chronoamperometric measurement at 0.7 V in different electrolytes (Figure 7-7a). The 

polarization current for the ethanol electro-oxidation reaction shows a rapid decay from 35 to 

15 mA/cm
2
 within 1 h in the first place. This may indicate a similar poisoning mechanism of 

the intermediate species during the ethanol electro-oxidation reaction on Pd/C. At the 

following 9 h test, the oxidation current on Pd/C is considerably stable with falling slowly. In 

addition, the chronoamperograms show that a decrease in ethanol concentration is 

accompanied by a decrease in currents obtained. 

Figure 7-7b-d show the comparison of CVs, which recorded before and after 

chronoamperometry at 0.7 V for 10 h respectively. The current loss after constant voltage test 

is only 8.8% from 179.2 to 163.5 mA/cm
2
 in 2 M Ethanol and 2 M KOH electrolyte (Fig. 7-

7b). Nonetheless, the current loss was intensified with decreasing the concentration of ethanol. 

The current loss ratio are 14.7% and 23.9% in 1 M Ethanol + 1 M KOH and 0.5 M Ethanol + 

0.5 M KOH separately (Fig. 7-7c,d). The phenomenon, current loss ratio decease with 

increasing ethanol concentration, can be attributed to the reducibility of ethanol. Ethanol as an 
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additive can reduce palladium oxide to palladium has been testified by Time resolved X-ray 

absorption spectra around the Pd K-edge by J. Grunwaldt 
161

. 

During ethanol electro-oxidation, ethanol also plays another role of reducing the inert 

palladium oxide back to active palladium. Furthermore, higher ethanol concentration has an 

even stronger effect of activating the Pd (II) back to Pd (0). 

 

Figure 7-7. (a) Chronoamperometric curves for ethanol electrooxidation at 0.7 V on Pd/C in 

different electrolyte; (b) Cyclic voltammograms of Pd/C in 2 M Ethanol + 2 M KOH; (c) 

Cyclic voltammograms of Pd/C in 1 M Ethanol + 1 M KOH; (d) Cyclic voltammograms of 

Pd/C in 0.5 M Ethanol + 0.5 M KOH. 
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Table 7-2. Current ratio between after and before chronoamperometry at 0.60 V of the 

positive-going scan of voltammetry for the electro-oxidation of ethanol in different electrolyte. 

Fuel Composition Current Ratio of after and 

before chronoamperometry 

2 M Ethanol 2 M KOH 94.60% 

1 M Ethanol 1 M KOH 91.01% 

0.5 M Ethanol 0.5 M KOH 81.05% 

 

 

Chronopotentiometry, as well as other electrochemical methods, was employed for the 

investigation of electrode processes at Pd/C surfaces. Fig. 7-8a shows chronopotentiometric 

measurement of ethanol electro-oxidation at the Pd/C electrode. The figure represents the 

potential-time profiles obtained by setting the working electrode current at 10 mA/cm
2
 in 2 M 

Ethanol + 2 M KOH electrolyte. The potential increased slowly and arrived at 0.70 V after 3 h 

resulted in the formation of Pd oxide. The Pd/C electro-catalyst became inactivate totally after 

10 h. The comparison of CVs recorded before and after chronopotentiometry at 10 mA/cm
2
 

for 10 h was shown in Fig. 7-8b. The current density descends markedly. The peak current 

density dropped from 179.2 to 121.0 mA/cm
2
 after chronopotentiometry test which again 

confirming the role of the anodic stress in the catalyst deactivation. 
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Figure 7-8. (a) Chronopotentiometric curve for ethanol electrooxidation at 10 mA/cm
2
 on 

Pd/C in 2 M Ethanol + 2 M KOH electrolyte; (b) Cyclic voltammograms of Pd/C in 2 M 

Ethanol + 2 M KOH before and after the chronopotentiometry. 

 

7.2.3 Passive Direct Ethanol Fuel Cell investigation 

The role of palladium oxidation was also investigated in passive fuel cell. The recirculation of 

passive DEFCs was used by replacement of exhausted cells with fresh fuel on the same MEA. 

The first, second and third polarization curves were just recorded before the first, second and 

third galvanostatic test separately. Figure 7-9a shows the polarization curves of the passive 

DEFC containing Pd/C as anode and FePc-CoPc/C as cathode. Power density dramatically 

decreased for the second and third cycle. The maximum power density is 38.3, 14.9 and 9.9 

mW/cm
2
 separately for the three cycles. Figure 7-9b shows the galvanostatic curves of the 

passive DEFC. The anode potential increased with time results in the oxidation of palladium 

as we can know from Pd/C cyclic voltammetry in KOH electrolyte. At the same time, the 

arising of anode potential with time is in accordance with the half-cell result shown in Figure 

7-8b. The final anode potential is about 0.8 V, which is higher than the onset potential of Pd 

oxide, at the end of galvanostatic. The lose efficacy of fuel cell by reutilization of the same 

MEA primarily caused by the oxidation of palladium. As shown in Figure 7-9b, the second 

and third cycle of constant current curves clearly exhibit a considerably lower cell voltage and 

higher anode potential compared to the first cycle. The energy density released during the 

galvanostatic experiments is 82.4, 60.6, 41.4 J/cm
3
 separately.  
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Figure 7-9. (a) The comparison on the performance of three cycles of the passive DEFC 

containing the Pd/C anode catalyst and fueled with 2 M Ethanol + 2 M KOH. a) Polarization 

and power density curves and (b) galvanostatic curves with the constant current density of 20 

mA/cm
2
. 

 

Table 7-3. The performance of the three cycles of passive DEFCs. 

Cycle  Open Circuit 

Voltage (V) 

Current Density at 

0.4 V (mA/cm
2
) 

Maximum Power 

Density (mW/cm
2
) 

Delivered Energy 

(J) 

1 0.860 53.186 38.306 989.333 

2 0.793 9.140 14.912 727.560 

3 0.763 4.605 9.858 497.110 
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7.2.4 X-ray absorption spectroscopy 

From the above, we know that Pd oxidation plays a major role in Pd degradation. One of the 

key points in understanding the phenomena occurring under ongoing chemical reactions is the 

evaluation of the oxidation state of palladium depending on its physicochemical conditions. 

As we know, XAS is sensitive to valence and local structures of investigated elements 
162-163

. 

Furthermore, the fixed energy X-ray absorption voltammetry is a novel rapid XAS technique 

applied to electrochemical systems for the in situ XAS study of electrode materials 
62, 164

. The 

fixed energy should be chosen on the absorption edge in order to give the maximum contrast 

between different oxidation states. It is known that K-edge XANES could be affected by the 

local structure as well as the oxidation states of the absorber. As the acquisition of K-edge 

XANES spectra of standard Pd and PdO samples 
165-167, the correct X-ray energy can be 

chosen. The Pd K-edge in Pd metal shows two peaks characteristic of transition metals. There 

is a peak valley at about 23470 eV between the two peaks. Moreover, the XANES spectra of 

PdO have the strong absorption at the Pd K-edge, because the d-p hybridization of Pd
2+

 

significantly increases the absorption cross-section, compared with that of Pd foil. Therefore, 

Pd oxide shows much higher absorption compared to Pd at fixed energy of 24370 eV. In 

addition, the different local structures for palladium and palladium oxide leads to the fact that 

a shoulder in the edge threshold (24347 eV) for Pd is not detected for palladium oxide. Based 

on the above, 24370 and 24347 eV were chosen as the fixed energy to detect the transform of 

Pd during cyclic voltammetry. Figure 7 displays the FEXRAV spectra for Pd/C recorded in 

0.1 M KOH with a scan rate of 5 mV/s. Figure 7a shows the in situ X-ray absorption intensity 

employed for energy selection at 24370 eV.  

At the potential window of -0.6 V ~ 0 V, the absorption of X-ray shows a gently 

unchanged situation, which means no obvious change of the charge state. From 0 V, the XAS 

intensity increased gradually caused by the change of charge state toward a higher value, i.e. 

Pd (II). The increasing in XAS intensity signifies the change amount of Pd (0) to Pd (II) rather 

than higher charge state value, i.e. Pd (IV). This is because Pd (IV) oxide is formed at 

potential higher than 1.5 V vs. RHE 
74

. The formation of Pd (IV) proceeds until the potential 

limit of anodic scan. In the cathodic scan, the XAS intensity decreased until -0.35 V (vs. 

Ag/AgCl) presaging the reduction of Pd (II) to Pd (0). Fig. 7-10b shows the X-ray absorption 

intensity employed for energy selection at 24347 eV. It shows completely opposite tendency 
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with Fig. 7-10a. This precisely explains the same phenomena of Pd during electrochemical 

reaction as the XAS of Pd exhibits a smaller feature at 24370 eV and stronger feature at 

24347 eV compared to PdO. At the same time, the result inosculates with the half cell and 

passive full cell experiments. And not only so, FEXRAV shows the more directly and 

intuitionistic evidence of the formation of palladium oxidation.  

 

Figure 7-10. FEXRAV spectra and CV of Pd/C recorded in 0.1 M KOH with a scan rate of 5 

mV/s employed for fixed energy at (a) 24370 eV and (b) 24347 eV. 

 

In addition to FEXRAV, XAS has also been used to test the evolution before and after 

DEFCs investigation. In Fig. 7-11, Pd K-edge XANES spectra of standard Pd foil, new Pd/C 

before DEFC test, exhausted Pd/C after DEFC test and standard PdO powders are presented. 

The Pd K-edge in Pd foil shows two peaks characteristic of transition metals at lower energy 

than 24420 eV. However, no splitting of the edge is observed. The second absorption peak is 

stronger than the first, because the absorption cross-section in the K-edge region of transition 

metals is strongly influenced by d-s,p hybridization caused by unoccupied d bands 
167

. Thus, 

in the systems where the d-s, p hybridization is strong, the p-like density of states is strongly 

enhanced and the absorption can be increased like the second absorption peak in the XANES 

spectrum of the Pd foil. The XANES spectra of PdO in the figure show the strong absorption 

at the Pd K-edge, because the d-p hybridization of Pd
2+

 significantly increases the absorption 

cross-section, compared with that of Pd foil. Figure 7-11 shows that the XANES spectra of 

exhausted Pd/C after DEFC test are distinctly different from new Pd/C before DEFC test. 

With some subtle differences, exhausted Pd/C after DEFC test is similar to that of PdO. 
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Meanwhile, new Pd/C before DEFC test is similar to standard Pd foil. This phenomenon 

strongly proves our hypothesis of Pd oxide formation as the main cause of Pd deactivation. 

 

 

Figure 7-11. Normalized XANES spectra of standard Pd foil, new Pd/C before DEFC test, 

exhausted Pd/C after DEFC test and standard PdO powders. 

 

7.3 Conclusions 

Pd/C has been synthesized and used to investigate the performance of palladium in alkaline 

electrolyte. Cyclic voltammetry, chronopotentiometry, passive direct ethanol fuel cell test, 

normalized X-ray absorption near edge structure, and also fixed energy X-ray absorption 

voltammetry were chosen to investigate the mechanism of palladium degradation. 

We have shown that palladium oxidation is the major causes of the deactivation of 

palladium-based electrocatalysts in alkaline electrolyte. Meanwhile, this deactivation process 

is significantly affected by the anodic stress. It has been demonstrated by the effect of the 

upper potential limit in cyclic voltammetry. Cycles with higher upper potential limit show a 

more pronounced reduction of the electrochemically active surface area as compared to 
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analogous cycles acquired with lower upper potential limit. Deactivation has been proved to 

be at least partially irreversible. 

The synthesized Pd/C has been used as anode in anion exchange membrane direct 

ethanol fuel cell. This single cell has run for three cycles with the same membrane electrode 

assemble and only replacing the electrolyte after each cycle. The power density of the third 

cycle dropped to less than 30% of the initial one. The record of the anode potential has shown 

the evidence that palladium electrocatalysts is responsible for most of the cell potential drop 

observed in the galvanostatic trials. 

X-ray absorption spectroscopy has been used to trace the direct evidence of palladium 

oxidation. On the one hand, fixed energy X-ray voltammetry shows the in-situ palladium 

oxidation and reduction during cyclic voltammetry. On the other hand, XANES before and 

after the galvanostatic cycles have shown that the exhausted catalyst is completely oxidized 

and we suggest that this is the origin of the degradation of electro-catalytic performances. 

On the basis of our results we conclude that in order to prolong the life of palladium 

electrocatalysts in alkaline environment it is necessary to limit the exposition of large anode 

to over-potentials (e.g. exceeding 0.7 V). This way limits the formation of palladium oxide 

species which cannot be recovered to fresh metallic Pd in the operating conditions commonly 

encountered in direct alcohol fuel cells and electrochemical reformers. 
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8. Direct ethanol fuel cells with promoted temperature and 

pressure 

8.1 Introduction 

Palladium based catalysts have been actively explored as the anode in alkaline direct ethanol 

fuel cells in recent years due to their unique properties and applications towards ethanol 

oxidation. Details are involved in 1.3.3. 

Meanwhile, tungsten carbide (WC) has been proposed as electrocatalyst or elctrocatalyst 

support, due to its high stability, low electrical resistivity, and strong interaction with other 

materials. More importantly, WC not only has platinum-like catalytic behavior but also shows 

good resistance to CO poisoning, these make cheaper WC a promising alternative anodic 

material for DEFCs. 

Above all, ethanol is a sustainable, carbon-neutral transportation fuel source. It is an 

ideal fuel source for direct oxidation fuel cells for portable and mobile applications because it 

offers multiple advantages over hydrogen and methanol, including higher energy density and 

ease of transportation, storage, and handling. However, the power output of the DEFCs must 

be substantially improved before widespread commercialization is possible. One of the way to 

get the improvement of the DEFCs is to go high temperature in order to increase the kinetics 

both of EOR and ORR. 

Increasing the operating temperature of DEFCs directly fed with liquid ethanol can 

effectively increase the ethanol electro-oxidation rate and decrease the over-potential. On the 

other hand, increasing operation temperature needs new solid electrolytes other than the usual 

Nafion
®
 membranes 

168
 that cannot operate at higher temperatures for a long time. Thus, in 

order to improve the performance of DEFCs based on Nafion
®
 membrane used extensively at 

present, it is of great importance to hunt for more active anode catalysts for ethanol electro-

oxidation at lower temperatures. 
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8.2 Results and discussion 

Table 8-1. The experimental conditions of temperature and pressure. 

Temperature (°C) Pressure (atm) 

20 1.0 

80 2.0 

100 2.6 

120 3.4 

150 6.0 

 

8.2.1 Pd electrochemical performance at high temperature 

Prior to the discussion of Pd electrocatalytic activity of EOR, it is important to test a CV 

profile of Pd in basic acidic or alkaline solution recorded in the potential range of 

thermodynamic stability of electrolyte (0-1.20 V). 

Figure 8-1 shows a typical CV profile for Pd (poly) electrode in aqueous H3PO4 at room 

temperature (20 °C). It reveals that the Pd electro-oxidation commences at ca. 0.90 V, while 

the oxide reduction starts at ca. 0.85 V. The CV profile also shows that the H adsorption and 

absorption commence at ca. 0.30 V. The large amount of H absorption overlaps the adsorption 

of H making difficulty to distinguish each other. It is interesting to compare the CVs of Pd in 

basic alkali and acid that we can find both the hydrogen adsorption/absorption and desorption 

are enhanced in alkali. This can’t only be attributed to the higher capacity of ionization 

capacity in 0.1 M KOH than 0.1 M H3PO4, but also to the affect by the anion and cation 
169-172

. 

It is important to notice the difference of surface oxide formation and reduction between two 

electrolytes. Especially, the corresponding current of reduction of Pd oxide at the range of 

0.60 - 0.85 V is much higher in alkali which is due to the high intensity of adsorption of 

hydroxyl on Pd in alkali proceeding with the high Pd oxide formation and reduction. 
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Figure 8-1. Cyclic voltammetry of polycrystalline Pd in 0.1 M H3PO4 and 0.1 M KOH 

separately at room temperature. Scan rate: 50 mV/s. 

 

Figure 8-2 shows the influence of temperature on the CV profile of Pd both in acid and 

alkali. As increasing the temperature, the adsorption and absorption of hydrogen occurs 

earlier and the corresponding current is larger. Increasing the temperature also results in the 

increase of the amount of the Pd oxide formation and reduction. Peculiarly, the detailed 

information of the Pd oxide reduction in Figure 8-2 has been shown in Figure 8-3. We 

observe that an extension of temperature in acid results in an increase of temperature results in: 

(a) thicker oxide films up until 100 °C and then becoming thinner (greater current density); (b) 

the displacement of Epeak towards less positive potentials. Similar moving of Epeak is found in 

alkali, but the difference is the relation between current density and temperature is almost 

linear in alkali. This phenomenon may be explained by two aspects: a) increasing the 

temperature up till 100 °C generates thicker oxide but results in dissolution of Pd when the 

temperature getting higher than 100 °C in acid. Clearly, two electrode processes occur 

concurrently, namely Pd oxidation and direct Pd dissolution in acid; but only Pd oxidation 

occurs in alkali during the whole temperature range. b) on the other hand, a change of t has 

strong impact on the reduction peak potential, Epeak, which consistently shifts towards less-
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positive values is due to the more stable formation of Pd oxide. Furthermore, the current of 

PdO reduction in alkali is higher than acid during the whole temperature range.  

 

 

Figure 8-2. Cyclic voltammetry of polycrystalline Pd in a) 0.1 M H3PO4; b) 0.1 M KOH at 

different temperatures. Scan rate: 50 mV/s. 

 

 

Figure 8-3. The relationship of the peak potential and charge density of Pd oxide reduction 

with temperature. 
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The catalytic activity of Pd for EOR has been investigated at promoted temperature in 

0.1 M Ethanol with different solutions. The different electrolytes are shown in Table 8-2. 

 

Table 8-2. Electrolyte composition. Ethanol and H3PO4/KOH concentrations. 

Ethanol H3PO4/KOH 

0.1 M 

0.01 M 

0.1 M 

1.0 M 

 

Figure 8-4 shows the CV profile of Pd in 0.1 M Ethanol + 0.1 M H3PO4. Compared to 

the electrolyte without ethanol (Fig. 8-2a), we find that the only difference is the larger 

cathodic current during under potential deposition of hydrogen area which is caused by the 

adsorption of ethanol on Pd. Decreasing and increasing H3PO4 concentration (Fig.8-4a and 

Fig. 8-4b separately) result in different sorption of hydrogen, ethanol and oxide formation and 

reduction phenomenon but without any obvious ethanol oxidation current. 

 

 

Figure 8-4. Cyclic voltammetry of polycrystalline Pd in a) 0.1 M Ethanol + 0.01 M H3PO4; b) 

0.1 M Ethanol + 0.1 M H3PO4; c) 0.1 M Ethanol + 1 M H3PO4. Scan rate: 50 mV/s. 
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Figure 8-5b shows the CV profile of Pd in 0.1 M Ethanol + 0.1 M KOH. Different from 

the phenomenon in acid (Fig. 8-4b), Pd shows distinct catalytic activity for EOR. Increasing 

the temperature results in significant improve of the ethanol oxidation current. In addition, the 

onset potential of ethanol oxidation is also clearly negative-shifted. Specially, the peak current 

density is enhanced from 0.89 to 25.76 mA/cm
2
 by increasing the temperature from 20 °C to 

150 °C the improvement of catalytic activity can be attributed to the high kinetics of Pd 

absorbing hydroxyl which can be proved by Fig. 8-2b. As we know, the ability of adsorbing 

OH
-
 is the crucial factor of Pd towards ethanol oxidation. 

Keeping the same condition except lower KOH concentration lead to different catalytic 

activity. Fig. 8-5a shows the typical character of Pd for EOR at room temperature. But it’s 

impossible to distinguish the ethanol oxidation current as overlapped by the large amount of 

Pd oxide formation current at higher t. This can be explained by the lack of OH
-
 hindering the 

further oxidation of adsorbed ethanol on Pd surface. 

On the contrary, keep the same ethanol concentration but increase the KOH 

concentration leads to the more remarkable improve of EOR (Figure 8-5c). 

 

 

Figure 8-5. Cyclic voltammetry of polycrystalline Pd in a) 0.1 M Ethanol + 0.01 M KOH; b) 

0.1 M Ethanol + 0.1 M KOH; c) 0.1 M Ethanol + 1 M KOH. Scan rate: 50 mV/s. 
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                                                                                      (8-1) 

                                                                                            (8-2) 

                                                                                                         (8-3) 

                                                                                     (8-4)    

Due to the lack of the ability of dissociation of H2O to hydron and hydroxyl as Pt (eq. 8-

3), Pd adsorbs hydroxyl directly from the alkaline electrolyte (eq. 8-5). 

                                                                                                             (8-5) 

This makes difficulty to oxidize ethanol in acid. Conversely, the EOR goes on wheels in 

alkali owe to the good ability of Pd adsorbing ions. 

In the end, we can conclude that the amount of OH
-
 in electrolyte is the decisive factor of 

ethanol oxidation of Pd. Under the ensuring of enough amount of OH
-
, increasing the 

experimental temperature can enhance the ability of catalyzing EOR dramatically.  

8.2.2 WC electrochemical performance at high temperature 

8.2.2.1 Structure characterization 

The crystal structure of the WC-Co was investigated by XRD technique as shown in Fig. 8-6. 

The strong diffraction peaks at the Bragg angles of 31.5°, 35.6°, 48.3°, 64.1°, 65.7°, 73.1°, 

75.5°, 77.1°, 84.1°, 98.7° correspond to the (001), (100), (101), (110), (002), (111), (200), 

(102), (201), (112) facets of WC. The sample also exhibits diffraction patterns of 2θ values at 

34.7°, 38.2°, 39.8°, 52.4°, 62.3° and 70.0° which can be indexed to (100), (002), (101), (102), 

(110), (103) facets of W2C. The cobalt-containing phases (Co6W6C, Co2W4C) are not present 

in the X-ray diffraction of WC-Co. A small broad peak around 43° indicates the formation of 

amorphous Co and cobalt-containing materials. 
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Figure 8-6. X-ray powder diffraction pattern of WC-Co. 

 

8.2.2.2 Electrochemical characterization 

Figure 8-7 displays CV curves for WC-Co surface exposed to 1 M H3PO4 without and with 

ethanol. The working electrode was cycled from 0 to 1.20 V and back to 0 V at a linear rate of 

50 mV/s. The CV curve of WC shows a cathodic current at potential lower than 0.10 V due to 

the hydrogen evolution reaction (HER) 
173

. Beyond 0.4 V, the onset of a significant oxidation 

current occurred and persisted to 1.20 V. This oxidation current is attributed to the irreversible 

oxidation of the WC film into WxOy species. As the potential of the WC working electrode 

was decreased, the curve retraced its path until the onset to a cathodic current at ∼0.3 V, again 

due to the onset of the HER.  In comparison, the CV curve of WC-Co in 1 M H3PO4 +1 M 

Ethanol displays much less current of HER and oxidation of WC. This means that the 

injection of ethanol suppresses the oxidation of WC. No clear ethanol oxidation can be 

observed. 
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Figure 8-7. Cyclic voltammograms of WC-Co in 1 M H3PO4 and 1 M Ethanol + 1 M H3PO4 

at 20 °C. Scan rate: 50 mV/s. 

 

Figure 8-8 shows the CV profile of WC-Co at promoted temperature. As increasing 

temperature, the onset of surface oxidation moved to negative potential (Fig. 8-8a). In the 

same time, the oxidation current is increased intensely. It is worth noting that it shows 

obvious ethanol oxidation current at 50 °C (Fig. 8-8b). The plateau at ∼0.8 V is 

corresponding to the oxidation of ethanol. Further increasing the potential results in surface 

oxidation of WC-Co. At the reverse scan, as decreasing potential to ∼0.5 V, ethanol oxidation 

starts again. Keep increasing the temperature higher than 50 °C results in the tense surface 

oxidation hindering the catalytic activity of EOR. In addition, surface oxidation has a strong 

impact on the cyclic voltammetry which lead to prevent the observation of the current of EOR. 
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Figure 8-8. Cyclic voltammograms of WC-Co in (a) 1 M H3PO4 and (b) 1 M Ethanol + 1 M 

H3PO4 at promoted temperatures. Scan rate: 50 mV/s. 

 

The electrochemical performance of WC-Co was also investigated in alkaline electrolyte. 

As shown in Fig. 8-9, the surface oxidation starts at ∼0.9 V in 0.1 M KOH which is much 

more positive-going than in 1 M H3PO4. A plateau at the potential range of 0.6 - 0.7 V may be 

relevant with the ethanol oxidation. Linearly increasing the potential results in the surface 

oxidation. In addition, the surface oxidation current is reduced intensely as comparing the 

electrolyte with and without ethanol. 

Figure 8-10 shows the CV tested at promoted temperature. Increasing the temperature 

leads to the enhanced hydrogen sorption and WC-Co oxidation.  EOR cannot be observed due 

to the large current of surface oxidation. Specially, the current of WC-Co oxidation is 

effectively suppressed by adding ethanol during the whole temperature range. 
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Figure 8-9. Cyclic voltammograms of WC-Co in 0.1 M KOH and 0.1 M Ethanol + 0.1 M 

KOH at 20 °C. Scan rate: 50 mV/s. 

 

 

Figure 8-10. Cyclic voltammograms of WC-Co in a) 0.1 M KOH and b) 0.1 M Ethanol + 0.1 

M KOH at promoted temperatures. Scan rate: 50 mV/s. 

 

8.3 Conclusions 

Both palladium and tungsten carbide have been investigated by cyclic voltammetry in acid 

and alkali at promoted temperatures. 
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The adsorption of hydroxyl is crucial to ethanol oxidation reaction on palladium. Due to 

the lack of the ability of dissociation of H2O to hydron and hydroxyl, Pd can only adsorb 

hydroxyl directly from the alkaline electrolyte. This makes Pd difficulty to oxidize ethanol in 

acid. Conversely, the EOR goes on wheels in alkali owe to the good ability of Pd adsorbing 

ions. The amount of OH
-
 in electrolyte is the decisive factor of ethanol oxidation of Pd. Under 

the ensuring of enough amount of OH
-
, increasing the experimental temperature can enhance 

the ability of catalyzing EOR dramatically. 

Tungsten carbide does show catalytic activity of ethanol oxidation reaction. However, 

this activity is really poor due to the low stability of WC. To increase the catalytic activity and 

improve the stability of WC, it can be modify by doping with other stable metals such as Pt, 

Pd. 
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9. Conclusions and Perspective 

This thesis presents the results of an extensive investigation of the electrochemical oxidation 

of small organic molecules for the application in Direct Liquid Fuel Cells. The main work has 

been focused on the development of novel platinum-free electrocatalysts and their application 

as anode materials in complete fuel cells. We have shown that a suitable tailoring of the anode 

electrocatalysts as well as an appropriate selection of the fuel composition can dramatically 

improve the performance of the system.  

Most of the work has been focused on the electro-oxidation of ethanol. Ethanol is indeed 

by far the major renewable alcohol being obtained from the fermentation of sugars as well as 

from the steam reforming of cellulose. We have shown that the energy efficiency of direct 

ethanol fuel cells can be doubled as compared to state of the art devices by the use of suitable 

nanostructured palladium catalysts. Ethanol oxidation on palladium can also be promoted by 

adding oxides (e.g. ceria) resulting in further improvement of the performance. A suitable 

choice of the fuel composition has also been shown to be crucial. We have found that the 

concentration of ethanol in the fuel strongly affects the performance and has to be carefully 

selected in dependence of the application (powering small electronic devices, automotive, etc). 

Among the other alcohols we have investigated glycerol and ethylene glycol. Glycerol is 

the major by-product of biodiesel industry and its exploitation in the concomitant production 

of energy and chemicals is an intriguing opportunity for increasing the energy efficiency and 

lowering the environmental impact of biodiesel production. We have shown that glycerol 

oxidation can also be significantly enhanced by applying appropriate catalysts. The partial 

oxidation of glycerol in alkaline DLFC has led to the concomitant production of electric 

power and tartronate, an important raw chemical for industrial applications, including 

pharmaceutics. The oxidation of ethylene glycol in DLFCs has led to the formation of 

valuable chemicals such as oxalate, an essential compound for a variety of industrial 

processes. 

We have also explored formate as a fuel in order to get high performance direct liquid 

fuel cells. Direct formate fuel cells show higher open circuit voltage (≥ 1 V) as compared to 
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fuel cells fed with alcohols. Furthermore the oxidation kinetics of formate on palladium is 

faster as compared with ethanol and methanol. For this reason we have obtained AEM-DFFCs 

with high power density (≈ 100 mW cm
-2

 @ 20 °C) and higher energy efficiency as compared 

to state-of-the-art AEM-DLFCs with alcohol containing fuels. We have also shown that fuel 

composition plays a key role in defining the devices performance and the overall energy 

efficiency. 

The fuel cells developed in this study employ palladium based anodes (for the oxidation 

of alcohols and formate) and FePc-CoPc cathodes (for the oxygen reduction reaction). This is 

a key point. Indeed the DLFCs reported in the literature rely on the use of platinum at both 

anode and cathode. This fact results in an extremely high cost that hampers the possibility of a 

full commercial exploitation. We skip using platinum thanks to the use of an anion exchange 

membrane, Tokuyama A-201, that is very conductive in alkaline media. Using FePc-CoPc has 

also implication on the energy efficiency. In fact, FePc-CoPc is inactive toward organic 

compound oxidation, resulting in negligible potential drops for fuel crossover.  

Our experiments have also shown that the performance of palladium based 

electrocatalysts in direct liquid fuel cells degrade with time. We have investigated such 

degradation to understand its primary causes. With a combined approach using 

electrochemical investigations and synchrotron light experiments (X-ray Absorption 

Spectroscopy) we have demonstrated that palladium oxide formation is the major cause. X-

Ray Absorption Near Edge Structure (XANES) spectra of the Pd Kα edge before and after 

fuel cell runs has shown that Pd is present in its metallic form in the pristine catalyst, while it 

is almost completely oxidized after work. This study has also shown that to achieve suitable 

service life in real operation, palladium has to be exposed to anode potential lower than 0.7 V 

vs. RHE. In practice this can be achieved with the electronics control of the device. 

Besides the analysis of the energy performance of complete fuel cells we have 

undertaken fundamental investigations to seek for novel strategies to improve the activity of 

the anode materials. To do so we have concentrated on electrochemical methods to alter the 

surface of metals. We have discovered that the application of a square wave potential (3 min. 

at 4.55 V RHE followed by 3 min. at -1.95 V and repeated for three cycles) to a 

polycrystalline palladium foil results in a dramatic roughening of the surface and so in an 
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increase of the catalytic activity. The catalytic activity enhancement (4 - 5.6 times) was found 

to be much larger than it would be expected just accounting for the increase of the real surface 

area (2.5 times). With tailored electrochemical investigations we have shown that the increase 

of the catalytic activity was also the result of a change in the distribution of the crystal surface 

termination. Particularly we have observed a net increase in the density of low coordination 

surface atoms (coordination number < 8). Low coordination sites are well known to be 

effective in promoting the oxidation of small organic molecules, more effective as compared 

to sites with higher coordination. We have also found that our square wave potential treatment 

affects the pathway of ethanol oxidation reaction. Indeed C-C cleavage has been achieved in a 

larger extent as compared to the untreated surface. 

We have extended the same square wave potential treatment to platinum. We have 

discovered that the square wave period is crucial for the effectiveness of the treatment on 

platinum. The most active surface for Ethanol Oxidation Reaction (EOR) has been produced 

with a square wave period of 120 min, while the maximum stability of the catalytic 

performance has been obtained with the sample produced with a period of 360 min. The 

treatment has produced roughening and a significant increase in the electrocatalytic activity as 

compared to the untreated surface, as it was observed for palladium. These findings suggest 

that square wave potential can be a general technique to enhance performance of noble metals. 

In conclusion, the thesis reports the first comprehensive investigation of the energy 

performance of anion exchange membrane direct liquid fuel cells. Our analysis has shown 

that the anode electrocatalyst is the major component that determines the direct liquid fuel 

cells behavior. We have found that the use of tailored nanostructured materials at the anode 

results in an enormous improvement in the exploitation of the energy content of the fuel. At 

present the energy efficiency of DLFCs is still not comparable to that of state-of-the-art 

hydrogen fed Polymer Electrolyte Membrane Fuel Cells (PEMFCs). With the development of 

suitable square wave treatment and the addition of promoting oxides we have indicated two 

strategies to drive the energy efficiency and power density of DLFCs toward those of the best 

performing hydrogen fuelled PEMFCs. 
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