Fuzziness in Chang's Fuzzy Topological Spaces

VALENTÍN GREGORI AND ANNA VIDAL (*)

SUMMARY. - It is known that fuzziness within the concept of openness of a fuzzy set in a Chang's fuzzy topological space (fts) is absent. In this paper we introduce a gradation of openness for the open sets of a Chang fts (X, \mathcal{T}) by means of a map $\sigma : I^X \longrightarrow I$ (I = [0, 1]), which is at the same time a fuzzy topology on X in Shostak's sense. Then, we will be able to avoid the fuzzy point concept, and to introduce an adequate theory for α -neighbourhoods and $\alpha - T_i$ separation axioms which extend the usual ones in General Topology. In particular, our α -Hausdorff fuzzy space agrees with α^* -Rodabaugh Hausdorff fuzzy space when (X, \mathcal{T}) is interpreservative or α -locally minimal.

1. Introduction

In 1968 C. Chang [1] introduced the concept of a fuzzy topology on a set X as a family $\mathcal{T} \subset I^X$, where I = [0, 1], satisfying the well-know axioms, and he referred to each member of \mathcal{T} as an open set. So, in his definition of a fuzzy topology some authors notice fuzziness in the

^(*) Authors' addresses: Valentín Gregori, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia Escola Universitària de Gandia Carretera Nazaret-Oliva S.N. 46730-Grau de Gandia, Valencia, Spain, e-mail: vgregori@mat.upv.es,avida|@mat.upv.es

Anna Vidal, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia Escola Universitària de Gandia Carretera Nazaret-Oliva S.N. 46730-Grau de Gandia, Valencia, Spain

AMS Classification: 54A40

 $[\]operatorname{Keywords}$: fuzzy topology, gradation of openness, fuzzy point.

While working on this paper the first-listed author has been partially supported by a grant from Ministerio de Educación y Ciencia DGES PB 95-0737.

concept of opennes of a fuzzy set has not been considered. Keeping this in view, A.P. Shostak [8], began the study of fuzzy structures of topological type.

The idea of this paper is to allow open sets of a Chang's fuzzy topology to be open to some degree by means of a particular Shostak's fuzzy topology (or gradation of openness [2]) on X (Proposition 3.1). This gradation of openness will enable us to introduce fuzzy topological concepts which are generalitation of the corresponding ones in General Topology and to work with points of X instead of fuzzy points (the idea of a fuzzy point and fuzzy point belonging is a rather problematic, see Gottwald [4] for a discussion). After preliminary section, in section 3 we define the concept of an α -set and study some definitions and properties relative to it. In particular we show the family of all α -neighborhoods of $x \in X$, have similar properties to the classic cases. In section 4 we define and study the families of interpreservative and α -locally minimal spaces. In section 5 we define the concept of an α -T_i space (i = 0, 1, 2) and show that the concept of an α -T₂ space coincides with the α^* -Hausdorff concept due to S.E. Rodabaugh [7] in the spaces mentioned in section 4. Our study may be thought to be just the beginning of this subjet which is far from being completed.

2. Preliminary notions

Let X be a nonempty set and I the closed unit interval. A fuzzy set of X is a map $M: X \longrightarrow I$. M(x) is interpreted as the degree of membership of a point $x \in X$ in a fuzzy set M, while an ordinary subset $A \subset X$ is identified with its characteristic function and, in consequence \emptyset and X are identified with the constant functions on X, 0 and 1 respectively. As usual in fuzzy sets, we write $A \subset$ B if $A(x) < B(x), x \in X$. We define the union, intersection and complement of fuzzy sets as follows: $\left(\bigcup_{i} A_{i}\right)(x) = \bigvee_{i} A_{i}(x), x \in X$ $\left(\bigcap_{i} A_{i}\right)(x) = \bigwedge_{i} A_{i}(x), x \in X.$

$$A^{c}(x) = 1 - A(x), \ x \in X$$

A.P. Shostak [8] defined a fuzzy topology on X as a function $\tau: I^X \longrightarrow I$ satisfying the following axioms:

- (i) $\tau(0) = \tau(1) = 1$
- (ii) $\mu, \nu \in I^X$ implies $\tau(\mu \cap \nu) \ge \tau(\mu) \land \tau(\nu)$

(iii) $\mu_i \in I^X$ for all $i \in J$ implies $\tau(\bigcup_i \mu_i) \ge \bigwedge_i \tau(\mu_i)$

K.C. Chattopadhyay et al. [2] rediscovered the Shostak's fuzzy topology concept and called gradation of openness the function τ . Also, they called gradation of closedness on X [2], a function \mathcal{F} : $I^X \longrightarrow I$ satisfying the above axioms (i)-(iii) but interchanging the intersection with the union and vice-versa. From now, a fuzzy topology in Shostak's sense will be called gradation of openness, and we define a fuzzy topological space, or fts for short, as a pair (X, \mathcal{T}) where \mathcal{T} is a fuzzy topology in Chang's sense, on X, i.e., \mathcal{T} is a collection of fuzzy sets of X, closed under arbitrary unions and finite intersections. A set is called open if it is in \mathcal{T} , and closed if its complement is in \mathcal{T} . The interior of a fuzzy set A is the largest open fuzzy set contained in A. If confusion is not possible we say X is a space instead of a fts. We will denote inf B, the infimum of a set B of real numbers.

Recall the support of a fuzzy set A is supp $A = \{x \in X : A(x) > 0\}$. We denote $x \in A$ whenever $x \in \text{supp } A$, and we say A contains the point x or that x is in A.

The next definition was given by Pu Pao-Ming et al. [6].

DEFINITION 2.1. A fuzzy point is a fuzzy set p_x which takes the value 0 for all $y \in X$ except one, that is $x \in X$. The fuzzy point p_x is said to belong to the fuzzy set A, denoted by $p_x \in A$, iff $p_x(x) \leq A(x)$.

We notice $x \in A$ if $p_x \in A$.

3. Gradation of openness

The proof of the following proposition can be seen in [5]

PROPOSITION 3.1. Let X be a nonempty set. Then the map σ : $I^X \longrightarrow I$ given by $\sigma(\mathbf{0}) = 1$ and $\sigma(A) = \inf\{A(x) : x \in supp A\}$ if $A \neq \mathbf{0}$, satisfies both the axioms of gradation of openness and the axioms of gradation of closedness. The real number $\sigma(A)$ is the degree of openness [8] of the fuzzy set A; clearly, $\sigma(A) = \alpha$ implies the degree of membership of each point in the support of A, in the fuzzy set A, is at least α . We notice $\sigma(A) = 1$ iff A is an ordinary subset of X and $\sigma(A) = 0$ iff there is a sequence $\{x_n\}$ in X such that $A(x_n) > 0$, $\forall n \in \mathbb{N}$ and $\lim_n A(x_n) = 0$. With this terminology we give the following definitions.

DEFINITIONS 3.2. The fuzzy set A of X is an α -set if $\sigma(A) \ge \alpha$; moreover, if A was open (closed) we will say A is α -open (α -closed).

Clearly, each $A \in I^X$ is a 0-set and the 1-sets are only the ordinary subsets of X.

Since σ is a gradation of openness and closedness, we have the following proposition.

PROPOSITION 3.3. The union and intersection of α -sets is an α -set.

The following example shows that if A is an α -set and $A \subset B$, then B is not an α -set necessarily.

EXAMPLE 3.4. Let X be a set with at least two points and $\alpha \in]0, 1]$. Let $\{M, N\}$ be a partition of X. We define the following fuzzy sets A and B:

 $\begin{array}{l} A(x) = \alpha \ \text{if } x \in M \ \text{and} \ A(x) = 0 \ \text{if } x \in N \\ B(x) = \alpha \ \text{if } x \in M \ \text{and} \ B(x) = \alpha/2 \ \text{if } x \in N \\ We \ have \ that \ A \ \text{is an } \alpha \text{-set and} \ A \subset B, \ but \ B \ \text{is not.} \end{array}$

Nevertheless we have the following proposition.

PROPOSITION 3.5. Let A, B be fuzzy sets. If A is an α -set, $A \subset B$ and supp $B \subset supp A$, then B is an α -set.

Proof. It is obvious.

DEFINITIONS 3.6. Let (X, \mathcal{T}) be a fts and let $\alpha \in I$. The fuzzy topology $\mathcal{T}_{\alpha} = \{A \in \mathcal{T} : \sigma(A) \geq \alpha\}$ is called the α -level of openness of the fuzzy topology \mathcal{T} .

Clearly $\{\mathcal{T}_{\alpha} : \alpha \in I\}$ is a descending family, (i.e., $\alpha > \beta$ implies $\mathcal{T}_{\alpha} \subset \mathcal{T}_{\beta}$), where $\mathcal{T}_{0} = \mathcal{T}$ and \mathcal{T}_{1} is an ordinary topology on X.

We call α -interior of the fuzzy set A, denoted $int_{\alpha}(A)$, the largest α -open contained in A, i.e.,

 $int_{\alpha}(A) = \bigcup \{ G \in \mathcal{T}_{\alpha} : G \subset A \}.$

Clearly, $int_{\alpha}(A)$ is welldefined, since $\mathbf{0} \in \mathcal{T}_{\alpha} \forall \alpha \in I$, and $int_{\alpha}(A) \subset A$ for each $A \in I^X$. Note, $int_0(A)$ is the interior of A in Chang's sense and the α -interior of a fuzzy set A is just its interior in the α -level fuzzy topology \mathcal{T}_{α} .

We say that the fuzzy set A is an α -neighborhood, or α -nbhd for short, of $p \in X$ if there exists $G \in \mathcal{T}_{\alpha}$ such that $p \in G \subset A$. Equivalently, a point in (the support of) $int_{\alpha}(A)$ will be called an α -interior point of A. The α -nbhd system of a point $p \in X$, is the family $\mathcal{N}_{\alpha}(p)$ of all α -nbhd's of the point p. Obviously, if $\alpha > \beta$ then $\mathcal{N}_{\alpha}(p) \subset \mathcal{N}_{\beta}(p)$. With this notation we have the following proposition.

PROPOSITION 3.7. Let (X, \mathcal{T}) be a fts, $A \in I^X$, $\alpha \in I$ and $p \in X$. Then,

(i) A is α -open if and only if $A = int_{\alpha}(A)$. (ii) $p \in int_{\alpha}(A)$ if and only if $A \in \mathcal{N}_{\alpha}(p)$.

Proof. It is obvious.

If A is an α -open set, then A is an α -neighbourhood of all points of its support, but the converse is not true as shows the following example.

EXAMPLE 3.8. Let (X, T) be a topological space, $\alpha \in]0, 1[$ and let $\mathcal{T} = \{\mathbf{0}, \mathbf{1}\} \cup \{\alpha \cdot U : U \in T\}$. Then any $U \in T$ is an α -neighbourhood for any point $x \in U$, i.e. for any point of its support, but obviously U fails to be α -open in (X, \mathcal{T}) .

In the next proposition we show that the family $\mathcal{N}_{\alpha}(p)$ satisfies similar properties to the corresponding ones in General Topology.

PROPOSITION 3.9. Let (X, \mathcal{T}) be a fts and let $\alpha \in I$. For each point $p \in X$ let $\mathcal{N}_{\alpha}(p)$ be the family of all α -nbhd's of p. Then

- 1. If $M \in \mathcal{N}_{\alpha}(p)$, then $p \in M$.
- 2. If $M, N \in \mathcal{N}_{\alpha}(p)$, then $M \cap N \in \mathcal{N}_{\alpha}(p)$.

- 3. If $M \in \mathcal{N}_{\alpha}(p)$ and $M \subset N$, then $N \in \mathcal{N}_{\alpha}(p)$.
- 4. If $M \in \mathcal{N}_{\alpha}(p)$, then there is $N \in \mathcal{N}_{\alpha}(p)$ such that $\sigma(N) \geq \alpha$, $N \subset M$ and $N \in \mathcal{N}_{\alpha}(q), \forall q \in N$.
- *Proof.* 1. If $M \in \mathcal{N}_{\alpha}(p)$, then there exists $G \in \mathcal{T}_{\alpha}$ such that $p \in G \subset M$, and therefore $p \in M$.
 - 2. If $M, N \in \mathcal{N}_{\alpha}(p)$, then there are two α -open fuzzy sets G_1 and G_2 such that $p \in G_1 \subset M$, $p \in G_2 \subset N$. Since $G_1 \cap G_2 \in \mathcal{T}_{\alpha}$ and $p \in G_1 \cap G_2 \subset M \cap N$, we have $M \cap N \in \mathcal{N}_{\alpha}(p)$.
 - 3. If $M \in \mathcal{N}_{\alpha}(p)$, there exists $G \in \mathcal{T}_{\alpha}$ such that $p \in G \subset M \subset N$ and therefore $N \in \mathcal{N}_{\alpha}(p)$.
 - 4. Suppose $M \in \mathcal{N}_{\alpha}(p)$. Then there exists $G \in \mathcal{T}_{\alpha}$ such that $p \in G \subset M$. Let N = G. We have $\sigma(N) \geq \alpha$ and $N \in \mathcal{N}_{\alpha}(q), \ \forall q \in N$.

PROPOSITION 3.10. Let $\alpha \in I$. If \mathcal{N}_{α} is a function which assigns to each $p \in X$ a nonempty family $\mathcal{N}_{\alpha}(p)$ of fuzzy sets satisfying properties 1, 2 and 3 of the above proposition, then the family

$$\mathcal{T}_{\alpha} = \{ M \in I^X : \, \sigma(M) \ge \alpha, M \in \mathcal{N}_{\alpha}(p), \, \forall p \in M \}$$

is a fuzzy topology on X. If property 4 of the above proposition is also satisfied, then $\mathcal{N}_{\alpha}(p)$ is precisely the α -nbhd system of p relative to the topology \mathcal{T}_{α} .

Proof. First, we will show that \mathcal{T}_{α} is a fuzzy topology on X.

Obviously $\mathbf{0} \in \mathcal{T}_{\alpha}$ and since $M \subset \mathbf{1}, \forall M \in \mathcal{N}_{\alpha}(p)$, according to property 3, $\mathbf{1} \in \mathcal{N}_{\alpha}(p), \forall p \in X$, i.e., $\mathbf{1} \in \mathcal{T}_{\alpha}$.

Let $M, N \in \mathcal{T}_{\alpha}$. If $p \in M \cap N$, clearly $p \in M$ and $p \in N$, therefore $M, N \in \mathcal{N}_{\alpha}(p)$ and according to property 2 we have $M \cap N \in \mathcal{N}_{\alpha}(p)$. Now, by Proposition 3.3, $\sigma(M \cap N) \geq \alpha$ and then $M \cap N \in \mathcal{T}_{\alpha}$.

Let $\{M_i\}_{i \in J}$ be a family of sets of \mathcal{T}_{α} and let $M = \bigcup_i M_i$. If

 $p \in M$, then we have $0 < \left(\bigcup_{i} M_{i}\right)(p)$, and therefore there exists

 $j \in J$ such that $0 < M_j(p)$, i.e., $p \in M_j$. Therefore, $M_j \in \mathcal{N}_{\alpha}(p)$ and according to property 3, $M \in \mathcal{N}_{\alpha}(p)$. Now, by Proposition 3.3, $\sigma(M) \ge \alpha$ and then $M \in \mathcal{T}_{\alpha}$.

Now, we suppose property 4 is also satisfied. We will see that the α -neighbourhood system of p, $\mathcal{V}_{\alpha}(p)$, relative to the fuzzy topology \mathcal{T}_{α} , is the family $\mathcal{N}_{\alpha}(p)$.

If $M \in \mathcal{V}_{\alpha}(p)$, then there exists an α -open, G of \mathcal{T}_{α} with $p \in G \subset M$. Therefore, $G \in \mathcal{N}_{\alpha}(p)$ and, according to property 3, we have $M \in \mathcal{N}_{\alpha}(p)$.

If $M \in \mathcal{N}_{\alpha}(p)$, according to property 4, there exists $N \in \mathcal{N}_{\alpha}(p)$, with $N \subset M$ and such that $\sigma(N) \geq \alpha$ and $N \in \mathcal{N}(q)$, $\forall q \in N$. Then we have $N \in \mathcal{T}_{\alpha}$ such that $p \in N \subset M$, i.e., $M \in \mathcal{N}_{\alpha}(p)$.

OBSERVETION 3.11: In [6], the authors defined the concept of neighborhood of a fuzzy point and they showed similar results, but in [9] Shostak remarks that there are inaccuracies in the formulation of these authors. In fact, the family constructed by the authors is a base for a fuzzy topology, but it is not a fuzzy topology.

4. Interpreservative and locally minimal fts

We begin with the following definitions.

DEFINITIONS 4.1. Let (X, \mathcal{T}) be a fts. We say X is **interpreser**vative if the intersection of each family of open sets is an open set, or equivalently, if the family of closed sets is a fuzzy topology on X. We say X is **locally minimal** if $\cap \{G \in \mathcal{T} : x \in G\}$ is open for each $x \in X$, i.e., each $x \in X$ admits a smallest nbhd. We say X is α -locally minimal, $\alpha \in]0, 1]$, if $\cap \{G \in \mathcal{T} : x \in G\}$ is α -open, for each $x \in X$.

Clearly, for $\alpha > \beta > 0$, α -locally minimal implies β -locally minimal. Also, an α -locally minimal space is locally minimal but the converse is false as shows the next example.

EXAMPLE 4.2. Let X the real interval $]1, +\infty[$ with the fuzzy topology $\mathcal{T} = \{\mathbf{0}, \mathbf{1}, G\}$ where $G(x) = 1/x, x \in X$. Obviously G is the smallest nbhd of each point of X and so, X is locally minimal but $\sigma(G) = 0$ and then X is not α -locally minimal for any $\alpha \in]0, 1]$.

In the following proposition we study the relationship between interpreservative and locally minimal spaces.

PROPOSITION 4.3. Let $\alpha \in [0,1]$ and let (X, \mathcal{T}) be an interpreservative fts where $\sigma(G) \geq \alpha$, for each $G \in \mathcal{T}$. Then \mathcal{T} is α - locally minimal (therefore locally minimal).

Proof. Let $x \in X$ and $\mathcal{A}_x = \{G \in \mathcal{T} : x \in G\}$. We consider $G_x = \bigcap_{G \in \mathcal{A}_x} G$. Since \mathcal{T} is interpreservative we have $G_x \in \mathcal{T}$. It is sufficient to prove $G_x \neq \mathbf{0}$. Now, for each $G \in \mathcal{A}_x$ we have $G(x) \geq \alpha > 0$. Therefore $G_x(x) = \bigwedge_{G \in \mathcal{A}_x} G(x) \geq \alpha > 0$ and $x \in G_x$, i.e., $G_x \neq \mathbf{0}$. Then the α -open G_x is the smallest nbhd of x. In the following example we will see that we cannot remove the condition $\sigma(G) \geq \alpha > 0$, for each $G \in \mathcal{T}$, in the above proposition.

EXAMPLE 4.4. Let X be the unit interval [0,1]. For each $h \in]0,1]$, we consider the following functions

$$f_h(x) = \begin{cases} 2hx, & x \in [0, 1/2] \\ 2h(1-x), & x \in [1/2, 1] \end{cases}$$

The family $\mathcal{A} = \{f_h : 0 < h \leq 1\} \cup \{\mathbf{0}\} \cup \{\mathbf{1}\}$ is an interpreservative fuzzy topology, however there does not exist the smallest nbhd for any $x \in X$.

Also, we can find a locally minimal space that is not an interpreservative space.

EXAMPLE 4.5. Consider in the real line \mathbb{R} the laminated indiscrete fuzzy topology \mathcal{L} , i.e., \mathcal{L} is constituted by the constant functions from \mathbb{R} to the unit interval I. We denote $f_c : \mathbb{R} \longrightarrow I$ the constant function $f_c(x) = c$ for each $x \in \mathbb{R}$. Take $\alpha \in]0, 1]$ and consider the fuzzy topology $\mathcal{T} = C_\alpha \cup \{f_{\alpha/2}\}$ with $C_\alpha = \{f_c \in \mathcal{L} : c > \alpha\} \cup \{\mathbf{0}\}$. Then, $f_{\alpha/2}$ is the smallest nbhd of x, for all $x \in \mathbb{R}$ and therefore $(\mathbb{R}, \mathcal{T})$ is locally minimal. However

$$\bigcap_{c>\alpha} f_c = f_\alpha \notin \mathcal{T}.$$

We have seen that in general the two concepts interpreservative and locally minimal are not equivalent, but they are for ordinary topologies.

PROPOSITION 4.6. Let (X, \mathcal{T}) be a topological space. Then X is interpreservative if and only if it is locally minimal.

Proof. It is obvious.

PROPOSITION 4.7. Let (X, \mathcal{T}) be a locally minimal fts. Then each nonempty intersection of open sets contains a nonempty open set.

Proof. Let $G = \bigcap_{i \in J} G_i$ with $G_i \in \mathcal{T}$, $\forall i \in J$. If $G \neq \mathbf{0}$, then there exists $x \in G$ and therefore $x \in G_i$, $\forall i \in J$. For this $x \in X$ let G_x be the smallest nbhd of x. We have $G_x \subset G_i$, $\forall i \in J$ and therefore $G_x \subset \bigcap_{i \in J} G_i$. G_x is the required open set. \Box

5. Separation axioms in fts

We will define new separation axioms for fts.

DEFINITION 5.1. Let $\alpha \in I$. We say the fts (X, \mathcal{T}) is α -Hausdorff, or α - \mathbf{T}_2 , if for all points of space $x, y \in X$ with $x \neq y$, there are $G, H \in \mathcal{T}_{\alpha}$ such that $x \in G$, $y \in H$ and $G \cap H = \mathbf{0}$. α - \mathbf{T}_1 if for all $x, y \in X$ with $x \neq y$ there are $G, H \in \mathcal{T}_{\alpha}$ such that $x \in G$, $y \in H, x \notin$ supp H and $y \notin$ supp G. α - \mathbf{T}_0 if for all $x, y \in X$ with $x \neq y$ there is $G \in \mathcal{T}_{\alpha}$ such that $x \in G$, and $y \notin$ supp G.

Clearly, the following implications are satisfied.

$$\alpha$$
-T₂ $\longrightarrow \alpha$ -T₁ $\longrightarrow \alpha$ -T₀

Also, for $\beta > \alpha$ we have β -T_i $\rightarrow \alpha$ -T_i, for i = 0, 1, 2. The following definition is due to S.E. Rodabaugh [7].

DEFINITION 5.2. A fts (X, \mathcal{T}) is α^* -Hausdorff if for all $x, y \in X$ with $x \neq y$, there are $G, H \in \mathcal{T}$ such that $G(x) \geq \alpha$, $H(y) \geq \alpha$ and $G \cap H = \mathbf{0}$. Clearly an α -Hausdorff space is α^* -Hausdorff.

We will see in the next two propositions that the α -Hausdorff and α^* -Hausdorff concepts agree in interpreservative and α -locally minimal spaces.

PROPOSITION 5.3. Let (X, \mathcal{T}) be an interpreservative fts and let $\alpha \in [0, 1]$. Then (X, \mathcal{T}) is α -Hausdorff if and only if it is α^* -Hausdorff.

Proof. We only see the converse. Assume that (X, \mathcal{T}) is interpreservative and α^* -Hausdorff and let $x, z \in X$, $x \neq z$. Further, let the open fuzzy sets $U_x = \wedge \{U : U \in \mathcal{T}, U(x) \geq \alpha\}$, $V_z = \wedge \{V : V \in \mathcal{T}, V(z) \geq \alpha\}$. Then, obviously, $U_x \wedge V_z = \mathbf{0}$ and $\sigma(U_x) \geq \alpha$, $\sigma(V_z) \geq \alpha$ (notice that supp $U_x = \{x\}$ and supp $V_z = \{z\}$, since X is α^* -Hausdorff) and hence X is α -Hausdorff. \Box

PROPOSITION 5.4. Let $\alpha \in [0, 1]$ and let (X, \mathcal{T}) be an α -locally minimal space. Then (X, \mathcal{T}) is α -Hausdorff if and only if it is α^* -Hausdorff.

Proof. We only see the converse.

Suppose X is α^* -Hausdorff. For each $a \in X$ we denote G_a the smallest nbhd of a, which is α -open by the hypothesis. Now consider $U_a = \wedge \{U : U \in \mathcal{T}, U(a) \geq \alpha\}$. We have $G_a \subset U_a$, and therefore supp $G_a = \{a\}$, since X is α^* -Hausdorff. Finally, let $x, z \in X$ with $x \neq z$. Then, $G_x \cap G_z = \mathbf{0}$ and thus (X, \mathcal{T}) is α -Hausdorff. \Box

There are some definitions of Hausdorfness depending on fuzzy points. One of these was given by D. Adnajevic.

DEFINITION 5.5. The fts (X,\mathcal{T}) is Hausdorff (denoted Adn-H₂, here) if for all fuzzy points $p_x, q_y \in I^X$ with $x \neq y$, there are $G, H \in \mathcal{T}$, such that $p_x \in G$, $q_y \in H$ and $G \cap H = \mathbf{0}$.

OBSERVETION 5.6: In [3] there is the following diagram which relates various fuzzy Hausdorff conditions:

 $\operatorname{Adn}_2 \iff \operatorname{GSW-H} \Longrightarrow \operatorname{SLS-H} \iff \operatorname{LP-FT}_2 \Longrightarrow \alpha^*-\operatorname{Hausdorff}$

Clearly a fts X is 1^* -Hausdorff if and only if it is Adn-H₂. Now, as a consequence of Propositions 5.3 and 5.4 we can complete and particularize the above diagram. In fact, the conditions Adn-H₂, GSW-H, SLS-H, LP-FT2, 1*-Hausdorff and 1-Hausdorff are equivalent for interpreservative fts, 1-locally minimal fts or locally minimal (ordinary) topological space.

Acknowledgement The authors are grateful to the referee for his valuable suggestions.

References

- C.L. CHANG, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] K.C. CHATTOPADHYAY, R.N. HAZRA, AND S.K. SAMANTA, Gradation of openness: fuzzy topology, Fuzzy sets and Systems 49 (1992), 237-242.
- [3] D.R. CUTLER AND I.L. REILLY, A comparison of some Hausdorff notions in fuzzy topological spaces, Computers Math. Applic. 19 (1990), no. 11, 97–104.
- [4] S. GOTTWALD, Fuzzy points and local properties of fuzzy topological spaces, Fuzzy Sets and Systems 5 (1981), 199-201.
- [5] V. GREGORI AND A. VIDAL, Gradations of openness and Chang's fuzzy topologies, to appear.
- [6] PU PAO-MING AND LIU YING-MING, Fuzzy topology. I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980), 571-599.
- [7] S.E. RODABAUGH, The Hausdorff separation axiom for fuzzy topological spaces, Topology and its Applications 11 (1980), 319–334.
- [8] A.P. SHOSTAK, On a fuzzy topological structure, Rend. Circ. Mat. Palermo Ser II (1985), no. 11, 89–103.
- [9] A.P. SHOSTAK, Two decades of fuzzy topology: basic ideas, notions, and results, Uspeki Mat. Nau. 44 (1989), no. 6, 99–147.

Received October 24, 1997.