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ABSTRACT 

 
Computational materials science based on multiscale approach is very promising in the 

domain of nanoscience. It gives the modeler a route from the atomistic description of the 

system to a trust-worthy estimate of the properties of a material, obtained from the 

underlying molecules in a quantifiable manner. 

In this thesis we discuss general guidelines for its implementation in the field of 

nanomaterials and propose an alternative pathway to link effectively atomistic to 

mesoscopic scale and this, in turn, to the macroscopic scale. As proofs of concept for the 

reliability of the proposed approach, we consider several systems of industrial interest, 

ranging from polymeric nanocomposite materials, to epoxy resins, block copolymers, and 

gels for biomedical applications.  

In this context, we ascertain that multiscale molecular modelling can play a crucial role in 

the design of new materials whose properties are influenced by the structure at nanoscale. 

The results suggest that the combination of simulations at multiple scales can unleash the 

power of modeling and yield important insights. 

 

Le tecniche computazionali fondate su un approccio multiscala costituiscono uno 

strumento molto promettente nel campo della nanoscienza e dei nanomateriali. Esse 

forniscono al modellatore un percorso quantitativo che parte dalla descrizione atomistica 

fino alle proprietà finali del materiale. 

In questo lavoro di tesi sono discusse le linee guida per l’implementazione della 

modellistica multiscala nel settore dei nanomateriali ed è proposta una strategia alternativa 

alle soluzioni attualmente esistenti per collegare la scala atomistica alla mesoscala e, 

successivamente, la mesoscala alla scala macroscopica. Per dimostrare la validità del metodo 

proposto, sono stati presi in esame differenti sistemi di interesse industriale, i quali 

comprendono materiali nanocompositi polimerici, resine epossidiche, copolimeri a blocchi, e 

gel per applicazioni biomediche. 

In questo contesto, si è evidenziato come la modellistica multiscala possa svolgere un 

ruolo cruciale nella progettazione di nuovi materiali le cui proprietà sono influenzate dalla 

struttura a scala nanometrica. I risultati suggeriscono che la combinazione di simulazioni su 

scale multiple amplifica sinergicamente la potenza della modellazione e può fornire 

importanti intuizioni. 
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Chapter 1 

Introduction 

In this Chapter we illustrate the motivation and relevance of the present research 

together with a brief summary of all systems investigated. 

1.1 Motivation and relevance 

Nanoscience and nanomaterials have been identified worldwide as the key to disclose a 

new generation of devices with revolutionary properties and functionalities. Considerable 

experimental and theoretical work has been performed in these fields so far. The increased 

interest is indicated by the growing number of individuals and groups active in these 

disciplines and the rising funding on nanotechnology related to R&D. The real burst in the 

commercialization of nanomaterials has occurred over the last 10 years, and trends indicate 

that the nanomaterials market will continue to grow significantly in the future. 

 The recognized priorities in nanotechnology by the scientific and industrial community 

are the following: a) synthesis and assembly, b) characterization tools, c) manufacturing and 

processing, and d) modeling and simulation. 

Nanomaterials are challenging since they involve components at characteristic scales that 

are not common and thus conventional theories may fail. Understanding the behavior of 

materials at this scale is important both from the point of view of basic science and future 

applications.  

In order to develop new materials and compositions with designed novel properties, it is 

essential that these properties be predicted before preparation, processing, and 

experimental characterization. Despite the tremendous advance made in the modeling of 

structural, thermal, mechanical and transport properties of materials at macroscopic level, 

there remains enormous uncertainty about how to predict many critical properties related 

to performance. 

In recent years, the advent of ever more powerful, massively parallel computers, coupled 

with advances in the theoretical framework that describes materials, has enabled the 

development of new concepts and algorithms for the computational modeling of materials. 

As the field of computational materials science develops and matures, the conscience that 
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modeling efforts should be an integral part of interdisciplinary materials research and must 

include experimental validation progressively develops in both scientific and industrial 

community. 

The ultimate, common aim is to develop models for nanomaterials processing and the 

ability to predict bulk properties of systems that contain nanomaterials. A challenge is to 

bridge models along different length and time scales in order to be able to pass from atoms 

to self-assembly and finally to realistic devices. In this multiscale modeling approach, the 

goal is to predict the performance and behavior of complex materials across all relevant 

length and time scales, starting from fundamental physical principles and experimental data. 

The primary problem is that properties depend on the atomic level interactions and 

chemistry at the level of nanometers and picoseconds. The material designer needs answer 

from macroscopic modeling (finite element paradigm) of components having scales of 

centimetres and milliseconds or larger. To dramatically advance the ability to design useful 

high performance materials, it is essential that we insert the chemistry into the mesoscopic 

and macroscopic modeling. 

The molecular dynamics level allows one to predict the structures and the properties for 

system ~105 times larger than quantum mechanics, permitting direct simulations for 

properties of many interesting systems. This leads to relevant and useful results in material 

design; however, many critical problems in material design require time and length scales 

too large for practical molecular dynamics. Consequently, it is essential to develop methods 

treating the mesoscale in between atomic length and time scales of molecular dynamics and 

the macroscopic length and time scales of continuum analysis. This linking through the 

mesoscale in which we can describe microstructure is probably the most challenging step 

toward the developing reliable first principles methods for practical material’s design 

applications. 

Only by establishing this connection from microscale to macroscale it is possible to built 

first principles methods for describing properties of new materials and composite and to 

play a direct role in material innovation and design. 

To accomplish these challenging goals, we proposed here new strategies for a multiscale 

modeling approach of several systems of industrial interest. Our aim is to stress the 

possibilities that multiscale modeling offers in the understanding and controlling the 

nanomaterials properties and tailoring them for specific applications. 

1.2 Overview 

Materials modelling tools have become increasingly integrated in the R&D. The unique 

insights available through simulation of materials at a range of scales, from the quantum and 

molecular, via the mesoscale to the finite element level, can provide discontinuous scientific 

advances. These tools are well validated and produce reliable, quantitative information. A 

key demand of academic and industrial research is that these tools become ever more 

integrated: integrated at each length and time scale with experimental methods and 

knowledge as well as integrated across the spectrum of scales in order to capture the 

multiscale nature of organisation in many materials (see Figure 1.1). 

This thesis will address our efforts in this direction. The principal focus will be on the 

derivation of accurate input parameters for mesoscale simulation, and the subsequent use 

of finite element modeling to provide quantitative information regarding the properties of 

the simulated mesoscale morphologies. 
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Figure 1.1. Pictorial scheme of the integrated process of developing and applying theoretical models 
and validation of experimental data. 

 

 

In mesoscale modeling the familiar atomistic description of the molecules is coarse-

grained, leading to beads of fluid (representing the collective degrees of freedom of many 

atoms). These beads interact through pair-potentials which crucially if meaningful data are 

to be obtained capture the underlying interactions of the constituent atoms. The use of 

atomistic modeling to derive such parameters will be discussed. The primary output of 

mesoscale modeling is phase morphologies with sizes up to the micron level. These 

morphologies are of interest, but little prediction of the material properties is available with 

the mesoscale tools. Finite element modeling can be used to predict physical and mechanical 

properties of arbitrary structures.  

The systems analyzed belong to different fields, ranging from polymeric nanocomposite 

materials, to epoxy resins, block copolymers, and gels for biomedical applications, in order 

to demonstrate the broad applicability of the proposed methodology: 

• In Chapter 3 we focused on water-based montmorillonite/poly(ethylene oxide) 

layered silicate nanocomposites; these materials are widely used in electronic 

applications, super capacitor, batteries, fuel cell applications. A multiscale 

procedure has been developed to calculate macroscopic properties of such 

materials, depending on concentration of silicate and quality of its dispersion and 

starting from molecular information of the material. According to the conceived 

computational recipe, no experimental data are required as input at any scale 

level. In addition, we analyzed the molecular interactions between the 

components of the system and assessed the impact of those on the final 

properties of the material, providing a tool for a better evaluation and a priori 

selection of each component. 

• In Chapter 4 (poly(styrene)-poly(vinyl pyridine)) block copolymers filled with gold 

nanoparticles were explored. The morphology of the copolymer, when loaded 

with particles functionalized with one or both polymeric building blocks in 

different percentages, was predicted. In particular, the effect of concentration, 

degree and type of covering of the nanoparticle surface on the morphology of the 

final composite was assessed, highlighting the thermodynamic parameters that 

can be used to control the dispersion of the metal in the polymeric matrix. These 

materials find application in nanostructured solar cells, storage media, catalysts, 

sensors, just to name a few. 

• In Chapter 5 a fully multiscale protocol for hybrid O/I materials based on cross-

linked epoxy resin and zinc sulphide nanoparticles has been developed. A code 
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for the simulation of the crosslinked matrix was first developed; then, atomistic 

simulation of the composite has provided the necessary information to the 

mesoscale prediction of the morphology of the material and the dispersion of the 

metal varying the nanoparticle concentration. Finally, the mechanical properties 

of bulk material have been predicted via finite element calculation. Automotive, 

opto-electronic devices, displays, general and public lighting are the privileged 

applications for these hybrid systems. 

• In Chapter 6 a systematic investigation of the main structural and physical factors 

influencing the ultimate morphology and properties of the poly (lactide) (PLA)- 

poly (ethylene oxide) (PEO) block copolymer nanoscopic aggregates was 

accomplished. In this work we report the results of a complete study on the self-

assembly of PLA/PEO di/triblock copolymers in aqueous environment based on a 

multiscale molecular modeling recipe. Copolymers of PEO/PLA have generated 

broad interest in nanomedicine applications, like target therapy, drug delivery, 

and pharmaceutical applications. To test the ability of the adopted methodology 

to account for the effect of drug-loading on the nanocarrier aggregated 

morphology, further simulations were performed both on the di- and tri-block 

copolymer systems containing a model drug in concentration and composition 

intervals of pharmaceutical technology’s interest. 

Chapter 2 provides an overview of the multiscale molecular modelling, our combined 

strategy and a brief introduction to the computational techniques used in this work. 

Chapter 7 presents conclusions and future perspectives. 
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Chapter 2 

Multiscale molecular modeling in 

nanomaterials science 

Multiscale molecular modeling is a recent, fast developing and challenging scientific field 

with contributions from many scientific disciplines in an effort to assure materials simulation 

across length/time scales. In this Chapter we introduce the concept of multiscale approach 

of nanomaterials and present a brief description of the employed simulation methods based 

on time and length scales. Then, a hierarchical strategy of multiscale modeling to couple 

these techniques will be discussed. 

2.1 Introduction to multiscale molecular modeling 

In the last decades, modeling and computer simulation have increasingly become 

fundamental tools in many branches of science and engineering. As far as material science is 

concerned, modeling and simulation are generally intended for predicting properties of new 

materials before their synthesis as well as for investigating their inner structure. This 

approach can be very useful especially for those materials which present nanoscale features, 

as long as experimental characterization and manipulation at this scale represent an 

extremely difficult task. 

There are many level at which modeling can be useful, ranging from the highly detailed ab 

initio quantum mechanics, through classical molecular modeling to process engineering 

modeling. These computations significantly reduce wasted experiments, allow products and 

processes to be optimized, and permit a large number of candidate materials to be screened 

prior to production. 

Quantum mechanical (QM) methods have undergone enormous advances in the past 10 

years, enabling simulation of systems containing several hundred atoms. Molecular 

mechanics is a faster and more approximate method for computing the structure and 
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behaviour of molecules or materials. It is based on a series of assumptions that greatly 

simplify chemistry, e.g., atoms and the bonds that connect them behave like balls and 

springs. The approximations make the study of larger molecular systems feasible, or the 

study of smaller systems, still not possible with QM methods, very fast. Using molecular 

mechanics (MM) force fields to describe molecular level interactions, molecular dynamics 

(MD) and Monte Carlo (MC) methods afford the prediction of thermodynamic and dynamic 

properties based on the principles of equilibrium and non equilibrium statistical mechanics.1 

Mesoscale modeling uses a basic unit (an agglomeration of atoms, called bead, obtained 

through a coarse-graining procedure) just above the molecular scale, and is particularly 

useful for studying the behaviour of polymers and soft materials. It can model even larger 

molecular systems, but with the commensurate trade-off in accuracy. Examples of 

mesoscale theories are dynamic mean field density functional theory (Mesodyn) and 

Dissipative Particle Dynamics (DPD).2 Furthermore, it is possible to transfer the simulated 

mesoscopic structure to finite elements modeling tools for calculating macroscopic 

properties for the systems of interest.3 

Figure 2.1 shows the class of models that are available at each single scale. 

 

 

 
 
Figure 2.1. Multiscale molecular modeling: characteristic times and lengths. 

 

 

QM, MM, MD and mesoscale techniques cover many decades of both length and time 

scale, and can be applied to arbitrary materials: solids, liquids, interfaces, self-assembling 

fluids, gas phase molecules and liquid crystals, to name but a few. There are a number of 

                                                             
1 a) Allen, M. P.; Tildesley, D. J. Molecular simulations of liquids, Oxford: Oxford University Press, 1987; b) Gubbins, K. 

E.; Quirke, N. Molecular simulations and industrial applications, Amsterdam: Gordon & Breach 1996; c) Haile, J. M. 
Molecular dynamics simulations, New York, Wiley & Sons, 1992. 

2 a) Altevogt, P.; Evers, O. A.; Fraaije, J. G. E. M.; Maurits, N. M.; van Vlimmeren, B. A. C. Journal of Molecular Structure  
(Theochem) 1999, 463, 139–143; b) Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; 
Hoffman, C.; Altevogt, P.; Goldbeck-Wood G. Journal of Chemical Physics 1997, 106, 4260–4269; c) Groot, R. D.; Warren, 
P. B. J Chem Phys 1997, 107, 4423-4435. 

3 Gusev, A. A. Macromolecules 2001, 34, 3081-3093. 
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factors, however, which need to be taken care of to ensure that these methods can be 

applied routinely and successfully. 

First and foremost of course are the validity and usability of each method on its own, 

followed by their interoperability in a common and efficient user environment. Of equal 

importance is the integration of the simulation methods with experiment. In modern 

materials research and development, one needs to be able to move almost seamlessly from 

experimental knowledge to simulation and back again, requiring multiple input-output 

relationships at a range of materials length and time scales. 

Multiscale simulation can be defined as the enabling technology of science and 

engineering that links phenomena, models, and information between various scales of 

complex systems. The idea of multiscale modeling is straightforward: one computes 

information at a smaller (finer) scale and passes it to a model at a larger (coarser) scale by 

leaving out (i.e., coarse graining) degrees of freedom.4 

The ultimate goal of multiscale modeling is then to predict the macroscopic behaviour of 

an engineering process from first principles, i.e., starting from the quantum scale and 

passing information into molecular scales and eventually to process scales. 

Thus, based on accurate QM calculations, a force field (FF) is determined, which includes 

charges, force constants, polarization, van der Waals interactions and other quantities that 

accurately reproduce the QM calculations. With the FF, the dynamics is described with 

Newton’s equations (MD), instead of the Schrödinger equation. The MD level allows 

predicting the structures and properties for systems much larger in terms of number of 

atoms than for QM, allowing direct simulations for the properties of many interesting 

systems. This leads to many relevant and useful results in materials design; however, many 

critical problems in this field still require time and length scales far too large for practical 

MD. Hence, we need to model the system at the mesoscale (a scale between the atomistic 

and the macroscopic) and to pass messages from the atomistic scale to the mesoscale and to 

the macroscale. This linking through the mesoscale in which the microstructure can be 

described is probably the greatest challenge to develop reliable first principles method for 

practical materials’ design applications. Only by establishing this connection from microscale 

to mesoscale it is possible to build first principles method for describing the properties of 

new materials and (nano)composites. 

The problem here is that the method of coarsening the description from atomistic to 

mesoscale or mesoscale to continuum is not as obvious as it is going from electrons to 

atoms.5 For example, the strategy for polymers seems quite different than for metals, which 

seem different from ceramics or semiconductors. In other words, the coarsening from QM to 

MD relies on basic principles and can be easily generalized in a method and in a procedure, 

while the coarsening at higher scales is system specific. 

One of the first breakthrough examples of multiscale modeling of materials is the linking 

of quantum and classical molecular methods with continuum methods to study crack 

propagation in silicon.6 Here tight-binding MD was carried out near the crack tip, classical 

MD was employed farther away, and finite element calculations were performed far enough 

from the crack that a continuum approximation was valid. By developing clever schemes to 

link the three methods together both spatially and temporally, the entire hybrid simulation 

                                                             
4 a) Goddard, W. A. III; Cagin, T.; Blanco, M.; Vaidehi, N.; Dasgupta, S.; Floriano, W. et al. Computational and 

Theoretical Polymer Science 2001, 11, 329–338; b) Doi, M. Journal of Computational and Applied Mathematics 2002, 149, 
13–25; c) McGrother, S.; Golbeck Wood, G.; Lam, Y. M. Lecture Notes in Physics 2002, 642, 223–230. 

5 Glotzer, S. C.; Paul, S. C. Annual Review of Materials and Research 2002, 32, 401–436. 
6 Abraham, F. F.; Broughton, J. Q.; Bernstein, N.; Kaxiras, E. Computers in Physics 1998, 12, 538–544. 
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could be carried out with all three techniques operating simultaneously in the appropriate 

areas. 

Multiscale simulation poses, in some sense, greater challenges for polymer materials than 

for metallic and ceramic systems due to the larger range of length and time scales that 

characterize macromolecules. 

In this respect, for example, Doi4b) has developed a suite of state-of-the-art simulation 

tools that model polymers at the molecular and mesoscale level. Although each tool 

performs calculations using only one technique, the output from one level can be used 

directly as input for another, allowing an off-line bridging of length and time scales. To 

achieve what he and others refer to as “seamless zooming”, namely the ability to spawn 

higher resolution simulations using more detailed methods where needed, will require 

additional theoretical and computational advances. 

Along similar lines, off-line multiscale simulations of nanofilled polymers using coarse-

grained molecular dynamics, mesoscopic time dependent Ginsburg–Landau theory, and 

macroscopic continuum finite element techniques have been carried out. Significant 

advances in uniquely mapping atomistic models of polymers onto coarse-grained models 

have been made in recent years, in some cases providing nearly exact quantitative 

agreement between the two models for certain quantities, but these mappings, too, are 

performed off-line, and the various methods are not linked within a single simulation. 

Scale integration in specific contexts can be done in different ways. Any ‘recipe’ for 

passing information from one scale to another (upper) scale is based on the definition of 

multiscale modeling which consider ‘objects’ that are relevant at that particular scale, 

disregard all degrees of freedom of smaller scales and summarize those degrees of freedom 

by some representative parameters. 

All approaches are initially based on the application of a force field that transfers 

information from quantum chemistry to atomistic simulation. 

From atomistic simulation to mesoscale model, essential features of the system have to 

be maintained while reducing the degree of freedom. So far, the features chosen for the 

reproduction by coarse-grained models have been mainly structural, thermodynamical or 

both, with structure prevailing.7 

As mesoscale simulation typical result is the morphology and the structure of the matter 

at nanoscale level at the desired conditions of temperature, composition and shear. 

For the description of flow of polymeric materials on a processing scale, one must employ 

a hydrodynamic description and incorporate phenomena occurring on mesoscopic to 

macroscopic length and time scales. For example, to capture the non-Newtonian properties 

of polymer flow behaviour one can either use special models for the materials stress tensor, 

or obtain it from a molecular simulation using the instantaneous flow properties of the 

hydrodynamic fields as input. In the area of high-performance materials and devices, 

polymer composites are finding a widespread application, and the modeling of these 

materials was until recently done primarily through finite element methods (FEM), and are 

beyond the realm of application of molecular modeling approaches. Nonetheless, a real 

problem in using FEM is the definition of the physical property of a complex material such as 

a polymer blend with phase segregation and/or a polymer with microinclusions of nanosized 

platelets.8 

                                                             
7 Müller-Plathe, F. ChemPhysChem 2002, 3, 754-769. 
8 a) Gusev, A. A. Journal of the Mechanics and Physics of Solids 1997, 45, 1449–1459; b) Gusev, A. A.; Lusti, H. R. 

Advanced Materials 2001, 13, 1641–1643; c) Gusev, A. A. Physical Review Letters 2004, 93, 34302–34304. 
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Mesoprop is a method based on finite elements for estimating properties of a complex 

material starting from the density distribution at mesoscale. The method uses the results of 

a mesoscale simulation under the form of three-dimensional density maps, and transforms 

such information into a fixed grid that is used for the integration of the equations to 

determine macroscopic properties. Palmyra is a different method that allows the simulation 

at FEM level with a variable grid methodology that allows extending the size of the system 

studied. 

In the next Chapters we will show hierarchical procedures for bridging the gap between 

atomistic and macroscopic modeling passing through mesoscopic simulation. In particular, 

we will present and apply to some cases of industrial interest the concept of “message-

passing” multiscale modeling. The strategy described is based on an overlapping array of 

successively coarser modelling techniques. At each plateau (a range of length and time 

scales), the parameters of the coarse description are based on the representative results of 

the immediately finer description. 

2.2 Simulation methods 

Several methods suitable for particular length and time scales are available to treat 

aspects of materials phenomena that operate only over those scales. In the following we 

present briefly the main characteristics of the methods we principally employed in this thesis 

and how they are combined within multiscale modeling strategies. 

2.2.1 Atomistic methods 

The modeling and simulation methods at molecular level usually employ atoms or small 

atom clusters (in coarse-grain approaches) as the basic units considered. Beyond Quantum 

Mechanical methods (which incorporate quantum effects and are applicable only to very 

small systems due to their computational cost), the most popular methods include 

molecular mechanics, Molecular Dynamics and Monte Carlo simulations. 

Classical molecular dynamics (MD) 

MD is a computer simulation technique that allows one to predict the time evolution of a 

system of interacting particles (e.g., atoms, molecules) and estimate the relevant physical 

properties.9 It generates information as atomic positions, velocities and forces from which 

the macroscopic properties (e.g., pressure, energy, heat capacities) can be derived by means 

of statistical mechanics. MD simulation usually consists of three main constituents: (i) a set 

of initial conditions (e.g., initial positions and velocities of all particles in the system); (ii) the 

interaction potentials to represent the forces among all the particles; (iii) the evolution of 

the system in time by solving a set of classical Newtonian equations of motion for all 

particles in the system. 

The equation of motion is generally given by 
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9 a) Allen, M. P.; Tildesley, D. J. Computer simulation of liquids, Oxford: Clarendon Press; 1989; b) Frenkel, D.; Smit, B. 

Understanding molecular simulation: from algorithms to applications, 2nd ed. San Diego: Academic Press; 2002. 
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where Fi is the force acting on the ith atom or particle at time t which is obtained as the 

negative gradient of the interaction potential U, mi is the atomic mass and ri the atomic 

position. A physical simulation involves the proper selection of interaction potentials, 

numerical integration, periodic boundary conditions, and the control of pressure and 

temperature to mimic physically meaningful thermodynamic ensembles. 

The interaction potentials together with their parameters, i.e., the so-called force fields, 

describe in detail how the particles in a system interact with each other, i.e., how the 

potential energy of a system depends on the particle coordinates. Such a force field may be 

obtained by quantum methods, empirical methods or quantum-empirical method. The 

criteria for selecting a force field include the accuracy, transferability and computational 

speed. 

A typical interaction potential U may consist of a number of bonded and nonbonded 

interaction terms, which can be calculated for each of the N particles 

 

ticelectrostavdwinversiontorsionanglebondN UUUUUUrrrU +++++=),....,( 21  (2.2)

 

The first four terms represent bonded interactions, i.e., bond stretching Ubond, bond-angle 

bend Uangle, dihedral angle torsion Utorsion and inversion interaction Uinversion, while the last 

two terms are non bonded interactions, i.e., van der Waals energy Uvdw and electrostatic 

energy Uelectrostatic. 

Usually, equations of motion are integrated applying one of the many algorithms using 

finite difference methods. MD simulations can be performed in many different ensembles, 

such as grand canonical (μVT), microcanonical (NVE), canonical (NVT) and isothermal–

isobaric (NPT). The constant temperature and pressure can be controlled by adding an 

appropriate thermostat and barostat. 

2.2.2 Mesoscopic methods 

Mesoscale methods aim at linking microscale methods, i.e. atom based simulations, with 

macroscale methods based on continuum models. Various simulation methods have been 

proposed to study the mesoscale structures, the most common being Brownian Dynamics 

(BD), Dissipative Particle Dynamics (DPD), Lattice Boltzmann (LB), time–dependent 

Ginsburg–Landau (TDGL) theory, and Dynamic Density Functional Theory (DDFT). 

In these methods, a molecule is usually treated with a field description or microscopic 

particles that incorporate molecular details implicitly. Therefore, they are able to simulate 

the phenomena on length and time scales currently inaccessible by the classical MD 

methods. 

Dissipative Particle Dynamics (DPD) 

In 1992, Hoogerbrugge and Koelman introduced a mesoscale technique to simulate 

hydrodynamic behavior, called Dissipative Particle Dynamics (DPD).10 DPD is a computational 

tool for simulating soft matter, on mesoscopic length and time scales. Similar to molecular 

dynamics (MD) or Brownian dynamics (BD), DPD is a particle-based method. However, in a 

DPD simulation, the elementary unit is not an atom, but groups of atoms or molecules, 

                                                             
10 a) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155-160; b) Koelman, J. M. V. A.; 

Hoogerbrugge, P. J. Europhys. Lett. 1993, 21, 363-368. 
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referred to as beads. The DPD interaction is mesoscopic since the internal degrees of 

freedom of the fluid elements are ignored and only their center of mass motion is resolved. 

If the mass of all particles is set equal to unity, the time evolution of the positions (ri(t)) 

and momenta (pi(t)) is governed by Newton’s equations 
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where the mass of each particle i is set to unity, and ri, vi, and fi are the position vector, 

velocity, and total force, acting on particle i , respectively. 

The total force exerted on a bead i contains three parts, each of which is pair-wise 

additive: a conservative (Fij
C), a dissipative (Fij

D), and a random (Fij
R) force. Accordingly, the 

effective force fi acting on a particle i is given by 
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where the sum extends over all particles within a given distance rc from the ith particle. 

This distance practically constitutes the only length scale in the entire system. The 

conservative force is a soft repulsion, given by 
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where aij is the maximum repulsion between particles i and j, rij is the magnitude of the 

particle-particle vector rij = ri – rj, and r ̂ij is the unit vector joining particles i and j. The other 

two forces, Fij
D and Fij

R, are both responsible for the conservation of the total momentum in 

the system, and incorporate the Brownian motion into the larger length scale. They are 

given by the following expressions 
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where vij = vi – vj, ω
D and ωR are r-dependent weight functions tending to zero for r = rc, 

and θij is a randomly fluctuating variable with zero mean and unit variance. Español and 

Warren have shown that one of the two weight functions in Equation 2.6 can be chosen 

arbitrarily, thereby fixing the other weight function.11 However, the weight function and 

constants should obey 
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where kB is the Boltzmann constant. 

                                                             
11 Espanol, P.; Warren, P. B. Phys. Rev. E 1995, 52, 1734-1742. 
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Further incorporation of chain molecules simply requires the addition of a harmonic 

spring force between the beads allowing them to interconnect to highly complex topologies 

 

)( eqrK
ij

spring

ij
−= rF  (2.8)

 

where K is the spring constant and req is the equilibrium spring length. 

Many different formulations of the DPD method have been proposed, i.e. with inclusion 

of angle potentials and electrostatics.2c),12 

2.2.3 Macroscopic methods 

Within the framework of material multiscale modeling, we refer to macroscale methods 

as those modeling and simulation techniques which allow the calculation of some specific 

macroscopic property (i.e. Young’s modulus, electrical conductivity, gas permeability, …) of a 

material by considering a continuous distribution of its components throughout its volume, 

ignoring discrete atomic and molecular structures and their influence on system behaviour. 

The final aim basically consists in representing a heterogeneous material as an equivalent 

homogeneous one. According to some authors,13 such a description could be as well suited 

for the definition of micromechanics whose objective basically consists in bridging and 

determining relationship between microstructures and macroscopic (mechanical) properties. 

On the other hand, other authors consider micromechanics as just one of the possible 

methods for obtaining macroscopic properties starting from a representative model of the 

material.14 

In any case, the fundamental concept of these methods consists in the choice of a model 

which is representative of the whole material. Thus, the model has to be a Representative 

Volume Element (RVE) for the system, i.e. a sample which is entirely typical of the whole 

mixture on average. Defining RVE and its minimum dimensions is obviously a non trivial task 

and amenable of different interpretations. Besides setting the RVE, macroscale methods 

usually involve the definition of appropriate constituent laws and implementation of 

relationships between structural features and macroscopic properties.  

Continuum equations, typically in the form of deterministic or stochastic partial 

differential equations, are at the pinnacle of the coarse-graining hierarchy. Differential 

equations are formulated from basic physical principles, such as the conservation of energy 

or momentum, etc. Such methods permit to examine macroscopic regions in space over 

extended periods of time. Possible macroscale modeling strategies can be grouped into 

methods: analytical models, which directly calculate overall properties from system 

parameters, like the well known Halpin-Tsai or Mori-Tanaka models of composite materials, 

and computational methods, the best known of which is the Finite Element (FE) method. 

Finite Element Methods (FEM) 

In this approach the region of interest is covered with a mesh determined by contiguous 

components called ‘elements’ and the solution of the differential equation is discretized on 

the mesh points, called nodes, and interpolated within the elements. A partial (ordinary) 

                                                             
12 a) Espanol, P.; Warren, P. B. Europhys. Lett. 1995, 30, 191-196; b) Espanol, P. Europhys. Lett. 1997, 40, 631-636; c) 

Bonet Avalos, J.; Mackie A.D. Europhys. Lett. 1997, 40, 141-146; d) Groot, R.D. J. Chem. Phys. 2003, 118, 11265-11278; e) 
Travis, K.P.; Bankhead, M.; Good, K.; Owens S. L. J. Chem. Phys. 2007, 127, 014109, 12 pages.  

13 a) Zohdi, T. I.; Wriggers, P. Introduction to Computational Micromechanics, Springer Verlag, 2005; b) Bohm, H. J. 
Mechanics of Microstructured Materials, Springer Verlag, 2004. 

14 Zeng, Q. H.; Yua, A. B.; Lu G. Q. Prog Polym Sci 2008, 33,191-269. 
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differential equation is thereby replaced by a set of coupled ordinary (algebraic) equations 

and solved numerically at the nodal points. The energy in FE method is taken from the 

theory of linear elasticity and thus the input parameters are simply the elastic moduli and 

the density of the material. 

In the following we will referred only to the specific form of the method based on the 

work of Gusev and its implementation in the software Mesoprop and Palmyra by Matsim 

GmbH.3,15 

This FEM approach consists in a constant-strain-tetrahedra displacement-based technique 

with an iterative solver. An adaptative (Palmyra)/fixed (Mesoprop) mesh is built using 

specific criteria to model particle – matrix interface effectively in the RVE. For calculation of 

thermo-mechanical properties, six different infinitesimally small deformations are applied to 

the composite mesh and the total strain energy for each of these deformations is minimized 

using the conjugate gradient method in order to calculate the elastic composite properties. 

To calculate thermal expansion of the composite a seventh “deformation” (an increase of 

temperature by 1 Kelvin) is applied in order to obtain the linear thermal expansion 

coefficients. For other physical properties such as conductivities, dielectric constants, and 

transport properties a Laplace solver is used, that applies a field in the three main directions 

to the finite element mesh and minimizes the energy of the composite. 

Palmyra and Mesoprop software have been developed to be able to perform FEM analysis 

also on the density fields generated using the mesoscale techniques. Importing the 

morphology of the composite as obtained from mesoscale simulation in form of 3-D density 

distribution of each constituent, FE calculation is performed, so realizing a complete 

multiscale approach to the prediction of macroscopic properties of nanomaterials. 

2.3 Linking atomistic to mesoscale and macroscopic models 

As already mentioned, the linking of the atomistic to the macroscopic scale through the 

mesoscale is probably the greatest challenge to develop reliable first principles method for 

practical materials’ design applications. Only by establishing this connection from microscale 

to mesoscale it is possible to build first principles method for describing the properties of 

new materials and (nano)composites. 

The main problem here is that the method of coarsening the description from atomistic to 

mesoscale or mesoscale to continuum is not as obvious as it is going from electrons to 

atoms.5 For example, the strategy for polymers seems quite different than for metals, which 

seem different from ceramics or semiconductors. In other words, the coarsening from QM to 

MD relies on basic principles and can be easily generalized in a method and in a procedure, 

while the coarsening at higher scales is system specific. 

Given this concept, one of unresolved issue so far is how effectively linking the molecular 

interaction energies with mesoscale interaction energies. This is particularly critical if one 

desire to use a Dissipative Particle Dynamics approach. 

In DPD chemical interactions are described via a conservative force Fc. This conservative 

force between two particles i and j, as mentioned previously in this Chapter, is a soft 

repulsion acting along the line of the particle centers, and is given in absolute value and 

within the cut-off radium rc by the Equation 2.5. 

The interaction parameter aij has been linked to the χ-parameter in a Flory-Huggins type 

model by Groot and Warren2c), or with the bead size by Maiti and McGrother.16  

                                                             
15 Gusev, A. A. J Mech Phys Solids 1997, 45, 1449-1459. 
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In this work, we propose an alternative route, in which the interaction repulsive DPD 

parameters are coupled to the energies values resulting from the atomistic molecular 

dynamics simulations. An internal consistency is established by comparing the density fields 

obtained from DPD and MD on the same system. Accordingly, the derivation of the 

conservative repulsion form a lower scale (i.e. atomistic) modeling constitutes a bottom-up, 

multiscale approach to the simulation of complex systems. Further, the proposed strategy is 

not system dependent and can be applied in principle to polymer, polymer solution, systems 

featuring solid inclusions, and so on. 

The multiscale molecular modeling strategy developed relied on several, consecutive 

steps (see Figure 2.2): 

• generate and optimize the three-dimensional model for each system component. 

• Map the atomistic model to the mesoscale model reproducing thermodynamic or 

structural properties, like stiffness (i.e. through Kuhn segment), geometrical 

quantities, which can be intramolecular (distance between two adjacent super-

atoms, angles between three subsequent super-atoms, dihedral angles between 

four subsequent super-atoms, principal values of radius of gyration tensor, and so 

forth) or intermolecular (distances between super-atoms belonging to different 

chains, distances between the centers of mass of different chains or chains 

fragment, and so on).7,17 Which one actually being used depends on the intended 

purpose of the coarse-grained model. Here, choices have to be made, as 

eliminating the degree of freedom necessarily leads to models which reproduce 

fewer characteristics of the molecules. Then, mesoscale topology and mesoscale 

chemical specie for each component are known. 

• Calculate molecular dynamics energies and the nonbonded interaction energies 

among each mesoscale species. The choice of using only the nonbonded 

interactions stems from the fact that they represent the most appropriate choice 

to describe the DPD conservative force Fc as derived by Groot and Warren.2c) 

Considering a system made up of single particles i and j, the total energy of the 

system is given, in the hypothesis of neglecting the ternary contribution to 

interaction, by 

 

jijijijjjjjiiii

tot

system
EnEinEnEnE +++=  (2.9)

 

where 

 

( )
2

1−
= iiii

ii

nn
n  (2.10)

 

is the number of contacts between the ni particles of type i, and  

 

2
ji

ij

nn
n =  (2.11)

 

                                                                                                                                                                       
16 Maiti, A.; McGrother, S. J. Chem Phys. 2004, 120, 1594-1601. 
17 Scocchi, G.; Posocco, P.; Handgraaf, J.–W.; Fraaije, J. G. E. M.; Fermeglia, M.;  Pricl S. Chem. Eur. J. 2009, 15, 7586-

7592. 
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Figure 2.2. Pictorial scheme describing the proposed strategy to link atomistic simulation to mesoscale 
simulation and mesoscale simulation to macroscale analysis. 

 

 

 

 

 
 
Figure 2.3. Proposed scheme to integrate atomistic to mesoscale simulation and mesoscale to 
macroscopic simulation. A layered nanocomposite system has been taken here as a proof of concept. 
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is the number of contacts between ni particles of type i and nj particles of type j. 

Since the mixed energy terms (Eij and Eji) and the number of contacts (nij and nji) 

are the same, the expression for the total system energy becomes 

 

jjjjjjiiii

tot

system
EiniEnEnE 2++=  (2.12)

 

• The values of the self-interaction energies (Eii and Ejj) are easily obtainable 

dividing the corresponding molecular value by the appropriate number of 

contacts, while the value of the system total energy is derived straightforwardly 

from MD. Accordingly, the remaining mixed energy term, Eij, is calculated by 

applying Equation 2.12.  

• Select two reference DPD interactions. Having fixed these two parameters, their 

values are associated with the corresponding values of the DPD energies rescaled 

from MD simulations. All the remaining DPD interaction parameters are derived 

using this reference relationship. An internal consistency is established by 

comparing the density fields obtained from DPD and MD on the same system 

using the obtained interaction parameters. 

• Export density fields of each mesoscale specie to FE calculation, choosing fixed 

and/or variable grid according to the complexity and the morphology of the 

system. Finally, calculate mechanical properties of interest. I.e., in the case of 

water/PEO nanocomposite (Chapter 3), first, the properties of a single MMT 

platelet were calculated importing the 3-D density profiles as derived from 

mesoscale simulations and employing a fixed mesh grid. Then, the calculated 

properties were used to predict the properties of the overall composite applying 

a variable adaptative grid mesh (see Figure 2.3). 
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Chapter 3 

Water-based montmorillonite/poly(ethylene 

oxide) nanocomposites 

In this Chapter we present a multiscale computational approach to probe the behavior of 

polymer/clay nanocomposites based on poly (ethylene oxide) (PEO)/montmorillonite (MMT) 

as obtained from water intercalation. In details, our modeling recipe is based on four 

sequential steps: a) atomistic molecular dynamics simulations to derive interaction energy 

values among all system components; b) mapping of these values onto mesoscale 

Dissipative Particle Dynamics parameters; c) mesoscopic simulations to determine system 

density distributions and morphologies (i.e., intercalated vs. exfoliated); and d) simulations 

at finite-element levels to calculate the relative macroscopic properties. The entire 

computational procedure has been applied to four PEO/MMT systems with PEO chains of 

different molecular weight (750, 1100, 2000, and 5000 Da), and thermal and electrical 

characteristics were predicted in excellent agreement with the available experimental data. 

Importantly, the methodology constitutes a truly integrated multiscale modeling approach, 

in which no "learning against experiment" has been performed in any step of the 

computational recipe. 

This work is published in Toth, R.; Voorn, D.-J.; Handgraaf, J.-W.; Fraaije, J. G. E. M.; 

Fermeglia, M.; Pricl, S.; Posocco, P. Macromolecules 2009, 42, 8260-8270. 

3.1 Introduction 

In recent years, polymer nanocomposites based on layered silicates, or polymer-clay 

nanocomposites (PCNs), have attracted great industrial and academic interest as they often 

exhibit remarkable improvement in materials properties with respect to virgin polymers or 

conventional micro/macro composites. These enhanced features include high mechanical 

moduli, increased strength and heat resistance, decreased gas permeability and 
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flammability, and increased biodegradability in case of biodegradable polymers.1 Fabricating 

polymer clay nanocomposites (PCNs) in an efficient and cost-effective manner, however, 

poses significant synthetic challenges. As the ultimate properties of these hybrid systems 

commonly depend on their structure, it is of particular interest to establish the morphology 

of the final composite. To this purpose, the development of theories and the application of 

computer simulation techniques have opened avenues for the design of these materials, and 

the a priori prediction/optimization of their structures and properties.2 

The commonly used clay materials for the preparation of PCNs belong to the same 

general family of 2:1 layered silicates, or phyllosilicates, montmorillonite (MMT) being a 

prime example of these minerals. Their crystal structure consists of layers made up of two 

tetrahedrally coordinated silicon atoms fused to an edge-shared octahedral sheet of either 

aluminum or magnesium hydroxide. The layer thickness is around 1 nm, and the lateral 

dimension may vary from 30 nm up to several microns or larger, depending on the particular 

mineral. Stacking of the layers leads to a regular van der Waals gap between the layers 

called the interlayer space or gallery. Isomorphic substitution within the layers (for example, 

Al3+ replaced by Mg2+ or Fe2+, or Mg2+ replaced by Li+) results in an excess of negative charge, 

which is counterbalanced by alkali and alkaline earth cations located inside the galleries. This 

type of layered silicate is characterized by a moderate surface charge known as the cation 

exchange capacity (CEC), generally expressed as mequiv/100 g. 

Generally speaking, mixing a polymer and a clay may not result in a nanocomposite 

material.1 Indeed, in their pristine state layered silicates are only directly miscible with 

hydrophilic polymers, such as poly(ethylene oxide) (PEO),3 or poly(vinyl alcohol) (PVA).4 To 

render layered silicates compatible with other polymer matrices, one must convert the 

normally hydrophilic silicate surface to an organophilic one, making the intercalation of 

many engineering polymers possible. Depending on the strength of interfacial interactions 

between the polymer matrix and the clay (modified or not), two main types of PCNs can be 

thermodynamically achieved: i) intercalated nanocomposites, in which the insertion of a 

polymer matrix into the clay galleries occurs in a crystallographically regular fashion, 

regardless of the clay to polymer ratio; and ii) exfoliated nanocomposites, where the 

individual clay layers are separated in a continuous polymer matrix by an average distances 

that depends on clay loading. The two architectures described above can be practically 

produced by i) in situ polymerization of a given monomer in the presence of the layered 

silicate, ii) solution intercalation, where both the polymer matrix and clay are dispersed in a 

common solvent followed by precipitation, or iii) melt processing, which involves the 

mechanical mixing of the polymeric matrix and the inorganic filler.1b) 

MMT/PEO-based PNCs are hybrid structures with improved electrical properties for 

electronic applications in solid-state electrolyte batteries.5,6,7 The intercalation of water-

soluble PEO molecules between the clay galleries can be obtained by mixing the clay with an 

                                                             
1 a) Pinnavaia, T. J.; Beall, G. W. Polymer-clay nanocomposites, John Wiley & Sons Ltd., Chichester, England, 2001; b) 

Biswas, M.; Sinha Ray, S. Adv. Polym. Sci. 2001, 155, 167–221; c) Sinha Ray, S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 
1539–1641; d) Utraki, L. A. Clay-containing polymeric nanocomposites, Rapra Technology: Shrewsbury, England, 2004; e) 
Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Paul, D. R. J. Nanosci. Nanotechnol. 2005, 5, 1574-1592; f) Balazs, A. C.; Emrick T.; Russell, 
T. P. Science 2006, 314, 1107-1110; g) Pavlidou, S.; Papaspyrides, C. D. Prog. Polym Sci. 2008, 33, 1119-1198; h) Paul, D. R.; 
Robeson, L. M. Polymer 2008, 49, 3187-3204. 

2 Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Progr. Polym. Sci. 2008, 33, 191–269. 
3 Aranda, P.; Ruiz-Hitzky, E. Chem. Mater. 1992, 4, 1395–1403. 
4 Greenland, D.J. J. Colloid Sci. 1963, 18, 647–664. 
5 Kim, S.; Hwang, E.-J.; Jung, Y.; Han, M.; Park, S.-J. Colloids and Surfaces A: Physicochem. Eng. Aspects  2008, 313-314, 

216–219. 
6 Wu, J.; Lerner, M. M. Chem. Mater. 1993, 5, 835–838. 
7 Aranda, P.; Ruiz-Hitzky, E. Chem. Mater. 1992, 4, 1395–1403. 
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aqueous dispersion of PEO (i), or by direct intercalation from the melt (ii).8 In the latter case, 

the organic component is inserted between the clay layers such that the interlayer spacing is 

expanded to an extent at least sufficient to replace the water of hydration associated with 

the exchangeable cations in the galleries.9 An alternative method for the preparation of PEO 

nanocomposites is the dispersion of completely exfoliated clay particles within the polymer 

matrix. Under these conditions, the observed behavior is rather different with respect to the 

one described above: indeed, the addition of an adsorbing polymer to the clay colloidal 

dispersion can cause flocculation at low surface coverage, and steric stabilization when the 

particle surface is saturated with the polymer.10 As stated above, PCNs offer a wide range of 

promising applications because of their enhanced properties with respect to the polymeric 

matrix per se. However, further development of such nanomaterials depends on the 

fundamental understanding of their hierarchical structures and behaviours, a goal which 

requires multiscale modeling and simulation strategies to provide seamless coupling among 

various length and time scales. Several computational approaches, spanning different 

length/time scale domains have been proposed in recent years for the characterization of 

polymer-clay nanocomposites, including atomistic molecular dynamics (MD) and Monte 

Carlo (MC), mesoscale, and finite element simulations.2 

As concerns PEO-based PCNs, it has been more than 20 years since PEO was first 

suggested as a suitable polymeric matrix for these systems.11 Accordingly, a plethora of MD-

based simulations have been successfully applied to study, for example, the mobility of ions 

in PEO matrices,12 segmental motion of polymer backbone in PEO melts,13 influence of the 

polarizability in PEO solid electrolytes,14 and the effect of temperature,12b),15,16 

concentration,15 solvent,16 and salt12b),17 on the dynamics of PEO segments. Further, the 

effect on polymer dynamics exerted by the addition of methoxy-terminated PEO side-chains 

with different lengths and separations to an amorphous long-chain PEO backbone has also 

been studied using MD techniques.18 As concerns the resulting PCN systems, Aabloo et al. 

have studied the molecular behavior at the interface between PEO and an inorganic double-

layered gel by a molecular mechanics/molecular dynamics (MM/MD) approach.19 Similarly, 

PEO inorganic nanocomposites were subject to MM/MD experiments aimed at 

characterizing the effect of the nanoparticle filler, its concentration and temperature on the 

motion of ions in the polymer host.15,20 In spite of these efforts devoted to the simulation of 

PEO-based systems, there is still a lack of studies dealing with computational modeling and 

simulations of PEO nanocomposites, with special mention to those systems obtained from 

solution. 

Here we present a hierarchical procedure for bridging the gap between atomistic and 

finite element calculations via mesoscale simulations (MS) in polymer-clay nanocomposite 

                                                             
8 Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. Adv. Mater. 1995, 7, 154–156. 
9 Chaiko, D. J. Chem. Mater. 2003, 15, 1105–1110. 
10 Pozzo, D. C.; Walker, L. M. Colloids Surf. A. 2004, 240, 187–197. 
11 Armand, M. B.; Chabagno, J. M.; Duclot, M. J. In Fast ionic transport in solids, Vashishta M., editor. Elsevier: 

Amsterdam, The Netherlands, 1979. 
12 a) Aabloo, A.; Thomas, J. Solid State Ion. 2001, 143, 83–87; b) Catlow, C. R. A.; Mills, G. E. Electrochim. Acta 1995, 40, 

2057–2062; c) Ferreira B. A.; Müller-Plathe F.; Bernardes A. T.; De Almeida, W. B. Solid State Ion. 2002, 147, 361–366. 
13 de Leeuw, S. W.; van Zon, A.; Bel, G. J. Electrochim. Acta 2001, 46, 1419–1426. 
14 de Jonge, J. J.; van Zon, A.; de Leeuw, S.W. Solid State Ion. 2002, 147, 349–359. 
15 Kasemägi, H.; Klintenberg, M.; Aabloo, A.; Thomas, J. O. Electrochim. Acta 2003, 48, 2273–2278. 
16 Ferreira, B. A.; Dos Santos, H. F.; Bernardes, A. T.; Silva, G. G.; De Almeida, W. B. Chem. Phys. Lett. 1999, 307, 95–

101. 
17 van Zon, A.; Mos, B.; Verkerk, P.; de Leeuw, S.W. Electrochim. Acta 2001, 46, 1717–1721. 
18 Karo, J.; Aabloo, A.; Thomas, J. O. Solid State Ion. 2005, 176, 3041–3044. 
19 Aabloo, A.; Klintenberg, M.; Thomas, J. O. Electrochim. Acta 2000, 45, 1425–1429. 
20 a) Kasemägi, H.; Aabloo, A.; Klintenberg, M. K.; Thomas J. O. Solid State Ion. 2004, 168, 249–254; b) Kasemägi, H.; 

Klintenberg, M. K.; Aabloo, A.; Thomas J. O. Solid State Ion. 2002, 147, 367–375. 
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design. According to the proposed computational recipe, the Dissipative Particle Dynamics 

(DPD)21 was adopted as the mesoscale simulation technique, and the interaction parameters 

of the mesoscopic model were estimated by mapping interaction energy values obtained 

from atomistic MD simulations. Finally, the morphologies and density distributions of the 

PCN system components were used as input for finite element calculations to estimate the 

most relevant macroscopical properties. 

This work is organized as follows. First, we aimed at studying the interactions which occur 

at a molecular level near the surface of MMT platelets in PEO aqueous systems. In particular, 

we focused our attention on the effects of polymer molecular weight, and presence of water 

molecules on the interactions between individual PCN components. Secondly, we expanded 

the information obtained from the atomistic simulations by employing mesoscale models for 

density profiles and morphology predictions. To this purpose, the resulting MD data were 

mapped onto the corresponding mesoscale models, and the results generated at both length 

scales were compared for consistency. Lastly, the density profiles and the morphologies 

resulting from the MS simulations were imported into a finite element code and some 

characteristic macroscopic properties of these systems - e.g. thermal expansion coefficients 

and electrical conductivity as functions of PEO molecular weight and clay loading - were 

predicted and compared with the corresponding experimental values available in the current 

literature. 

To the best of our knowledge, this is the first attempt to study the behavior of water 

molecules in nanocomposites at mesoscale level, and to estimate macroscopic properties for 

water-based PEO PCNs via multiscale molecular modeling procedures. 

3.2 Computational methodology 

3.2.1 Atomistic models and simulations 

All atomistic simulations were performed using Materials Studio (v.4.4, Accelrys, San 

Diego, USA). The starting structure of sodium montmorillonite (MMT) was taken from a 

previous work of our group.22 As mentioned above, one of the major goals of this work was 

to estimate the interaction energies between all system elements accurately. Since these 

quantities are highly sensitive to the nonbonded components of the force field (FF) 

employed (e.g., atomic charges and van der Waals parameters), here we adopted the ad hoc 

force field developed by Heinz and coworkers.23 As demonstrated by the authors for sodium 

MMT and other phyllosilicatesqq, this accurately derived FF is able to describe, among many 

other properties, the thermodynamics of surface processes more reliably by reducing 

deviations of 50-500% in surface and interface energies to less that 10%, which constitutes a 

fundamental step towards quantitative modeling of interface processes involving layered 

silicates. Accordingly, the resulting lattice of our MMT model is monoclinic, with space group 

                                                             
21 a) Hoogerbruge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 18, 155–160; b) Koelman, J. M. V.A.; Hoogerbruge, 

P. J. Europhys. Lett. 1993, 21, 363. 
22 a) Fermeglia, M.; Ferrone, M.; Pricl, S. Fluid Phase Eq. 2003, 212, 315-329; b) Toth, R.; Coslanich, A.; Ferrone, M.; 

Fermeglia, M.; Pricl, S.; Miertus, S.; Chiellini, E. Polymer 2004, 45, 8075–8083; c) Fermeglia, M.; Ferrone, M.; Pricl, S. Mol. 

Simul. 2004, 30, 289-300; d) Scocchi, G.; Posocco, P.; Danani, A.; Pricl, S.; Fermeglia, M. Fluid Phase Eq. 2007, 261, 366-
374; e) Scocchi, G.; Posocco, P.; Handgraaf, J.-W.; Fraaije, J. G. E. M.;Fermeglia, M.; Pricl, S. Chem. Eur. J. 2009, 15, 7586-
7592. 

23 a) Heinz, H.; Suter, U. W. J. Phys. Chem. B 2004, 108, 18341-18352; b) Heinz, H.; Koerner, H.; Anderson, K. L.; Vaia, R. 
A.; Farmer, B. L. Chem. Mater. 2005, 17, 5658-5669. 
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C2/m, and characterized by the following lattice parameters: a = 5.20 Å, b = 9.20 Å, c = 10.13 

Å, and α = 90°, β = 99°, γ = 90°, in excellent agreement with the available literature.23b),24 

The generation of PEO chains was conducted following a well-validate procedure,22 

according to which the constitutive repeating unit (CRU) of the polymer was first built and its 

geometry optimized by energy minimization. Hence, the CRU was polymerized to a given 

degree of polymerization (DP). Four different values of DP were considered in order to study 

the influence of PEO molecular weight (MW) on the interaction energies of the 

corresponding PCN systems: DP = 19, 28, 56, and 113, approximately corresponding to a MW 

of 750 Da, 1100, 2000, and 5000, respectively. The Rotational Isomeric State (RIS) 

algorithm,25 as modified by Theodorou and Suter,26 was used to create the initial polymer 

conformations at T = 300 K. Explicit hydrogens were used in all model systems. In order to 

obtain a reasonable sampling of the polymer conformational space, we built and energy 

minimized 10 different PEO configurations for each DP considered. A conformational search 

was then carried out using a well-validated combined molecular mechanics/molecular 

dynamics simulated annealing (MDSA) protocol,22,27 in which the relaxed molecular 

structure is subjected to five repeated temperature cycles using constant volume/constant 

temperature (NVT) MD conditions. At the end of each annealing cycle, the structure is again 

energy minimized, and only the structure corresponding to the minimum energy is used for 

further modeling. 

Resorting to atomistic MD simulations in the canonical ensemble allows retrieving 

important information on the interaction and binding energy values between the different 

components of a PCN system.20,22,27f),28,29,30,31 The technique basically consists in simulating 

the interface between the exfoliated clay, polymer and water by building a cell that is 

“stretched” along the c-direction. Accordingly, a MMT supercell of 10 × 5 × 2 (≈ 5.2 nm × 4.6 

nm × 2.3 nm) was first constructed. For each of the 10 different PEO conformations obtained 

in correspondence of a given DP, we copied six PEO chains with DP = 19, four chains with DP 

= 28, two chains with DP = 56, and 1 chain with DP 113 in 10 identical MMT supercells, thus 

obtaining 40 different binary model systems (10 for each DP) overall. This choice allowed for 

an approximately constant number of polymer atoms in each simulation cell, a condition 

necessary for energy comparison. Each resulting (MMT/PEO) binary system was shortly 

energy minimized to relieve close contacts. To avoid crystal structure deformation during 

minimization, both montmorillonite layers were treated as rigid bodies by fixing all cell 

dimensions, and all atoms in the interlayer space including the cations were allow to move 

without any constraint. 

                                                             
24 a) Brown, G. The X-ray Identification and Crystal Structures of Clay Minerals, Mineralogical Society: London, 1961; b) 

Reviews in Mineralogy; Bayley, S. W., Ed.; Mineralogical Society of America, Chelsea, MI, 1988; Vol. 19. See also 
http://www.webmineral.com; c) Tsipurski, S. I.; Drits, V. A. Clay Mineral. 1984, 19, 177-193; d) The exact crystal structure 
of MMT depends on the nature of the cations (e.g., Na+, K+, Ca++), charge density, and the presence of crystal water. 
However, mainly the parameters c (approx. 9.9-13 Å) and β (approx. 95-100°) are affected. 

25 Flory, P. J. Principles of Polymer Chemistry, Cornell University Press: Ithaca, 1974. 
26 Theodorou D. N.; Suter U. W. Macromolecules 1986, 19, 139-154. 
27 a) Fermeglia, M.; Pricl, S. AIChE J. 1999, 45, 2619-2627; b) Fermeglia, M.; Ferrone, M.; Pricl, S. Bioorg. Med. Chem. 

2002, 10, 2471-2478; c) Felluga, F.; Pitacco, G.; Valentin, E.; Coslanich, A.; Fermeglia, M.; Ferrone, M.; Pricl, S. 
Tetrahedron: Asymmetry 2003, 14, 3385-3399; d) Pricl, S.; Fermeglia, M; Ferrone, M.; Asquini, A. Carbon 2003, 41, 2269-
2283; e) Metullio, L.; Ferrone, M.; Coslanich, A.; Fuchs, S.; Fermeglia, M.; Paneni, M.S.; Pricl, S. Biomacromolecules 2004, 
5, 1371-1378; f) Toth, R.; Ferrone, M.; Miertus, S.; Chiellini, E.; Fermeglia, M.; Pricl, S. Biomacromolecules, 2006, 7, 1714–
1719; g) Fermeglia, M.; Cosoli, M.; Ferrone, M.; Piccarolo, S.; Mensitieri, G.; Pricl, S. Polymer 2006, 47, 5979-5989; h) 
Posocco, P.; Ferrone, M.; Fermeglia, M.; Pricl, S. Macromolecules 2007, 40, 2257-2266; i) Mensitieri, G.; Larobina, D.; 
Guerra, G.; Venditto, V.; Fermeglia, M.; Pricl, S. J. Polym. Sci. B: Polym. Phys. 2008, 46, 8-15; j) Cosoli, P.; Scocchi, G.; Pricl, 
S.; Fermeglia, M. Micropor. Mesopor. Mater. 2008, 1, 169-179. 

28 Tanaka, G.; Goettler, L. A. Polymer 2002, 43, 541-553. 
29 Gardebien, F.; Bredas, J.-L.; Lazzaroni, R. J. Phys. Chem. B 2005, 109, 12287–12296. 
30 Katti, K. S.; Sikdar, D.; Katti D. R.; Ghosh, P.; Verma, D. Polymer 2006, 47, 403-414. 
31 Paul, D. R.; Zeng, Q. H.; Yu, A. B.; Lu, G. Q. J. Colloid Interface Sci. 2005, 292, 462-468. 
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For the construction of the water-based systems, the SPC/E model was chosen to 

represent water molecules.32 Each ternary simulation model consists of a MMT unit cell, the 

PEO chain(s) with a given DP, and a suitable number of water molecules. Water molecules 

were added according to the following procedure:33 first, a MMT cell with a interlayer 

spacing of 17.6 Å with the PEO chain(s) inserted in the interlayer space was created, and a 

short (50 ps) MD simulation was performed to equilibrate the polymer configuration within 

the MMT gallery. Then water was adsorbed through a grand canonical Monte Carlo (GCMC) 

simulation, in which chemical equilibrium was established by imposing vapour pressure of 

100 kPa (1 atm). The corresponding hydrated system was equilibrated with another, short 

NVT MD run. The water molecules were subsequently deleted and re-adsorbed through a 

second GCMC run that ensured the accurate amount of adsorbed water.34 

To generate a mineral surface apt for the simulation, the top silicate sheet, along with the 

appropriate number of alkali ions, was moved along the c cell axis up to 150 Å.22,27f),28 This 

extension in the c-direction, being quite larger than the maximum system length, results in 

an effective 2D (x,y) periodic system,35 which allows the use of the NVT ensemble for 

successive molecular dynamics (MD) simulations instead of the alternative constant-

pressure constant-temperature (NPT) ensemble. As pointed out by previous studies,36 the 

small difference in the pressure component along the z axis (Pzz), relative to the NPT 

ensemble, is negligible; furthermore, the uncertainties in selecting the correct barostat are 

eliminated, and the required computational time is reduced. The new equilibrium position of 

the remaining Na+ counterions on the remaining MMT sheet were determined following the 

procedure suggested by Heinz et al.23b) Accordingly, half of them were placed 1 nm away on 

one side, and the remaining half 1 nm away on the other side of the MMT layer in 10 

different arrangements; molecular mechanics energy minimizations were then performed to 

convergence, keeping all other MMT atoms fixed, and the structure with the lowest energy 

was finally selected for further simulations. In this configuration, the Na+ ions are found at 

about 1.8 Å from the center of the surface oxygen atoms, or about 4.8 Å from the central 

plane of the metal atoms, in excellent agreement with previous simulations,33 and 

experimental NMR data.37 In fact, surface lattice cavities are characteristic of the oxygen 

network in all 2:1 layer silicates, and in cations primarily reside partially inserted within 

these cavities. 

Subsequently, 500 ps of NVT MD experiments were run at 300 K for each system, using 

the Verlet algorithm and an integration step of 1 fs. The Ewald summation method38 was 

applied for treating both van der Waals and electrostatic interactions. Temperature was 

controlled using the Nosé thermostat (Q ratio = 1).39 In order to reduce computational time, 

during each MD both montmorillonite layers were treated as rigid bodies by fixing all cell 

dimensions, and all atoms in the interlayer space including the cations were allow to move 

without any constraint. The total number of ternary systems generated was 40, ten for each 

PEO DP value considered. 

The procedure used to calculate the interaction energies and, hence, the binding energy 

values Ebind between all system components, is well estabilished.22a-d),27f) By definition, the 

binding energy Ebind is the negative of the interaction energy. As an example, to calculate the 

                                                             
32 Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. J. Phys. Chem. 1987, 91, 6269-6271. 
33 Hackett, E.; Manias, E.; Giannelis, E. P. Chem. Mater. 2000, 12, 2161-2167. 
34 Bujdak, J.; Hackett, E.; Giannelis, E. P. Chem. Mater. 2000, 12, 2168-2174. 
35 Misra, S.; Fleming, P. D. III; Mattice, W.L. J. Comp. Aided. Mater. Des. 1995, 2, 101-112. 
36 Heinz, H.; Paul, W.; Suter, U. W.; Binder, K. J. Chem. Phys. 2004, 120, 3847-3854. 
37 Yang, D.-K.; Zax, D. B. J. Chem. Phys. 1999, 110, 5325-5336. 
38 Ewald, P. P. Ann. Phys. 1921, 64, 253-287. 
39 Nosé, S. Prog. Theor. Phys., Suppl. 1991, 103, 1-46. 
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binary binding energy term Ebind(PEO/H2O), we can first created a PEO–H2O system deleting 

the MMT platelet and the Na+ ions from one of the equilibrated MD trajectory frames, and 

then calculated the potential energy of the system EPEO/H2O. Next, we deleted the water 

molecules, leaving the PEO chain alone, and thus calculated the energy of the PEO molecule, 

EPEO. Similarly, we deleted the PEO molecules from the PEO–H2O system, and calculated 

EH2O. Then, the binding energy Ebind(PEO/H2O) is simply obtained from the following 

equation: 

 

( ) OHPEOOHPEObind EEEOHPEOE
22 /2/ −+=  (3.1)

 

The remaining binding energy terms Ebind(PEO/MMT) and Ebind(MMT/H2O), can be 

calculated in an utterly analogous fashion from the corresponding energy components. 

As the MD frames choice is concerned, we decided to calculate the system energies at 

300, 350, 400, 450, and 500 ps. We considered these as representative energy values, since 

every energy component was well equilibrated after approximately 100 ps of simulation. All 

data collected have then been averaged over the 10 different model systems for each PEO 

DP. 

Importantly, the binding energies between the individual components of each 

nanocomposite system estimated using the procedure outlined above will also constitute 

the input parameters for the higher level, mesoscale simulations, as described in the next 

section. 

In order to investigate the arrangement of PEO and water molecules in the silicate 

galleries along a plane normal to the mineral surfaces, and to compare these with the 

corresponding morphology resulting from mesoscale simulations, we applied an original 

procedure to simulate PEO chains intercalation into the clay galleries. For the simulations, 

we used the same molecular models employed in the NVT binding energies calculations 

described above. Starting from the 10 ×5 × 2 MMT supercell, we performed a geometry 

optimization of the system, keeping all cell parameters fixed except for the c distance, and 

using a convergence criterion of 10-4 kcal/(mol Å). The resulting configuration was then 

subjected to the MDSA procedure, in order to sample as many system configurations as 

possible. The total simulation lasted 25 ps, with a time step of 1 fs, and consisted of 5 

annealing cycles with a starting temperature of 300 K, a mid-cycle temperature of 1500 K, 

and 5 heating ramps per cycle. The Ewald method38 was again employed for treating the 

nonbonded energy components, and the Nosé thermostat39 was chosen for temperature 

control. After each cycle, a molecular geometry optimization was run with the same criteria 

described before. Finally, the lowest potential energy conformation from the 5 different 

frames obtained as output from the described procedure was selected for further modeling. 

This frame was used as an initial configuration for the polymer chain/water molecules 

insertion. To this purpose, we used the different PEO chains built as reported in the previous 

section, and the same water adsorption recipe. After each polymer chain/s and water 

insertion, we performed the optimization procedure described above. The final systems 

were subjected to the last NVT annealing run, from which we selected the lowest potential 

energy frames from the trajectory files and used them as starting configurations to perform 

productive 300 ps NVT runs. Once the simulations were completed, 30 frames were 

extracted from the corresponding trajectory files, and on each one we performed the 

density profile calculations within the interlayer spaces. 
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3.2.2 Mesoscale models and simulations 

In order to obtain the morphology of polymer and water molecules between the 

montmorillonite layers, and to evaluate and compare the influence of the polymer molecular 

weight at a mesoscopic level, Dissipative Particle Dynamics (DPD)21 simulations were carried 

out using the DPD module of the Culgi modeling suite (Culgi B.V., Leiden, The Netherlands). 

As described in Chapter 2, in the Dissipative Particle Dynamics simulation method, a set of 

particles moves according to Newton’s equation of motion, and interacts dissipatively 

through simplified force laws. Also, in the DPD model individual atoms or molecules are not 

represented directly, but are coarse-grained into beads. These beads, or particles, constitute 

local “fluid packages” able to move independently.  

The force acting on the beads, which is pairwise additive, can be decomposed into three 

elements: a conservative (Fij
C), a dissipative (Fij

D), and a random (Fij
R) force.40 Accordingly, the 

effective force fi acting on a particle i is given by: 
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≠
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where the sum extends over all particles within a given distance rc from the ith particle. 

This distance practically constitutes the only length scale in the entire system. Therefore, it is 

convenient to set the cutoff radius rc as a unit of length (i.e., rc = 1), so that all lengths are 

measured relative to the particles radius.40 

In the framework of a multiscale approach to PCN simulation, the conservative interaction 

parameters a needed as input for the mesoscale level DPD calculations can be obtained by a 

mapping procedure of the binding energy values between different species obtained from 

simulations at a lower (atomistic) scale.41,22d) The first step necessary for determination of 

the DPD input parameters generally consists of defining the DPD bead dimensions, thus 

implicitly defining characteristic length of the system (rc). The interaction range rc sets the 

basic length scale of the system; in other terms, rc can be defined as the side of the cube 

containing an average number ρ of beads. Therefore, 

 

( ) 3/1
ρ

bc
Vr =  (3.3)

 

where Vb is the volume of a DPD bead. It is important to recall here that, even in a 

heterogeneous system consisting of several different species such as a PCN, a basic DPD 

assumption is that all bead types (each representing a single species) must be of a 

comparable volume, Vb. 

Starting mesoscale model generation with the polymer chain, the basic strategy to 

calculate the volume of a DPD bead Vb consists in mapping the real polymer chain onto a 

chain consisting of Kuhn segments. Consequently, each DPD bead represents a statistically 

correlated unit or Kuhn segment of the polymer. A DPD chain should, therefore, be made up 

of NDPD beads, where: 
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40 Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423-4435. 
41 Scocchi, G.; Posocco, P.; Fermeglia, M.; Pricl, S. J. Phys. Chem. B 2007, 111, 2143–2151. 
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where Nmon is equal to the degree of polymerization of the molecular chain DP, and C∞ its 

characteristic ratio. If so, the mesoscale simulations should capture in a reliable way two 

essential features of a given polymer chain, namely its dimension (given by Nmon) and 

flexibility (given by C∞). When a flexible macromolecules is modeled as a Gaussian chain, 

however, C∞ represents also the number of monomers making up a Kuhn segment (i.e., 

contained in a single DPD bead). Therefore, the bead volume Vb can be simply obtained 

multiplying the characteristic ratio C∞ by the monomer volume Vmon, here estimated to be 

equal to 52.68 Å3 by the Connolly algorithm.42 

For a polymeric chain, the characteristic ratio is defined as: 

 

lN

R
C

2

2
0=∞  (3.5)

 

where R0 is the unperturbed mean-square end-to end distance, N is the total number of 

skeletal bonds, and l2 is the mean-square bond length. In the case of PEO, N is three times 

the degree of polymerization, and l2 is calculated to be equal to 2.14 Å by simply applying: 

 

3
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where C − C = 1.53 Å and C − O = 1.43 Å.43,44 A conformation-related property such as C∞ 

can be experimentally estimated, for example, in dilute polymer solution under unperturbed 

or θ-conditions or calculated, as done in this work, using a molecular dynamics procedure 

based on the Rotational Isomeric State (RIS) method.45,46 Generally speaking, for a given 

polymer at low degree of polymerization the characteristic ratio varies with N. According to 

our simulations, we found that for PEO C∞ is only weakly varying with molecular weight, and 

the average value resulting from the application of the RIS procedure is equal to 4.9. This 

finding is in good agreement with the corresponding values available in the literature both 

from experiments and simulation.43,44,47,48 

The resulting values of the calculated bead volume Vb, the corresponding number of 

beads for each PEO chain NDPD, and the cut-off radius rc used in the DPD simulations are 

listed in Table 3.1. 

 

 

NDPD
c
 

Vb
a (Å3) rc

b (Å) 
PEO19 PEO28 PEO56 PEO113 

262 9.23 4 6 11 23 

  
Table 3.1. Characteristics of the DPD beads and chains. aDPD bead volume. bCut-off radius. cTotal 
number of DPD beads in each PEO chain. 

 

                                                             
42 Connolly, M.L. J. Am. Chem. Soc. 1985, 107, 1118-1124. 
43 Kawaguchi, S.; Imai, G.; Suzuki, J.; Miyahara, A.; Kitano, T.; Ito, K. Polymer 1997, 38, 2885-2891. 
44 Smith, G. D.; Yoon, D. Y.; Jaffe, R. L.; Colby, R. H.; Krishnamoorti, R.; Fetters, L. J. Macromolecules 1996, 29, 3462-

3469. 
45 Blomqvist, J.; Mietila, L.-O.; Mannfors, B. Polymer 2001, 42, 109-116. 
46 Maly, M.; Posocco, P.; Pricl, S.; Fermeglia, M. Ind. Eng. Chem. Res. 2008, 47, 5023-5038. 
47 Annis, B. K.; Kim, M.-H.; Wignall, G. D.; Borodin, O.; Smith, G. D. Macromolecules 2000, 33, 7544-7548. 
48 Dong, H.; Hyun, J.-K.; Durham, C.; Wheeler, R. A. Polymer 2001, 42, 7809-7817. 
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Having determined the bead size, and fixed the system density to ρ=3, the characteristic 

dimension of the mesoscopic system could be calculated from Equation (3.3) as rc = 9.23 Å. 

As said, this value represents the soft potential cut-off distance, but also sets the length of 

the DPD simulation box. Our overall DPD system was chosen to be constituted by 20 × 20 × 3 

unit cells, and hence was characterized by effective dimensions of 18.5 nm × 18.5 nm × 2.8 

nm. 

At this point, the number of DPD beads of each individual system component (i.e., MMT, 

PEO, and H2O) must be estimated. To this purpose, the PEO-based PCN can be devised as 

composed of three different species of beads: one for the polymer chains (P), one for the 

water molecules (W), and one for the MMT surface (M). The modeling of the MMT layers in 

the context of DPD has been addressed by freezing locally the particles representing the 

silicate solid boundaries. These particles behave as fluid particles but maintain a fixed 

position and possess zero velocity. Therefore, these MMT walls interact with each bead in 

the system with a potential of the same form as the bead-bead conservative force. This force 

is short-ranged, so the system beads are not strictly forbidden from passing through the 

barrier. To prevent particles from entering the wall region, several methods have been 

proposed. In this work, we decided to apply the bounce-forward reflection approach49 in all 

calculations. Lastly, the number of individual polymer (Table 3.1) and water beads can be 

easily obtained from the atomistic polymer/water molecular volume ratio. 

The next, important issue of a DPD simulation is the determination of the bead interaction 

parameters. The detailed procedure for obtaining these mesoscale interaction parameters 

from atomistic molecular dynamics binding energies is reported Chapter 2. Adapting this 

recipe to the present system, the bead-bead interaction parameter for water-water 

interaction was set equal to aWW = 25, in agreement with the correct value for a density 

value of ρ = 3.40 The clay-water interaction parameter was set to a lower value (i.e., aMW = 

15), in order to mimic the good affinity between the silicate and water. Once these two 

parameters were set, and their values associated with the corresponding values of the self 

and mixed rescaled DPD energies, all the remaining bead-bead interaction parameters for 

the DPD simulation could be easily obtained, starting from the atomistic binding energy 

values, as described in Chapter 2. The entire set of DPD interaction parameters employed in 

this work are summarized in Table 3.2. 

 

 

P 

aij PEO19 PEO28 PEO56 PEO113 W M 

P 29.7 30.4 30.8 31.2   

W 24.1 26.0 28.1 30.0 25  

M 17.4 16.0 14.6 12.8 15 0 

 
Table 3.2. Bead-bead interaction parameters obtained for water-based PEO-MMT nanocomposites. 

 

 

In the framework of a multiscale modeling approach, one of the most important outputs 

of the mesoscale level calculations is the obtainment of the three-dimensional density 

profiles for each type of bead or, in other words, the system morphology. In fact, these 

density profiles constitute the input information for the last recipe step: the finite element 

calculations to estimate macroscopical properties. 

                                                             
49 Lavallee P.; Boon J. P.; Noullez A. Physica D 1991, 47, 233–240. 
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3.2.3 Finite element simulations 

Prediction of macroscopic properties of the PEO/MMT PCNs considered in this work, as a 

function of polymer molecular weight and clays loading, constitutes the final step of our 

multiscale modeling recipe. To this purpose, finite element (FE) simulations at ordinary 

temperature were performed using the software Palmyra (v. 2.5, MatSim, Zürich, CH). This 

software has been validated on different composite material morphologies by several 

authors,22d),e),50,51 yielding reliable results. FE calculations were applied in order to analyze 

both platelet stacks and overall nanocomposite properties, using fixed and variable grid, 

respectively. In particular, thermal expansion coefficients and electrical conductivity were 

the macroscopic properties of election, since it is in these performances that lies most of the 

industrial interest towards these new materials. The properties of the pure system 

components (i.e., silicate, polymer, and water) were taken from the available literature.52 

One of the major concerns in creating a suitable model for FE calculations is the definition 

of an appropriate reactive volume element (RVE), which could be representative of the 

different morphologies characterizing such complex materials as PCNs. Since most of the 

effects exerted by layered silicate addition is generally observed at low clay contents, we 

decided to adopt the following values for clay loading: 1%, 2%, 3%, 4%, and 5% w/w. Given 

the PEO and MMT experimental density values (1.14 g/cm3 and 2.71 g/cm3, 

respectively),52,53 these amounts correspond to clay volume fraction Vf range from 2.2% to 

0.42%. Relying on previous studies,22d),e) and on extensive trials, we selected to simulate an 

RVE made up of 48 MMT particles, grouped in stacks of different size, representing both the 

exfoliated and intercalated states (vide infra). 

MMT particles (both single particles and stacks) were modelled as disks with a toroidal 

rim. Each platelet thickness was defined by the height of the corresponding symmetry axis h 

and diameter d, thus being characterized by an aspect ratio of a = d/h. By setting d = 120 nm 

and h = 1 nm for each single particle, the aspect ratio a was equal to 120, a value in 

agreement with common literature data for layer silicates.1 According to these settings, the 

volume of a single MMT platelet is Vp = 11.3 × 103 nm3; this information, coupled with the 

MMT Vf values for each loading and the number of MMT sheets in each model box, was used 

to retrieve the dimensions of the FE cubic calculation cells. 

The mixed nature of intercalation and exfoliation of PEO/MMT PCNs was accounted for by 

grouping some MMT platelets in stacks; in other words, the models contained two different 

elements: single MMT sheets, representing exfoliated nanoparticles, and polymer 

intercalated MMT sheets (or stacks). Stacks were modelled using the same particle 

representation employed for MMT isolate sheets, but varying the platelet thickness 

according to the number of sheets characterizing each stack element. As PEO/MMT systems 

are known to be highly intercalated,52,54 based on our previous studies22d),e), and on the d-

spacing of stacks resulting from our lower-scale simulations, we convene to represent a PCN 

characterized by a low exfoliation/high intercalation morphology according to the conditions 

                                                             
50 Osman, M. A.; Mittal, V.; Lusti, H. R. Macromol. Rapid Commun. 2004, 25, 1145-1149. 
51 Heggli, M.; Etter, T.; Wyss, P.; Uggowitzer, P. J.; Gusev, A. A. Adv. Eng. Mater. 2005, 7, 225-229. 
52 a) Fripiat, J. J.; Jelli, A.; Poncelet, G.; André, J. J. Phys. Chem. 1965, 69, 2185-2196; b) McGowan, J. C. Polymer 1969, 

10, 841-848; b) Wu, J.; Lerner, M. M. Chem. Mater. 1993, 5, 835-838; c) Shanmukaraj, D.; Murugan, R. J. Polym. Sci. 2005, 
149, 90-95; d) Wang, W.; Yang, X.; Fang, Y.; Ding, J.; Yan, J. Appl. Energy 2009, 86, 1196-1200; e) Sengwa, R. J.; Choudhary, 
S.; Sankhla, S. Colloid Surface A 2009, 336, 79-87. 

53 Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793-1798. 
54 a) Krishnamoorti, R.; Vaia, R. A.; Giannelis, E. P. Chem. Mater. 1996, 8, 1728-1734; b) Harris, D. J.; Bonagamba, T. J.; 

Schmidt-Rohr, K. Macromolecules 1999, 32, 6718-6724; c) Shen, Z.; Simon, G. P.; Cheng, Y. - B. Polymer 2002, 43, 4251-
4260; d) Chaiko, F. J. Chem. Mater. 2003, 15, 1105-1110; e) Reinholdt, M. X.; Kirkpatrick, R. J.; Pinnavaia, T. J. J. Phys. 

Chem. B 2005, 109, 16296-16303; f) Chen, B.; Evans, J. R. G. J. Phys. Chem. B 2004, 108, 14986-14990; g) Sun, L.; Ertel, E. 
A.; Zhu, L.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I. Langmuir 2005, 21, 5672-5676. 
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reported in Table 3.3. Single particles and stacks were then oriented in the FE simulation box 

according to a method reported previously.22d)  

 

 

Particle type n. of particles a 

single 4 120 

2-stack 8 15 

4-stack 4 7.5 

6-stack 2 5 

 
Table 3.3. Platelet stacking parameters a and relative aspect ratio for a low exfoliation/high 
intercalation morphology of PEO/MMT PCN systems. The term particle designates both single, 
exfoliated clay sheets and intercalated stacks. 

 

 

 Once all model systems were prepared, appropriate surface and volume meshes had to 

be generated in order to run Palmyra solver and retrieve the macroscopic properties of 

interest. By applying a displacement-based finite element method to the total mesh, the 

responses to external deformations were calculated. In order to calculate thermal expansion 

coefficients, a thermo-elastic solver was used, and a seventh “deformation” (an increase of 

temperature by 1 K) was applied in order to obtain the linear thermal expansion coefficients. 

For other physical properties such as electrical conductivity, a Laplace solver was employed, 

that applies a field in the three main directions to the finite element mesh, and minimizes 

the energy of the composite.55 

3.3 Results and discussion 

3.3.1 Atomistic simulations 

In order to study the effect of PEO molecular weight and of the presence of water 

molecules on the interactions between polymer and clay platelets, we performed atomistic 

MD simulations of PEO-based PCNs in a solvated environment using polymers of different 

chain length but with an approximately constant total number of atoms. Accordingly, we 

modelled 6 PEO chains with a degree of polymerization DP equal to 19, four chains with DP = 

28, two chains with DP = 56, and one chain with DP = 113, respectively, approximately 

corresponding to a molecular weight of 750, 1100, 2000 and 5000 Da. Figure 3.1(a) and (b) 

show two MD snapshots of the hydrated MMT/PEO systems with the lowest and highest 

polymer MW considered, respectively. The resultant binding energy values between the 

individual system components are listed in Table 3.4, from which it can be readily seen that 

the favorable interactions between clay and polymer, as quantified by the term 

Ebind(MMT/PEO), increase with increasing polymer molecular weight. Thermodynamic 

arguments can be invoked to account for this trend. Indeed, it can be argued that the PEO 

macromolecules would generally adopt a conformation that allows for maximum segment-

surface interactions.56 For a given amount of polymer, the number of polymer segments can 

be assumed to be approximately the same. A higher molecular mass PEO possesses the 

                                                             
55 Gusev, A. A. Macromolecules 2001, 34, 3081-3093. 
56 Burchill, S.; Hall, P. L.; Harrison, R.; Hayes, M. H. B.; Langford, J. I.; Livingston, W. R.; Smedley, R. J.; Ross, D. K.; Tuck, 

J. J. Clay Miner. 1983, 18, 373-397. 



 29 

potential to realize larger segment/MMT surface contacts, which favour surface adsorption 

and, ultimately, result in the highest level on polymer intercalation into the silicate galleries. 

 

 

 
(a) 

 
(b) 

 

Figure 3.1. Equilibrated MD trajectory frames for pseudo 2D solvated MMT systems with (a) 6 PEO 
chains of DP = 19, and (b) 1 PEO chain of DP = 113, respectively. MMT is represented in CKP style, the 
polymer is depicted in blue stick rendering, and water molecules are shown as atom-colored sticks. 
Color legend: gold, silicon; red, oxygen; white, hydrogen; purple, Na; pink, Al; light green, Mg.  

 

 

Polymer System MMT/PEO/H2O NA
a
 

 Ebind(MMT/PEO) Ebind(MMT/H2O) Ebind(PEO/H2O)  

PEO19 -695 -5300 -891 810 

PEO28 -761 -5276 -861 792 

PEO56 -898 -5205 -784 788 

PEO113 -1015 -5104 -641 798 

 
Table 3.4. Binding energies in water systems with PEO chains of different molecular weight. All energy 
values are expressed in kcal/mol. aTotal number of polymer atoms in each simulation cell. 

 

 

Also, montmorillonite as a inorganic mineral is generally considered as being 

hydrophilic.57 Nonetheless, the basal Si-O groups in the spaces between hydrated cations in 

the clay interlayers are relatively hydrophobic, and, as results from the inspection of the 

corresponding density distribution profiles (vide infra), and in line with some other 

                                                             
57 Yan, L. B.; Roth, C. B.; Low, P. F. J. Colloid Interface Sci. 1996, 184, 663-670. 
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simulation and convincing experimental evidences,34,58 PEO tends to adsorb preferentially on 

these sites. A low molecular mass PEO chain features a higher number of hydrophilic –OH 

end groups with respect to a high molecular mass one; this, in principle, should facilitate the 

preferential intercalation and adsorption of the longer PEO chains with respect to the 

smaller ones, for which, conversely, the contact with the MMT are fewer and the chains 

tend to cluster, with water, in the middle of the interlayer space.  

In harmony with the foregoing discussion, both interaction energy terms between clay 

and water (Ebind(MMT/H2O) and polymer and water (Ebind(PEO/H2O)) decrease with 

increasing polymer chain length. Generally speaking, water molecules preferably reside on 

the surface of the clay, by virtue of strong Coulombic interactions between the water dipoles 

and the charged MMT surface. 

Further, a number of water molecules are engaged in hydrogen bonds with the surface –

OH groups of the MMT platelet as well as with the –OH moieties of the PEO chains. As the 

chain molecular mass increases, however, less MMT surface is available for water contacts 

due to a more extensive coverage from the long PEO chains; accordingly, Ebind(MMT/H2O) 

becomes lower. Also, the decreased hydrophilic character of longer PEO macromolecules 

with respect to shorter ones reflects in the lower interaction energy values (see Table 3.4). 

Further molecular dynamics simulations were conducted to derive number density 

profiles, showing the arrangement polymer molecules in the clay galleries, through a plane 

normal to the silicate galleries, again as a function of the PEO Mw. Figure 3.2(a) and (b) 

shows, as an example, the starting configuration and an equilibrated MD frame of the 

solvated MMT/PEO nanocomposite with PEO chains of molecular mass equal to 750, 

respectively.  

Interestingly, the equilibrium interlayer spacing, or d-spacing, is relatively insensitive to 

the degree of polymerization, being equal to 18.2, 18.0, 17.9, and 17.7 Å, for Mw 750, 1100, 

2000, and 5000, respectively. These values are in excellent agreements with both 

experimental and other simulation studies.33,54,59 A slightly higher d-spacing is obtained for 

the lowest MW PEO PCN system, an evidence which could be rationalized by the decreasing 

concentration of available –OH end groups as MW increases. Also, the preferential location 

for smaller chains in the middle region of the interlayer space can account for this (albeit 

small) larger value of d (see Figure 3.2(a)). Interestingly, Na+ cations in all cases were found 

located close to the surface of the mineral platelet, although a number of them were also 

observed at some distance from the MMT sheets (see Figure 3.2(b)), again in agreement 

with previous studies.59 

Figure 3.2(c) illustrates the density profiles within the silicate galleries as obtained from all 

PEO samples considered. As can be inferred from this Figure, the density profiles of the 

polymer carbon atoms change from those typical of a bilayer structure, featuring maxima 

near the clay platelets and a flat region in the middle in the intergallery space (highest MW 

PEO sample), to those pertaining to a trilayer structure, in which some chains still remain in 

the vicinity of the mineral surface but a substantial part of the material tends to concentrate 

in the middle of the MMT interlayer (lowest MW PEO sample). As discussed above, high mass 

PEO chains feature the highest binding energy with the MMT surface (see Table 3.4). In line 

with this evidence, these longer macromolecules tend to align themselves parallel to the clay 

                                                             
58 Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Chem. Geol. 2002, 182, 57-68. 
59 a) Kuppa, V.; Menakanit, S.; Krishnamoorti, R.; Manias, E. J. Polym. Sci. B: Polym. Phys. 2003, 41, 3285-3298; b) 

Strawhecker, K. E.; Manias, E. Chem. Mater. 2003, 15, 844-849; c) Loyens, W.; Jannasch, P.; Maurer, F. H. J. Polymer 2005, 
46, 903-914; d) Elmahdy, M. M.; Chrissopoupou, K.; Afratis, A.; Floudas, G.; Anastasiadis, S. H. Macromolecules 2006, 39, 
5170-5173; e) Mazo, M. A.; Manevitch, L. I.; Gusarova, E. B.; Shamaev, M. Y.; Berlin, A. A.; Balabaev, N. K.; Rutledge, G. C. 
J. Phys. Chem. B 2008, 112, 3597-3604. 
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wall, so that the highest number of chain segments can line up in a single layer and, thus, 

maximize the number of favorable contacts with the mineral. Quite an opposite situation is 

encountered at the other extreme of PEO molecular mass values considered in our study. 

Indeed, the high number of hydrophilic –OH chain ends tend to limit contacts with the basal 

Si-O groups, and improve the number of the more favorable water-polymer contacts (see 

Table 3.4), a situation which can be aptly realized by confining a consistent amount of PEO in 

the central part of the clay intergallery space. Finally, a smooth, continuum transition 

between these two extremes is seen for the remaining two intermediate MW PEO PCN, again 

in line with the progressively decreasing valued of the corresponding Ebind(MMT/PEO) values 

listed in Table 3.4. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3.2. Starting frame (a) and equilibrated MD trajectory frame for a solvated MMT systems with 6 
PEO chains of DP = 19. Molecule representation and color scheme as in Figure 3.1. (c) Number density 
profiles of PEO with different DP in solvated MMT nanocomposites: continuous line, PEO DP = 113; 
dotted-broken line, PEO DP = 56; broken line, PEO DP = 28; dotted line, PEO DP = 19. 
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3.3.2 Mesoscopic simulations  

By using the Dissipative Particle Dynamics approach along with the interaction 

parameters obtained from lower scale (i.e., atomistic MD) simulations as described 

previously, we modelled and simulated all solvated MMT/PEO PCNs at a mesoscopic level. In 

harmony with the MD approach, to mimic polymers of different MW we simulated four types 

of PEO chains with different number of beads; the total number of PEO beads, however, was 

kept constant in all systems. Figure 3.3(a) and (b) illustrates the system morphologies 

obtained from these simulations for the lowest and highest MW PEO solvated PCN system, as 

an example. A cursory comparison of Figure 3.3(b) with Figure 3.2(b) reveals a very good 

agreement between atomistic and mesoscale predictions. In fact, the highest tendency to 

flatten onto the MMT surface for the longer PEO with respect to preferred water contacts 

for chains of lower mass is well preserved at the scale level.  

 

 

 
(a) 

 
(b) 

 
Figure 3.3. Equilibrated mesoscale morphologies for (a) a solvated MMT systems PEO chains of DP = 
19 and (b) a solvated MMT systems with PEO chains of DP = 113. PEO molecules are shows as green 
sticks-and-balls, MMT walls are portrayed as gold balls, and water molecules are depicted as 
transparent blue spheres. The top MMT sheet is not shown for clarity. 

 

 

A quantitative analysis of these systems can be carried out by considering the density 

profiles along the direction normal to the silicate surface, which are reported in Figure 3.4(a) 

and (b). The shape of all density curves reveal the high but different affinity of polymer and 

water molecules for the inorganic surface: indeed, the density of water beads near the MMT 

surface is higher than that of the polymer chains (see Figure 3.4(a)), in agreement with the 

results gathered from MD simulations, again indicating that water molecules preferably 
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reside on the surface of the clay. Also, the density profiles of polymer beads in the DPD 

simulation box (see Figure 3.4(b)) clearly confirm the predictions obtained from the lower 

scale simulation that higher molecular weight polymers possess a higher affinity for the 

MMT surface. In fact, the density of polymer chains near the clay surface increases with 

increasing polymer chain length. This effect progressively levels out as the polymer chain 

decreases in length, and a further maximum in the density profile correspondingly appears, 

located in the clay gallery middle space, in harmony with the corresponding MD quantitative 

results. 

 

 

 
(a) 

 
(b) 

 
Figure 3.4. (a) DPD mesoscale density profiles of the interlayer polymer/water phase in the direction 
normal to the clay layers for water and polymer at different molecular weight. (b) Same data but 
without water curves for a better appreciation of the polymer density distribution. Legend: full 
symbols, polymer; empty symbols, water. 

 

 

3.3.3 Finite element simulations  

Polymer-clay nanocomposites in which an hydrophilic polymer, such as PEO, is highly 

intercalated within the sheets of layered silicates such as sodium/lithium MMT show 

interesting electromechanical responses, rendering them potential candidates for 
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applications as electrolytes in, for instance, solid batteries.5-7 Accordingly, for FE calculations 

we decided to focus on the predictions of those macroscopic properties of PEO/MMT 

systems most relevant to these practical purposes, i.e., thermal expansion coefficients and 

electrical conductivity. To this end, we took into consideration the dependence of these 

properties on the PEO Mw (in the range 750 – 5000 Da) and on the MMT loading (between 

1% and 5% w/w). Figure 3.5 (a)-(c) illustrates an intercalated stack in the FE RVE model of 

the PCN, a global model configuration, and the relative meshed volume used in the FE 

calculations for the PEO/MMT system with PEO of Mw = 5000 and 5% clay loading, as an 

example. 

The results of the FE calculations for the coefficient of thermal expansion (CTE) for the 

different PEO/MMT as a function of clay loading are shown in Figure 3.6(a). As can be seen 

from this image, the values of CTE linearly decrease as MMT loading increases, for all 

molecular weight PEOs, in agreement with available experimental evidences on closely 

related systems.60 The linear thermal expansion of a nanocomposite will greatly depend on 

the average orientation of the platelets. The effect of inorganic filler orientation on the 

reduction of linear thermal expansion is similar to the effect on modulus enhancement or 

reinforcement which has been studied more extensively. Filler geometry can also greatly 

affect physical properties of composites; e.g. high aspect ratios contribute to greater 

reduction in thermal expansion.1,60a) The high value of the thermal expansion coefficient of 

polymers is caused by the low energy barrier for the chain conformation to be changed. The 

thermal expansion coefficient always decreases with increasing aspect ratio and filler loading 

due to the mechanical constraint of the filler. Enhancement of dimensional stability is 

expected when a filler with high modulus and low thermal expansion coefficient is dispersed 

in a matrix of lower modulus and higher thermal expansion coefficient owing to simple 

mechanical restraints. Layered silicates seem attractive for this purpose owing to their high 

modulus, high aspect ratio, and low coefficient of thermal expansion; in addition, they are 

likely to be less detrimental to surface finish and ductility than conventional fillers. The 

larger constraining effect imposed by dispersed rigid platelets translates into lower thermal 

expansion coefficients. 

The rate of CTE decreasing with increasing clay content is slightly higher for polymers with 

smaller chains. This observation can be rationalized by considering that, for a given MT 

loading, the corresponding low molecular weight PEO fractions, characterized by higher 

chain mobility, should suffer the larger constraining effects imposed by dispersed rigid 

platelets more than their longer counterparts, and this ultimately translates onto lower 

thermal expansion coefficients for lower DP PEO/MMT PCNs. Notably, above a certain filler 

content (between 6 and 8%), the CTE values for all PNCs seems to converge, suggesting that 

the effect of the polymer molecular mass levels off when a substantial amount of filler is 

present, and polymer chains undergo comparable constraining effects imposed by the 

mineral particles independently on their relative length. 

Figure 3.6(b) shows the behavior of electrical conductivity σ for all PEO/MMT PCNs as a 

function of clay loading, as estimated with our multiscale simulation procedure. Although 

the effect of polymer molecular weight on σ is less pronounced than in the case of CTE, we 

can still observe that, in particular at lower clay contents, PNCs with shorter PEO chains 

features higher values of σ with respect to high molecular weight samples. 

                                                             
60 a) Yoon, P. J.; Fornes, T. D.; Paul, D. R. Polymer 2002, 43, 6727-6741; b) Jan, I.-N.; Lee, T.-M.; Chiou, K.-C.; Lin, J.-J. 

Ind. Eng. Chem. Res. 2005, 44, 2086-2090; c) Lee, K. Y.; Kim, K. H.; Jeoung, S. K.; Ju, S. I.; Shim, J. H.; Kim, N. H.; Lee, S. G.; 
Lee, S. M.; Lee, J. K.; Paul, D. R. Polymer 2007, 48, 4174-4183; d) Lee, K. Y.; Hong, S. R.; Jeoung, S. K.; Kim, N. H.; Lee, S. G.; 
Paul, D. R. Polymer 2008, 49, 2146-2152; e) Rao, Y. Q.; Blanton, T. N. Macromolecules 2008, 41, 935-941. 
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Intuitively, this can be ascribed once more to the higher mobility of smaller PEO chains 

but, importantly, also to the lower affinity of these shorter macromolecules for the MMT 

surface (see Table 3.4, Figure 3.1, and discussion above). MMT samples in equilibrium with 

the atmospheric moisture have water molecules associated with the interlayer cations; 

accordingly, the enhanced ionic conductivity of these systems can be mainly ascribed to the 

interlayer cations associated to water molecules.52 By interacting less tightly with the clay 

platelet, and being distributed mainly at the center of the interlayer galleries, the low DP 

PEO chains allows for a higher mobility of the interlayer cations and their hydration shell. In 

the presence of high molecular weight chains, on the contrary, the high affinity of these 

macromolecules for the clay surface, and the tendency to adopt chain conformations which 

maximize polymer segments/clay platelet interactions, ultimately produce a strong 

association of the interlayer cations and the clay surface oxygens. As a consequence, these 

metal ions remain entrapped into a highly constrained system where their mobility is 

prevented, and very high temperatures (e.g., up to 600K) are required to observe ionic 

conductivity in the range of 10-8–10-9 S/cm.7 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3.5. Intercalated stack in the FE RVE model of the PEO/MMT PCN (a), global model 
configuration (b), and relative meshed volume (c) used in the FE calculations for the PEO/MMT system 
with PEO of Mw = 5000 and 5% clay loading. 
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PEO intercalation into the MMT galleries, coupled with the presence of water molecules 

in the sheet spacing produce drastic cation environment modifications that allow 

appreciable electric conductivity even at ordinary temperature. Following Aranda,7 and in 

harmony with the morphologies predicted at all scales in this work, in water-PEO 

intercalated PCNs the organic polymers with smaller mass chains, by maximizing their 

density in the interlayer spacing, act as a sort of pillar, causing a permanent separation 

between the silicate layers on one side and, on the other, reducing the cations mobility 

restrictions. In addition to this so-call “pillar-effect”, other factors, mainly associated with 

the relaxation of the polymer chains, can also concur to the increase of the cation mobility,61 

although a detailed discussion on these effects is outside the scope of the present study. 

 

 

 
(a) 

 
(b) 

 
Figure 3.6. Coefficient of thermal expansion (CTE) (a) and electrical conductivity σ (b) for all PEO/MMT 
PCNs as a function of clay loading, as predicted from finite element calculations based upon the 
multiscale modeling procedure developed in this work. 

                                                             
61 a) Papke, B. L.; Ratner, M. A.; Shriver, D. F. J. Electrochem. Soc. 1982, 129, 1694-1701; b) Ratner, M. A.; Shriver, D. F. 

Chem. Rev. 1988, 88, 109-124; c) Cowie, J. M. G.; Cree, S. H. Annu. Rev. Phys. Chem. 1989, 40, 85-113. 
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3.4 Conclusions 

There are many levels at which computer-based molecular simulation techniques can be 

useful, ranging from highly detailed ab initio quantum mechanics, through classical, 

atomistic molecular dynamics, to process engineering modeling. These computations can 

significantly contribute to reduce wasted experiments, allow products and processes to be 

optimized, and permit large numbers of candidate materials to be screened a priori, even 

before their synthesis. These techniques are currently used to obtain thermodynamic 

information about pure or mixed systems. This information obtained by using microscopic 

properties assumes any system to be homogeneous in composition, structure and density, 

which is clearly a severe limitation. When a system is complex, comprising several 

components, eventually sparingly miscible, PCNs being prime examples, peculiar phases with 

remarkable properties can be observed. These so-called mesophases comprise far too many 

atoms for atomistic modeling description. Hence, coarse-grained methods are better suited 

to simulate such structures. One of the primary techniques for mesoscopic modeling is DPD, 

a particle-based method that uses soft-spheres to represent groups of atoms, and 

incorporates hydrodynamic behavior via a random noise, which is coupled to a pair-wise 

dissipation. However, retrieving information on mesophase structures is not enough for 

predicting macroscopic features of such materials. This is possible if mesophase modeling is 

coupled with appropriate finite element tools that – provided properties of pure 

components are given or can be in turn obtained by simulation – allow obtaining a realistic 

estimation of many nanocomposites features, if integrated with experimental/simulated 

morphological data. 

In this work we presented the derivation and application of a multiscale molecular 

modeling procedure to characterize polymer-clay nanocomposite materials obtained from 

water solution intercalation. This approach relies on a step-by step message-passing 

technique from atomistic to mesoscale to finite element level; thus, computer simulations at 

all scales are completely integrated, and virtually no experimental data are necessary to 

characterize the systems, at least at a preliminary stage of the analysis. 

The entire computational procedure has been applied to four PCN systems based on 

montmorillonite and poly(ethylene oxide) with different molecular weights as test materials, 

and their thermal and electrical macroscopical properties were predicted in excellent 

agreement with the available experimental data. 

The global perspective of our current research in this field is the complete integration of 

all available simulation scales, in a hierarchical procedure, to provide an efficient and robust 

simulation protocol for the successful design of PCNs of industrial interest, and the 

prediction of their final performance. Although the proposed computational recipe could still 

be refined by considering, for instance, a more precise analysis of different morphologies, 

matrix morphology next to the single exfoliated platelet surface, to our knowledge this is the 

first, successful computational procedure applied to water-based PCNs able to predict, with 

a high degree of confidence, PCNs hierarchical structures and behavior, and to capture all 

the phenomena taking place on length scales that typically span 5 – 6 orders of magnitudes 

and time scales encompassing a dozen of orders of magnitude. 
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Chapter 4 

Self-assembly control of nanoparticle mixtures 

in diblock copolymers 

Mixing microphase-separating diblock copolymers and nanoparticles can lead to the self-

assembly of organic/inorganic hybrid materials that are spatially organized on the 

nanometer scale. Controlling particle location and patterns within the polymeric matrix 

domains remains, however, an unmet need. Computer simulation of such systems 

constitutes an interesting challenge since an appropriate technique would require the 

capturing of both the formation of the diblock mesophases and the copolymer-particle and 

particle-particle interactions, which can affect the ultimate structure of the material. In this 

work we discuss the application of Dissipative Particle Dynamics (DPD) to the study of the 

distribution of nanoparticles in different copolymer matrices. The DPD parameters of the 

systems were calculated according to a multiscale modeling approach, i.e., from lower scales 

(atomistic) simulations. The results show that the positioning and ordering of the 

nanoparticles depend on several, different factors, including their covering type and volume 

fraction. Also, the geometrical features of the matrix are found to exert an influence on the 

particle location and pattern. The overall results provide molecular-level information for the 

rational, a priori design of new polymer-particle nanocomposites with ad hoc, tailored 

properties. 

An excerpt of this work is published in Maly, M.; Posocco, P.; Pricl, S.; Fermeglia, M. Ind. 

Eng. Chem. Res. 2008, 47, 5023-5038. 

4.1 Introduction 

The combination of organic polymers and inorganic particles can lead to a composite 

material whose properties are more useful than those of either of the two individual 

components. As an example, if the particles are metals or semiconductors, the relevant 

composite can exhibit both the unique electrical, optical or magnetic properties of the 

inorganics, and the flexibility, low density and processability of the macromolecules. The 
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process of fabrication of these nanostructure composites is of paramount importance, as the 

miniaturization of devices for, say, electronic or biomedical applications is leading to feature 

sizes that are on the nanometer length scale. One of the most efficient route to prepare such 

systems is self-assembly, a process in which, in a cooperative fashion, the different 

components interact and promote the formation of the polymer-particle nanocomposite 

(PPN). Accordingly, one of the most intriguing – and challenging – scientific and 

technological goal is to identify critical thermodynamic variables upon which new, 

alternative paths for driving organic long chain molecules and inorganic nanoparticles to 

self-assembly into a PPN can be devised. Moreover, another critical step consists in being 

able to predict the morphology of these hybrid materials, as their macroscopic properties 

will ultimately depend on their microstructural features. 

One way to assess the first challenge is to disperse particles of nanoscopic dimensions in 

diblock copolymer matrices.1,2,3 From a theoretical standpoint, the macroscopic phase 

separation of a copolymer into domains of nanoscale dimensions can be harnessed to 

template the ordering of the particles in a plethora of structures, ranging from nano-planes 

to nano-wires or nano-spheres, resulting in materials that are spatially periodic on a length 

scale of the nanometer. Notwithstanding the variety of methods proposed, however, the 

real success of controlling the precise location of the nanoparticles within the polymeric 

domains remains limited.4,5,6 Recently, a simple procedure to incorporate nanoparticles and 

control their location within different diblock copolymer domains by controlling the surface 

chemistry of the particles has been proposed by Chiu et al.7 According to this idea, to localize 

particles within the A- or B- domain of an A-B diblock copolymer, the particles themselves 

are coated with either A- or B-type homopolymer, respectively. To concentrate the particles 

at the interfaces between the blocks, on the other hand, they should be coated with a 

mixture of A- and B-type homopolymers. Using this approach, therefore, the particles 

position can be fine tuned within either of the two copolymer domains, or at the interface 

between the blocks. 

A further recent strategy for controlling the location of nanoparticles within block 

copolymer domains involves varying the surface coverage of the nanoparticles by an end-

attached homopolymers A ligand.8 As the areal chain density of the A chains (i.e. the number 

of polymer A ligands per each particle, divided by the average surface area of the particle) 

on the nanoparticle decreases, a sharp transition from the case where the particles are 

located in the A domain to the case where the particles are located at the A-B interface is 

observed. Tailoring the surface of the nanoparticles by modifying a single parameter (i.e. the 

areal chain density of ligand A) is then another simple approach for controlling their specific 

adsorption and localization. 

The second, equally important challenge of microstructure prediction is quite ambitious, 

as the final morphology of these materials will depend on a number of factors, some strictly 

connected to the nature of the system (i.e., the chemistry and architecture of the blocks, the 

                                                             
1 Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Science 2001, 292, 2469-2472. 
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3 Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Macromolecules 2002, 35, 1060-1071. 
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8 a) Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J. Macromolecules 2006, 39, 4108-4114; b) Kim, J. B.; Fredrickson, G. 
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Macromolecules 2008, 41, 436-447; d) Kim, J. B.; Fredrickson, G. H.; Bang, J.; Hawker, C. J.; Kramer E. J. Macromolecules 
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volume fraction of the nanoparticles, and the strength and type of interactions between the 

system components, just to name a few), and others bound to process conditions (e.g., 

temperature or shear). To date, there are few theories to pinpoint the critical parameters or 

to predict the thermodynamic stability of a PPN system,9,10,11 substantially forcing synthetic 

chemists to synthesize all possible mixtures in order to isolate the desired system. Despite 

the tremendous advances made in the modeling of structural, thermal, mechanical and 

transport properties of materials at the macroscopic level (finite element (FE) analysis of 

complicated structures), there remains a tremendous uncertainty about how to predict 

many critical properties related to performance. The fundamental problem here is that 

these properties depend on the atomic level of interactions and chemistry, dealing with the 

electronic and atomic level of description and at a length/time scale of nanometers and 

nanoseconds. The material designer, however, needs answers from macroscopical modeling 

(the finite element paradigm) of components having scales of centimeters and milliseconds, 

if not larger. To substantially advance the ability to design useful high performance 

materials, it is then essential that we insert the chemistry into the mesoscopic (MS) and 

macroscopic (FE) modeling. Currently, atomistic level simulations such as molecular 

dynamics or Monte Carlo techniques allows to predict the structure and properties for 

systems of considerably large number of atoms and time scales of the order of 

microseconds. Although this can lead to many relevant results in material design, many 

critical issues in materials design still require time and length scales far too large for practical 

MD/MC simulations. Therefore, we need to develop methods treating the mesoscale in 

between the atomistic length and time scales of MD/MC and the macroscopic length and 

time scales (microns to millimeters, and microseconds to seconds) pertaining to FE analysis. 

This linking through the mesoscale, in which we can describe a system microstructure, is 

probably the greatest challenge to developing reliable first principles methods for practical 

and effective material design. Indeed, only by establishing this connection from microscale 

to mesoscale it is possible to build first principles methods for describing the properties of 

new materials and composites. 

One of our major aims is to reach the domain of materials science and engineering by 

building from fundamental principles of physics and chemistry. Thus, for fundamental 

predictions to play a direct role in materials innovation and design, it is essential to fill the 

micro-meso gap. The problem here is that the current methods of coarsening the description 

from atomistic to mesoscale (as well as MS to FE) are not as obvious as they are from going 

to the quantum mechanics (QM) to the atomistic level, being strongly system-dependent 

and, hence, hardly generalizable. Indeed, it is quite clear that the strategy for polymers 

should be rather different from that adopted for metals, and again different from that 

conceivable for ceramic systems. Given these concepts, it is than necessary to carry out 

calculations for realistic time scales fast enough to be useful in design. This requires 

developing techniques useful to design engineers, by incorporating the methods and results 

of the lower scales (e.g., MD) to mesoscale simulations. 

In this work, we developed a hierarchical procedure for bridging the gap between 

atomistic and mesoscopic simulation for polymer-particle nanocomposite design. The 

Dissipative Particle Dynamics (DPD)12 is adopted as the mesoscopic simulation technique, 

and the interaction parameters of the mesoscopic model are estimated by performing lower 

                                                             
9 Balazs, A. C.; Singh, C.; Zhulina, E.; Lyatskaya, Y. Acc. Chem. Res. 1999, 32, 651-657. 
10 Kuznetsov, D.; Balazs, A. C. J. Chem. Phys. 2000, 112, 4365-4375. 
11 Fornes, T.D.; Paul, D.R. Polymer 2003, 44, 4993-5013. 
12 a) Hoogerbruge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 18, 155–160; b) Koelman, J. M. V.A.; Hoogerbruge, 

P. J. Europhys. Lett. 1993, 21, 363. 
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scale (i.e., atomistic molecular dynamics (MD)) simulations. To test and validate the 

proposed procedure, we decided to consider the same system used by Kim et al.,7,8 

employing a diblock copolymer poly(styrene-b-2 vinyl pyridine) (PS-PVP) and Au 

nanoparticles covered either by PS (or PVP) or a mixture of PS and PVP, and considering the 

influence on nanodispersion of different polymer microstructure morphologies (lamellar, 

hexagonal, spherical). 

4.2 Models and methods 

4.2.1 Determination of DPD interaction aij parameters 

There is a close relationship between the soft repulsive sphere model employed in DPD 

and the well-known Flory-Huggins model for polymer interactions.13 This relationship allows 

us to translate the repulsion parameters aij into the more familiar Flory-Huggins interaction 

parameter χij. 

The first step necessary for the determination of the DPD input interaction parameters, 

aAB, generally consists in defining the DPD bead volume, thus implicitly defining the 

characteristic length of the system (rc). As illustrated in Chapter 2, the interaction range rc 

sets the basic length-scale of the system; in other terms, rc is defined as the side of a cube 

containing an average number of ρ beads. Therefore: 

 

( ) 3/1
ρ DPDc Vr =  (4.1)

 

where VDPD is the volume of a given DPD bead. Thus, even in a heterogeneous system 

consisting of several different species, such as PPNs, a basic DPD assumption is that all bead-

types (each representing a single species) are of the same volume VDPD. 

The basic strategy to calculate VDPD consists in mapping the real polymer chain onto a 

chain consisting of Kuhn's segments. Consequently, each DPD bead represents a statistically 

correlated unit or Kuhn segment of the polymer. A DPD chain should, therefore, be made up 

of nDPD beads, where: 

 

∞
=

C

N
n mon

DPD  (4.2)

 

where Nmon is the degree of polymerization of the molecular chain, and C∞ its 

characteristic ratio, a parameter representing the stiffness of a chain. When a flexible 

macromolecules is modeled as a Gaussian chain, however, C∞ represents also the number of 

monomers making up a Kuhn segment (i.e., contained in a single DPD bead). Therefore, the 

bead volume VDPD can be simply obtained multiplying the characteristic ratio C∞  for the 

monomer volume Vmon. 

Nmon can be obtained knowing the molecular weight of the polymer; C∞ is an intrinsic 

property of the chain, and was estimated in this work using a molecular dynamics procedure 

based on the Rotational Isomeric State (RIS) method highlighted in Figure 4.1. 

 

 

                                                             
13 Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423-4436. 
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Figure 4.1. Computational procedure to estimate the characteristic ratio C∞. 
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VDPD
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PS (A-type bead) 96.98 161.03 9.90 2.55 19.80 9.90 1610 

PVP (B-type bead) 92.44 153.50 9.90 2.40 22.12 9.90 1535 

 
Table 4.1. Characteristics of the PS-PVP copolymer building blocks. aMonomer molar volume; 
bmonomer volume; ccharacteristic ratio; dmonomer length; esolubility parameter, fnumber of 
monomers of type A (or B) in each DPD bead; gvolume of one DPD bead. 

 

 

According to our recipe, a given number of different chain configurations at a fixed Nmon – 

say C1, C2, C3 – are generated via RIS. Each Ci then undergoes independent cycles of 

molecular mechanics minimization and simulated annealing procedures14 before running a 

productive NVT MD. After the simulation is done, the end-to-end distance of the chains is 

estimated, and the C∞ is calculated. The procedure is repeated, for each configuration at 

different chain length Nmon, until a constant value of C∞ is obtained. The final value of C∞ is 

estimated by averaging over all the configurations considered. The values of the calculated 

monomer molar volume Vmol, monomer volume Vmon, characteristic ratio C∞, and monomer 

length l are listed in Table 4.1. 

Having set the values, the successive, necessary step is the value of the Flory-Huggins 

interaction parameter χΑΒ, from which aAB can be determined using the following 

relationship, as proposed by Glotzer and her group:15 

 

AB

DPD

AAAB
N

aa χ








++= 51.0

9.3
127.3  (4.3)

 

where NDPD is the total chain length of the mesoscale model of the A-B copolymer. 

χΑΒ is defined in terms of solubility parameters of the A and B components as: 

 

                                                             
14 Scocchi, G.; Posocco, P.; Fermeglia, M.; Pricl, S. J. Phys. Chem. B 2007, 111, 2143-2151. 
15 Horsch, M. A.; Zhang, Z., Iacovella, C. R.; Glotzer, S. C. J. Chem Phys. 2004, 121, 11455-11462. 
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( )2
BA

B

mon
AB Tk

V δδχ −=  (4.4)

 

where Vmon is the volume of one polymer segment corresponding to the bead in DPD, kB 

the Boltzmann constant, T the temperature, and δi is the solubility parameter of the ith 

component, which is related to the cohesive energy densities ecoh by: 

 

cohe
V

Ecoh ==δ  (4.5)

 

The solubility parameters for the A and B homopolymers were obtained from atomistic 

MD simulations following a validated procedure of our group.16,17 Briefly, the method 

comprises the construction of amorphous fluid structures of each homopolymer at 

experimental density (in the absence of such information, isobaric-isothermal (NPT) MD 

simulations can be performed to equilibrate the system density). Three-dimensional, 

periodic cells are then generated and MD simulations in the canonical ensemble (NVT) are 

then performed to evolve each system and generate statistically independent structures. 

According to Equation 4.5, the solubility parameter δ is defined as the square root of the 

cohesive energy density; ecoh, in turn, is defined as the ratio of the cohesive energy Ecoh and 

the molar volume V at a given temperature. Physically, Ecoh can be seen as the increase in 

internal energy per mole of substance if all intermolecular forces are eliminated. Since in our 

simulated systems, each chain is surrounded by other chains that are simply displaced 

images of the chain itself; accordingly, the cohesive energy is the energy of interactions 

between these images. The values of Ecoh can then be simply obtained from simulation by 

calculating the difference between the non-bonded energy of the periodic structure, 

Enb_periodic 
and the corresponding value for an isolated parent chain in vacuum Enb_isolated: 

 

nb
periodic

nb
isolatedcoh EEE −=  (4.6)

 

The obtained values of the solubility parameters are listed in Table 4.1. 

 In contrast to pure diblock copolymer systems, where mapping results from the 

correspondence between DPD and Flory-Huggins type polymer models and solubility 

parameters, it is not a straightforward task to map solid particles-diblock interactions. 

In this work we decided to obtain these mesoscale interaction parameters from atomistic 

molecular dynamics binding energies, applying the approach described in details in Chapter 

2. 

As far as the Au model is concerned, starting from relevant crystallographic coordinates,18 

we built the unit cell using the Crystal Builder module of Materials Studio (v. 4.4 Accelrys, 

San Diego, CA).  

As our major goal is to estimate the interaction energies between all system elements 

accurately, and since these quantities are highly sensitive to the nonbonded components of 

the force field (FF) employed, we decided to adopt here an ad hoc modified Compass FF, 

developed recently by Heinz and coworkers.19 

                                                             
16 Fermeglia, M.; Pricl, S. AIChE J. 1999, 45, 2619-2627. 
17 Pricl, S.; Fermeglia, M. Fluid Phase Eq. 1999, 166, 21-37. 
18 CRC Handbook of Chemistry and Physics; 79th ed.; Lide, D. R., ed.; CRC Press: Boca-Raton, 1998. 
19 Heinz, H.; Vaia, R. A.; Farmer, B. L.; Naik, R. R. J. Phys. Chem. C 2008, 112, 17281-17290. 
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As demonstrated by the authors,19 this accurately derived FF is able to describe the 

interfacial thermodynamics properties with a deviation from experiment amounting only to 

10% in comparison to 100% with earlier models, which constitutes a fundamental step 

toward quantitative modeling of sensitive interfacial processes involving metal surfaces. 

Accordingly, the resulting lattice of our Au model is face centered cubic (fcc) and 

characterized by the following lattice parameters: a=b=c= 4.0785 Å, and α=β=γ=90°, in 

excellent agreement with the model validated by Heinz.19 

Super cells of approximately 2 x 2 x 0.8 nm3 size (5 x 5 x 2 unit cells) were employed in all 

MD simulations. 

The procedure for the polymer (both PVP and PS) consisted in building and optimizing the 

polymer constitutive unit using Compass FF, which was then polymerized to the desired 

degree of polymerization. In order to obtain a reasonable sampling of the polymer 

conformational space, we built 10 different configurations of PVP and PS chains, using 

Amorphous Builder module of Materials Studio, which uses a version of the RIS method for 

generating polymer chain configurations. Each polymeric structure was then relaxed and 

subjected to a combined molecular mechanics/molecular dynamics simulated annealing 

(MDSA) protocol.20 

Resorting to atomistic MD simulations in the NVT ensemble allows the retrieval of 

important information on the interaction and binding energy values between the different 

components of a PPN system.20,21,22,23,24,25,26 The technique basically consists in simulating 

the interface between the gold surface and copolymer by building a cell that is “stretched” 

along the c-direction (up to 150 Å); in this way, even if the model is still 3-D periodic, there 

are no interactions between the periodic images in the c direction, ultimately resulting in a 

pseudo 2-D periodic system,27 from which the binding energies between all system 

components can be calculated. 

According to our approach, we created a cell of 150 Å in height and copied each of the 10 

configurations of PVP or PS in 10 identical cells, thus obtaining 10 different model systems 

for each single polymer system (20 systems in total). The NVT molecular dynamics were 

performed with Materials Studio Discover module. Each simulation was run at 298.15 K for 

500 ps, applying the Ewald summation method for treating Coulomb interactions; an 

integration step of 1 fs and Nosé thermostat (Q ratio = 1) were also adopted. The energetic 

analysis was conducted only on the parts of the trajectory with steady state behavior and 

mediated over the 10 configurations for each polymer. 

The procedure used to calculate the interaction energies and, hence, the binding energy 

values Ebind between all system components, is well estabilished.20a)-d),22 

For the binding energy Ebind calculations, we started from the concept that the binding 

energy of a system composed, for instance, of poly(styrene) (PS) and gold (Au), may be 

calculated from the following equation 

                                                             
20 a) Fermeglia, M.; Ferrone, M.; Pricl, S. Fluid Phase Eq. 2003, 212, 315-329; b) Toth, R.; Coslanich, A.; Ferrone, M.; 

Fermeglia, M.; Pricl, S.; Miertus, S.; Chiellini, E. Polymer 2004, 45, 8075–8083; c) Scocchi, G.; Posocco, P.; Danani, A.; Pricl, 
S.; Fermeglia, M. Fluid Phase Eq. 2007, 261, 366-374; d) Fermeglia, M.; Ferrone, M.; Pricl, S. Mol. Simul. 2004, 30, 289-
300; e) Scocchi, G.; Posocco, P.; Handgraaf, J.-W.; Fraaije, J. G. E. M.; Fermeglia, M.; Pricl, S. Chem. Eur. J. 2009, 15, 7586-
7592. 

21 a) Kasemägi, H.; Aabloo, A.; Klintenberg, M. K.; Thomas J. O. Solid State Ion. 2004, 168, 249–254; b) Kasemägi, H.; 
Klintenberg, M. K.; Aabloo, A.; Thomas J. O. Solid State Ion. 2002, 147, 367–375. 

22 Toth, R.; Ferrone, M.; Miertus, S.; Chiellini, E.; Fermeglia, M.; Pricl, S. Biomacromolecules, 2006, 7, 1714–1719. 
23 Tanaka, G.; Goettler, L. A. Polymer 2002, 43, 541-553. 
24 Gardebien, F.; Bredas, J.-L.; Lazzaroni, R. J. Phys. Chem. B 2005, 109, 12287–12296. 
25 Katti, K. S.; Sikdar, D.; Katti D. R.; Ghosh, P.; Verma, D. Polymer 2006, 47, 403-414. 
26 Paul, D. R.; Zeng, Q. H.; Yu, A. B.; Lu, G. Q. J. Colloid Interface Sci. 2005, 292, 462-468. 
27 Misra, S.; Feming, P. D. III; Mattice, W. L.; J. Comput.-Aided Mater. Des. 1995, 2, 101-112. 
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( ) AuPSAuPSbind EEEAuPSE // −+=  (4.7)

 

where the first two terms represent the energy of poly(styrene) and gold, consisting of 

both valence and nonbonded energy terms, and the last term is the interaction energy 

between the two components, made up of nonbonded terms only. By definition, the binding 

energy Ebind is the negative of interaction energy. Next, we deleted the PS molecules, leaving 

the gold surface alone, and thus calculated the energy of the slab (EAu). Similarly, we deleted 

the metal layer from the PS-Au system, and calculated EPS. 

The remaining binding energy Ebind(PVP/Au) can be computed in an utterly analogous 

fashion from the corresponding energy components. 

The detailed procedure for obtaining the mesoscale interaction parameters from 

atomistic molecular dynamics binding energies is reported in Chapter 2.  

The length of the DPD copolymer chain corresponds to NDPD = 14. The bead volume VDPD is 

taken as the average bead volume of PS/PVP blocks and corresponds to 1573 Å3; the cutoff 

radius rc is calculated from Equation 4.1 using this mean value and is 16.8 Å; the χΑΒ 

parameter is derived from Equation 4.4 and found to be equal to χΑΒ=2.057. 

Each DPD gold nanoparticle was considered to have an icosahedral structure, devised as 

being constituted by a central bead, surrounded by 12 other beads, one of each vertex of the 

icosahedron (see Figure 4.2). Nanoparticle shape was preserved by employing a high value 

of the spring constant (i.e., K = 200). In fact, the shape of the icosahedral nanoparticles was 

monitored during simulations by the radial distribution function between the central and 

surface beads. It was found that K = 200 was high enough to guarantee icosahedral particle 

geometry during each simulation. For comparison, the value of the spring constant used for 

the polymer chain was 4. 

The radius of the icosahedron was set equal to Ri = 0.72×rc; the equilibrium distance for 

the bond spring between the surface beads was set equal to r0=0.76rc, for the bond spring 

between the central and surface beads equal to r0=0.72rc, and an equilibrium value of ro=0 

was employed for the polymer bonds. 

Adapting the recipe described in Chapter 2 to the present system, we set the bead-bead 

interaction parameter for poly(styrene)-poly(styrene) interaction equal to aPSPS=25.00 

according to an appropriate value for a density value of ρ=3.13 The gold-gold interaction 

parameter was set to a lower value (i.e. aNN=20.00), in order to mimic the aggregation 

tendency between bare nanoparticles. Once these two parameters were set, and their 

values associate with the corresponding values of the self- and mixed rescaled DPD energies, 

all the remaining bead-bead interaction parameter for the DPD simulation could be easily 

obtained, starting from the atomistic binding energies (see Chapter 2). The entire set of 

mesoscale interaction parameters employed in this work is summarized in Table 4.2. 

It’s known from literature8a),28 the preferential interaction between gold and PVP, whose 

nitrogen lone-pair electrons favorably interact with Au atoms of the nanoparticle. This 

tendency is well reproduced in a lower mesoscale interaction parameter aPVPAu with respect 

to aPSAu  directly derived from lower scale atomistic simulation. 

 

 

 

                                                             
28 a) Kunz, M. S.; Shull, K. R.; Kellock, A. J. J. Colloid Interface Sci. 1993, 156, 240-249; b) Ho, R.-H.; Lin, T.; Jhong, M.-R.; 

Chung, T.-M.; Ko, B.-T.; Chen, Y.-C. Macromolecules 2005, 38, 8607-8610. 
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(a) 

 
(b) 

 
Figure 4.2. (a) Geometry and definition of the icosahedral nanoparticles considered in this work: a 
central core DPD bead N (Au) is surrounded by other 12 DPD beads of type A (PS), or B (PVP), or N 
(Au), depending of the covering type considered, each on each vertex of the icosahedron. (b) 
Equilibrated snapshot of a model system with lamellar morphology. The polymer matrix DPD particles 
of type A (PS-blocks) are coloured gold, those of type B (PVP-blocks) are depicted in white. In each 
nanoparticle, the central DPD bead is coloured red, whilst the remaining 12 DPD particles, making up 
the surface of the real icosahedral nanoparticles, are green. 

 

 

aij PS (A) PVP (B) Au (N) 

PS (A) 25.00   

PVP (B) 38.55 24.11  

Au (N) 29.76 26.23 20.00 

 
Table 4.2. DPD bead-bead interaction parameters used in this work. 

 

 

4.2.2 DPD simulation details 

The theoretical understanding of the factors that lead to a successful self-assembly of 

nanocomposites is relatively limited. Hence, it is of paramount importance to develop a 

general framework for gaining a better insight into the thermodynamics aspect of 

nanoparticles in ordered microphase-separated domains and for predicting how the 

nanoparticles will organize into these ordered structures. 

In this contribution, we explored the effect of particle loading on the phase behavior of 

block copolymer/nanoparticles composites. Three different kind of morphologies of the 

polymeric matrix were considered: lamellar (and perforated lamellar), hexagonal and 

micellar. Nanoparticles were considered dispersed in the system at a volume fraction in the 

range of 0.03-0.1. 

According to the phase diagram for phase segregation of diblock copolymers,29,30 to 

simulate a lamellar morphology the relative amount of the two blocks should be 

                                                             
29 Groot, R. D.; Madden, T. J. J. Chem. Phys. 1998, 108, 8713-8724. 
30 Lisal M., Brennan J. K. Langmuir 2007, 23, 4808-4818. 
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approximately the same (i.e., 50/50); in our DPD terms, this corresponds to a chain 

architecture of A7B7. According to several, different trials, this DPD chain architecture led to 

an equilibrium lamellar morphology with all lamellae aligned parallel to one side of the 

simulation box in the most reasonable CPU time and without the application of shear.30 The 

achievement of such condition was necessary to derive accurate 2-dimensional density 

profiles along the direction perpendicular to the lamellae, which yield information about 

both nanoparticles and polymeric matrix density distributions. 

Perforated lamellae were obtained employing a molecular architecture of A5B9, and 

spherical micelles with a chain of architecture A2B12. 

On the other hand, to obtain a hexagonal matrix morphology, the corresponding DPD 

architecture should be A4B10. Again, this DPD chain architecture is the results of a number of 

different attempts, and represents the best option to obtain an equilibrium hexagonal 

morphology, having all cylinders aligned along one side of the simulation box, in acceptable 

CPU time. 

 

 

  
(a) (b) 

  
(c) (d) 

 
Figure 4.3. Isosurface visualization of the four matrices without nanoparticles. (a) Lamellar 
morphology simulated employing a model chain architecture of A7B7; (b) Perforated lamellar 
morphology simulated employing a model chain architecture of A5B9; (c) Hexagonal morphology 
simulated employing a model chain architecture of A4B10; (d) Micellar morphology simulated 
employing a model chain architecture of A2B12. The polymer matrix DPD particles of type A (PS) are 
colored yellow; those of type B (PVP) are depicted in cyan. 

 

 

Using the DPD interaction parameter aPSPVP = 38.55, as resulting from the mapping 

procedure described above, corresponding to χΑΒ = 2.057 and, thus, to χΑΒ×NDPD = 28.80, 

the resultant hexagonal and spherical morphology were imperfect, as it could be expected 

by examining the experimental phase diagram for similar systems.29,31 Accordingly, it was 

                                                             
31 Groot, R. D.; Madden, T. J.; Tildesley, D. J. J. Chem. Phys. 1999, 110, 9739-9749. 
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necessary to use a higher value of the DPD repulsive parameter which, for a fixed system 

chemistry (PS-PVP), and a fixed number of DPD beads for each copolymer chain (NDPD = 14), 

corresponds to decreasing the system temperature or, equivalently, increasing the Flory-

Huggins parameter χΑΒ (and, consequently, χΑΒ×NDPD). Further, the nanoparticles also are 

intuitively expected to exert an influence on the matrix topology. Accordingly, the new 

χΑΒ×NDPD value should be high enough to guarantee the persistence of a good 

hexagonal/spherical structure of the matrix. Different trials led us to the choice of the final 

value of the repulsive DPD parameter aPSPVP = 53.48, which correspond to a χΑΒ = 4 or, 

equivalently, to a temperature T = 153K. This only implies that, with such short PS-PVP 

polymer chains, a PPN nanocomposite with a hexagonal or spherical morphology cannot be 

achieved at room temperature. In other words, it is χΑΒ×NDPD the key parameter for these 

simulations, not just χΑΒ. In fact, should we have used the polymer chain architecture A6B14 

in place of A4B10, the relevant χΑΒ×NDPD value would have been equal to 41.15, 

corresponding to T = 298 K, which is almost the same value for our A4B10chain architecture 

at 153K. 

A recent approach in controlling the arrangement of nanoparticles in diblock copolymers 

template is the end-attaching of short homopolymers ligands to the nanoparticles surface.7,8 

The tailoring of the surface chemistry can be achieved using as mixture of homopolymers of 

both blocks or chains of one single homopolymer type at different grafting density. This 

approach exploits enthalpic interaction between the block copolymer and functionalized 

nanoparticle surface to achieve precise particle placement. Therefore, an understanding of 

the interaction between the particle surface, ligands on the surface, and the polymer matrix 

is critical for developing standard rules for controlling 3-dimensional structure of particle-

organic hybrid nanomaterials. To begin to address this challenge, a systematic investigation 

of the effect of surface coverage was conducted in this work using a model system with the 

following characteristics. 

The effect of different covering type of the icosahedral nanoparticles was studied by 

considering the following surface chemistry: A, A6B6(h), A6B6(r), A1B11, A3B9, B, where 

homopolymer chains of PS (A) or PVP(B) are supposed to completely shield the Au core from 

the interactions with the external environment (full coverage), or A1N11, A2N10, A3N9, A4N8, 

where only type A homopolymer chains are chemically attached onto the surface at 

different grafting density (partial coverage) and N bead is representing the bare Au surface. 

Different areal chain densities were modeled varying the number of A bead type on the 

icosahedron surface, i.e. n=1, 2, 3, 4, thus representing an increasing content of polymer in 

the shell around the Au core. The remaining beads represent bare Au particle surface 

exposed to the matrix interactions.  

According to this notation, for instance, a surface architecture A3B9 identifies a 

nanoparticle covering in which three beads on the icosahedron vertices are of type A and 

the remaining nine are of type B, whereas, the letters h and r stand for homogeneous and 

random distribution of the A and B type beads, respectively.  

The DPD simulation box length was set equal to L = 25×rc. The simulation of the initial 

structure was created starting from a random space distribution of polymer chains and 

nanoparticles. 2×105 DPD steps (integration time step ∆t = 0.03) were used to equilibrate the 

system and a total of more than 6×105 DPD time steps were used to reach the final 

structure. 

All simulations were performed at the University of Trieste on the Tartaglia cluster of 60 

CPUs, 120 GB RAM, 2 TB disk space with a computing power of 245 Gflops (benchmark High-

Performance Linpack in HPCC). The commercial software Materials Studio (v. 4.4, Accelrys, 
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San Diego, CA, USA) was used for both molecular mechanics (MM) and molecular dynamics 

(MD) simulations. An in house developed version of the DPD code (M. Maly, unpublished) 

was employed for the mesoscopic calculations. 

4.3 Results and discussion 

4.3.1 Lamellar matrix morphology in presence of fully covered 

nanoparticles 

As the first step to study the self-assembly of nanoparticles in diblock copolymers, we 

considered the case of a lamellar matrix morphology and nanoparticles compatible only with 

block A or B, alternatively. The volume fraction of the nanoparticles VF embedded in the 

matrix is set equal to 0.05. The particles exhibit a remarkable tendency to segregate to the 

center of the corresponding domain, in perfect agreement with the corresponding 

experimental evidences.7a),b) Figure 4.4 (a) illustrates the DPD bead density profiles along a 

direction perpendicular to the lamellar orientation, from which it is clearly seen that, for 

icosahedral particles covered by A-type beads the particle concentration is higher at the 

center of the compatible (PS) domain. Analogously, the B-type covering beads distribute 

throughout the corresponding compatible (PVP) domain, again with a marked tendency for 

concentrating at the center of the preferred domain. Figure 4.4 (b) shows the two-

dimensional density distribution of the particle central (core) bead N. Figure 4.4 (d) and (e) 

reports the three-dimensional density matrices for A- and B-type polymer matrix beads, 

respectively, from which we can clearly see how nanoparticles can influence the thickness of 

the lamellae. A-type lamellae are wider, and characterized by a lower density value in their 

centers due to the presence of the A-type covering nanoparticle beads. On the other hand, 

B-type lamellae are compressed the same reason. Figure 4.4 (c) finally shows a detailed view 

of a section perpendicular to the lamellar orientation of the same system.  

Figures 4.4 illustrate clearly the self-assembled lamellar phase where particles gather in 

the center of the A-block and form nanosheets. This structure is in good agreement with the 

“center-filled lamellar” (CFL) predicted by Balazs et al. using a SCFT/DFT combined model.32 

CFL phase can be easily recognized by the deficit of A monomers in the middle of the A 

region due to the presence of nanoparticles in the center of the domain. 

Intuitively, the driving forces for particle location and assembly stem from the repulsion 

between the particles themselves and the incompatible block component. By segregating 

into the corresponding domain of the block copolymer, the particles covered by a 

compatible, small homopolymer lower their enthalpy. Moreover, by concentrating at the 

center of the likely domain, where the polymer chain ends are located, the chains can 

accommodate particles by only moving apart, rather than undergoing substantial 

deformations. The particle localization in any case ultimately results in a decrease of their 

translational entropy; however, an even more substantial penalty resulting from large chain 

stretching and deformation due to particle distribution along the entire domain is avoided. 

                                                             
32 Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Macromolecules 2002, 35, 1060-1071. 
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Figure 4.4. (a) One dimensional bead density profiles of the simulated PPN with lamellar morphology 
and particles covered by A-type covering only in direction perpendicular to the lamellae. Color code: 
blue: A-type polymer matrix beads; green: B-type polymer matrix beads; red: total A- and B-type 
polymer matrix beads; black: total icosahedral nanoparticle beads. (b) Central particle bead N density 
distribution along a direction perpendicular to the lamellar orientation for the same system (color 
code: blue, minimum, red maximum density value). (c) Detailed view of a section perpendicular to the 
lamellar orientation of the same system. The polymer matrix A- type beads are colored yellow whilst 
those of B-type are cyan. All nanoparticles beads are colored green, except the central particles of the 
icosahedrons N which are highlighted in blue. Three-dimensional bead density of (d) A-type and (e) B-
type polymer matrix beads.  
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When the nanoparticles are covered by an equal mixture of A- and B-type homogeneous 

covering (A6B6(h)), and mixed in the copolymer matrix at VF=0.05, an opposite trend is 

revealed: the nanoparticles manifest a tendency to locate at the interfaces between the A-B 

blocks, as well evidenced in Figure 4.5 (a) and (b) (compare with Figure 4.4). Figure 4.5 (c) 

and (d) shows a detailed view of a section perpendicular to the lamellar orientation of the 

same system and a snapshot of the simulated PPN structure, respectively. 

When the particle surface is roughly neutral with respect to the blocks, nanoparticles tend 

to be found at the block copolymer interface since displacing them into either block involves 

a free energy penalty consisting of the interfacial energy of the block copolymer times the 

projected area of the adsorbed particle. 

Moreover, the distribution of the covering type on the particle surface does not 

significantly influence this behavior, as nicely evidenced by the results obtained for particles 

with the same covering but with a random pattern, i.e., the A6B6(r) system reported in Figure 

4.6. Regardless of how the A and B homopolymer chains are distributed on the Au surface, 

the surface remains neutral in composition and nanoparticles are expected to be located 

along the interface. 

Intuitively, when only a small amount of the covering is of one type (say A or B), and the 

remaining of the other type (B or A), a particle distribution utterly similar to the case of full B 

(A) coverage is obtained. This is illustrated in Figure 4.7 for the system A1B11 (VF=0.05). 

Indeed, the differences between these two cases are mainly quantitative, and concern the 

heights and thickness of the nanoparticle density peaks. In the case of A-type covering only, 

the peaks are higher and thinner than in the case of the A1B11 system, revealing a greater 

ordering and better positioning of the nanoparticles in the center of the corresponding 

compatible domain in the single-type particle covering. This can be fully appreciated by 

comparing the 2D density profiles of the particle central bead N in Figure 4.7 (b) with those 

of Figure 4.4 (b). 

The final case of covering considered, A3B9 (VF=0.05), shows a ‘hybrid’ behavior, as it 

could be intuitively expected. In fact, Figures 4.8 reveals that, although most of the particles 

are still located in the corresponding compatible domain (the B-block in this case), the 

maxima of the nanoparticle density are located at the block interfaces. Clearly, gold particles 

coated with a mixture of PS and PVP ligands are less selective for the PS and PVP domains 

and tend to be directed toward the interface. 

It is noteworthy that the lamellar morphology remains unchanged at the considered 

nanoparticle volume fraction (VF=0.05) despite the relative amount of A and B 

homopolymer chains chemically attached onto the Au surface. 

These results are in very good agreement with the matrix morphology and nanoparticle 

distributions experimentally predicted by Kim et al. on comparable PS-PVP /Au hybrid 

composites.7a)-b) 

4.3.2 Hexagonal matrix morphology in presence of fully covered 

nanoparticles 

In order to analyze the influence of the matrix morphology on the nanoparticles self-

assembly, we then selected to study also a case in which the polymer matrix microstructure 

was characterized by a hexagonal geometry. 
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Figure 4.5. (a) One dimensional bead density profiles of the simulated PPN with lamellar morphology 
and particles covered by a 50-50 A-B type covering with an homogeneous distribution (A6B6(h)) along a 
direction perpendicular to the lamellae. Color code: blue: A-type polymer matrix beads; green: B-type 
polymer matrix beads; red: total A- and B-type polymer matrix beads; black: total icosahedral 
nanoparticle beads. (b) Central particle bead N density distribution along a direction perpendicular to 
the lamellar orientation for the same system (color code: blue, minimum, red maximum density 
value). (c) Detailed view of a section perpendicular to the lamellar orientation of the same system. The 
polymer matrix A-bead type are colored yellow, whilst those of B-type are cyan. All nanoparticles 
beads are colored green; the central particles of the icosahedrons N are highlighted in blue. (d) 
Snapshot of the simulated PPN structure. Matrix A-type bead (PS) are colored green, whilst particle 
covering type A (PS) and B (PVP) are colored yellow and blue, respectively. Matrix B-type beads are 
omitted for clarity. 
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Figure 4.6. (a) One dimensional bead density profiles, (b) central particle bead N density distribution, 
and (c) detailed view of a section perpendicular to the lamellar orientation for the simulated PPN with 
lamellar morphology and particles covered by a 50-50 A-B type covering with a random distribution 
(A6B6(r)). Color code as in Figure 4.5. 
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Figure 4.7. (a) One dimensional bead density profiles, (b) central particle bead N density distribution, 
and (c) detailed view of a section along a direction perpendicular to the lamellar orientation for the 
simulated PPN with lamellar morphology and particles covered by one A- type bead covering and the 
remaining bead covering of type B (A1B11). Color code as in Figure 4.5. 
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Figure 4.8. (a) One dimensional bead density profiles, (b) central particle bead N density distribution, 
and (c) detailed view of a section along a direction perpendicular to the lamellar orientation for the 
simulated PPN with lamellar morphology and particles covered by A3B9 type covering along a direction 
perpendicular to the lamellar orientation. Color code as in Figure 4.5. 
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Again, we started our investigation by considering a single type of particle covering (either 

A or B) for the nanoparticles dispersed in a cylindrical A-B matrix. Figures 4.9 and 4.10 show 

that, in analogy with the lamellar morphology, the nanoparticles segregate in the center of 

the corresponding compatible domain. 

However, a careful observation of Figure 4.9 reveals a minor deformation of the cylinders, 

which could sensibly be ascribed to the slightly unfavorable ratio of the particle/cylinder 

diameters. Should this be the case, this negative effect could be practically reduced by either 

increasing the value of the repulsive parameter aAB or decreasing the particle volume 

fraction VF. Indeed, Figure 4.10 shows the same system simulated at VF = 0.03, where a 

much lesser perturbation of the cylindrical geometry is indeed observed. 

Interesting, when a mixed homogeneous A-B nanoparticles covering type is considered 

(i.e., A6B6(h)), we assist to a progressive modification of the hexagonal geometry of the 

matrix leading to a final, well-oriented lamellar morphology, in which the particles are 

ultimately segregated at the block interfaces. Figure 4.11 shows the final snapshot of the 

DPD simulation of the A6B6(h) system, obtained with a VF=0.05 and aAB=53.84. The critical 

role played by the nanoparticle volume fraction in changing the matrix morphology is well 

illustrated by the results obtained simulating the same system at a lower VF value equal to 

0.03, as reported in Figure 4.12. In fact, in this case the final situation yielded by the 

simulation is utterly analogous to that realized in the presence of a lamellar morphology, 

since the A6B6(h) covered nanoparticles locate at the interface between the blocks, and the 

cylindrical morphology is fully preserved. 

Another interesting difference ascribable to the distinct matrix microstructure is revealed 

by simulating a A1B11 system. Recalling that, in the presence of lamellae, the effect of a very 

small percentage of A-type covering beads among a plethora of B-type covering beads did 

not result in any major difference from the single-type covering case, and, accordingly, the 

particles did segregate in the center of the compatible domain, in the case of cylinders one 

single A-type bead is sufficient to lead all particles to locate themselves at the interfaces 

between the blocks. Figure 4.13 highlights this by showing the comparison between the 

results obtained for the A1B11 and the B-type covering only systems, respectively. 

4.3.3 Lamellar and perforated lamellar matrix morphology in presence 

of partially covered nanoparticles 

The location of nanoparticles within a block copolymer matrix is primarily influenced by 

the compatibility of the nanoparticles with each constituent of the block copolymer 

microstructure. 

Therefore, surface modification of the nanoparticle is required not only to prevent their 

aggregation but also to tune their interactions with each block copolymer domain. 

A simple strategy to control the location of polymer-coated gold nanoparticles within A-B 

block copolymer domains is the variation of a single parameter, the surface coverage of gold 

nanoparticles by a homopolymer A ligand. 

As the areal chain density of A chains on the nanoparticle decreases, a sharp transition 

from the case where the nanoparticles are located in the A domain to the case where the 

nanoparticles are located at the A-B interface is observed.  



 57 

 

  
(a) (b) 

  

  

 
(c) 

  

  

 
 

(d) (e) 

 
Figure 4.9. (a) Two dimensional bead density profile for A-type polymer matrix beads for the simulated 
PPN structure with hexagonal morphology and particles covered by A-type covering only. (b) Central 
particle bead N density distribution for the same system (color code: blue, minimum, red maximum 
density value). (c) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (d) Three-dimensional and (e) top isosurface visualization of the 
simulated PPN structure with hexagonal morphology and particles covered by only A-type covering. 
The polymer matrix A-type beads are colored yellow whilst those of B-type are cyan. All nanoparticles 
beads are colored green; the central particles of the icosahedrons N are highlighted in blue. 
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Figure 4.10. Same system of Figure 4.9 but simulated at a lower volume fraction (VF=0.03). Legend and 
color code as in Figure 4.9. 
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Figure 4.11. (a) Three-dimensional bead density representation of the simulated PPN structure with 
initial hexagonal morphology and particles covered by 50-50 A-B type covering with an homogeneous 
distribution (A6B6(h)) and VF=0.05 and aAB=53.84: top, right, A-type polymer matrix beads; bottom, 
left: total nanoparticle beads; bottom, right, B-type polymer matrix beads. The final lamellar geometry 
is well evident. (b) Central particle bead N density distribution for the same system. (c) Three-
dimensional and (d) top isosurface visualization of the corresponding simulated PPN structure. Color 
code as in Figure 4.9. 
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Figure 4.12. Same system of Figure 4.11 but simulated at a lower volume fraction (VF=0.03). Legend 
and color code as in Figure 4.9. 
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Figure 4.13. Comparison between the A1B11 (left) and B-type covering only (right) cases in the 
hexagonal matrix. (a) and (b) Central particle bead N density distributions; (c) and (d) Isosurface 
visualization of the corresponding simulated PPN structure. Color code: yellow, A-type polymer matrix 
beads; cyan, B-type polymer matrix beads; blue, central particle bead N only. The density isosurface of 
all nanoparticle beads was omitted here for better highlighting the differences between the two 
covering cases. 
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To systematically investigate this aspect, the nanoparticle location within the block 

copolymer template was studied as a function of the polystyrene coverage surface using a 

set of four different coverage percentages represented by four different architectures: 

A1N11, A2N10, A3N9, A4N8. As an example of the notation employed, the A1N11 models 

describes an icosahedron nanoparticle where 1 bead on the surface is of type A (PS) and the 

remaining 11 beads are of type N (Au). The central bead is always of type N. 

From Figure 4.14, it is clear that nanoparticles coated with a high percentage of PS (A4N8, 

VF=0.05) are mostly located near the center of the PS domain. 

As the particle grafting density decreases, virtually all nanoparticles are located at the 

interface between PS and PVP block domain, as shown in Figure 4.17 (A1N11, VF=0.05).  

Au-PS nanoparticles with intermediate coverage remain close to the interface as shown in 

Figure 4.16 (A2N10, VF=0.05), and the nanoparticles are directed to the PVP domain at a 

coverage corresponding to A3N9 (Figure 4.15).  

The change of PS grafting density induces a transition of nanoparticle location from PS 

domain to the PS-PVP interface. A rational for this behavior is that nanoparticles with minor 

PS areal chain density do not fully shield the Au nanoparticle surface from interacting with 

the PVP block of the PS-PVP matrix. There is a favourable interaction between gold and PVP, 

while the PS-gold interaction is relatively weaker. 

These low areal chain density PS-Au nanoparticles thus segregate to the interface due to 

the inability of the low-density surface chains to screen the favourable interaction between 

the PVP block chains and the bare Au surface. 

Of particular note is that the segregation of PS coated nanoparticles at the PS/PVP 

interface is observed over a range of PS fraction on the Au surface. 

To quantitatively reinforce the qualitative impressions derived from the visual inspection 

of the Figures 4.14-17, we plot density distributions of nanoparticles, A and B component in 

the direction perpendicular to the lamellae (Figure 4.18). 

The diagram clearly shows the occurrence of a single peak in the particle density 

distribution at the center of the PS domain when particles have a relatively high grafting 

coverage, where the unfavourable interaction between the PS ligands of the particle surface 

and the PVP domain is dominant. 

Decreasing the grafting density, the particle density distribution exhibits three different 

peaks, one at the center of the PS domain and the other two at the PS/PVP interface. Upon 

further decrease in surface coverage, the particles are stack at the interface and the peak at 

the PS center disappears. 

The trend in the dramatic change of the particle location from the center of PS domain to 

the interface is preserved when the particle concentration is increased up to VF=0.1. 

Three dimensional density representation and isosurface visualization of PS-PVP block 

copolymer containing gold nanoparticles coated by a higher chain density are shown in 

Figure 4.19. Particles with high (areal) chain density are mostly located within the PS 

domain, while most gold particles with a minor coverage of the surface are shown to be 

segregated to the PS/PVP interface (Figure 4.22). Intermediate coverages are shown in 

Figure 4.20 and 4.21. 

Diagrams of the density distribution of nanoparticles, A and B component in the direction 

perpendicular to the lamellae reflecting this transition of particle location in the PS-PVP 

template at VF=0.1, are shown in Figure 4.23. 

For both VF=0.05 and 0.1 the morphology of the matrix is preserved, and only in presence 

of a higher nanoparticles concentration (i.e. VF=0.1) a slightly bending the lamellar interface 

can be observed. 
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Figure 4.14. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A4N8 type covering at 
VF=0.05. The box length was set equal to 31rc. The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.15. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A3N9 type covering at 
VF=0.05. The box length was set equal to 31rc.The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.16. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A2N10 type covering at 
VF=0.05. The box length was set equal to 31rc.The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.17. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A1N11 type covering at 
VF=0.05. The box length was set equal to 31rc.The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.19. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A4N8 type covering at 
VF=0.1. The box length was set equal to 31rc.The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.20. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A3N9 type covering at 
VF=0.1. The box length was set equal to 31rc. The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.21. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A2N10 type covering at 
VF=0.1. The box length was set equal to 31rc.The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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Figure 4.22. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with lamellar morphology and particles covered by a A1N11 type covering at 
VF=0.1. The box length was set equal to 31rc. The polymer matrix A-type beads are colored yellow 
whilst those of B-type are cyan. All nanoparticles beads are colored green. 
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In the presence of the nanoparticles in the PS domain, the PS chains surrounding the 

particles have to alter their conformation to accommodate the nanoparticles, and this 

required additional energy expense. The PS chains normal to the interface have to stretch to 

release the energy, while the PVP chains normal to the interface will contract. Thus, the 

position of the PS-PVP interface strongly depends on the balance between the stretching of 

the PS chains and the contracting of the PVP chains. This behavior induces local fluctuations 

and the composite forms distorted lamellar structures. 

To complete the analysis of the effect of the incorporation of Au nanoparticles differently 

covered in a PS-PVP lamellar template, we decided to consider a perforated lamellar 

morphology. In some circumstances the entropic contribution to the free energy outweighs 

the energy penalty for the presence of pores, and one has an equilibrium phase of 

perforated lamellae. Perforated lamellae exist in a narrow range along the lamella-cylindrical 

phase boundary. 

Figure 4.24 illustrates three-dimensional distribution and isosurface visualization of A4N8 

nanoparticle dispersed a perforated lamellar matrix at a volume fraction of VF=0.5. Due to 

the unfavourable interaction between the PVP blocks and PS ligands, moderate segregation 

of particles at the interface can be observed at this value of coverage. 

The decrease in coverage has the effect of increasing the attractive interaction between 

the bare Au surface not shielded by the A ligands and the PVP block of the diblock 

copolymer. 

As a result, particles tend to stay close to the interface between the PS-PVP block, and 

finally a interfacial segregation occurs (Figure 4.25). 

The trend in the sharp transition of the particle location from the center of PS domain to 

the interface is preserved when the particle concentration is increased up to VF=0.1 (Figure 

4.26 and 4.27). 

At both volume fraction considered in this work the morphology of the diblock copolymer 

matrix is preserved and no macrophase separation is observed in this range of 

concentration. 

4.3.4 Spherical matrix morphology in presence of partially covered 

nanoparticles 

Nanodots or nanospheres can be formed in addition to nanowires and nanosheets 

employing a spherical phase as template. 

Once again, the PS chains grafted to the Au particle surface cause a net attraction 

between the nanoparticles and the PS domain of the copolymer: hence, at higher density of 

grafting the nanoparticles are segregated to the lamellar domains.  

From Figure 4.28 it is clear that the higher areal chain density nanoparticles are principally 

dispersed into the PS domains. 

In direct contrast, lower areal density nanoparticles are localized at the interface between 

the PS-PVP blocks (Figure 4.29), as the nanoparticles are not sufficiently covered by the PS 

ligands. 

This tendency can be observed both at VF=0.05 and VF=0.1 (Figures 4.30 and 4.31). 

We did not observe any macrophase separation for each concentration of particle and 

nanoparticles are seen strongly localized at the PS-PVP interfaces or within the PS domains 

according to the coverage of the nanoparticle surface. 
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Figure 4.24. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with perforated lamellar morphology and particles covered by a A4N8 type 
covering at VF=0.05. The polymer matrix A-type beads are colored yellow whilst those of B-type are 
cyan. All nanoparticles beads are colored green. 



 75 

 

 
(a) 

  

  

 

 

(b) (c) 

 
Figure 4.25. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with perforated lamellar morphology and particles covered by a A1N11 type 
covering at VF=0.05. The polymer matrix A-type beads are colored yellow whilst those of B-type are 
cyan. All nanoparticles beads are colored green. 
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Figure 4.26. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with perforated lamellar morphology and particles covered by a A4N8 type 
covering at VF=0.1. The polymer matrix A-type beads are colored yellow whilst those of B-type are 
cyan. All nanoparticles beads are colored green. 
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Figure 4.27. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with perforated lamellar morphology and particles covered by a A1N11 type 
covering at VF=0.1. The polymer matrix A-type beads are colored yellow whilst those of B-type are 
cyan. All nanoparticles beads are colored green. 
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Figure 4.28. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with spherical morphology and particles covered by a A4N8 type covering at 
VF=0.05. The polymer matrix A-type beads are colored yellow whilst those of B-type are cyan. All 
nanoparticles beads are colored green. 
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Figure 4.29. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with spherical morphology and particles covered by a A1N11 type covering at 
VF=0.05. The polymer matrix A-type beads are colored yellow whilst those of B-type are cyan. All 
nanoparticles beads are colored green. 
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Figure 4.30. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with spherical morphology and particles covered by a A4N8 type covering at 
VF=0.1. The polymer matrix A-type beads are colored yellow whilst those of B-type are cyan. All 
nanoparticles beads are colored green. 
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Figure 4.31. (a) Three-dimensional bead density representation: top, left: A- and B-type polymer 
matrix beads; top, right, A-type polymer matrix beads; bottom, left: total nanoparticle beads; bottom, 
right, B-type polymer matrix beads. (b) Three-dimensional and (c) lateral isosurface visualization of the 
simulated PPN structure with spherical morphology and particles covered by a A1N11 type covering at 
VF=0.1. The polymer matrix A-type beads are colored yellow whilst those of B-type are cyan. All 
nanoparticles beads are colored green. 
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As the filling fraction of the nanoparticles increases, the distributions become narrower. 

At higher concentration of particles in the diblock copolymer matrix, dispersion of particles 

in the PS domain becomes increasingly unfavourable as the PS chains must stretch further to 

accommodate more nanoparticles. This increase in stretching penalty cannot be offset by 

particle translational entropy, and thus particles are prevented from spreading throughout 

the PS domains. To accommodate higher volume of particles without incurring in a lager 

stretching penalty, more particles localize near the center of the compatible PS domain. As a 

result, the width of the particle distribution in the PS domain profile narrows as the filling 

fraction increases. 

4.4 Conclusions and future perspectives 

Macromolecular self-assembly has the potential to address the ever-growing demand for 

arranging nanostructures that serve as building blocks for sensors, photonic, and 

nanobiodevices, just to name a few. Block copolymer films and bulk samples, in particular, 

have been used to spatially organize nanoparticles, thus creating polymer-particle 

nanocomposites (PPNs) with outstanding thermophysical properties. Yet, to fully utilize their 

advantageous magnetic, electronic, catalytic and optical properties, PPNs must be patterned 

and accessed over large areas with nanoscale precision and selectivity, and these issues still 

constitute key, critical steps in the large scale production of these systems. 

Molecular simulations provide an excellent opportunity to directly study the influence of 

nanoparticles the structure and dynamics of polymeric matrices, since detailed information 

on the properties near a nanoparticle surface is difficult to obtain experimentally. 

Accordingly, in this work we used Dissipative Particle Dynamics (DPD), a recently developed 

mesoscopic simulation technique, to model and characterize the morphology, self-assembly, 

and distribution of nanoparticles in different A-B diblock copolymer matrices. The DPD 

parameters of the systems were calculated according to a multiscale modeling approach. 

In summary, we designed a system consisting of an A-B diblock copolymer matrix 

containing nanoparticles whose surfaces were chemically modified to be energetically 

similar to one of the blocks or amphiphilic with respect to the two blocks. 

Upon incorporating the particles into the copolymer matrix, we demonstrated precise 

control of the location of the nanoparticles within the matrix simply by varying the 

composition of the ligands on the particle surfaces, in agreement with some experimental 

evidences. 

Particles with a mixture of PS and PVP chains attached to the surface adsorb principally at 

the interface between PS and PVP blocks. In these cases, for instance, if the copolymer 

matrix was to be dissolved from the system, the remaining inorganic phase could give origin 

to a nanoporous material, with a regular arrangement of uniform pores, which could find 

applications, for instance, in separation or catalytic processes. 

On the other hand, particle with only PS and PVP chains attached to the surfaces 

segregate near the center of the compatible domain or at the interface according to the 

grafting density of the ligands. If particles are localized near the centers of the corresponding 

compatible domains (being these lamellae or cylinders for instance), they form nanowire-like 

structures that extend throughout the material. In effect, the interplay between microphase 

separation and favorable interactions do result in the self-assembly of spatially ordered 

nanocomposites. Should these particles be, for instance, metals or semiconductors, these 
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systems could constitute a sort of nanoelectrode array, which could be utilized to fabricate 

organized nanodevices. 

Further, the control of nanoparticle location by varying composition and areal chain 

density of ligands on the particle surfaces is a simple and versatile method that can be 

extended to other block copolymer and particle systems. 

The results also indicate that the morphologies of the organic/inorganic hybrid materials 

can be tailored by adding particles of specific size and chemistry. The findings highlight the 

fact that, in such complex mixtures, it is not simply the ordering of the copolymers that 

templates the spatial organization of the particles: the particles do not play a passive role 

and can affect the self-assembly of the polymeric chains. In fact, we detected a phase 

transition from the hexagonal to lamellar morphology induced by a non–selective (i.e., A6B6) 

block-particle interaction, indication that the particles actively contribute to the 

determination of the system structure. 

In conclusion, the proposed multiscale computational approach, which combines 

atomistic and mesoscale simulations, can yield important information for the design of PPNs 

with desired morphology for novel applications. 

 

In this contribution we clearly demonstrated that the ability to precisely control 

nanoparticle location within a block copolymer matrix relies on the enthalpic interactions 

between the particle surface, the polymer ligands, and the block copolymer template, 

interaction that depends on the fraction and on the areal chain density of the polymer 

ligands. Thus, the surface chemistry and the areal chain density are critical parameters for 

controlling the nanoparticle location within the PS-PVP template. 

In particular, the ability of the PS chains ligands to shield the surface of the gold 

nanoparticles from PVP block chains logically depends on the character of the PS chains 

assembled on the gold nanoparticle. 

Further, the size effect of selective particles in a block copolymer matrix has been 

investigated theoretically33 and experimentally,34 showing that the particles size is one of the 

major factors influencing the particles location within a block copolymer matrix. While the 

behavior of selective particles has been studied intensively, the effect of the size of 

nanoparticles that are attracted enthalpically to the interface has not been fully 

investigated. 

The model proposed in this work for the nanoparticle –i.e. a icosahedron whose surface 

can be tailored varying the nature of the constituents- was able to correctly reproduce the 

different arrangements of the nanoparticles in a block copolymer template as function of the 

surface chemistry of the nanoparticle. More, this model highlights, in agreement with some 

experimental evidences, a transition in the distribution of the nanoparticles from the 

compatible domain when the particle is completely shielded from the interactions, to the 

interface between the two blocks of the copolymer, when the particle is partially exposed. 

Nevertheless, a deeper insight into the enthalpic and entropic phenomena governing the 

local spatial arrangement of the nanoparticles within a block copolymer matrix can be 

achieved by the employ of a more sophisticated model. This model will able to evaluate the 

effect of nanoparticle size on the ultimate morphology of the matrix and on the dispersion of 

                                                             
33 a) Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W. Balazs, A. C. Science 2001, 292, 2469-2472; Thompson, R. B.; 

Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Macromolecules 2002, 35, 1060-1071. 
34 a) Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L.; J. Am. Chem. Soc. 2003, 125, 5276-5277; b) Spontak, 

R. J.; Shankar, R.; Bowman, M. K.; Krishnan, A. S.; Hamersky, M. W.; Samseth, J.; Bockstaller, M. R.; Rasmussen, K. O. Nano 

Lett 2006, 6, 2115-2120. 
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the particles. The distribution and the mobility of the ligand chains attached on the Au 

surface will be also explicitly taken into account. 

A preview of the nanoparticle model we are currently working on is shown in Figure 4.32.  

 

 

 
 
Figure 4.32. Future improvement of the nanoparticle model proposed in this work. Explicit ligand 
chains attached to the surface are colored in purple. 

 

 

The explicit introduction of the ligands chains chemically bound to the Au surface will 

allow a more effective description of the environments surrounding the core of the 

nanoparticle, will estimate the effects of the mobility of the chains in shielding the 

interaction, will include the molecular weight of the ligands chains, providing an even more 

powerful instrument for the investigation of nanocomposite systems with grafted 

nanoparticles. 
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Chapter 5 

Multiscale property prediction of hybrid 

organic-inorganic nanocomposites 

A current challenge of physical, chemical and engineering sciences is to develop 

theoretical tools for predicting structure and physical properties of hybrid organic inorganic 

nanocomposite from the knowledge of a few input parameters. However, despite all efforts, 

progress in the prediction of macroscopic physical properties from structure has been slow. 

Major difficulties relate to the fact that (a) the microstructural elements in multiphase 

materials are not shaped or oriented as in the idealizations of computer simulations, and 

more than one type can coexist; (b) multiple length and time scales are generally involved 

and must be taken into account, when overall thermodynamic and mechanical properties 

wish to be determined, and finally (c) the effect of the interphases/interfaces on the physical 

properties is often not well understood and characterized. As a consequence, their role is 

often neglected in the development of new theoretical tools or they are treated in a very 

empirical way. In this work, we focused on issues (b) and (c) in a multiscale molecular 

simulation framework, with the ultimate goal of developing a computationally-based 

nanocomposite designing tool. In particular, we developed a hierarchical procedure in which 

lower scale (i.e., QM, MD and /or MC) simulations are performed to obtain parameters for 

higher scale (i.e., mesoscopic and/or finite element) calculations, from which the bulk 

properties of the hybrid nanocomposite material can be ultimately estimated. 

An excerpt of this work is published in Maly, M.; Posocco, P.; Fermeglia, M.; Pricl, S. 

Molecular Simulation 2008, 34, 1215-1236. 

5.1 Introduction 

Nanoscience and nanotechnology are opening new avenues in the fields of chemistry and 

physics of matter. In particular, the chance to create new, smart substances starting from a 

molecular level clearly constitutes an appealing way to design materials which possess 

targeted and well-defined macroscopic properties. In this scenario, the molecular building 
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block – a nano-object – is usually an isolated entity (e.g., a molecule or an ensemble of 

nanoparticles) prepared at the nanometric scale which exhibits a specific chemical and/or 

physical property. Sol-gel formation technique constitutes one of the most actual, promising 

and convenient way to prepare nanomaterials, as it can be produced by using one-step 

processes which are flexible, efficient, and can be carried out in a wide range of operative 

conditions.1 Moreover, different devices characterized by different shapes – matrices, fibers, 

etc. – can be easily obtained. With this well-established synthesis technique inorganic 

materials (glassy or ceramic) and hybrid inorganic-organic (I/O) polymers or nanocomposites 

can be processed to form (nano)particles, coatings, fibers, or bulk materials. Inorganic-

organic sol-gel-derived materials had been investigated and commercialized a few decades 

ago and, due to the profound understanding of the underlying chemical and technical 

processes, are still present as important examples of large-scale applications of the sol-gel 

technology.2 

These hybrid materials combine the advantages of their constituents, like high 

transparency, high refractive index, good chemical resistance  (glass-like), low weight, 

flexibility, good impact resistance, low processing temperatures (polymer-like), sufficient 

thermal stability (silicone-like), and are easily accessible because of an unique availability of 

the respective precursors (commercially available metal alkoxides and organo(alkoxy)silanes 

as well as nanoparticles). Besides the simple metal or silicon alkoxides that - after hydrolysis 

- lead to the formation of an inorganic oxidic network, organo(alkoxy)silanes can be used to 

incorporate polymerizable organic substituents (epoxy, vinyl, or methacryloxy groups) into 

the final product, because the Si-C bonds in these molecules are stable under the mild 

conditions of sol-gel processing. The polymerization reactions of the functional organic 

groups can be induced by thermal or photochemical means, thereby cross-linking the 

preformed nanosized inorganic moieties. 

Inorganic-organic hybrids can be grossly divided into two major classes.3 In class I, organic 

molecules, pre-polymers or even polymers are embedded in an inorganic matrix. These 

materials are synthesized by carrying out the hydrolysis and condensation of the inorganic 

compound, i.e., the formation of the inorganic network, in the presence of the organic 

compound or by polymerizing organic monomers in porous inorganic hosts. Only weak 

bonds exist between both phases. In class II, the inorganic and organic components are 

connected by covalent bonds. This approach requires molecular precursors that contain a 

hydrolytically stable chemical bond between the element that will form the inorganic 

network during sol-gel processing and the organic moieties. 

If the hybrid system is not built up from nanocrystalline components, the intricate mixture 

of inorganic and organic phases in most cases leads to amorphous materials. Further, 

because of the complexity of the possible chemical reactions and the numerous parameters 

influencing the hydrolysis and condensation of organo-(alkoxy)silanes (pH, temperature, 

catalyst, water/silane ratio) a more or less broad distribution of dimers, oligomers, and 

higher condensation products can be expected. The results can be interpreted in the sense 

of initial formation of small clusters or oligomers, which grow to larger polycondensates 

presumably by a cluster-cluster aggregation mechanism. The peripheral positions of the 

organic substituents are important to allow subsequent polymerization reactions to crosslink 

the individual inorganic condensates and embedding them into an organic matrix. The high 

                                                             
1 Brinker, C. J.; Scherer, G. W.; Sol-Gel Science, The Physics and the Chemistry of Sol-Gel Processing, Academic Press, 

New York, USA, 1990. 
2 Schottner, G. Chem. Mater. 2001, 13, 3422-3445. 
3 Judeistein, P.; Sanchez, C. J. Mater. Chem. 1996, 6, 511-525. 
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transparency of the resulting hybrid polymers is a further hint to their submicrometer or 

nanostructural phase size.  

Compared to other chemical elements, silicon is one of the most convenient and 

productive element for the preparation of the organically modified alkoxides required for 

the design and synthesis of hybrid organic-inorganic (O/I) materials. A plethora of reasons 

speak in favor of the peculiar character of silicon, among which the transparency, thermal, 

and chemical stability of Si-O-Si networks, and the “sweet chemistry” involved in their 

synthesis are just a few.4,5 Generally speaking, the polycondensation reaction of 

alkoxysilanes results in a variety of structures, ranging from monodisperse silica particles to 

polymer networks, depending of the reaction conditions involved.6 In addition, 

copolymerization of alkoxysilanes of different functionalities makes it possible to tailor the 

ultimate material structure and performance. For example, tetrafunctional alkoxysilanes 

form densely crosslinked silica structure SiO2, trifunctional monomers polymerize to 

branched polysilsesquioxanes (PSSQOs) of the general formula RSiO3/2, whilst bifunctional 

alkoxysilanes generally yield linear polymer chains (R2SiO)n. Ring formation is also a peculiar 

feature of alkoxysilanes polymerization reactions; clearly, the presence and amount of cyclic 

structures exert an influence on the ultimate structure and performances of the O/I 

hybrids.7,8,9,10 

Properties of the microheterogeneous organic-inorganic hybrids depend, to a good 

extent, on an interphase interaction determining the morphology. Strong interactions, for 

instance, leads to a reduction of the size of inorganic domains in the organic medium, and 

often improve the properties. Therefore, organofunctional trialkoxysilane monomers are 

used to prepare hybrid polymers and are employed as coupling agents, mainly in coating 

materials. 3-glycidyloxypropyltrimethoxysilane (GPTMS) is an organofunctional alkoxysilane 

monomer that can undergo both the sol-gel polymerization of the alkoxy groups and curing 

of the epoxy functionality to form a hybrid network with covalent bonds between organic 

and inorganic phases. Routinely, however, polymerization of GPTMS is carried out by a sol-

gel process which leads to the formation of PSSQO structures with pendant, unreacted 

epoxy functionalities that are prone to later, eventual curing.7 O/I hybrid materials based on 

GPTMS have several important applications, including antiscratch coatings,11 contact lens 

materials,12 passivation layers for microelectronics,13 multifunctional coatings,14 and optical 

devices.15,16,17 GPTMS-based optical waveguides, in particular, are very promising materials 

because of the possibility to incorporate optically active organic molecules in a matrix that is 

dense at low temperature and with a high degree of microstructural homogeneity.18,19 

Accordingly, this extensive range of applications continues to attract various studies on 
                                                             
4 Sanchez, C.; Soler-Illia, G. J. d. A. A.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Chem. Mater. 2001, 13, 3061-3083. 
5 Livage, J.; Sanchez, C. J. Non-Cryst. Solids 1992, 145, 11-19. 
6 Kelts, L. W.; Armstrong, N. J. J. Mater. Res. 1989, 4, 423-433. 
7 Mateika, L.; Dukh, O.; Brus, J.; Simonsick, W. J. Jr.; Meissner, B. J. Non-Cryst. Solids 2000, 270, 34-37. 
8 Eisenber, P.; Erra-Balsells, R.; Ishikawa, Y.; Lucas, J. C.; Mauri, A. N.; Nonami, H.; Riccardi, C. C.; Williams, R. J. J. 

Macromolecules 2000, 33, 1940-1947. 
9 Matejka, L.; Dukh, O.; Hlavata, D.; Meissner, B.; Brus, J. Macromolecules 2001, 34, 6904-6914. 
10 Brus, J.; Spirkova, M.; Hlavata, D.; Strachota, A. Macromolecules 2004, 37, 1346-1357. 
11 Nass, R.; Arpac, E.; Glaubitt, W.; Schmidt, H. J. Non-Cryst. Solids 1990, 121, 370-374. 
12 Philipp, G.; Schmidt, H. J. Non-Cryst. Solids 1984, 63, 283-292. 
13 Popall, M.; Kappel, J.; Pilz, M.; Schulz, J.; Feyder, G. J. Sol-Gel Sci. Technol. 1994, 2, 157-160. 
14 Schmidt, H. J. Non-Cryst. Solids 1994, 178, 302-312. 
15 Sorek, Y.; Zevin, M.; Reisfeld, R.; Hurvits, T.; Rushin, S. Chem. Mater. 1997, 9, 670-676. 
16 Knobbe, E. T.; Dunn, B.; Fuqua, P. D.; Nishida, F. Appl. Opt. 1990, 29, 2729-2733. 
17 Sorek, Y.; Reisfeld, R.; Tenne, R. Chem. Phys. Lett. 1994, 227, 235-242. 
18 a) Guglielmi, M.; Brusatin, G.; Della Giustina G. J. Non-Cryst. Solids 2007, 353, 1681-1687; b) Della Giustina, G.; 

Brusatin, G.; Guglielmi M.; Romanato F. Mat. Sci. Eng. C 2007, 27, 1382-1385; c) Brusatin, G.; Della Giustina, G.; Guglielmi, 
M.; Casalboni, M.; Prosposito, P.; Schutzmann S.; Roma G. Mat. Sci. Eng. C 2007, 27, 1022-1025. 

19 Zevin, M.; Reisfeld, R. Opt. Mater. 1997, 8, 37-41. 



 88 

GPTMS hybrid O/I systems. These nanocomposites have received broad attention for optical 

applications in both fundamental and applied research in recent years, due to their 

outstanding physical and chemical properties resulting from their hybrid nature. 

The incorporation of inorganic particles into polymers allows one to integrate new 

functions inside polymer matrices. For transparent plastics, of interest for optical 

applications, modification of the matrix by dispersing a second inorganic component into the 

polymer typically results in a significant loss of transparency due to scattering from large 

particles or agglomerates. A novel approach for the functionalization of transparent plastics 

is the incorporation of high refractive index (RI) building block (such as TiO2, ZrO2, PbS, ZnS) 

on the nanoscale. In particular, ZnS semiconductors and their nanoparticles have been 

widely used in flat-panel displays, electroluminescence devices, light-emitting diodes, 

nonlinear optical devices and infrared window materials.20 Two approaches, in situ 

formation of nanoparticles in pre-synthesized polymer and direct blending of pre-made 

nanoparticles and polymer or polymer precursors (ex situ), have been developed to 

prepared nano-ZnS/polymer nanocomposites. The latter provides full synthetic control over 

both the nanoparticles and the matrix, and is a more effective way for preparing 

nanocomposites.21 

For the design of nanocomposites for optical applications, one of the technical challenges 

is the requirement to retain transparency whilst avoiding phase separation between organic 

and inorganic moieties. Control over particle size and size distribution as well as uniform 

dispersion of the building blocks at the nanometre scale within the matrix is a critical issue 

for improving the transparency and overall properties of these nanocomposites. This is also 

a technological challenge for the design and synthesis of high RI organic–inorganic 

nanocomposites because nanoscale building blocks, such as nanoparticles with high specific 

surface energies and inherent hydrophilicity, are prone to aggregation, even before 

incorporation into an organic-inorganic matrix. Hence, the prerequisites for synthesizing 

high RI transparent nanocomposites, especially those with high nanophase content, are: the 

appropriate design and tailoring for the nanoscale building blocks and matrices, such as 

surface engineering of nanoparticles; the fabrication approaches of nanocomposites and the 

improvement of the compatibility between the inorganic domains and the matrix. 

To obtain optimized formulations and efficient technological processes, however, 

extensive experimental campaigns must be carried out; further, some sound theories in 

conjunction to experiments must be developed, in order to gain some fundamental 

knowledge about the physical/chemical phenomena at the basis of the properties of these 

materials. On the other hand, on the spur of actual industrial competition, the number of 

lengthy and costly experiments must be drastically reduced, and the establishment of 

reliable, accurate theories is urgently needed, to be able to design molecular systems with 

fine-tuned, targeted properties. 

Computer-based molecular simulation nowadays constitutes a versatile, efficient and 

reliable tool to achieve these goals. Indeed, these techniques can be of great help in 

reducing experimental hard work by sorting out useless trials and addressing the synthesis 

and characterization to more productive efforts. Accordingly, in this work we developed a 

computational strategy to obtain realistic molecular models of crosslinked polymer networks 

based nanocomposites. We consider a model system based on a GPTMS network; “pre-

                                                             
20 a) Lü, C.; Cui, Z.; Wang, Y.; Li, Z.; Guan, C.; Yang, B.; Shen J. Mater. Chem. 2003, 13, 2189 – 2195; b) Zhao, Y.; Wang, 

F.; Fu, Q.; Shi, W. Polymer 2007, 48, 2853-2859; c) Duttaa, K.; Mannab, S.; Deb, S. K. Synthetic Metals 2009, 159, 315–319; 
d) Burunkova, J. E.; Denisyuk, Y. D.; Williams T. R. Journal of Applied Polymer Science 2010, 116, 1857–1866. 

21 Lu, C.; Cheng, Y.; Liu, Y.; Liu, F.; Yang, B. Adv. Mater. 2006, 18, 1188-1192. 
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made” nanoscale building blocks, i.e. ZnS nanoparticles, are dispersed in the sol-gel derived 

hybrid system. This is intended to mimic the so called “ex-situ” sol-gel route, one of the 

more suitable synthesis methods for large scale industrial applications. The nanoparticles are 

chemically modified with (3-mercaptopropyl)trimethoxysilane (MPTMS), in order to evaluate 

the influence of the surface engineering on the interface energies between nanoparticles 

and matrix and ultimately on their aggregation behavior. 

Briefly, our procedure consists in: (a) development of a molecular dynamics (MD) Perl 

script to mimic the formation of 3D hybrid O/I networks based on the condensation reaction 

of GPTMS under acid conditions; (b) quantum/force-field based atomistic simulation to 

derive molecular interaction energies between GPTMS matrix and ZnS nanoparticle; (c) 

mapping these values onto mesoscopic Dissipative Particle Dynamics (DPD) parameters; (d) 

mesoscopic simulations to determine system density distributions, nanoparticle dispersion, 

and morphologies; a Reactive Dissipative Particle Dynamics approach is employed to 

reproduce the reticulation of the polymer matrix at mesoscale level; (e) simulations at finite-

element level to calculate the relative macroscopic properties of the nanocomposite. 

5.2 Computational methods 

5.2.1 Atomistic model and details of the GPTMS matrix simulation 

Model building and general computational recipe 

A fully hydrolyzed GPTMS molecule was selected as the starting monomer, and its 

condensation reaction under acid conditions was considered. This practically corresponds to 

a situation in which only the creation of Si-O-Si bonds between the available Si-O-H moieties 

takes place, leaving the epoxy groups unreacted (see Figure 5.1).9 

 

 

OH OHOSi + Si Si Si + H2O

 
 
Figure 5.1. Scheme reaction leading to the Si-O-Si network formation. 

 

 

For the generation of the final crosslinked system, the following general computational 

recipe (script details in Appendix A) was applied: 

Step 1. The molecular model of the hydrolyzed GPTMS molecule was built, and its atoms 

were typed and charged using the Compass forcefield (FF).22,23 The molecular geometry was 

then optimized again using Compass FF. In order to test the eventual influence of the partial 

charge distribution on the physical properties of the final crosslinked system, we also 

assigned to the previously geometry optimized molecule a partial charge scheme obtained 

recharged using the quantum semi empirical method  AM1-ESP as implemented in the Vamp 

toolbox of Materials Studio. At the end of Step 1, then, two molecular models of the 

                                                             
22 Sun, H.; Rigby, D. Spectrochim. Acta Part A 1997, 53, 1301-1323. 
23 Sun, H. Macromolecules 1995, 28, 701-712. 
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hydrolyzed GPTMS monomer with the identical shape but different partial charges were 

obtained and used for further calculations. 

Step 2. 100 hydrolyzed GPTMS molecules were packed into a simulation box under 

periodic boundary conditions using the Amorphous Cell builder modulus of Materials Studio. 

The initial density of the liquid mixture was set to 1.57 g/cm3, a value estimated from the 

average experimental density of the final crosslinked system assuming an ideal case of 100% 

condensation (1.35 g/cm3).24 To start the condensation reaction/networking process from a 

representative initial system, 100 different simulation boxes were independently created for 

each charge scheme considered (i.e., 200 3D cells were obtained overall). After geometry 

relaxation of each 3D box, the one with the lowest energy value was selected, - namely 

structures I - one for each charge scheme, for running the molecular dynamics (MD) 

simulations. Finally, in order to determine the eventual influence of the choice of the initial 

structure on the simulation results, two further, independent MD simulations for each 

charging case on structures characterized by approximately the same energy value of 

structure I after relaxation – namely structures II, were also conducted and analyzed. 

Step 3. The selected 3D boxes containing the initial GPTMS monomer systems were first 

subjected to a geometry optimization (2000 steps); then simulated annealing procedure was 

applied25,26,27,28,29,30 (8 cycles of 1000 MD steps, temperature range 200K - 500K). 5000 steps 

of molecular dynamics a room temperature (298 K) were carried out. All simulations were 

conducted in the canonical (NVT) ensemble. After preliminary trials, an integration time step 

of 0.2 fs finally was selected, giving a total annealing time of 1.6 ps, and an overall MD time 

of 1 ps. 

Step 4. The distances between the reactive atoms (O and H atoms from each OH group 

linked to the Si atom, see Figure 5.1) were measured and ordered in an increasing order. The 

three closest pairs of reactive atoms whose distances were smaller than the selected 

reactive cut-off distance (3 Å) were identified, and between the corresponding Si atoms new 

Si-O-Si bonds were created. An equivalent number of water molecules were deleted from 

the system (see Figure 5.2). The reactive cut-off distance was increased during the 

networking formation from 3 Å to 6 Å. Since the presence of small, strained rings (i.e., with 

less than 4 Si atoms) in the final system is not found experimentally in hybrid O/I systems 

based on GPTMS,7,31 the necessary restrictions were implemented in the corresponding 

script, as described in details in Appendix A. 

Step 5. Steps 3 (referred to the actual cell) and 4 were repeated until no more pairs of 

reactive atoms satisfying all criteria were detected in the system.  

After the GPTMS 3D network, structures were built starting from the two partial charge 

schemes and applying the script protocol (i.e., two structures I and two structures II), each 

system was subjected to further annealing cycles up to 600K. The minimum energy structure 

for each system was selected for further NVT and NPT molecular dynamics simulation at 

300K for data collection. The velocity Verlet algorithm was used for integration in all MD 

simulations. A time step of 0.2 fs, and the Nosè/Berendsen thermostat were employed for 

NPT and NVT MD simulations, respectively. The cut-off for non-bond interactions was set at 

9.50 Å. 

                                                             
24 Brusatin, personal communication, 2007. 
25 Scocchi, G.; Posocco, P.; Fermeglia, M.; Pricl, S. J. Phys. Chem. B 2007, 111, 2143-2151. 
26 Fermeglia, M.; Cosoli, M.; Ferrone, M.; Piccarolo, S.; Mensitieri, G.; Pricl, S. Polymer 2006, 47, 5979-5989. 
27 Fermeglia, M.; Ferrone, M.; Pricl, S. Mol. Simulation 2004, 30, 289-300. 
28 Toth, R.; Coslanich, A.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Miertus, S.; Chiellini, E. Polymer 2004, 45, 8075-8083. 
29 Fermeglia, M.; Ferrone, M.; Pricl, S. Fluid Phase Equilib. 2003, 212, 315-329. 
30 Fermeglia, M.; Pricl, S. AIChE J. 1999, 45, 2619-2627. 
31 Fidalgo, A.; Ilharco, L. M. J. Non-Cryst. Solids 2001, 283, 144-154. 
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Figure 5.2. Details of the GPTMS molecular modeling showing, in stick-and-ball representation, the 
reactive atom pairs (top), and the newly formed Si-O-Si bond and the corresponding deleted water 
molecule (bottom). All other atoms are in line rendering. Color code: Si, gold; O, red; C, gray, H, white. 

 

 

The final density of the MD equilibrated systems corresponding to the two different 

atomic partial charge schemes, AM1-ESP and COMPASS, respectively, is reported in Table 

5.1. As can be seen from Table 5.1, the equilibrated network densities obtained from initial 

structure modelled with both partial charge schemes are utterly similar; further, starting 

from two different annealed initial GTPMS 3D boxes (i.e., structure I and structure II), leads 

to the same network final density values, thus validating the initial structure selection 

protocol. 

 

 

Initial structure I Initial structure II Atomic partial charge scheme 

ρ (g/cm3) ρ (g/cm3) 

AM1-ESP 1.368 1.369 

COMPASS 1.371 1.368 

 
Table 5.1. MD equilibrated density values ρ for the 3D GPTMS-based O/I network structures obtained 
from the simulations. 

 

 

Mechanical properties (elastic constants) determination 

The mechanical behavior of a given molecular system can be described by using 

continuum mechanics. Since, however, any molecular system has a discrete structure, the 

model to be employed for the estimation of the elastic constants is an equivalent-continuum 

model,32 in which the overall mechanical response of representative volume elements to an 

applied set of boundary conditions is equivalent to the response of the molecular 

representative volume system subjected to the same set of boundary conditions. The 

equivalent-continuum is assumed to have a linear-elastic constitutive behavior. The 

generalized constitutive equation of the equivalent continuum hence is given by: 

 

                                                             
32 Odegard, G. M.; Gates, T. S.; Nicholson, L. M.; Wise, K. E. Compos. Sci. Technol. 2002, 62, 1869-1880. 
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klijklij εCσ =  (5.1)

 

where σij are the components of the stress tensor (i,j =1,2,3), Cijkl are the components of 

the linear-elastic stiffness tensor, and εkl are the components of the strain tensor. It is 

further assumed that the system has isotropic material symmetry. 

In atomistic calculation, the internal stress tensor in a system can be obtained using the 

virial expression: 
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where index i runs over all particles through N, mi and vi are the mass and the velocity of 

the particle, respectively, fi is the force acting on the particle, and V0 is the undeformed 

system volume. 

Basically, two classes of methods for calculating material elastic constants using molecular 

simulations are available in literature at present. Consistently, the static method (i.e., based 

on molecular mechanics) was found to be more practical and reliable than the one based on 

molecular dynamics.33 Thus, a constant strain minimization method, belonging to the class of 

static methods, was applied to the equilibrated 3D O/I network system. Accordingly, after an 

initial system energy minimization, three tensile and three pure shear small deformations (to 

remain within elastic limits) are applied. The system is then again energy minimized 

following each deformation. The stiffness matrix is calculated from the second derivative of 

the potential energy U with respect to strain ε as follows: 
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where σi is the ith component of the internal stress tensor, and σi+ and σi- are the 

components associated with the stress tensor under tension and compression, 

respectively.34 The Lamé constants for the structure - λ and μ - can in turn be calculated from 

the related stiffness matrix: 

 

( ) ( )CCCCCC 665544332211
3

2

3

1 ++−++=λ  (5.4)

 

( )CCC 665544
3

1 ++=µ  (5.5)

 

For isotropic materials, the stress-strain behavior can be finally be described in terms of 

the Lamé constants according to the equations: 

 

µλ
µλµ

+
+= 23

E  (5.6)

                                                             
33 Raaska,T.; Niemela, J. S.; Sundholm, F. Macromolecules 1994, 27, 5751-5757. 
34 Theodorou, D. N.; Suter, U. W. Macromolecules 1986, 191, 139-154. 
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µ=G  (5.7)

 

µλ
3

2+=B  (5.8)
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where E, G, B, and ν represent Young’s modulus, shear modulus, bulk modulus and 

Poisson’s ratio, respectively. 

Constant pressure heat capacity determination 

Statistical fluctuations about the mean values of quantities measured during the course of 

an MD simulation can be directly related to thermodynamic properties. Beside common 

average quantities like density, pressure, or energy, the analysis of fluctuations allows to 

determine properties like heat capacities, compressibility, thermal expansion coefficient, or 

the Joule-Thomson coefficient. Specific heat capacity at constant pressure CP, for instance, is 

obtained from the fluctuations of energy in the isothermal-isobaric ensemble (NPT) 

according to: 
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where k is the Boltzmann constant, K and U denote the instantaneous values of the 

kinetic and potential energy, respectively, and T, P, and V are the familiar thermodynamic 

state variables. In addition, the notation δX stands for X-<X>, where <X> denotes the 

ensemble average value of a given quantity X.  

5.2.2 Atomistic model and details of the GPTMS+ZnS simulation 

All atomistic simulations were performed using Materials Studio (v 4.1 Accelrys, San 

Diego, CA). a=5.4093. As far as the ZnS (sphalerite) model is concerned, starting from 

relevant crystallographic coordinates,35 we built the unit cell using the Crystal Builder 

module of Materials Studio. Accordingly, the resulting lattice is cubic, space group F43m, 

with a unit cell of a=b=c=5.4093 Å, and α=β=γ=90°, in excellent agreement with 

experimental prediction. We chose sphalerite as it is recognized as the most stable phase of 

zinc sulphide polymorphs, and for the same reason we selected the (110) surface. We 

replicated the basic cell in order to obtain a super cell of approximately 3.2 x 3.2 x 1.1 nm3 

size (6 x 6 x 2). 

Then, we modelled the surface modifier, chosen to be a (3-mercaptopropyl) 

trimethoxysilane (MPTMS) molecule. The modifier conformational search was carried out 

using Compass FF, and applying our validated combined molecular mechanics/molecular 

dynamics simulated annealing (MDSA) protocol.25-30,36 The choice of the Compass FF resulted 

                                                             
35 Smith, F. G. American Mineralogist  1955, 4O, 658-675. 
36 a) Fermeglia, M.; Ferrone, M.; Pricl, S. Bioorg. Med. Chem. 2002, 10, 2471-2478; b) Felluga, F.; Pitacco, G.; Valentin, 

E.; Coslanich, A.; Fermeglia, M.; Ferrone, M.; Pricl, S. Tetrahedron: Asymmetry 2003, 14, 3385-3399; c) Pricl, S.; Fermeglia, 
M; Ferrone, M.; Asquini, A. Carbon 2003, 41, 2269-2283; d) Metullio, L.; Ferrone, M.; Coslanich, A.; Fuchs, S.; Fermeglia, 
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from a compromise between good accuracy and availability of FF parameters for all atom 

types present in the molecular model. The relaxed molecular structure is subjected to 

repeated temperature cycles using constant volume/constant temperature (NVT) MD 

conditions. At the end of each annealing cycle, the structure is again energy minimized, and 

only the structure corresponding to the minimum energy is used for further modeling. 

Resorting to atomistic MD simulation in NVT ensemble allows the retrieval of important 

information on the interaction and binding energies values between the different 

components of a nanocomposite system.27,28,29,37,38,39,40,41 The technique basically consists in 

simulating the interface between the zinc sulfide surface and the GPTMS network by 

building a cell that is stretched along the c-direction (up to 150 Å); in this way, even if the 

model is still 3-D periodic, there are no interaction between the periodic images in the c- 

direction, ultimately resulting in a pseudo 2-D periodic system,42 from which the binding 

energies between all system components can be calculated. 

According to this approach, we created a cell of 150 Å in height, and we copied and 

chemically linked a certain number of MPTMS molecules (15 molecules) to the surface and 

finally we added the GPTMS network to the system.  

The NVT molecular dynamics were performed with Materials Studio Discover module. 

Each simulation was run at 298 K for 550 ps, applying the Ewald summation method for 

treating Coulomb interactions; an integration step of 1 fs and Nosé thermostat (Q = 1) were 

also adopted. The energetic analysis was conducted only on the parts of the trajectory with 

steady state behavior. During each MD ZnS layers were treated as rigid bodies by fixing their 

position in time. 

The procedure used to calculate the interaction energies and, hence, the binding energies 

values between all system components is well established.27,28,29,36g),l) 

By definition, the binding energy Ebind is the negative of the interaction energy. As an 

example, to calculate the binary binding energy term Ebind(GPTMS/MPTMS), we can first 

created a GPTMS–MPTMS system deleting the ZnS surface from the equilibrated MD 

trajectory frames, and then calculated the potential energy of the system EGPTMS/MPTMS. Next, 

we deleted the MPTMS molecules, leaving the GPTMS network alone, and thus calculated 

the energy of the GPTMS matrix, EGPTMS. Similarly, we deleted GPTMS from the GPTMS–

MPTS system, and calculated EMPTMS. Then, the binding energy Ebind(GPTMS/MPTMS) is 

simply obtained from the following equation: 

 

( ) MPTMSGPTMSMPTMSGPTMSbind EEEMPTMSGPTMSE // −+=  (5.11)

 

The remaining binding energy terms Ebind(GPTMS/ZnS) and Ebind(MPTMS/ZnS), can be 

calculated in an utterly analogous fashion from the corresponding energy components. 

                                                                                                                                                                       
M.; Paneni, M. S.; Pricl, S. Biomacromolecules 2004, 5, 1371-1378; e) Toth, R.; Ferrone, M.; Miertus, S.; Chiellini, E.; 
Fermeglia, M.; Pricl, S. Biomacromolecules, 2006, 7, 1714–1719; f) Posocco, P.; Ferrone, M.; Fermeglia, M.; Pricl, S. 
Macromolecules 2007, 40, 2257-2266; g) Scocchi, G.; Posocco, P.; Danani, A.; Pricl, S.; Fermeglia, M. Fluid Phase Eq. 2007, 
261, 366-374; h) Mensitieri, G.; Larobina, D.; Guerra, G.; Venditto, V.; Fermeglia, M.; Pricl, S. J. Polym. Sci. B: Polym. Phys. 
2008, 46, 8-15; i) Cosoli, P.; Scocchi, G.; Pricl, S.; Fermeglia, M. Micropor. Mesopor. Mater. 2008, 1, 169-179; l) Scocchi, G.; 
Posocco, P.; Handgraaf, J.-W.; Fraaije, J. G. E. M.; Fermeglia, M.; Pricl, S. Chem. Eur. J. 2009, 15, 7586-7592. 

37 a) Kasemägi, H.; Aabloo, A.; Klintenberg, M. K.; Thomas J. O. Solid State Ion. 2004, 168, 249–254; b) Kasemägi, H.; 
Klintenberg, M. K.; Aabloo, A.; Thomas J. O. Solid State Ion. 2002, 147, 367–375. 

38 Tanaka, G.; Goettler, L. A. Polymer 2002, 43, 541-553. 
39 Gardebien, F.; Bredas, J.-L.; Lazzaroni, R. J. Phys. Chem. B 2005, 109, 12287–12296. 
40 Katti, K. S.; Sikdar, D.; Katti D. R.; Ghosh, P.; Verma, D. Polymer 2006, 47, 403-414. 
41 Paul, D. R.; Zeng, Q. H.; Yu, A. B.; Lu, G. Q. J. Colloid Interface Sci. 2005, 292, 462-468. 
42 Misra, S.; Feming, P. D. III; Mattice, W. L.; J. Comput.-Aided Mater. Des. 1995, 2, 101-112. 
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Importantly, the binding energies between the individual components of each 

nanocomposite system estimated using the procedure outlined above will also constitute 

the input parameters for the higher level, mesoscale simulations, as described later on. 

5.2.3 Reactive Dissipative Particle Dynamics (RxDPD) 

At the mesoscale level, we employed the so called Reactive Dissipative Particle Dynamics 

(RxDPD) simulation technique. The RxDPD method is primarily intended for the prediction of 

the system composition and the thermodynamic properties of reaction equilibrium polymer 

systems. The RxDPD formulation has been developed and validated recently by Lisal and 

coworkers.43 

This approach combines elements of Dissipative Particle Dynamics (DPD)44 and reaction 

ensemble Monte Carlo (RxMC)45,46 for the mesoscale simulation of reaction equilibrium 

polymer systems, and utilizes the concept of a fractional particle.47 The fractional particle is 

coupled to the system via a coupling parameter that varies between zero (no interaction 

between the fractional particle and the other particles in the system) and one (full 

interaction between the fractional particle and the other particles in the system). The time 

evolution of the system is governed by the DPD equations of motion, accompanied by 

changes in the coupling parameter. The coupling-parameter changes are either accepted 

with a probability derived from the grand canonical partition function or governed by an 

equation of motion derived from the extended Lagrangian. The coupling-parameter changes 

mimic forward and reverse reaction steps, as in RxMC simulations. The RxMC method is a 

powerful molecular-level simulation tool for studying reaction equilibrium mixtures. The 

method requires as input only the interaction potentials and the ideal-gas properties of the 

reaction species that are present. Most notably, the method does not require a reactive type 

potential that mimics bond breakage and formation. Reactions are simulated by performing 

forward and reverse reaction steps according to the RxMC algorithm which guarantees that 

the reaction equilibrium conditions are satisfied.  

In a RxDPD simulation, the system is simulated using Dissipative Particle Dynamics (DPD). 

DPD mesoscopic beads are defined by a mass mi, position ri, and velocity vi, and interact with 

each other via a force fi that is written as the sum of a conservative force (Fij
C), dissipative 

force (Fij
D), and random force (Fij

R) 
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where the sum extends over all particles within a given distance rc from the ith particle. 

Fij
C is given as the negative derivative of a particle coarse-grain potential, u

CG, and the 

remaining two forces, Fij
D and Fij

R, arise from degrees-of-freedom neglected by coarse-

graining. 

The DPD simulation of cross-linked polymeric matrices and nanoparticles requires 

incorporating a non-crossing condition by adding bond-bond repulsion to the model.48 The 

distance of closest approach between two bonds, D, is computed and a repulsive interaction 

                                                             
43 a) Lisal, M.; Brennan, J. K.; Smith, W. R. J. Chem. Phys. 2006, 125, 164905, 15 pages; b) Lisal, M.; Brennan, J. K.; 

Smith, W. R. J. Chem. Phys. 2009, 130, 104902, 15 pages. 
44 Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423-4435. 
45 Smith, W. R.; Triska, B. J. Chem. Phys. 1994, 100, 3019-3027. 
46 Johnson, J. K.; Panagiotopoulos, A. Z.; Gubbins, K. E. Mol. Phys., 1994, 81, 717-733 
47 Çagin, T.; Pettitt, B. M. Mol. Simul. 1991, 6, 5-26 
48 Kumar, S.; Larson, R. G. J. Chem. Phys. 2001, 114, 6937–6941. 
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is then applied based on D. The form of the bond-bond repulsion potential, urep(D), avoiding 

artificial bond crossing in DPD simulation was given by Pan and Manke49 
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where Krep is the bond-bond repulsion constant, Dc is the bond-bond cut-off distance and 

D=Pi+tiRi-(Pj+tjRj); Pi and Pj are midpoints of bonds i and j, respectively, Ri and Rj are the 

vectors characterizing the direction and length of each bond, and ti and tj are parameters 

which indicate where we are along each bond. The bond-bond cut-off distance was set 

approximately equal to 0.15rc, and the bond-bond repulsion constant to ≈aij of the specie 

involved in the bonds. 

Crosslinking of polymeric matrix wais mimicked by a reactive potential 
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where ε is the Gaussian well (ε=2), and rw and λ is its position and width, respectively. The 

polymer Gaussian-well position corresponds to rw=0.6 and the polymer Gaussian-well width 

λ to (λ/rc)
2=0.003. 

The mass of DPD beads mi, rc and kT were used as the unit of the mass, length, and 

energy, respectively; k is the Boltzmann constant and T is the temperature. 

5.2.4 Finite element calculation of macroscopic properties 

The prediction of macroscopic properties of GPTMS/ZnS nanocomposites considered in 

this work, as a function of metal loading, is the final step of the proposed multiscale 

procedure. To this aim, finite element (FE) calculations were performed using the module 

Mesoprop included in the software Palmyra (v. 2.5, MatSim, Zürich, CH). This software has 

been validated on different composite material morphologies by several authors,36l),50,51,52 

yielding reliable results. 

Mesoprop technique is a method based on finite elements for estimating properties of 

complex materials starting from the density distribution at the mesoscale. MesoProp links 

the physical properties of pure materials to the properties of multicomponent bulk materials 

systems. The method uses the results of a mesoscale simulation under the form of three 

dimensional density maps, and transforms such information into a fixed grid for the 

integration of the equations to determine macroscopical properties.  

It uses a numerical method to determine the overall properties of composites with 

arbitrary morphologies from the properties of the components based on small 

homogeneous grid elements. The morphology is defined by a number of phases in a 

periodically continued base cell of cubic or orthorhombic shape where the phases may 

consist of any material. The resolution depends solely on the number of grid elements used. 

                                                             
49 Pan, G.; Manke C. W. Int. J. Mod. Phys. B 2003, 17, 231–235. 
50 a) Gusev, A. A. J. Mech. Phys. Solids 1997, 45, 1449-1459; b) Gusev, A. A. J. Mech. Phys. Solids 1997, 45, 1449-1459; 

c) Gusev, A. A. Macromolecules 2001, 34, 3081-3093; Heggli, M.; Etter, T.; Wyss, P.; Uggowitzer, P. J.; Gusev, A. A. Adv. 

Eng. Mater. 2005, 7, 225-229. 
51 Osman, M. A.; Mittal, V.; Lusti, H. R. Macromol. Rapid Commun. 2004, 25, 1145-1149. 
52 a) Fermeglia, M.; Ferrone, M.; Pricl, S. Mol. Simul. 2004, 30, 289-300; b) Scocchi, G.; Posocco, P.; Danani, A.; Pricl, S.; 

Fermeglia, M. Fluid Phase Eq. 2007, 261, 366-374. 
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For each of the grid elements it is possible to specify the fraction of each phase contained in 

that particular position. By applying a displacement-based finite element method to the 

volume mesh, the responses to external deformations are calculated. In order to calculate 

mechanical properties an elastic solver is used. It applies six different infinitesimally small 

deformations to the composite and minimizes the total strain energy for each of these 

deformations in order to calculate the elastic composite properties.  

The properties of the nanoparticles were taken from the available literature referring to 

typical characteristics,53 and those of the matrix from our atomistic calculation.  

Integration between these methods (from mesoscale to macroscale) is of paramount 

importance for the estimation of the properties of the materials. 

5.3 Results and discussion 

5.3.1 Atomistic results 

Structural analysis 

Figure 5.3 shows the geometry optimized molecular model of the GPTMS molecule, along 

with the atom labelling used in this work. For this monomer, the relevant structural 

parameters are listed in Table 5.2. These include the Si-O and Si-C1 bond lengths, and the O-

Si-O and O-Si-C bond angles, which were estimated to be 1.670 Å, 1.909 Å, 108.4°, and 

109.5°, respectively. Unfortunately, experimental X-ray diffraction or other spectroscopy 

data for GPTMS are not available to date. Therefore, to further validate the geometrical 

features of our model we applied the same model building/optimization procedure to 

structurally related molecules, for which such information could be retrieved from the 

literature. The relevant names, structural formulas and geometrical parameters are listed in 

Table 5.3. 

 

 

 
 
Figure 5.3. Geometry optimized molecular model of the GPTMS molecule, along with the atom 
labelling used in this work. All atoms are in stick-and-ball representation, using the same color code of 
Figure 5.2. 

 

 

                                                             
53 a) Binny, T.; Abdulkhadar, M. Solid State Communications 1995, 94, 205-210; b) Harris, D. C.; Baronowski, M.; 

Henneman, L.; LaCroix, L. V.; Wilson, C.; Kurzius, S. C.; Burns, B.; Kitagawa, K.; Gembarovic, J.; Goodrich, S. M.; Staats, C.; 
Mecholsky, J. J. Jr. Optical Engineering 2008, 47, 114001-114012. 
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Si-O1(O2,O3)/Å 1.670 O1-Si-O2 108.4° 

Si-C1/Å 1.909 H1-O1-Si 109.5° 

H1-O1/Å 1.110 Si-C1-C2 114.7° 

C1-C2/Å 1.531 C1-C2-C3 115.1° 

C2-C3/Å 1.527 C2-C3-O4 106.6° 

C3-O4/Å 1.419 C3-O4-C4 114.2° 

O4-C4/Å 1.419 O4-C4-C5 105.9° 

C4-C5/Å 1.495 C4-C5-C6 125.4° 

C5(C6)-O5/Å 1.428 C5-O5-C6 60.2° 

C5-C6/Å 1.439 H6-C2-H7 107.2° 

H4-C1/Å 1.104 H13-C6-H14 112.2° 

H12-C5/Å 1.098   

 
Table 5.2. Geometrical parameters of the GPTMS molecular model after geometry optimization with 
COMPASS ff. Atom numbering as in Figure 5.3. 

 

 

Name Geometrical parameters 

Dimethyl ether C-O/Å 
1.412 
(1.416) 

C-H/Å 
1.124° 
(1.121°) 

C-O-C 
111.8° 
(112°) 

H-C-C 
108.3° 
(108°) 

  

Ethylene oxide C-C/Å 
1.459 
(1.466) 

C-H/Å 
1.096 
(1.085) 

C-O/Å 
1.428 
(1.431) 

C-O-C 
60.4° 

C-C-H 
116.5° 
(116.6°) 

 

Propylene oxide C(H3)-C(H)/Å 
1.527 
(1.510) 

C(H)-C(H2)/Å 
1.452 

C-O/Å 
1.426 

C-O-C 
60.4° 

C-C-C 
122° 
(121°) 

 

Propyl Methyl Ether C-O/Å 
1.415 
(1.418) 

C-C/Å 
1.527 
(1.520) 

C-H/Å 
1.115 
(1.118) 

C-O-C 
112.3° 
(111.9°) 

O-C-C 
109.7° 
(109.4°) 

H-C-H 
109.2° 
(109°) 

Disiloxane Si-O/Å 
1.635 
(1.63)a 

Si-H/Å 
1.485 
(1.490) 

Si-O-Si 
151.3° 
(151.2°)b 

H-Si-H 
109.8° 

  

Hexamethyl- 

disiloxane 

Si-O/Å 
1.639 
(1.638) 

Si-C/Å 
1.862 
(1.869) 

H-C/Å 
1.101 
(1.104) 

C-Si-O 
108.3° 
(109.0°) 

Si-O-Si 
149.7° 
(151.3°) 

C-Si-C 
110.8° 
 

Methoxysilane Si-C/Å 
1.421 

Si-O/Å 
1.669 

H-C/Å 
1.101 

H-Si/Å 
1.476 

C-O-Si 
122.6° 

H-Si-H 
110.8° 

Tetramethylsilane Si-C/Å 
1.880 
(1.875) 

H-C/Å 
1.110 
(1.115) 

C-Si-C 
109.5° 

H-C-H 
109.7° 
(109.8°) 

  

 
Table 5.3. Computed geometrical data for molecules structurally related to GPTMS. Experimental 
available data54 are reported in parenthesis for comparison. 

                                                             
54 a) Lide D. R., Handbook of Chemistry and Physics, Ed., 79th ed., CRC Press, Boca Raton, FL, USA, 1999; b) Barrow, M. 

J.; Ebsworth, E. A.; Harding, M. M. Acta Crystal. 1979, B35, 2091-2099; c) Koput, J.; Wierzbicki, A. J. Mol. Spectrosc. 1983, 
99, 116-132. 
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By comparing the value listed in Tables 5.2 and 5.3, given the differences in molecular 

species and the fact that, whilst FF calculations are performed on an isolated molecule in 

vacuum the corresponding experimental quantities are obtained either from single-crystal or 

spectroscopic studies, we can conclude that all our results are in good agreement with the 

literature data. 

In order to check the influence of the atomic partial charges on the final properties of the 

system, the GPTMS optimized structure was also assigned a partial charge distribution as 

derived from AM1-ESP calculations (see Table 5.4). Generally, speaking, a common 

procedure to estimate atomic partial charges is via Mulliken analysis.55 However, since the 

results may be strongly dependent on the basis set employed, and there is no unambiguous 

method to assign charge to two atoms within a given bond,56 we tried to bypass the problem 

by fitting the point charges at pre-selected positions to the electrostatic potential surface 

(ESP).57,58 On the other hand, the partial charge scheme thus obtained may be, in turn, 

dependent on the specific molecular conformation considered.59 To verify whether this was 

our case, we tested the obtained charge distribution by calculating molecular dipole 

moments and standard enthalpies of formation for all molecules listed in Table 5.3, and 

compared them with the corresponding experimental values, where available (see Table 

5.5). As results from this Table, once again the agreement between calculate and 

experimental quantities is good, thus confirming the validity of the adopted approach. 

According to the procedure outline above, a hybrid O/I 3D system based on GPTMS was 

successfully generated with high conversion. It is well known that a 100% conversion is 

rarely achieved experimentally because of gel transition at later stage.60 Although other 

systems with a different (lower) conversion degree α could be generated by changing, for 

instance, the distance between close contacts up to a reasonable value of 10 Å, the amount 

of unreacted group in the actual simulated molecular systems is, on average, equal to 10%, 

yielding α = 0.9. 

The central unit cells of the initial GPTMS monomers, and the final network systems 

obtained from both structures I and II are shown in Figures 5.4 and 5.5, respectively. As can 

be seen from Figure 5.5, the 3D network structure is characterized by the presence of both 

chemical and physical crosslinks. Some bonds clearly connect to image cells across the 

boundary, and thus extend throughout the periodic system. Due to the scarcity of 

experimental characterization, which by the way accounts for the small number of 

simulation studies on crosslinked polymeric systems,61,62,63 only a few comparisons between 

experimental and simulation can be attempted based on the main structural features of the 

systems. 

As mentioned in the introduction, PSSQOs are the generic products obtained by the 

hydrolytic condensation of monomers such as GPTMS. Strictly speaking, the term refers to 

fully condensed structures of formula (RSiO3/2)n (n = even number), also denoted Tn. 

 

                                                             
55 Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840. 
56 Singh, U. C.; Kollman, P. A. J. Comput. Chem. 1984, 5, 129-145. 
57 Weiner, S. J.; Kolmann, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230-252. 
58 Weiner, S. J.; Kolmann, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G., Profeta, S.; Weiner, P. J. J. Am. Chem. 

Soc. 1984, 106, 765-784. 
59 Reynolds, C. A.; Essex, J. W.; Richards, W. J. J. Am. Chem. Soc. 1992, 114, 9075-9079. 
60 Girard-Reydet, E.; Riccardi, C. C.; Sautereau, H.; Pascault, J. P. Macromolecules, 1995, 28, 7599-7607. 
61 Fan, H. B.; Yuen, M. M. F. Polymer 2007, 48, 2174-2178. 
62 Wu, C.; Xu, W. Polymer 2006, 47, 6004-6009. 
63 Yarowsky, I.; Evans, E. Polymer 2002, 43, 963-969. 
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Atom name Si O1 O2 O3 O4 O5 C1 

Compass 0.80 -0.47 -0.47 -0.47 -0.32 -0.32 -0.24 

AM1_ESP 0.72 -0.27 -0.32 -0.30 -0.10 -0.099 -0.25 
        
Atom name C2 C3 C4 C5 C6   

Compass -0.11 0.054 0.054 0.11 0.054   

AM1_ESP -0.20 -0.22 0.14 -0.12 -0.052   
        
Atom name H1 H2 H3 H4 H5 H6 H7 

Compass 0.25 0.25 0.25 0.053 0.053 0.053 0.053 

AM1_ESP 0.13 0.12 0.12 0.045 0.064 0.10 0.093 
        
Atom name H8 H9 H10 H11 H12 H13 H14 

Compass 0.053 0.053 0.053 0.053 0.053 0.053 0.053 

AM1_ESP 0.084 0.096 0.016 -0.014 0.070 0.076 0.072 

 
Table 5.4. Partial charges on GPTMS atoms as assigned by Compass and obtained from AM1-ESP 
calculations. Atom numbering as in Figure 5.3. 

 

 

Name µcalc (D) µexp (D) 
∆Hform,calc 

(kcal/mol) 

∆Hform,exp 

(kcal/mol) 

Dimethyl ether 1.36 1.30 -44.66 -44.00 

Ethylene oxide 1.95 1.89 -13.61 -12.57 

Propylene oxide 2.06 2.01 -21.68 -22.63 

Propyl Methyl Ether 1.13 1.11 -55.08 -56.91 

Disiloxane 0.34 0.24 -65.22 − 

Hexamethyldisiloxane 0.38 − -182.01 -185.87 

Methoxysilane 1.1 1.15 -53.98 − 

Tetramethylsilane 0.00 0.00 -57.99 -57.12 

 
Table 5.5. Computed dipole moment and standard enthalpy of formation for molecules structurally 
related to GPTMS. 

 

 

 
 
Figure 5.4. Central unit cell of the initial GPTMS monomers. Color code as in Figure 5.2. 

 



 101 

 
 
Figure 5.5. Hybrid O/I 3D network structures obtained starting from GPTMS models bearing atomic 
partial charges calculated with the AM1-ESP method (structure I, top left, structure II, top right), and 
assigned by the Compass FF (structure I, bottom left, structure II, bottom right). (see text for details). 
Crosslinked Si and O atoms are highlighted in Stick-and-Ball. Color code as in Figure 5.2. 

 

 

But the term is frequently extended to denote partially condensed structures, [RSiO3/2-

x(OH)2x]m or Tn(OH)m, where m = 0, 2, 4…(2+n) for n = even number and m = 1, 3, 5 … (2+n) 

for n = odd number. Keeping this definition, PSSQO structures may vary from perfect 

polyhedra, incompletely condensed polyhedral, ladder polymers, open structures, linear 

polymers, and all possible combinations thereof. 

Generally speaking, then, according to the polymerization conditions employed different 

structures for the resulting networks are proposed, such as randomly connected three-

dimensional networks of trifunctional monomers, “ladder” structures, and a combination of 

linear, “ladder” and cage-like fragments.64 

As the presence and relative amount of the structures described above significantly affect 

the network final structure, homogeneity and, ultimately, the mechanical properties of the 

resulting hybrids, the different reaction steps can be optimized to obtain final materials with 

targeted properties. Experimentally, it has been found that, under acid conditions, only a 

very small amount of cage-like structures are formed in the GPTMS polymerization, the 

intermolecular condensation being the preferred mechanism of network growth.9 

Accordingly, a high-molecular weight branched PSSQO grows, until a gel system is formed at 

a conversion degree approximately equal to 0.7. The corresponding composition of the gel 

state exhibits a considerable amount of silicon atoms involved in triple intermolecularly 

branched units representing the cross-links in the network. Further SAXS experiments 

revealed also that, under acid catalysis, no microphase separation resulting in self-assembly 

                                                             
64 Boury, B.; Corriu, R. Chem. Rec. 2003, 3, 120-132. 
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of regularly arranged domains is present.9 Contrarily, a broad distribution of high-molecular 

weight PSSQOs with dangling organic substituents is formed, the structure not promoting 

any ordering. The inspection of the 3D structures obtained from our simulation procedure 

compare well with the network picture described above. Indeed, the overall network 

structure is linear and extends in all three directions, the presence of unstrained rings with a 

number of Si atoms greater than 4 are present. To further confirm the quality of the network 

structures, Table 5.6 lists the mean values of some geometrical parameters, as obtained 

from initial structure I with the Compass atomic partial charges scheme by averaging over 10 

MD frames. By comparing these data with the corresponding geometrical features of the 

GPTMS monomer model reported in Table 5.2, we can see that the differences are rather 

small, indeed confirming that crosslinking does not result in considerable geometrical 

modifications, and no substantial strain is induced in the final network (compare Figures 5.4, 

5.5 and 5.6). 

 

 

 
Table 5.6. Mean geometrical parameters of the GPTMS 3D network obtained from structure I with the 
Compass atomic partial charges scheme by averaging over 10 MD frames. 

 

 

 
 
Figure 5.6. Details of the hybrid O/I 3D network structures obtained starting from GPTMS models 
bearing atomic partial charges calculated with the AM1-ESP method (structure I, top left, structure II, 
top right), and assigned by the Compass FF (structure I, bottom left, structure II, bottom right). (see 
text for details). Crosslinked Si and O atoms are highlighted in Stick-and-Ball. Color code as in Figure 
5.2. 

 

 

Mechanical properties 

The mechanical properties calculated using the 3D network structures obtained from the 

MD simulations are reported in Table 5.7. The second column refers to the properties of the 

network structures simulated with the partial charge scheme obtained using the AM1-ESP 

Si-O/Å Si-C1/Å O-Si-O O-Si-C Si-C-C Si-O-Si 

1.660 1.928 124.1° 104.3° 123.5° 142.8° 
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approach, whilst the third column lists the same quantities resulting from the 3D structures 

bearing the partial charges as assigned by the Compass FF (see Table 5.4). In the last column 

of this Table, the range of experimental values of the corresponding mechanical 

properties65,66 is also reported for comparison. 

 

 

Mechanical 
properties 

Structure I 
AM1-ESP 

Structure II 
AM1-ESP 

Structure I 
Compass 

Structure II 
Compass 

Experimental 
dataa 

E (GPa) 2.85 3.00 3.52 3.96 1.9-4.5 

B (GPa) 1.89 2.00 2.58 2.66 2.5-7 

G (GPa) 1.14 1.20 1.38 1.58 0.9-1.5 

ν 0.25 0.27 0.27 0.25 0.3-0.4 

λ (GPa) 1.13 1.20 1.66 1.61 - 

μ (GPa) 1.14 1.20 1.38 1.58 - 

 
Table 5.7. Young’s modulus E, bulk modulus B, shear modulus G, Poisson ratio ν, and Lamé constants λ 
and μ for the 3D GPTMS-based O/I network structures obtained from MD simulations. a Average 
values for crosslinked networks. 

 

 

Specific heat 
capacity 

Structure I 
AM1-ESP 

Structure II 
AM1-ESP 

Structure I 
COMPASS 

Structure II 
COMPASS 

Experimental 
dataa 

cP (kJ/kgK) 1.16 1.23 1.64 1.49 1.1-2.2 

 
Table 5.8. Specific constant pressure (cP) heat capacity for the 3D GPTMS-based O/I network structures 
obtained from the MD simulations. a Average values for crosslinked networks. 

 

 

The data in Table 5.7 indicate that the charging method has a certain impact on the 

mechanical properties of the final material. Indeed, in the case of the AM1-ESP partial 

charging scheme the values obtained from the simulation are located close to the lower limit 

of the expected range, if not below. With the Compass FF charge scheme, the mechanical 

characteristic of the GPTMS network lay in the expected range. Although no experimental 

measures are available for our systems, as a conclusion we could say that the predictions 

obtained by using a standard force field satisfactorily reproduce the available mechanical 

experimental data. 

Heat capacities 

The specific heat capacities at constant volume and constant pressure, cv and cP, 

calculated for the GPTMS-based O/I network are reported in Table 5.8. Again, these 

properties were obtained for structure bearing the two different partial charge schemes (see 

second and third column of Table 5.8 for AM1-ESP and Compass charge scheme, 

respectively). In the last column, the experimental data range available in literature for 

similar systems is also shown for comparison.65,66 

As seen for the mechanical properties, all data calculated starting from structures bearing 

atomic partial charges derived from the AM1-ESP approach lay in the lower limit of the 

experimental data range, whilst those obtained from the Compass partial charge set fall 

better within the interval of observed values.  

                                                             
65 Van Krevelen, D.W., Properties of polymers, Elsevier, Amsterdam, The Netherlands (1990). 
66 Bicerano, J., Prediction of polymers properties, M. Dekker, New York, USA (1996). 
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5.3.2 Mesoscale results 

Molecular dynamics simulations (MD) were used to predict the equilibrium conformation 

and the interactions energies value for the GPTMS-MPTMS/ZnS nanocomposite. Figure 5.7 

shows one snapshot taken along the equilibrated MD trajectory as an example. 

 

 

 
 
Figure 5.7. Frame extracted from the equilibrated MD trajectory of a system made up of a ZnS surface 
chemically modified with MPTMS molecules and a crosslinked GPTMS matrix. 

 

 

As the simulation proceeds in time, the modifier molecules partially shield the surface 

from the interaction with the matrix and at the same time interpenetrate the polymeric 

network by virtue of favorable interaction energies. Following our previous work originally 

based on Tanaka’s approach,25,29,35l) we derived interaction energies as well as the binding 

energies from the equilibrium conformation of the corresponding MD simulations. The 

values obtained are reported in Table 5.9. 

 

 

Ebind 

GPTMS-ZnS GPTMS-MPTMS MPTMS-ZnS 

-80.14 -158.25 -60.24 

(±3.57) (±8.19) (±4.56) 

 
Table 5.9. Equilibrium binary binding energies. All energies are expressed in kcal/mol and standard 
deviations are reported in parentheses. 

 

 

The binding energies between the individual components constitute the input parameters 

for the calculation of the mesoscopic interaction parameters. 

In this work we employed a recently developed technique called Reactive Dissipative 

Particle Dynamics (RxDPD) to model crosslinked polymeric matrices and nanoparticles at 

mesoscale level. Generally speaking, in a mesoscale representation, the actual material is 

modeled as a collection of particles that represent lumps of the material. 
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Our mesoscopic system consists of coarse-grained polymers and coarse-grained 

nanoparticles. Nanoparticles are modelled by icosahedrons, i.e., an assembly of 13 

mesoscopic beads connected by harmonic spring potentials. Figure 5.8 shows schematically 

mesoscopic model for the nanoparticles. This effectively represents a uniformly dispersed 

set of nanoparticles of approximately 5-6 nm in diameter. Ideally, inorganic particles for 

optical applications should have a diameter below 10 nm; this is because the presence of 

even a small percentage of particles or aggregates larger than 100 nm results in strong light 

scattering in the visible region, causing haze or even turbidity.67 Consequently, the size of 

inorganic nanoparticles employed for fabricating high RI nanocomposites is frequently below 

10 nm. 

 

 
 
Figure 5.8. Mesoscopic model for the nanoparticle used in this work. 

 

 

The polymer is represented by a chain of mesoscopic connected beads; the polymer 

chains can crosslink via a reactive potential and originate a 3-D amorphous network. A ring 

of four GPTMS monomers constitutes the basic unit, i.e. single DPD bead, for the GPTMS 

network model at mesoscale. Figure 5.9 shows the mesoscopic model for the GPTMS matrix 

used in this work. 

 

 

 
 

Figure 5.9. Mesoscopic model for the GPTMS matrix used in this work. 

 

 

Assuming this as the basic mesoscale unit for the polymer, we simulated the network 

using the RxDPD technique and we compared the final structure of the network predicted 

after mesoscale runs to that yielded by atomistic simulations. As shown in Figure 5.10, 

predicted structures resulting from mesoscale crosslinking agree quite well with those 

obtained by atomistic simulations. The probability to find cyclic structures of 4, 8, 12 units in 

the atomistic network is colored in grey while the corresponding probability for the 

mesoscale network is depicted in red. The agreement between the two distributions means 

                                                             
67 a) Caseri, W. Macromol. Rapid Commun. 2000, 21, 705-722; b) Ramaswami, R.; Sivarajan, K. Optical Networks: A 

Practical Perspective, Morgan Kaufmann, San Francisco, 2001.  
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that the mesoscale model chosen for representing the network fits well the atomistic one, 

thus validating the choice for the mesoscale unit of the matrix. 

 
Figure 5.10. Atomistic/mesoscale comparison of crosslinking resulting structures in GPTMS systems. 

 

 

As it is easy to understand from the probability distribution, our mesoscale network was 

essentially constituted by 79 mol% of 4-rings, 10 mol% of 8-rings and 11 mol% of 12-rings. 

Once defined and optimized the mesoscale models and mesoscale species for the 

constituents, the next important issue is the determination of the bead interaction 

parameters. The detailed procedure for obtaining the mesoscale interaction parameters 

from atomistic molecular dynamics binding energies is reported in details in Chapter 2. 

Adapting the recipe to the present system, we set the bead-bead interaction parameter 

for the polymer matrix equal to aGPTMS=25.00 according to an appropriate value for a density 

value of ρ=3.44 As, according to our procedure, we needed one more point as reference, we 

firstly calculated the Flory-Huggins interaction parameter for GPTMS and MPTS χGPTMS-MPTMS 

following a validated procedure derived by our group,30,68 and described in Chapter 4, and 

then we derived the aGPTMS-MPTMS interaction parameter using the relation proposed by 

Groot44 linking the Flory-Huggins interaction parameter χij to the mesoscopic interaction aij. 

From our calculations, the Flory-Huggins interaction parameter results to be χGPTMS-

MPTMS=0.11 and the corresponding DPD interaction parameter aGPTMS-MPTMS=25.34. 

Once these two parameters were set, and their values associate with the corresponding 

values of the self- and mixed rescaled DPD energies, all the remaining bead-bead interaction 

parameter for the RxDPD simulation could be easily obtained, starting from the atomistic 

binding energies (see Chapter 2). According to this procedure, the interaction parameters 

were set to aZnS-GPTMS=26.04 and aZnS-ZnS=27.01, incorporating the effect of MPTMS covering 

into the ZnS contribution. 

Generally speaking, the macroscopic properties of a composite material intrinsically 

depend not only on the properties of each constituent, but also on the characteristics of the 

composite morphology, interfacial interactions and nanoparticle loading. To elucidate these 

critical issues, we varied the nanoparticle loading from 2 to 15% in volume and we analyzed 

                                                             
68 Pricl, S.; Fermeglia, M. Fluid Phase Eq. 1999, 166, 21-37. 
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the morphology of the resulting composites and the dispersion of the semiconductor in the 

matrix after crosslinking reaction occurred. 

Figure 5.11 shows clustering analysis of ZnS nanoparticles as a function of nanoparticle 

loading. We found that up to 5%vol, the nanoparticles are quite well distributed in polymeric 

matrix and then they start clustering. Most likely, the modifier attached on the metal surface 

is not sufficient to completely shield the ZnS nanoparticles to favourably interact and 

consequently they tend to aggregate when the concentration is increasing.  

 

 

 
 
Figure 5.11. Clustering analysis in GPTMS-ZnS+MPTMS systems from reactive DPD. 

 

 

In order to avoid nanoparticle aggregation and favour dispersion of the nanoparticles in 

the polymeric matrix, an accurate control and the increase of MPTMS modifier content in 

the system could improved the dispersion of the metal. 

Figure 5.12 shows the dispersion of the nanoparticles at 2% in concentration as obtained 

from RxDPD simulations as an example of the mesoscale prevision. 

 

 

  
(a) (b) 

 
Figure 5.12. 3-D density field (a) and isodensity surface (b) visualization of a GPTMS-MPTMS/ZnS 
system containing 2% vol of nanoparticle. GPTMS matrix is not visible for clarity. 
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5.3.3 Macroscopic properties 

The problem of obtaining nanocomposites having good optical and mechanical properties, 

like typical thermoplastic or UV-curable polymers, and high nanoparticle concentration at 

the same time, i. e. with no limitation on thickness of the film, has not been solved till now. 

Mechanical properties should permit the making of optical elements and/or coatings 

using current industrial methods suitable for polymer materials; the material should be 

processable in any form: coating, layer up to some hundreds of microns, and bulk. In 

addition, as far as optical properties is concerned, the requirement of retain transparency 

obliges to a strict control of dispersion to avoid any phase separation or even small 

aggregation phenomena, especially when high inorganic loadings are needed. 

In particular, the mechanical properties of a nanocomposite resin can be different from 

those of the matrix polymer due the presence of the nanoparticles and the local physical 

interactions near the particle surface. Because of larger surface-to-volume ratio of 

nanoparticles over traditional fillers, these effects are expected to be more prominent for a 

given filler volume fraction. Nanoparticles can significantly alter the mechanical properties of 

the polymer close to the particle surface due to changes in chains mobility. Toughness has 

been attributed to the suppression of polymer chain mobility at the nanoparticle surface 

from attractive interactions. If one designs strong interactions between nanoparticles and 

the polymer matrix to avoid coagulation (for example use of surface active polymers with 

active groups), the modulus of the system will certainly increase, but simultaneously the 

coating (if it is not thin) will crack due to the rise of local mechanical stresses during the 

material production. Furthermore, since cracking and mechanical deformation occurs at 

dimensions larger than the isolated nanoparticles, it is important to understand the 

composite morphology at length scales larger than the size of the nanoparticles. Thus, 

characterization of the multiscale morphology of dispersed nanoparticles is important to 

understand the properties of a nanocomposite resin. 

One of the goals of the mesoscale simulations is to generate density maps for polymeric 

matrix-nanoparticle systems to be used for prediction of macroscopic properties by finite 

elements methods. In this way, lower scale molecular information is passed as input to 

upper scale continuum calculation. The morphology of the systems at different metal 

loading as obtained fro mesoscale simulation in form of 3-D density distributions were 

transferred to the microFEM simulation for the calculation of relevant macroscopic 

properties. Examples of a 3D density distribution are reported in Figures 5.13 for lower 

(2%vol) and upper (5%vol) content of nanoparticles. 

Accordingly, the macroscopic mechanical properties of the GPTMS-MPTMS/ZnS 

nanocomposite as calculated from FE analysis are reported in Table 5.10 as function of 

nanoparticle loading. 

 

 

Volume loading (%) 2 5 10 15 

Young’s modulus (GPa) 2.22 2.30 2.36 2.52 

Poisson ratio (-) 0.27 0.27 0.27 0.27 

Shear modulus (GPa) 0.87 0.91 0.93 0.99 

Bulk modulus (GPa) 1.61 1.67 1.71 1.83 

Density (g/cm3) 1412 1473 1577 1680 

 
Table 5.10. Mechanical properties of GPTMS-MPTMS/ZnS nanocomposite as function of nanoparticle 
loading obtained from FE calculation. 
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(a) (b) 

  

  
(c) (d) 

 
Figure 5.13. 3-D density distribution of GPTMS-MPTMS/ZnS nanocomposite at 2%vol, (a) and (b), and 
15%vol, (c) and (d), of metal. Particle density is colored in blue and matrix density in white. Two 
different visualizations are reported, full cell view (Figures (a) and (c)), and cut-plane (Figures (b) and 
(d)). In all pictures is visible the grid mesh employed for FEM calculation. 

 

 

Predicted values of mechanical characteristics are in good agreement with those expected 

for similar or comparable systems.69 The results shown here demonstrate that only 2-5%vol 

ZnS incorporation into the GPTMS matrix was effective in enhancing the mechanical strength 

of the material. The reason for that is the high mechanical strength of ZnS (approximately 

E=70GPa) and its smaller size allow for a greater surface area to be available for the 

polymer/filler interaction and adhesion.  

When the loading is low, due an attractive interaction between the nanoparticles 

modified and the surrounding polymer, the interphases region has decreased molecular 

mobility over that of the bulk polymer, and this consequently results in an increase in 

modulus. Further, the molecular structure of the shell material (MPTMS) provides the 

compatibilization of the nanoparticles with the polymer to prevent coagulation. 

When the nanoparticle loading is increased, this shielding effect is no longer sufficient to 

avoid particle interaction and aggregation occurs. The presence of clusters at higher 

percentage of loading explains why the increasing of the mechanical properties with the 

addition of the semiconductor is much lower than the value expected. The presence of 

                                                             
69 a) Wong, C. P.; Bollampally, R. S. J. Appl. Pol. Sci. 1999, 74, 3396-3403; b) Chen, C.; Justice, R. S.; Schaefer, D. W.; 

Baur, J. W. Polymer 2008, 49, 3805-3815; c) Knör, N.; Gebhard, A.; Haupert, F.; Schlarb A. K. Mechanics of Composite 

Materials 2009, 45, 199-206. 
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clusters in the matrix reduces the volume-to-surface ratio, and the composite behaves as a 

traditional micro-composite rather than a nano-composite. 

5.4 Conclusions 

Hybrid organic–inorganic nanocomposites have attracted significant attention since their 

structure and properties can be easily manipulated, even at the molecular level, by the 

precise design and tailoring of the nanoscale building blocks and organic matrix. Although 

the promising applications of these nanocomposites have facilitated the rapid development 

of this area in both fundamental and applied research, there are still lots of questions that 

need to be addressed. The greatest obstacle to the industrial-scale production and 

commercialization of these nanocomposites is the dearth of cost-effective strategies for 

controlling the homogeneous dispersion of the nanoscale building blocks in polymer hosts, 

especially when high inorganic loading is used. The ex situ method is still considered to be a 

facile and feasible route for the generation of high RI nanocomposites, nevertheless the key 

challenge is to carry out the large-scale preparation of high RI nanoparticles with good 

compatibility with polymer matrices or monomers. Another hurdle to the broader use of the 

high RI nanocomposites is the lack of a structure–property relationship (SPR) because there 

are limited property databases for these nanocomposites. Thus, greater efforts are needed 

to correlate the structure of the nanocomposites with their macroscopic performance, 

including optical properties, thermal and mechanical properties, light stability, and 

processability, which is very important for the precise design of nanomaterials with excellent 

balanced properties. 

In this study, we tried to contribute to this strong request fro SPR by proposing a 

computational recipe that can constitute a useful tool for a systematic design and 

development of new hybrid O/I systems with specific structural/chemico-physical 

properties. 
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Chapter 6 

Morphology prediction of block copolymers for 

drug delivery 

Polymeric drug carriers have traditionally been considered important for enhancing drug 

stability and solubility, and improving transport properties of pharmaceutical molecules. 

Drug carriers in the form of microspheres, nanoparticles, solution-dispersed polymeric 

micelles, hydrogels, or polymer–drug conjugates have been used to encapsulate 

hydrophobic drugs and other bioactive molecules, which are released in a controlled manner 

over a long period of time. Two polymers extensively studied in this regard are poly (lactide) 

(PLA) and poly (ethylene oxide) (PEO). Both polymers are biodegradable, adapt well to 

biological environments, and do not have adverse effects on blood and tissues. Due to such 

unique properties, copolymers of PLA/PEO with AB and ABA architectures have generated 

broad interest in nanomedicine applications. Nonetheless, a systematic investigation of the 

main structural and physical factors influencing the ultimate morphology and structure of 

the block polymer nanoscopic aggregates is still lacking, as it understandably requires a 

enormous experimental effort. Molecular simulation techniques, as time and cost efficient 

tools, can not only complement experimental works, but also eventually give a preview of 

phenomena prior to experiments. In this work we report the results of a complete study on 

the self-assembly of (DL)-PLA/PEO di/triblock copolymers in aqueous environment and in the 

presence of a model drug based on a multiscale molecular modeling recipe. In details, 

atomistic molecular dynamics simulations were used to obtain Dissipative Particle Dynamics 

(DPD) input parameters, and this mesoscale technique was employed to derive the entire 

phase diagrams for these systems. 

6.1 Introduction 

Despite remarkable progress in the past century, acute and chronic maladies such as 

bacterial and viral infections, cancer, cardiovascular disease, and strongly debilitating central 

nervous system afflictions continue to take a significant toll around the world. Various types 
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of drugs and gene therapy strategies are currently employed for the treatment of diseases 

based on differences between the normal and pathological tissues. These differences can be 

subtle and in remote areas of the body at the organ, tissue, cell, or sub-cellular levels. As 

pathological knowledge is leading to the molecular distinction between normal and 

abnormal tissue, it is predicted that more therapeutic targets will emerge at all these levels. 

However, the use of a specific carrier system that can overcome biological barriers and 

provide optimum drug concentration at the disease target at each level is required. 

Nanoscale drug delivery systems – or nanovectors – are ideal candidates to provide 

essential solutions to the time-honoured problem of optimizing the therapeutic index for a 

treatment (i.e., to maximize efficacy while reducing health-adverse side effects).1 Three main 

aspects neatly summarize the essential breakthrough opportunities for nanovector delivery; 

i) selective cells and tissue targeting; ii) ability to reach disease sites where the target cells 

and tissues are located, and iii) capacity to deliver even multiple active agents on site. The 

use of nanoparticle-based pharmaceutical carriers has well established itself over the last 

decade both at the pharmaceutical research and clinical settings. Nonetheless, many issues 

are to be solved before one new such material can reach the stage of clinical routine. 

Soft materials, which have characteristic fluid-like disorder on short scale and high order 

at longer length scale, are increasingly drawing the attention of both scientists and engineers 

as possible nanocarriers systems. Much of the interest in soft matter, which include colloids, 

surfactants, membranes, (bio)polymers and their composites, stems from the inherent 

capacity for many of these materials to self-assemble into nanostructures. Self-organization 

is a powerful means to fabricate useful nanostructured materials and is currently heavily 

exploited by nature in many of its systems.2 From the standpoint of pharmaceutical 

technology (PT), whose main goal is the design of technologically optimal vehicles for the 

administration of drugs, self-assembly represents a low-cost, fast, and easily scalable 

process. 

Among the plethora of polymeric systems with promising potential as nanoscale drug 

delivery systems,3 block copolymers (BCPs) have been widely studied as long-circulating 

carrier for hydrophobic drugs. BCPs are composed of two or more chemically distinct, and 

most frequently immiscible, polymer blocks covalently bound together. In the myriad of 

ways in which blocks can be linked to one another, the simplest and most widely employed 

categories so far are the AB diblock copolymers - composed of a linear chain of type A 

monomers bound to one end to a linear chain of type B monomers - and the ABA triblock 

copolymers, in which a linear chain of type B monomers is bound to both ends to a linear 

chain of type A monomers (see Figure 6.1(a) and (b)). Thermodynamic incompatibility 

between the A and B blocks drives a collection of AB or ABA copolymers to self-organize via 

microphase separation in which the contacts between like and unlike entities tends to be 

maximized and minimized, respectively.  

                                                             
1 a) Ferrari, M. Nat. Rev. Cancer 2005, 5, 161-171; b) Kommareddy, S.; Tiwari, S. B.; Amiji, M. M. Technol. Cancer Res. 

Treat. 2005, 4, 615-625; c) Ferrari, M. Curr. Op. Chem. Biol. 2005, 9, 343-346; d) Torchilin, V. P. Adv. Drug Deliv. Rev. 2006, 
58, 1532-1555; e) Sengupta, S.; Sasisekharan, R. Br. J. Cancer 2007, 96, 1315-1319.  

2 Ball, P. The Self-made Tapestry: Pattern Formation in Nature, Oxford University Press, New York, 1999. 
3 a) Dhal, P. K.; Polomoscanik, S. C.; Avila, L. Z.; Holmes-Farley, S. R.; Miller, R. J. Adv. Drug Deliv. Rev. 2009, 12, 1121-

1130; b) Gaspar, R.; Duncan, R. Adv. Drug Deliv. Rev. 2009, 61, 1220-1231; c) Hu, X.; Jing, X. Expert Opin. Drug Deliv. 2009, 
6, 1079-1090; d) Khemtong, C.; Kessinger, C. W.; Gao, J. Chem. Commun. 2009, 28, 3497-3510; e) Belting, M.; Wittrup, A. 
Mol. Biotechnol. 2009, 43, 89-94; f) Venugopal, J.; Prabhakaran, M. P.; Low, S.; Choon, A. T.; Deepika, G.; Dev, V. R.; 
Ramakrishna, S. Curr. Pharm. Des. 2009, 5, 1799-1808; g) Singh, R.; Lillard Jr, R. J. W. Exp. Mol. Pathol. 2009, 86, 215-223; 
h) Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I. Angew. Chem. Int. Ed. Engl. 2009, 48, 274-288, i) Mintzer, M. A.; 
Simanek, E. E. Chem. Rev. 2009, 109, 259-302; j) Branco, M. C.; Schneider, J. P. Acta Biomater. 2009, 5, 817-831; k) Kim, S.; 
Kim, J. H.; Jeon, O.; Kwon, I. C.; Park, K. Eur. J. Pharm. Biopharm. 2009, 71, 420-430; l) Torchilin, V. P. Eur. J. Pharm. 

Biopharm. 2009, 71, 431-444. 
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Figure 6.1. Schematic representation of the AB (a) and ABA (b) architecture of block copolymers. A-
type monomers are depicted as light blue spheres, whilst B-type monomers are shown as orange 
spheres. Note that in the particular AB type copolymer shown as example, the A-block length is equal 
to the B-block length. In such case the copolymer is symmetric, and fA = fB = 1/2. In the case of the 
illustrated triblock copolymer ABA, the fraction of A-type monomer is double with respect to that of B-
type monomers, that is fA = 0.67 and fB = 0.33. (c) Representative phase diagram for conformationally 
symmetric diblock melts (top) and cartoon of the corresponding microphase-segregated copolymer 
morphologies (bottom). Phases are labeled as follows: L/LAM (lamellar), G/GYR (gyroid), H/HEX 
(hexagonal cylinders), C/BCC (spheres), D (disordered). Dashed lines denote extrapolated phase 
boundaries, and the dot denotes the critical point. 

 

 

Macrophase separation is prevented by entropic forces stemming from the covalent 

bonds between the A- and B-blocks, and the system ultimately reaches a compromise 

between mixing and separation. The tendency to microphase segregation and the free 

energy cost of bringing into contact unlike monomers are accounted for by the 

corresponding values of the well known temperature-dependent Flory-Huggins parameter 

χAB.4 Two additional parameters concur to determine the ultimate morphology of a 

microphase segregated copolymer system: the overall degree of polymerization N, and the 

relative composition fractions, fA and fB, where fA = NA/N and fA + fB = 1. In the case of a 

triblock copolymer ABA, a further parameter, i.e., the relative length of the three blocks, 

must also be considered. 

Even in the simplest case, i.e., AB diblock copolymers in bulk, a rich assortment of ordered 

phases has been documented (see Figure 6.1 (c)).4 For nearly symmetric diblocks (fA = fB = 

1/2), a lamellar (L) phase occurs. For moderate asymmetries, a complex bicontinuous state, 

known as the gyroid (G) phase, has been observed in which the minority blocks form 

domains consisting of two interweaving threefold-coordinated lattices. Another complex 

structure, the perforated lamellar (PL) phase, may occur when the minority-component 

layers of the L phase develop a hexagonal arrangement of passages. At yet higher 

asymmetries, the minority component forms hexagonally packed cylinders (C) and then 

spheres (S) arranged on a body-centered cubic lattice. Eventually, as f → 0 or 1, a disordered 

phase results. When a solvent component is added to the melt, and in particular if the 

solvent is selective for one of the copolymer blocks, the resulting system can have an 

                                                             
4 a) Leibler, L. Macromolecules 1980, 13, 1602-1617; b) Fredrickson, G. H.; Leibler, L. Macromolecules 1989, 22, 1238-

1250; c) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525-557; d) Darling, S. B. Prog. Polym. Sci. 2007, 
32, 1152-1204. 
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extremely complicated phase diagram that may differ entirely from that of the pure melt. 

For instance, other phases, which include the micellar phase (M), usually appear. On the 

other hand, if the solvent is a good solvent of roughly equal affinity for all of the blocks, one 

can expect that the copolymer system will have thermodynamics similar to that of the pure 

melt. 

Poly(D-L lactide) (PLA) and poly(ethylene oxide) (PEO) are two polymers which have both 

been extensively investigated for applications as drug delivery systems (DDSs). Both are 

biodegradable, biocompatible, adapts well to biological environments, and do not have 

severe adverse effects on blood and tissues. Due to such unique properties, copolymers of 

PEO/PLA with an AB and ABA architecture have generated broad interest for use in 

biomedical applications.5 Also, depending on the volume ratio between the less soluble 

(PLA) and soluble (PEO) blocks (the so-called insoluble soluble ratio (ISR)) and independently 

of whether the different hydrophilic and hydrophobic parts are arranged as AB or ABA, these 

copolymer are expected to generate the entire collection of allowed microstructures – 

spheres, cylinders, lamellas up to micelles – as a result of balancing the different interactions 

between the two block types and the solvent. 

Thermodynamically and kinetically stable copolymeric microstructures, even when 

encapsulating an active payload, may retain their integrity in the biological environment for 

long periods and, more effectively, avoid uptake by the reticuloendothelial system (RES) and 

elimination through the kidney and possibly change the normal organ distribution of an 

encapsulated drug the same way. At the same time, it can be easily conceived that different 

microstructures can result in quite diverse nanostructures which, in turn, can perform rather 

differently in terms, for instance, of drug loading capacity, cellular localization and uptake, 

cargo release efficiency, and toxicity. The a priori knowledge of the phase diagram of a given 

di/triblock copolymer-based nanocarrier, in particular in the presence of water and/or of an 

active principle, would therefore constitute an invaluable piece of information in the process 

development of these DDSs. 

To this purpose, it is essential to develop theoretical and computational approaches 

sufficiently fast and accurate that the structure and property of the materials can be 

predicted for various conditions. A particular advantage of molecular simulation techniques 

is that the properties of new materials can be predicted in advance of experiments. This 

allows the system to be adjusted and refined (or designed) so as to obtain the optimal 

properties before the arduous experimental task of synthesis and characterization. However, 

there are significant challenges in using theory to predict accurate properties for nanoscale 

materials, especially when (bio)macromolecules are involved. Indeed, despite the 

tremendous advances made in molecular modeling and simulation techniques, there 

remains a remarkable uncertainty about how to predict many critical properties related to 

material final performance. The main problem lies in the fact that most of these properties 

depend on the interactions and chemistry taking place at the atomic level, involving 

electronic and atomic descriptions at the level of nanometers in the length scale, and 

picoseconds in the timescale. Conversely, the PT designer needs answers from microscopic 

modeling of components having scales of the order of tens/hundreds of nanometers, and of 

                                                             
5 a) Kissel, T.; Li, Y.; Unger, F. Adv. Drug Deliv. Rev. 2002, 54, 99-134; b) Agrawal, S. K.; Sanabria-Delong, N.; Coburn, J. 

M.; Tew, G. N.; Bhatia, S. R. J. Control. Release 2006, 112, 64-71; c) Lee, W. C.; Li, Y. C.; Chu, I. M. Macromol. Biosci. 2006, 
6, 846-854; d) Sanabria-Delong, N.; Agrawal, S. K.; Bhatia, S. R.; Tew, G. N. Macromolecules 2007, 40, 7864-7873; e) 
Agrawal, S. K.; Sanabria-Delong, N.; Jemian, P. R.; Tew, G. N.; Bhatia, S. R. Langmuir 2007, 24, 5039-5044; f) Agrawal, S. K.; 
Sanabria-Delong, N.; Tew, G. N.; Bhatia, S. R. Langmuir 2008, 18, 13148-13154; g) Agrawal, S. K.; Sanabria-Delong, N.; 
Tew, G. N.; Bhatia, S. R. Macromolecules 2008, 41, 24, 1774-1784; h) Garric, X.; Garreau, H.; Vert, M.; Molès, J. P. J. Mater. 
Sci. Mater. Med. 2008, 19, 1645-1651. 
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phenomena taking place in a time range of milliseconds or much larger. Thus, to achieve a 

dramatic advancement in the skill of designing innovative, highly-performing materials, it is 

mandatory that we link the atomistic to the microscopic modeling. 

Molecular modeling and simulation combines methods that cover a range of size scales in 

order to study material systems. All together, quantum mechanics (QM), molecular 

mechanics (MM), molecular dynamics (MD) and Monte Carlo (MC) methods, and mesoscale 

techniques cover many decades of both length and time scale, and can be applied to 

arbitrary materials: solids, liquids, interfaces, self-assembling fluids, gas phase molecules and 

liquid crystals, to name but a few.6 There are a number of factors, however, which need to 

be taken care of to ensure that these methods can be applied routinely and successfully. 

First and foremost of course are the validity and usability of each method on its own, 

followed by their interoperability in a common and efficient user environment. Of equal 

importance is the integration of the simulation methods with experiment. Multiscale 

simulation can be defined as the enabling technology of science and engineering that links 

phenomena, models, and information between various scales of complex systems. The idea 

of multiscale modeling is straightforward: one computes information at a smaller (finer) 

scale and passes it to a model at a larger (coarser) scale by leaving out (i.e., coarse-graining) 

degrees of freedom The ultimate goal of multiscale modeling is then to predict the 

macroscopic behavior of a chemical-physical process from first principles, i.e., starting from 

the quantum scale and passing information into molecular scales and eventually to process 

scales. The MD level allows predicting the structures and properties for systems much larger 

in terms of number of atoms than for QM, allowing direct simulations for the properties of 

many interesting systems. This leads to many relevant and useful results in materials design; 

however, many critical problems in this field still require time and length scales far too large 

for practical MD. Hence, the need to model the system at the mesoscale (a scale between 

the atomistic and the macroscopic) using information retrieved at the atomistic (lower) 

scale. 

This linking through the mesoscale in which the microstructure can be described over a 

length scale of tens to hundred nanometers is probably the greatest challenge to develop 

reliable first principles method for practical material design applications.6 Only by 

establishing this connection from atomistic to mesoscale it is possible to build first principles 

method for describing the properties of new materials. The problem here is that the 

methods of coarsening the description from atomistic to mesoscale is not as obvious as it is 

going from electrons to atoms. For example, the strategy for polymers seems quite different 

from that applicable to metals, which in turn differs from those employed in the case of 

ceramics or semiconductors. In other words, the coarsening from QM to MD relies on basic 

principles and can be easily generalized in a method and in a procedure, while the 

coarsening at higher scales is more system specific for polymer materials due to the larger 

range of length and time scales that characterize macromolecules. 

Scale integration in specific contexts in the field of polymer modeling can be done in 

different ways. Any recipe for passing information from one scale to another (upper) scale is 

based on the definition of multiscale modeling which considers objects that are relevant at 

                                                             
6 a) Fermeglia, M.; Pricl, AIChE J. 1999, 45, 2619-2627; b) Fermeglia, M.; Pricl, Fluid Phase Eq. 1999, 166, 21-37; c) Pricl, 

S.; Ferrone, M.; Fermeglia, M.; Amato, F.; Cosentino, C.; Cheng, M. M.; Walczak, R.; Ferrari, M. Biomed. Microdevices 
2006, 8, 291-298; d) Scocchi, G.; Posocco, P.; Fermeglia, M.; Pricl, S. J. Phys. Chem. B 2007, 111, 2143-2151; e) Cosoli, P.; 
Scocchi, G.; Pricl, S.; Fermeglia, M. Micropor. Mesopor. Mater. 2008, 107, 169-179; f) Scocchi, G.; Posocco, P.; Handgraaf, 
J.-W.; Fraaije, J. G.; Fermeglia, M.; Pricl, S. Chem. Eur. J. 2009, 15, 7586-7592; g) Fermeglia, M.; Pricl, S. in IUTAM 
Symposium on Modelling Nanomaterials and Nanosystems, Vol. 1, Eds: R. Pyrz, R. C.d Rauhe, Springer-Verlag, Berlin, 
2009, 261-270. 
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that particular scale, disregard all degrees of freedom of smaller scales, and summarize 

those degrees of freedom by some representative parameters. As mentioned above, 

mesoscopic simulations are performed using a coarse-grained molecular model: the particle 

in mesoscopic simulation is related to a group of several atoms in the atomistic simulation. 

Dissipative Particle Dynamics (DPD)7 is one of the best established mesoscopic simulation 

techniques, according to which a set of particles moves according to Newton equation of 

motion, and interacts dissipatively through simplified force laws. In the DPD model, 

individual atoms or molecules are not represented directly by the particle, but they are 

coarse-grained into beads. These beads represent local “fluid packages” able to move 

independently. DPD thus offers an approach that can be used for modeling physical 

phenomena occurring at larger time and spatial scales than some other coarse-grained 

methods as it utilizes a momentum-conserving thermostat and soft repulsive interactions 

between the beads representing clusters of atoms/molecules. In their seminal work of 

1997,7c) Groot and Warren made a fundamental contribution to this method by establishing 

a relationship between the main parameter in DPD aij, i.e., the maximum repulsion between 

beads of different material type i and j, and the Flory-Huggins parameter χij. 

In this work we present the results obtained from the application of a multiscale 

simulation procedure to the prediction of the phase diagrams of racemic PLA and PEO 

copolymers characterized by AB and ABA architectures in the presence of water. It is 

important to observe here the choice of the poly(D-L lactide) instead of one of the two pure 

enantiomeric blocks (L or D), as it has recently been verified that DDSs in which the ABA 

copolymers contain a racemic mixture of D- and L-lactide are characterized by amorphous 

PLA domains.5g) This, in turn, results into systems with different, more tunable drug delivery 

behavior. Also, as a proof-of-concept demonstration of the utility of these techniques in the 

formulation of structure-activity relationships for these DDSs, the self-assembly and 

microsphere formation of PLA-PEO and PLA-PEO-PLA carriers and a model drug (Nifedipine, 

a poorly soluble drug widely used as calcium channel blocker) under defined compositions is 

presented and discussed. The DPD method is adopted as the mesoscale modeling technique, 

and all necessary parameters of the mesoscopic model are estimated by a two-step 

procedure involving i) the matching of the atomistic and mesoscopic pair correlation 

functions to determine the best mesoscopic topology for polymers, and ii) the estimation of 

the DPD interaction parameters via the χij values obtained from atomistic molecular 

dynamics simulations. 

6.2 Computational details 

In order to simulate AB and ABA copolymers of PLA and PEO of practical interest for the 

PT, the following macromolecules were chosen as proof-of-concept systems: PLAxPEOy with 

x=720–6480 and y=704–6336 for the diblock, and PLA5875PEO8448PLA5875 for the triblock 

copolymer, respectively. The first step in the computational recipe applied in this work then 

consisted in the determination of the coarse-grained models for the PLA and PEO polymers, 

respectively. Following our previous work on different systems,6f) at first atomistic molecular 

dynamics (MD) simulations were performed on the di- and triblock copolymer chains. Using 

the relevant MD trajectories, the pair correlation functions were calculated using the 

following formula: 

                                                             
7 a) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155-160; b) Español, P.; Warren, P. B. Europhys. 

Lett. 1995, 30, 191-196; c) Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423-4435. 
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where the sum runs over all atoms i and j in the molecular fragments I and J, and the 

square brackets indicate a thermal average. θIi is a simple step function defined as: 
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Coarse-grained Dissipative Particle Dynamics (DPD) simulations were then performed for 

each polymer using a repulsion parameter aij of 25 for all bead-bead interactions and, 

similarly to MD, the corresponding pair correlations between the different beads were 

computed. 

The optimal overlap of the pair correlation functions obtained between the MD and the 

coarse-grained models was achieved with 10 PLA monomers and 16 PEO monomers per 

each PLA and PEO DPD bead, respectively. This mapping in turn resulted in the following 

mesoscopic copolymer architectures: PLAnPEOm with n + m = 10 for the AB copolymer, and 

PLA8PEO12PLA8 for the ABA copolymer. Once these models were defined, the basic DPD 

assumption that all bead-types should be of comparable volume ultimately led to the 

coarse-graining of the entire molecule of Nifedipine into one DRUG bead, and 48 water 

molecules in each SOLVENT bead, respectively. 

The successive, necessary step in the multiscale modeling procedures relied on the 

estimation of the value of the Flory-Huggins interaction parameter χij, from which, in turn, 

the main DPD interaction parameter aij can be obtained using the following relationship 

recently proposed by Glotzer et al.8 as a modification of the original equation of Groot and 

Warren7c) to better account for the polymer chain length: 
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χij is defined in terms of the solubility parameters of the i and j components as: 
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where VDPD is the volume of one polymer segment corresponding to a DPD bead, kB the 

Boltzmann constant, T the temperature, and δi is the solubility parameter of the ith 

component, which is related to its cohesive energy density through the well-known relation 

δi = ecoh
0.5. Therefore, the solubility parameters for all system components were obtained 

from atomistic MD simulations following our validated procedure.6a),b) 

The values of the resulting interaction parameters aij for all DPD species defined above 

and used for the mesoscale simulations are listed in Table 6.1. 

 

 

 

                                                             
8 Horsch, M. A.; Zhang, Z.; Iacovella, C. R.; Glotzer, S. C. J. Chem Phys. 2004, 121, 11455-11462. 



 118 

aij PLA PEO SOLVENT DRUG 

PLA 25    

PEO 50.2 25   

SOLVENT 69.1 25 25  

DRUG 25.3 34 66.3 25 

 
Table 6.1. DPD interaction parameters aij used in the mesoscale simulations. 

 

 

The simulations were performed in a 203
rc box and in a 303

rc box for the AB and ABA 

systems, respectively. A density value ρ=3 was considered, and periodic boundary conditions 

were applied in all directions. The dimensionless time step of 0.05 was employed and more 

than 500000 steps have been adopted to get a steady state at a constant temperature of 

308.15K. 

6.3 Results and discussion 

The entire phase diagram of aggregate morphology for the PLA-PEO copolymer with AB 

architecture as a function of the PLA fraction fPLA in the copolymer is shown in Figure 6.2. 

Corresponding to distinctly different structures and morphologies of the aggregates, the 

diagram is divided into nine, well defined regions. The first one, spanning the entire range of 

fPLA and a copolymer concentration in water φ up to ~0.2 v/v is characterized by the 

presence of micelles, in which the interior core is constituted by the hydrophobic portion of 

the copolymer (PLA) and the outer corona is decorated by the hydrophilic PEO blocks (vide 

infra). Interestingly, such morphology (particularly important in the formulation of DDSs) is 

predicted to exist at all φ values for fPLA up to about 0.1. Moving along the fPLA-axis, as the 

copolymer concentration φ increases above ~0.3 v/v, the correct sequence of phases is 

predicted progressively: PLA spheres (BCC), PLA cylinders (HEX), and the PLA gyroid phase 

(GYR). In correspondence of fPLA=0.5, the phase diagram displays the appearance of the 

lamellar phase, typical of symmetrical diblock copolymers which, depending of φ, can persist 

up to fPLA=0.8. Finally, the right-hand side of the phase diagram shows the region of 

existence of the reverse-phase morphologies, in the order: PEO GYR, PEO HEX, and PEO BCC, 

as expected. Interestingly, the ninth region in this phase diagram pertains to what it is 

usually defined a disordered phase, that a system for which no canonical or well defined 

structures can be identified. 

Figures 6.3 and 6.4 show a selection of pictorial evidences for each of the phases 

described above in the case of a PLA-PEO copolymer of the AB type as a function of fPLA and 

at φ = 0.9 and 0.2 v/v, respectively. 

In the case of the triblock copolymer PLA-PEO-PLA with the linear architecture ABA 

sketched in Figure 6.1(b), the corresponding phase diagram is more complicated, with the 

appearance of a hydrogel phase for intermediate value of polymer concentration φ. 

As an example, Figure 6.5 illustrates the aggregate morphologies obtained from the 

application of the multiscale simulation procedure developed in this work to ABA copolymer 

characterized by a fPLA of 0.57. As can be readily seen from the images, for this system the 

simulation reveals the existence of well separated micelles, with an inner PLA core 

surrounded by a corona of the hydrated PEO block only in a narrow range of φ.  
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Figure 6.2. Phase diagram of the PLA-PEO diblock copolymer of AB architecture in water as obtained 
from the application of the multiscale molecular simulation procedure developed in this study. 



 120 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

 
Figure 6.3. Predicted phase morphologies for a PLA-PEO diblock copolymer in water at φ = 0.9 v/v and 
different fPLA values: (a) fPLA=0.2; (b), fPLA=0.4; (c), fPLA=0.5; (d), fPLA=0.8; (e), fPLA=0.9. Color legend: red, 
PLA blocks; purple, PEO blocks. Water molecules not displayed for clarity. 



 121 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

  

  

(c) (d) 

  

 
Figure 6.4. Predicted phase morphologies for a PLA-PEO diblock copolymer in water at φ = 0.2 v/v and 
different fPLA values: (a) fPLA=0.3; (b), fPLA=0.4; (c), fPLA=0.6. Panel (d) is a zoomed vision of the micelles 
for the system with fPLA = 0.6. Color legend: red, PLA blocks; purple, PEO blocks. Water molecules not 
displayed for clarity. 
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Figure 6.5. Predicted phase morphologies for a PLA-PEO-PLA triblock copolymer in water at fPLA = 0.57 
and different φ values: (a), φ = 0.1 v/v; (b), φ = 0.15 v/v; (c), φ = 0.22 v/v; (d), φ = 0.35 v/v; (e), φ = 0.5; 
(f), φ = 0.6. Color legend: green, PLA blocks; lavender, PEO blocks. Water molecules not displayed for 
clarity. In panel (a), a cut-plane is highlighted for graphical purposes. 
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Upon increasing φ, the transition to a flowerlike micellar morphology is observed, which 

persist up to φ ~0.15 v/v. At still higher values of φ, bridging between micelles takes place, 

leading to formation of a three-dimensional network and gelation. The junction points 

formed are temporary and reversible, and therefore, they break and re-form frequently over 

the time scale of the simulation. For a polymer concentration of ~0.5 the hexagonal 

geometry characterizes the predicted morphology which, upon further increasing of φ, 

undergoes a phase transition to the lamellar one. 

Importantly, this predicted behavior is in excellent agreement with the recent 

experimental results obtained by Agrawal and his group,5b),d),e),f),g) and thus deserves a 

deeper comment. In the last of a series of elegant and thorough studies,5g) these authors 

have verified that PLA-PEO-PLA triblock copolymers characterized by amorphous PLA 

domains form spherical micelles at very low concentration in water solution. The end PLA 

blocks, which are poorly compatible if at all with the solvent, make up the micellar core, 

whilst the hydrophilic midblock generated the micellar corona (see Figure 6.6(a)). As the 

polymer concentration increases, the micelles begin to interact by virtue of the intensive 

hydrophobic attraction among the core phases: the intermicellar spacing progressively 

decreases while the flowerlike micelles become more closely packed and the bridges of PEO 

blocks among them increase in number (see Figure 6.6(b)). Further increasing the bridging 

density eventually leads to the point where all micelles are connected into a network in 

solution, namely the percolation threshold, thereby resulting in the formation of a gel at 

high concentration (see Figure 6.6(c)). 

Another interesting piece of evidence of a good match between simulated and 

experimental results stems from the estimation of the micelle dimensions. Taking the 

systems with φ = 0.22 v/v as a proof of principle, the average estimated values of the micelle 

PLA core radius Rc as extracted from the DPD simulations is 6.4 ± 0.6 nm whilst the average 

radius of an entire micelle Rm amounts to 9.7 ± 0.8 nm. Accordingly, the thickness of the PEO 

shell Sth is equal to 3.3 nm. These values are in utter agreement with previously reported 

experimental studies on closely related PLA-PEO-PLA water systems.5g),9 Two other 

parameters can be used to further characterize these micellar structures: the aggregation 

number Na, i.e., the number of PLA blocks forming the core, and the degree of the hydration 

shell, φsh. These two quantities can be calculated, at first approximation, using the following 

relationships:5g),10 
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in which VPLA and VPEO are the molecular volumes of PLA and PEO, respectively. Applying 

Equations 6.5 and 6.6 to the PLA-PEO-PLA systems with φ=0.22 v/v as an example results in 

an average Na value of 179 and a value for φsh=0.32, again in astounding agreement with the 

corresponding estimates reported in the literature for analogous systems.5g),9 

                                                             
9 Riley, T.; Heald, C. R.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davia, S. S.; King, S. M.; Heenan, R. K.; Purkiss, S. C.; Barlow, 

R. J.; Gellert, P. R.; Washington, C. Langmuir 2003, 19, 8428-8435. 
10 a) Goldmints, I.; von Gottberg, F. K.; Smith, K. A.; Hatton, T. A. Langmuir 1997, 13, 3659-3664; b) Yang, L.; 

Alexandridis, P.; Steytler, D. C.; Kositza, M. J.; Holzwarth, J. F. Langmuir 2000, 16, 8555-8561. 
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Figure 6.6. Evolution micellar aggregation for the PLA-PEO-PLA copolymer as a function of polymer 
concentration φ at constant PLA fraction fPLA = 0.57. (a), φ = 0.02 v/v; (b), φ = 0.22 v/v; (c), φ = 0.35 
v/v. Color legend: green, PLA blocks; lavender, PEO blocks. Water molecules not displayed for clarity. 
In panel (b), a volume representation in a plane cut along the simulation cell is shown. In panel (c), a 
three-dimensional volume representation is chosen to highlight the percolating connectivity in the 
hydrogel. 
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It is worth noting that the substantial value of Na is in harmony with the morphological 

evidences that the big PLA domains tend to be strongly phase-separated in the micellar core 

and, also, support that fact that these large segregated hydrophobic domains tend to 

interact strongly among themselves, ultimately leading to the formation of the micellar 

network. Under this condition, where the micelles are expected to be densely packed, the 

center-to-center distance between any two adjacent micelles should in principle be equal to 

the micelle diameter. This seems to be almost the case for the PLA-PEO-PLA systems with φ 

= 0.35 v/v and fPLA=0.57, (see Figures 6.5(d) and 6.6(c)). On the other hand, at lower 

copolymer concentrations the intermicellar radii are mostly seen to be larger than Rm (see, 

for example, Figure 6.6(b)), indicating that the close-packing condition and, hence, the 

percolation threshold, is far from being reached for these systems. In passing, we also note 

that calculated degree of hydration of 32% for the above mentioned system is in line the 

expected balance between a good hydration level and the partial engagement of these 

blocks in bridging the flowerlike micelles through the solution. 

To test the ability of the adopted methodology to account for the effect of drug-loading 

on the nanocarrier aggregated morphology, further simulations were performed both on the 

di- and tri-block copolymer systems containing the model drug Nifedipine in concentration 

and composition intervals of PT interest. Figures 6.7(a)-(c) show the evolution of the 

morphology for the system PLA-PEO characterized by φ=0.15 and fPLA=0.3 upon different 

drug loading. As can be seen from these Figures, upon addition of the active principle up to 

~12% v/v, the micellar morphology, although characterized by bigger dimensions, can still be 

observed, with the drug fully and well dispersed into the PLA hydrophobic core (Figure 

6.7(b)). A further increase in drug loading up to 22% v/v leads to the formation of columnar 

micelles (Figure 6.7(c)). This concentration threshold seems then to mark the maximum 

payload the considered copolymer nanocarrier can take on under the selected conditions. 

Considering now the triblock PLA-PEO-PLA copolymer, an analogous morphology 

evolution upon drug loading is envisaged, although the payload concentration at which the 

useful, micellar morphology is substantially altered is quite lower than in the case of the PLA-

PEO diblock counterpart. As illustrated in Figure 6.8(a)-(e) for the ABA copolymer system 

with φ=0.22 and fPLA=0.57 as an example, the nanocarrier is able to accommodate the drug 

within the PLA core up and without an appreciable alteration of the micellar morphology up 

to a concentration of 3%. At 4% a transition to columnar or wormlike micelles is observed 

and, finally, in correspondence to a drug load of 7%, the fusion of the micelles into a bilayer 

membrane is predicted. In other words, as the drug concentration increases, the local 

packing of the hydrophobic entities (i.e., PLA blocks and drug molecules) changes, and 

progressively leads to a decrease of the local curvature. Thus, those systems which at low 

drug concentrations still form spherical aggregates will rearrange their assembly into 

cylindrical or eventually membrane-like aggregate (consisting of two monolayers of block 

copolymers aligned so as to form a sandwich-like membrane: soluble block-insoluble block 

with interspersed drug-soluble block) as the payload amount increases. 

6.4 Conclusions 

Novel approaches to drug delivery and formulation using nanotechnology are 

revolutionizing the future of medicine.  
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Figure 6.7. Evolution of the micellar aggregate morphology for the PLA-PEO copolymer at φ = 0.15 v/v 
and fPLA = 0.3 as a function of Nifedipine loading (% v/v). (a), no drug loading; (b), 4%; (c), 12%; (d) 17%. 
Color legend: purple, PLA blocks; red, PEO blocks, orange, drug. Water molecules not displayed for 
clarity. 
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Figure 6.8. Evolution of the micellar aggregate morphology for the PLA-PEO-PLA copolymer at φ = 0.22 
v/v and fPLA=0.57 as a function of Nifedipine loading (% v/v). (a), 1%; (b), 2%; (c), 3%, (d) 4%; (e) 7%. 
Color legend: green, PLA blocks; lavender, PEO blocks, orange, drug. Water molecules not displayed 
for clarity. 
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At the time of writing, nanomedicine - the medical application of nanotechnology - offers 

the promise of an endless range of applications from biomedical imaging to drug delivery 

and therapeutics which, coupled to genomic tailoring, may soon spawn the much-

anticipated and highly-pursued individualized medicine. The specific area of 

nanoformulations includes the creation of many different nanoscale DDs such as those 

discussed in the present work, which can be created from a countless combination of 

materials and active principles. These nanovectors can be tailored for working in specific 

tissues or individual patients, and may eliminate the need for conditional administration of 

drugs, thereby promoting patient compliance and maximizing therapeutic effects. 

Being able to formulate an a priori quantitative structure-property (QSPR) or structure-

activity relationship (QSAR) for a novel nanocarrier in a given solvent and in the eventual 

presence of a drug cargo – possibly even before the nanoformulation preparation is 

attempted in the laboratory – would constitute a giant leap towards an advancement in PT. 

Time, economical resources, and human efforts could then be minimized and focused on the 

most promising DDs systems designed on the basis of the application of these computer-

assisted QSPRs/QSARs. The procedure and the results presented in this work, based on the 

application of a multiscale molecular modeling recipe for the phase diagram prediction for 

block copolymers in water and in the presence of a model drug, represent one example of 

this grand challenge. Hopefully, the outstanding agreement between predicted and 

experimental morphologies obtained for these DDSs may pave the way for these in silico 

approaches to become part of the arsenal of techniques used every day in PT, the only 

limitation being human creativity. 
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Chapter 7 

Conclusions 

This Chapter reports the main conclusions about the present research and an overview of 

future perspectives. 

7.1 Conclusions and future perspectives 

The development of new and tailored nanomaterials necessitates a comprehensive 

understanding of the phenomena at different time and length scales.  

In the past, this need has significantly stimulated the development of computer modeling 

and simulation, either as a complementary and alternative technique to experimentation. In 

this context, many traditional simulation techniques (i.e., Monte Carlo, Molecular Dynamics, 

Brownian Dynamics, Lattice Boltzmann, Ginzburg–Landau theory, micromechanics and Finite 

Element Methods) have been employed, and some novel simulation techniques (e.g., 

Dissipative Particle Dynamics, equivalent-continuum and self-similar approaches) have been 

developed to study more effectively novel nanomaterials. These techniques indeed 

represent approaches at various time and length scales from molecular scale (e.g., atoms), 

to microscale (e.g., coarse-grains, particles, monomers) and then to macroscale (e.g, 

domains), and have shown success to various degrees in addressing many aspects of 

nanomaterials. 

The simulation techniques developed thus far have different strengths and weaknesses, 

depending on the need of research. For example, molecular simulations can be used to 

investigate molecular interactions and structure on the scale of 0.1–10 nm. The resulting 

information is very useful to understanding the interaction strength at nanoparticle–polymer 

interfaces, for instance, and the molecular origin of mechanical improvement. However, 

molecular simulations are computationally very demanding, thus not so applicable to the 

prediction of mesoscopic structure and properties defined on the scale of 0.1–10 μm, for 

example, the dispersion of nanoparticles in polymer matrix and the morphology of polymer 

nanocomposites. 

To explore the morphology on these scales, mesoscopic simulations such as coarse-

grained methods, Dissipative Particle Dynamics and dynamic mean field theory are more 



 130 

effective. On the other hand, the macroscopic properties of materials are usually studied by 

the use of mesoscale or macroscale techniques such as micromechanics and Finite Element 

Methods. But these techniques may have limitations when applied, for instance, to polymer 

nanocomposites because of the difficulty to deal with the interfacial nanoparticle–polymer 

interaction and the morphology, which are considered crucial to the mechanical 

improvement of nanoparticle-filled polymer nanocomposites. 

Therefore, despite the progress over the past years, there are a number of challenges in 

computer modeling and simulation. In general, these challenges represent the work in two 

directions. First, there is a need to develop new and improved simulation techniques at 

individual time and length scales. 

Secondly, it is important to integrate the developed methods at wider range of time and 

length scales, spanning from quantum mechanical domain (a few atoms) to molecular 

domain (many atoms), to mesoscopic domain (many monomers or chains), and finally to 

macroscopic domain (many domains or structures), to form a useful tool for exploring the 

structural, dynamic, and mechanical properties, as well as optimizing design and processing 

control of nanocomposites. 

In this work the power of integrating modeling across different scales and with 

experimental data has been demonstrated over several examples of industrial interest and 

application. Further, we proposed an alternative and promising route, system independent, 

linking through the scales.  

Developing such a multiscale method is very challenging but indeed represents the future 

of computer simulation and modeling, whatever the target field of application is. 

New concepts, theories and computational tools should be developed in the future to 

make truly seamless multiscale modeling a reality. Such development is crucial in order to 

achieve the longstanding goal of predicting particle–structure–property relationships in 

material design and optimization. 
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Appendix A  

The whole network formation procedure was achieved by writing a Perl script using the 

object library available in Materials Studio v. 4.1. In what follows, for the sake of clarity and 

brevity, we will limit the description to the most important technical parts of the final 

version of the script. Each condensation simulation starts by loading the initial structure 

obtained at Step 2 and its association to a proper variable to be used for accessing all objects 

present in the structure itself. The corresponding command is: 

 

my $doc = $Documents{"name.xsd"}; 

 

The next action consists in deleting all existing sets in the initial structure, i.e.: 

 

my $sets = $doc->UnitCell->Sets; 

foreach my $set (@$sets) { 

$set->Delete; 

} 

 

This is an important issue as, in some of the next steps, some new sets will be created 

with respect to predefined reactive atoms; these sets, in turn, will be used to create the 

relevant close contacts and, ultimately, bonds. Accordingly, the presence of other sets has to 

be avoided. 

Since the simulations are performed under 3D periodic conditions, one of the filters 

DisplayRange, UnitCell or AsymmetricUnit should be applied to access any object in the 

document. These filters define finite sets of accessible objects in the document. For 

example, the DisplayRange filter allows to access the items which are displayed when the 

document is viewed in the Materials Studio Visualizer, whilst the UnitCell filter returns 

objects which are unique with respect to periodic translation of the lattice. Having tested 

both the UnitCell and DisplayRange filters, we selected to use the former. From preliminary 

tests performed on the considered systems, it follows that both filters can be employed for 

scripting. The results are very similar in terms of physical properties of the final structures, 
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and a criterion for the alternative choice of these filters will be the subject of a more 

detailed study. 

It is useful to create a simple variable which will maintain all the atoms instead using 

  

$doc->UnitCell->Atoms; 

 

This association is done by this command: 

 

my $atoms = $doc->UnitCell->Atoms; 

 

Another fundamental step that has to be undertaken is proper labelling of all the 

important chemical entities which, for the specific system considered here, are the linked Si-

O-H atoms. Accordingly, all silicon atoms were labelled Si, the oxygen atoms covalently 

bonded to it O, and the reactive hydrogens H. The whole Perl code for this action is listed 

below: 

 

foreach my $atom (@$atoms){ 

 if($atom->ElementSymbol eq "Si"){ 

  $atom->Name = "Si"; 

foreach my $atom1 (@{$atom->AttachedAtoms}){ 

if( $atom1->ElementSymbol eq "O" && $atom1->Name ne "RO"){$atom1->Name = "O"; 

foreach my $atom2 (@{$atom1->AttachedAtoms}){ 

 if( $atom2->ElementSymbol eq "H"){$atom2->Name = "H";} 

          } 

         } 

        } 

       } 

      } 

 

The RO label was chosen for the oxygen atoms bridging two Si atoms (i.e., Si-O-Si). Since it 

may be necessary to restart the whole script several times, it is essential to avoid relabelling 

RO oxygens to O, and this justifies the choice of the label RO in the above piece of code. 

Before performing any calculation, all relevant parameters for Geometry Optimization 

(GO), Annealing (AN) and Molecular Dynamics (MD) must be set, and each proper setting 

saved to a file (*.xms). This setting file must be placed later in the same directory where the 

Perl script is located. Then, the command for loading the parameter file: 

 

Modules->Forcite->LoadSettings("name"); 

 

must be included in the script. This avoids the tedious repeating of setup operations. As 

can be seen from the command above, the Forcite module of Materials Studio was 

employed in the calculations performed in this work, as scripting cannot be implemented in 

the Discover engine available in version 4.1 of Materials Studio. 

Direct commands inside the script are then used to set some important calculation 

parameters for running the calculations. The settings and running commands for GO, AN, 

and MD calculations employed in the present study are reported below: 

 

Modules->Forcite->ChangeSettings(["ChargeAssignment"=>"Use current"]); 
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Modules->Forcite->Calculation->Run($doc,Settings(Task=>"GeometryOptimization", 

MaxIterations =>2000)); 

Modules->Forcite->Calculation->Run($doc,Settings(Task=>"Anneal",TimeStep=>0.2, 

AnnealCycles=>8, EnergyDeviation=>2000000 )); 

Modules->Forcite->Calculation->Run($doc,Settings(Task=>"Dynamics",TimeStep=>0.2, 

Ensemble3D =>"NVT", NumberOfSteps=>5000, EnergyDeviation=>2000000 )); 

 

When a trajectory file (*.xtd) is created as output of the AN and MD simulations, the $doc 

variable is automatically reinitialized, and from that moment it represents the whole 

trajectory of the system. Since just the last frame from each of these trajectories is needed 

as input for subsequent calculations, this last fame is used for reinitializing the document 

variable $doc after each AN/MD run. Furthermore, in the case of MD runs (after which Step 

4 is applied, see above), another important reason to update $doc variable to the last frame 

of the trajectory can be envisaged. Since some atoms are to be deleted from the system 

during the condensation reaction leading to network formation, (i.e., H2O molecules, see 

Figure 5.2), the atomistic file (*.xsd) and not the trajectory file (*.xtd) has to be used as, once 

the number of atoms in actual frame is altered, the entire trajectory is invalidated. The 

complete sequence of commands in AN, MD part of our script is as follows: 

Modules->Forcite->Calculation->Run($doc,Settings(Task=>"Anneal",TimeStep=>0.2, 

AnnealCycles=>8, EnergyDeviation=>2000000 )); 

 

my $numFrames = $doc->Trajectory->NumFrames;  

$doc->Trajectory->CurrentFrame = $numFrames;  

my $LastFrame = Documents->New("After-ANN.xsd");  

 $LastFrame -> CopyFrom($doc);  

$doc -> Discard;  

$doc = $LastFrame; 

 

Modules->Forcite->Calculation->Run($doc,Settings(Task=>"Dynamics",TimeStep=>0.2, 

Ensemble3D=>"NVT", NumberOfSteps=>5000, EnergyDeviation=>2000000 )); 

 

my $numFrames = $doc->Trajectory->NumFrames;  

$doc->Trajectory->CurrentFrame = $numFrames;  

my $LastFrame = Documents->New("After-MD.xsd");  

   $LastFrame -> CopyFrom($doc);  

$doc -> Discard;  

$doc = $LastFrame; 

 

On the first line of the $doc updating code, the new variable $numFrames is created, and 

the number of frames of the considered trajectory is assigned to it. Then, the last frame of 

the trajectory is set as the actual one. Afterwards, the empty atomistic file is created (After-

ANN.xsd or After-MD.xsd in the above routine) and associated to the variable $LastFrame. 

In the next line of the code, the last frame of the actual trajectory is copied into the new 

atomistic file; subsequently, the current trajectory variable is discarded, clearing this 

document (i.e., the trajectory file) from the computer memory. This obviously does not 

imply that the trajectory file which is represented by this variable is deleted. Each trajectory 

file, together with the corresponding (After-ANN.xsd or After-MD.xsd) files, are saved in the 
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corresponding Materials Studio project. The last step is updating the document variable 

$doc by variable $LastFrame, where the last frame from the previous trajectory is stored. 

Since Steps 3 and 4 are repeated several time during the entire simulation recipe, the 

After-ANN.xsd and After-MD.xsd files are automatically numbered (e.g., After-ANN (2), 

After-ANN (3) etc.) by Materials Studio. The same automatic procedure is applied to the 

corresponding trajectories files. No saving instructions then need to be implemented since 

Materials Studio includes all created files automatically into the open project. 

Now let us describe a little more in details Step 4, which includes i) the analysis of the 

distances of the pairs of reactive atoms, ii) the creation of new Si-O-Si bonds, and iii) the 

deletion of H2O molecules from the system. In order to make the system react, the optimal 

close contacts between the atoms involved in the condensation reaction have to be realized; 

accordingly, the atom pairs between which close contacts should take place have to be 

defined. Given the chemistry of the systems considered in this work, where condensation 

takes place between Si-O-H…H-O-Si groups (see Figure 5.1), only O–H close contacts are 

needed, where O is the name for the oxygens bound to the Si atoms, and H designs the 

hydrogens linked to the O oxygens. The part of our script that creates these close contacts is 

written below: 

# Create arrays to store the reactive atoms in 

my @reactive_O; 

my @reactive_H; 

foreach my $atom (@$atoms) { 

 if ($atom->Name eq "O" ) { 

  push (@reactive_O, $atom); 

 } elsif ($atom->Name eq "H" ) { 

  push (@reactive_H, $atom); 

 } else { 

  push (@reactive_O, $atom); 

  push (@reactive_H, $atom); 

 } 

} 

 

The above piece of code creates two atom arrays, reactive_O and reactive_H, which, 

intuitively, store all atoms except atoms named H and named O, respectively. Since close 

contact restrictions can be applied only to sets, however, it is necessary to create relevant 

sets based on previously created atomic arrays. This can be done by the following 

commands: 

 

my $reactive_O_set=$doc->CreateSet("reactive_O",\@reactive_O); 

my $reactive_H_set=$doc->CreateSet("reactive_H",\@reactive_H); 

 

Then, the ExclusionMode is set to 'Set' value, which should guarantee that creation of 

close contacts between atoms inside each defined set is forbidden. Clearly in this study only 

the close contacts between atoms named O and H are expected, since these atoms are in 

different sets. The command that make the above described exclusion mode setting is the 

following: 

 

Tools->BondCalculation->ChangeSettings([ExclusionMode => 'Set']); 
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Unfortunately, this elegant trick works perfectly only under non-periodic conditions (e.g., 

a non-periodic superstructure). In the case of a system under periodic boundary conditions, 

such as in the present work, it is necessary to introduce some further filtering  to eliminate 

all the non O–H close contacts (see the code part for the creation of GoodCloseContacts 

array listed below). Nevertheless, given the 3D symmetry characteristics of our system, this 

approach can be successfully applied, ultimately resulting in a substantial reduction 

computer memory. 

The last step necessary for calculating close contacts is the setting of 

DistanceCriterionMode, MinAbsoluteDistance and MaxAbsoluteDistance parameters. In 

our case, the following setting was employed: 

 

Tools->BondCalculation->ChangeSettings(Settings(DistanceCriterionMode 

=>"Absolute", MinAbsoluteDistance => 0.0, MaxAbsoluteDistance => 3)); 

 

At this point, predefined close contacts can be calculated according to: 

 

$doc->CalculateCloseContacts; 

 

Again, it is appropriate to create a variable(s) which will represent the set of created close 

contacts: $CloseContacts: 

 

my $CloseContacts = $doc->UnitCell ->CloseContacts; 

 

For the next procedure, mainly in order to save significant time and memory in loop 

operations, the creation and use of an arrays, such as GoodCloseContacts, in which all the 

necessary information can be stored, needs to be created: 

 

my @GoodCloseContacts; 

 

The code for the initialization of the GoodCloseContacts array is listed below: 

foreach my $CloseContact (@$CloseContacts) { 

 my $Name1=  $CloseContact->Atom1->Name; 

 my $Name2 = $CloseContact->Atom2->Name; 

 my $Atom1 = $CloseContact->Atom1; 

 my $Atom2 = $CloseContact->Atom2; 

 if ( ($Name1 eq "O") && ($Name2 eq "H") || ($Name1 eq "H") && ($Name2 eq "O") ) { 

  push(@GoodCloseContacts,[1,$Name1,$Name2,$Atom1->X,$Atom1->Y,$Atom1-

>Z,$Atom2->X, 

 $Atom2->Y,$Atom2->Z,$CloseContact->Length,$CloseContact->Atom1,$CloseContact-

>Atom2]); 

             } 

  } 

In the above code, each element of the GoodCloseContacts array has the structure 

[status, Name1, Name2, x1, y1, z1, x2, y2, z2, Length, Atom1, Atom2], where status 

represents a variable which denotes if a given close contact can take place or not at a given 

instant. Name1 and Name2 are the names of the atoms which belong to that given close 
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contact. x1, y1, z1, x2, y2, z2 are the coordinates of these atoms, Length denotes the length 

of the given close contact, and finally Atom1 and Atom2 are the atom objects which belongs 

to the close contact. The names of these atoms are stored in the array as separate variables 

(i.e., Name1 and Name2); however, they are accessible through the atom objects. This last 

action was taken just to save some time, since atom names will be frequently used in the 

analysis section (see below).  

It is also worthwhile to note that the filtering of non O–H close contacts discussed 

previously is included in the piece of code listed above; accordingly, the GoodCloseContacts 

array contains only O–H close contacts. However, in order to simulate a network-forming 

condensation reaction, only those O–H close contacts which are created between two 

different GPTMS molecules must be taken into account. Therefore, it is necessary to filter 

out the O–H close contacts which are created between O and H atoms belonging to the 

same GPTMS molecule. This can be simply achieved by analyzing the array 

GoodCloseContacts and checking whether the species Atom1 and Atom2 belong to the 

same GPTMS molecule or not. In the affirmative, the variable status must be changed from 1 

to –1, and all the subsequent analysis must be carried out only on those close contacts which 

have variable status equal to 1.  

The way to identify the molecular object to which a given atom belongs is using: 

 

$atom1->Ancestors->Molecule 

 

Unfortunately, at present, there is no direct method to obtain the index of any given 

molecule in a molecular model. Thus, a way to circumvent the problem is to identify two 

different molecules by their different center of mass. To access the coordinates of the center 

of mass of any given molecule, the following construction can be used: 

 

my $x1 = $atom1->Ancestors->Molecule->Center->X; 

my $y1 = $atom1->Ancestors->Molecule->Center->Y; 

my $z1 = $atom1->Ancestors->Molecule->Center->Z; 

 

Finally, the GoodCloseContacts is ordered by increasing close contact length which, in 

each element of this array, is represented by the Length variable. 

At this point, the new Si-O-Si bonds building procedure can begin. As the whole code for 

this section is long, and the detailed description of each part will exceed the scope of this 

work, it will only be summarized and briefly commented below. 

The first close contact (by index) in the array GoodCloseContacts which has the status 

variable equal to 1 (i.e., the shortest one, see above) is chosen. Two new variables $O and 

$H are created, which are initialized by the atoms Atom1 and Atom2 from the selected 

GoodCloseContacts element. All the remaining atoms involved in the bond formation are 

then identified, and assigned to the proper variables ($H1, $O1, $Si, and $Si1, respectively). 

Figure A.1 illustrates the association of these variables to the corresponding atoms. 

According to the bonding scheme of Figure A.1, at the beginning only the two atoms 

which belongs to the chosen close contact ($O and $H, respectively) are considered. Next, 

the hydrogen atom $H1, which will be deleted together with atoms $O and $H, from the 

system due to the formation of a H2O molecule, must be identified (see Figure A.1). It is 

important to note that, in the real process, the water formed during the condensation 

reaction remains in the reaction environment, and eventually contributes to the hydrolysis 

of non hydrolyzed GPTMS molecules. In the system considered here, however, the GPTMS 
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monomers were fully hydrolyzed (a realistic condition which can be easily achieved 

experimentally). Therefore, water plays no additional role in the process, and does not need 

to be further considered.  

Next, atoms $O1, $Si, and $Si1 must be identified, in order to create the new bond $Si-

$O1 (see Figure A.1). 

 

 
 
Figure A.1 Atom/variable association in the bonding scheme considered in this work. 

 

 

This identification process can be carried out resorting to the AttachedAtoms function. 

Below, the piece of code for the identification of the $H1 and $Si atoms is listed, as an 

example: 

 

my $Si; 

my $H1;  

foreach my $at (@{$O->AttachedAtoms}){ 

if($at->Name eq "Si"){$Si=$at;} else {$H1=$at;} 

          } 

 

As mention in Chapter 5, although the structure of a GPTMS-based hybrid O/I network 

obtained under acid catalysis is similar to that of a crosslinked polymer network, some cyclic 

structures can be present.1,2 In order to apply some restrictions related to ring size in the 

formation of eventual cyclic structures, a check whether the bonding between the $Si and 

$O1 atoms will not result in the closure of a strained ring (i.e., with less than 4 Si atoms) 

must be performed. This leads to the necessity of identifying atom $Si1 (see Figure A.1); this 

operation could also serve graphical purposes: for example, the need of changing graphical 

style for both bonds $Si-$O1 and $O1-$Si1 in order to differentiate them, for example, from 

other bonds. 

Should every condition described above be satisfied, the new bond $Si - $O1 is created at 

this stage with the command: 

 

$doc->CreateBond($Si, $O1, "Single"); 

 

Otherwise, the next available close contact in the GoodCloseContacts array is selected, 

and the whole procedure outlined above is repeated. 

As said, once the new Si-O bond is created, a water molecule is released. In our model, 

this corresponds to deleting atoms $O, $H, and $H1 from the system. To accomplish this 

goal, instead of deleting the required atoms directly (e.g., using commands such as  $O-

>Delete, etc., which can generate problems, especially when using periodic boundary 

                                                             
1 Mateika, L.; Dukh, O.; Brus, J.; Simonsick, W. J. Jr.; Meissner, B. J. Non-Cryst. Solids 2000, 270, 34-37. 
2 Fidalgo, A.; Ilharco, L. M. J. Non-Cryst. Solids 2001, 283, 144-154. 
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conditions, as once some individual atoms are deleted, all its periodic images are also 

deleted from the set of close contact atoms). 

 

push (@AtomsToDelete,$H); 

push (@AtomsToDelete,$O); 

push (@AtomsToDelete,$H1); 

After the end of the $i loop, a set based on the AtomtoDelete array is created, and all the 

atoms which are deleted from the system according to the reaction scheme will be cancelled 

at once and in a safe way, according to: 

 

my $AtomsToDelete_Set=$doc->CreateSet("AtomsToDelete",\@AtomsToDelete); 

$AtomsToDelete_Set->Items->Delete; 

 

Once the atoms $O, $H, and $H1 are added to AtomsToDelete array, and the $Si - $O1 

bond is created, it is appropriate to analyze the whole GoodCloseContacts array from the 

actual index $i to the end, and switch the variable status to –1 in all those cases in which 

some of the atoms $O, $O1,$H, and $H1 are periodically equivalent to Atom1 or Atom2. 

For checking periodic equivalence of two atoms, the following function was created: 

 

sub AtomsArePeriodicEquivalent { 

 my ( $A1, $A2) = @_; 

 if($A1->Name ne $A2->Name){ return 0;} 

 my @dA = ($A2->X - $A1->X,$A2->Y - $A1->Y,$A2->Z - $A1->Z); 

 my @length = ($lengthX,$lengthY,$lengthZ); 

 for(my $i=0;$i<3;$i++){ 

 if(abs($dA[$i])!=0 && abs($dA[$i])!=$length[$i]) {return 0;}  

 } 

 return 1; 

} 

#The variables $lengthX, $lengthY and $lengthZ denotes the length of the sides of the 

periodic box. 

 

 

Figure A.2 shows that, if the mentioned GoodCloseContacts revision is checked only for 

equality and not for periodic equivalence of relevant atoms, unrealistic valences of oxygen 

and silicon atoms are generated. 

There can be several configurations which originate these problems, and example of 

which is illustrated in Figure A.3. In the left part of Figure A.3 it can be seen that, when more 

reactive centers are in close proximity, we can see some “collision” possibility if more 

reactive centers is in proximity. For example, suppose that the O-H contact (i.e., black O and 

blue H) is shorter than the other O-H contact (i.e., green O and blue H). Under this condition, 

the bond between the blue O and black Si is created (red line). If no check of the remaining 

GoodCloseContacts elements is performed, then also the Si-O bond between the green Si 

and blue O is created. If only equality check after creation of the blue O and black Si bond is 

performed, no problem arises if the configuration corresponds to the portrayed on the left 

side of Figure A.3. However, if the position of the green molecule is shifted to the periodic 

image position, then both O-H atoms (the green O and the small blue H atom) are not equal 

to any other atom (the black and large blue H atom, and the black and the blue O atom), but 
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the small blue H atom is periodically equivalent to that large one, which is a sufficient 

condition for creating the Si-O bond (blue O and green Si atoms) which is interrupted by the 

periodic cell boundary but can be clearly seen using the InCell viewtype. This situation is 

nicely illustrated in Figure A.4, taken from the real system of Figure A.2. 

 

 

 
 
Figure A.2 GPTMS crosslinked structure created using only equality (not equivalence) check of the 
atoms during the GoodCloseContacts revision. The unrealistic oxygen atoms forming three bonds with 
Si are highlighted in green, whilst the Si atoms with 4 oxygen bonds are highlighted in violet. 

 

 

 

 
 
Figure A.3 Scheme of one problematic configuration leading to unrealistic valences of O and Si atoms 
(see text for details). 

 

 

 
 
Figure A.4 Details of the real system illustrated in Figure A.2. Top: InCell lattice display style view; 
bottom: default lattice display style view. 
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Then, the bonding procedure with respect of the next O–H close contact from array 

GoodCloseContacts which has status equal to 1 (or, more precisely, the 

GoodCloseContacts[$i][0] element) must be repeated. 

After a desired number of bonds ($MaxNumBond) is reached, or at the end of the 

GoodCloseContacts array is reached, all sets created and populated in the previous steps 

must be deleted to release computer memory. Also, renaming of the bridging oxygens ($O1) 

must be performed, since these atoms must not enter the next $I loop for creating new O-H 

close contacts. 

To give a final overview of the entire procedure, the most critical steps are summarized 

below using a pseusdocode: 

***START OF THE SCRIPT*** 

#Loading of the structure (*.xsd) 

my $IterMax=50;   #number of the main loops 

my $MaxNumBond=3;  #maximum number of created bonds in one I loop 

#Main loop 

for(my $I=0;$I<$IterMax;$I++){ 

 

 Loading of the setup file (*.xms) 

 Geometry Optimization 

 Annealing 

 Molecular Dynamics 

 Creation of the reactive atom arrays and sets 

 Close contacts calculation 

 Creation of GoodCloseContacts array and close contacts filtering 

 Ordering of the GoodCloseContacts elements by increasing close contact length 

  for(my$i=0;(($NumOfCreatedBonds<$MaxNumBond)&& 

($i<=$#GoodCloseContacts));$i++){ 

 

 Identification of all the atoms $O, $H, $H1, $O1, $Si and $Si1 

 Creation of $Si-$O1 bond 

 Addition of atoms $O, $H, $H1 to array AtomsToDelete 

 GoodCloseContacts array revision 

} #end of the $I loop (Step 4) 

#Deletion of reacted atom sets 

 

$reactive_O_set->Delete; 

$reactive_H_set->Delete; 

 

#Deletion of all calculated close contacts 

 

$CloseContacts->Delete; 

 

#Creation of the set $AtomsToDelete_Set from the array AtomsToDelete and appropriate 

deletion of all the atoms marked in previous steps for deletion 
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#the if statement excludes attempt to create set from the empty array 

 

if($#AtomsToDelete + 1>=1){ 

my $AtomsToDelete_Set=$doc->CreateSet("AtomsToDelete",\@AtomsToDelete); 

$AtomsToDelete_Set->Items->Delete; 

} 

 

#Renaming of oxygen atoms involved in the formation of Si-O-Si bonds (i.e., accessed using 

the variable $O1) from “O” to “RO” 

 

foreach my $atom (@$atoms }) 

{ 

if($atom->Name eq "O"){ 

 my $NumOfSi=0; 

 foreach my $atom1 (@{$atom->AttachedAtoms}) 

 { 

 if($atom1->Name eq "Si"){$NumOfSi++;} 

 }#end $atom1 

if($NumOfSi==2){$atom->Name="RO";} 

} 

#end of if($atom->Name eq "O" 

} 

#end of loop $atom 

} 

#end of I loop (main loop, which should be repeated $IterMax times) 

***END OF THE SCRIPT*** 

At the very end it may be worth noticing that, despite we release all computer memory 

properly in each $I loop, during each script run the memory used by the computer is slowly 

and progressively increasing, so that, after a number of $I loops, the limit of accessible 

memory is reached and calculations have to be manually restarted. The number of 

successfully accomplished $I loops clearly depends upon the available RAM of a given 

computer, but also on the amount of close contacts which are created during each $I loop. 

That is the reason why we increased MaxAbsoluteDistance from 3 to 6 Å. 
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