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Projection Constants of
Almost-Milyutin Spaces

C. Ivorra
(�)

Summary. - We prove that there exist almost{Milyutin spaces who-

se projection constants are numbers of the form 1+2
Pr

i=1(1�
1
ni

),
where n1; : : : ; nr are integers greater than 1. This generalizes our

earlier results, where we showed the existence of almost{Milyutin

spaces with exact projection constant greater or equal to n, for

each positive integer n.

1. Introduction

An almost{Milyutin space is a compact space T such that there
exists an averaging operator for a continuous map from the gen-
eralized Cantor cube onto T (see more detailed de�nitions below).
These spaces were introduced by Pe lczy�nski in his monograph [3], in
relation with the classi�cation of continuous function spaces. The
projection constant of T is the in�mum of all norms of all averaging
operators satisfying the de�nition. The constant is said to be ex-
act if it is attained as the norm of some operator. Almost{Milyutin
spaces with exact projection constant 1 are called Milyutin spaces,
and they were previously studied by Milyutin [6]. Pe lczy�nski showed
the existence of almost{Milyutin spaces that are not Milyutin, but he
was unable to compute projection constants. In particular he asked
whether there are almost{Milutin spaces with projection constant
greater or equal to n, for each positive integer n. This question was
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solved in [2] by using a theorem of Ditor [4] which provides (under
certain hypotheses) a lower bound for the norm of every averaging
operator for a given map. This bound has the form 1+2

Pr
i=1(1�

1
ni

),
where n1; : : : ; nr are integers greater than 1. We gave certain condi-
tions under which Ditor's theorem can be applied simultaneously to
every continuous onto map from the generalized Cantor cube onto
a space T . In the present paper we show that a re�nement of our
arguments allows us to construct almost{Milyutin spaces whose pro-
jection constants are any numbers of the form of those that appear
in Ditor's theorem. These results are part of author's doctoral dis-
sertation [5] prepared under the direction of Professor J.L. Blasco.

2. Preliminaries

Let S and T be compact spaces. Let u : C(S) �! C(T ) be a
(continuous) linear operator. Let M(S) be the set of all regular �nite
(signed) Borel measures on S, which can be identi�ed (by the Riesz
representation theorem) with the topological dual space of C(S).
Namely, if x 2 C(S)�corresponds to the measure � 2M(S), we have
x(f) =

R
fd�, for all f 2 C(S). We consider M(S) endowed with the

weak{star topology. We associate to the operator u a continuous map
� : T �! M(S), given by �t = u�(�t), where u� : C(T )� �! C(S)�

is the dual operator determined by u�(x) = x � u and �t is the Dirac
measure with support t.

The following proposition (see [3]) shows that linear operators
are determined by their associated maps:

Proposition 2.1. Let S and T be compact spaces. Then

a) For each linear operator u : C(S) �! C(T ), the associated map

� : T �! M(S) is continuous and for each f 2 C(S) and each

t 2 T we have u(f)(t) =
R
fd�t.

b) If � : T �!M(S) is a continuous map, then u : C(S) �! C(T )
de�ned by u(f)(t) =

R
fd�t is a linear operator whose associated

map is �. Moreover, kuk = supt2T k�tk, where the norm inM(S)
is given by k�k = j�j(S).
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An averaging operator for a continuous onto map � : S �! T is
a linear operator u : C(S) �! C(T ) such that u(f ��) = f , for each
f 2 C(T ).

The generalized Cantor cube is a space D�, where D = f0; 1g is
the discrete two{point space, � is an in�nite cardinal and D� has the
product topology. A compact space T is an almost{Milyutin space

if there exists a continuous map � : D� �! T from the generalized
Cantor cube onto T for which there exists an averaging operator. The
projection constant of an almost{Milyutin space T is the in�mum
p(T ) of all norms of all averaging operators for all continuous onto
maps � : D� �! T . When this in�mum is attained by the norm of
some operator, we say that the constant p(T ) is exact. If T is not
an almost{Milyutin space we de�ne p(T ) = +1.

Let S be a compact space, let A be a directed set and let fC�g�2A
be a net of subsets of S. We de�ne lim sup� C� =

S
�

T
��� C�. It

is easy to prove that lim sup� C� is the set of all cluster points of
all nets fy�g�2A such that y� 2 C�, for all index �. If S and T are
compact spaces, � : S �! T is a continuous onto map and ft�g�2A is
a net on T converging to t 2 T , then lim sup� �

�1(t�) is a nonempty
compact subset of ��1(t).

Let S and T be compact spaces. Let � : S �! T be a con-
tinuous onto map. For each �nite sequence (n1; : : : ; nk) of integers
greater than 1 (including the empty sequence of length 0) we de�ne

inductively the sets M�

(n1;:::;nk)
� T by the following conditions:

1) M
�

; = T ,

2) M
�

(n1;:::;nk)
= ft 2 T : ��1(t) contains nk disjoint sets of the form

lim sup� �
�1(t�), where ft�g � M

�

(n1;:::;nk�1)
is a net converging

to tg.

The following theorem is due to Ditor [4], but this formulation is
taken from Bade [1]:

Theorem 2.2. Let S and T be compact spaces and � : S �! T a

continuous onto map. Let (n1; : : : ; nk) be a �nite sequence of inte-

gers greater than 1. If the set M�

(n1;:::;nk)
is nonempty, then every
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averaging operator for � has the norm greater than or equal to

1 + 2

kX

i=1

(1 �
1

ni
):

3. Lower bounds for projection constants

We recall that if X is a topological space and A � X, the G�{closure
of A is the set G�(A) whose members are all points x 2 X such that
every G�{subset of X containing x meets A.

Definition 3.1. Let T be a compact space. For each �nite sequence

(n1; : : : ; nk) of integers greater than 1 (including the empty sequence

of length 0) we de�ne inductively the sets M(n1;:::;nk) � T by the
following conditions:

1) M; = T ,

2) M(n1;:::;nk) = fp 2 T : there exist pairwise disjoint open subsets

U1; : : : ; Unk of T such that p 2
Tnk
i=1G�(Ui \M(n1;:::;nk�1))g.

Theorem 3.2. Let T be a compact space and let � : D� �! T

be a continuous map from the generalized Cantor cube onto T . If

(n1; : : : ; nk) is a �nite sequence of integers greater than 1, then

M(n1;:::;nk) �M
�

(n1;:::;nk)
:

Proof. By induction on k. For k = 0 it is obvious. Now supose that
M(n1;:::;nk) � M

�

(n1;:::;nk�1)
and take p 2 M(n1;:::;nk). By de�nition,

there exist pairwise disjoint open subsets U1; : : : ; Unk in T such that
p 2
Tnk
i=1G�(Ui \M(n1;:::;nk�1)). For each index i, consider the set

Gi = ��1(Ui) [
[

j 6=i

��1(Uj):

Since the closure of an open subset of D� depends on a countable set
of coordinates (see [7]), it follows that these sets are compact G� sets.
So there exist nk decreasing families fW k

i g
1
k=1 of clopen subsets of

D� such that G1 =
T1
k=1W

i
k. Let us see that the following sentence

is contradictory:
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(*) For each positive integer k, there exists an open neighborhood

V i
k of p such that for all y 2 V i

k \Ui\Mn1;:::;nk�1, the set ��1(y)\W i
k

is nonempty.

Asuming (*), the set V i =
T1
k=1 V

i
k is a G�{subset of D� which

contains p. Since p belongs to the G�{closure of Ui \Mn1;:::;nk�1 ,
there exists a point y 2 V i \ Ui \ Mn1;:::;nk�1 . By (*), for each
positive integer k there exists a point xik 2 ��1(y) \ W i

k. Take a
cluster point zi of the sequencefxikg

1
k=1. Clearly, zi 2 ��1(yi) \ G,

and so �(zi) = yi 2 Ui. However, on the other hand we have �(zi) 2
�(Gi) �

S
j 6=iUj . And since the open sets Ui are pairwise disjoint,

this is a contradiction.

Thus we see that (*) is false, i.e., for each index i there exists
a positive integer ki such that for every open neighborhood V of
p there exists a point yiV 2 V \ Ui \ Mn1;:::;nk�1 , satisfying that
��1(yiV )\W i

k 6= ;. The nets fyiV gV converge to p and each set Li =

lim supV �
�1(yiV ) is contained in (D� nW i

ki
) \ ��1(Ui). Moreover,

Gi = ��1(Ui)\
S
j 6=i �

�1(Uj) �W i
ki

, it holds that Li is disjoint with

each ��1(Uj), for j 6= i, and in particular the sets Li are pairwise

disjoint. This implies that p belongs to M
�

(n1;:::;nk)
and the proof is

complete. 2

Corollary 3.3. Let T be a compact space and (n1; : : : ; nk) a �nite

sequence of positive integers greater than 1. If the set M(n1;:::;nk) is

nonempty, then p(T ) � 1 + 2
Pk

i=1(1 �
1
ni

).

4. Construction of almost{Milyutin spaces

We need some lemmas. The �rst one is very easy and its proof is
left to the reader.

Lemma 4.1. Let K be a compact space and S a clopen subset of K.

Let (n1; : : : ; nr) be a �nite sequence of integers greater than 1. Let

MS
(n1;:::;nr)

and MK
(n1;:::;nr)

be the sets de�ned in the previous section

for the spaces S and K, respectively. Then MS
(n1;:::;nr)

= MK
(n1;:::;nr)

\
S.
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Lemma 4.2. Let S1, S2, T1 and T2 be compact spaces and for i = 1; 2
let �i : Si �! Ti be a continuous onto map and ui : C(Si) �! C(Ti)
an averaging operator for �i. Consider the map � : S1 � S2 �!
T1 � T2 given by �(u; v) = (�1(u); �2(v)). Then � has an averaging

operator u such that kuk = ku1k ku2k.

Proof. Consider the tensor product C(S1)
N
C(S2), i.e., the subalge-

bra of C(S1 � S2) generated by the functions f 
 g : S1 � S2 �! R,
given by (f 
 g)(u; v) = f(u)g(v). By the Stone{Weierstrass the-
orem, C(S1)

N
C(S2) is dense in C(S1 � S2). Consider also the

maps �i : Ti �! C(Si) associated to the operators ui. For each
pair t = (t1; t2) 2 T1 � T2 we have the product measure �t =
�1(t1) 
 �2(t2) 2 M(S1 � S2), and so we have a continuous map
� : T1 � T2 �!M(S1 � S2), from which we obtain a linear operator
u0 : C(S1 � S2) �! B(T1 � T2) (where B(T1 � T2) is the space of
real{valued bounded functions on T1 � T2) de�ned by u0(f)(t) =R
fd�t. It is easily seen that for each function of the form f 
 g 2

C(S1)
N
C(S2) we have u0(f 
 g)(t1; t2) = u1(f) 
 u2(g). So, if we

call u1
u2 the restriction of u0 to the tensor product C(S1)
N
C(S2)

we have an operator u1 
 u2 : C(S1)
N
C(S2) �! C(T1)

N
C(T2).

On the other hand, the integral representation of u0 gives

ku0k � sup
t2T1�T2

k�tk � sup
t12T1

k�t1k sup
t22T2

k�t2k = ku1k ku2k;

and so we have ku1
u2k � ku1k ku2k. The other inequality is clear.
Since every continuous linear operator is uniformly continuous,

C(T1�T2) is a complete space and C(S1)
N
C(S2) is dense in C(S),

we have that u1
 u2 extends to a unique linear continuous operator
u : C(S) �! C(T ) such that kuk = ku1kku2k.

Finally, we see that u is an averaging operator for �. We must
show that u(f � �) = f for all f 2 C(T ). Since C(T1)

N
C(T2) is

dense in C(T ) it su�ces to prove it for all f 2 C(T1)
N
C(T2) and

by linearity it su�ces to prove it for all functions of the form f 
 g,
with f 2 C(T1) and g 2 C(T2). However, clearly u(f 
 g � �) =
u((f � �1)
 (g � �2)) = u1(f � �1)
 u2(g � �2) = f 
 g. The Lemma
is proved. 2

Lemma 4.3. Let fnrg
1
r=1 be a sequence of integers greater than 1

and � an uncountable cardinal. Then for each r, there exist a zero{
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dimensional compact space T in which no one{point subset is a G�{

set, a point p 2 M(n1;:::;nr), a continuous onto map � : D� �! T ,

and an averaging operator u : C(D�) �! C(T ) for � of norm � =
1 + 2

Pr
i=1(1�

1
ni

) and such that ju(f)(p)j � kfk for all f 2 C(D�).

Proof. By induction on r. For r = 0 the lemma is satis�ed taking
T = D�, � the identity map, p any point in T and u the identity
operator. Asume we have constructed T , p, � and u for a given r and
let us see that there exist T 0, p0, �0 and u0 satisfying the hipotheses
for r + 1.

Let  : D� � D@1 �! T � D@1 the continuous onto map given
by  (x; y) = (�(x); y). Since the identity operator is clearly an
averaging operator for the identity map in D@1 , the previous lemma
gives us an averaging operator v : C(D��D@1) �! (T �D@1) such
that kvk = kuk and v(f 
 g) = u(f)
 g.

We shall see that fpg�D@1 �M(n1;:::;nr). In fact, we shall prove

by (a second) induction on r that if q 2MT
(n1;:::;nr)

then fqg�D@1 �

MT�D@1

(n1;:::;nr)
.

For r = 0 this is clear. If q 2 MT
(n1;:::;nr)

then there exist pair-

wise disjoint open subsets U1; : : : ; Ur such that q 2
Tr
i=1G�(Ui \

MT
(n1;:::;nr�1)

). The sets Ui � D@1 are pairwise disjoint open sub-

sets of T � D@1 and we are going to prove that for all x 2 D@1

we have (q; x) 2
Tr
i=1G�(Ui � D@1) \ MT�D@1

(n1;:::;nr�1)
. Take a G�

subset V of T � D@1 such that (q; x) 2 V . Then V =
T1
n=1 Vn

for certain open subsets Vn of T � D@1 . For each n there exist
open subsets An and Bn in T and D@1 , respectively, such that
(q; x) 2 An � Bn � Vn. Thus

T1
n=1An is a G� subset of T which

contains q, and so (
T1
n=1An) \ Ui \ MT

(n1;:::;nr�1)
6= ;. Let t 2

(
T1
n=1An) \ Ui \MT

(n1;:::;nr�1)
. By the inductive hypothesis (t; x) 2

MT�D@1

(n1;:::;nr�1)
, and so (t; x) 2 V \ (U1�D

@1)\MT�D@1

(n1;:::;nr�1)
6= ;. This

proves that (q; x) 2
Tr
i=1G�(Ui � D@1) \ MT�D@1

(n1;:::;nr�1)
and hence

that(q; x) 2MT�D@1

(n1;:::;nr)
.

Fix a point x0 2 D@1 . Since fx0g is not a G� set inD@1 we
have x0 2 G�(D

@1 n fx0g), and since we have seen that fpg �

D@1 �MT�D@1

(n1;:::;nr)
, it is easy to check that (p; x0) 2 G�(((T �D@1) n
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f(p; x0)g) \MT�D@1

(n1;:::;nr)
).

On the other hand, if f 
 g 2 C(T � D@1) it holds that jv(f 

g)(p; x0)j = ju(f)(p)jjg(x0)j � kfkkgk = kf 
 gk. Using the density
of C(T )

N
C(D@1) in C(T �D@1) and the continuity of v we obtain

that jv(h)(p; x0)j � khk for all h 2 C(T �D@1).

Let S1; : : : ; Snr+1 be disjoint copies of the space T �D@1 . Let pi
be the point corresponding to (p; x0) in each copy. So pi 2 G�((Si n
fpig)\M(n1;:::;nr)). Let X1; : : : ;Xnr+1 be disjoint copies of the space

D� � D@1 and let  1 : Xi �! Si be the map corresponding to  .
We have also averaging operators vi : C(Xi) �! C(Si) for the maps
 i, with the property that jvi(f)(pi)j � kfk for all f 2 C(Xi).

Let T 0 be the space obtained by identifying the points pi to a
single point p0 in the topological sum of the spaces Si. Let X be
the topological sum of the spaces Xi and let �0 : X 0 �! T 0 be the
map that restricted to each Xi coincides with �i. Note that T 0 is
a compact zero{dimensional space in which no point is a G� set. If
x 6= p0 is a point in some of the spaces Si we can �nd a clopen subset
U of Si which contains x but not p0. By Lemma 4.1 we have that
x belongs to the set M(n1;:::;nr) of Si if and only if it belongs to the
corresponding set of T 0. Since p0 2 G�((Sinfp

0g)\M(n1;:::;nr)) (where
the G�{closure and the set M are taken in Si), this is also true if
we take the G�{closure and the set M in T 0. So p0 2

Tnr+1

i=1 G�((Si n
fp0g)\M(n1;:::;nr)) and the sets Si n fp

0g are pairwise open subsets of
T 0. Hence p0 2M(n1;:::;nr+1).

We now de�ne the operator u0 : C(X) �! C(T 0) by u0(f)jSj =

vj(f jXj
) +
Pnr+1

i=1 ( 1
nr+1

� �ij)vi(f jXi
)(p0),for each j = 1; : : : ; nr+1

and each f 2 C(X). This is consistent because u0(f)(p0) is inde-
pendent of the index j we use to calculate it. In fact,u0(f)(p0) =Pnr+1

i=1
1

nr+1
vi(f jXi

)(p0). It is easy to check that u0 is indeed a linear

continuous operator. By using the bounds jvi(f jXi
)(p0)j � kfk we

obtain that ku0k � 1 + 2
Pr+1

i=1 (1 � 1
n1

). From the expression for
u0(f)(p0) we also obtain that ju0(f)(p0)j � kfk, for all f 2 C(T 0).

We �nally see that u0 is an averaging operator for �0. If we take
g 2 C(T 0) we have u0(g��0)jSj )vj(gjSj � j)+

Pnr+1

i=1 ( 1
nr+1

��ij)vi(gjSi�

 i)(p
0) = gjSj +

Pnr+1

i=1 ( 1
nr+1

� �ij)g(p0) = gjSj + 0 � g(p0) = gjSj , and

hence u0(g � �0) = g.
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Now, since M(n1;:::;nr+1) 6= ;, we have that ku0k is exactly 1 +

2
Pr+1

i=1 (1� 1
ni

) and, since X is clearly homeomorphic to D�, lemma
is proved. 2

Our main result is a direct consequence of Lemma 4.3:

Theorem 4.4. Let (n1; : : : ; nr) be a �nite sequence of integers greater

than 1. Then there exists a zero{dimensional almost{Milyutin space

T with exact projection constant p(T ) = 1 + 2
Pr

i=1(1 �
1
ni

).
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