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Projection Constants of
Almost-Milyutin Spaces

C. IVORRA (¥

SUMMARY. - We prove that there exist almost—Milyutin spaces who-
se projection constants are numbers of the form 142 Z;Zl(l—nli),
where ni,...,n, are integers greater than 1. This generalizes our
earlier results, where we showed the existence of almost—Milyutin
spaces with exact projection constant greater or equal to n, for

each positive integer n.

1. Introduction

An almost—Milyutin space is a compact space T such that there
exists an averaging operator for a continuous map from the gen-
eralized Cantor cube onto 7' (see more detailed definitions below).
These spaces were introduced by Pelczynski in his monograph [3], in
relation with the classification of continuous function spaces. The
projection constant of 7" is the infimum of all norms of all averaging
operators satisfying the definition. The constant is said to be ex-
act if it is attained as the norm of some operator. Almost—Milyutin
spaces with exact projection constant 1 are called Milyutin spaces,
and they were previously studied by Milyutin [6]. Pelczynski showed
the existence of almost—Milyutin spaces that are not Milyutin, but he
was unable to compute projection constants. In particular he asked
whether there are almost—Milutin spaces with projection constant
greater or equal to n, for each positive integer n. This question was
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solved in [2] by using a theorem of Ditor [4] which provides (under
certain hypotheses) a lower bound for the norm of every averaging
operator for a given map. This bound has the form 1+237 | (1— niz),
where ny,...,n, are integers greater than 1. We gave certain condi-
tions under which Ditor’s theorem can be applied simultaneously to
every continuous onto map from the generalized Cantor cube onto
a space T'. In the present paper we show that a refinement of our
arguments allows us to construct almost—-Milyutin spaces whose pro-
jection constants are any numbers of the form of those that appear
in Ditor’s theorem. These results are part of author’s doctoral dis-
sertation [5] prepared under the direction of Professor J.L. Blasco.

2. Preliminaries

Let S and T be compact spaces. Let u : C(S) — C(T) be a
(continuous) linear operator. Let M (S) be the set of all regular finite
(signed) Borel measures on S, which can be identified (by the Riesz
representation theorem) with the topological dual space of C(S).
Namely, if z € C(S)*corresponds to the measure u € M (S), we have
z(f) = [ fdu, forall f € C(S). We consider M (S) endowed with the
weak—star topology. We associate to the operator « a continuous map
p:T — M(S), given by u; = u*(6;), where v* : C(T)* — C(S)*
is the dual operator determined by u*(z) = 2 o u and ¢; is the Dirac
measure with support ¢.

The following proposition (see [3]) shows that linear operators
are determined by their associated maps:

PROPOSITION 2.1. Let S and T be compact spaces. Then

a) For each linear operator u : C(S) — C(T), the associated map
p:T — M(S) is continuous and for each f € C(S) and each
t € T we have u(f)(t) = [ fdu.

b) If p : T — M(S) is a continuous map, then u : C(S) — C(T)
defined by u(f)(t) = [ fdu is a linear operator whose associated
map is pr. Moreover, ||u|| = sup;er ||pe|l, where the norm in M(S)

is given by ||l = |u](S)-
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An averaging operator for a continuous onto map ¢ : S — T is
a linear operator u : C(S) — C(T') such that u(f o ¢) = f, for each
feC(T).

The generalized Cantor cube is a space D", where D = {0, 1} is
the discrete two—point space, & is an infinite cardinal and D* has the
product topology. A compact space T is an almost—Milyutin space
if there exists a continuous map ¢ : D® — T from the generalized
Cantor cube onto T for which there exists an averaging operator. The
projection constant of an almost—Milyutin space T' is the infimum
p(T) of all norms of all averaging operators for all continuous onto
maps ¢ : D — T'. When this infimum is attained by the norm of
some operator, we say that the constant p(T) is exact. If T is not
an almost—Milyutin space we define p(T') = +oo.

Let S be a compact space, let A be a directed set and let {Cy }aca
be a net of subsets of S. We define limsup, Co = Us(y>p Ca- It
is easy to prove that limsup, C, is the set of all cluster points of
all nets {yq}aca such that y, € C,, for all index a. If S and T are
compact spaces, ¢ : S — T is a continuous onto map and {t, }aca is
a net on T converging to t € T, then limsup, ¢ (t,) is a nonempty
compact subset of ¢~ ().

Let S and T be compact spaces. Let ¢ : S — T be a con-
tinuous onto map. For each finite sequence (ny,...,nx) of integers
greater than 1 (including the empty sequence of length 0) we define
inductively the sets M q;h

(N1 yeeyng)

C T by the following conditions:

1) Mj =T,

2) M(d;l ) = {t € T : ¢~1(t) contains ny, disjoint sets of the form
limsup,, ¢~ !(ta), where {t,} C M(’;l mp_,) 1S & met converging
to t}.

The following theorem is due to Ditor [4], but this formulation is
taken from Bade [1]:

THEOREM 2.2. Let S and T be compact spaces and ¢ : S — T a
continuous onto map. Let (ni,...,ng) be a finite sequence of inte-

gers greater than 1. If the set M(q:h 1s nonempty, then every

,nk)
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averaging operator for ¢ has the norm greater than or equal to
i 1
142 1——).

3. Lower bounds for projection constants

We recall that if X is a topological space and A C X, the Gs—closure
of A is the set G5(A) whose members are all points z € X such that
every GGs—subset of X containing x meets A.

DEFINITION 3.1. Let T be a compact space. For each finite sequence
(n1,...,ng) of integers greater than 1 (including the empty sequence
of length 0) we define inductively the sets M, .,y C T by the
following conditions:

1) My=T,

2) Mn,,..n,) = {p € T : there ewist pairwise disjoint open subsets
Ut,...,Un, of T such that p € (£, Gs(Ui "\ My, . np 1))}

THEOREM 3.2. Let T be a compact space and let ¢ : D — T
be a continuous map from the generalized Cantor cube onto T. If

(n1,...,ng) is a finite sequence of integers greater than 1, then
¢
M(nly-"7nk) C M(nl,...,nk)'

Proof. By induction on k. For k = 0 it is obvious. Now supose that
My, C M(d;n,---,nk_l) and take p € M, . n,). By definition,
there exist pairwise disjoint open subsets Uy, ..., U,, in T such that

p €Nt Gs(UiN Mp,,...ny_,))- For each index i, consider the set

Gi=¢ ' (U)ul e (T)).
J#
Since the closure of an open subset of D" depends on a countable set
of coordinates (see [7]), it follows that these sets are compact G5 sets.
So there exist ny decreasing families {W}}%°, of clopen subsets of
D" such that G = (32, Wi. Let us see that the following sentence
is contradictory:
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(*) For each positive integer k, there exists an open neighborhood
Vi of p such that for ally € V)NU;NM,, .. n, ,, the set qb_l(y)ﬂW,z
1§ nonempty.

Asuming (*), the set V' = (N2, V}! is a G5-subset of D* which
contains p. Since p belongs to the Gs—closure of U; N My, . n, .,
there exists a point y € V' N U; N My, .. .n. - By (*), for each
positive integer k there exists a point 2% € ¢ (y) N Wi. Take a
cluster point z* of the sequence{z%}?°,. Clearly, 2* € ¢~ (y) N G,
and so ¢(z') = y* € U;. However, on the other hand we have ¢(2*) €
d(G;) C U#i U,. And since the open sets U; are pairwise disjoint,
this is a contradiction.

Thus we see that (*) is false, i.e., for each index 7 there exists
a positive integer k' such that for every open neighborhood V of
p there exists a point y%, e VNnU N M,,,. n,_,, satisfying that
¢~ (yi,) "W # 0. The nets {y }1 converge to p and each set L; =
limsupy ¢~ (yi,) is contained in (D*\ W) N ¢~ (U;). Moreover,
Gi=¢ HU)NU; ¢ 1(Uj) C W/, it holds that L; is disjoint with
each ¢~1(Uj), for j # i, and in particular the sets L; are pairwise
disjoint. This implies that p belongs to M(d; N
complete. O

and the proof is

eyl

COROLLARY 3.3. Let T be a compact space and (nq,...,ng) a finite
sequence of positive integers greater than 1. If the set M, . n,) 18

nonempty, then p(T) > 1+ 22?21(1 - n%)

4. Construction of almost—Milyutin spaces

We need some lemmas. The first one is very easy and its proof is
left to the reader.

LEMMA 4.1. Let K be a compact space and S a clopen subset of K.
Let (n1,...,n.) be a finite sequence of integers greater than 1. Let

M?S and MK1 ) be the sets defined in the previous section

(n1yesmr) (n1yeesnp
for the spaces S and K, respectively. Then M(il,...,nr) = M{;l,m,nr) N

S.
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LEMMA 4.2. Let S1, Sz, T1 and Ts be compact spaces and fori = 1,2
let ¢; © S; — T; be a continuous onto map and u; : C(S;) — C(T3)
an averaging operator for ¢;. Consider the map ¢ : S1 X Sy —
T, x Ty given by ¢(u,v) = (p1(u), p2(v)). Then ¢ has an averaging
operator u such that ||u|| = ||Ju|| ||uzl|-

Proof. Consider the tensor product C(S1) Q) C(S2), i.e., the subalge-
bra of C'(S; x S2) generated by the functions f ® g : S X S — R,
given by (f ® g)(u,v) = f(u)g(v). By the Stone-Weierstrass the-
orem, C(S1)&® C(S2) is dense in C(S; x S2). Consider also the
maps pu; @ T; — C(S;) associated to the operators u;. For each
pair t = (t1,t2) € T} x T we have the product measure p; =
p1(t1) @ pa(te) € M(S1 x S2), and so we have a continuous map
p: Ty x Ty — M(S7 x S9), from which we obtain a linear operator
ug : C(S1 X S3) — B(T} x Tb) (where B(T} x Ty) is the space of
real-valued bounded functions on T} x Tb) defined by wuo(f)(t) =
[ fdps. Tt is easily seen that for each function of the form f ® g €
C(51) Q C(S2) we have ug(f ® g)(t1,t2) = u1(f) ® ua(g). So, if we
call u; ®ug the restriction of ug to the tensor product C(S1) Q C(S2)
we have an operator u; ® ug : C(S1) Q C(S2) — C(T1) @ C(I3).
On the other hand, the integral representation of ug gives

luoll < sup |lpell < sup flpe, || sup [l [| = [Jur || [Juz]l,
€Ty x Ty t1€T1 t2€Ts
and so we have ||u; @ us|| < ||u1|| ||uz||- The other inequality is clear.

Since every continuous linear operator is uniformly continuous,
C(Ty x T) is a complete space and C(S1) @ C(S2) is dense in C(S),
we have that u; ® ug extends to a unique linear continuous operator
u: C(S) — C(T) such that [|ul| = |Ju1|||uz]|-

Finally, we see that u is an averaging operator for ¢. We must
show that u(f o ¢) = f for all f € C(T). Since C(T1) Q C(T3) is
dense in C(T) it suffices to prove it for all f € C(T1) Q) C (1) and
by linearity it suffices to prove it for all functions of the form f ® g,
with f € C(T1) and g € C(Ty). However, clearly u(f ® g o ¢) =
u((f o 1) ®(go¢2)) =u1(f oh1) ®uz(go ) = f ®g. The Lemma
is proved. O

LEMMA 4.3. Let {n,}22, be a sequence of integers greater than 1
and Kk an uncountable cardinal. Then for each r, there exist a zero—
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dimensional compact space T in which no one—point subset is a Gg5—
set, a point p € My, . n.), @ continuous onto map ¢ : D* — T,
and an averaging operator u : C(D*) — C(T) for ¢ of norm \ =
1+2%7 ,(1— n%) and such that |u(f)(p)| < ||f]| for all f € C(DF).

Proof. By induction on r. For r = 0 the lemma is satisfied taking
T = D", ¢ the identity map, p any point in T and u the identity
operator. Asume we have constructed 7', p, ¢ and u for a given r and
let us see that there exist T", p', ¢’ and v’ satisfying the hipotheses
for r + 1.

Let ¢ : D® x DXt — T x D™ the continuous onto map given
by ¥(z,y) = (¢(x),y). Since the identity operator is clearly an
averaging operator for the identity map in D!, the previous lemma
gives us an averaging operator v : C(D" x D™) —s (T x D™) such
that [|v]| = [lul and v(f ® g) = u(f) ®g.

We shall see that {p} x DM C My,....n,)- In fact, we shall prove
by (a second) induction on r that if ¢ € M&l,___,nr) then {q} x DM C

T'x D"
(N1yeeeynir)”

For r = 0 this is clear. If ¢ € M(Ehm’nr) then there exist pair-

wise disjoint open subsets Ui, ..., U, such that ¢ € (;_; G5(U; N

({Ll ---nr—l)). The sets U; x DN are pairwise disjoint open sub-

sets of T'x D™ and we are going to prove that for all z € D™
we have (¢,7) € (_, Gs(U; x DY) N M@Tffgril). Take a Gy
subset V of ' x DM such that (¢,z) € V. Then V = 22, V,
for certain open subsets V,, of T x DX'. For each n there exist
open subsets A, and B, in T and D™ respectively, such that
(¢,z) € Ap X B, C V,,. Thus ;2 A, is a G subset of T' which

contains ¢, and so (o2, 4,) NU; N M(Ehm’nr_l) # (. Let t €
(N Ap) NU N Mﬂl . By the inductive hypothesis (t,z) €

(n1,eeesmp—1)

R R .
M(fzi?.,rlzrq)’ and so (t,z) € VN (U x DX) ﬂM(:CLT’?,TILPI) # (). This
proves that (g,z) € i, Gs(U; x D¥) N M&Tf’;ril) and hence

TxD™
that(q,z) € M, )
Fix a point zg € DX'. Since {zp} is not a G4 set inD™ we
have zo € Gs(D™ \ {z0}), and since we have seen that {p} x

D¥ C M@T?N;r), it is easy to check that (p,z¢) € Gs(((T x DY)\
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{(p,z0)}) N MEXP™ 1y,

(nlv"'vnr)

On the other hand, if f ® g € C(T x D™) it holds that |v(f ®
9)(p, zo)| = [u(f)(P)llg(zo)| < || fllllgll = IIf @ gll. Using the density
of C(T) ® C(Dt) in C(T x D) and the continuity of v we obtain
that |v(h)(p,zo)| < ||| for all b € C(T x D).

Let S1,...,Sy,,, be disjoint copies of the space T' x DR, Let p;
be the point corresponding to (p, () in each copy. So p; € G5((S; \
{Pi}) N My, ... ) Let Xq,..., Xy, ., be disjoint copies of the space
D* x DX and let ¢; : X; — S; be the map corresponding to .
We have also averaging operators v; : C(X;) — C(S;) for the maps
i, with the property that |v;(f)(p;)| < || f]| for all f € C(X;).

Let T" be the space obtained by identifying the points p; to a
single point p’ in the topological sum of the spaces S;. Let X be
the topological sum of the spaces X; and let ¢ : X’ — T’ be the
map that restricted to each X; coincides with ¢;. Note that 7" is
a compact zero—dimensional space in which no point is a G4 set. If
x # p' is a point in some of the spaces S; we can find a clopen subset
U of S; which contains x but not p’. By Lemma 4.1 we have that
z belongs to the set M, ., of S; if and only if it belongs to the
corresponding set of T7". Since p’ € G5((S;\{p'}) "My, ... n,)) (Where
the Gs—closure and the set M are taken in S;), this is also true if
we take the Gs—closure and the set M in T". So p’ € 21" G5((Si \
{P'HN Mg, . 5, and the sets S; \ {p'} are pairwise open subsets of
T'. Hence p' € M, n, . 1)-

We now define the operator u' : C(X) — C(T") by u'(f)|s; =
vi(flx;) + X Gl = Gi)vilfx,) () for each j = 1,... npp

Nr41
and each f € C(X). This is consistent because u'(f)(p') is inde-
pendent of the index j we use to calculate it. In fact,u'(f)(p') =

S L (f]x,)(p')- Tt is easy to check that u' is indeed a linear

Npr41
continuous operator. By using the bounds |v;(f|x;)(®")] < ||f]l we
obtain that |ju'|| < 1+ 2301 — n%) From the expression for
uw'(f)(p") we also obtain that |u/(f)(p')| < ||f]|, for all f € C(T").

We finally see that «’ is an averaging operator for ¢'. If we take
g € C(T") we have u'(god') s, )v;(gls; 0thj)+> it (2= —dij)vilgls, o

Nr41

i) (') = gls; + 201 (i — i) (@) = gls; +0- g(p) = gls;, and
hence u'(go ¢') = g.
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Now, since M y # 0, we have that [[u'|| is exactly 1+

2 Z:ill (1— n%) and, since X is clearly homeomorphic to D*, lemma,

is proved. O

N1yeesNr41

Our main result is a direct consequence of Lemma 4.3:

THEOREM 4.4. Let (ny,...,n,) be a finite sequence of integers greater
than 1. Then there exists a zero—dimensional almost—Milyutin space
T with ezact projection constant p(T) =1+231_ (1 —1).

ng
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