
UNIVERSITÀ DEGLI STUDI DI TRIESTE
Sede Amministrativa del Dottorato di Ricerca

XX CICLO DEL
DOTTORATO DI RICERCA IN

INGEGNERIA DELL’INFORMAZIONE

Techniques for Large-Scale Automatic Detection

of Web Site Defacements

(Settore scientifico-disciplinare ING-INF/05)

DOTTORANDO COORDINATORE DEL COLLEGIO DEI DOCENTI

Eric Medvet Chiar.mo Prof. Alberto Bartoli

Università degli Studi di Trieste

RELATORE

Chiar.mo Prof. Alberto Bartoli

Università degli Studi di Trieste





UNIVERSITÀ DEGLI STUDI DI TRIESTE
Sede Amministrativa del Dottorato di Ricerca

XX CICLO DEL
DOTTORATO DI RICERCA IN

INGEGNERIA DELL’INFORMAZIONE

Techniques for Large-Scale Automatic Detection

of Web Site Defacements

(Settore scientifico-disciplinare ING-INF/05)

DOTTORANDO COORDINATORE DEL COLLEGIO DEI DOCENTI

Eric Medvet Chiar.mo Prof. Alberto Bartoli

Università degli Studi di Trieste

FIRMA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RELATORE

Chiar.mo Prof. Alberto Bartoli

Università degli Studi di Trieste

FIRMA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Contents

1 Introduction 1

1.1 Web site defacement: a brief overview . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Attacks methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 7

2.1 Tools for web defacement detection . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Storage integrity checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Web similarity and change detection . . . . . . . . . . . . . . . . . . . . . 8

2.4 Intrusion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Spam filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Our approach 13

3.1 Key idea and design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Retuning policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Refiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental evaluation 29

4.1 Evaluation goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Effectiveness indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Preliminary experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Effectiveness without retuning . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Effectiveness with retuning . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



CONTENTS iv

4.6 Impact of tuning sequence length . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 “Fast start” working mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Effectiveness of sensor categories . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9.1 Number of resources . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9.2 Monitoring interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Temporal correlation of alerts . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Effects of misclassified readings in the learning set 51

5.1 Scenario: anomaly detection and learning set corruption . . . . . . . . . . 51

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.4 Uncorrupted learning sequence . . . . . . . . . . . . . . . . . . . . 55

5.4 A corruption detection procedure . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Evaluation and results . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Genetic Programming for automatic defacement detection 65

6.1 Genetic Programming in a nutshell . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.4 Results with “shuffled” dataset . . . . . . . . . . . . . . . . . . . . 70

7 A comparison of other anomaly detection techniques 75

7.1 Anomaly detection techniques . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1.1 K-th Nearest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.2 Local Outlier Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.3 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.4 Hotelling’s T-Square . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.5 Parzen Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.6 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.3 Results with internal state locked . . . . . . . . . . . . . . . . . . . 80



v CONTENTS

7.2.4 Results with retuning . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Large-scale study on reaction time to web site defacements 85

8.1 Overview of our methodology . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3.1 Analysis for Verified entries . . . . . . . . . . . . . . . . . . . . . . 90
8.3.2 Analysis for mass defacements of Verified entries . . . . . . . . . . 92
8.3.3 Analysis of Verified entries based on the respective PageRank value 92
8.3.4 Analysis for all entries . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 97





Chapter 1
Introduction

The web has become an essential component of our society. A huge number of organi-
zations worldwide rely on the web for their daily operations, either completely or only
in part. Nowadays, the confidence in an organization heavily depends on the quality of
its web presence, which must convey a sense of trust and dependability to its users over
the time. Any attack that affects the quality of such web presence may thus cause a
serious damage to the organization, as well as to its users or customers. Unfortunately,
incidents of this sort are common: more than 490,000 web pages were defaced in 2005,
and the number of such attacks is constantly growing in the recent years [83].

One may try to prevent such kind of incidents, by applying a set of security policies;
alternatively, one can try to detect whether such an attack has been successfully carried
out. Being able to promptly detect a defacement is important, since it allows to mitigate
it and hence to limit the damage that it causes to the organization and to its users or
customers. Current statistics about web site defacement seem to confirm that this kind of
attack does affect organizations exposed on the web; hence, simply relying on prevention
might not be an effective approach to cope with this problem.

Most web sites lack a systematic surveillance of their integrity and the detection of
web defacements is often demanded to occasional checks by administrators or to feedback
from users. There exist technologies for automatic detection of web defacements that are
meant to be run by the organization hosting the web site to be monitored, because such
technologies require the installation of dedicated appliances within the organization (see
Chapter 2 for a more complete analysis). Essentially, all such technologies are based on a
comparison between the web page (or, more broadly, web resource) and an uncorrupted
copy kept in a safe place. Whenever the web resource is modified, the trusted copy must
be correspondingly updated, which usually requires some restructuring of the operational
processes of the organization. While this approach may indeed be effective, in practice
very few organizations actually deploy such technologies.

This thesis describes our research work which focused on designing, analyzing and
testing a framework for automatic detection of web site defacements. It is aimed at
proposing a solution that should be really feasible for a large number of organizations.

1



1. Introduction 2

Two key requirements in this respect are the following. First, the tool should not require
the organization to provide any baseline content nor to keep it updated—that is, it should
not follow the trusted copy approach. Second, the tool should not require any installation
on the organization site. For these reasons, it has been chosen to use an approach based
on anomaly detection.

Anomaly detection is widely used in Intrusion Detection Systems (IDSs) [16]: it
consists in generating a profile of the monitored system and then detect deviations from
the profile, on the assumption that any deviation is a sign of an attack. The profile
is generated automatically starting from a set of observations of the system. Anomaly
detection is the counterpart of signature detection: the latter approach consists in looking
for signs of known attacks. Signature detection is very effective on known attacks but it
is unable to detect unknown attacks; on the other hand, it usually exhibits a very low
number of false positives, in contrast to anomaly detection.

Anomaly detection approach has been used in this proposal as follows. A tool has
been built that periodically checks the content and appearance of many remote web
pages and compares each of them against their corresponding profiles. If the current
content and appearance do not match with the profile, some kind of alert is generated.
The key idea is quite simple; nevertheless, its actual implementation involves tackling
several specific problems which were not solved previously. What kind of data should be
extracted from a web resource? How should be built the profile with them? Is anomaly
detection practically effective with highly dynamic web resources? The following chap-
ters describe the results of our investigations about all these issues.

The main motivation for our work springs from this observation: in our surround-
ings there is a plenty of web sites which many people depend upon, yet, most of the
organizations hosting these sites have neither the expertise nor the budget necessary
to acquire, install, integrate and maintain one of the existing technologies for detecting
web defacements automatically. In our administrative region alone there are literally
hundreds of web sites that fall in this category and are representative of organizations of
the civil administration (indeed, lack of adequate security budgets is quite a widespread
problem today [31]). The potential effects of malicious intrusions on these sites can be
imagined easily. We believe that the framework that we propose could help in changing
this scenario. A monitoring service that may be joined with just a few mouse clicks
and does not impose any burden on the normal operation of a web site, would have the
potential to be really used widely. Such a service, thus, could greatly improve robustness
and dependability of the web infrastructure.

1.1 Web site defacement: a brief overview

Web site defacements is a remote attack which consists in modifying a web page in
an unauthorized way. It has become a fact of life in the Internet, similarly to phish-
ing, worms, denial of service and other resembling phenomena. The significance of web
site defacement is manifest: Zone-H, a public web-based archive devoted to gathering
evidences of defacements (http://www.zone-h.org), collected approximately 490,000 de-



3 Web site defacement: a brief overview

(a) Political/religious message (b) Attacker signature

Figure 1.1: A sample of two different kinds of defacement content.

facements during year 2005, which corresponds to more than 1300 web pages successfully
defaced each day [83]. Other salient numerical information are presented in Chapter 8.
Web site defacement is included in the annual CSI/FBI Computer Crime and Security
Survey, starting from its 9th edition (2004). According to the latest editions of this
survey [22, 62], the defacement of web sites is one of the few attack categories whose
trend is still growing and it “continues to plague organizations”.

The practical relevance of this menace is also supported by the abundant and steadily
expanding anecdotal evidence. Interesting defacements occurred recently include, e.g.,
those suffered by the Company Registration Office in Ireland, which was defaced in
December 2006 and remained so until mid-January 2007 [69]; by the Italian Air Force,
which was defaced on January 26th 2007 by a Turkish attacker protesting against “who
is supporting the war” (this defacement is shown in Figure 1.1(a); by the United Nations
[30] and by the Spanish Ministry of Housing [25] in August 2007. The list is much longer:
[60, 34, 70, 48, 24, 15].

A defaced site typically contains only a few messages or images representing a sort
of signature of the hacker that performed the defacement. A defaced site may also
contain disturbing images or texts, political messages and so on: Figure 1.1 shows two
real defacements which exhibit different kinds of content. Damages could also be not so
explicit, however. An attacker capable of performing a complete replacement of a web
resource would be also able to perform subtler changes difficult, if not impossible, for a
user to point out—e.g., modifying a script that collects username and password sent by
the user, so that these credentials are also sent to a location chosen by the attacker.

An attacker may commit a web defacement in many ways; yet, since we focused on
detection rather than on prevention, the attack method issue is orthogonal to the main



1. Introduction 4

topic of this thesis. Nevertheless, the next section briefly discusses about typical ways
in which a defacement is committed.

1.1.1 Attacks methods

From a general point of view, attacks to hosts and computer networks typically involves
one or more of the following strategies.

• The attacker tries to convince the victim to perform some action that is indeed
useful for the attacker himself; these actions may involve giving away some cre-
dentials that could be used later by the attacker in order to actually carry out the
attack.

• The attacker is or collaborates with an insider intruder, i.e., a person within the
organization being attacked, which can perform some key action or provide the
former with sensible credentials.

• The attacker exploits one or more implementation errors, design errors or intrinsic
limitations in the targeted system.

The last strategy is probably the most used by attackers. In particular, according to
[83], the most popular way to commit a defacement involves exploiting a web application
or web framework bug, for example by performing a script file inclusion, a SQL injection,
a web server intrusion and so on.

1.2 Thesis outline

The remaining part of this thesis is organized as follows. Chapter 2 presents a review
of the state of the art of web defacement detection and related topics. The available
solutions for the specific problem and the most interesting recent advances in related
fields are presented. In particular, the following fields are considered: storage integrity
checkers, web similarity and change detection, intrusion detection and spam filtering.
State of the art of the anomaly detection approach is also presented.

Chapter 3 describes the details about our proposal. It introduces the scenario, an
overview of the framework and then we it goes down into the system architecture de-
tails; some interesting implementation detail are also covered. This and the following
chapter discuss the main part of this work: design, analysis and implementation of an
anomaly-based framework aimed at detecting web defacements, and, more broadly, un-
usual changes to web resources, without requiring any participation from the monitored
site. This includes, in particular:

1. Techniques for building a profile of a dynamic web resource useful from the point
of view of web defacement detection, i.e., the profile must be general enough to
not generate an excessive number of false positives due to the dynamic nature of
the resource, but, at the same time, specific enough to detect unusual changes.



5 Thesis outline

2. Techniques for comparing a snapshot of a web resource to its profile. This problem
involves a number of simple analyses and the aggregation of the corresponding
results.

3. Policies for deciding when and how the profile of a web resource needs to be
updated.

Chapter 4 presents the results of our deep experimental evaluation. It first describes
the goals of the evaluation. Then, the methodology is presented, including the used
dataset, the specific procedures leading the experiments and the indexes that have been
measured. In particular, this chapter discusses about the effectiveness of the approach
in terms of accuracy of detection—i.e., missed detections and false alarms—both in the
short term and in the long term. The latter scenario importance is more evident due to
the fact that web pages are dynamic: indeed results show that some kind of retuning of
the tool is necessary in order to keep the profile updated. The timings of detection are
also considered, both in terms of time needed in order to start the monitoring activity
and in terms of promptness of detection—that is, how fast can be the detection of a
defacement that has just been applied. Finally, this chapter focuses on scalability issues,
with respect to a possible real deployment of the proposed framework: i.e., it has been
figured out how many resources are needed in order to monitor a given number of remote
web pages.

In Chapter 5 the problem of misclassified readings in the learning set is considered.
The effectiveness of anomaly detection approach, and hence of the proposed framework,
bases on the assumption that the profile is consistent with the monitored system. In
particular, the assumption that the profile is computed starting from a “good” learning
set—i.e., a learning set which is not corrupted by attacks—is often taken for granted.
First, the influence of leaning set corruption on our framework effectiveness is assessed,
in terms of possible wrong classifications. Then, a procedure aimed at discovering when
a given unknown learning set is corrupted by positive readings is proposed and evaluated
experimentally. This chapter also surveys the state of the art of corruption detection
in anomaly detection and, more broadly, in classification and it discusses about the
limitations a possible application of present approaches to the specific problem of web
site defacement detection.

Chapter 6 describes our proposal to use Genetic Programming to perform the web
site defacement detection task. Genetic Programming (GP) is an automatic method for
creating computer programs by means of artificial evolution. The GP approach is used
inside the proposed framework and experimentally evaluated on several web pages with
varying dynamism, content and appearance.

Chapter 7 discusses the comparative evaluation of other approaches for defacement
detection. A set of techniques that have been used in literature for designing several
host-based or network-based Intrusion Detection Systems are considered. The results of
a comparative experimental evaluation, using our approach as a baseline, are presented.

Finally, in Chapter 8 the findings of a large-scale study on reaction time to web
site defacement are presented. There exist several statistics that indicate the number of



1. Introduction 6

incidents of this sort but there is a crucial piece of information still lacking: the typical
duration of a defacement. Clearly, a defacement lasting one week is much more harmful
than one of few minutes. A two months monitoring activity has been performed over
more than 62000 defacements in order to figure out whether and when a reaction to the
defacement is taken. It is shown that such time tends to be unacceptably long—in the
order of several days—and with a long-tailed distribution.



Chapter 2
State of the art

This chapter describes the state of the art concerning defacement detection and related
fields. First, existing tools specifically devoted to web defacement detection (Section 2.1)
are presented, and then other tools that could be used for the same goal (Section 2.2).
Next, works are surveyed that analyze similarities and differences in web content over the
time (Section 2.3). Section 2.4 discusses the relation between our approach and intrusion
detection, anomaly detection (Section 2.5) and, finally, spam detection (Section 2.6).

2.1 Tools for web defacement detection

Several tools for automatic detection of web defacements exist and some of them are
commercially available. They are generally meant to be run within the site to be mon-
itored (e.g., WebAgain http://www.lockstep.com/webagain). Some of these tools may
be run remotely (e.g., Catbird http://www.catbird.com), but this is irrelevant to the
following discussion.

All the tools that we are aware of are based on essentially the same idea: a copy (or
baseline) of the resource to be monitored is kept in a “very safe” location; the resource
content is compared to the trusted copy and an alert is generated whenever there is a
mismatch. The comparison may be done periodically, based on a passive monitoring
scheme, or whenever the resource content is about to be returned to a client. In the
latter case, performance of the site may obviously be affected and an appliance devoted
to carrying out the comparisons on-the-fly may be required. The trusted copy is usually
stored in the form of a hash or digital signature of the resource originally posted, for
efficiency reasons [64, 18]. Clearly, whenever a resource is modified, its trusted copy has
to be updated accordingly.

The site administrator must be able to provide a valid baseline for the comparison and
keep it constantly updated. Fulfilling this requirement may be difficult because most web
resources are built on the fly dynamically, often by aggregating pieces of information from
sources that may be dispersed throughout the organization and including portions that
may be tailored to the client in a hardly predictable way—e.g., advertisement sections.

7



2. State of the art 8

In order to simplify maintenance of the trusted copy, the site administrator may usually
instruct the monitoring tool to analyze only selected (static) portions of each resource.
This practice opens the door to unauthorized changes that could go undetected—the
counterpart of unauthorized changes that, in our approach, might remain hidden within
the profile.

Approaches based on a trusted copy of the resource to be monitored constitute per-
haps the best solution currently available for automatic detection of web defacements,
provided the organization may indeed afford to: (i) buy, install, configure, maintain the
related technology; and (ii) integrate the technology with the daily web-related oper-
ational process of the organization—e.g., streaming the up-to-date resource content to
the trusted copy. As already pointed out in the introduction, though, it seems fair to
say that there are plenty of organizations which do not fulfill these requirements and
consequently do not make use of these technologies. The result is that most organi-
zations simply lack an automated and systematic surveillance of the integrity of their
web resources. The approach proposed in this thesis attempts to address precisely such
organizations. A surveillance service that can be joined with just a few mouse clicks and
that have no impact whatsoever on the daily web-related operations would certainly
have the potential to achieve a vast diffusion. It is important to remark once again that
our proposal is meant to be an alternative to the trusted copy approach—for which there
are currently no alternatives—and not a replacement for it.

2.2 Storage integrity checker

Web defacements may be detected also with tools not devoted specifically to such pur-
pose. A file system integrity checker, for example, detects changes to portions of the file
system that are not supposed to change, as well as deviations from a baseline content
previously established by an administrator and kept in a safe place [33]. A more pow-
erful and flexible approach is taken by storage-based intrusion detection systems, that
also allow specifying an extensible set of update activities to be considered as suspicious
[59, 4, 68, 21].

The analysis of the previous section may be applied to these tools as well: they must
run within the site to be monitored, on carefully protected platforms and that could
be difficult to deploy and maintain in settings where web resources aggregate pieces of
information extracted from several sources, possibly other than the storage itself.

2.3 Web similarity and change detection

The tool that is proposed in this thesis analyzes a web resource based on its content and
appearance. Similar analyses have been proposed for different purposes. SiteWatcher
[44, 20] is a tool aimed at discovering phishing pages: it compares the original page
against the potential phishing page and assesses visual similarities between them in
terms of key regions, resource layouts, and overall styles. The analysis is mostly based
on the visual appearance of the resource, whereas in the proposed framework is concerned



9 Web similarity and change detection

also with attacks directed at resource features that could not affect the visible look of
the resource. WebVigil [63] is a tool closer to this thesis proposal in this respect, since
it considers many different resource features: it is a change-detection and notification
system which can monitor a resource over the time in order to detect changes at different
levels of granularity and then notify users who previously subscribed to such changes.

A fundamental difference with this proposal is that these tools do not base compari-
son on a profile of the resource. SiteWatcher simply compares the genuine web resource,
which is supposed to be either reachable or locally available, to the suspected phishing
resource. In WebVigil, the user himself defines in detail what kind of changes should be
addressed by the comparison, which is then done between two consecutive versions of
the resource. In the framework proposed in this work, a profile of the resource is first
built automatically, then the resource, as currently available, is compared against its
profile.

Important insights about the temporal evolution of web resources have been pro-
vided in [17]. The cited work presents a large-scale study, involving 151 millions of web
resources observed once a week for 11 weeks. They used a similarity measure between re-
sources based on the notion of shingle [7], a sequence of words excluding HTML markups
(see the cited papers for details). Such a measure is quite different from what presented
in this thesis, thus their results cannot be applied directly to our framework. However,
that analysis does provide qualitative observations that are important from our point
of view. In particular, they found that when changes to web pages occur, these usually
affect only the HTML structure and do so in minor ways (addition/deletion of a tag
and alike). This fact appears to imply that, broadly speaking, it is indeed possible to
filter out automatically the dynamic changes of a resource while retaining its “essential”
features. They also found that past changes to a resource are a good predictor of future
changes. In other words, one may infer the degree of dynamism of a resource, at least
in the short-term, by observing the resource for some period. From the point of view of
this work, this property is important for “tightening” the profile appropriately.

The above results are confirmed by [55], which observed 150 highly popular web sites
during one year. This work uses yet another similarity measure between resources (based
on an order-independent analysis of the textual content, which is most meaningful from
a search engine point of view), hence the results have to be interpreted with the same
care as above. This study confirms that most resources change in a highly predictable
way and that the past degree of change is strongly correlated with the future degree
of change. It also highlights other features that are crucial to our framework. First,
the correlation between past behavior and future behavior can vary widely from site
to site and short-term prediction is very challenging for a non negligible fraction of
resources. These observations confirm the (obvious) intuition that a one-size-fits-all
approach cannot work in our case: change detection should be based on a profile that
is tailored individually to each resource. Second, the ability to predict degree of change
degrades over time. This means that a profile should probably be refreshed every now
and then in order to remain sufficiently accurate.



2. State of the art 10

2.4 Intrusion detection

An Intrusion Detection System (IDS) attempts to detect signs of unauthorized access
to a monitored system by analyzing some part of the system itself. The analysis is
typically based on a subset of the inputs of the monitored system. The nature of the
inputs depends on the nature of the IDS: system call sequences in Host-based IDSs
(e.g., [54, 11]), network traffic in Network-based IDSs (e.g., Snort http://www.snort.org,
[10, 26]), application messages or events in Application Protocol-based IDSs (e.g., [37, 2]).
The approach proposed in this thesis analyzes instead the state of the monitored system.
Unlike storage-based IDS and storage integrity checkers (see Section 2.2) that access the
internal state, moreover, it analyzes the externally observable state.

Working on the inputs has the potential to detect any malicious activity promptly
and even prevent it completely. In practice, this potential is quite hard to exploit due
to the large number of false alarms generated by tools of this kind. Working on the
external state, on the other hand, may only detect intrusions after they have occurred.
An approach of this kind, thus, makes sense only if it exhibits very good performance—
low false negative rate, low false positive rate—and may support a monitoring frequency
sufficiently high. The findings of this thesis in this respect, as resulting from the ex-
perimental evaluation, are very encouraging. Interestingly, an intrusion detection tool
that observes the external state has the freedom of selecting the monitoring frequency
depending on the desired trade-off between quickness of detection, available resources
(computing and operators), priority of the monitored resources. A tool that observes
the inputs must instead work at the speed imposed by the external environment: the
tool must catch every single input event, since each one could be part of an attack.

There have been several proposals for analyzing a stream of input events by con-
structing a form of state machine driven by such events (e.g., [49, 65]). The notion of
“state” in such approaches is quite different from what presented in this thesis. Here,
the externally observable state of the system is considered, rather than on the state of an
automaton constructed in a training phase. From this point of view this thesis approach
is more similar to some emerging techniques for invariant-based bug detection. The
technique described in [13] consists in inspecting periodically the content of the heap
during program execution—i.e., part of the internal state. The values of certain metrics
computed on such content are compared to a (program-specific) profile previously built
in a training phase. Any anomaly is taken as an indication of a bug. The frequency of
inspection of the state may be chosen at will, depending on how fast one would like to
detect anomalies (rather than depending on how fast new inputs arrive).

2.5 Anomaly detection

This thesis work borrows many ideas from anomaly-based IDSs [16, 23, 36, 81]. Broadly
speaking, a system is observed to learn its behavior and an alert is raised whenever
something unusual is detected. Clearly, the technical details are very different: rather
than observing network traffic or system call invocations, web resources are observed.



11 Spam filtering

A framework able to detect anomalous system call invocations is proposed in [54].
For a given application and a given system call, the tool tries to characterize the typical
values of the arguments of the call. This is done by constructing different models for the
call, each focussed on a specific feature of its arguments (string length, char distribution,
and so on) during a learning phase. During the monitoring phase, the tool intercepts
each invocation and compares its arguments against the corresponding models. The
results of the comparison are combined to produce a binary classification (normal or
anomalous) of the evaluated system call. The behavior of a given application on a given
healthy system, in terms of system call invocations, is supposed not to change over the
time, thus there is no need to update the models after they have been constructed. This
approach does not work in the scenario considered in this thesis, hence the problem of
finding an algorithm for deciding when and how to update the profile of a resource has
been faced.

A system able to detect web-based attacks was proposed earlier by the same authors,
along very similar lines. For a given web application, the system proposed in [37] builds
a profile of HTTP requests directed to that application. Then, after the learning phase
has completed, the tool raises an alert whenever a request is suspected to be anomalous.
The system may be used to detect attacks exploiting known and unknown vulnerabilities,
including those which could enable applying a defacement. Like in the previous case,
profile updating is not treated.

Two comparative studies of several anomaly detection techniques for intrusion de-
tection are provided by [41] and [58], while techniques based on statistical classification
are presented in [67, 77]. All these techniques map each observed event to a point in
a multidimensional space, with one dimension for each analyzed feature. A profile is
a region of that space and each point outside of that region is treated as an anomaly.
In the main proposal presented in this thesis, events (reading of a web resource) have
not been interpreted as a points in a multidimensional space, because it has not been
found a satisfactory method for giving an uniform interpretation to very heterogeneous
pieces of information—e.g., byte size, relative frequencies of HTML elements, fraction
of missing recurrent images (see also Section 3.3.1).

The profile used as baseline for defining anomalies is usually defined in a preliminary
learning phase and then left unchanged. An exception to this general approach may be
found in [66], which describes a system for host intrusion detection in which the profile
of the user is retuned periodically. In the scenario of web site defacement detection
this form of retuning has turned out to be a necessity and thus constitutes an essential
component of our approach.

2.6 Spam filtering

This thesis approach to web defacement detection exhibits interesting similarities to
spam detection, i.e., the problem of separating unsolicited bulk electronic messages from
legitimate ones. In both cases, one wants to classify an item as being “regular” or
“anomalous” without defining in detail how the two categories should look like. In these



2. State of the art 12

terms, it is the act of blindly mass-mailing a message that makes it spam, not its actual
content; similarly, it is the act of fraudulently replacing the original resource that makes
the new one a defacement. Put it this way, any solution attempt that looks only at
the content of a single mail or web resource could appear hopeless. Nevertheless, tools
for spam filtering (labeling) are quite effective—e.g., SpamAssassin or Brightmail. Such
tools exploit signatures for the content of spam messages and may have to update such
signatures to follow new trends in spammers’ behaviors [14]. Recently, more sophisti-
cated approaches—e.g., machine learning—have been proposed to cope with the spam
problem [1].

Broadly speaking, spam filtering differs from web defacement detection in the cost
of “falses”, i.e., wrong classifications. Most users perceive a rejected legitimate message
(false positive) as a severe damage, while they do not care too much if some spam
message is wrongly classified as legitimate (false negative). On the contrary, a missed
web defacement may be much more costly than a false positive.

An interesting related problem that has emerged recently is post spam (also called
link spam) detection. This problem affects web resources that are freely editable by
users—e.g., blog and wiki resources. Attackers insert posts containing links to unrelated
sites, often with automatic agents, in order to affect the effectiveness of search engines
based on ranking algorithms that use link analysis—e.g., PageRank [56]. A framework
for detecting spam posts in blog resources is proposed in [50]: the authors build a
language model for the whole blog resource, one for each post and one for its linked
resource, if any. Then, they compare these models and classify each post accordingly.
This approach requires neither hard-coded rules nor prior knowledge of the monitored
blog and evaluates items based on a global context, similarly to our approach. The
main difference with this thesis approach is in the nature of the profile: they focus on a
single, sophisticated, feature based on the textual content of the resource, whereas here
a number of simple and easy to construct features are considered.



Chapter 3
Our approach

In this chapter we give some terminology and present our approach: first, from a gen-
eral point of view in Section 3.1 and 3.2; then, we describe our prototype in detail in
Section 3.3 and 3.4.

3.1 Key idea and design goals

We proposed a tool, that we call Goldrake, capable of checking the integrity of many
remote web resources automatically. We wanted to achieve a fundamental design goal:
the monitoring tool should not have required any participation from the monitored
site. This feature constitutes also the novelty of our approach in respect to similar
existing technology for detecting web site defacements. In particular, Goldrake does not
require the installation of any infrastructure at the monitored site, nor does it require
the knowledge of the “officially approved” content of the resource and nor does it require
any change in the operational procedures of web managing by the organization which
own the monitored site.

The above-mentioned features, joined with the fact that the tool is designed for
monitoring remote web pages, candidates the proposed approach for building a remote,
large-scale, automatic monitoring service. Such a service, which structure is outlined
in Figure 3.1, may be joined with just a few mouse clicks and does not impose any
burden on the normal operation of a web site, and hence would have the potential to
be really used widely. Thereby, it could greatly improve robustness and dependability
of the web infrastructure. We remark however that our proposal is not meant to replace
the existing approach, which is based on a trusted copy of the page to be monitored.
We merely aim to propose a different option, which incorporates a different trade-off in
terms of operational and maintenance costs, ease of use and accuracy of detection. We
also note that there is currently no alternative to the trusted copy approach.

Our approach is based on anomaly detection. During a preliminary learning phase
Goldrake builds automatically a profile of the monitored resource. Then, while mon-
itoring, Goldrake will retrieve the remote resource periodically and generate an alert

13



3. Our approach 14

Internet 

Dowloader

Monitoring service

URL

Organization A

URL URL

URL

Organization B

URL

Organization C

URL

Classifier Notifier

E-mail

Sms

...

Figure 3.1: The monitoring service: one single instance is able to monitor several remote
organizations web pages.

whenever something “unusual” shows up.

Implementing this simple idea is hard because web content is highly dynamic, that
is, different readings of the same web resource may be very dissimilar from each other.
Moreover, extent and frequency of individual changes may vary widely across resources
[55]. The challenge, thus, is how to develop a tool capable of dealing with highly dy-
namic content while keeping false positives to a minimum and, at the same time, while
generating meaningful alerts. That is, alerts notifying changes so unusual to deserve
further analysis by a human operator.

Clearly, the tool must be tuned for each specific resource, because a one-size-fits-
all combination of parameters cannot work. The problem is complicated further by
our desire to address a large-scale scenario in which the service may start monitoring
each newly added resource quickly—after a learning phase of just a few days at most.
Large-scale implies that the tool should tune itself automatically without requiring the
involvement of human operators, otherwise scalability would be severely affected. A short
learning phase implies that the profile of the resource may hardly be fully complete or
fully accurate.

A key rationale for our framework is that it analyzes many features from many points
of view, basing on the following considerations. We realized from the early experiments
that we could achieve a remarkable accuracy by combining a large number of simple
analyses, rather than by focusing on a few more complex criteria. We also realized that
a given feature should be analyzed from several points of view—e.g., a given link may be
absolute or relative; the pointed URL may contain unusual words or not; it may appear
in all readings or only in some of them and so on.

3.2 Scenario

We call a web resource, resource for short, a piece of data that is univocally identified by
an URL—e.g., an HTML document, an image file, and so on. In practice, in this study,



15 System architecture

we focused mostly on web pages—i.e., HTML documents including images, style sheets,
JavaScripts and so on—but we considered also different resources—e.g., RSS (Really
Simple Syndication) feeds.

A monitoring service M can monitor several different web resources at the same time.
The monitored set is the set of URLs identifying the monitored resources. Typically,
but not necessarily, the monitored set will include many resources from many different
(remote) organizations. For ease of presentation but without loss of generality, in the
following reasonings, we often assume that the monitored set contains only one resource
R. We denote by ri the snapshot or reading of R at time ti. We will omit the subscript
when not required.

In a first phase, which we call the learning phase, M builds the profile of R, denoted
by PR. To this end, M collects a sequence {r1, r2, . . . } of readings of R, that we call the
tuning sequence, which is actually the learning set. Then, M builds PR by applying a
tuning procedure on the tuning sequence. Having completed the learning phase, M may
enter the monitoring phase in which it executes the following cycle in an endless way:

1. wait for a specified monitoring interval m;

2. fetch a reading r of R;

3. classify r by analyzing it against its profile PR;

4. if r appears to be unusual, then execute some action.

The discussion of our prototype includes only learning phase and analysis (step 3
above). The other steps of the monitoring phase are performed by other non-key com-
ponents of the service (see Figure 3.1) and can be understood easily. We point out, in
particular, that the actual implementation of steps 2—i.e., how to retrieve the current
reader—and 4—i.e., how to send an alert to the monitored site and, at that site, how
to handle the alert—are orthogonal to the topic of this thesis. In a real deployment
scenario, the tool could notify the administrator of a defaced site with an email, a SMS,
and so on.

3.3 System architecture

The core component of the monitoring service has to classify each reading as being
either normal or anomalous. In practice, this component is a binary classifier which
consists internally of a refiner followed by an aggregator : Figure 3.2 shows the internal
architecture of the classifier.

The refiner implements a function that takes a reading r and produces a fixed size
numeric vector v = R(r) ∈ R

n. In our case the transformation involves evaluating and
quantifying many features of a web page related to both its content and appearance
(all details are given in Section 3.3.1). The refiner is internally composed by one or
more sensors. A sensor S is a component which receives as input the reading r and
outputs a fixed size vector of real numbers vS . The output of the refiner is composed



3. Our approach 16

Internet 

params

Refiner Aggregator

Classifier

URL

Sensors

r v

t

y

Figure 3.2: Our binary classifier architecture. Different arrow types correspond to different
types of data.

by concatenating the output of all sensors. Sensors are functional blocks and have no
internal state: v = R(r) depends only on the current input r and does not depend on
any prior reading. The refiner produces a vector v = R(r) of 1466 elements, obtained
by concatenating the outputs from 43 different sensors (Section 3.3.1): we denote the
output of the refiner for reading rk by vk.

The aggregator is the core component of the detector and it is the one that actually
implements the anomaly detection. In a first phase, that we call the learning phase, the
aggregator collects a number of readings in order to build the profile of the resource;
during this phase, the aggregator is not able to classify readings. In a second phase,
the monitoring phase, the aggregator compares the current reading against the profile
and considers it as anomalous whenever it is too much different from the profile. The
output in the monitoring phase depends also on an external parameter called normalized
discrimination threshold (threshold for short), which affects the sensitivity-specificity
tradeoff of the detector. We denote the threshold by t.

The aggregator performs a tuning procedure at the end of the learning phase on a
tuning sequence obtained with the first l readings. With this procedure the aggregator
sets the values for some internal numeric parameters, that constitute the profile PR of
the resource R. During the learning phase, the output yk for each reading rk is always
yk = unable, meaning that the aggregator is currently unable to classify the reading.

After the learning phase, the aggregator enters the monitoring phase, in which it
considers the remaining readings. In this phase the aggregator compares each reading
against the profile PR established in the learning phase. The output yk for each reading
rk is given by a function FA

compare(vk, PR, t) that may return either yk = negative

(meaning the reading is normal) or yk = positive (meaning the reading is anomalous).

We built many different aggregators, which differ in the way they exploit application-
specific knowledge and in the techniques they internally adopt in order to elaborate the
outputs produced by the refiner. The details are presented in Section 3.3.2 and in
Chapters 6 and 7.

As an aside, the early internal architecture of the system was quite different from



17 System architecture

Table 3.1: Sensor categories and corresponding vector portion sizes.

Category Number of sensors Vector size

Cardinality 25 25
RelativeFrequencies 2 117
HashedItemCounter 10 920
HashedTree 2 200
Signature 4 4

Total 43 1466

what described above. Sensors were dynamic systems which did hold the profile inside
them; in other words, the output of a sensor for a given reading did depend also on pre-
vious readings. Each sensor contained the portion of the profile related to the analysis
it performed; then, during the monitoring activity, the sensor itself returned a boolean
value representing its verdict about the current reading. The aggregator, on the con-
trary, was quite simple: it combined the sensor outputs with a simple boolean function
and produced the final output. Note, however, that the key idea basing the proposed
approach remains the same. The reasons because we designed a different framework
concerns efficiency—mainly in terms of performance, but also in terms of easiness of
deployment and code maintenance—and the possibility to evaluate different approaches
(like we indeed did, see Chapters 6 and 7). In this thesis, we only discuss the latter
version of the framework.

3.3.1 Sensors

The 43 sensors contained in our refiner can be divided in 5 categories, based on the
way they extract information from readings. A brief description of each category (or
group) follows. Table 3.1 summarizes salient information about sensor categories and
indicates the number of sensors and the corresponding size for the vector v portion in
each category.

Cardinality sensors

Each sensor in this category outputs a vector composed by only 1 element, i.e., vS = v1.
The value of v1 corresponds to the measure of some simple feature of the reading (e.g.,
the number of lines).

The features taken into account by the sensors of this category are:

• Tags: block type (e.g., the output v1 of the sensor is a count of the number of
block type tags in the reading), content type, text decoration type, title type, form
type, structural type, table type, distinct types, all tags, with class attribute;

• Size attributes: byte size, mean size of text blocks, number of lines, text length;



3. Our approach 18

• Text style attributes: number of text case shifts, number of letter-to-digit and
digit-to-letter shifts, uppercase-to-lowercase ratio;

• Other items: images (all, those whose names contain a digit), forms, tables, links
(all, containing a digit, external, absolute).

RelativeFrequencies sensors

Each sensor S in this category outputs a vector composed by nS elements, i.e., vS =
{v1, . . . , vnS}. Given a reading r, S computes the relative frequency of each item in the
item class analyzed by S (e.g., lowercase letters), whose size is known and equal to nS.
The value of the element vk is equal to the relative frequency of the k-th item of the
given class.

This category includes two sensors. One analyzes lowercase letters contained in the
visible textual part of the resource (nS = 26); the other analyzes HTML elements of the
resource—e.g., html, body, head, and so on—with nS = 91.

For example, consider the sample HTML document of Listing 3.1 and the Relative-
Frequencies sensor working on HTML elements. There are 15 different HTML elements
(in order of appearance: html, head, title, link, body, h1, p, a, b, table, tr,
th, td, br and img) accounting for 25 start tags (end tags are not counted). The html
element appears only one time, hence the corresponding element of the vector vS is equal
to 1/25 = 0.04; p appears 4 times, hence its relative frequency is 0.16; and so on. The
vector vS will be composed by 15 non-zero values and 91− 15 = 76 elements equal to 0.

HashedItemsCounter sensors

Each sensor S in this category outputs a vector composed by nS elements, i.e., vS =
{v1, . . . , vnS} and works as follows. Given a reading r, the sensor S:

1. sets to 0 each element vk of vS ;

2. builds a set L = {l1, l2, . . . } of items belonging to the considered class (e.g., abso-
lute linked URLs) and found in r; note that L contains no duplicate items;

3. for each item lj , applies a hash function to lj obtaining a value 1 ≤ kj ≤ nS;

4. increments vkj by 1.

This category includes 10 sensors, each associated with one of the following item
classes: image URLs (all images, only those whose name contains on or more digits),
embedded scripts, tags, words contained in the visible textual part of the resource and
linked URLs. The link feature is considered as 5 different sub-features, i.e., by 5 different
sensors of this group: all external, all absolute, all without digits, external without
digits, absolute without digits. All of the above sensors use a hash function such that
nS = 100, except from the sensor considering embedded scripts for which nS = 20. Note
that different items could be hashed on the same vector element. We use a large vector
size to minimize this possibility, which cannot be avoided completely, however.



19 System architecture

Listing 3.1: A simple HTML document.

1 <html>
2 <head>
3 <title>Simple sample page</title>
4 <link type="text/css" rel="stylesheet" title="Default" href="css/

default.css">
5 </head>
6 <body>
7 <h1>Simple samples</h1>
8 <p>There is some <a href="someplace.html">linked</a> sample text.

</p>
9 <p>There is some <b>decorated</b> text.</p>

10 <h1>Complex samples</h1>
11 <p>A table:</p>
12 <table>
13 <tr><th>Name</th><th>Number</th></tr>
14 <tr><td>John Smith</td><td>123</td></tr>
15 <tr><td>Jack Ripper</td><td>456</td></tr>
16 </table>
17 <p>And a figure:<br>
18 <img src="images/sample.png">
19 </p>
20 </body>
21 </html>



3. Our approach 20

For example, consider the sample HTML document of Listing 3.1 and the HashedItem-
sCounter sensor working on words contained in the visible textual part of the page. The
word some appears 2 times, while the word Jack appears only once. Hence, the element
of vector vS whose index is equal to the output of the hash function applied to some
(e.g., v38

S ) will incremented by 2; the element of vector vS corresponding to Jack (e.g.,
v76
S ) will incremented by 1. Suppose that no other word in the sample document is such

that its hash function is either 38 or 76, then v38
S = 2 and v76

S = 1. If, otherwise, the
hash of the word there is, for example, equal to 38, then v38

S = 4, since there appears
twice.

HashedTree sensors

Each sensor S in this category outputs a vector composed by nS elements, i.e., vS =
{v1, . . . , vnS} and works as follows. Given a reading r, S:

1. sets to 0 each element vk of v;

2. builds a tree H by applying a sensor-specific transformation on the HTML/XML
tree of r (see below);

3. for each node hl,j of the level l of H, applies a hash function to hl,j obtaining a
value kl,j

4. increments vkl,j by 1.

The hash function is such that different levels of the tree are mapped to different adjacent
partitions of the output vector v, i.e., each partition is “reserved” for storing information
about a single tree level.

This category includes two sensors, one for each of the following transformations:

• Each start tag node of the HTML/XML tree of reading r corresponds to a node
in the transformed tree H. Nodes of H contain only the type of the tag, i.e.,
the HTML element (for example, table could be a node of H, whereas <table
class="name"> could not).

• Only nodes of the HTML/XML tree of reading r that are tags of a predefined set
(html, body, head, div, table, tr, td, form, frame, input, textarea,
style, script) correspond to a node in the transformed tree H. Nodes of H
contain the full start tag (for example, <td class="name"> could be a node of
H, whereas <p id="news"> could not).

Both sensor have nS = 200 and use 2, 4, 50, 90 and 54 vector elements for storing infor-
mation about respectively tree levels 1, 2, 3, 4 and 5; thereby, nodes of level 6 and higher
are not considered.

For example, consider the sample HTML document of Listing 3.1 and the HashedTree
sensor working on the start tag nodes of the HTML/XML tree. The transformation
produces the tree which is shown in Figure 3.3: note that this tree has a depth of 5



21 System architecture

html

head

title link

body

h1 ... table

tr

th th

tr

td td

tr

td td

p

img

Figure 3.3: The result of a tree transformation of the document of Listing 3.1.

levels, hence no information are discarded. Since 2 elements of vS—i.e., v1
s and v2

S—are
reserved for level 1 and level 1 contains only one node, one between v1

s and v2
S will be

equal to 1, the other will be 0. Concerning the third level, there are 5 different HTML
elements (title, link, h1, p and table): p appears 4 times, h1 2 times and the
others one time. Hence, assuming that the hashes of the 5 considered elements are not
equals, among the 50 elements of vS corresponding to the third level (i.e., v7

S , . . . , v56
S ),

3 of them will be equal to 1, one will be 2, one 4 and the remaining will be 0.

Signature sensors

Each sensor of this category outputs a vector composed by only 1 element v1, whose
value depends on the presence of a given attribute. For a given reading r, v1 = 1 when
the attribute is found and v1 = 0 otherwise.

This category includes 4 sensors, one for each of the following attributes (rather
common in defaced web pages):

• has a black background;

• contains only one image or no images at all;

• does not contain any tags;

• does not contain any visible text.

3.3.2 Aggregators

For the sake of the first prototype of Goldrake, we built 3 different aggregators. They
exploit different levels of application-specific knowledge and are described in the next
sections. Recall that the tuning sequence consists of a sequence Stuning = {v1, . . . , vl}



3. Our approach 22

obtained from the first l readings, where each vk is a vector with 1466 elements. Other
aggregators are presented in Chapters 6 and 7.

TooManyFiringElements

This aggregator does not exploit any application-specific knowledge. In brief, a reading
is labeled as anomalous whenever too many elements of vk are too much different from
what expected.

In the tuning procedure the aggregator computes the mean ηi and standard deviation
σi for each element vi

k, across all vectors in Stuning = {v1, . . . , vl}. During the monitoring
phase the aggregator counts the number of firing elements, i.e., those elements whose
value is too much different from what expected. An element fires when its value vi is
such that |vi − ηi| ≥ 3σi. If the number of firing elements is at least Nt, the reading is
classified as anomalous (N = 1466 is the size of each vector, t is the threshold).

Note that this aggregator handles all vector elements in the same way, irrespective of
how they have been generated by the refiner. Thus, for example, elements generated by
a signature sensor are handled in the same way as those generated by hashed. Moreover,
the aggregator does not consider any information possibly associated with pairs or sets
of elements, i.e., elements generated by either the same sensor or by sensors in the same
category.

TooManyFiringSensors

This aggregator exploits some degree of domain-specific knowledge: it “knows” that the
vector elements are partitioned in slices and each slice corresponds to a specific sensor.
The profile constructed in the learning phase is also partitioned, with one partition
associated with each sensor.

In the monitoring phase this aggregator transforms each slice in a boolean, by ap-
plying a sensor-specific transformation that depends on the profile (i.e., on the partition
of the profile associated with that sensor). When the boolean obtained from a slice is
true, we say that the corresponding sensor fires. If the number of sensors that fire is at
least Mt, the reading is classified as anomalous (M = 43 is the number of sensors, t is
the threshold).

We describe the details of the tuning procedure and monitoring phase below. All
sensors in the same category are handled in the same way. As an aside, note that not
only this aggregator exploits domain-specific knowledge, it also exploits knowledge about
the refiner (e.g., regarding the number of sensors and size of each slice).

Cardinality In the tuning procedure the aggregator determines mean η and standard
deviation σ of the values v1

1, . . . , v
1
l —recall that Cardinality sensors output a vector

composed by a single value. In the monitoring phase a sensor fires if its output value v1

is such that |v1 − η| ≥ 3σ.



23 System architecture

vS,1 = { 0.23 0.11 0.05 0.37 0.00 0.24 } d1 = 0.06
vS,2 = { 0.21 0.13 0.08 0.39 0.00 0.19 } d2 = 0.08
vS,3 = { 0.19 0.09 0.07 0.38 0.00 0.27 } d3 = 0.11
vS,4 = { 0.23 0.11 0.04 0.42 0.00 0.20 } d4 = 0.09

η = { 0.215 0.11 0.06 0.39 0.00 0.225 }
ηd = 0.085, σd = 0.021

vS = { 0.02 0.14 0.08 0.12 0.62 0.02 } d = 1.34
|d − ηd| = |1.34 − 0.085| = 1.255 > 0.063 = 3 · 0.021

Figure 3.4: An example of a RelativeFrequencies sensor. See the text for the explanation.

RelativeFrequencies A sensor in this category fires when the relative frequencies (of
the class items associated with the sensor) observed in the current reading are too much
different from what expected. In detail, let nS be the size of the slice output by a sensor
S. In the tuning phase, the aggregator performs the following steps:

1. evaluates the mean values {η1, . . . , ηnS} of the vector elements associated with S;

2. computes the following for each reading vk of the tuning sequence (k ∈ [1, l]):

dk =

nS
∑

i=1

|vi
k − ηi| (3.1)

3. computes mean ηd and standard deviation σd of {d1, . . . , dl}.

In the monitoring phase, for a given reading v, the aggregator computes:

d =

nS
∑

i=1

|vi − ηi| (3.2)

The corresponding sensor fires if and only if |d − ηd| ≥ 3σd.
For example, consider the example shown in Figure 3.4: in this case, the size of the

portion of v corresponding to this RelativeFrequencies sensor is nS = 6 and the length
of the tuning sequence is l = 4. Recall that each vS,i is a vector representing the relative
frequencies of a given item class in the i-th reading, hence is such that

∑

k vk
S,i = 1.

The profile related to this sensor is composed by the vector η and the values ηd and σd.
The example sensor fires, because, for the considered reading whose corresponding vS is
shown in the figure, d − ηd is grater than 3σd.

HashedItemsCounter Let nS be the size of the slice output by a sensor S. In the
tuning procedure, the aggregator computes for each slice element the minimum value
across all readings in the tuning sequence, i.e., {m1, . . . ,mnS}. In the monitoring phase
S fires if and only if at least one element vi in the current reading is such that vi < mi.

The interpretation of this category is as follows. Consider a sensor S of this cate-
gory and suppose that nS → ∞ (see also the description of sensors of this category in



3. Our approach 24

Section 3.3.1). In this case, the size of the slice of the vector v output by S tends to
∞ too; besides, the hash function used by S maps each different element l of the class
considered by the sensor to a precise element vi of v: vi = 0 if the given element is not
present in the considered reading, vi = 1 otherwise. It follows that the corresponding
minimum value mi is 1 if and only if the given element l was present in every reading
included in the tuning sequence, i.e., if l was a “recurrent items”. During the monitoring
phase, S fires if there is at least one l for which the corresponding vi is lower than mi,
i.e., if there is at least a missing recurrent item. Provided that nS is obviously finite,
the higher nS , the lower the number of different items mapped to the same vi and hence
the more similar the real behavior to the description given above.

HashedTree Sensors in this category are handled in the same way as those of the
previous category, but the interpretation of a firing is slightly different. Any non-zero
element in {m1, . . . ,mnS} corresponds to a node which appear in every reading of the
tuning sequence, at the same level of the tree. In the monitoring phase the sensor fires
when a portion of this “recurrent tree” is missing from the current reading (i.e., the
sensor fires when the tree corresponding to the current reading is not a supertree of the
recurrent tree). We omit further details for simplicity, as they can be figured out easily.

Signature A sensor in this category fires when its output is 1. Recall that these sensors
output a single element vector, whose value is 1 whenever they find a specific attribute
in the current reading.

TooManyFiringCategories

This aggregator works similarly to the previous one. It transforms slices into boolean
values in the same way as above. However, rather then considering all sensors as being
equivalent, this aggregator “knows” that sensors are grouped in categories. If the number
of categories with at least one sensor that fires is at least Kt, the reading is classified as
anomalous (K = 5 is the number of categories, t is the threshold).

The reason because we decided to group sensors outputs in categories for this ag-
gregator, is that we noticed that sensors belonging to the same category tend to exhibit
a similar behavior in terms of false positives. A legitimate, but substantial, modifica-
tion in a resource may cause several sensors in the same group to fire simply because
all such sensors perform their analysis in a similar way. For example, consider a re-
source containing a “news” section composed of a set of news items, each containing
text, titles, images and so on. If the administrator of that site decides to increment the
number of news items, it is likely that several Cardinality sensors will fire. Yet, since
the overall structure of the resource does not change, neither HashedTree sensors nor
HeshedItemCounter sensors will fire. This fact is supported by the experimental eval-
uation we performed, which is discussed in Section 4.8. This aggregator thus exploits
domain-specific knowledge more deeply than the previous one.



25 Implementation details

3.3.3 Retuning policies

In our earlier experiments (see Section 4.4), we found that detection effectiveness of the
aggregators described above remarkably decrease as time goes by. This occurs due to the
fact that the profile of the monitored resource is no longer representative of its current
content and appearance. In order to cope with this problem, we enabled our framework
to perform some form of profile retuning, accordingly to a predefined retuning policy.

In particular, we defined 4 different retuning policies. Each policy specifies the con-
ditions that trigger the execution of a tuning procedure. Note that all policies described
in this section, except the last one, can be applied with all the aggregators described in
Section 3.3.2. Due to the nature of the event that triggers the retuning, the last policy
can only be applied in combination with the TooManyFiringCategories aggregator.

• FixedInterval. The tuning procedure is applied every n readings. This policy can
be applied automatically, without any human intervention.

• UponFalsePositives. The tuning procedure is applied whenever the aggregator
raises a false alarm. In other words, whenever the aggregator outputs a positive
value there must be an human operator that analyzes the corresponding reading
and decides whether this is indeed a true alarm or not. If not, Goldrake will make
the aggregator execute the tuning procedure before analyzing the next reading.

• Mixed. This policy is a combination of the two previous ones, that is, the tuning
procedure is applied when at least one of the following occurs:

a. the aggregator raises a false alarm (labeled as such by a human operator);

b. there have been n consecutive readings without any false alarm.

• SelfVerifying. The tuning procedure is applied when at least one of the following
occurs:

a. there are exactly Kt − 1 firing groups (recall that the TooManyFiringCate-
gories aggregator fires if at least Kt groups fire)

b. there have been n consecutive readings since the last retuning triggered by
this condition.

This policy can be applied automatically, without any human intervention. For
example, when t = 0.8, the aggregator will perform a retuning if exactly 3 groups
fire.

3.4 Implementation details

Our prototype, Goldrake, is written in Java and uses a relational database to store read-
ings and other data. We paid special attention to make our tool modular and extensible.
Sensors and aggregators are simply classes that implement a given interface; thereby,



3. Our approach 26

Refiner

Cache DB

Functional blocks

r v

Figure 3.5: A representation of the internal structure of the refiner implementation (schematic).
Different arrow types correspond to different types of data. Sensors elaboration is actually
performed in several steps by functional blocks. Each block outcome is stored in the cache and
hence can be retrieved from there without being computed more than once.

one can add new sensors or aggregators by simply developing Java classes implementing
the appropriate interface. This is a key feature both for experimenting with the tool
and for its production use and is indeed the way we followed to experiment with other
approach variants (see Chapter 6 and 7).

We also took care to design internal architecture of Goldrake in order to obtain
satisfactory performance, in terms of computation effort required to analyze a single
reading; being a prototype, however, some space exists for further improvements. In
this sense, we focused mainly on designing an efficient refiner: this issue is discussed in
the next section.

3.4.1 Refiner

Almost all of the sensors perform several transformation steps in order to obtain a
numeric vector starting from the input, i.e., the reading. Moreover, some of these steps
are performed from many sensors. For example, many sensors execute the HTML parsing
in order to obtain information about nodes, tags, and so on. We wanted to exploit this
similarities among sensors in order to avoid computation redundancy, hence obtaining
better performance in respect to the case in which some transformation step is performed
twice.

We hence designed the implementation of the refiner as a layered graph of functional
blocks. A simple graphical representation of a sample of such architecture is shown in
Figure 3.5. Rightmost blocks use as input the reading itself; leftmost blocks output
numeric vectors—these blocks indeed correspond to the sensors as described in Sec-
tion 3.3.1. Each non rightmost block receives as input the output of one or more other
blocks and, if needed, also the reading itself: if two or more blocks need the same piece
of information—i.e., the output of the same block—it is computed only once. Thereby,



27 Implementation details

during the evaluation of a reading by the refiner, no transformation steps are computed
more than once. For example, consider the sensor belonging to the HashedItemCounter
category which concerns words of visible textual part of a web page. Three main steps
are performed:

1. the reading r is parsed, thus obtaining a data structure corresponding to the HTM-
L/XML tree of the page;

2. the nodes of the tree that contains visible texts are selected and their content is
extracted and concatenated

3. the text is split in words and, finally, the numeric vector v is generated as described
in Section 3.3.1.

In practice, this optimization is obtained by caching in a relational database the
output of each block for each readings. When the output of a given block is required by
another block, it is not computed again, instead it is simply read from the cache.





Chapter 4
Experimental evaluation

4.1 Evaluation goals

Detecting when a web page has been defaced is substantially a classification task; in
particular, it is a binary classification task. Hence, the effectiveness of the approach
can be measured, in brief, as the number of correct readings correctly classified. To
this end, we used the False Positive Rate (FPR) and the False Negative Rate (FNR) as
effectiveness indexes: we describe them in a more detailed way in the next section. In
both cases, the lower the index value, the more effective is the approach.

Due to the particular nature of the monitored systems (i.e., web pages), classification
effectiveness can be influenced by several factors. In particular, we studied how the
approach effectiveness is affected by web pages intrinsic dynamism (see Section 4.5)
and by the presence of unexpected misclassified readings in the tuning sequence (see
Chapter 5).

Beside classification effectiveness, we wanted also to evaluate the feasibility of the
proposed approach from a broader point of view: number of pages that can be monitored
with given hardware resources, minimum monitoring interval, and so on. In other words,
we evaluated the scalability of the proposed approach: we define it more deeply in
Section 4.9.

4.1.1 Effectiveness indexes

We evaluated the effectiveness of the proposed approach measuring false positives and
false negatives. We say that the detector gives a false positive when it evaluates a normal
(negative) reading as anomalous (positive)—i.e., a false alarm. We say that the detector
gives a false negative when it evaluates an anomalous reading as normal—i.e., a missed
detection of a defacement. In this chapter, we show experiments result in term of FPR
an FNR: the former is the ratio between the number of false positives and the number of
evaluated normal readings; the latter is the ratio between the number of false negatives
and the number of evaluated anomalous readings.

29



4. Experimental evaluation 30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

1
−

F
N

R
Figure 4.1: A ROC curve example.

While the goal is to obtain low FPR and FNR, usually one has to choose a tradeoff
between low FPR and low FNR, perhaps adjusting some parameter—usually a discrim-
ination threshold—of the detector being used. The desired tradeoff depends on the
considered application and the specific deployment of that application. In our case, i.e.,
in the case of web site defacement detection, we think that it is more important to
minimize FNR, that is, to minimize missed detection: a missed detection may be more
costly than a false positive. This is different, for example, from spam detection where
most users perceive a rejected legitimate message (false positive) as a severe damage,
while they do not care too much if some spam message is wrongly classified as legitimate
(false negative).

In the discussion that follows, we present some FPR results also in terms of False
Positive Frequency (FPF), i.e., the number of false alarms per unit of time. This index is
interesting because it should be more usable by human operators: an indication like “3
false alarms every week per resource” is simpler to understand and reason about than one
like “3% of false alarms per resource”. Moreover, such index is useful while elaborating
on the approach expected scalability (see Section 4.9). Note that the possibility of using
in practice the FPF index is a straightforward consequence of analyzing the state of the
monitored system rather than its inputs.

Another effectiveness index that is quite popular among binary classifiers evaluation
is the area under the ROC curve. The Receiver Operating Characteristic, or simply
ROC curve, is the plot of the True Positive Rate (TPR = 1 − FPR) vs. the FPR as
the classifier discrimination threshold is varied. Figure 4.1 show an example of a ROC
curve. The nearer the curve stays to the upper left corner (where FPR = FNR = 0), the
better the classifier. The line joining the left bottom and the right top corners is the line
of no discrimination, which corresponds to a random (weighted) guess used as a binary
classifier. The ROC curve is plotted using many pairs 〈FPR,FNR〉 obtained testing the
binary classifier on the same dataset with different value for the discrimination threshold.



31 Dataset

The area under the ROC curve is an interesting effectiveness index which gives a
synthetic evaluation of the binary classifier; differently from FPR and FNR indexes, it
allows one to set aside from the possible actual value for the discrimination threshold,
and hence from the selected tradeoff between false alarms and missed detections.

4.2 Dataset

We performed all our tests off-line, for convenience reasons, using an archive of readings
that we obtained as follows; for some of the tests, we used only a portion of the archive.
We observed 15 web pages for about 6 months, collecting a reading for each page every
6 hours, thus totaling about 650 readings for almost each web page. These readings
compose the negatives sequences—one negative sequence SN for each page: we visually
inspected them in order to confirm the assumption that they are all genuine, that is,
none of them was a defacement or an otherwise anomalous page (e.g., a server error
page).

Table 4.1 presents a list of the observed pages, which includes pages of e-commerce
web sites, newspapers web sites, and alike. Pages differ in size, content and dynamism.
Almost all resources contain dynamic portions that change whenever the resource is ac-
cessed. In most cases such portions are generated in a way hardly predictable (including
advertisements) and in some cases they account for a significant fraction of the overall
content. For example, the main section of the Amazon – Home contains a list of product
categories that seems to be generated by choosing at random from a predefined set of
lists. The Wikipedia – Random page, shows an article of the free encyclopedia that is
chosen randomly at every access. Most of the monitored resources contain a fixed struc-
tural part and a slowly changing content part, often including an ordered list of “items”
(e.g., news, topics and alike). The frequency of changes may range from a few hours to
several days. The impact of each change on the visual appearance of the resource may
vary widely.

Unlike most works that evaluate IDSs [41, 43, 47], there is not a standard attack trace
to use. We hence built a positive sequence SP composed by 100 readings extracted from a
publicly available defacement archive. Defacements composing SP were not related with
any of the 15 resources that we observed—as pointed out above none of these resources
was defaced during our monitoring period. We chose attack samples with different size,
language, layout and with or without images, scripts and other rich features.

4.3 Preliminary experiments

We performed some preliminary experiments which leaded us to the following findings.
First, the TooManyFiringCategories aggregator is largely the best performing solution,
among the three presented in Section 3.3.2. For this reason, in this chapter we only
reason on this aggregator; nevertheless, a numerical confirmation of this finding can be
found in Section 5.3.4. Second, we found that some kind of updating of the profile is
necessary. We elaborate on this issue in the next sections.



4. Experimental evaluation 32

Table 4.1: List of web resources composing our dataset. Change frequency is a rough ap-
proximation of how often non minor changes were applied to the resource, according to our
observations. Concerning Amazon – Home page and Wikipedia – Random page, we noted that
most of the content section of the resource changed at every reading, independently from the
time.

Change frequency Monitoring
period

Amazon – Home page ∼ Every reading 9/19/05–9/1/06
Ansa – Home page Every 4–6 hours 9/19/05–9/1/06
Ansa – Rss sport Every 4–6 hours 9/19/05–9/1/06
ASF France – Home page Weekly 9/19/05–9/1/06
ASF France – Traffic page Less than weekly 9/19/05–9/1/06
Cnn – Business Every 4–6 hours 9/19/05–9/1/06
Cnn – Home page Every 4–6 hours 9/19/05–9/1/06
Cnn – Weather Daily 9/19/05–9/1/06
Java – Top 25 bugs Less than weekly 12/1/05–9/1/06
Repubblica – Home page Every 4–6 hours 9/19/05–9/1/06
Repubblica – Tech. and sci. Every 2–3 days 9/19/05–9/1/06
The Server Side – Home page Every 2–3 days 12/1/05–9/1/06
The Server Side – Tech talks Weekly 12/1/05–9/1/06
Univ. of Trieste – Home page Weekly 9/19/05–9/1/06
Wikipedia – Random page Every reading 9/19/05–9/1/06



33 Effectiveness without retuning

4.4 Effectiveness without retuning

We aimed to analyze the performance of the proposed approach on the short term, i.e.,
using a subset of the archive corresponding to a short temporal interval, i.e., an interval
in which most of the web resources that we observed do not exhibit significant legitimate
changes.

To this end, we used the full dataset—which corresponds to about six months (about
650 readings for each resource) of observations—and we manually switched off the retun-
ing feature of the considered aggregator. In such condition, we measured the effectiveness
indexes at different time points: measures gathered at the end of the first month actually
corresponds to the short term effectiveness.

Table 4.2 shows FPR and FNR that we obtained in the following way. For each
resource, we first built a tuning sequence composed by the first l = 60 readings of the
corresponding SN and we performed the learning phase on it; then, we built a testing
sequence composed by the following 112 readings of the corresponding SN and by the 100
positive readings of SP . Note that the length of the tuning sequence—i.e., 60 readings—
corresponds to 15 days of observation in our setting, and hence that would be the
duration of the learning phase in a real deployment scenario; 112 readings corresponds
to 28 days. Results of Table 4.2 show, as first finding, that FNR is 0 for all resources:
Goldrake detected all the defacements included in the attack set. That is, even with a
single tuning operation, Goldrake is able to detect all defacements that we considered.

On the other hand, it can be seen that even in the short period, there is some resource
for with FPR is not satisfactory. Not surprisingly, we found that this is true in particular
for pages which exhibit high change frequencies. This finding is confirmed below, where
we present results collected at time points corresponding to the 1st month, 2nd month,
and so on.

Table 4.3 shows FPR obtained in the following way. For each resource, we built a
tuning sequence composed by the first l = 60 readings of the corresponding SN and we
performed the learning phase on it; then, we built a testing sequence composed by all
the following readings of the corresponding SN and by the 100 positive readings of SP .
Columns 2 to 5 show FPR computed at the end of each month (we considered month of
28 days, which corresponds to 112 readings), starting from the beginning of the test—i.e.,
FPR computed respectively on a dataset composed by 112, 224, 336 and 448 negative
readings. The last column show FPR computed for the whole testing sequence, i.e.,
about 600 readings. Note that FNR is not shown: since the retuning feature is switched
off—and hence the profile is the same as before—and the positive portion of the testing
sequence is the same, the value of FNR is obviously the same as before.

Concerning false positives, these results show that FPR becomes definitely unsat-
isfactory after the first month, for almost all the resources. In other words, a short
period strategy which does not involve some kind of retuning is not a feasible solution
in the scenario of web defacement detection, where the monitored system—i.e., the web
page—changes in an unpredictable way as time goes by. Eventually, the accumulation
of changes makes that profile no longer useful.



4. Experimental evaluation 34

FPR (%) FNR (%)

Amazon – Home 1.7 0
Ansa – Home 5.7 0
Ansa – Rss sport 0 0
ASF France – Home 0 0
ASF France – Traffic 0 0
Cnn – Business 0 0
Cnn – Home 0 0
Cnn – Weather 0 0
Java – Top 25 bugs 0 0
Repubblica – Home 37.5 0
Repubblica – Tech. & sci. 0 0
The Server Side – Home 20.3 0
The Server Side – Techtalks 18.0 0
Univ. of Trieste – Home 0 0
Wikipedia – Rand. page 0 0

Mean 5.5 0

Table 4.2: FPR and FNR for 15 resources computed on a dataset of about one month, using
the TooManyFiringCategories aggregator (no retuning, tuning sequence length of 60 readings).
Values are expressed in terms of percentage.



35 Effectiveness without retuning

After After After After Total
1st 2nd 3rd 4th (at the

month month month month end)

Amazon – Home 1.7 41.0 60.7 70.1 75.3
Ansa – Home 5.7 19.6 27.4 45.5 52.1
Ansa – Rss sport 0 0 0 0 0
ASF France – Home 0 45.7 63.8 72.8 79.2
ASF France – Traffic 0 0 0 0 0
Cnn – Business 0 2.4 34.9 51.2 56.7
Cnn – Home 0 18.5 45.7 59.3 64.1
Cnn – Weather 0 18.5 45.7 59.3 64.1
Java – Top 25 bugs 0 0 na na 0
Repubblica – Home 37.5 68.8 79.2 84.4 91.3
Repubblica – Tech. & sci. 0 27.5 51.7 63.8 68.9
The Server Side – Home 20.3 50.6 na na 65.4
The Server Side – Techt. 18.0 59.0 na na 75.3
Univ. of Trieste – Home 0 3.4 32.2 47.6 51.6
Wikipedia – Rand. page 0 2.8 3.4 4.0 4.6

Mean 5.5 23.9 37.1 46.5 49.9

Table 4.3: FPR for each resource computed at different time points, using the TooManyFir-
ingCategories aggregator (no retuning, tuning sequence length of 60 readings). We considered
months of 28 days, 112 readings per month. Values are expressed in terms of percentage. For
some resources, results after the 3rd and 4th months are not available, because the observations
for those resources lasted for less than three months (see Table 4.1).



4. Experimental evaluation 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Partial mean FPR
Total mean FPR

P
S
frag

F
P

R

t (weeks)

Figure 4.2: Mean False Positive Rate computed at different time points during the test (no
retuning, tuning sequence length of 60 readings). Partial mean FPR for a given week is computed
with the results of that week. Total mean FPR for a given week is computed with all the results
obtained from the beginning of the test to the end of that given week. One week corresponds to
28 readings.

Table 4.3 shows also that it is not possible to predict how long the profile will remain
useful, as this depends on the specific resource and may vary significantly.

These early findings constitute the reason for which we enabled Goldrake to update
the profile of a resource, through the execution of the tuning procedure also during the
normal monitoring activity. The way in which the tool decides how and when to run a
tuning procedure is defined by the retuning policies, which are described in Section 3.3.3.
Results obtained with such feature enabled are presented in the next section.

4.5 Effectiveness with retuning

In this section we present the results that we obtained experimenting with the automatic
retuning feature enabled. In particular, we applied all the 4 retuning policies described
in Section 3.3.3 to the TooManyFiringCategories aggregator and we measured FPR and
FNR. Note that, since the tuning procedure is applied multiple times, in this experi-
ments we evaluated FNR by injecting our attack set after each retuning. It follows that
FNR will be evaluated as the ratio between the number of missed defacements and the
number of injected defacements. For example, the number of injected defacements in an
experiment in which the tuning procedure has been executed twice will be twice the size
of the attack set. The evaluation of FPR may instead be done with the same procedure
applied in the previous experiments without retuning.



37 Impact of tuning sequence length

FPR FPF FNR
(%) (f.a./weeks) (%)

FixedInterval (n = 1) 0.9 0.2 0
FixedInterval (n = 15) 3.8 1.0 0
FixedInterval (n = 30) 6.7 1.8 0
FixedInterval (n = 45) 9.7 2.6 0
UponFalsePositives 1.3 0.3 0
Mixed (n = 15) 1.4 0.4 0
Mixed (n = 30) 1.6 0.4 0
Mixed (n = 45) 1.7 0.4 0
SelfVerifying (n = 30) 5.2 1.4 0

Table 4.4: Mean FPR, FPF and FNR for nine retuning policies, using the TooManyFiringCat-
egories aggregator (tuning sequence length l = 60 readings).

Table 4.4 shows results that we obtained experimenting with different values for the
retuning interval n (see Section 3.3.3), when applicable; this figures are obtained using a
tuning sequence length of l = 60 readings. In other words, Goldrake maintains a sliding
window of the last most recent readings and use it when a retuning is performed. Results
of Table 4.4 are averaged across all the 15 resources and are also cast in terms of FPF.

Goldrake still exhibits FNR equal to 0% for each resource, that is, it retains the ability
of detecting every defacement included in the attack set. The key result is that FPR
becomes tolerable thanks to retuning. Tuning procedures involving a human operator
achieve FPR in the range 1.4–1.7%, as opposed to 49.9% without retuning. Even fully
automatic procedures perform well, a retuning performed every 15 readings (about 4
days), for example, leads to FPR = 3.8%. An automatic retuning performed at every
reading (FixedInterval with n = 1) leads to FPR equal to 0.9%, which is slightly better
than the one obtained with human-triggered policies. Note that, when expressed in
terms of FPF, these results show that it is possible to obtain less than 1 false positive
each month, for each page. This finding suggests that the proposed approach may be a
feasible solution for large-scale monitoring, and hence deserves further attention.

Tables 4.5 and 4.6 show the same experiment results separately for each resource
(FPR data only). It can be seen that there are no intractable resources, i.e., resources
for which FPR is unsatisfactory. The best retuning policy—FixedInterval (n = 1)—leads
to FPR never greater than 2%.

4.6 Impact of tuning sequence length

The results of the previous section have been obtained with a tuning sequence com-
posed of 60 readings. We repeated the previous experiments with other tuning sequence
lengths: 30 and 90. Table 4.7 shows the mean of False Positive Rates for four selected
policies with three values for the tuning sequence length l, again for the sole TooMany-



4. Experimental evaluation 38

FixedInterval UponFalse-
Positives

n 1 15 30 45

Amazon – Home 0 0 2.2 4.4 1.5
Ansa – Home 0.4 0.7 2.9 3.9 1.8
Ansa – Rss sport 0.6 2.6 2.6 1.7 0
ASF France – Home 1.7 4.4 9.2 14.5 0.7
ASF France – Traffic 0 0 0 0 0
Cnn – Business 1.7 6.4 9.8 15.7 2.6
Cnn – Home 1.5 5.5 6.8 10.7 2.6
Cnn – Weather 0.9 4.4 5.2 5.7 1.7
Java – Top 25 bugs 0.7 4.3 9.4 4.3 0
Rep. – Home 0.7 5.2 8.3 19.5 1.3
Rep. – Tech. & sci. 2 9.6 17.9 24.3 0.9
The Serv. S. – Home 1.7 2 3 3 2.3
The Serv. S. – Tech talks 1 3.7 7.7 13.7 0.7
Univ. of Trieste – Home 1.5 7.7 15.4 23.3 2.8
Wikipedia – Rand. page 0 0.2 0.6 1.3 1.3

Mean 0.9 3.8 6.7 9.7 1.3

Table 4.5: FPR of Table 4.4 expressed separately for each resource (FixedInterval and Upon-
FalsePositives retuning policies).



39 Impact of tuning sequence length

Mixed Self

n 15 30 45 30

Amazon – Home 0 0.6 0.9 0
Ansa – Home 0.6 0.7 0.7 0.4
Ansa – Rss sport 0.7 0.2 0.2 2.4
ASF France – Home 1.7 1.8 1.7 9.2
ASF France – Traffic 0 0 0 0
Cnn – Business 2.4 2.8 2.4 9.6
Cnn – Home 2.2 2.4 2.4 3.9
Cnn – Weather 1.7 1.7 1.8 5.2
Java – Top 25 bugs 0.7 0.7 0.7 9.4
Rep. – Home 2.6 2.8 2.9 4.6
Rep. – Tech. & sci. 3.1 3.1 3.1 16.4
The Serv. S. – Home 1.7 2 1.7 1.3
The Serv. S. – Tech talks 1.3 1.7 1.7 7.7
Univ. of Trieste – Home 2.4 3.1 3.7 7.2
Wikipedia – Rand. page 0.2 0.6 1.3 0.2

Mean 1.4 1.6 1.7 5.2

Table 4.6: FPR of Table 4.4 expressed separately for each resource (Mixed and Self retuning
policies).



4. Experimental evaluation 40

l = 30 l = 60 l = 90

FixedInterval (n = 30) 12.8 6.7 5.7
UponFalsePositives 2.2 1.3 0.9
Mixed (n = 30) 2.7 1.6 1.3
SelfVerifying (n = 30) 9.3 5.2 5.0

Table 4.7: Mean FPR, expressed in percentage, for four selected policies with different values
for the tuning sequence length l, using the TooManyFiringCategories aggregator.

30 35 40 45 50 55 60 65 70 75 80 85 90

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

FixedInterval
UponFalsePositives
Mixed
SelfVerifying

M
ea

n
F
P

R

l (Tuning sequence length)

Figure 4.3: Mean False Positive Rate vs. Tuning sequence length l for four selected policies,
using the TooManyFiringCategories aggregator.

FiringCategories aggregator. These results are also shown in Figure 4.3 in a graphical
way.

Interestingly, results show that the performance of human-triggered retuning policies
is largely independent of the tuning sequence length. In contrast, the performance of
the automatic retuning policy improves when the tuning sequence length increases. This
observation may be exploited in scenarios when the involvement of a human operator in
retuning is undesirable (see also Section 4.9).

4.7 “Fast start” working mode

We found that increasing the tuning sequence length may reduce FPR, in particular,
when the retuning policy is fully automatic (see Table 4.7). This option, however, has
the drawback of increasing the time required for bootstrapping the tool: the learning
phase will last longer thus the monitoring phase will start later. For example, in our



41 “Fast start” working mode

t
. . .

F
a
st

st
a
rt

Figure 4.4: An example of the fast start strategy. Filled circles represent readings that are
contained in the tuning sequence. Each line of circles corresponds to a time point in which a
retuning is performed; readings downloaded between two retunings are evaluated but they are
not shown in the figure. In this case li = 6, ∆l = 4 and lf = 14.

setting, with a tuning sequence length of l = 90 readings the learning phase will last
for 23 days, whereas with l = 60 readings the learning phase will last for 15 days. In
this section we describe and evaluate a working mode, that we call fast start, aimed at
shortening the bootstrap time.

In this working mode the monitoring phase starts after Goldrake has collected a short
tuning sequence, whose length is then increased over time until reaching its target value.
We remark, however, that a suitable historical archive of the resource to be monitored
could often be already available. In such scenarios the learning phase may be performed
by simply “replaying” the content of the archive, which would lead to an immediate
start of the detecting phase.

Goldrake executes the first tuning procedure on a sequence of li readings and then
starts monitoring. A retuning is performed each ∆l readings, on a tuning sequence
obtained by appending the last ∆l readings to the previous tuning sequence. When the
tuning sequence length reaches its target value of lf readings, the fast start terminates
and Goldrake begins working as usual, i.e., with l = lf . Figure 4.4 shows an example of
the fast start strategy.

We experimented with three selected retuning policies: FixedInterval (n = 30), Up-
onFalsePositives, Mixed (n = 30). We ran the three policies in fast start mode, with
li = 15,∆l = 15 and lf = 90. With this setting, the learning phase lasted for about 4
days and the fast start phase lasted for about 19 days (one increment every 4 days for
5 times). As a comparison we ran the same policies in normal mode, i.e., without fast
start, with the two extreme values for the tuning sequence length: first with li readings,
then with lf readings. In the former case the tool begins the monitoring phase with
the same initial delay (about 4 days), but has less information available for building the
profile. In the latter case the tool has the same amount of information for building the
profile but starts the monitoring phase after a much longer initial delay (about 19 days).
The results are given in Table 4.8.

It can be seen that the fast start mode is very effective. For the same initial delay, it
provides a remarkable FPR reduction—e.g., 12.2% vs. 6.6% for FixedInterval. For the
same length of the tuning phase after the initial transitory, it provides nearly the same
FPR—e.g., 6.6% vs. 5.7% for FixedInterval. Indeed, analysis of the raw data shows that
the slightly larger FPR is caused by the initial inaccuracies in the profile. Near the end



4. Experimental evaluation 42

Fast start mode Normal mode

n = 30 n = 15 n = 30
li = 15 l = 15 l = 90
lf = 90

FixedInterval 6.6 12.2 5.7
UponFalsePositives 1.4 3.3 0.9
Mixed 1.7 4.7 1.3

Table 4.8: Effect of the Fast Start working mode, using the TooManyFiringCategories aggre-
gator. Mean FPR for three selected policies with different values for the tuning sequence length,
using. The parameter n is used where applicable, i.e., in policies Mixed and FixedInterval.

of the test the differences between fast start and normal mode vanish.

4.8 Effectiveness of sensor categories

In order to gain insights about the behavior of individual sensors, we isolated the effec-
tiveness results as obtained before the merging of the TooManyFiringCategories aggre-
gator. To this end, we performed the same experiment as above and we counted false
positives and false negatives raised by individual sensors.

Recall that sensors are functional blocks and hence they do not hold any state infor-
mation, nor profiles, which are indeed part of the aggregator (see Section 3.3.1). However,
as explained in Section 3.3.2, the profile of TooManyFiringSensors and TooManyFiring-
Categories aggregator is actually “partitioned” in pieces corresponding to individual
sensors; thereby, for those aggregators, we can say that a sensor fires whenever the
corresponding piece of v is not consistent with the corresponding piece of the profile.

Table 4.9 summarizes the FPR and FNR that one would obtain with each sensor
taken in isolation. These results are obtained experimenting with 4 retuning policies
operating with a learning sequence of l = 60 readings on the whole sequence of about
650 negatives and 100 positives. For ease of discussion we report only the average values
for each category. For example, tree sensors exhibit a mean FPR of 12.6% and a mean
FNR of 4.6%. Note that signature sensors exhibit, as expected, the same FPR and FNR
for every retuning policy, because they do not build any profile of the resource.

These results suggest two important observations. First, there is no single category
providing good performance on both FPR and FNR. Each category provides satisfactory
performance only on one of the two indexes and tree sensors appear to provide the best
trade-off in this respect. Second, signature sensors are by far the least effective ones in
detecting defacements. In other words, looking for signs of a defacement is much less
effective than detecting deviations from a profile. This rather surprising result implies
that, for the defacement detection problem, an anomaly-based approach may be more
sensitive than a misuse-based one (by this we mean an approach that looks for traces of
known attacks) [16].



43 Scalability

FixedInterval UponFalse Mixed Self
(n = 30) Positives (n = 30) Verifying

(n = 30)

FPR FNR FPR FNR FPR FNR FPR FNR

Cardinality 5.6 19.8 9.1 19.7 5.2 19.6 4.6 18.9
RelativeFreq. 12.4 0.0 17.1 11.4 0 9.8 0
HashedItemsC. 15.1 0 25.0 0 11.1 0 10.6 0
Signature 0 66.2 0 66.2 0 66.2 0 66.2
HashedTree 12.6 4.6 10.7 7.1 8.4 4.3 7.9 4.3

Table 4.9: FPR and FNR averaged among the sensors of the five categories and obtained with
four different retuning policies and a tuning sequence length of 60 readings.

4.9 Scalability

In this section we attempt to assess the potential scalability of our proposal. Clearly,
our arguments in this respect need to be validated by a real deployment of the proposed
service, involving thousands of resources and organizations for several months. Such a
deployment, which we have not been able to perform so far, is beyond the scope of this
work.

4.9.1 Number of resources

In this section we attempt to estimate the maximum number of resources that can be
monitored, say NMAX. This number depends mainly on the retuning policy used, as
follows.

In case all the resources are associated with a fully automatic retuning policy, then it
seems reasonable to claim that NMAX is limited only by the hardware resources available.
The reason is because, in principle, human operators at Goldrake need not be involved in
the management of individual resources. Addition of a new monitored resource may be
done by the administrator of that resource, with the help of a dedicated web application,
for example. Alarm forwarding may also be done in a fully automatic way. Moreover,
due to the intrinsic parallelism of the process, NMAX may be increased by simply adding
more hardware—the monitoring of distinct resources may be done by independent jobs,
without any synchronization nor communication between them. It is thus possible to
take advantage of this job-level parallelism with techniques similar to those commonly
used for achieving horizontal scalability in web sites designed to accommodate large
numbers of clients, for example.

Concerning resources associated with a human-triggered policy, the scalability bot-
tleneck is given by false alarms. Let AFPF denote the False Positive Frequency exhibited
by Goldrake for a single resource, let TFPF denote the maximum False Positive Fre-
quency that can be tolerated by a single human operator and let k denote the number



4. Experimental evaluation 44

TFPF TFPF NMAX

f.a./day f.a./week

1 7 35
2 14 70
4 28 140

20 140 700

Table 4.10: Maximum number of monitored resources NMAX for different FPF tolerated by a
single (k = 1) human operator TFPF.

of operators at Goldrake involved in the handling of human-triggered retuning policies.
Assuming that all resources exhibit the same AFPF, we obtain the following estimate for
NMAX:

NMAX
∼= k

TFPF

AFPF
(4.1)

According to our findings in the previous sections, we can reasonably assume for AFPF

a value in the order of 0.2 false positives per week, on each resource (policies Upon-
FalsePositives with a tuning sequence of l = 90 readings and FixedInterval (n = 1) with
l = 60). Finding a suitable value for TFPF, on the other hand, is clearly more difficult
and hard to generalize. Table 4.10 shows the values of NMAX resulting from one single
operator (k = 1) and TFPF set to 1, 2, 4, 20 false positives per day. For example, if the
operator may tolerate 4 false positives per day, then he may monitor 140 resources. From
a different point of view, if one monitors 140 resources, then one may expect that the
operator be involved only 4 times a day for coping with false positives. Clearly, with
k > 1 operators available, the corresponding estimates for NMAX will grow linearly with
k.

In summary, the approach appears to be: linearly scalable for resources whose retun-
ing is fully automatic; capable of monitoring several hundreds of resources per operator,
for resources whose retuning is human-triggered.

We remark that an actual deployment of the service would have several options
available, for example:

1. offer only fully automatic retuning;

2. offer both automatic retuning and human-triggered retuning, by pricing the two
options differently—e.g., “silver level” vs. “gold level” surveillance;

3. offer only fully automatic retuning, with pricing differentiated based on the re-
tuning frequency (recall that by increasing this frequency the FPR performance
of automatic retuning becomes equivalent to that of human-triggered retuning, as
shown in Table 4.4).



45 Scalability

N ml

mins:secs

35 0:46
70 1:32

140 3:03
700 15:17

Table 4.11: Minimum monitoring interval ml for N resources monitored simultaneously on our
test platform (see text).

4.9.2 Monitoring interval

An estimate of the lower bound for the monitoring interval, say ml, can be obtained by
reasoning on the time it takes for downloading a reading, say td, the time it takes for
evaluating that reading with all sensors, say te, and the time it takes for performing a
retuning procedure, say tr. A very conservative estimate can be obtained by assuming
that there is no overlap at all among downloading, evaluation and retuning.

We can devise two extreme cases. The worst case is when a retuning is performed
at every reading for each of the N monitored resources. In this case it will be:

ml > (tr + td + te) · N (4.2)

The best case is when no retuning is performed, in which case it will be:

ml > (td + te) · N (4.3)

In practice, the minimum allowable ml will be somewhere in between the two bounds
above depending on the retuning policies used for the resources. The average values
for td, te and tr that we found in our experiments with the TooManyFiringCategories
aggregator (which is the more computationally demanding, among the 3 presented in
Section 3.3.2) are, respectively, 1300msecs, 100µsecs and 10msecs: hence, ml is influenced
mainly by the download time td. These values were obtained with a dual AMD Opteron
64 with 8GB RAM running a Sun JVM 1.5 on a Linux OS. The resulting lowest bound
for ml that we can achieve in our current setting, considering the case in which a retuning
is performed at every reading for each resource (i.e., eqn. (4.2)), is shown in Table 4.11.
For example, if Goldrake monitors 140 resources, then an attack may be detected in
approximately 3 minutes. From a different point of view, if one requires a detection time
in the order of 3 minutes, then no more than 140 resources should be monitored (with
one single computing node at Goldrake).

We remark again that these figures have to be interpreted along with the scalability
analysis in Section 4.9.1: management of different resources are independent jobs, hence
the monitoring process is linearly scalable in the number of computing nodes (except
for the FPR issues related to human-triggered retuning policies, which are orthogonal
to this analysis).



4. Experimental evaluation 46

4.10 Temporal correlation of alerts

In all our tests we used a monitoring interval of 6 hours, thus collecting readings four
times per day. This means that Goldrake is able to detect a defacement within 6 hours
after its occurring. A prompter detection may be obtained by simply decreasing the
monitoring interval. Although the lower bound on the monitoring interval ultimately
depends on the available resources (see also Section 4.9.2), decreasing the length of the
monitoring interval might increase the number of alerts submitted to the administrator.
In this section we elaborate on this issue.

Consider a resource R at which a substantial but legitimate change is applied at
instant t1 and suppose that, due to this change, the profile of R is no longer adequate.
It follows that all readings of R analyzed between t1 and the next retuning, say at instant
tr, will provoke false positives.

With the FixedInterval retuning policy, the number of false positives before the next
retuning will be:

tr − t1
m

(4.4)

where m denotes the length of the monitoring interval. If m decreases, the number of
false positives will increase. The rate of false positives will not change, since with a
shorter m we have both more false positives and total readings. This effect is shown
in Figure 4.5 (policies FixedInterval (A) and FixedInterval (B)). The key observation,
however, is that the consecutive false alarms are correlated in the sense that they are all
expression of the same problem.

With a human-triggered retuning policy the generation of false positives is quite
different. Since we execute a retuning after the first false positive, the number of false
positives is always 1, independently from the length of the monitoring interval (policies
UponFalsePositives (A) and UponFalsePositives (B) in Figure 4.5). In summary, with
an automatic retuning policy decreasing the monitoring interval will lead to a linear
increase of FPF but the alarms will be correlated with each other. With a human-
triggered retuning policy, instead, the monitoring interval can be freely decreased without
suffering an FPF increase.

In this reasoning we have implicitly assumed that a single false alarm may suffice for
updating the profile adequately. We verified that this hypothesis indeed holds in practice.
We evaluated the performance for FixedInterval (n = 30) and UponFalsePositives by
counting each set of consecutive false alarms as a single false alarm. Table 4.12 compares
the results to those previously found for the corresponding policies when taking into
account all false alarms separately. It can be seen that UponFalsePositives evaluated
without consecutive false alarms performs very similarly to UponFalsePositives. In other
words, with the latter, when Goldrake raises a false alarm it usually does not raise any
further alarms in the readings that immediately follow. These observations appear to
confirm that a single false alarm may suffice for updating the profile adequately.

Another interesting finding is that results for the FixedInterval (n = 30) retuning
policy, evaluated without consecutive false alarms, are much better than those previously
found for FixedInterval (n = 30). This fact demonstrates that, in our setting, most of



47 Discussion

: true negative : false positive : tuning procedure (before analysis)

FPR = 25%

FPR = 12%

FPR = 23%

FPR = 3%

FixedInterval (A)

FixedInterval (B)

UponFalsePos. (A)

UponFalsePos. (B)

t1 tr t

Figure 4.5: The effect of decreasing the monitoring interval m (i.e., in the figure, the distance
between two circles). Dotted line in t1 represents a time point in which a legitimate, but sub-
stantial, change is applied to the resource. Due to such change, the profile of the resource is no
longer adequate hence the tool will raise false positives until the next retuning. With a human
triggered policy, the tuning procedure is executed as soon as a false alarm is produced. With an
automatic retuning policy, the tuning procedure is executed at fixed time point tr.

FPR FPF
(%) (f.a./weeks)

FixedInterval (n = 30) 6.7 1.8
FixedInterval (n = 30) w/o consecutives 1.5 0.4
UponFalsePositives 1.3 0.3
UponFalsePositives w/o consecutives 1.1 0.3

Table 4.12: Mean False Positive Rate and mean False Positive Frequency for two retuning
policies compared to corresponding measures where consecutive false alarms are considered as a
single false alarm. FPR and FNR are percentage; FPF is expressed in terms of false alarms per
week. Results have been obtained with a tuning sequence length of l = 60 readings, with the
TooManyFiringCategories aggregator.

false alarms raised by FixedInterval were actually consecutive alarms. This observation
could be exploited in practice for simplifying the job of the administrator. The alarm
sent to the administrator of the monitored site could be augmented with an indication
telling whether the alarm is correlated with the alarm sent at the previous step—i.e., it
is still the same problem.

4.11 Discussion

Experiments show that Goldrake is always able to detect all the defacements contained
in our attack set, using the TooManyFiringCategories aggregator: FNR is 0% for all
resources, in every operational condition that we analyzed. Obviously, this result does
not imply that Goldrake will be able to detect any possible unauthorized modification



4. Experimental evaluation 48

in any resource. Yet, it seems reasonable to claim that Goldrake may be very effective
at detecting “major” defacements. From this point of view, it is perhaps surprising
that looking for signs of a defacement is not an effective approach (see Table 4.9 and
Section 4.8).

It would certainly be useful if we were able to quantify somehow the opportunities for
attacks that may remain hidden within the profile. This is a very challenging problem
beyond the scope of this study, however. The problem is essentially the same as quan-
tifying the opportunities of successful attacks that would be left by a given intrusion
detection system or a given anti-virus defense. We can only tell, from a qualitative point
of view, that increasing the number of sensors may certainly be useful for restricting the
space of possible undetected attacks.

Our current set of sensors is certainly not exhaustive and an area where Goldrake
could be improved is the analysis of textual content. None of our sensors attempts to
build a profile of common sentences or of the language used, for example. Exploiting
this form of knowledge is not as easy as it could appear, however, due to the difficulty of
obtaining meaningful alerts in the presence of a highly dynamic dictionary. In our early
attempts we did not manage to obtain a sensor more useful than the one looking for
missing recurrent words in a resource (see Section 3.3.2). This area certainly deserves
further thought, however.

Apart from the ability to detect attacks, the other major issue is false positives,
that is, how to cope with (legitimate) dynamic content while keeping unnecessary alerts
to a minimum. The crucial result of our experiments is that it is indeed possible to
obtain values for FPR sufficiently low to appear acceptable in a wide variety of settings.
In this respect, a key contribution consists in the retuning policies. Even with a fully
automatic retuning performed every n = 30 readings, FPR remains moderate: 6.7%,
which corresponds to approximately 8 false alarm per month per resource. By retuning
more frequently FPR improves further: 3.8% with n = 15 and 0.9% when retuning at
every reading (n = 1). Interestingly, these figures are essentially equivalent to those
of human-triggered retuning. From a different point of view, the job of the operator
involved in retuning may be to a large extent automated. Obviously, we do not claim
that site administrators may simply forget about defacements thanks to Goldrake. No
security tool may replace human operators completely, amongst other things because no
detection system may catch all possible attacks.

It would be also very useful if we could quantify somehow the potential for false
positives based on some index about the accuracy of the resource profile built during
the learning phase. We purposefully did not address the problem of assessing the accu-
racy of a profile, though, because any such analysis would require some form of a priori
knowledge about the monitored resource that instead we strive to avoid. For example,
if an image appears in every reading of the learning phase, there is simply no way to tell
whether that image is a cornerstone of the profile or it will instead disappear immediately
after the end of the learning phase. One could perhaps obtain more meaningful indica-
tions much after the learning phase, based on data collected during a “long” monitoring
phase, but quantifying the potential for false positives at that point would not be very



49 Discussion

useful. Stated differently, our problem cannot be interpreted merely as the construc-
tion of an accurate profile, because it consists instead of a trade-off between accuracy
and speed of construction. Rather than attempting to quantify accuracy of a profile,
thus, we decided to revert to the common practice in anomaly-based detection systems
[54, 49, 66, 77, 41]: validate our proposal experimentally by measuring FPR (and FNR)
on several different resources that we observed for a long period and that vary broadly in
content, frequency and impact of changes. The same remarks can be made with respect
to the training set size, that is often set to a fixed, domain knowledge-based value in
order to cope with the practical impossibility of automatically determining when enough
training data has been collected [54].

Our sensors and aggregator exploit a form of domain-specific knowledge (for example,
by grouping sensors in categories) and it may be interesting to note that we tune resource-
specific parameters in a very simple way (for example, in the TooManyFiringCategories
aggregator, the threshold is either a constant value or a predefined function of mean and
standard deviation of the indicator). Despite its simplicity, this approach allowed us to
obtain a very low FPR. A similar remark can be made with respect to the effectiveness
of our retuning policies, which provide very good FPR despite their simplicity—we
rebuild profiles either at regular intervals or when a false alarm occurs. However, we did
investigate whether more sophisticated techniques that have been applied to Intrusion
Detection Systems would improve our results significantly. Results are presented in
Chapter 7.

Although our approach does not require any knowledge about the monitored resource,
it does allow exploiting such a knowledge when available. For example, in many sites
external links are not supposed to contain sex-related words. One could add a sensor
that fires when one or more of such undesired words are present in an external link. The
early discussions about this work were indeed triggered by a successful attack in our
administrative region that left the appearance of the site unmodified and only redirected
external links to pornographic sites. Recently, some U.S. Government web sites were
successfully attacked in a similar way [48].

New aggregators can be designed in the same way. For example, the firing of a sensor
detecting a change in the URL associated with a specified HTML form (perhaps the one
where the credentials of an Internet banking user have to be inserted) could be made a
sufficient condition for raising an alert, irrespective of the output of the other sensors.
Such forms of personalization could be part of different levels of service offered by the
organization running Goldrake. We remark again that we paid special attention to make
Goldrake modular and extensible. New sensors and new aggregators can be built easily,
as Java classes that implement a certain interface. Each resource may be associated with
its own set of sensors and with its own aggregator, taken from the available building
blocks. A given resource may also be monitored in several different ways, perhaps using
different sensors and/or aggregators, which may be useful for attaching a form of severity
level to the alert.

Finally, we remark that the tuning sequence should clearly provide “sufficient” infor-
mation about the resource, otherwise one may end up with a profile that is not mean-



4. Experimental evaluation 50

ingful. At the same time, the tuning sequence should include only genuine readings, i.e.,
it should be free by defacements. This is also a problem intrinsic of any anomaly-based
approach: understanding and quantifying how the presence of non-genuine readings in
the tuning sequence affect the detector effectiveness is an interesting issue. We analyze
this problem and propose a partial solution in Chapter 5.



Chapter 5
Effects of misclassified readings in

the learning set

Experimenting with Goldrake, we found that the approach we propose may indeed con-
stitute a feasible solution for the automatic detection of web site defacement. However,
similarly to other anomaly detection approaches, the effectiveness of our solution bases
on the assumption that the profile is consistent with the monitored system. In particu-
lar, we assume that it is computed starting from a “good” learning set, i.e., a learning
set that does not contain any attack.

Despite being anomaly detection widespread and the good learning set assumption
equally common, the problem of assessing the effects of its negation is substantially not
treated in literature. In this chapter, we focus on this topic and present results obtained
experimenting on our particular instance of anomaly detection. Hence, the scope of the
following analysis is clearly narrowed by the specific detection system that we consider,
but we believe that our considerations may be of interest also for other forms of detection
systems.

5.1 Scenario: anomaly detection and learning set corruption

Anomaly detection is a powerful and commonly used approach for constructing intrusion
detection systems. With this approach the system constructs automatically a profile of
the resource to be monitored, starting from a collection of data representing normal
usage (the learning set). Once this profile has been established the system signals an
anomaly whenever the actual observation of the resource deviates from the profile, on
the assumption that any anomalies represent evidence of an attack.

A key requirement is that the learning set is indeed attack-free, otherwise the pres-
ence of attacks would be incorporated in the profile and, thus, considered as a normal
status. Although this requirement is crucial for the effectiveness of anomaly detection,
in practice the absence of attacks in the learning set is either taken for granted or

51



5. Effects of misclassified readings 52

verified “manually”. While such a pragmatic approach may be feasible in a carefully
controlled environment, it clearly becomes problematic in many scenarios of practical
interest. Building a large number of profiles for resources immersed in their production
environment, for example, cannot be done by inspecting each learning set “manually”
to make sure there were no attacks. A cross-the-fingers approach, on the other hand,
can only lead to the construction of potentially unreliable profiles.

We consider the problem of corruption in the learning set, i.e., a learning set contain-
ing records which do not represent a “normal” condition for the observed system. We
think that focusing on this fundamental issue could broaden the scope of anomaly-based
detection frameworks. For example, in order to apply anomaly-based monitoring on a
large scale—to hundreds or even thousands of system instances—it is necessary to build
a large number of learning sets, one for each instance to be monitored (e.g., [37] moni-
tored many web applications at the same time). It is clearly not feasible to “manually”
check each learning set to make sure there are no attacks hidden in it. The fact that
profiles could have to be updated periodically in order to reflect changes in legitimate
usage of resources (e.g., [66]) may only exacerbate this problem.

A road map to deal with the problem of potentially corrupted learning sets involves:

1. understanding, i.e., evaluating quantitatively the effects of a corrupted learning set
on the effectiveness of anomaly detection;

2. detecting, i.e., being able to discriminate between a corrupted learning set and a
clean one;

3. mitigating, i.e., preserving an acceptable performance level of the detection system
in spite of a corrupted learning set.

We focused on the first two steps.

To this end we performed a number of experiments on Goldrake, basing on collections
of real data and considering three different flavors of anomaly detection—i.e., three
aggregators. We first assess the effects of a corrupted learning set on performance, in
terms of false positives and false negatives.

5.2 Related work

Broadly speaking, anomaly detection is an instance of inductive learning classification
in which the goal is to build a profile able of discriminating between only two classes—
i.e., normal and anomalous—using learning data corresponding to a single class—i.e.,
normal [38, 39, 42, 3]. In the inductive machine learning field the corruption of learning
set is indicated as noise, which is generally subdivided in two categories: attribute noise
and class noise. The former consists in records for which one or more attributes are not
really representative of the corresponding class, whereas the latter concerns records of
the dataset which are wrongly labeled. A comparison between the effects of the two
different types of noise on classifier accuracy is presented in [82]; our work refers to a



53 Related work

very specific instance of the inductive machine learning problem and considers only class
noise.

Concerning class noise, there is a substantial amount of work proposing solutions for
identifying and then removing the corrupting (mislabeled) records. More in general, this
issue can be addressed with outlier detection techniques [27]. We have not investigated
whether such techniques can be applied to our framework, that is characterized by a
small learning set—usually a few tens of records. In this work we are merely concerned
with the problem of detecting whether the learning set is indeed clean or contains some
amount of class noise.

An important method for finding mislabeled records in the learning set is given in [8].
The idea consists in building a set of filtering classifiers from only part of the learning
set and then testing whether data in the remaining part also belong to the profile. The
learning set is partitioned in a number of subsets and, for each subset, a filtering classifier
is trained using the remaining part of the learning set. Each record of the learning set
is then input to each of the filtering classifiers. The cited paper proposes and evaluates
several criteria for merging the labels generated by the filtering classifiers. The method
should be able to identify outliers regardless of the specific classifier being used, hence,
regardless of the chosen model for the data. A very similar approach, specifically tailored
to large datasets, is proposed in [82]. Our work differs from these proposals in that we do
not partition the learning set in smaller sets. This can be an advantage in the cases—
our test scenario is indeed one of them—where learning sets may be very small and
thus a further division will lead to an ineffective classifier: such cases are considered by
Forman and Cohen [19] in their comparative study about machine learning applied to
small learning set.

Concerning specifically anomaly detection, we are not aware of works covering both
the understanding and detecting phases of the problem of corrupted learning sets. We
are only aware of a few published experiments about the effects of a corrupted learn-
ing set—i.e., only the understanding phase. Hu et al. [29] consider an anomaly-based
host intrusion detection system and compare the performance of Robust Support Vector
Machines (RSVMs), conventional Support Vector Machines and nearest neighbor classi-
fiers using 1998 DARPA BSM data set. Besides experimenting with clean learning sets,
they consider also artificially corrupted learning datasets and find that RSVM are more
robust to noise.

A similar analysis is proposed by Mahoney and Chan [46]. The authors present
an IDS which detects anomalies in packet header fields. In addition to the normal
effectiveness evaluation (with 1999 DARPA dataset), they experiment also with smaller
and corrupted learning sets. They motivate this choice based on the practical difficulty in
obtaining attack-free learning sets. The authors test their tool in a real environment and
retune the tool every day based on the data collected on the previous day. A significant
loss in detection rate is highlighted, but the relation between loss and corruption is not
analyzed because the corruption level is not measured accurately.

A radically different approach to the problem of corrupted learning sets is that of
unsupervised anomaly detection. With these techniques learning set records do not need



5. Effects of misclassified readings 54

to be labeled as clean or attack-related and the detection method itself is intrinsically
robust to a certain amount of noise. Along this line, Laskov et al. [40] present a network
IDS based on a formulation of a one-class Support Vector Machine (SVM) [73], whereas
Wang and Stolfo [74] present a network IDS where anomalies with respect to the profile
are based on the the Mahalanobis distance. These techniques usually work on learning
datasets much larger than ours, which often consists of only a few tens of records.

5.3 Experimental evaluation

5.3.1 Dataset

In order to perform our experiments, we used an extended version of the dataset collected
in order to test Goldrake (see Section 4.2). It has composed observing 15 web pages for
about one year, collecting a reading for each page every 6 hours, thus totaling about 1350
readings for almost each web page. These readings compose the negatives sequences—
one negative sequence SN for each page: we visually inspected them in order to confirm
the assumption that they are all genuine, that is, none of them was a defacement.

We also built a single positive sequence SP composed by 100 readings extracted from
a publicly available defacement archive. Defacements composing SP were not related
with any of the 15 resources that we observed—as pointed out above none of these
resources was defaced during our monitoring period. The next section explains how we
used SP readings in order to simulate attacks to the monitored resources.

5.3.2 Methodology

We wanted to gain insight about how a given aggregator copes with a corrupted learning
sequence Slearning, i.e., when Slearning contains readings that must be classified as anoma-
lous. We considered different corruption rates r, i.e., different fractions of Slearning com-
posed by positive readings. We measured the aggregator effectiveness, in terms of false
positive rate (FPR), false negative rate (FNR) and area under the ROC curve (AROC).

For each aggregator A, corruption rate r and page p:

• We constructed a learning sequence Slearning as follows.

1. We extracted a sequence S = {in0 , . . . , in125} of 125 consecutive readings from
the negative sequence SN of the page p.

2. We split S in two subsequences: S′

learning composed by the first l = 50 readings
and S′

test composed by the last 75 readings.

3. We constructed Slearning by replacing the 50 · r final readings of S′

learning with
a positive reading extracted from the positive sequence SP and repeated 50 ·
r times (for simulating a defacement occurred while collecting the learning
data). Note that r represents the percentage of Slearning that is corrupted.

• We constructed a test sequence Stest for evaluating the profile built with the cor-
rupted learning sequence Slearning as follows.



55 Experimental evaluation

4. We inserted at the beginning the sequence S′

test obtained at the previous step.

5. We appended 75 different positives extracted at random from the positive
sequence SP (and including the one that corrupted Slearning).

In other words Stest is composed of 150 readings, the expected output should be
negative in the first half and positive in the second half.

We repeated the above experiment several times, with NS = 10 different negative se-
quences S at step 1 and with Np = 10 different positive readings at step 3. For each tuple
〈page p, aggregator A, corruption rate r〉, thus, we performed NSNp = 100 experiments
evaluating FPR, FNR and AROC in each experiment. The values in the next sections
are the average values obtained across all 15 pages in our dataset.

5.3.3 Results

5.3.4 Uncorrupted learning sequence

In this section, we present the results obtained for the 3 aggregators presented in Sec-
tion 3.3.2 evaluated on an uncorrupted learning sequence, i.e., with r = 0. The values
obtained for FPR, FNR and AROC in these conditions will serve as a comparison baseline.

Table 5.1 shows FPR and FNR for the 3 aggregators as a function of the thresh-
old t. The same results are plotted in Figure 5.1 in the form of ROC curves. It is
clear that TooManyFiringCategories outperforms the other aggregators. In particular,
Table 5.1 confirms that, with t = 0.9, TooManyFiringCategories never misclassifies a
negative reading as positive, while it wrongly undetects only 1.9% of positive readings
(i.e., defacements). Such values can not be obtained with any t value for the two other
aggregators. This results confirms the intuition that domain-specific knowledge may be
very beneficial in the design of an aggregator (this is similar to, e.g., choosing values for
conditional probabilities in a Bayesian network [54]).

The choice of the threshold t depends on the desired trade-off between FPR and
FNR. We have emphasized in bold in Table 5.1 the values corresponding to the lowest
value of FPR+FNR—just one of the possible performance indexes. We observe that the
3 aggregators have different values for the respective optimal threshold topt. Assigning
the same weight to false positive and false negatives may or may not be appropriate in all
scenarios. For example, in the web site defacement detection scenario, one could tolerate
some false positive in order to be sure of not missing any defacement. On the contrary,
in the spam detection problem, one could accept some undetected spam message while
not tolerating a genuine e-mail being thrown away.

Corrupted learning sequence

In this section, we present the results concerning the effectiveness of the aggregators when
corrupted learning sequences are used. We experimented with the following values for the
corruption rate r, including 0 (the uncorrupted sequence): 0, 0.02, 0.05, 0.1, 0.2, 0.35, 0.5, 0.75.



5. Effects of misclassified readings 56

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

1
−

F
N

R

FPR

(a) ROC curves

0.00 0.04 0.08 0.12 0.16 0.20

0.
80

0.
84

0.
88

0.
92

0.
96

1.
00

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

1
−

F
N

R

FPR

(b) ROC curves (detail)

Figure 5.1: ROC curves for the 3 aggregators obtained with r = 0, i.e., with uncorrupted
learning sequences. The plot on the right shows the area with FPR and FNR lower than 20%.



57 Experimental evaluation

Table 5.1: FPR and FNR for the 3 aggregators and several t values obtained with r = 0, i.e.,
with uncorrupted learning sequences, expressed in percentage. Values corresponding to t = topt

for each aggregator are highlighted in bold (see below).

Aggregator (A) t 0.01 0.05 0.10 0.20 0.30 0.40

TooManyFiringCat.
FPR - - 76.8 - 52.9 -
FNR - - 0.0 - 0.0 -

TooManyFiringSens.
FPR 76.8 55.2 39.0 18.1 10.1 5.4
FNR 0.0 0.0 0.0 0.0 4.5 5.7

TooManyFiringInp.
FPR 65.7 11.4 5.0 1.3 0.0 0.0
FNR 0.0 5.2 13.3 27.8 74.1 94.1

Aggregator (A) t 0.50 0.60 0.70 0.90 0.95

TooManyFiringCat.
FPR 29.4 - 4.2 0.0 -
FNR 0.0 - 0.0 1.9 -

TooManyFiringSens.
FPR 2.8 1.6 0.7 0.0 0.0
FNR 9.2 12.9 13.3 49.8 91.6

TooManyFiringInp.
FPR 0.0 - - - -
FNR 100.0 - - - -

Being l = 50 the size of the learning sequence, these rates mean that respectively
0, 1, 3, 5, 10, 18, 25, 38 positive readings have been inserted in the learning sequence.

Table 5.2 shows FPR and FNR for the 3 aggregators with varying values of the cor-
ruption rate r. These results refer to the optimal threshold topt determined as explained
above for r = 0.

Not surprisingly, increasing the corruption rate results in an increment of FNR for
each aggregator. In other words, the more corrupted the learning sequence, the less
sensitive to attacks the aggregator. Increasing the corruption rate also results in a
decrease of FPR, due to the fact that the learning sequence, and hence the profile,
becomes less and less page-specific. Although performance appears to quickly become
unacceptable, varying the threshold may greatly help, as clarified in the following. The
reason is because the above data corresponds to a threshold t that is optimal for an
uncorrupted learning sequence, but this value is not necessarily optimal for a corrupted
one.

A more general characterization of the performance of each aggregator is given in
Figure 5.2, which plots AROC as a function of the corruption rate r. As such, each
point in this graph provides a performance index capturing all possible values for the
threshold t. We found that AROC does not decrease monotonically when the corruption
rate increases. On the contrary there is an AROC increase when r < 0.05, the entity
of the improvement being dependent on the specific aggregator. In other words, a very
small corruption in the learning sequence is beneficial for all aggregators from the AROC



5. Effects of misclassified readings 58

Table 5.2: FPR and FNR, obtained with t = topt (see Table 5.1) and presented in percentage,
for the aggregator with different values for r.

TooMany- TooMany- TooMany-
FiringCategories FiringSensors FiringInputs

FPR FNR FPR FNR FPR FNR
r t = topt = 0.9 t = topt = 0.4 t = topt = 0.05

0.00 0.0 1.9 5.4 5.7 11.4 5.2
0.02 0.0 73.4 0.1 12.4 6.5 5.6
0.05 0.0 77.6 0.1 12.9 5.5 6.3
0.10 0.0 83.9 0.0 69.5 2.5 75.8
0.20 0.0 87.5 0.1 99.9 2.5 99.4
0.35 0.0 86.7 0.1 99.9 2.6 99.6
0.50 0.0 77.6 0.1 99.7 2.8 99.6
0.75 0.0 87.7 0.3 99.8 11.3 99.4

point of view. This suggests that under a modest corruption there is some point of
the ROC curve of each aggregator—i.e., some value of t—for which FPR and FNR are
acceptable and, maybe, even slightly better than with an uncorrupted learning sequence.
Of course, finding that point would require the knowledge of the corruption rate. The
slight increase in AROC is probably due to the fact that a small amount of noise (i.e.,
corruption) may balance the overfitting effect, which affects negatively FPR and may be
an issue in pages that are less dynamic and whose corresponding learning sets are hence
less representative.

The relation between FPR+FNR and t is shown in Figure 5.3, which plots one curve
for each corruption rate. The lowest point of each curve corresponds to t = topt. We
remark again that one could choose to minimize a different function of FPR and FNR.
The essential issues of our arguments would not change, however. Figure 5.3 illustrates
two important facts. First, the optimal threshold depends on the corruption rate. That
is, a threshold optimized for an uncorrupted learning sequence is not necessarily the
best threshold for a corrupted learning sequence. Second, performance with a corrupted
learning sequence are not necessarily worse than with an uncorrupted learning sequence.
For example, decreasing t improves the FPR+FNR index significantly, especially for the
TooManyFiringSensors aggregator. Table 5.3 summarizes the improvements exhibited
by the aggregators using the optimal value topt for two salient r values.

A key lesson from these experiments is that the aggregators may remain practically
useful (i.e., they exhibit acceptable FPR and FNR) even in the presence of a moderate
degree of corruption in the learning sequence. The problem is, turning this observation
into a practically usable procedure is far from being immediate: one should know the
corruption rate in order to select a suitable working point, but this is precisely the
unknown entity.



59 Experimental evaluation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
0.

50
0.

65
0.

80
0.

95

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

r
A

R
O

C

(a) AROC vs. r

0.00 0.02 0.04 0.06 0.08 0.100.
99

90
0.

99
93

0.
99

96

r

A
R

O
C

(b) TooManyFiringCategories detail

0.00 0.10 0.20 0.30 0.40 0.50

0.
99

0
0.

99
3

0.
99

6
0.

99
9

r

A
R

O
C

(c) TooManyFiringSensors detail

0.00 0.02 0.04 0.06 0.08 0.10

0.
95

0
0.

96
5

0.
98

0

r

A
R

O
C

(d) TooManyFiringInputs detail

Figure 5.2: The area under the ROC curve (AROC) vs. the corruption rate r. Figures 5.2(b),
5.2(c) and 5.2(d) show salient AROC values for the 3 aggregators separately.



5. Effects of misclassified readings 60

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2

P
S
frag

F
P

R
+

F
N

R

t
(a) TooManyFiringCategories

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2F

P
R

+
F
N

R

t
(b) TooManyFiringSensors

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2

F
P

R
+

F
N

R

t
(c) TooManyFiringInputs

Figure 5.3: Effectiveness of aggregators, as sum of FPR and FNR, plotted vsṫhe aggregator
normalized discrimination threshold t, for different modest corruption rates including r = 0.
The lowest point of each curve corresponds to the optimal working point t = topt in the given
conditions.

Table 5.3: Aggregators optimal working point for two different corruption rates and corre-
sponding FPR and FNR, presented in percentage.

Aggregator (A) r topt FPR FNR FPR + FNR

TooManyFiringCategories
0.0 0.9 0.0 1.9 1.9
0.05 0.5 0.2 0.8 1.0

TooManyFiringSensors
0.0 0.4 5.4 5.7 11.1
0.05 0.1 1.5 0.0 1.5

TooManyFiringInputs
0.0 0.05 11.4 5.2 16.6
0.05 0.05 5.5 6.3 11.8



61 A corruption detection procedure

5.4 A corruption detection procedure

We have seen in the previous section that the impact of the corruption rate r on FPR
and FNR is not linear. In particular, it can be observed that the change in FPR and
FNR is much sharper when r increases from 0 to 0.02 than when r increases from 0.02 to
0.05 (see Table 5.2). The effects on performance, thus, are much stronger when switching
from a clean learning sequence to a corrupted learning sequence than with a moderate
increase of a (non-zero) corruption rate. We performed a number of experiments, not
shown here for space reasons, to verify that this phenomenon does occur in a broad
range of operating conditions. We exploited the above observation for building a simple
yet effective corruption detection procedure, which is presented below.

5.4.1 Description

The objective is to determine whether a given learning sequence S0
learning is corrupted.

The key idea is quite simple. We build three profiles, one with S0
learning and the other with

two learning sequences obtained by artificially corrupting S0
learning with 1 or 3 positive

readings. Then we measure performance of the three profiles on a same sequence Scheck.
If we observe a strong change in FPR and/or FNR when switching from the first profile
to the other two profiles, then S0

learning was probably clean, otherwise it was probably
already corrupted.

In detail, let S′

P = {ip0, . . . , ipn} be a set of n positive readings. We construct Scheck

with a mixture of genuine readings and positive readings. Then we proceed as follows:

1. we tune the aggregator on S0
learning; we measure FPR0 and FNR0 on the check

sequence Scheck;

2. for a given ipi in S′

P , we construct two learning sequence S1,i
learning and S3,i

learning by

replacing respectively 1 and 3 random readings of S0
learning with ipi ; we tune the

aggregator on these learning sequences; we measure the corresponding performance
on Scheck (FPR1,i, FNR1,i, FPR3,i and FNR3,i);

3. we repeat the previous step for each ipi of S′

P and evaluate mean (FPRη and FNRη)
and standard deviation (FPRσ and FNRσ) of the performance indexes.

The original learning sequence S0
learning is deemed corrupted if and only if at least

one of the following holds:

FPR0 − FPRη ≥ mFPRσ (5.1)

FNR0 − FNRη ≥ mFNRσ (5.2)

where m corresponds to a sensitivity parameter of the procedure.

5.4.2 Evaluation and results

We measured the effectiveness of our procedure as follows:



5. Effects of misclassified readings 62

1. we generated an uncorrupted learning sequence;

2. we artificially corrupted this sequence with a positive reading repeated until the
end of the sequence (much like Section 5.3.2);

3. then, we applied the procedure.

We experimented several corruption rates r: 0, 0.01, 0.05, 0.1, 0.2, 0.35, 0.5. For each
learning sequence, Scheck contained 50 positive readings and 50 negative readings of the
page described by the learning sequence. For each pair 〈r,page〉, we repeated the test 25
times, with NS = 5 different learning sequences at step 1 and Np = 5 different positive
readings at step 2.

Whenever the procedure stated that the learning sequence was corrupted, the test
counted as a true positive if r 6= 0 and as a false positive otherwise. Whenever the
procedure stated that the learning sequence was not corrupted, the test counted as a
false negative if r 6= 0 and as a true negative otherwise.

Figure 5.4(a) shows the ROC curves, obtained experimenting with different values
for m. It can be seen that with TooManyFiringSensors and TooManyFiringInputs the
procedure exhibits unsatisfactory performance, in that FPR is never smaller than 0.6
irrespective of m (see also what follows). With TooManyFiringCategories, on the other
hand, it appears to exhibit an ideal behavior.

Figure 5.4(b) plots the positive rate with m = 1 as a function of the corruption
rate r (the optimum would correspond to a positive rate 0 for r = 0 and 1 otherwise).
This figure clearly shows that the procedure achieves the optimum (at least in our
benchmark) with the TooManyFiringCategories aggregator: it detects each corrupted
learning sequence while not misclassifying any clean sequence. With the two other
aggregators, on the other hand, it exhibits far too many false positives. We interpret
this result as a consequence of the previous results in Table 5.2: when switching from
a clean learning sequence to a corrupted one, the performance change is not sufficiently
strong, with TooManyFiringSensors and TooManyFiringInputs.

Another important result from Figure 5.4(b) is that the detection accuracy of cor-
rupted sequences is very high over the whole range of r.



63 A corruption detection procedure

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

FPR

1
−

F
N

R

(a) ROC curves

0.00 0.10 0.20 0.30 0.40 0.50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

P
R

(P
o
si

ti
v
e

R
a
te

)

r
(b) Positive Rate

Figure 5.4: Effectiveness of our corruption detection procedure applied to the 3 aggregators.
Figure on the left shows ROC curves. Figure on the right plots positive rates for the procedure
applied with m = 1.





Chapter 6
Genetic Programming for automatic

defacement detection

In this chapter we describe our study about a novel web site defacement detection ap-
proach based on Genetic Programming (GP), an established evolutionary computation
paradigm for automatic generation of algorithms. What makes GP particularly attrac-
tive in this context is that it does not rely on any domain-specific knowledge, whose
description and synthesis is invariably a hard job.

6.1 Genetic Programming in a nutshell

Genetic Programming (GP) is an automatic method for creating computer programs by
means of artificial evolution [35]. A population of computer programs are generated at
random starting from a user-specified set of building blocks. Each such program con-
stitutes a candidate solution for the problem and is called an individual. The user is
also required to define a fitness function for the problem to be solved. This function
quantifies the performance of any given program—i.e., any candidate solution—for that
problem (more details will follow). Programs of the initial population that exhibit high-
est fitness are selected for producing a new population of programs. The new population
is obtained by recombining the selected programs through certain genetic operators, such
as “crossover” and “mutation”. This process is iterated for some number of generations,
until either a solution with perfect fitness is found or some termination criterion is satis-
fied, e.g., a predefined maximum number of generations have evolved. The evolutionary
cycle is illustrated in Figure 6.1.

In many cases of practical interest individuals—i.e., programs—are simply formulas.
Programs are usually represented as abstract syntax trees, where a branch node is an
element from a functions set which may contain arithmetic, logic operators, elementary
functions with at least one argument. A leaf node of the tree is instead an element
from a terminals set, which usually contains variables, constants and functions with no

65



6. GP for defacement detection 66

Figure 6.1: The evolutionary cycle.

−

·

·

x y

+

1 0.3

·

x 2

Figure 6.2: A tree representation of 1.3xy − 2x.

arguments. Figure 6.2 shows a sample tree representing a simple mathematical formula.
Functions set and terminals set constitute the previously mentioned building blocks to
be specified by the user. Clearly, these blocks should be expressive enough to represent
satisfactory solutions for the problem domain. The population size is also specified by
the user and depends mainly on the perceived “difficulty” of the problem.

6.2 Related work

Several prior works have addressed the use of GP [80, 52], as well as other evolutionary
computation techniques [75, 12], for network based or host based intrusion detection
systems. What makes such approaches attractive is their ability to find automatically
models capable of coping effectively with the huge amount of information to be handled
[71]. We are not aware of any attempt of using such techniques for automatic detection
of web defacements. One of the key differences between our scenario and such prior
studies concerns the nature of the dataset used for training: in our case, it includes
relatively few readings (some tens), each one composed by many attributes (or values),
whereas in the network and host-based IDS fields, it usually includes much more readings
(thousands and more), each one composed by few attributes.



67 Scenario

6.3 Scenario

We use GP within the Goldrake prototype that we described in Chapter 3. In particular,
we implemented an aggregator which works internally according to the GP process.
The GP process is actually applied at the end of the learning phase. Each individual
implements a function F (v) of the output v of the refiner, for example (vi denotes the
i-th component of v):

F (v) = 12 − max(v57, v233) + 2.7v1104 − v766

v1378
(6.1)

The building blocks used for constructing individuals are described below. The output of
the aggregator for a given reading ik is defined as follows (vk denotes the refiner output
for the reading ik):

yk =

{

negative if F (vk) < 0

positive if F (vk) ≥ 0
(6.2)

Individuals, i.e., formulas, of the population are selected basing on their ability to
solve the detection problem, which is measured by the fitness function. In this case,
we want to maximize the aggregator ability to detect attacks and, at the same time,
minimize the number of wrong detections. For this purpose, we define a fitness function
in terms of false positive rate (FPR) and false negative rate (FNR), as follows:

1. we build a sequence Slearning of readings composed by readings of the observed
page (Sl) and a sample set of attacks readings;

2. we count the number of false positives—i.e., genuine readings considered as attacks—
and false negatives—i.e., attacks not detected—raised by F over Slearning, thus
computing the respective FPR and FNR;

3. we finally set the fitness value f(F ) of the individual F as follows:

f(F ) = FPR(Slearning) + FNR(Slearning) (6.3)

This fitness definition is applied by the GP process to select best individuals and repeat
the evolution cycle, until either of the following holds: (1) a formula F for which f(F ) = 0
is found or (2) more than ng,max = 100 generations have evolved. In the latter case, the
individual with the best (lowest) fitness value is selected.

The building blocks for individuals are:

• a terminals set composed of C = {0, 0.1, 1}, a specified set of constants, and V, a
specified set of independent variables from the output of the refiner;

• a functions set composed of F , a specified set of functions.



6. GP for defacement detection 68

We experimented with different sets V and F in order to gain insights into the actual
applicability of GP to this task.

Concerning F we experimented with various subsets of (see Section 6.4.2):

Fall = {+,−, ·,÷, r,min,max,≤,≥} (6.4)

where r represents the unary minus, and ≤ and ≥ returns 1 or 0 depending on whether
the relation is true or not. All functions take two arguments, except for the unary minus.

Concerning V we experimented with various subsets of the set composed of all ele-
ments of v, the vector output by the refiner. To this end, we applied a feature selection
algorithm for deciding which elements of v should be included in V. The algorithm is
described in the next section. Note that elements in v not included in V will have no
influence whatsoever on the decision taken by the aggregator, because no individual of
the GP process will ever include such elements.

6.3.1 Feature selection

The feature selection algorithm is aimed at selecting those v elements which seem to
indeed have significance in the decision and works as follows.

Let Slearning = {v1, . . . , vn} be the learning sequence, including all genuine readings
and all simulated attacks. Let Xi denote the random variable whose values are the values
of the i-th element of v (i.e., vi) across all readings of Slearning. Recall that there are 1466
such variables because this is the size of v. Let Y be the random variable describing the
desired values for the aggregator: Y = 0, ∀ genuine reading ∈ Slearning; Y = 1 otherwise,
i.e., ∀ simulated attack reading ∈ Slearning. We computed the absolute correlation ci

of each Xi with Y and, for each pair 〈Xi,Xj〉, the absolute correlation ci,j between Xi

and Xj . Finally, we executed the following iterative procedure, starting from a set of
unselected indexes IU = {1, . . . , 1466} and an empty set of selected indexes IS = ∅:

1. we selected the element i ∈ IU with the greatest ci and moved it from IU to IS ;

2. ∀j ∈ IU , we set cj := cj − ci,j.

We repeated the two steps until a predefined size s for IS is reached. Set V will include
only those elements of vector v whose indexes are in IS . In other words, we take into
account only those indexes with maximal correlation with the desired output (step 1),
attempting to filter out any redundant information (step 2).

6.4 Experimental evaluation

6.4.1 Dataset

In order to perform our experiments, we used a reduced version of the dataset collected
for testing Goldrake (see Section 4.2). It is composed by readings collected observing
15 web pages for about one month, downloading a reading for each page every 6 hours,



69 Experimental evaluation

until totaling 125 readings for each web page. These readings compose the negatives
sequences—one negative sequence SN for each page: we visually inspected them in
order to confirm the assumption that they are all genuine. We also used a single positives
sequence SP composed by 75 readings extracted from a publicly available defacements
archive (http://www.zone-h.org).

6.4.2 Methodology

In order to set a baseline for assessing the performance of GP, we injected the very
same dataset to the TooManyFiringCategories aggregator, that we described earlier
in Section 3.3.2. Recall that this aggregator implements a form of anomaly detection
based on domain-specific knowledge. Moreover, it makes use of a learning sequence
that does not include any attack, thus it does not exploit any information related to
positive readings. The GP-based aggregator, in contrast, does use such information.
Note also that our existing aggregator takes into account all the 1466 elements output
by the refiner, whereas GP-based aggregator considers only those elements chosen by
the feature selection algorithm.

We generated 25 different GP-based aggregators, by varying the number s of selected
features in 10, 20, 50, 100, 1466 (thus including the case in which we did not discard
any feature) and the functions set F , choosing among these 5 subsets:

• F1 = {+,−}

• F2 = {+,−, ·,÷, r}

• F4 = {+,−, ·,÷, r,≤,≥}

• F3 = {+,−, ·,÷, r,min,max}

• F5 = {+,−, ·,÷, r,min,max,≤,≥}

We used FPR and FNR as performance indexes, that we evaluated as follows. First,
we built a sequence S′

P of positive readings composed by the first 20 readings of SP .
Then, for each page p, we built the learning sequence Slearning and a testing sequence
Stesting as follows:

1. We split the corresponding SN in two portions Sl and St, composed by 50 and 75
readings respectively.

2. We built the learning sequence Slearning appending S′

P to Sl.

3. We built the testing sequence Stesting appending SP to St.

Finally, we tuned the aggregator being tested on Slearning and we tested it on Stesting.
To this end, we counted the number of false negatives—i.e., missed detections—and the
number of false positives—i.e., legitimate readings being flagged as attacks. As already
pointed out, the anomaly-based aggregator executes the learning phase using only on Sl

and ignoring S′

P .



6. GP for defacement detection 70

In the next sections we present FPR and FNR for each aggregator, averaged across
the 15 pages of our dataset. GP-based aggregators will be denoted as GP-s-Fi, where
s is the number of selected features and Fi is the specific set of functions being used;
anomaly-based aggregator will be denoted as Anomaly.

6.4.3 Results

Table 6.1 summarizes our results. The table shows FPR, FNR and the fitness exhibited
by the individual selected to implement the GP-based aggregator (the meaning of the
three other columns is discussed below). The aggregator with best performance, in terms
of FPR + FNR, is highlighted. It can be seen that the GP process is quite robust with
respect to variations in s and F . Almost all GP-based aggregators exhibit a FPR lower
than 0.36% and a FNR lower than 1.87%. The anomaly-based aggregator—i.e., the
comparison baseline—exhibits a slightly higher FPR (1.42%) and a slightly lower FNR
(0.09%). In general, the genetic programming approach seems to be quite effective for
detecting web defacements.

We analyzed GP-based aggregators also by looking at the number of generations ng

that have evolved for finding the best individual and the complexity of the corresponding
abstract syntax tree, in terms of number of nodes ts and height th (these data are
also shown in Table 6.1). We found that formulas tended to be quite simple, i.e., the
corresponding trees exhibited low ts and th. For example, in many cases the produced
formula looked like the following:

y = 1 − (v188 − v1223) (6.5)

where vi is the i-th element of the vector output by the refiner and for which ts = 3
and th = 2. We also found, to our surprise, that ng = 1 in most cases. This means that
generating some random formulas (500 in our experiments) from the available functions
and terminals sets suffices to find a formula with perfect fitness—i.e., one that exhibits 0
false positives and 0 false negatives over the learning sequence. We believe this depends
on the high correlation between some elements of the vector output by the refiner (i.e.,
some vi) and the desired output. Since the feature selection chooses elements based on
their correlation with the desired output, most of the variables available to GP will likely
have an high correlation with output.

Our domain knowledge, however, suggests that the simple formulas found by the GP
process could not be very effective in a real scenario. Since they take into account very
few variables, an attack focusing on the many variables ignored by the corresponding GP
aggregators would go undetected. This consideration convinced us to develop a more
demanding test-bed, as follows.

6.4.4 Results with “shuffled” dataset

In this additional set of experiments, we augmented the set of positive readings for
any given page pi by including genuine readings of other pages. While the previous
experiments evaluated the ability to detect manifest attacks (defacements extracted



71 Experimental evaluation

Table 6.1: Performance indexes. FPR, FNR and f are expressed in percentage.

Aggregator FPR FNR f ng ts th

Anomaly 1.42 0.09 - - - -
GP-10-F1 0.00 0.71 0.0 1.0 17.0 2.7
GP-10-F2 0.09 0.98 0.0 1.0 23.3 3.7
GP-10-F3 0.09 0.62 0.0 1.1 20.4 3.5
GP-10-F4 4.53 0.44 0.0 1.0 20.7 3.7
GP-10-F5 0.09 0.89 0.0 1.0 27.9 3.9
GP-20-F1 0.09 1.16 0.0 1.0 18.2 2.6
GP-20-F2 0.18 1.33 0.0 1.0 12.8 2.4
GP-20-F3 0.36 0.80 0.0 1.0 20.1 3.1
GP-20-F4 0.09 0.89 0.0 1.0 36.5 4.2
GP-20-F5 0.00 0.89 0.0 1.0 39.5 3.9
GP-50-F1 0.00 1.24 0.0 1.0 5.1 1.6
GP-50-F2 0.09 0.98 0.0 1.0 20.4 2.9
GP-50-F3 0.36 0.98 0.0 1.0 19.3 2.9
GP-50-F4 0.18 0.89 0.0 1.0 15.4 3.1
GP-50-F5 0.18 0.27 0.0 1.0 29.4 3.0
GP-100-F1 0.09 1.16 0.0 1.0 15.5 2.1
GP-100-F2 0.09 1.33 0.0 1.1 11.4 2.2
GP-100-F3 0.00 1.87 0.0 1.3 14.1 3.1
GP-100-F4 0.09 0.27 0.0 1.1 18.7 3.1
GP-100-F5 0.09 1.33 0.0 1.2 15.4 2.6
GP-1466-F1 0.00 0.80 0.0 1.0 8.9 1.9
GP-1466-F2 0.18 0.44 0.0 1.0 6.1 2.3
GP-1466-F3 0.18 0.98 0.0 1.2 5.3 1.5
GP-1466-F4 0.18 1.87 0.0 1.2 11.2 1.8
GP-1466-F5 3.73 0.18 0.0 1.4 9.9 2.1



6. GP for defacement detection 72

from Zone-H), here we also test the ability to detect innocent-looking pages that are
different from the usual appearance of pi. More in detail, for a given page pi we defined
a sequence So

learning composed by 14 genuine readings of the other pages (one for each
other page pj 6= pi) and a sequence So

testing composed by 70 readings of the other pages
(5 readings for each other page pj 6= pi, such that So

learning and So
testing have no common

readings). Then, we included So
learning in Slearning and So

testing in Stesting (we omit the
obvious details for brevity). Clearly, readings in So

learning were labeled as positives and
readings in So

testing should raise an alarm.
Table 6.2 presents the results for this test-bed. The anomaly-based aggregator now

exhibits a slightly higher FNR; FPR remains unchanged, which is not surprising because
this aggregator uses only the negative readings of the learning sequence and these, like
the negative portion of the testing sequence, are the same as before. We note that the
anomaly-based aggregator is very effective also in this new setting, in that it still exhibits
a very low FPR while being capable of flagging as positive most of the genuine readings
of other pages.

Concerning GP-based aggregators, Table 6.2 suggests several important considera-
tions. In general the approach seems now to be influenced by the number s of variables
selected: taking more variables into account lead to better performance, in terms of
FPR + FNR. Interestingly, the best result is obtained with s = 1466, i.e., with all vari-
ables available to the GP process. Moreover, there are situations in which the fitness
f of the selected formula is no longer perfect (i.e., equal to 0). This means that, in
these situations, the GP process is no longer able to to find a formula that exhibits
f = FPR + FNR = 0 on the learning sequence. Note that this phenomenon tends to
occur with low values of s. Finally, values of ts, th and, especially, ng, are greater than
in the previous test-bed, which confirms that GP process is indeed engaged. Several
generations are necessary to find a satisfactory formula and the formula is more complex
than those previously found, in terms of size and height of the corresponding abstract
tree.

Figure 6.3 shows results of Table 6.2 in a graphical way and visually confirms that
the GP approach is quite robust in respect to the specific set of functions being used
but is sensible to the number s of selected features.

Finally, we compared the computation times for learning and monitoring phases
obtained with GP-based approach against those of anomaly-based approach. The former
takes about 100secs for performing the tuning procedure (of which about 5secs are used
for the features selection) and about 500µsecs for evaluating one single reading in the
monitoring phase; the latter takes about 10msecs for the tuning procedure and about
100µsecs for evaluating one single reading in the monitoring phase. These numbers are
obtained with a dual AMD Opteron 64 with 8GB RAM running a Sun JVM 1.5 on a
Linux OS.



73 Experimental evaluation

Table 6.2: Performance indexes with the new test-bed. FPR, FNR and f are expressed in
percentage.

Aggregator FPR FNR f ng ts th

Anomaly 1.42 2.39 - - - -
GP-10-F1 9.87 2.48 0.4 35.5 83.8 7.2
GP-10-F2 9.24 1.84 0.0 14.3 69.1 7.5
GP-10-F3 9.24 1.29 0.1 35.7 66.4 8.0
GP-10-F4 11.38 1.98 0.1 24.1 93.1 7.9
GP-10-F5 7.73 1.52 0.1 30.5 66.1 6.9
GP-20-F1 23.38 2.30 0.1 16.9 54.2 5.3
GP-20-F2 16.44 1.61 0.0 10.8 68.3 6.2
GP-20-F3 13.51 1.33 0.0 16.4 52.1 6.2
GP-20-F4 17.87 1.38 0.0 14.6 56.3 6.3
GP-20-F5 17.87 0.55 0.0 19.5 70.4 6.5
GP-50-F1 14.76 1.56 0.1 23.7 43.1 4.4
GP-50-F2 13.16 1.61 0.0 4.7 45.0 5.4
GP-50-F3 18.58 0.83 0.0 11.7 32.4 5.4
GP-50-F4 7.56 1.52 0.0 12.5 41.1 6.0
GP-50-F5 11.47 1.66 0.0 16.1 71.2 6.8
GP-100-F1 0.62 2.30 0.0 29.4 51.5 4.5
GP-100-F2 5.51 1.38 0.0 10.5 25.6 4.1
GP-100-F3 6.93 0.55 0.0 16.4 33.9 4.8
GP-100-F4 5.87 1.61 0.0 10.2 40.3 5.1
GP-100-F5 12.09 1.52 0.0 17.7 31.9 5.2
GP-1466-F1 0.18 1.38 0.0 21.0 37.4 3.8
GP-1466-F2 0.44 1.10 0.0 18.5 24.8 4.1
GP-1466-F3 0.71 0.64 0.0 15.1 30.1 4.7
GP-1466-F4 5.69 1.06 0.0 19.7 27.9 4.7
GP-1466-F5 0.98 1.24 0.0 16.5 69.9 5.5



6. GP for defacement detection 74

F1 F2 F3 F4 F5

s = 10 s = 20 s = 50 s = 100 s = 1466

F
P

R
+

F
N

R

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

baseline

Figure 6.3: Sum of FPR and FNR for different parameter combinations.



Chapter 7
A comparison of other anomaly

detection techniques

In the previous chapters we presented our approach and its implementation for detecting
automatically web site defacements on a large scale. Our strategy incorporates domain-
specific knowledge about the nature of web contents and, in particular, does not build
upon the abundant literature about anomaly-based intrusion detection systems, e.g.,
[16, 23, 36, 81, 54, 37]. On the one hand, we do not treat all observed features as
being equivalent, but rather we distinguish between internal links and external links, we
analyze the average size of pages and words, we reason about HTML tags recurring in
each reading of a page, we consider that when the number of words in a page increases
then the number of characters should increases as well, and so on. On the other hand, we
tuned the numerous page-specific parameters in a very simple way—either to constant
values or to predefined functions of mean and standard deviation of certain measures. We
did not make any assumptions about statistical properties and probability distributions
of the observed features.

In this chapter we broaden our analysis and compare our approach with anomaly
detection techniques that have been proposed earlier for host/network-based intrusion
detection systems [61, 6, 45, 28, 57, 5]. This study enables gaining further insights into
the problem of automatic detection of web defacements. We want to ascertain whether
techniques for anomaly-based intrusion detection may be applied also to anomaly detec-
tion of web defacements and we want to assess pros and cons of incorporating domain
knowledge into the detection algorithm.

Interestingly, the anomaly detection techniques that we considered are often used
inside IDSs to analyze the stream of data collected observing inputs and outputs of the
monitored system. In the case of defacement detection, instead, we work on externally
observable state, i.e., we observe a web page. Working on the inputs has the potential
to detect any malicious activity promptly and even prevent it completely. In practice,
this potential is quite hard to exploit due to the large number of false alarms generated
if the rate of data analyzed is very high. Working on the external state, on the other

75



7. Anomaly detection comparison 76

hand, may only detect intrusions after they have occurred.

In the comparative evaluation of techniques presented in the next sections, we set as
a baseline the TooManyFiringCategories aggregator which is presented in Section 3.3.2.

7.1 Anomaly detection techniques

In this section we briefly describe the techniques that we used in this comparative exper-
imental evaluation: all these techniques have been proposed and evaluated for detecting
intrusions in host or network based IDSs. Each technique is an algorithm aimed at
producing a binary classification of an item expressed as a numeric vector (or point)
p ∈ R

n.

We incorporated each one of them in our framework by implementing a suitable
aggregator, that is, they are all based on the same refiner and apply different criteria
for classifying a reading. Each technique constructs a profile with a technique-specific
method, basing on the readings contained in a learning sequence S. The learning se-
quence is composed by both negative readings (S−) and positive readings (S+). However,
only one of the methods analyzed (Support Vector Machines) indeed make use of S+.
For all the other methods S = S− and S+ = ∅.

During our preliminary experiments, we noticed that for all the techniques, except
for TooManyFiringCategories, performance were poor in terms of both detection effec-
tiveness and computational effort. We quickly realized that for these techniques the size
of the vector v output by the refiner was excessive from both points of view. Hence, for
all the techniques except for TooManyFiringCategories, we applied the feature selection
algorithm described in Section 6.3.1 to reduce v size. Note that we selected for each
technique the maximum value of s that appeared to deliver acceptable performance: we
set s = 10 for K-th Nearest, LOF and Hotelling and s = 20 for the others. The feature
selection algorithm is applied once for each web page.

7.1.1 K-th Nearest

This technique [61, 41, 32] is distance-based, often computed using Euclidean metric.
Let k be an integer positive number and p the investigated point; we define the k-th
nearest distance Dk(p) as the distance d(p, o) where o is a generic point of S− such that:

1. for at least k points o′ ∈ S− it holds that d(p, o′) ≤ d(p, o), and

2. for at most k − 1 points o′ ∈ S− it holds that d(p, o′) < d(p, o)

We define a point p as a positive if Dk(p) is greater than a provided threshold t.

In our experiments we used the Euclidean distance for d and we set k = 3 and
t = 1.01.



77 Anomaly detection techniques

7.1.2 Local Outlier Factor

Local Outlier Factor (from here on LOF) [6, 41] is an extension to the k-th nearest
distance, assigning to each evaluated point an outlying degree. Let p be the investigated
point; then the LOF value is computed as follows:

1. compute Dk(p) and define k-distance neighborhood Nk(p) as a set containing all
the points o ∈ S− such that d(p, o) ≤ Dk(p);

2. define reachability distance reach-dist(o, p) = max{Dk(p), d(o, p)};

3. compute local reachability density lrd(p) as the inverse of the average reachability
distance of m points belonging to Nk(p);

4. finally, LOF value LOF(p) is defined as the average of the ratios of lrd(o), with
o ∈ Nk(p), and lrd(p);

A point p is defined as a positive if LOF(p) /∈
[

1
1+ε

, 1+ε
]

, where ε represents a threshold.
In our experiments we used the Euclidean distance for d.

7.1.3 Mahalanobis Distance

This is a distance measure based on the correlation between variables, providing a metric
where all the points having the same distance lie on an ellipsoid instead of a sphere
[45, 41].

Let C be the covariance matrix composed by elements of S− and p the investigated
point; then Mahalanobis distance is defined as:

DM (p) =
√

(p − µ)T C−1(p − µ) (7.1)

where µ is the vector of the averages of S− vectors, i.e., µ = {µ1, . . . , µn} with µi =
1
N

∑

k vi
k and being N the size of S−. If C is a singular matrix, we slightly modify it

until it becomes non-singular by adding a small value to its diagonal.

We define a point as positive if DM (p) > max{DM (o)|o ∈ S−} + t, where t is a
predefined threshold. In our experiments we set t = 1.5.

7.1.4 Hotelling’s T-Square

Hotelling’s T-Square method [28, 76, 78] is very similar to Mahalanobis distance.

Let C be the covariance matrix, computed as before; Hotelling’s T-Square statistic
is defined as:

t2(p) = m(p − µ)T C−1(p − µ) (7.2)

where m is the size of S− and µ is the same as above.

We define a point p as positive if t2(p) > max{t2(o)|o ∈ D−} + t, where t is a
predefined threshold. In our experiments we set t = 5.



7. Anomaly detection comparison 78

7.1.5 Parzen Windows

Parzen Windows [57, 79, 32] provide a method to estimate the probability density func-
tion of a random variable.

Let p = {x1, x2, . . . , xn} ∈ R
n be the investigated point and Xi a random variable

representing the i-th component of p, i.e., xi.

Let w(x) (also named window function) be a density function such that its volume
is V0 =

∫ +∞

−∞
f(x) dx; we considered two functions:

Gaussian : w(x) =
1

σ
√

2π
e−

x2

2σ2

Pulse : w(x) =

{

1 if −α ≤ x ≤ α

0 otherwise

Then, we approximate the true density function f(xi) of the random variable Xi

representing the i-th component of the point by (we denote with xk
i the value of the i-th

component of the k-th point of S−):

f̃(xi) =
1

n

n
∑

k=1

1

Vk
w

(

xi − xk
i

Vk

)

(7.3)

where Vk = V0

ln k
; note that the weight term Vk decrease for older values (i.e., for points

of S− with an higher k).

We say that a component xi of p is anomalous if and only if f̃(xi) < t1. We define a
point p as positive if at least a percentage of components greater than t2 is anomalous. In
other words, with this method a probability distribution is estimated for each component
of the input vector using its values along the learning sequence; then an alarm is raised
if too many components seem not to be in accord with their estimated distribution.

In our experiments, we set σ = 1, t1 = 0.1 and t2 = 7.5% for Parzen Gaussian and
α = 0.25, t1 = 0.3 and t2 = 10% for Parzen Pulse.

7.1.6 Support Vector Machines

Support Vector Machines (SVM) [5, 51, 41] use hyperplanes to maximally separate N
classes of data. In anomaly detection, we use only N = 2 classes of objects, positives
and negatives. This technique uses a kernel function to compute the hyperplanes using
both readings of S− and S+. In our experiments we used the Radial Basis Function (as
part of the libsvm implementation [9]).

Once the hyperplanes are defined, a point p is considered as a positive if it is contained
in the corresponding region.



79 Experimental evaluation

7.2 Experimental evaluation

7.2.1 Dataset

In order to perform our experiments, we used a reduced version of the dataset collected
for testing Goldrake (see Section 4.2). It has composed observing 15 web pages for
two months, collecting a reading for each page every 6 hours, thus totaling a negative
sequence of 240 readings for each web page. We visually inspected them in order to
confirm the assumption that they are all genuine.

We also collected an attack archive composed by 95 readings extracted from a publicly
available defacements archive (http://www.zone-h.org).

7.2.2 Methodology

We used False Positive Ratio (FPR) and False Negative Ratio (FNR) as performance
indexes computing average, maximum and minimum values among web pages.

We proceeded as follows. For each page:

1. we built a sequence S+ of positive readings composed by the first 20 elements of
the attack archive;

2. we built a sequence S− of negative readings composed by the first 50 elements of
the corresponding negative sequence;

3. we built the learning sequence S by joining S+ and S−;

4. we trained each aggregator on S (recall that only one aggregator actually looks at
S+, as pointed out in Section 7.1).

Then, for each page:

1. we built a testing sequence St by joining a sequence S−

t , composed by the remaining
190 readings of the corresponding negative sequence, and a sequence S+

t , composed
by the remaining 75 readings of the attack archive;

2. we fed the aggregator with each reading of St, as if it was the first reading to be
evaluated after the learning phase, counting false positives and false negatives.

The previous experiments were done by constructing the profile of each web page
only once, that is, by locking the internal state of each aggregator. We also experimented
without locking the internal state, as follows. After the initial learning phase, whenever
a reading of S−

t was evaluated, we added that reading to S− and removed the oldest
reading from S− (in other words, we used a sliding window of the 50 most recent readings
of S−); then, a new profile was immediately computed using the updated S− (S+ is
never changed). In this way, we enabled a sort of continuous retuning that allowed each
aggregator to keep the corresponding profile in sync with the web page, even in the long
term. For the sole TooManyFiringCategories aggregator, the retuning was performed
every 10 readings, instead of every reading. We computed FNR by injecting all the 75
readings of S+

t at the end of the test.



7. Anomaly detection comparison 80

Table 7.1: Short term effectiveness with locked internal state.

FPR (%) FNR (%)
Aggregator avg max min avg max min

TooManyFiringCategories 1.3 13.3 0.0 0.1 1.3 0.0
K-th Nearest 0.0 0.0 0.0 0.1 1.3 0.0
Local Outlier Factor 6.6 94.7 0.0 0.3 4.0 0.0
Hotelling 10.9 94.7 0.0 0.0 0.0 0.0
Mahalanobis 11.5 94.7 0.0 0.2 1.3 0.0
Parzen Pulse 1.2 16.0 0.0 0.0 0.0 0.0
Parzen Gaussian 4.1 40.0 0.0 0.0 0.0 0.0
Support Vector Machines 0.0 0.0 0.0 0.0 0.0 0.0

7.2.3 Results with internal state locked

In this section, we present FPR (with average, min and max values among the 15 web
pages) that we obtained experimenting with the internal state locked, evaluated on the
first 75 readings of S−

t and on all the 190 readings of S−

t . In other words, we assessed the
effectiveness of each technique separately on the short term and on the long term—about
19 and 48 days respectively. We also present FNR (again with average, min and max
values among the 15 web pages) computed on all readings of S+

t .

Table 7.1 shows results obtained in the short term (i.e., after 75 negative readings):
FNR values suggest that all the algorithms proved to be effective when detecting deface-
ments. On the other hand, they behaved differently when analyzing genuine readings.

TooManyFiringCategories performed well on many web pages, although on some of
them it exhibited very high FPR; Mahalanobis, Hotelling and LOF did not score well,
being unable to classify genuine pages for many pages.

Both Parzen methods proved to be acceptably effective on many pages, although on
some of them they worked as badly as Mahalanobis and Hotelling.

An excellent result comes from K-th Nearest and Support Vector Machines: both
techniques managed to correctly classify all the negative readings, while still detecting
a large amount of attacks.

Table 7.2 shows results obtained in the long term (i.e., after 190 negative readings),
again with locked internal state. FNR is the same as Table 7.1, since both aggregator
internal state and the positive testing sequence S+

t remain the same. Results in terms of
FPR are slightly worse for all the evaluated techniques, as expected; the only aggregator
that managed to perform almost as good as in short term is the one based on the Support
Vector Machines. As a matter of fact, both K-th Nearest and Pulse Parzen managed to
maintain a low FPR, but raised many false alarms on some web pages.

Figure 7.1 shows FPR vs. time, expressed as the index n of the reading of S−

t (Ta-
ble 7.1 corresponds to values for n = 75, whereas Table 7.2 corresponds to values for
n = 190). The figure makes it easy to assess the effectiveness of each technique as



81 Experimental evaluation

Table 7.2: Long term effectiveness with locked internal state.

FPR (%) FNR (%)
Aggregator avg max min avg max min

TooManyFiringCategories 2.7 26.3 0.0 0.1 1.3 0.0
K-th Nearest 1.8 18.9 0.0 0.1 1.3 0.0
Local Outlier Factor 11.0 97.9 0.0 0.3 4.0 0.0
Hotelling 14.7 97.9 0.0 0.0 0.0 0.0
Mahalanobis 16.2 97.9 0.0 0.2 1.3 0.0
Parzen Pulse 1.3 15.3 0.0 0.0 0.0 0.0
Parzen Gaussian 4.5 40.0 0.0 0.0 0.0 0.0
Support Vector Machines 0.0 0.5 0.0 0.0 0.0 0.0

time goes by: many aggregators perform well at the beginning but then start raising a
substantial amount of false alarms. As it turns out from these results, thus, building
the profile of a web page based on a single observation period is not enough because
after some time such a profile is no longer representative of the current content and
appearance of the web page. Hotelling, Mahalanobis and LOF curves show that these
techniques hardly cope with the fact that the profile of web page is getting older. Other
techniques seem to be more robust in this sense.

7.2.4 Results with retuning

In this section we present results of experiments done without locking the internal state
of the aggregator, i.e., while retuning each aggregator at each reading. As described in
Section 7.2.2, we used as S− a sliding window containing the 50 most recent previous
negative readings, while for TooManyFiringCategories we retuned every 10 readings.

Table 7.3 shows the results we obtained. Every aggregator exhibited a very low FNR,
in line with those of test with locked state: hence, we can say that retuning does not
affect the capability of evaluated techniques to detect attacks. Moreover, as expected,
all techniques exhibited a sensibly lower FPR, with the only exceptions of LOF and
Gaussian Parzen, whose average and, especially, maximum FPR are still pretty high.

In summary, all the techniques, with exception of LOF and Gaussian Parzen, are
able to correctly detect almost all the simulated attacks while not raising too many false
alarms, for all pages. More in detail, LOF and Gaussian Parzen showed too many false
positives on the page Java – Top 25 bugs.

7.2.5 Discussion

According to our experimental evaluation, almost all techniques (with the exception of
LOF and Gaussian Parzen) show results, in terms of FNR and FPR, which are sufficiently
low to deserve further consideration. In particular, most techniques achieve an average



7. Anomaly detection comparison 82

0 50 100 150

0.
00

0.
05

0.
10

0.
15

C
u
m

u
la

ti
v
e

F
P

R

n (reading)

Hotelling

Gaussian Parzen
K-th Nearest

Local Outlier Factor

Mahalanobis Distance

Pulse Parzen
Support Vector Mach.
TooManyFiringCat.

Figure 7.1: Cumulative False Positive ratio

Table 7.3: Long term effectiveness with retuning.

FPR (%) FNR (%)
Aggregator avg max min avg max min

TooManyFiringCategories 0.2 1.0 0.0 0.0 0.0 0.0
K-th Nearest 0.2 1.6 0.0 0.1 1.3 0.0
Local Outlier Factor 1.4 10.0 0.0 0.1 1.3 0.0
Hotelling 0.5 2.1 0.0 0.1 1.3 0.0
Mahalanobis 0.7 2.6 0.0 0.2 1.3 0.0
Parzen Pulse 0.4 5.8 0.0 0.0 0.0 0.0
Parzen Gaussian 2.6 37.9 0.0 0.1 1.3 0.0
Support Vector Machines 0.1 0.5 0.0 0.0 0.0 0.0



83 Experimental evaluation

FPR lower than 1%, while being able to correctly detect almost all the simulated attacks
(FNR ' 0%). We remark that such a lower FPR is equivalent, in our scenario, to about
1 false positive raised every month for each page. Such a finding suggests that, with
most of the proposed techniques, the realization of a large-scale monitoring service is
a feasible solution (see also Section 4.9 for a deeper analysis about scalability of the
proposed solution).

Broadly speaking, however, none of such techniques appears to deliver significant
performance improvements with respect to our earlier TooManyFiringCategories pro-
posal. Support Vector Machines are the most promising alternative from this point of
view. Since that technique requires an archive of attacks, however, it may be useful
to investigate more deeply the relation between quality of that archive and resulting
performance.

Based on this analysis, we believe also that a domain knowledge-based detection
algorithm benefits from two important advantages:

1. An intrinsic feature of the TooManyFiringCategories aggregator is that the knowl-
edge about v elements meaning can be used by the framework to provide the human
operator with meaningful indications in case of a positive. For example, the oper-
ator could be notified with some indication about an anomalous number of links
in the page or about a tag that was not present in the page despite being supposed
to be. Such indications can hardly be provided using the other techniques.

2. The TooManyFiringCategories aggregator does not require a feature selection.
While increasing performance for the techniques we tested, thus definitely making
defacement detection effective with them, feature selection introduces more oppor-
tunities for attacks that remain hidden within the analyzed profile. Any attack
affecting only elements of v that are not taken into account after the feature selec-
tion, cannot be detected by a detection algorithm that requires feature selection.
The practical relevance of this issue (i.e., which attacks indeed fall in this category)
certainly deserves further analysis.





Chapter 8
Large-scale study on reaction time

to web site defacements

Statistics available about defacements are primarily concerned with the number of such
incidents [83, 72]. Besides, an abundant literature about first-class attacks is available:
interesting defacements occurred recently include, e.g., those suffered by the Company
Registration Office in Ireland, which was defaced in December 2006 and remained so
until mid-January 2007 [69]; by the Italian Air Force, which was defaced on January
26th 2007 by a Turkish attacker protesting against “who is supporting the war”; by
the United Nations [30] and by the Spanish Ministry of Housing [25] in August 2007.
To the best of our knowledge, there are no statistics available regarding the typical
duration of a defacement. This information is crucial for improving the understanding
of this phenomenon: a defacement lasting a few weeks is clearly much more harmful
than one lasting a few minutes. Indeed, the defacements mentioned above lasted for a
time ranging from a few hours to several weeks.

In this chapter we analyze the actual reaction time to defacements. We base our
analysis on a sample of more than 62000 real incidents that we monitored in near real
time for approximately two months. We were quite surprised by the slowness of the
typical reaction, which is in the order of several days. For example, about 43% of
the defacements in our sample lasted for at least one week and more than 37% of the
defacements was still in place after two weeks.

To extract as much useful information as possible from our results, we analyzed the
reaction time by isolating the mass defacements, i.e., defacements at different sites that
are associated with the same IP address and should hence be hosted by a professionally
administered infrastructure. We expected to observe for mass defacements a significantly
faster reaction time, but this expectation was confirmed only in minor part. We also
analyzed the reaction time as a function of the PageRank value of the corresponding
pages, which is a form of measuring the “importance” of the page [56]. We found that
pages with higher PageRank value indeed tend to exhibit a prompter reaction. Yet,
the reaction time tends to be unacceptably high even in pages whose importance, as

85



8. Reaction time to defacements 86

quantified by the PageRank, is manifest.

Our results are clearly to be interpreted with care—for example, we have no data
about the security budget at the organizations involved, nor about the number of clients
that actually visited the defaced sites. Despite their intrinsic limitations, though, we
believe that our findings may greatly improve the understanding of this phenomenon
and highlight issues deserving attention by the research community. Besides, any large-
scale study of this kind will suffer from similar obstacles: we do not see any sound
alternative for obtaining data significantly more accurate than ours.

8.1 Overview of our methodology

The basic idea behind our methodology is rather simple. We take advantage of Zone-
H, a public web-based archive devoted to collecting evidence of defacements (http://
www.zone-h.org). When a hacker has defaced a web page, the hacker himself—or any
other user—may notify Zone-H about the URL of the page attacked. The staff at Zone-
H fetches the page from the web and verifies whether it indeed exhibits evidence of a
defacement, in which case the page is stored within the Zone-H archive. Zone-H is used
widely—more than 490000 defacements have been stored in year 2005—thus we decided
to base our study on this archive.

We constructed a tool composed by two components:

• a crawler, that fetches every hour from Zone-H the list of pages inserted into the
archive;

• a checker, that compares every hour the content obtained by the crawler to the
content exposed on the web.

More in detail, let u denote an URL obtained by the crawler, let Z(u) denote the
corresponding content stored at Zone-H and let W (u) denote the content of URL u
obtained by the checker from the web. Essentially, we consider that the defacement has
been detected when Z(u) 6= W (u). As clarified in more detail later, we approximate the
time length of this incident with the interval starting from when the defacement was
applied to when the inequality first holds.

The implementation of this basic idea is quite more complex than it appears, as will
become evident from the description below. For example, we have observed defaced pages
including dynamic content, in which case W (u) differs from Z(u) even though the page
has not been healed. We have observed defaced pages with intermittent connectivity, or
that are never reachable. We have also observed pages that have been healed before our
first check. Extracting useful information from all possible cases automatically turned
out to be a significant challenge, also because the number of sites that we needed to check
every hour grew somewhat beyond our expectations: we usually had to check more than
20000 pages every hour.

Defacements can be subdivided in two broad categories: substitutive defacements—
i.e., those replacing legitimate content—and additive defacements—i.e., those adding a



87 Methodology

web page at an URL where there should not be any page. Additive defacements are
usually not observed by visitors of the attacked site and are meant to constitute a sort
of hidden proof of the successful attack. These defacements could become particularly
harmful as part of a more complex attack strategy, though. For example, a phishing
attack could direct users to a fake login page inserted within a site trusted by its users:
this is exactly what happened in early 2008 to the site of an Italian bank [53]. The
Zone-H archive does not provide any indication as to whether a given defacement is
substitutive or additive. As will be clear in the next section, this fact has complicated
our analysis further.

8.2 Methodology

The Zone-H Digital Attacks Archive contains a list of URLs corresponding to deface-
ments which have been validated by the Zone-H staff and is maintained as follows (see
Figure 8.1(a)):

1. the attacker notifies the Zone-H staff about the URL u of a defaced page (via a
web form) and Zone-H downloads automatically a snapshot Z(u) of the claimed
defacement;

2. some time later, a human operator at Zone-H verifies the snapshot and, pro-
vided the notification is deemed valid, inserts in the Zone-H archive an entry
〈u,Z(u), t1, t2〉, where t1 denotes the time instant at which the snapshot Z(u) was
taken and t2 denotes the time instant at which the defacement has been verified.

The human operator observes only the snapshot Z(u), which means that at t2 the page
may or may not be still defaced—the administrator at u might have healed u very
quickly.

Our crawler builds a list L of defaced pages by querying every hour the Zone-H
archive. The list was initialized with the entries inserted on the day we started the
experiment. The crawler then inserts in L each new entry found at Zone-H. For obvious
efficiency reasons, Z(u) is actually stored in the form of a hash and all comparisons to
the page u as exposed on the web, i.e., W (u), are made by comparing the respective
hashes. We shall not mention this issue any further.

Our checker checks each entry of L every hour. Actually, the checker starts its
execution every hour and must complete all checks before the next run—the time between
two consecutive checks of the same entry, thus, is not exactly one hour. The checker
implements, for each entry of L, a finite state machine aimed at tracking the status of
the defacement—e.g., whether it is still in place, it has been removed, the page is not
reachable and so on. We provide only an overview of this state machine for ease of
presentation: we omit all state transition rules and focus only on the meaning of the
final states, which are those containing the crucial information for our analysis.

At each checking step the checker fetches W (u) from the web and compares it to
Z(u) as stored in L. The state machine receives an input describing the outcome of the
check and performs a state transition. The outcome of the check is one of the following:



8. Reaction time to defacements 88

?
URL u

Internet

Attacker

Operator

Pending Published

Zone-H

t0 t1 t2

〈u, Z(u), t1〉 〈u, Z(u), t1, t2〉

(a) Zone-H operations

?
URL u Internet

Zone-H

〈u, Z(u), t1, t2〉

Published L F

tw, tw+1h,. . .

tw

tf

〈u, Z(u), t1, t2, tf 〉〈u, Z(u), t1, t2〉

Crawler

Checker
Our framework

(b) Our framework operations

Figure 8.1: Operations performed by Zone-H (above) and our framework (below). Each arrow
corresponds to an action and is annotated with the time instant at which the action is performed
(see the text).

• Unreachable, meaning that the server did not reply within 20 seconds or it
replied with an HTTP error (i.e., 404 Not Found, 503 Service Unavailable, and so
on);

• Equal, meaning that Z(u) and W (u) are identical;

• NotEqual, otherwise.

Whenever the state machine reaches one of the final states, described below, the checker
removes the corresponding entry from L and inserts it into another list F . Each entry
in F includes an indication of the final state and of the instant tf in which this state
was reached. All our results are based on the content of F . Our monitoring framework
is summarized in Figure 8.1(b), where tw denotes the time instant at which we fetched
W (u) for the first time.

We associate each entry in L with the time instant tf at which the entry reached the
final state. We say that we could verify a defacement for u to mean that our checker
indeed verified at least once that Z(u) = W (u). We define Tmax = 2 weeks. All the
possible final states are listed below along with their meaning:



89 Methodology

Undetected We verified the defacement and the defacement remained in place for at
least Tmax. An entry enters this final state after a sequence of verifications span-
ning a time interval Tmax, without any interruption. Sites that were occasionally
unreachable, thus, were observed for more than Tmax.

Removed We verified the defacement but later the page remained systematically un-
reachable for at least 1 week. Our domain knowledge suggests us that entries in
this final state correspond to additive defacements which have been removed. We
set tf to the instant of the first unreachable observation among the consecutive
ones lasting 1 week.

Patched We verified the defacement and the page changed sometime later. This final
state may be due to any of the following reasons:

A. the legitimate content has been restored;

B. a maintenance or error message replaced the defacement;

C. the defacement was dynamic or it was a partial defacement of a dynamic web
page—thereby leading to different hash values at different checks;

D. another defacement replaced the first defacement.

We could not discriminate among these cases automatically, because we do not
know which was the legitimate content. We visually inspected a sample of 200
entries in this final state and found that 65%, 20%, 3%, 8% of them concerned
cases A, B, C and D respectively; we were not able to verify the remaining 4%.
In other words, 85% of this sample identify a form of reaction to the defacement
(cases A and B).

NotVerified We did not verify the defacement. In other words, the first snapshot W (u)
did not satisfy W (u) = Z(u). Our domain knowledge suggests that there may be
two main reasons for this outcome:

A. before our first check, either the original content were restored or a mainte-
nance message had replaced the defacement;

B. the defacement was dynamic or it was a partial defacement of a dynamic web
page.

We visually inspected a sample of 200 entries in this final state and found that
16% of them were in condition A, 83% were in condition B; we were not able to
verify the remaining 1%.

NotChecked We could not even fetch any snapshot of the page. That is, we could not
fetch W (u) for Tmax. The most likely reason for this final state is that the entry
represents an additive defacement that was removed before our first check.



8. Reaction time to defacements 90

Table 8.1: Summary of final states.

State # of entries Perc.

NotVerified 18608 29.8%
NotChecked 2823 4.5%
Removed 7437 11.9%
Patched 16593 26.6%
Undetected 16972 27.2%

Total 62433 100.0%

Based on the meaning of final states we constructed estimates for the incident reaction
time Tr as follows. For Undetected entries, Tr ≥ Tmax. For entries either Patched or
Removed, Tr ≈ tf − t1. For entries either NotVerified or NotChecked, all that we can
safely say is that, if the page has been indeed healed, it has been healed at some instant
before our first check.

We attempted to smooth the effects of this uncertainty on our analysis by discussing
our results in two ways: first, by taking into account only entries that were either
Undetected/Patched/Removed (for simplicity, Verified entries); then, by making two
optimistic hypotheses about the reaction time of NotVerified/NotChecked entries.

8.3 Results

We started the crawler and the checker on February 17th 2007. We stopped the crawler
on April 13th 2007, after 49 days. The checker continued to run until L was empty,
which took further 13 days.

Table 8.1 summarizes our results in terms of final states. The salient observation
is that we found more than 62000 new defacements on Zone-H in 49 days, which cor-
responds to about 1250 new URLs every day—a figure sufficiently large to make the
practical relevance of this phenomenon evident. Table 8.1 shows that there are 41002
Verified entries, accounting for 65.7% of all entries.

8.3.1 Analysis for Verified entries

Figure 8.2 shows the number of Verified entries (y-axis) that have been detected within
a given reaction time t (x-axis)—i.e., entries for which Tr ≤ t. The secondary y-axis
expresses the number of detected entries as a percentage of all Verified entries. The two
dotted lines highlight the t values corresponding to 1 day and 1 week: a reaction occurs
within one day only in less than 25% of the Verified entries; a reaction occurs within 1
week in about 50% of them. The average reaction time is Tr = 72.4 hours. We were
quite surprised by such long reaction times and such long-tailed distributions, which
appear to be unacceptably long under any metric.



91 Results

0 50 100 150 200 250 300

0
40

00
80

00
12

00
0

18
00

0
24

00
0

1 
da

y

1 
w

ee
k

0%
10

%
20

%
30

%
40

%
50

%

P
S
frag

rep
lacem

en

#
o
f
en

tr
ie

s

t (hours)

Figure 8.2: Number of Verified entries (y-axis) that have been detected within a given t (x-
axis); two vertical dotted lines are traced at values of t corresponding to 1 day and 1 week. The
secondary (right) y-axis expresses the number of detected entries as a percentage of all Verified
entries.

Figure 8.3 characterizes the incident reaction time Tr for Patched and Removed
entries separately (recall that for Undetected entries we assumed, optimistically, that
Tr = Tmax = 2 weeks): the x-axis shows the time in days and the y-axis shows the
number of entries as a percentage of the respective state. For example, Tr ≤ 24 (hours)
for about 47% of Patched entries, 24 < Tr ≤ 48 for about 14% of Patched entries, and so
on. The figure clearly suggests that Patched entries are generally detected earlier than
Removed entries. This observation is confirmed by the average reaction time Tr, which is
66.1 hours for the former and 86.3 hours for the latter. We believe this difference is due
to the fact that most of Patched entries correspond to substitutive defacements whereas
most of Removed entries correspond to additive defacements, that are intrinsically more
difficult to detect.

We remark that the above discussion is based upon the optimistic assumption that
all Patched entries—roughly 40% of all Verified entries—always involve a reaction to a
defacement. Instead, a visual inspection on a sample of 200 Patched entries (see the
definition of the Patched final state) suggested us that only 85% of Patched entries
indeed identify a form of reaction to the attack. It follows that the actual distribution of
reaction time is worse than shown here: if we estimate the reaction time by assuming that
only 85% of all Patched entries retain their Tr while the remaining 15% are considered
as Undetected, we find a sensible loss in the promptness of detection: first-day detection
rate for all Verified entries becomes 21.7% (vs. 24.6%) and 2nd-week detection rate
becomes 52.4% (vs. 58.4%).



8. Reaction time to defacements 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
10

20
30

40

Patched
Removed

Tr (days)

R
el

a
ti
v
e

%

Figure 8.3: Distribution of incident reaction time Tr for Patched and Removed entries.

8.3.2 Analysis for mass defacements of Verified entries

We performed a further analysis by distinguishing between mass defacements and single
defacements. A mass defacement consists in defacing multiple URLs that are associated
with the same IP address. This phenomenon typically occurs when an attacker manages
to exploit a vulnerability in a server hosting multiple web sites. We thought that the
reaction to a mass defacement should be fast because, broadly speaking, sites involved in
a mass defacement should be part of a professionally administered hosting infrastructure.

We define an entry as a mass defacement if there is at least another entry with
the same tuple 〈IP address, Z(u), t1〉. Table 8.2 summarizes the results. The first
two columns describe the size of each subset: mass defacements and single defacements
account for 72.5% and 27.5% of the Verified entries, respectively. The remaining columns
indicate the reaction time for each subset. For example, 28.8% of mass defacements have
a reaction within 1 day. The bottom row indicates the baseline, i.e., the corresponding
values computed across the whole set of Verified entries.

There is indeed a sensible gap between the reaction time of the two subsets, both
in average and percentage at the salient instants considered. This fact confirms our
expectation than the reaction to mass defacements occurs more quickly than to single
defacements. Nevertheless, the reaction time remains quite high even in this case: after
1 week only half of the entries is detected and the average reaction time is 2.7 days. It
seems reasonable to claim that defacements and reaction to defacements are a significant
issue also at web site providers.

8.3.3 Analysis of Verified entries based on the respective PageRank value

We attempted to gain some insights into the possible correlation between the “impor-
tance” of a defaced web page and the corresponding reaction time. Quantifying the
former is obviously quite hard. For example, a web page could be useful only to a very
small set of users, which however could depend heavily on the integrity of that page. Or,
a web page could remain defaced only during a time interval in which few of its users, if



93 Results

Table 8.2: Tr characterization for mass and single defacements separately.

Partition # of % Det. at Det. at Det. Tr

entries % 1 day 1 week 2 weeks (hours)

Mass 29719 72.5% 28.8% 53.2% 59.9% 64.9
Single 11283 27.5% 13.3% 43.9% 54.4% 94.2

Total 41002 100.0% 24.6% 50.6% 58.4% 72.4

any, accessed that page.

Rather than plainly neglecting this issue, however, we decided to incorporate in our
analysis the PageRank values of the defaced pages [56]. The PageRank of a page is an
integer in the range [−1, 10]: the higher the value, the more “important” the page (see
the cited paper for details about the metric); value −1 means that a PageRank value is
not available for the corresponding URL. We chose this index for convenience:

• we could collect the PageRank value for each entry considered in our analysis by
querying the Google Toolbar in an automated way;

• we could not see any sensible alternative for quantifying the importance of a page
in a study of this kind—tens of thousands of defaced pages spread around the
world and whose access pattern is unknown.

The corresponding results must clearly be interpreted carefully, as we cannot establish
any direct relation between the importance of a page, as quantified by its PageRank,
and the actual damage caused by the defacement. For example, pages with a very small
PageRank value may actually be, and often are indeed, quite important to their users.

For each entry with URL u, we collected both the PageRank value ppage associated
with u, and the PageRank value pdomain associated with the domain of u. Figure 8.4
shows the distribution of ppage and pdomain across all the entries. It can be seen that
ppage is −1 for approximately 39000 entries, but there is a substantial number of entries
for which ppage is not negligible: for 5488 entries—roughly 9% of all entries—ppage is 3
or above. Similar remarks can be made concerning pdomain: there is a large number of
entries for which pdomain = −1, but there are also thousands of entries for which pdomain

is 3 or above. These results suggest that defacements do affect also PageRank-important
sites.

Table 8.3 focuses on Verified entries: it shows number and percentage of Removed,
Patched and Undetected entries for which ppage 6= −1. It can be seen that the relative
occurrence of entries with ppage 6= −1 is much higher in Patched entries than in Re-
moved entries. This fact confirms the intuition that most of Removed entries probably
correspond to additive defacements, i.e., pages that are not supposed to exist—for such
pages the PageRank value is not available.

Figure 8.5 correlates the reaction time to the PageRank and constitutes the salient
point of this analysis: it shows the percentage of Verified entries that have been detected



8. Reaction time to defacements 94

−1 0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

25
00

0

ppage
pdomain

PageRank
#

o
f
en

tr
ie

s

Figure 8.4: Distribution of ppage and pdomain for all considered entries: value −1 corresponds
to URLs for which PageRank is not available.

Table 8.3: Availability of PageRank value for Verified entries.

# of entries %
State ppage ≥ 0 ppage = −1 ppage ≥ 0

Removed 591 7437 7.4%
Patched 8930 16593 35.0%
Undetected 3739 16972 18.1%

within one day or one week, as a function of their ppage values. For example, in 35.3%
of the entries with ppage = 0 some form of reaction (either patching or removing) occurs
within 1 day. As a baseline, dotted horizontal lines represents the values averaged for
all Verified entries, independently of their PageRank value (Section 8.3.1).

The figure confirms the intuition that reaction to defacement of pages with a higher
PageRank value is indeed faster. This effect is more prominent for detection percentages
at one week. It seems fair to claim, though, that even from this point of view the reaction
time is not as fast as one would probably expect—we never observed a 1-day detection
percentage significantly greater than 50%, for example.

8.3.4 Analysis for all entries

We wanted to verify whether incident reaction times presented in the previous sections
were distorted by the fact that we considered only Verified entries, hence discarding the
remaining 34.3% of the 62433 entries. To this end, we reasoned about how to take into
account entries that were either NotVerified (we could not observe that the site appeared
as stored in Zone-H) or NotChecked (we could not even fetch anything from the site for
at least two weeks).

We remark that the uncertainty in the reaction time of Verified entries is in the
order of a few tens of minutes, because the checker runs every hour. Such uncertainty is
unfortunately much larger for entries that are either NotVerified or NotChecked, as we do



95 Results

1 day average

1 week average

−1 0 1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

R
el

a
ti
v
e

%

ppage

Det. at 1 day
Det. at 1 week

Figure 8.5: Relative percentage of Verified entries (y-axis) that have been detected within
one day (square) or one week (triangle), as function of the corresponding ppage (x-axis). Two
horizontal dotted lines are traced at values of % corresponding to the 1 day and 1 week averages
computed for all Verified entries. Percentages for ppage > 6 are not significant, since there are
very few entries with such a PageRank value.

not even know for sure whether these entries were indeed healed (recall, for example, that
a NotVerified entries could correspond to a dynamic defacement or to a defacement that
affected only static portions of a page). Any reasoning about NotVerified/NotChecked
entries, thus, cannot avoid to suffer from such uncertainty.

We formulated two optimistic hypotheses about the reaction time for NotVerified/NotChecked
entries and used these hypotheses for finding an upper bound to the curve in Figure 8.2:

Hypothesis A A very optimistic scenario in which we assumed that each NotVeri-
fied/NotChecked entry is associated with Tr = 0—i.e., a reaction to the defacement
at u occurred as soon as Zone-H downloaded Z(u) at t1.

Hypothesis B A slightly less optimistic scenario in which NotChecked entries are han-
dled as above but we assume that Tr = 0 only for 16% of the NotVerified entries,
consistently with our visual inspection of a sample (Section 8.2). Concerning the re-
maining 84% of NotVerified entries, we assumed the same results that we observed
for Verified entries: we considered as Undetected a portion consistent with the
relative occurrence of Undetected entries with respect to Verified entries (41.4%);
we assumed a reaction time Tr whose distribution is the same as that of Patched
and Removed entries (Figure 8.2) for the remaining portion.

Figure 8.6 presents the corresponding results. As expected, both curves show a
significant number of entries detected immediately (Tr ≤ t = 0) and stay above the
curve for the Verified entries. In scenario (A) the first-day and first-week detection rates
are 50.5% and 67.6%, as opposed to 24.6% and 50.6% respectively. The improvement is
significant, yet it seems reasonable to claim that the reaction time remains unacceptably
long. Concerning the slightly less optimistic scenario (B), the improvement is much



8. Reaction time to defacements 96

1 
da

y

1 
w

ee
k

0 50 100 150 200 250 300

0%
10

%
20

%
30

%
40

%
50

%
60

%
70

%

%
o
f
en

tr
ie

s

t (hours)

Only Verified

Hypothesis A
Hypothesis B

Figure 8.6: Percentage of entries (y-axis) that have been detected within a given t (x-axis)
obtained with two different optimistic hypotheses about NotVerified/NotChecked entries; two
vertical dotted lines are traced at values of t corresponding to 1 day and 1 week.

smaller: 7.5 and 6.6 percentage points respectively. Average reaction time are 38.3 and
54.5 hours for scenarios (A) and (B) respectively, in respect to 72.4 hours for the Verified
entries.



Bibliography

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos. An
experimental comparison of naive Bayesian and keyword-based anti-spam filtering
with personal e-mail messages. In SIGIR ’00: Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 160–167, New York, NY, USA, 2000. ACM Press. [cited at p. 12]

[2] A. Anitha and V. Vaidehi. Context based Application Level Intrusion Detection
System. In ICNS ’06: Proceedings of the International conference on Networking
and Services, page 16, Los Alamitos, CA, USA, 2006. IEEE Computer Society.
[cited at p. 10]

[3] G. K. Baah, A. Gray, and M. J. Harrold. On-line anomaly detection of deployed
software: a statistical machine learning approach. In SOQUA ’06: Proceedings of
the 3rd International Workshop on Software Quality Assurance, pages 70–77, New
York, NY, USA, 2006. ACM Press. [cited at p. 52]

[4] M. Banikazemi, D. Poff, and B. Abali. Storage-based file system integrity checker.
In StorageSS ’05: Proceedings of the 2005 ACM workshop on Storage security and
survivability, pages 57–63, New York, NY, USA, 2005. ACM Press. [cited at p. 8]

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Annual Workshop on Computational Learning Theory, pages
144–152, Pittsburgh, Pennsylvania, United States, 1992. ACM. [cited at p. 75, 78]

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-
based local outliers. SIGMOD Rec, 29:93–104, 2000. [cited at p. 75, 77]

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the Web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, 1997. [cited at p. 9]

[8] C. E. Brodley and M. A. Friedl. Identifying Mislabeled Training Data. J. Artif.
Intell. Res. (JAIR), 11:131–167, 1999. [cited at p. 53]

97



BIBLIOGRAPHY 98

[9] C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines. Tech-
nical report, 2001. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
[cited at p. 78]

[10] H.-Y. Chang, S. F. Wu, and Y. F. Jou. Real-time protocol analysis for detecting
link-state routing protocol attacks. ACM Trans. Inf. Syst. Secur., 4(1):1–36, 2001.
[cited at p. 10]

[11] S. N. Chari and P.-C. Cheng. BlueBoX: A policy-driven, host-based intrusion de-
tection system. ACM Trans. Inf. Syst. Secur., 6(2):173–200, 2003. [cited at p. 10]

[12] Y. Chen, A. Abraham, and B. Yang. Hybrid flexible neural-tree-based intrusion de-
tection systems. International Journal of Intelligent Systems, 22(4):337–352, 2007.
[cited at p. 66]

[13] T. M. Chilimbi and V. Ganapathy. HeapMD: identifying heap-based bugs using
anomaly detection. In ASPLOS-XII: Proceedings of the 12th international confer-
ence on Architectural support for programming languages and operating systems,
pages 219–228, New York, NY, USA, 2006. ACM Press. [cited at p. 10]

[14] L. F. Cranor and B. A. LaMacchia. Spam! Commun. ACM, 41(8):74–83, 1998.
[cited at p. 12]

[15] D. Dasey. Cyber threat to personal details. Technical report, The Sydney Morn-
ing Herald, Oct. 2007. Available at http://www.smh.com.au/news/technology/
cyber-threat-to-personal-details/2007/10/13/1191696235979.html. [cited at p. 3]

[16] D. E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng., 13(2):222–
232, 1987. [cited at p. 2, 10, 42, 75]

[17] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A large-scale study of the
evolution of web pages. Softw. Pract. Exper., 34(2):213–237, 2004. [cited at p. 9]

[18] W. Fone and P. Gregory. Web page defacement countermeasures. In Proceedings
of the 3rd International Symposium on Communication Systems Networks and Dig-
ital Signal Processing, pages 26–29, Newcastle, UK, July 2002. IEE/IEEE/BCS.
[cited at p. 7]

[19] G. Forman and I. Cohen. Learning from little: comparison of classifiers given little
training. In PKDD ’04: Proceedings of the 8th European Conference on Principles
and Practice of Knowledge Discovery in Databases, pages 161–172, New York, NY,
USA, 2004. Springer-Verlag New York, Inc. [cited at p. 53]

[20] A. Y. Fu, L. Wenyin, and X. Deng. Detecting phishing web pages with visual simi-
larity assessment based on earth mover’s distance (emd). IEEE Trans. Dependable
Secur. Comput., 3(4):301–311, 2006. [cited at p. 8]



99 BIBLIOGRAPHY

[21] A. Gehani, S. Chandra, and G. Kedem. Augmenting storage with an intrusion re-
sponse primitive to ensure the security of critical data. In ASIACCS ’06: Proceed-
ings of the 2006 ACM Symposium on Information, computer and communications
security, pages 114–124, New York, NY, USA, 2006. ACM Press. [cited at p. 8]

[22] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. 2006 CSI/FBI Com-
puter Crime and Security Survey. Security survey, Computer Security Institute,
2006. [cited at p. 3]

[23] A. K. Gosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown Intru-
sions Against Programs. In ACSAC ’98: Proceedings of the 14th Annual Computer
Security Applications Conference, page 259, Los Alamitos, CA, USA, 1998. IEEE
Computer Society. [cited at p. 10, 75]

[24] HA. Madagascar Mass Government Defacement. Technical report, Hacker’s
Attacks - Web Defacements Blog, Oct. 2007. Available at http://calima.serapis.
net/blogs/index.php?/archives/116-Madagascar-Mass-Government-Defacement.html.
[cited at p. 3]

[25] HB. Hacker attacks the Ministry for Housing website as Spanish mortgages
come under the international spotlight. Technical report, Typically Spanish, Aug.
2007. Available at http://www.typicallyspanish.com/news/publish/article 12212.
shtml. [cited at p. 3, 85]

[26] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber.
A Network Security Monitor. In Proceedings of the IEEE Symposium on Security
and Privacy, page 296, Los Alamitos, CA, USA, 1990. IEEE Computer Society.
[cited at p. 10]

[27] V. Hodge and J. Austin. A Survey of Outlier Detection Methodologies. Artif. Intell.
Rev., 22(2):85–126, 2004. [cited at p. 53]

[28] H. Hotelling. The generalization of student’s ratio. The Annals of Mathematical
Statistics, 2:360–378, 1931. [cited at p. 75, 77]

[29] W. Hu, Y. Liao, and V. R. Vemuri. Robust Support Vector Machines for Anomaly
Detection in Computer Security. In ICMLA, pages 168–174, 2003. [cited at p. 53]

[30] G. Keizer. ’Hackers’ deface UN site. Technical report, ComputerWorld Se-
curity, Aug. 2007. Available at http://www.computerworld.com/action/article.do?
command=viewArticleBasic&articleId=9030318. [cited at p. 3, 85]

[31] T. Kemp. Security’s Shaky State, 2005. Available at http://www.informationweek.
com/industries/showArticle.jhtml?articleID=174900279. [cited at p. 2]

[32] E. Kim and S. Kim. Anomaly detection in network security based on nonparametric
techniques. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–2, 2006. [cited at p. 76, 78]



BIBLIOGRAPHY 100

[33] G. H. Kim and E. H. Spafford. The design and implementation of tripwire: a file
system integrity checker. In CCS ’94: Proceedings of the 2nd ACM Conference on
Computer and communications security, pages 18–29, New York, NY, USA, 1994.
ACM Press. [cited at p. 8]

[34] J. Kirk. Microsoft’s U.K. Web site hit by SQL injection attack. Technical report,
ComputerWorld Security, Jun. 2007. Available at http://www.computerworld.com/
action/article.do?command=viewArticleBasic&articleId=9025941. [cited at p. 3]

[35] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press, December 1992.
[cited at p. 65]

[36] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for net-
work intrusion detection. In SAC ’02: Proceedings of the 2002 ACM symposium
on Applied computing, pages 201–208, New York, NY, USA, 2002. ACM Press.
[cited at p. 10, 75]

[37] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In CCS ’03:
Proceedings of the 10th ACM conference on Computer and communications security,
pages 251–261, New York, NY, USA, 2003. ACM Press. [cited at p. 10, 11, 52, 75]

[38] T. Lane and C. E. Brodley. An application of machine learning to anomaly de-
tection. In Proceedings of the Twentieth National Information Systems Security
Conference, volume 1, pages 366–380, Gaithersburg, MD, 1997. The National In-
stitute of Standards and Technology and the National Computer Security Center,
National Institute of Standards and Technology. [cited at p. 52]

[39] T. D. Lane. Machine learning techniques for the computer security domain of
anomaly detection. PhD thesis, Purdue University, 2000. Major Professor-Carla
E. Brodley. [cited at p. 52]

[40] P. Laskov, C. Schäfer, and I. V. Kotenko. Intrusion detection in unlabeled data
with quarter-sphere Support Vector Machines. In DIMVA, pages 71–82, 2004.
[cited at p. 54]

[41] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava. A Comparative
Study of Anomaly Detection Schemes in Network Intrusion Detection. In Proceed-
ings of the Third SIAM International Conference on Data Mining, San Francisco,
CA, 2003. SIAM. [cited at p. 11, 31, 49, 76, 77, 78]

[42] K. Li and G. Teng. Unsupervised svm based on p-kernels for anomaly detection.
First International Conference on Innovative Computing, Information and Control
- Volume II (ICICIC’06), 2:59–62, 2006. [cited at p. 52]

[43] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. Analysis and
Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation. In RAID ’00:



101 BIBLIOGRAPHY

Proceedings of the Third International Workshop on Recent Advances in Intrusion
Detection, pages 162–182, London, UK, 2000. Springer-Verlag. [cited at p. 31]

[44] W. Liu, X. Deng, G. Huang, and A. Y. Fu. An Antiphishing Strategy Based
on Visual Similarity Assessment. IEEE Internet Computing, 10(2):58–65, 2006.
[cited at p. 8]

[45] P. C. Mahalanobis. On the generalized distance in statistics. In Proceedings of the
National Institute of Science of India, volume 12, pages 49–55, 1936. [cited at p. 75,

77]

[46] M. Mahoney and P. Chan. Phad: Packet header anomaly detection for identifying
hostile network traffic. Technical report, Florida Tech., CS-2001-4, 2001. [cited at p. 53]

[47] J. McHugh. Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Laboratory.
ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000. [cited at p. 31]

[48] R. McMillan. Bad things lurking on government sites. Technical report, In-
foWorld, Oct. 2007. Available at http://www.infoworld.com/article/07/10/04/
Bad-things-lurking-on-government-sites 1.html. [cited at p. 3, 49]

[49] C. C. Michael and A. Ghosh. Simple, state-based approaches to program-based
anomaly detection. ACM Trans. Inf. Syst. Secur., 5(3):203–237, 2002. [cited at p. 10,

49]

[50] G. Mishne, D. Carmel, and R. Lempel. Blocking Blog Spam with Language Model
Disagreement. In 1st International Workshop on Adversarial Information Retrieval
on the Web (AIRWeb), Chiba, Japan, May 2005. AIRWeb. [cited at p. 12]

[51] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks
and support vector machines. In Neural Networks, 2002. IJCNN ’02. Proceedings
of the 2002 International Joint Conference on, volume 2, pages 1702–1707, 2002.
[cited at p. 78]

[52] S. Mukkamala, A. H. Sung, and A. Abraham. Modeling intrusion detection systems
using linear genetic programming approach. In IEA/AIE’2004: Proceedings of the
17th international conference on Innovations in applied artificial intelligence, pages
633–642. Springer Springer Verlag Inc, 2004. [cited at p. 66]

[53] P. Mutton. Italian Bank’s XSS Opportunity Seized by Fraudsters. Technical report,
Netcraft, Jan. 2008. Available at http://news.netcraft.com/archives/2008/01/08/
italian banks xss opportunity seized by fraudsters.html. [cited at p. 87]

[54] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection.
ACM Trans. Inf. Syst. Secur., 9(1):61–93, 2006. [cited at p. 10, 11, 49, 55, 75]



BIBLIOGRAPHY 102

[55] A. Ntoulas, J. Cho, and C. Olston. What’s New on the Web? The Evolution of the
Web from a Search Engine Perspective. In Proceedings of the 13th International
World Wide Web Conference, pages 1–12, New York, NY, USA, May 2004. ACM
Press. [cited at p. 9, 14]

[56] L. Page, S. Brin, M. Rajeev, and W. Terry. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford University, 1998. [cited at p. 12,

85, 93]

[57] E. Parzen. On estimation of a probability density function and mode. The Annals
of Mathematical Statistics, 33:1065–1076, Sept. 1962. [cited at p. 75, 78]

[58] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Networks, 51(12):3448–3470,
2007. [cited at p. 11]

[59] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. Soules, G. R. Goodson, and G. R.
Ganger. Storage-Based Intrusion Detection: Watching Storage Activity for Suspi-
cious Behavior. In Proceedings of the 12th USENIX Security Symposium, Washing-
ton, DC., Aug. 2003. USENIX. [cited at p. 8]

[60] D. Pulliam. Hackers deface Federal Executive Board Web sites. Technical report,
Government Executive, Aug. 2006. Available at http://www.govexec.com/story
page.cfm?articleid=34812. [cited at p. 3]

[61] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers
from large data sets. SIGMOD Rec, 29:427–438, 2000. [cited at p. 75, 76]

[62] R. Richardson. 2007 CSI Computer Crime and Security Survey. Security survey,
Computer Security Institute, 2007. [cited at p. 3]

[63] A. Sanka, S. Chamakura, and S. Chakravarthy. A dataflow approach to efficient
change detection of HTML/XML documents in WebVigiL. Comput. Networks,
50(10):1547–1563, 2006. [cited at p. 9]

[64] S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-fly web content integrity check
boosts users’ confidence. Commun. ACM, 45(11):33–37, 2002. [cited at p. 7]

[65] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors. In SP ’01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, page 144, Washington, DC,
USA, 2001. IEEE Computer Society. [cited at p. 10]

[66] J. Shavlik and M. Shavlik. Selection, combination, and evaluation of effective soft-
ware sensors for detecting abnormal computer usage. In KDD ’04: Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 276–285, New York, NY, USA, 2004. ACM Press. [cited at p. 11, 49, 52]



103 BIBLIOGRAPHY

[67] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A Novel Anomaly Detec-
tion Scheme Based on Principal Component Classifier. In Proceedings of the IEEE
Foundations and New Directions of Data Mining Workshop, in conjunction with the
Third IEEE International Conference on Data Mining (ICDM ’03), pages 172–179,
Melbourne, Florida, USA, 2003. IEEE. [cited at p. 11]

[68] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data integrity in storage: tech-
niques and applications. In StorageSS ’05: Proceedings of the 2005 ACM workshop
on Storage security and survivability, pages 26–36, New York, NY, USA, 2005. ACM
Press. [cited at p. 8]

[69] G. Smith. CRO website hacked. Technical report, SiliconRepublic.com, 2007. Avail-
able at http://www.siliconrepublic.com/news/news.nv?storyid=single7819 and visited
in April 30th 2007. [cited at p. 3, 85]

[70] G. Smith. CRO website hacked. Technical report, Silicon Republic, Feb. 2007. Avail-
able at http://www.siliconrepublic.com/news/news.nv?storyid=single7819. [cited at p. 3]

[71] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Trans.
Evolutionary Computation, 9(3):225–239, 2005. [cited at p. 66]

[72] K. N. Srijith. Analysis of the Defacement of Indian Web Sites. First Monday, 7(12),
2002. Available at http://firstmonday.org/issues/issue7 12/srijith/. [cited at p. 85]

[73] D. M. Tax and R. P. Duin. Data Domain Description using Support Vectors. In
ESANN, pages 251–256, 1999. [cited at p. 54]

[74] K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion detection.
In RAID, pages 203–222, 2004. [cited at p. 54]

[75] T. Xia, G. Qu, S. Hariri, and M. Yousif. An efficient network intrusion detec-
tion method based on information theory and genetic algorithm. In Performance,
Computing, and Communications Conference, 2005. IPCCC 2005. 24th IEEE In-
ternational, pages 11–17, 2005. [cited at p. 66]

[76] N. Ye, Q. Chen, S. M. Emran, and S. Vilbert. Hotelling t2 multivariate profiling for
anomaly detection. Proc. 1st IEEE SMC Inform. Assurance and Security Workshop,
2000. [cited at p. 77]

[77] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert. Multivariate Statistical Analysis of
Audit Trails for Host-Based Intrusion Detection. IEEE Transactions on Computers,
51(7):810–820, 2002. [cited at p. 11, 49]

[78] N. Ye, X. Li, Q. Chen, S. Emran, and M. Xu. Probabilistic techniques for intrusion
detection based on computer audit data. Systems, Man and Cybernetics, Part A,
IEEE Transactions on, 31:266–274, 2001. [cited at p. 77]



BIBLIOGRAPHY 104

[79] D.-Y. Yeung and C. Chow. Parzen-window network intrusion detectors. In Pattern
Recognition, 2002. Proceedings. 16th International Conference on, volume 4, pages
385–388, 2002. [cited at p. 78]

[80] C. Yin, S. Tian, H. Huang, and J. He. Applying Genetic Programming to Evolve
Learned Rules for Network Anomaly Detection. In Advances in Natural Compu-
tation, First International Conference, ICNC 2005, Proceedings, Part III, pages
323–331, 2005. [cited at p. 66]

[81] S. Zanero and S. M. Savaresi. Unsupervised learning techniques for an intrusion
detection system. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied
computing, pages 412–419, New York, NY, USA, 2004. ACM Press. [cited at p. 10, 75]

[82] X. Zhu and X. Wu. Class noise vs. attribute noise: a quantitative study of their
impacts. Artif. Intell. Rev., 22(3):177–210, 2004. [cited at p. 52, 53]

[83] Zone-H.org. Statistics on Web Server Attacks for 2005. Technical report, The
Internet Termometer, 2006. Available at http://www.zone-h.org/component/option,
com remository/Itemid,47/func,fileinfo/id,7771/. [cited at p. 1, 3, 4, 85]


