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ABSTRACT 

BACKGROUD. Dietary proteins are the source of the amino acids required by the 

body for tissue growth and maintenance. The Population Reference Intake (PRI) for 

proteins, as defined by the European Food Safety Authority (EFSA) for healthy adults, 

including the elderly, is 0.83 g/kg body weight/day. This amount is defined on the net 

balance of body protein (or “nitrogen balance”, given by the difference between dietary 

nitrogen intake and losses) equivalent to 0.66 g/kg/day plus a safety factor for 

interpersonal variability and differences in proteins quality of mixed diets. The PRI, 

however, is the minimum daily amount of protein needed to maintain the nitrogen 

balance and avoid a progressive loss of lean body mass in healthy people with moderate 

physical activity. Therefore nitrogen balance may not be adequate to define protein 

requirement in adults and especially in ageing characterized by loss of muscle mass and 

function (sarcopenia). Furthermore until recently the prevalent idea was that a protein 

intake above PRI had no further benefits and on the contrary could impair health. These 

believes are now under discussion, diets with higher protein intake have been shown 

beneficial in the prevention and treatment of conditions such as sarcopenia, COPD and 

type 2 diabetes mellitus. There is a need of more precise methods to define protein 

requirement. 

AIM. The aim of the present thesis is to investigate in human healthy volunteers new 

biomarkers adequate to define optimal protein intake. Recent studies have determined 

protein needs by measuring whole-body protein metabolism using stable labeled 

isotope-amino acids.  

METHODS. Our research group has applied two different metabolic methods based on 

the most widely used tracer, i.e. D5-Phe stable isotope, in two experimental bed rest 

campaigns (FP7 PLANHAB and INTERREG PANGaA) in healthy volunteers. BR is a 

suitable model to investigate physiologic adaptation to inactivity. 

MAIN RESUTLTS. FP7 PLANHAB. We applied the stable isotope infusion 

technique, to assess the effect of physical inactivity and/or hypoxic condition on whole 

body protein turnover as previously described in Biolo et al 2008. Chronic hypoxia has 

been associated with an overall reduction in protein synthesis and in total plasma and 

skeletal muscle protein content. During the PLANHAB study we investigated, through 

a crossover randomization, the net effects of 10 days normobaric hypoxia (4000 mt.), 

associated with either ambulatory conditions or BR, in 11 young (age 24±4 yr), healthy 

and normal weight male subjects maintained on eucaloric diets. Main results. Hypoxia 
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in ambulatory conditions significantly decreased whole body protein turnover by 

reducing both protein synthesis (-8±2%) and protein degradation (-8±3%). Hypoxia 

during bed rest did not caused significant changes in protein metabolism. 

INTERREG PANGaA. The skeletal muscle loss in aging is caused mainly by the 

“anabolic resistance” i.e. the inadequate increase in the rate of protein synthesis in 

response to nutritional-metabolic stimuli, including exercise, protein and amino acid 

intake as well as insulin and insulin-like growth factor stimulation. As a consequence, 

the net protein balance becomes negative leading to sarcopenia. The effects of ageing 

on the anabolic resistance induced by inactivity are poorly investigated. During the 

PANGeA study we had the opportunity to perform the second documented 

experimental BR in in healthy elderly volunteers and the first comparing aged with 

young subjects. To evaluate the anabolic resistance associated with ageing and 

inactivity, we enrolled 7 young (23±1yr) and 8 elderly (59±1yr) normal weight 

individuals, in a 14-d experimental BR protocol. We replaced our previous infusion 

method with a new, simpler, safer and quicker technique, by which tracers are given 

orally instead of parenterally, the all procedure is completed in two hours, instead of 6, 

and only two blood draws versus 7 are sufficient. Main results. At baseline parameters 

of anabolic sensitivity were comparable between young and elderly individuals. The 

anabolic resistance significantly increased after BR in both groups (bed-rest effect 

p<0.01), with a statistically significant bed-rest×group interaction (p=0.01). Anabolic 

resistance increased significantly in elderly (18.5%±7.3%) more than in young 

(5.2%±9.4%) subjects. 

DISCUSSION. In the PLANHAB study, hypoxia in ambulatory conditions reduced by 

the same level both protein synthesis and catabolism, as measured by isotope infusions, 

suggesting an adaptive mechanism: the lower energy production and availability 

induced by hypoxia associated with ambulatory condition. These modifications could 

not have been revealed by the use of nitrogen balance method, showing the relevance of 

more sophisticated analysis. The direct evaluation of the muscle protein metabolism 

through an infusion of stable-labeled isotope tracer, considered the golden standard 

methodology, gave us, in the PLANHAB study, reliable results in the early protein 

metabolism changes during hypoxia and/or BR. This method however has the limit of 

being complex, onerous and invasive, therefore being unsuitable for clinical evaluation. 

In the PANGeA study we could confirm the presence of a reduced sensitivity to 

anabolic stimuli in the elderly population compared to the young men. The elderly 

subjects are therefore, more at risk to develop changes of protein metabolism induced 
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by inactivity. The simpler, timesaving and less invasive method we have developed for 

the PANGeA study, on the other hand, could be applied to a wider ranges of 

experimental conditions and clinical settings. 
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1. INTRODUCTION 

1.1. Protein composition and metabolism 

Proteins are the major nitrogen components of the protoplasm of animal tissue, 

representing 50% of the dry weight of animal cells. They are formed by a sequence of 

amino acids (AA), the basic structural units, attached by covalent chemical bonds (i.e. 

peptide bond). AA are characterized by the presence of both a carboxyl group (R-

COOH) and an amino group (R-NH3), nitrogen being equivalent to about 16% of 

protein weight (Shils ME et al. 2006; Caballero B et al. 2012). There are 20 different 

AAs commonly classified in essentials, EAA (or indispensable), which, since their 

carbon skeleton cannot be synthetized by the animal body, need to be introduced by 

diet, and non-essentials, NEAA (or dispensable), made in the body from carbon and 

nitrogen precursors. In humans the EAA include: histidine, valine, isoleucine, leucine, 

lysine, methionine, phenylalanine, threonine, tryptophan, and possibly arginine, while 

the NEAAs are reported on figure 1. Cysteine and tyrosine are synthesized in the body 

from the EAAs methionine and phenylalanine. AAs are further divided in: dibasic 

(arginine lysine and histidine), diacidic (aspartic, glutamic acid), neutral-aliphatic 

(glycine, alanine, serine, threonine, cysteine, cystine, methionine and the three 

branched-chain AAs -BCAA- valine, leucine, isoleucine) and neutral-aromatic 

(phenylalanine, tyrosine and tryptophan). In the human body proteins have multiple 

roles. From structural to regulatory (e.g. hormonal activities) to functional (e.g. 

enzymes, muscle contraction, transport, osmolality regulation, etc.) (Shils ME et al. 

2006; Caballero B et al. 2012). 

Proteins, consumed with the diet are enzymatically hydrolyzed in the digestive system 

and them reach the peripheral circulation as free amino acids. These AAs mix with 

those coming from the tissues protein catabolism forming the circulating free AA pool. 

Amino acids follow one of the follow three major metabolic ways: a) incorporation into 

tissue proteins (protein synthesis); b) catabolism by oxidation and nitrogen excretion; c) 

synthesis of other nitrogen compounds, including purine bases, creatine and 

epinephrine. The absorbed AAs through the vena porta reach the liver, where, with the 

exclusion of the BCAAs, are catabolized at a rate influenced by the body requirements; 

therefore when EAA intake is elevated, their catabolism is also increased. Through this 

mechanism the liver regulates the amount of EAA obtained from the diet, which will be 

available to the rest of the body. A small portion of the absorbed EAAs is used for the 



 7 

synthesis of liver proteins and of visceral plasma proteins, secreted by the liver, 

including albumin, transferrin, pre-albumin, etc. Finally, about one quarter of the diet 

EAAs reach the general circulation. The BCAAs from the liver are transported to other 

tissues, being metabolized mainly by muscle and kidney. On the other hand, NEAA 

plasma concentration is not modified by the passage through the liver. The metabolic 

pathways of NEAAs are showed in figure 1 (Shils ME et al. 2006; Caballero B et al. 

2012). 

 
Figure 1. Metabolic pathways of the dispensable amino acids. 
From Shils ME et al. 2006.  
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Skeletal muscle is the major body site of protein metabolism, being the largest tissue in 

the body (Shils ME et al. 2006; Caballero B et al. 2012). Muscle protein synthesis 

(MPS) is influenced by AA availability after the intake of a meal containing proteins. 

The post-prandial anabolic response is followed in the post-absorptive period, by a 

catabolic phase (i.e. muscle protein breakdown, MPB) (Figure 2), the magnitude of 

these metabolic cycles being influenced by the quantity and quality of protein intake 

and the meal nutrient composition and pattern. During fasting the muscles release AAs, 

mainly as alanine and glutamine (with a daily loss equivalent to about 50g of protein in 

an 70kg individual) (Shils ME et al. 2006; Caballero B et al. 2012). Alanine is derived 

by transamination between pyruvate from glucose, and the amino-groups of AAs 

originating from MPB. Alanine carries nitrogen to the liver where gluconeogenesis 

takes place. Glucose is formed from the carbon skeleton of alanine, while the amino-

group is either converted to urea or transaminated. Glutamine, formed in skeletal 

muscle by transamination with glutamate, is transported to the intestine, where 50% 

gets transaminated to alanine, thereafter carried to the liver for gluconeogenesis and 

urea synthesis (Shils ME et al. 2006; Caballero B et al. 2012). Part of the glucose 

produced by gluconeogenesis in the liver returns to the muscles, the all process being 

called “glucose-alanine cycle” (Figure 2B).  

 

 

 
Figure 2. Substrate interorgan flow in the post-absorptive state (A) and in 
starvation (B).  
From Shils ME et al. 2006. 
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Fig. 1.13. Interorgan flow of substrates in the body to maintain energy balance in the postabsorptive state (A) and after adaptation to starvation 
(B). The schematic diagrams are patterned after the work of Cahill. In all states, energy needs of the brain must be satisfied. In the postabsorp-
tive state, glucose from liver glycogenolysis provides the majority of the glucose needed by the brain. After liver glycogen stores have been 
depleted (fasting state), gluconeogenesis from amino acids from muscle stores predominates as the glucose source. Eventually, the body adapts 
to  starvation by production and utilization of ketone bodies instead of glucose, thereby sparing amino acid loss for gluconeogenesis. AA’s, amino 
acids; Ala,  alanine; CO2, carbon dioxide; FFA, free fatty acids; Gln, glutamine; O2, oxygen; TG, triglycerides. (Redrawn with permission from Cahill 
GF Jr, Aoki TT. Partial and total starvation. In: Kinney JM, ed. Assessment of Energy Metabolism in Health and Disease. Report of the First Ross 
Conference on Medical Research. Columbus, OH: Ross Laboratories, 1980:129–34.)
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previously for those amino acids for which their carbon 
skeletons can be easily rearranged to form gluconeogenic 
precursors. The remaining amino acids released from 
protein breakdown and not used for gluconeogenesis may 
be oxidized. The amino acid N released by this process 
is removed from the body by incorporation into urea via 
synthesis in the liver and excretion into urine via the kid-
ney. Gluconeogenesis also occurs in the kidney, but the 
effect and magnitude are masked from AV measurements 
because the kidney is also a glucose consumer (112, 113).

Role of Skeletal Muscle in Whole Body 
Amino Acid Metabolism

An interesting observation from the early AV difference 
studies across the human leg and arm was that more than 
50% of the amino acids released from skeletal muscle was 
in the form of alanine and glutamine (114), yet alanine 
and glutamine comprise less than 20% of amino acids in 
protein (see Table 1.3). Several possible reasons exist for 
the release of alanine and glutamine from muscle in such 
large amounts. First, skeletal muscle oxidizes dispensable 
amino acids and the BCAAs in situ for energy. Because 
amino acid oxidation produces waste N and because 
NH3 is neurotoxic, release of waste N as NH3 must be 
avoided. Given that both alanine and glutamine are  readily 
synthesized from intermediates derived from glucose 
(alanine from transamination of pyruvate from glycolysis, 

and glutamine from a-ketoglutarate), they are excellent 
vehicles to remove waste N from muscle while avoiding 
NH3 release. Alanine removes one and glutamine removes 
two Ns per amino acid. These observations led to the pro-
posal of a glucose-alanine cycle in which glucose made by 
the liver is taken up by muscle where glycolysis liberates 
pyruvate. The pyruvate is then transaminated to alanine 
and is released from muscle. That alanine is extracted by 
the liver and is transaminated to pyruvate, which is then 
used for glucose synthesis (114). This scheme has been 
expanded to explain the utilization of BCAAs by muscle 
for energy and disposal through alanine of their amino-N 
groups. Such a scheme resolves a problem related to the 
BCAAs. In contrast to the other IDAAs that are metabo-
lized only in liver, the BCAAs are readily oxidized in other 
tissues, especially muscle.

Metabolic Adaptation to Fasting and Starvation

As indicated in Figure 1.13A, lipolysis (breakdown of 
adipose triglyceride to free fatty acids and glycerol) plays 
a lesser role in postabsorptive energy supply, especially 
to the brain. Glycogen stores are limited, however, and 
become depleted in less than 24 hours. That point in time 
when liver glycogen stores are exhausted is by definition 
the beginning of the fasting state. Now glucose needs of 
the brain must be met completely by gluconeogenesis, 
which means sacrificing amino acids from protein. Because 

MNHD11e_CH001.indd   25MNHD11e_CH001.indd   25 09/24/12   5:00 PM09/24/12   5:00 PM
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The plasma levels of amino acids are also affected by dietary carbohydrate through a 

mechanism involving insulin secretion. After digestion of dietary carbohydrates and 

monosaccharaides absorption, the raising plasma glucose concentration stimulates 

insulin secretion, favoring an increased insulin-mediated transport of most plasma 

amino acids into the muscle cells (Caballero B et al. 2012). This effect is maximal for 

BCAAs, whose plasma levels can fall as much as 40% after glucose intake (Caballero B 

et al. 2012). 

When amino acids are degraded for energy rather than entering in anabolic pathways, 

the ultimate products are CO2 and water, produced through the pathways of 

intermediary metabolism involving the tricarboxylic acid cycle, and urea, whose 

synthesis allows the removal of toxic metabolites, such as ammonia (Shils ME et al. 

2006; Caballero B et al. 2012). 

The whole body protein turnover is the result of protein synthesis and breakdown 

processes (Antonione R et al. 2008). 

1.1.1. Protein synthesis 

At the molecular level, regulation of protein synthesis depends both on transcriptional 

and translational mechanisms. The concentration of ribosomes in tissues determines the 

capacity for protein synthesis, therefore controlling the protein turnover rate. The 

concentration of ribosome, inside the cells is influenced by nutrient intake (protein and 

energy) and hormones (i.e. insulin, thyroid, growth hormone and glucocorticoids). The 

regulation of the translational processes is exerted mainly through initiation, with 

reversible phosphorylations known to control at least four separate steps of the initiation 

cycle. This allows very rapid changes in protein synthesis. Peptide hormones (insulin 

and insulin-growth factor 1, IGF-1), glucocorticoids and amino acids have all been 

implicated in such regulation.  

Studies performed in experimental cell models have revealed the importance of Akt 

factors (also called protein kinase B) in the regulation of protein synthesis in skeletal 

muscle. Akt factors are serine/threonine-specific protein kinases playing a critical role 

in muscle hyperthrophy (Bodine SC et al., 2001). Activation of signaling cascades 

involving IGF-1 and phosphatidylinositol 3-kinase (PI3K) induces Akt phosphorylation 

and activation (Bodine SC et al., 2001). Akt, in turn, activates the eukaryotic translation 

initiation factor 2B (eIF2B) by stimulation of glycogen synthase kinase-3β (GSK-3β) 

(Rhoads RE 1999). In parallel, Akt can activate initiation of protein translation 
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stimulating p70S6 kinase (p70S6K) by mammalian target of rapamycin (mTOR) 

protein-kinase (Terada N et al., 1994). Interestingly, a period of resistance training 

exercise induces muscle hypertrophy associated with increases in phosphorylated Akt, 

GSK-3b and mTOR (Leger B et al., 2009). 

Insulin is a potent anabolic stimulus for MPS (Fujita, S et al. 2006). Insulin deficiency 

leads to a protein catabolic state with loss of muscle mass, reversible only by insulin 

therapy (Abu-Lebdeh HS & Nair KS 1996). Nonetheless, the mechanisms by which 

insulin enhances muscle protein anabolism are still debated (Biolo G et al 1995; Nygren 

J & Nair KS 2003; Wolf RF et al 1992; Denne SC et al 1991; Heslin MJ et al 1992; 

Moller-Loswick AC et al 199). Some studies reported that this effect was due to an 

increase in protein synthesis with no major changes, or some reduction, in proteolysis 

(Biolo G et al 1995; Nygren J & Nair KS 2003; Wolf RF et al 1992); other studies 

found a significant reduction in protein degradation with no significant changes in 

protein synthesis (Denne SC et al 1991; Heslin MJ et al 1992; Moller-Loswick AC et al 

1994). 

A stimulatory effect of insulin on protein synthesis has been demonstrated in various 

tissues, including skeletal muscle (Garlick PJ & Grant I 1988; O’Connor PM et al 

2003). Furthermore, recent human experiments have shown that insulin can acutely 

stimulate muscle protein synthesis by increasing the initiation of mRNA translation 

(Guillet C et al 2004; Kimball SR et al 1997). Insulin can also reduce protein 

breakdown by stabilizing lysosomes and reducing the activity of the ubiquitin-

proteasome pathway (Lee SW et al 2004). 

Protein intake and amino acid availability are key regulators of muscle protein 

synthesis. Acute AA administration up regulates muscle protein synthesis and such 

effect is enhanced if the intake is associated with resistance or aerobic exercise (Biolo G 

et al., 1997). In contrast to exercise, the anabolic efficiency of amino acid 

administration is decreased during inactivity. The stimulatory effect of an amino acid 

load on whole body protein synthesis in healthy volunteers at the end of a period of 

experimental bed rest was reduced (-20%), when compared to individuals with normal 

physical activity (Biolo G et al., 2004). Furthermore during bed rest, the rate of protein 

turnover, in the fasting state, was decreased both at skeletal muscle and whole body 

levels (Biolo G et al., 2004). Other studies showed that dietary protein restriction (i.e., 

0.6g protein/kg/d) led to 23% suppression of whole body protein turnover, in the fasting 

state, when compared to adequate levels (i.e., 1.0g protein/kg/d) of protein intake 

(Stuart CA et al., 1990). Other Authors, maintained leg mass and ameliorated the 
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muscle strength losses following 4 weeks bed rest by a daily supplementation of about 

50g of essential amino acids (Paddon-Jones D et al., 2004). 
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1.1.2. Protein breakdown 

Several proteolytic systems can contribute to the degradation of muscle proteins, among 

these, the most relevant are the following: 

• The lysosomal-autophagic system which is present in all cells and involves acid 

proteinases (i.e. cathepsins), active within a vacuolar structure capable of engulfing and 

degrading complete organelles, ribosomes, as well as intracellular proteins and proteins 

entering the cells via endocytosis. 

• The ubiquitin-proteasome ATP-dependent system, widely distributed among 

tissues, is characterized by relative broad protein specificity for the hydrolysis of 

proteins and peptides. It involves two components: a) the recognition system 

responsible for targeting the protein substrates toward proteolysis and b) the 

multifunctional proteasome, causing the proteolysis. In the proteasome system, 

degradation is carried out by the 26S subunit (Grune T et al., 2003; Grune T & Davies 

KJ 2003), which is composed by the 20S and by the regulatory 19S complex, the latter 

playing an important role in adenosine triphosphate (ATP)-dependent degradation 

(DeMartino GN & Ordway GA 1998). Protein substrates are marked for degradation in 

the 26S proteasome pathway by covalent addition of ubiquitin. This requires the 

ubiquitin- activating enzyme (E1), specific ubiquitin-conjugating enzymes (E2), and 

ubiquitin protein ligase enzymes (E3). The ubiquitin E3 ligases, atrogin1 and muscle 

ring finger-1 (MuRF-1), are involved in skeletal muscle atrophy (Bodine SC et al. 2001; 

Gomes MD et al., 2001). MuRF-1 was shown to be directly and indirectly upregulated 

by Forkhead family of transcription factors (FoXO) (Stitt TN et al., 2004) and by the 

NF-kB transcription factor (Sandri M et al., 2004). Ubiquitinated proteins are 

recognized and bound by the 19S regulators of the 26S proteasome, that removes the 

polyubiquitin chain and unfolds the substrate protein for final degradation into the 20S 

core proteasome (Grune T et al., 2003). 

• The calcium-activated calpain and calpastin pathway is responsible for the 

initiation of proteolysis. In vitro and animal studies, showed that Ca2+-activated 

proteases (Calpain) and the proteasome system play important roles in muscle protein 

breakdown during muscle atrophy (Furuno K & Goldberg AL 1986; Ikemoto M et al., 

2001; Purintrapiban J et al., 2003). Moreover, caspase-3 may also contribute to selected 

forms of muscle atrophy (Du J et al., 2004). Actomyosin complexes represent 50–70% 

of muscle proteins (Tidball JG & Spencer MJ 2002). The proteasome system can 

degrade only monomeric contractile proteins (i.e. actin and myosin) (Goll DE et al., 
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2003), which, therefore, must be released from actomyosin complexes to be degraded 

by the proteasome (Goll DE et al., 2003). Both calpain and caspase-3 can play a key 

role in producing actomyosin disassociation (Du J et al., 2004; Goll DE et al., 2003; 

Tidball JG & Spencer MJ 2002). Calpain activity is increased by an elevation in 

cytosolic calcium concentrations (Goll DE et al., 2003). Caspases are cascade-activated 

proteases triggered by several signaling pathways (Primeau AJ et al., 2002): whose 

activation can result in protein breakdown and apoptosis. 
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1.2. Protein requirement in adults 

Daily protein requirement is influenced by multiple factors the most relevant being the 

obligatory nitrogen losses which were measured in fasting subjects, with stable body 

weight, with modest levels of physical activity (Shils ME et al. 2006; Caballero B et al. 

2012; Guarnieri G et al 1998). On the average this value is equal to 4,4 g/day, about 27 

g of proteins considering a conversion factor of 6,25 (1g N = 6.25g protein), being 

nitrogen about 16 % of proteins by weight. This minimum protein requirement (0.34 

g/kg/day) were raised to 0,8 g/day to adjust for the individual variability and for factors 

such as the differences in biological values and of the net protein utilization of proteins 

from different food sources. The biological value (BV) of proteins is an index of the 

body capacity to utilize them in anabolic processes. It is equal to the ratio between the 

retained nitrogen, RN and the absorbed nitrogen AN.  

VB = RN/AN. 

Where 

AN = [Nitrogen intake – (nitrogen excreted in the feces after the intake of proteins – 

nitrogen excreted on an aproteic diet)] 

and  

RN= AN – (urinary nitrogen after the intake of proteins – urinary nitrogen excreted on 

an aproteic diet). 

Proteins from animal sources have higher biological values than those from vegetable 

food. The net protein utilization (NPU) defines, besides biological value also protein 

digestive efficiency and it is equal to the ratio between the retained and the dietary 

nitrogen (nitrogen intake). 

NUP=R/I. 

The correction factor for the definition of protein requirements considers an NPU of a 

mixed diet, with proteins from different sources. The NPU of various proteins present in 

the same food may also differ, as in the case of milk proteins, with whey and casein 

being considered respectively a fast protein and a slow protein, in reaching the sites of 

body protein synthesis (Shils ME et al. 2006; Caballero B et al. 2012; Guarnieri G et al 

1998).  
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1.2.1. Recommended dietary allowances for protein in adults 

The latest recommended dietary allowances (RDAs) in the USA, Europe and Italy have 

maintained the indication for a daily protein intake of 0,8 g/kg body weight, in all 

healthy adults, males and females, excluding pregnancy or lactation, independently 

from age (World Health Organization (WHO) 2007; European Food Safety Authority 

(EFSA) 2012). The adaptation of the body to a low or zero nitrogen intake is shown in 

figure 3: urinary N excretion drops dramatically in response to the protein-deficient diet 

over the first 3 days and thereafter stabilize a new lower level of N excretion by day 8.  

 

 
Figure 3. Physiological adaptation to a low or absent nitrogen intake 
From Caballero B et al. 2012 

Table 1 also illustrates how urea production is related to N intake and how the body 

adapts oxidation of amino acids to their supply.  

Table 1. Physiological nitrogen-related urea production in the body 

 
From Caballero B et al. 2012 
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placement of healthy subjects on a diet containing a mini-
mal amount of protein. As shown in Figure 1.7, urinary N 
excretion drops dramatically in response to the protein-
deficient diet over the first 3 days and stabilizes at a new 
lower level of N excretion by day 8 (40).

The N end products excreted in the urine are end prod-
ucts not only of amino acid oxidation (urea and NH3) but 
also of other species such as uric acid from nucleotide deg-
radation and creatinine (Table 1.8). Fortunately, most of 
the nonurea, non-NH3 N is relatively constant over a vari-
ety of situations and is a relatively small proportion of the 
total N in the urine. Most of the N is excreted as urea, but 
NH3 N excretion will increase significantly when subjects 
become acidotic, as is apparent in Table 1.8, when subjects 
have fasted for 2 days (41). Table 1.8 also illustrates how 
urea production is related to N intake and how the body 
adapts its oxidation of amino acids to follow amino acid 
supply. In other words, with an ample supply, excess amino 
acids are oxidized and urea production is high, but with an 
insufficient supply of dietary amino acids, amino acids are 
conserved and urea production is greatly decreased.

N appears in the feces because the gut does not 
completely absorb all dietary protein and reabsorb all N 
secreted into the gastrointestinal tract (see Fig. 1.6). In 
addition, N is lost from skin via sweat as well as through 
shedding of dead skin cells. Moreover, additional losses 
occur through hair, menstrual fluid, nasal secretions, and 
so forth. As N excretion in the urine decreases in the case 
of subjects on a minimal protein diet (Fig. 1.7), it becomes 
increasingly important to account for N losses through 
nonurine, nonfecal routes (42). The loss of N by these var-
ious routes is shown in Table 1.9. Most of the losses that 
are not readily measurable are minimal (,10% of total N 
loss under conditions of a protein-free diet in which adap-
tation has greatly reduced urinary N excretion) and can be 
discounted by use of a simple offset factor for nonurine, 
nonfecal N losses. Where the assessment of losses comes 
into play is in the finer definition of where zero balance 
occurs as a function of dietary protein intake for the pur-
pose of determining amino acid and protein requirements. 
As discussed later, small changes in N balance corrections 
make significant changes in the assessment of protein 
requirements using N balance.

Although the N balance technique is useful and simple, 
it provides no information about the inner workings of the 
system. An interesting analogy for the N balance technique 
is illustrated in Figure 1.8, in which the simple model of 
N balance is represented by a gumball machine. Balance 
is taken between “coins in” and “gumballs out.” We should 
not come to the conclusion that the machine turns coins 
into gum, however, even though that conclusion is easy 
to reach with the N balance method. What the N balance 
technique fails to provide is information about what occurs 
within the system (i.e., inside the gumball machine). Inside 
the system is where the changes in whole body protein syn-
thesis and breakdown actually occur (shown as the smaller 
arrows into and out of the Body N Pool in Figure 1.8). A 
further illustration of this point is made at the bottom of 
Figure 1.8, in which a  positive increase in N balance has 
been observed going from zero (case 0) to positive balance 
(cases A to D). A positive N balance could be obtained 
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Fig. 1.7. Time required for urinary nitrogen (N) excretion to stabilize 
after changing from an adequate to a deficient protein intake in young 
men. Horizontal solid and broken lines are mean 61 standard devia-
tion for N excretion at the end of the measurement period. (Data from 
Scrimshaw NS, Hussein MA, Murray E et al. Protein requirements of 
man: variations in obligatory urinary and fecal nitrogen losses in young 
men. J Nutr 1972;102:1595–604, with permission.)

TABLE 1.8  COMPOSITION OF THE MAJOR NITROGEN-
CONTAINING SPECIES IN URINE

N SPECIES
HIGH-PROTEIN 
DIET (g N/d)

LOW-PROTEIN 
DIET

FASTING 
(DAY 2)

Urea 14.7 (87%) 2.2 (61%) 6.6 (75%)
Ammonia  0.5 (3%) 0.4 (11%) 1.0 (12%)
Uric acid  0.2 (1%) 0.1 (3%) 0.2 (2%)
Creatinine  0.6 (4%) 0.6 (17%) 0.4 (5%)
Undetermined  0.8 (5%) 0.3 (8%) 0.5 (6%)
Total 16.8 (100%) 3.6 (100%) 8.7 (100%)

N, nitrogen.

Data from Folin (1905) and Cathcart (1907), cited in Allison JB, Bird 
JWC. Elimination of nitrogen from the body. In: Munro HN, Allison 
JB, eds. Mammalian Protein Metabolism. New York: Academic Press, 
1964:483–512, with permission.

TABLE 1.9  OBLIGATORY NITROGEN LOSSES BY MEN ON 
A PROTEIN-FREE DIET

DAILY NITROGEN LOSS
AS NITROGEN 
(mg N/kg/day)

AS PROTEIN EQUIVALENT 
(g PROTEIN/kg/day)

Urine 38 0.23
Feces 12 0.08
Cutaneous  3 0.02
Other  2 0.01
Total 54 0.34
Upper limit 
(12 standard 
deviations)

70 0.44

Data from Munro HN. Amino acid requirements and metabolism and 
their relevance to parenteral nutrition. In: Wilkinson AW, ed. Parenteral 
Nutrition. London: Churchill Livingstone, 1972:34–67, with permission.
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In other words, with a high intake, excess amino acids are oxidized and urea production 

is high, but with an insufficient supply of dietary amino acids, amino acids are 

conserved and urea production is greatly decreased (Shils ME et al. 2006; Caballero B 

et al. 2012; Guarnieri G et al 1998). A reduced protein intake increases the efficiency of 

nitrogen retention and may therefore not be indicative of an improved tissue protein 

anabolism. The validity of nitrogen balance in the definition of protein requirement 

have been therefore questioned. Furthermore, any change in protein intake requires time 

to reflect metabolic changes. Methods of assessment may also not be precise, collection 

of urine may not be complete over the 24 hours and it is difficult to estimate 

unmeasurable nitrogen losses through non-urinary, non-fecal routes (Shils ME et al. 

2006; Caballero B et al. 2012; Guarnieri G et al 1998), shown in Table 2. 

Table 2. Physiological nitrogen-related urea production in the body 

 
From Caballero B et al. 2012 

Recent studies have shown that nitrogen requirements are increased in the elderly or 

during acute and chronic illnesses, as being confirmed through higher-level 

methodologies.  
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nonfecal N losses. Where the assessment of losses comes 
into play is in the finer definition of where zero balance 
occurs as a function of dietary protein intake for the pur-
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As discussed later, small changes in N balance corrections 
make significant changes in the assessment of protein 
requirements using N balance.

Although the N balance technique is useful and simple, 
it provides no information about the inner workings of the 
system. An interesting analogy for the N balance technique 
is illustrated in Figure 1.8, in which the simple model of 
N balance is represented by a gumball machine. Balance 
is taken between “coins in” and “gumballs out.” We should 
not come to the conclusion that the machine turns coins 
into gum, however, even though that conclusion is easy 
to reach with the N balance method. What the N balance 
technique fails to provide is information about what occurs 
within the system (i.e., inside the gumball machine). Inside 
the system is where the changes in whole body protein syn-
thesis and breakdown actually occur (shown as the smaller 
arrows into and out of the Body N Pool in Figure 1.8). A 
further illustration of this point is made at the bottom of 
Figure 1.8, in which a  positive increase in N balance has 
been observed going from zero (case 0) to positive balance 
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1.2.2. Tracer methods to define amino acid kinetics.  

Tracers are compounds, chemically identical to the endogenous metabolites, but with 

one or more atoms substituted by its nonradioactive stable isotope, thus allowing a 

“labeling” useful to follow the metabolic fate of the compound (the tracee) being 

evaluated (Wolfe RR, 2002). This substitution makes the tracers distinguishable and 

measurable from the normal metabolites (Wolfe RR, 2002). Because isotopes differ 

only in the number of the constituent neutrons they can be identify by mass 

spectrometry (GCMS). The molar ratio of the amount of tracer isotope divided by the 

amount of unlabeled material is called “tracer-to-tracee ratio” (TTR) or enrichment 

(Wolfe RR, 1992). Isotopic methods are frequently used to study protein and amino 

acid metabolism. Amino acids are constantly exchanged between the intracellular and 

the extracellular pools, through the action of specific transporter. Amino acids from 

intracellular protein catabolism enter the intracellular pool and can then follow three 

paths: protein synthesis, catabolism inside the cell or passage into the plasma. Amino 

acids have a Rate of Appearance (Ra) in the intracellular pool, since they can either 

derive from plasma and/or protein catabolism, and a Rate of Disappearance (Rd) due to 

their incorporation in a protein or degradation. Generally it is assumed that during the 

study period every amino acid entering in the protein pool will be, either metabolized or 

incorporated in to a protein, with an irreversible loss (Wolfe RR, 1992).  

Furthermore it is also assumed that when the enrichment of the tracer in the pool is at 

the plateau (i.e. isotopic equilibrium) the Ra of the compound (endogenous production 

+ exogenous infusion) is equal to its Rd: 

 

Ra=Rd 

 

If the tracer is administered through a constant infusion, the kinetics is described by the 

single-pool model. When the isotopic equilibrium is reached, the Ra of the tracee can be 

calculated as the ratio between the amount of the infused tracer and the isotopic 

enrichment at its plateau. A priming dose (bolus), at the start of the infusion, allows to 

reduce the time required to reach the isotopic equilibrium (Wolfe RR, 1992).  

Isotopic methods are applied through the following techniques:  

1. Precursor incorporation 

2. Tracer dilution 
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The precursor incorporation technique requires a constant infusion of a tracer, usually 

after priming bolus, to measure, when reaching the isotopic equilibrium, anabolism 

from its incorporation rate into a protein (Wolfe RR, 1992). The tracer dilution 

technique is applied to measure the Ra and the Rd of a metabolite in a given pool. Since 

the tissues do not separate the tracer form the trace, the Rd does not modify the tracer 

substrate ratio, therefore any isotopic enrichment change is the consequences of the 

dilution effects of the unlabelled substrate (Wolfe RR, 1992). 

The most frequently used stable-labelled isotopes for the investigation of protein 

metabolism are: 15N-Glycine, 13C-Leucine, 15N-Leucine, L-[ring-2H5]-Phenylalanine. 

L-[ring-2H5]-Phenylalanine (D5-Phe) is very useful in the study of protein metabolism. 

This essential amino acid is not peripherally catabolized, therefore, in the fasting state, 

its irreversible disappearance from the pool can be due only to protein synthesis or 

irreversible hydroxylation to tyrosine. On the other side, the appearance of the 

unlabelled phenylalanine can only derive from protein catabolism. Thus the 

administered D5-Phe produces an amount of 2H4-Tyrosine (D4-Tyr) indicative of net 

protein catabolism. If together with the labelled phenylalanine a labelled tyrosine is 

administered (e.g. 2H2-Tyr), it is possible to determinate the rate of phenylalanine 

hydroxylation (Figure 4) (Matthews DE 2007). 

 

 
Figure 4. Phenylalanine and tyrosine kinetics in human 

 

These methods, when requiring intravenous infusions of an extemporarily-made 

solutions, administered through two catheters, imply the preparation of apyretic and 

aseptic infusate, a process which needs a dedicated area and controlled conditions, not 

always readily available. Furthermore, the infusion protocols are usually time-

consuming needing up to 6 to 7 hours. All these factors can reduce the compliance of 

the examined subjects and increase costs and efforts. 

There are also other methods limitation that should be taken in to account. The model 

shown in the figure 4 assumes that all proteins have a slow turn-over and therefore will 
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not modify the amino acids entering and living the pool, from catabolism and synthesis 

respectively. However some proteins have a very short half-life (e.g. enzymes) (Wolfe 

RR, 1992). 
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1.3. Factors influencing protein requirements in different conditions. 

As argued above, the guidelines for dietary protein need traditionally consider a similar 

requirement for all adults, regardless of age or sex (0.8g/kg/day of protein) (WHO 

2007; EFSA 2012). However, new evidences (Bauer J et al. 2014) have shown that a 

higher dietary protein intake is effective to support good health, promote recovery from 

illness and preserve functionality in elderly subjects (aged over 65 years) (Walrand S et 

al 2011; Gaffney-Stomberg E et al 2009; Kurpad AV& Vaz M 2000; Morse MH et al 

2001; Chernoff R. 2004; Morley JE et al 2010). An increased consumption of proteins 

with diet can overcome the decline of the anabolic response to dietary protein, and 

offset inflammatory and catabolic states associated with chronic and acute disease. 

These conditions occur often in elderly individuals (Walrand S et al 2011), whose 

generally consume less protein than young adults (Bauer J et al. 2014). An insufficient 

protein provision can also lead to loss of muscle mass and strength and, as a 

consequence, older people are at higher risk for conditions such as sarcopenia and 

osteoporosis than are younger individuals (CederholmTE, et al 2011; Cruz-Jentoft AJ et 

al 2010; De Souza et al 2010). 

1.3.1. Sarcopenia 

Sarcopenia from the Greek σάρξ, "flesh" and πενία, "paucity" defines a condition 

characterized by reduced muscle mass, associated with loss of strength or performance. 

The European Working Group on Sarcopenia in Older People (EWGSOP) has recently 

defined sarcopenia as a “syndrome characterized by progressive and generalized loss of 

skeletal muscle mass and strength, with a risk of adverse outcomes such as physical 

disability, poor quality of life and death.” (Cruz-Jentoft AJ et al. 2010). Moreover, The 

EWGSOP group classified sarcopenia as primary (or age related, associated with the 

physiological changes induced by the aging process), and secondary (caused by other 

factors such as inactivity, illnesses and nutritional problems, including malabsorption or 

other gastrointestinal disorders or medications, causing appetite loss). Recently, 

however, some authors disagreed with this etiological classification since in most cases, 

muscle loss is induced by multiple factors, difficult to identify separately (Biolo G et al. 

2014). This is particularly true in the ageing population, characterized by a higher 

prevalence of chronic and acute diseases. 
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Causes and consequences  

Sarcopenia and the associated body composition changes are caused by multiple factors 

including the so called “anorexia of aging”, i.e. reduced food intake, seen with 

advancing age, hormonal changes, such as reduced synthesis of growth and sex 

hormones, resistance to leptin, insulin and thyroid hormones, and neurodegenerative 

processes. Other contributing factors include hereditability, intake of proteins (type and 

quantity) and energy, vitamin D status, physical inactivity, increased adiposity and 

chronic and acute diseases (Bauer J et al. 2013) (Figure 5).  

Aging is characterized by changes in protein metabolism: protein turnover is reduced 

with lower protein synthesis and increased catabolism, leading to a net decline in 

protein synthesis. These changes are sustained by a higher splanchnic extraction of 

amino acids, that impairs their availability, a blunted response to the anabolic stimulus 

(anabolic resistance) of protein feeding and a reduced anticatabolic effect of insulin. 

 

 
Figure 5. Loss of skeletal muscle mass and function characterize sarcopenia of 

both aging and diseases.  
From Biolo et al 2014 

 

4.2. Energy expenditure and muscleefat interaction

Skeletal muscle mass is a major determinant of daily energy
expenditure at rest and during physical activity. In physiological
conditions, the metabolic rate of skeletal muscle accounts for about
20% of whole body resting energy expenditure.51 When measured
by indirect calorimetry, resting metabolic rate is strictly propor-
tional to lean body mass. In 6-week experimental bed rest studies
in healthy young volunteers, muscle disuse atrophy was associated
with 38% decrease in energy expenditure for physical activity52 and
with 6% decrease in resting energy expenditure, i.e., about 30e
40 kcal/day for each kg of lean body mass lost throughout the
experimental period.53 Energy expenditure and requirement are
greatly decreased in patients with severe inactivity-related sarco-
penia.54 In patients with muscle wasting, energy requirement,
calculated by equations based on body weight, is constantly over-
estimated.55 Thus, in all conditions of muscle disuse atrophy energy
requirement is decreased due to reductions in both resting and
activity-related energy expenditure. The rate of fat deposition tends
to increase, especially at the abdominal level,56 leading to activa-
tion of systemic inflammation57,58 and insulin resistance.59e61

These alterations enhance the catabolic effect of inactivity.58 This
vicious cycle (Fig. 4), that leads to progressive muscle loss and fat

gain, is frequently observed in some patients with chronic diseases
and cancer as well as in sedentary lifestyle and in aging. In fact, total
energy expenditure decreases substantially in aging resulting from
parallel changes in resting metabolic rate and activity.62 Resting
metabolic rate may be increased in selected chronic diseases.
Amyotrophic lateral sclerosis is characterized by severe disuse at-
rophy, while resting energy expenditure is increased leading to
weight loss and cachexia.63,64 Hypermetabolism may also occur in
sub-groups of stable patients with LC or COPD.65,66 Hypermetabolic
patients suffering from chronic diseases have a poor prognosis. The
origins of such hypermetabolism need to be elucidated.

4.3. Impaired contractility and muscleebone interaction

Although muscle mass determines contraction strength, clear
evidence indicate that the relationship between muscle mass and
contractile function is highly variable. Strength does not decrease
proportionally to muscle mass.67 Decreased contractility leads to
loss of strength (i.e., dynapenia), fatigue, disability and falls,
impaired pulmonary ventilation as well as to osteoporosis and
fractures due to reduced mechanical bone stimulation.4 Dynapenia
is a key determinant of quality of life and an indicator of loss of
independence in chronically ill patients and in the elderly. Muscle
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Besides amino acid availability, physical activity, with muscle loading, also exerts 

anabolic effects, both in muscles and in bones. Inactivity is common in the elderly, 

caused by loss of strength, overweight, balance and locomotion disturbances, fear of 

falls, low motivation and presence of diseases (Biolo G et al. 2014). This sedentary 

lifestyle may contribute to the decline of mass and function in muscle and bone tissues. 

Bed rest, that is a condition of prolonged and total muscle unloading, in experimental 

condition, causes a loss of 3-5% of lean body mass in young healthy subjects (Biolo G 

et al. 2014). 

The loss of muscle mass in sarcopenic subjects causes a reduction in the basal metabolic 

rate and in physical activity energy requirements (Biolo G et al. 2014). These changes, 

if not compensated by lower energy intake, or by a heightened energy expenditure, 

through increased physical activity, as often is the case with ageing, may lead to an 

increased fat deposition (Biolo G et al. 2014). Furthermore physical inactivity itself 

leads within a two weeks, short term period to an accumulation of visceral fat, and 

insulin resistance, as shown in young subjects who reduced experimentally their level of 

physical activity to about 15% of the basal level (Biolo G et al. 2014). Sarcopenia 

therefore is generally associated with an increase in the percentage of body fat which 

can lead to a condition called sarcopenic obesity (Biolo G et al. 2014). This rise in fat 

mass is observed in both sexes and at any given BMI, being present even in normal or 

underweight individuals. Two different pathways can lead to sarcopenic obesity, the 

first is that associated to conditions of positive energy balance, from overfeeding, or 

long-term inactivity, in otherwise healthy individuals (Biolo G et al. 2014), the second 

is observed in selected inflammatory states such as COPD, rheumatoid arthritis, chronic 

kidney disease or chronic hearth failure (Prado CM et al. 2012). In these conditions the 

increased level of cytokines and the hormonal changes are not associated with appetite 

loss, thus fat mass is preserved or even increased (Biolo G et al. 2014). The so called 

“obesity paradox” may be explained on the basis of a larger skeletal muscle mass in 

overweight subjects induced by their higher body mass (Kalantar-Zadeh K et al. 2005). 

Fat tissue is mostly expanded at the visceral or abdominal level, with an increase in 

waist circumference, observed more frequently in females. Furthermore there is an age 

related deposition of ectopic fat at the intra-muscular, intra-hepatic and intra-pancreatic 

levels. Enlarged visceral adipocytes and activated macrophages, attracted in the adipose 

tissue by adipocyte secreted chemokines, release hormones and cytokines such as 

adiponectin, leptin, tumor necrosis factor and interleukin 6 (IL-6), giving rise to an 

inflammatory response and to insulin resistance. A higher release of free fatty acids 
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further contributes to the insulin resistance. TNF-α has direct inhibitory effects on 

insulin signaling and also increases the release of free fatty acids (FFA) from adipose 

tissue. These changes increase the risk of developing type II diabetes, metabolic 

syndrome and cardiovascular complications (Biolo G et al. 2014).  

Recently it has been shown that, besides fat tissue, also skeletal muscle can be 

considered an endocrine organ, producing peptides both anabolic (insulin-like growth 

factor, IL-15) and catabolic (myostatin) and cytokines, called myokines including IL-6, 

IL-8 and IL-15 (produced during muscle contraction) (Biolo G et al. 2014). Physical 

activity increases the muscle synthesis of IL-6 with useful metabolic consequences such 

an increased local glucose uptake and fat oxidation, a higher gluconeogenesis in liver 

and lipolysis in adipose tissue. IL-15 plays anabolic activity in skeletal muscle and has a 

role in lipid metabolism. 

Sarcopenia, by reducing strength and function, leads to poorer balance and higher risk 

of falls and fractures, decreased autonomy and lower quality of life, metabolic 

complications and higher morbidity and mortality. Therefore adequate countermeasures 

need to be taken (Biolo G et al. 2014).  

Currently proposed criteria for sarcopenia assessment in a clinical setting include: 

evaluation of muscle mass, determination of strength and assessment of physical 

performance (Miller MD et al 2002; Cruz-Jentoft AJ et al. 2010; Malmstrom TK & 

Morley JE. 2013). Muscle mass can be measured by many methods including 

anthropometry (Miller MD et al 2002), bioimpedance analysis (BIA) (Cruz-Jentoft AJ 

et al. 2010; Vermeeren MA et al. 2006; Norman K et al. 2012; Mijnarends DM et al 

2013), dual energy X-ray absorptiometry (DXA) (Fearon K et al. 2011; Coin A et al. 

2012), computed tomography (CT) scan (Mourtzakis M et al. 2008; Fearon K et al. 

2011), and magnetic resonance imaging (MRI). BIA cannot reliably assess skeletal 

muscle mass in patients with body fluid abnormalities, as liver cirrhosis (LC), chronic 

kidney disease (CKD), chronic heart failure (CHF) or some cancer (Norman K et al 

2012). Ultrasonography is another reliable imaging method that can be applied to the 

analysis of the musculoskeletal system, based on computerized analysis of ultrasonic 

acoustic echoes. Ultrasound imaging can allow proper estimation of muscle thickness 

changes as direct evidence of muscle alterations. Reliability of ultrasound imaging was 

validated versus MRI as a gold standard (Arbeille P et al., 2009) and moreover, this 

technique allows a proper determination of muscle fiber orientation, with respect to 

aponeurosis, i.e. pennation angle (Narici M & Cerretelli P 1998). For measurement of 

muscle strength the hand-held dynamometer is a reliable tool o assess strength in upper 
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extremities (Mijnarends DM et al 2013). This method is widely used and has been 

validated in many physiological and pathological conditions. Several tests of physical 

performance are available such as the gait speed, the Timed Up and Go (TUG) and the 

Short Physical Performance Battery (SPPB) which includes standing balance, gait 

speed, and chair rises (sit-to-stand) (Mijnarends DM et al 2013). The EWGSOP criteria 

for sarcopenia diagnosis are described in figure 6.  

 

 
Figure 6. EWGSOP criteria for sarcopenia diagnosis 
The diagnosis requires: the presence of low muscle mass by BIA, plus low muscle strength, or low physical performance; 

conversely, the presence of low muscle mass, normal muscle strength, and physical performance is defined as pre-sarcopenia. From 

Biolo G et al. 2014 
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1.3.1.1. Anabolic resistance 

The reduced response to an anabolic stimulus, such as dietary protein intake, is defined 

“anabolic resistance” (Burd NA et al., 2013). With the onset of this condition, the MPS 

response to hyperaminoacidemia is impaired, independently from the insulin 

availability (Burd NA et al., 2013).  

In physiologic condition, in the post-prandial state, protein synthesis overcome the 

protein breakdown in order to equalize the protein loss of the fasting state. The anabolic 

resistance impairs the post-prandial protein synthesis and causes muscle mass loss 

(Deutz NE et al., 2011). In a previous study (Biolo G et al., 2004), our research group 

investigated the effects of 14-d of experimental immobilization in nine healthy young 

subjects. The study consisted in a constant infusion of both the stable isotopes L[1-13C]-

leucine, to assess the anabolic response, and of an amino acid solution to simulate the 

post-prandial condition. Our results showed a significant reduction of protein synthesis 

in the fed state, due to reduced anabolic sensitivity to the amino acids stimulation. Thus 

anabolic resistance is one of the major mechanisms of muscle atrophy during inactivity 

(Biolo G et al., 2004). On the other hand, a bout of exercise before the dietary protein 

intake, determines an improved amino acid utilization, allowing a post-prandial muscle 

muss gain (Burd G et al, 2013).   

Physical exercise associated to an adequate dietary protein intake showed an anabolic 

effect on muscle protein balance (Biolo G et al., 2005). The combined effect of physical 

exercise and increased availability of amino acids on the regulation of muscle protein 

kinetics was evaluated on healthy young subjects through an intravenous infusion of a 

balanced amino acids mixture, during rest and after a resistance exercise (Biolo G et al., 

1997). The results obtained, from muscle protein kinetics with the infusion of stable 

isotopes, suggested that the MPS amino acids stimulatory effects is increased by the 

exercise session. These evidences (Figure 7) are probably due to the augmented blood 

flow promoted by physical activity. Accordingly, the amino acids derived from dietary 

proteins may have a greater anabolic effect if administered immediately after physical 

activity (Biolo G et al., 1997). 
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Figure 7. Muscle protein synthesis level (F(o,m)) assessed during an amino 
acid infusion in conditions of rest and after resistance training. 

MPS is expressed as percent variation compared to basal values (*,p<0,05) (Biolo G et al., 1997).  

In elderly there is a reduced dose-response relationship between the EAA availability 

and the myofibrillar protein synthesis (Burd NA et al, 2013).  Moreover, the anabolic 

resistance in aging involves also the insulin anabolic effect, with a reduction of the 

proteolysis inhibitory effect promoted by insulin after a meal (Rennie MJ 2009), and the 

exercise anabolic effect (Russ DW et al., 2012). This resistance to anabolic stimuli, 

such as nutrition, exercise or hormones (e.g. insulin), is the basis of the impaired aging 

muscle protein turnover (Russ DW et al., 2012). 

Cuthbertson and colleagues were the first to compare the levels of protein synthesis, 

following the oral administration of EAA, in young and elderly individuals. They 

showed that the basal levels of MPS in fasting state, were comparable in both young 

and elderly groups, but after the assumption of EAA the MPS response in elderly 

individuals was lower than that showed by the young subjects (Cuthbertson D et al., 

2005). Another study demonstrated that in elderly individuals the ability of insulin and 

amino acids, especially branched (BCAA), to stimulate the protein transduction 

processes is reduced compared to the young subjects (Guillet C et al., 2004). 

These results were sustained by other findings showing that the reduced vasodilator 

response to insulin, in aging muscles, can play a key role in the onset of the anabolic 

resistance, possibly because of a lower muscle availability of nutrients (Rasmussen BB 

et al., 2006). Breen et al. also confirms the detrimental effect of aging on anabolic 

sensitivity. They have demonstrated that after a single bout of endurance training, the 

physiological acute alterations of the MPS are compromised (Breen L. & Phillips SM 

2011). Moreover it was observed that even after 3/6 h after the physical activity, an 
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elderly subject does not reach the normal level of MPS stimulation (Drummond MJ et 

al. 2008). The detrimental effects of physical inactivity on the levels of protein 

synthesis are confirmed by a recent study showing that two weeks of sedentary lifestyle 

is associated with loss of gravitational muscle mass, involving mainly the lower limbs 

(Krogh-Madsen R et al.,2010). An active lifestyle in aging can be critical to maintain 

adequate sensitivity to an anabolic stimulus (Burd NA et al. 2013). The anabolic 

resistance in aged is represented in figure 8. 

 

Figure 8. Protein metabolism trend after an anabolic stimulus (physical activity 

and/or amino acids intake) in young and elderly subjects. 
The shaded sections mark the difference between elderly and young people in the MPS after an anabolic stimulus (from Breen & 

Phillips, 2011). 

The age-related sarcopenia has a multifactorial etiology and the mechanisms associated 

to the anabolic resistance development require further investigation, however, the 

reduction of physical activity levels (i.e. sedentary lifestyles) and/or the potential 

presence of acute or chronic diseases could have a role.  

Accordingly, some studies showed that both protein turnover and anabolic sensitivity 

could be altered by the development of an inflammatory condition, associated with 

aging (Breen L & Phillips SM, 2011). The role of inflammation on the alteration of 

protein metabolism has been extensively studied. In humans an association was found 

between MPS levels and plasma concentrations of several inflammation markers (Toth 

MJ et al., 2005). 

Many cytokines, and particularly the TNF- α could alter MPS though the inhibition of 

the phosphorylation of the proteins involved in the mTOR pathway. It was 
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demonstrated that mTOR signaling is crucial to stimulate the MPS after endurance 

training and furthermore, the phosphorylation of the proteins involved in this pathway 

seems to be enhanced by the availability of amino acids (Breen L & Phillips SM, 2011). 

Consequently, the muscle loss and the reduced sensitivity to anabolic stimuli, observed 

during inflammation could be associated with an altered protein phosphorylations of the 

mTOR signaling pathway. This mechanism could affect the elderly individuals. The 

development of a low-grade inflammation may reduce their sensitivity of this signaling 

pathway to a load of amino acids, thus determining anabolic resistance and reduced 

levels of MPS (Breen L & Phillips SM, 2011) 

Recent studies suggest an impact of the oxidative stress on the inactivity-related muscle 

mass loss, probably determining an unbalance between protein synthesis and 

degradation (Pellegrino MA et al., 2011). However further investigation are needed to 

better understand the pivotal mechanism of such influence. 
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1.3.1.2. Insulin resistance 

Insulin is a peptide hormone secreted by the β-cells of the pancreatic islets of 

Langerhans that maintains normal blood glucose levels by facilitating cellular glucose 

uptake. Besides carbohydrate metabolism, insulin regulates also lipid and protein 

metabolism and cell division and growth (Bailey CJ et al 2010). 

The term “insulin resistance” refers to a condition in which, insulin is correctly 

produced by the pancreas, but the target tissues (i.e. muscle, liver and adipose tissue) 

show a reduced sensitivity to its actions (Berg JM et al., 2012). Consequently, the tissue 

uptake of the circulating glucose is impaired in both fasting and fed state, leading to 

hyperglycemia and to detrimental effects in lipid and glucose metabolism (Silverthorn 

DU, 2010). Insulin resistance is an important T2DM risk factor and may be detectable 

even years before the appearance of hyperglycemia and T2DM. Essentially, the first 

stages are characterized by a hyperinsulinemic response to glucose that ensures a proper 

glucose metabolism (Hunter SJ & Garvey WT, 1998). In advanced stages, on the 

contrary, the even greater amount of insulin produced by the β-cells is insufficient to 

compensate the insulin resistance of the tissues, leading to hyperglycemia and T2DM 

(Reaven G, 2004). This mechanism could be one of the reasons for the development of 

T2DM during aging (Silverthorn DU, 2010).  

The cellular mechanisms responsible of the altered insulin functions may involve 

detrimental modifications for the insulin receptor, signal transduction and glucose 

transport. The major cause of the altered insulin sensitivity seems to be the missed or 

reduced translocation of the GLUT4 transporteron the cellular membrane of the skeletal 

muscle and adipose tissue, in response to the hormone; consequently, glucose 

absorption by these cells is lowered (Hunter SJ & Garvey WT, 1998). The insulin 

resistance effects vary in relation to the type of tissue and its insulin dependence for 

metabolic process regulation. The organs and tissues most affected by the altered 

insulin sensitivity are: skeletal muscle, adipose tissue, liver, endothelium, brain, 

pancreas, pituitary gland, kidney, gonads and bone (Wilcox G, 2005). The impaired 

glucose tolerance and the reduced insulin sensitivity are two common phenomena in the 

elderly population. The association between aging and insulin resistance was deeply 

investigate, since there is an increased prevalence of T2DM with ageing (Karakelides H 

et al., 2010). The progressive age-related glucose tolerance derangement depends 

mainly on the decreased tissue sensitivity to insulin and the resulting reduced ability of 

tissues to metabolize glucose (DeFronzo RA, 1981) (Figure 9). 
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Figure 9. Plasma glucose (A), insulin (B) and C peptide (C) concentrations in 

young (○) and elderly (■) subjects in fed state. 
from Basu R et al, 2003.  

This altered glucose tolerance has a multifactorial etiology and it involves mainly the 

skeletal muscle (Jackson RA, 1990). Among other factors, the reduced physical activity 

and body composition changes are critical contributors to this progressive condition 

during aging. In the elderly subjects there is a significant modification of the body 

composition with a reduction of the lean mass in favor of enhanced fat mass. Since one 

of the main actions of insulin is promoting the muscle glucose uptake, a reduced muscle 

mass could lead to insulin resistance (DeFronzo RA, 1981). An inverse relation was 

found (Srikanthan P et al. 2011) between skeletal muscle mass and insulin resistance 

and the risk of developing pre-diabetes, while an increased muscle mass was associated 

with additional protection against insulin resistance and pre-diabetes. The protective 

association was stronger in individuals with overt diabetes (Srikanthan P et al. 2011.). 

Moreover the reduced physical activity associated to aging could contribute to the 

impaired glucose metabolism (DeFronzo RA, 1981). Some authors argue that aging per 

se has a harmful effect on tissue sensitivity to insulin and consequently on glucose 

metabolism (DeFronzo RA, 1981). On the other side, recent studies suggest that the 
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age-related insulin resistance is associated to body composition changes and the 

lowered physical activity rather than aging per se (Karakelides H et al., 2010). For 

example, the increased abdominal fat mass is a key factor in the onset of insulin 

resistance (Karakelides H et al., 2010).   

Aging is also associated to a low-grade systemic inflammation and to an increased 

reactive oxygen species production (i.e. oxidative stress) (Karakelides H et al., 2010; 

Csiszar A et al., 2008). Inflammation and oxidative stress are considered two of the 

major mechanisms in the onset of the insulin resistance most likely due also to the 

higher cardiovascular risk associated to a sedentary lifestyle. The individuals affected 

by T2DM or metabolic syndrome, frequently show a low-grade systemic inflammation 

and are characterized by higher concentration of proinflammatory fatty acids in the cell 

membranes (Mazzucco S et al., 2009). Oxidative stress and low-grade systemic 

inflammation are common alterations in obese or diabetics but in aged persons they 

seems independent from body composition and may directly affect the onset of T2DM 

and cardiovascular diseases (CVD) (Karakelides H et al., 2010; Csiszar A et al., 2008). 

A good way to prevent or at least improve insulin resistance is physical activity. A 

study aiming to analyze the distinct effects of age, physical activity and fat 

accumulation on glucose tolerance and insulin sensitivity, demonstrated that regular 

physical activity can prevent the age-related insulin resistance (Seals DR et al., 1984). 

Insulin sensitivity decreases in sedentary subjects, while it is enhanced in trained 

individuals (DeFronzo RA, 1981). The detrimental effect of inactivity on insulin 

sensitivity was showed in many studies. Furthermore, experimental immobilization in 

healthy young subjects (Figure 10) caused an altered glucose tolerance and a higher 

insulin secretion. Stuart et al. showed an impaired glucose metabolism after just 7 days 

of bed rest in healthy subjects (Stuart CA et al, 1988) 
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Figure 10. Effect of 5 days of bed rest insulinaemia (upper figure) and glycaemia 

(lower figure) levels after an oral glucose load in 20 healthy subjects. 
Bed rest is associated to a significant augmented insulin (p<0,001) and glucose (p=0,03) response and thus to insulin resistance 

(from Hamburg NM et al., 2007).  

Another study (Lipman RL et al., 1972) showed that 3 days of experimental 

immobilization are sufficient to determine an impairment of about 50% of the glucose 

uptake from the tissue and an augmented level of insulinaemia and glycaemia after an 

oral glucose load. The same authors have observed that physical exercise during 

immobilization can improve insulin resistance. The bed rest state has different effects 

on trained and inactive individuals. Smorawiński and colleagues have observed the 

effects of three days of experimental immobilization on endurance and power athletes 

and sedentary subjects. After an oral glucose load, the insulin resistance-derived 

hyperinsulinemia affect both groups but the athletes (especially those performing 

resistance exercise) were more responsive. This result is probably due to a faster 

compensatory response to insulin resistance (Smorawiński J et al., 2000). Recently, a 

study has shown the association between five days of bed rest on healthy volunteers 

with dyslipidemia and altered blood pressure and vascular function (Hamburg NM et 

al., 2007). The authors propose a direct connection among the vascular dysfunction and 

the onset of insulin resistance suggesting that a lower peripheral blood flow, especially 
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in the lower limbs, could determine a reduced tissues glucose uptake (Hamburg NM et 

al., 2007). Another study comparing athletes and subjects inactive for 7-10 days, 

showed an association between physical inactivity and both an impaired glucose 

tolerance and the energy intake, while the trained subjects (controls) maintained a 

suitable glucose tolerance. This positive effect in athletes is associated to an increased 

peripheral blood flow favoring the insulin-mediated glucose uptake by the skeletal 

muscle (Arciero PJ et al., 1998; Hayashi T et al., 1997). It was also demonstrated 

(Vukovich MD et al., 1996) that the impaired insulin action evidenced after 6 days of 

physical activity in runners is associated to a reduced levels of GLUT4, the skeletal 

muscle tissues glucose transporter. These data were recently confirmed (Henriksen EJ, 

2002), however, further studies are required to verify that such mechanisms (i.e. 

impaired blood flow and GLUT4 levels) are responsible of the inactivity-related insulin 

resistance. In addition, preliminary data of our research group, showed a development 

of insulin resistance after 7 days of bed rest in healthy subjects. We have observed that 

after 35 days of experimental inactivity the insulin resistance levels are comparable to 

those measured after a week of bed rest, suggesting a rapid and full expression of this 

condition maintained in the long-term.  

Increased levels of physical activity could have a fast and healthy effect on the 

metabolic alterations determined by a sedentary life style or resting from 

hospitalization. Recently (Heer M et al., 2014) it was demonstrated that 4 days of 

regular physical activity are not sufficient for counteract the insulin resistance 

determined by 21 days of experimental inactivity. In healthy individuals 5 to 14 days of 

specific training are needed to reach again a suitable glucose metabolism. Moreover 

insulin resistance decreases after a single bout of physical exercise, in young subjects 

while in middle aged or elderly individuals several workout sections are needed to reach 

the same metabolic improvement (Henriksson J, 1995). Nonetheless further 

investigations are necessary to select the correct categories and levels of physical 

activity that could improve insulin resistance (Heer M et al., 2014). 

Insulin resistance is also associated to the so called “metabolic syndrome”, a disorder 

characterized by at least three of the following conditions: abdominal obesity, elevated 

blood pressure, hyperglycaemia, high serum triglyceride levels and low plasma HDL 

concentrations. Metabolic syndrome increases the risk of developing cardiovascular 

disease and diabetes (Kaur J. 2014). Besides the high plasma glucose levels, several 

studies suggest a direct influence of the insulin resistance on augmented VLDL hepatic 

levels, hypertension and atherosclerosis (Biolo G et al., 2005). Together these risk 
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factors are defined “insulin resistance syndrome” (Hunter SJ & Garvey WT, 1998). 

Skeletal muscle insulin resistance directly contributes to cardiovascular risk through 

induction of dyslipidemia (i.e., decreased HDL cholesterol and increased triglycerides), 

as shown in experimental bed rest studies (Mazzucco S, et al. 2010). Prolonged obesity 

leads to ectopic lipid accumulation in non-adipose tissues, particularly in skeletal 

muscles, inducing metabolic dysfunctions (reduced glucose uptake, mitochondria 

dysfunction, etc.) (Masgrau A et al. 2012). The accumulation of lipids within skeletal 

muscle, due to a blunted muscle capacity to oxidize fatty acids, is a relevant factor in 

the pathogenesis of insulin resistance. Fat infiltration is also associated with muscle 

fiber modification, decrease in muscle mass and impairment in muscle strength. Thus, 

obesity causes quantitative and qualitative alterations in skeletal muscle. This obesity-

related insulin resistance not only causes defective insulin-stimulated glucose disposal 

but has also detrimental consequences on muscle protein metabolism with a reduced 

post-prandial anabolic response. Moreover, the fat tissue release pro-inflammatory 

cytokines, including Tumor Necrosis Factor-α, interleukines and PAI-1, associated with 

the development of insulin resistance (Wilcox G, 2005). 

The best way to reduce the detrimental effect of the obesity-related insulin resistance is 

the weight loss through physical activity. 
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1.3.1.3. Inflammation  

Inflammation is a multifactorial response mediated by the activity of cytokines, which 

can have pro-inflammatory (as interleukin 1, IL-1), anti-inflammatory roles (as 

interleukin 10, IL-10) or both (as intreleukin-6, IL-6). IL-6 is also known as 

“myokyne”, as it is released by contracting muscle and is up-regulated after high 

intensity physical exercise (Petersen AM & Pedersen BK, 2006). Furthermore it has an 

immunomodulatory role, decreasing expression of pro-inflammatory cytokines and 

down-regulating the activation of factors involved in intracellular inflammatory 

response, as NF-kB and related tissue injury (Yoshidome H et al., 1999). Physical 

exercise was shown to increase also circulating IL-10 concentrations, thus suggesting 

that muscle activity can exert a beneficial anti-inflammatory action (Nunes RB et al., 

2008). Tumor necrosis factor alpha (TNF-α) is an additional important cytokine that 

plays a crucial roles in the onset and maintenance of the inflammation process, by 

stimulating acute phase reaction factors, in liver, macrophage phagocytosis and 

chemoattraction of neutrophils (Tracey KJ & Cerami A, 1990; Tracey KJ & Cerami A 

1994). Through the action on two specific cell membrane receptors, TNF-α can activate 

several biological responses as activation of NF-kB (Bouwmeester T et al., 2004) and of 

intracellular pathways leading to cell differentiation or to apoptosis (Gaur U & 

Aggarwal BB 2003). Prolonged elevation of circulating TNF-α can lead to muscle mass 

reduction: a wasting condition linked to poor prognosis of patients (Kandarian SC & 

Jackman RW 2006). Synthesis of interleukins and TNF-α can trigger the production of 

a known marker of inflammation called C-reactive protein (CRP), a factor used in 

clinical practice as marker of inflammation (Ho KM & Lipman J 2009). 

Inflammation was shown to play a crucial role in muscle mass wasting, occurring in 

healthy aging subjects (Jensen GL 2008). In particular IL-1, IL-6 and TNF-α were 

previously shown to potentially trigger muscle sarcopenia in elderly subjects (Yende S 

et al., 2006). Interestingly, physical exercise training in elderly subjects was shown to 

limit the muscle mass wasting and the synthesis of proinflammatory cytokines (Nicklas 

BJ & Brinkley TE 2009). Moreover, strength training programs in older volunteers 

ameliorated muscle strength and performance and, in parallel, increased levels of anti-

inflammatory interleukin-6 and 10 (Bautmans I et al., 2005).  

A previously published work showed in humans that experimental bed rest upregulated 

plasma CRP (+143%), the ratio between plasma IL-6 and IL-10 (4 times) and, in white 

blood cell, the ratio between IL-6 and IL-10 mRNAs (5 times) (Bosutti A et al., 2008). 
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Cytokines are direct modulators of inflammatory pathways, but other factors are also 

deeply involved in the control of inflammation. Eicosanoids, including prostaglandines 

tromboxanes and leukotrienes are key mediators and regulators of inflammation (Lewis 

RA et al., 1990). Cell availability of polyunsaturated fatty acids (PUFA) of the n-6 

series affects production of eicosanoids. Eicosanoids are synthesized from the n-6 

PUFA arachidonic acid by the enzymic action of cyclooxygenase. Arachidonic acid is, 

in turn, synthesized in separate biochemical steps from the n-6 PUFA linoleic acid, 

principally by the action of ∆6-desaturase, elongase and ∆5-desaturase (Figure 11) 

(Mazzucco S et al. 2009).  

 
Figure 11. Fatty acid biosynthesis.  
Fatty acids are metabolized by desaturases and elongases in the endoplasmic reticulum; only 24:5 n-6 and 24:6 n-3 are b-oxidized 

into the peroxisome. From Mazzucco S et al 2010 

Linoleic acid is an essential FA, contained in many vegetable oils (Bozan B & Temelli 

F 2008), which determines, together with the endogenous synthesis, the availability of 

n-6 PUFA (Wertz PW 2009). Elevated availability of n-6 PUFA in cell membranes was 

linked to inflammation (Ueda Y et al., 2008) and enhanced gene expression of 

proinflammatory cytokines and transcriptional activity of NF-kB (Weaver KL et al., 
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2009). Thus the n-6 PUFAs have a key role in the stimulation of pro-inflammatory 

processes.  

The n-3 PUFAs are synthesized from the n-3 PUFA alpha-linolenic acid in a pathway 

sharing the same enzymes involved in the n-6 series synthesis, the ∆5-desaturase. This 

enzyme leads to eicosapentaenoic acid (EPA) that is converted, by ∆6-desaturase, to 

docosahexaenoic acid (DHA) in the peroxisome. n-3 PUFA are well known to play an 

anti-inflammatory action (Figure 11). In analogy with n-6 PUFAs, alpha-linolenic acid 

and n-3 PUFAs availability are strongly conditioned by dietary intake of alpha-linolenic 

acid from vegetable oils (Wertz PW 2009), or EPA and DHA from fish (Pickova J 

2009). Fatty acids of the n-3 series are known to have an anti-inflammatory action. 

Increased intake of EPA and DHA can affect the cell membrane content of these 

PUFAs (Lee TH et al., 1985), thus reducing the fraction of the pro-inflammatory 

arachidonic acid. Increased dietary n-6 to n-3 PUFA ratio was shown to increase the 

expression of CRP and of other proinflammatory agents, as tumor necrosis factor 

(Zhang L et al., 2009). 

Phospholipids content in red blood cell membranes can be considered reliable markers 

of fatty acid availability in plasma, and of cell membrane composition in the whole 

body (Harris WS & Von Schacky C 2004). Interestingly, fatty acid membrane 

composition affects the activity of surface membrane receptors, influencing the 

activation of downstream intracellular pathways. For example, increased levels of n-3 

PUFA can enhance the expression and the signaling activity of glucose receptor 

(GLUT-4) on muscle cell membrane, thus potentially ameliorating insulin sensitivity 

(Taouis M et al., 2002). Moreover, the fraction of n-3 PUFAs in cell membranes was 

directly associated to reduced incidence of cardiovascular diseases: this effect was 

associated with the anti-inflammatory role of n-3 PUFAs and to other changes induced 

on cardiovascular system physiology by this class of fatty acids (Harris WS & Von 

Schacky C 2004). Published evidence proved that in human neutrophil membranes, 

increases in n-6 to n-3 PUFA ratios are directly associated with the ability of 

synthesizing pro-inflammatory mediators (Zhang L et al., 2009). Such evidence 

confirms that cell membrane relative content of total n-6 and n-3 fatty acids can be 

considered as a marker of whole body inflammatory condition.  

The impact of physical exercise on membrane fatty acid composition was investigated 

in several studies. Constant moderate training and acute exercise were shown to 

decrease both phosphatidylserine and polyunsaturated fatty acids in erythrocyte 

membranes: this effect was hypothesized to be caused by increased lipid peroxidation 
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due to muscle contraction (Sumikawa K et al., 1993). Another study emphasised n-6 

PUFA content changes mediated by physical exercise. The authors showed that linoleic 

acid and the sum of n-6 fatty acids were decreased in trained skeletal muscle 

phospholipids. This reveals that physical exercise can directly exert an anti-

inflammatory role at muscle level, in this way potentially ameliorating insulin 

sensitivity (Andersson A et al., 1998). Regular exercise was shown, in rats, to decrease 

∆-5 desaturase activity and arachidonic acid content; in addition, docosahesaenoic acid 

proportion in cell membrane was decreased while linoleic acid was increased (Helge 

JW et al., 1999). Observed effects on membrane composition mediated by regular 

exercise where hypothesized to be dependent on energy substrate utilization during 

training (Helge JW et al., 1999). Still, a previously published study showed in humans 

that fractions of oleic acid and docosahexaenoic acid were significantly higher in 

trained muscles when matched to untrained (Helge JW et al., 2001). Similarly, physical 

exercise significantly lowered the ratio between n-6 and n-3 PUFA in the trained 

muscle vs those untrained (Helge JW et al., 2001). This study confirmed also that 

regular physical exercise can reduce whole body and muscle inflammation.  
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1.3.1.4. Oxidative stress 

Oxidative stress is the result of an unbalance between free radicals and the activity of 

the antioxidant defense system of the body (Tchou J et al. 1991; Hardmeier R et al., 

1997) (Figure 12). 

The anti-oxidant defense includes non enzymatic and enzymatic systems. 

• Enzymatic systems. There are several enzyme systems, part of the endogenous 

defense mechanisms, which catalyze reactions able to neutralize free radicals 

and ROS, thus preventing cell damage. The major systems are: superoxide 

dismutase (SOD), catalases, glutathione peroxidase and glutathione reductase, 

the last two being part of the glutathione system. Metal ions, including iron, 

selenium, copper, zinc and manganese, act as co-factors in these reactions. 

• Non-enzymatic systems. This category includes: GSH, ascorbic acid (Vitamin 

C), tocopherols (Vitamin E), carotenoids, flavonoids, and ubiquinol.  

 

 

Figure 12. Oxidants and antioxidants agents in the human body 
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Glutathione is the most important non-enzymic antioxidant in the organism (Pastore A 

et al., 2003).  

Glutathione synthesis is achieved by the action of two ATP dependent enzymes γ-

glutamil cysteine synthetase (catalyzing the bond between glutamic acid and cysteine) 

and glutathione synthetase, leading to the final formation of reduced glutathione 

(Majerus PW et al., 1971); the first reaction being the rate-limiting step (Lu, SC 1999) 

(figure 13). 

 
Figure 13. Glutathione biosynthetic pathway 

 

 

Glutathione is further processed (figure 14), within the γ-glutamate cycle, by γ-glutamyl 

transpeptidase leading to the formation of a γ-glutamil amino acid and to the dipeptide 

cisteinglycine (Pastore A et al., 2003). γ-glutammil amino acid is then transformed to 5-

oxoprolin and glutamic acid by γ-glutamil cyclotransferase and oxoprolinase. Glutamic 

acid is re-utilized to synthesize again glutathione (Pastore A et al., 2003). 

Cysteinglycine is then catabolized to free cysteine and glycine amino acids. Cysteine is 

a limiting substrate for glutathione synthesis, but also glutamate and glycine, as direct 

glutathione precursors, can affect its synthesis rate. 
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Figure 14. The metabolic glutathione pathway or the γ-glutamyl cycle 

 

Physical exercise increases oxidative stress; Regular physical exercise enhance total and 

reduced glutathione availability (Sen CK & Packer L 2000), thus counteracting the 

effect of free radical formation. The ratio between reduced and oxidized glutathione, a 

reliable marker of glutathione system activation is increased by exercise (Ji LL 1995). 

Thus, increased availability of GSH levels, can be considered, in healthy subjects, as an 

active response of the organism to a previous release of free radicals. 

Exercise training results in an elevation in the activities of both superoxide dismutase 

(SOD) and glutathione peroxidase (GPx), along with increased cellular concentrations 

of glutathione (GSH) in skeletal muscles. In contrast, inactivity leads to redox 

unbalance both in skeletal muscle (Agostini F et al 2010) and at the systemic level 

(Biolo G et al 2008). 

Low levels of physical activity also promote oxidative stress, which, through the 

activation of specific proteases and of apoptosis (Powers SK et al., 2005; Powers SK et 

al., 2007), is involved in the processes leading to muscle atrophy (Laufs U et al., 2005). 

Our research group has investigated, for the first time, the association (Brocca L et al 

2012) in healthy subjects between immobilization and oxidative stress through human 

bed rest. The development of muscle atrophy is associated with impaired anti-oxidant 

defense systems (de Boer MD et al 2008), protein oxidation and/or lipid peroxidation 

(indices of redox imbalance), suggesting a major role of oxidative stress in disuse 

atrophy (Pellegrino MA et al 2011; Dalla Libera L et al 2009). 
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In our previous data, we observed that bed rest caused an early and persistent down-

regulation of myofibrillar protein content, impairment of antioxidant defense systems 

and redox imbalance, followed, at later stages, by muscle fiber atrophy (de Boer MD et 

al 2008). The experimental inactivity caused an early down-regulation (after 8 days) of 

the antioxidant defense system, including: superoxide dismutase (SOD - which converts 

the superoxide ion into hydrogen peroxide), peroxiredoxine (such as catalases, which 

work downstream of SOD, converting hydrogen peroxide into water), α-β-crystallin and 

some heat shock proteins (such as HspB1 and Hsp70 – which remove products induced 

by free radicals and have been shown to protect cells against oxidative damage). Only 

few components i.e. heme-oxigenase-1 (HO-1) and glucose regulated protein-75 

(Grp75), of the antioxidant system showed a transient early, 8 days, post-BR up-

regulation (Mazzucco S et al 2010). After a prolonged period of inactivity (24 days) the 

mRNA for NRF2, the major transcription factor for the expression of the antioxidant 

defense system, such as heme oxygenase-1 (HO-1), catalase, SOD, peroxiredoxins, and 

genes, involved in glutathione synthesis and function, was found to be up-regulated, 

possibly in response to the ongoing redox imbalance. In our study we observed an 

increased protein carbonylation (an index of oxidative stress) at 35-days post-BR, in 

muscle biopsy samples (Mazzucco S et al 2010; Lawler JM et al 2003), which 

correlated positively with the decreased muscle fiber, cross sectional areas (CSA) 

associated with muscle atrophy and reduced protein synthesis (Mazzucco S et al 2010). 

35 days of experimental inactivity determined also an increased muscle glutathione 

synthesis. These data correlated with the levels of protein carbonylation, suggesting the 

relevance of maintaining adequate GSH levels. Glutathione depletion can influence bed 

rest outcomes (Sastre J et al. 1989), while an increased bioavailability of glutathione 

precursors, such as cysteine or N-acetyl-cysteine, can improve glutathione system 

scavenging action (Khamaisi M et al. 2000) and reduce, in an animal model, muscle 

protein catabolism (Ling PR et al. 2007). Thus, dietary glutathione precursor 

supplementation may ameliorate immobilization outcomes. 

Inactivity leads to insulin resistance and low-grade systemic inflammation (Lawler JM 

et al. 2003). Indeed, during bed rest there is an activation of the inflammatory response 

(Lawler JM et al. 2003; Biolo G et al 2007) that is related, with reciprocal influences, to 

the increased oxidative stress and insulin resistance. We have evaluated in a 14-days 

experimental bed rest (Biolo G et al 2007) the effects of immobilization on 

inflammatory response by assessing the levels of pro-inflammatory cytokines 

(Interleukine-6, IL-6) and anti-inflammatory cytokines (Interleukine-10, IL-10) and of 
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two acute-phase proteins (C-Reactive Protein, CRP or short pentraxine and long 

pentraxin-3, PTX3). Bed rest, on eucaloric conditions, significantly increased CRP and 

IL-6 concentrations and decreased mRNA transcript levels for IL-10. 

Notably oxidative stress, trough the glutathione system, and changes in the reduced 

glutathione (GSH)/oxidized glutathione disulfide (GSSG) ratio is related to the 

inflammatory response. Indeed ROS modulate the transcription of IL-4, IL-6, IL-8 and 

tumor necrosis factor-α (TNF-α), through thiol-dependent mechanisms, while cytokines 

can mediate ROS signaling (Laviano,A et al 2007). Our preliminary data suggest that 

oxidative stress and changes in glutathione levels are associated with insulin resistance 

conditions (such as type II diabetes and obesity) (Badaloo,A et al. 2002; Ikemoto M et 

al. 2002). Decreased intracellular glutathione levels have been suggested to play a direct 

causative role in the development of impaired insulin action in adipose tissue and 

skeletal muscle (Agostini F et al 2010). Insulin resistance and deficiency are often 

associated with hyperglycemia in diabetes and critical illness and hyperglycemia seems 

to be related with generation of ROS, increased oxidative stress and decreased liver 

glutathione concentrations (Bosutti A et al. 2008). Indeed liver is the major glutathione 

storage organ and the major source of plasma glutathione; circulating erythrocytes may 

reflect the synthetic capacity of the liver in the inter-organ glutathione homeostasis 

(Haddada JJ & Harbb HL 2005). 

Cross-sectional studies identified strong relationships between insulin resistance, 

systemic inflammatory response and alterations in fatty acid (FA) composition of cell 

membrane phospholipids (Das UN 2004; Vessby B et al. 2002). The poly-unsaturated 

FAs (PUFAs) of the n-6 and n-3 series are involved in up-regulation and down-

regulation of the inflammatory response, respectively. 

We have already demonstrated that bed rest prolonged for 35 days causes increased 

insulin resistance (Lawler JM et al. 2003). These metabolic alterations were associated 

with changes in erythrocyte membrane fatty acid composition. We observed increased 

levels of pro-inflammatory n-6 PUFAs and fractional content of pro-inflammatory 

arachidonic acid, decreased levels of anti-inflammatory omega 3 PUFAs (alfa-linolenic 

and eicosapentaenoic, EPA) and of monounsaturated fatty acids. These changes were 

associated with altered activity of the enzymes Δ5 and Δ9 desaturase, affected by 

insulin action (Lawler JM et al. 2003). Low Δ5 desaturase activity decreased long-chain 

PUFA content. This may cause changes in the cell membrane physical properties, 

potentially leading to altered receptor binding capacities and further impairment of 

insulin sensitivity (Peter A et al. 2009).   



 44 

1.3.1.5. Hypoxia 

Sarcopenia is caused by multiple factors; recently a role has been attributed to hypoxia 

(Di Giulio C et al. 2009). Conditions associated with hypoxia are aging and chronic 

respiratory diseases (i.e. COPD), obesity-related obstructive sleep apnea syndrome 

(OSAS) and cardiorespiratory disorders. During aging there is a general increased 

production of ROS with possible negative effects on proteins, nucleic acids and lipids 

and on membrane functions (Di Giulio C et al. 2009; Cataldi A & Di Giulio C. 2009). 

This higher oxidative stress can be related, among other factors, to a reduction of the 

oxygen flow from the lungs to the tissues, leading to a lower cellular pO2. The reduced 

blood flow and oxygenation of skeletal muscle, and the higher ROS production together 

with a diminished mitochondrial density (Di Giulio C et al. 2009), can contribute to the 

loss of muscle mass of aging (Gunnarsson L et al. 1996; Muller FL et al. 2007; Porter 

MM et al. 1995).  

Furthermore the normal ventilatory response to hypoxia characterized by increased 

volume and ventilatory frequency are attenuated with aging (Fukuda Y et al 1992). 

Muscle atrophy has been shown also in subjects with recurrent obstructive sleep apnea 

syndrome (OSAS), cardiopulmonary disease and in COPD patient (Di Giulio C et al. 

2009). Hypoxia is central to the pathogenesis of both OSAS and COPD, further 

sustained by inflammatory and oxidative stress pathways (Figure 15) 

 

 
Figure 15. Hypoxia, the link among COPD, OSAS, systemic inflammation, and 

muscle atrophy. 
Adapted from McNicholas WT. Am J Respir Crit Care Med. 2009 
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Patients with chronic heart failure or COPD during the course of the illness lose skeletal 

muscle mass leading to exercise limitations and lower quality of life. Epidemiological 

studies have shown that between 15-30% of COPD patients were found sarcopenic 

(Jones SE et al 2015; Biolo et al 2014; Koo HL et al 2014) with or without sarcopenic 

obesity. Sarcopenia and obesity were independent risk factors for respiratory 

complications and worsening of COPD, however, the respiratory loss was most severe 

in obese sarcopenic subjects (Koo HL et al 2014). Sarcopenic COPD patients had a 

greater airflow obstruction, were significantly older and compared to non-sarcopenic 

subjects, showed reduced quadriceps strength, functional performance and exercise 

capacity (Jones SE et al 2015).  
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2. AIM 

The aim of the present thesis was to investigate in human healthy volunteers new 

biomarkers adequate to define optimal protein intake. We based our research on recent 

studies that have determined protein needs by measuring whole-body protein 

metabolism using stable labeled isotope-amino acids. 

The present work includes two experimental protocols: 

1) The PLANHAB study on the effects of hypoxia and inactivity isolated or 

combined on muscle mass and function and protein, glucose and lipid 

metabolism, oxidative stress and inflammation. Hypoxia and inactivity can be 

considered models, in humans, of clinical conditions such as COPD, CVD and 

OSAS characterized by loss of muscle mass and function and normal or 

expanded fat tissue (sarcopenia and sarcopenic obesity). 

 

2) The INTERREG PANGeA on the effects of aging and immobilization on 

muscle mass and function, protein and glucose metabolism in elderly subjects 

compared to young controls 
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3. METHODS 

The main goal of this thesis is to find new biomarkers to define optimal protein 

requirement in physio-pathological conditions. Specifically we have investigated the 

detrimental effects of physical inactivity with or without hypoxia and in aging, on 

muscle protein synthesis. Moreover the effects of these conditions on, oxidative stress, 

inflammation, lipid metabolism and insulin sensitivity were also evaluated as related 

conditions influencing MPS. The bed rest model is known to be a reliable approach to 

study the impact of muscle unloading on human metabolism (Biolo G et al., 2005). To 

investigate hypoxia, we utilized a special structure with areas at controlled oxygen 

levels. The results reported in the present thesis were collected during two different 

European funded experimental bed rest study: 1) the FP7 PLANHAB study (Planetary 

Habitat simulation). A 7 Framework program 2007-2013 and 2) the INTERREG 

PANGeA (Physical Activity and Nutrition for Quality Ageing). Italy-Slovenia 

European Program for Cross Border Cooperation 2011-2014. 

 

3.1. Experimental procedures 

3.1.1. Whole body protein kinetics 

Whole body protein kinetics were determined in plasma by the tracer model of 

phenylalanine and tyrosine metabolism, as previously described (Antonione R et al., 

2008). 

Briefly, after an overnight fasting, two polyethylene catheters were inserted into a 

forearm vein of a subject for isotope infusion and into a wrist vein of the opposite arm, 

the latest was heated at 50°C, for arterialized venous blood collection. Before the start 

of the infusion, at time 0, a background blood sample was collected to assess the natural 

occurring isotopic enrichments of [ring-2H5]-phenylalanine, [ring-2H4]-tyrosine, 2H2-

tyrosine in plasma. After background blood collection, 7-hour primed-continuous 

infusions of [ring-2H5]-phenylalanine (3.3 µmol×kg-1×h-1) and 2H2-tyrosine (1.0 

µmol×kg-1×h-1) in parallel with a single bolus of [ring-2H4]-tyrosine (1.1 µmol×kg-1) 

(Cambridge Isotope Laboratories, Andover, MA). Blood samples were drawn 180, 300 

and 420 minutes after isotope infusion, to assess the plasma enrichments of [ring-2H4]-

tyrosine and [ring-2H5]-phenylalanine. Blood was collected in EDTA tubes, 

immediately centrifuged at 3000 g at 4°C for 10 minutes; plasma and erythrocytes were 

immediately stored at -80°C for further analysis. 
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Isotopic enrichments of phenylalanine and tyrosine, in plasma, were determined by gas 

chromatography–mass spectrometry (GC-MS) (HP 5890; Agilent Technologies, Santa 

Clara, CA) as previously described (Biolo G et al., 2008; Antonione R et al., 2008). 

Isotopic enrichments were assessed considering the following mass-to-charge ratios 

(m×z-1): phenylalanine m×z-1 234-239; tyrosine m×z-1 466-470. 

Phenylalanine appearance from protein proteolysis (Phe Ra from protein proteolysis) 

was calculated multiplying the infusion rate of [ring-2H5]-phenylalanine for the 

enrichment of [ring-2H5]-phenylalanine. The rate of phenylalanine disappearance 

through hydroxylation to tyrosine (Phe Rd to hydroxylation), an index of net protein 

catabolism, was defined as follows: 

 

Phe Rd to hydroxylation= (IRD2Tyr× ED2Tyr-1) × (ED4Tyr× ED5Phe-1) 

 

where IRD2Tyr is the infusion rate of 2H2-tyrosine; ED2Tyr is the enrichment of 2H2-

tyrosine; ED4Tyr is the enrichment of [ring-2H4]-tyrosine; and ED5Phe is the 

enrichment of [ring-2H5]-phenylalanine. Phe Rd to protein synthesis was calculated as 

the difference between Phe Ra from protein proteolysis and Phe Rd to hydroxylation 

(Figure 16).  

 

 
Figure 16. Measurement of whole body protein kinetics Humans 
In the postabsorptive state there is no entry of amino acids from dietary sources, and the flux of phenylalanine in the body is derived 

from entry of phenylalanine released from protein breakdown. That input is matched by phenylalanine removal via protein synthesis 

and via metabolic disposal by conversion to tyrosine. Therefore, the measurement of the whole body rate of appearance of 

phenylalanine in the postabsorptive state is a measure of the whole body rate of proteolysis (Matthews DE 2007).  
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3.1.2. Post-prandial anabolic resistance 

In the morning a polyethylene catheter was inserted into a forearm vein of subjects, 

fasted overnight, for blood collection. After basal blood sampling, at time 0 (t0), an oral 

load of 0.3g of 2H5-phenylalanine, dissolved in 15-20mL of water, was administred to 

the volunteers to be drank in 5 minutes. Blood samples were drawn at 30, 60, 120, 180, 

240, 300 and 360 minutes after the the loading, in EDTA tubes then immediately 

centrifuged at 3000g at 4°C for 10 minutes. Plasma was immediately stored at -80°C. 

Plasma samples were used to assess the concentration of 2H5-phenylalanine (D5-Phe) 

and 2H4-tyrosine (D4-Phe), the product of phenylalanine hydroxylation.  

 

Isotopic enrichments of plasma phenylalanine and tyrosine, derived by phenylalanine 

hydroxylation, were determined by gas chromatography–mass spectrometry (GC-MS) 

(HP 5890; Agilent Technologies, Santa Clara, CA) as t-butyldimethylsilyl derivatives 

(Biolo G et al., 2008). Plasma concentrations of leucine, phenylalanine and tyrosine 

were assessed in all samples by GC-MS, using the internal standard technique, as 

previously described (Biolo G et al., 2008). Known amounts of 13C-leucine, 13C-

phenylalanine and 2H2-tyrosine (Cambridge Isotope Laboratories) were added as 

internal standards. Isotopic enrichments were assessed considering the following mass-

to-charge ratios (m×z-1): phenylalanine m×z-1 234-239; tyrosine m×z-1 466-470. Amino 

acids in plasma were monitored using the following m×z-1: leucine m×z-1 302-303, 

phenylalanine m×z-1 336-337 and tyrosine m×z-1 466-468. 

Amino acid concentrations [aa] was determined by the internal standard technique as 

follows: 

 

[aa] = a × TTR 

 

where a is the concentration of the internal standard added to plasma samples and TTR 

(Tracer-to-Tracee Ratio) is the isotopic enrichment of the internal standard. 

 

Phe-D5 and Tyr-D4 concentrations, [aa*], was calculated as follows: 

 

[aa*]= [aa] ×TTR* 

 

where [aa] is plasma concentration of the tracee (phenylalanine or tyrosine amino acid) 
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and TTR* is the isotopic enrichment of Phe-D5 or Tyr-D4. 

The area-under-the curve (AUC), i.e., the area under the plasma amino acid 

concentration versus time curve, was estimated using the linear trapezoidal method. 

Blood was collected every 60 minutes for 6 hours. Thus the index of anabolic resistance 

was calculated as ratio between AUC Tyr-D4 and AUC Phe-D5, assessed over 6h meal 

test. 

 

AUC Tyr-D4/AUC Phe-D5 

 

A new method 

After the data analysis, we calculated the same index, using only the blood collections 

of the first two 2 hours from meal and [ring-2H5]-phenylalanine load, requiring 2 blood 

draws, over the 7 planned, and 2h, over 6 of observation. 

A simplify index of anabolic resistance was calculated as ratio between Tyr-D4 

concentration and Phe-D5 concentration measured after 2 h from meal and Phe-D5 load. 

 

[Tyr-D4]T120/[Phe-D5]T120 

 

The new, simplify index displayed similar results compared with the (bed-rest effect 

p<0.05; bed-rest×group interaction p<0.05) (R=0.75; p<0.001). 

3.1.3. Post-prandial insulin resistance  

Post-prandial state 

In the morning, a polyethylene catheter was inserted into a forearm vein of a subject, 

fasted overnight, for blood collection. After basal blood sampling, at time 0 (t0), a 

standarized test meal (500mL, 500Kcal, 55% of carbohydrate 15% of protein and 30% 

of fat; vanilla flavour, Nutricomp ®, B.Braun), was administred to the volunteers to be 

drank in 5 minutes. Blood samples were drawn at 30, 60, 120, 180, 240, 300 and 360 

minutes after the the loading, in EDTA tubes then immediately centrifuged at 3000g at 

4°C for 10 minutes. Plasma was immediately stored at -80°C. Plasma samples were used 

to assess insulinaemia and glycaemia in the fasting and fed state. 

 

Insulin and glucose levels were measured with standard procedures by a certified 

external laboratory (Synlab Italia Srl, Italy) and their values were used to calculate:  
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The Area Under the Curve (AUC) of post-load insulinemia and glycemia. 

 

The Matsuda index as parameter of insulin sensitivity in fed state. 

 

Matsuda Index =10000/√(glycT0 × insT0 × insaverage OGTT × glycaverage OGTT) 

 

Where (ins) and (glyc) indicate insulin and glucose plasma levels, respectively. 

 

Fasting state 

The HOmeostatic Model Assessment, as index of insulin resistance (HOMA-IR). 

 

HOMA index=(fasting glucose x fasting insulinemia)/405 

 

3.1.4. Amino acids 

A known amount of internal standards were added to plasma samples (200 µL) to 

determinate the concentration of unlabeled AAs. The plasma samples were 

deproteinized adding sulfosalicylic acid (200 µl, 10%). After centrifugation (4000 rpm 

per 20 min at 4°C) the supernatants were purified in a cationic resin (AG50W-X8; Bio-

Rad, Hercules, CA) using NH4OH (4N) as eluent. The NH4OH excesses were 

evaporated under N2 flux. Samples were then lyophilized and the powders obtained 

were derivatized by the addition of 50 µl acetonitrile and 50 µl MTBSTFA and by 

heating at 90°C for 45 min. After derivatization, samples were injected into a gas 

chromatography-mass spectrometer (GC-MS) (HP 5890, Agilent Technologies, Santa 

Clara , CA, USA). Gas chromatographic measurements were performed in single ion 

monitoring mode, using the following mass-to-charge ratio (m×z-1): phenylalanine 

m×z-1 336; [ring-2H5]-phenylalanine m×z-1 341; tyrosine m×z-1 466; [3,3-2H2]-

tyrosine m×z-1 468; [ring-2H4]-tyrosine m×z-1 470; homocysteine m×z-1 496; [13C]-

homocysteine m×z-1 497; [2H8]-homocysteine m×z-1 500; methionine m×z-1 320; [1-

13C, methyl-2H3]-methionine m×z-1 324; cysteine m×z-1 406; [3,3-2H2]-cysteine 

m×z-1 408. 
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3.1.5. Oxidative stress 

Glutathione synthesis rate 

In the morning, after an overnight fasting, two polyethylene catheters were inserted: one 

into a forearm vein for isotope infusion, and the other into a wrist vein of the opposite 

arm, heated at 50°C, for arterialized venous blood collection. Before the beginning of 

the infusion (time 0), a background blood sample was collected to assess the natural 

isotopic enrichments of 2H2-glycine and 2H2-glutathione in red blood cells (RBC). After 

that, a 7-hour primed-continuous infusion of 2H2-glycine (26.5 µmol×kg-1×h-1) was 

started (Cambridge Isotope Laboratories, Andover, MA). Blood samples were drawn at 

180, 300 and 420 minutes after the start of isotope infusion, to assess enrichments of 
2H2-glycine and [2H2-glycine]-glutathione in RBC. Blood, collected in EDTA tubes, 

was immediately centrifuged at 3000 g at 4°C for 10 minutes; plasma and erythrocytes 

were immediately stored at -80°C for further analysis. 

 

Isotopic enrichments of glycine and glutathione, in RBC, were determined by gas 

chromatography–mass spectrometry (GC-MS) (HP 5890; Agilent Technologies, Santa 

Clara, CA) as previously described (Biolo G et al., 2008; Antonione R et al., 2008). 

Isotopic enrichments were assessed considering the following mass-to-charge ratios 

(m×z-1): glycine m×z-1 218-220; glutathione m×z-1 363-366. Erythrocyte total 

glutathione concentrations were determined in background blood samples using the 

internal standard approach, through the addiction of known amount of [13C2-15N-

glycine]-glutathione (Cambridge Isotope Laboratories, Andover, MA). 

 

Glutathione fractional turnover rate (FTR; in % × d-1) was calculated as: 

 

[E(2H2-glutathione)×t-1]×E(2H2-glycine)-1 × 24 × 100 

 

where E(2H2-glutathione) ×t-1 is the slope of the regression line describing the rise in 

erythrocyte 2H2-glutathione enrichment as a function of time (hours); E(2H2-glycine) is 

the mean glycine enrichment in erythrocytes after steady state achievement. 

Coefficients (i.e., 100 and 24) were applied to express glutathione fractional turnover 

rate as %×d-1. The absolute turnover rate was calculated as the product of FTR and 

glutathione concentrations. 
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The ratio between the concentrations of reduced and oxidized forms of glutathione in 

erythrocytes (GSH/GSSG ratio) was assessed in the same background blood sample, by 

a commercially available kit (GT40, Oxford Biomedical Research; Oxford, MI).  

 

Glutathione synthetic capacity. 

Glutathione peroxidase activity was determined in erythrocytes according to Paglia and 

Valentine (Paglia DE & Valentine WN 1967) and expressed as µmol metabolized 

NADPH × min-1 × g protein-1 in the presence of an organic hydroperoxide 

(cumolhydroperoxide) and of reduced glutathione as enzyme cofactor. 

Catalytic and modulator subunit expression of glutamatecysteine ligase (GLC) in 

erythrocytes was measured by Western blot analysis (Thompson SA et al., 2000). 

Briefly, proteins were extracted from red blood cells by using a lysis buffer (45 mmol/L 

Tris-HCl, 0.2% Nlaurylsarcosine; Sigma-Aldrich, St Louis, MO) containing proteinase 

and phosphatase inhibitors (0.2 mM phenylmethanesulfonyl fluoride, 1 mM 

dithiothreitol, 2 µg aprotinin/mL, 2 µg pepstatin× mL- 1, 0.1 mmol NaF × mL-1, and 

0.1 mM Na3VO4; all: Sigma-Aldrich). After centrifugation (10 min, RT, 16 00 × g), 

proteins were separated by sodium dodecyl sulfate–polacrylamide gel (12%) 

electrophoresis and transferred to a nitrocellulose membrane (Protran; Perkin Elmer, 

Boston, MA). Proteins were recognized by using commercial antibodies raised against 

the catalytic (GCLc: sc-22755) and modulator (GCLm: sc-22754) (both: Santa Cruz 

Biotechnology Inc, Santa Cruz, CA) subunits of the glutamate-cysteine ligase. 

Glyceraldehyde-3-phosphate dehydrogenase was recognized by commercial antibody 

(sc- 25778; Santa Cruz Biotechnology Inc). A goat anti-rabbit horseradish peroxidase– 

conjugated immunoglobulin G (Sigma-Aldrich) was used as secondary antibody. 

Protein complexes were detected by enhanced chemiluminescence (Amersham Life 

Sciences, Arlington Heights, IL) on photographic film (Kodak Biomax Light Film; 

Sigma-Aldrich). Protein concentrations in the catalytic and modulator subunits of 

glutamate-cysteine ligase were measured by band densitometry as a ratio with 

glyceraldehyde-3-phosphate dehydrogenase protein concentration (Model 45–700 

Imaging Densitometer; Bio-Rad). 
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3.1.6. Lipid pattern 

Total cholesterol, HDL cholesterol and triglycerides were measured with standard 

methods by a certified external laboratory (Synlab Italia Srl, Italy). 

Commercially available kits were used to determine plasma concentrations of: 

− Cholesterylester transfer protein (CETP, ALPCO, Salem, NH, USA), 

− Lecithin cholesterol acyltransferase (LCAT, MyBioSource, CA, USA), 

− Lipoprotein lipase (LPL, MyBioSource, CA, USA), 

− Hepatic lipase (HL, MyBioSource, CA, USA), 

− Serum amyloid A, (SAA, Abcam, UK), 

− TNF-related apoptosis-inducing ligand (TRAIL, R&D Systems, 

Minneapolis, MN). 

 

HDL2 and HDL3 concentrations were assessed using the precipitation technique 

(chemical reagents were purchased from Gesan Production srl (Italy) and Fitzgerald 

Industries International, MA, USA). 

 

Plasma LDL cholesterol was measured by the Friedewald’s formula:  

 

total cholesterol – HDL cholesterol – (triglycerides×5-1). 
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3.1.7. Systemic inflammation  

high-sensitivity C reactive protein, was measured with standard methods by a certified 

external laboratory (Synlab Italia Srl, Italy).  

 

3.1.8. Membrane fatty acid composition  

Fatty acid membrane composition of red blood cells was analyzed modifying a 

previously published method (Burdge GC et al. 2002). Erythrocytes (200 µL) were 

washed five times with decreasing concentrations (10 mmol/L, 2.5 mmol/L; 1.25 

mmol/L; 0.625 mmol/L; 0.312 mmol/L) of phosphate buffered saline (PBS). Total lipid 

extraction was performed in 5 mL of a chloroform–methanol (2:1) solution, containing 

50 mg/L of butylhydroxytoluene as antioxidant, and 1mL of 1M NaCl solution. After 

centrifugation, the lower lipid phase was collected and dried under nitrogen flux at 40 

°C. Pellets were dissolved in toluene (500 µL), and after the addition of 1mL of a 

methanol solution containing 2% of H2SO4, were heated at 50 °C for 2 h. A neutralizing 

solution (1.0 ml, 0.25 M KHCO3 and 0.5 M K2CO3 in deionized H2O) and hexane (1 

mL) was added. After centrifugation, the hexane layer, containing fatty acid methyl 

esters (FAMEs), was collected and organic solvents were removed by N2 flux. After the 

addition of hexane (150 µL), samples were analyzed by gas-chromatography–flame 

ionization detection (GC- FID; GC 6850 Agilent Technologies, Santa Clara, CA, USA). 

Specific fatty acid standards were used to identify FAMEs by retention times in 

erythrocyte samples. A commercial mixture of purified fish oil fatty acids (Menhaden 

oil, Sigma–Aldrich, Inc, MO, US) was used to detect: oleic acid (18:1, n-9), elaidic acid 

(trans 18:1, n-9), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) 

and docosahexaenoic acid (22:6, n-3). Retention times of myristic acid (14:00), palmitic 

acid (16:00), palmitoleic acid (16:1, n-7), stearic acid (18:00), linoleic acid (18:2, n-6), 

a- linolenic acid (18:3, n-3), eicosaenoic acid (20:1, n-9), eicosadienoic acid (20:2, n-6), 

dihomo-γ- linolenic acid (20:3, n-6) and arachidonic acid (20:4, n-6) were identified by 

commercial standards. Adrenic acid (22:4, n-6) and docosapentaenoic acid (22:5, n-6) 

were identified by commercial standards from Nu-Check Prep, Inc, MN, US. Organic 

solvents and buffering salts were purchased from Sigma–Aldrich, Inc, MO, US, if not 

differently specified. 

Area-under-the-curve of each selected peak was determined by highly standardized 

hand integration performed using commercial software (HP Chem station; Agilent 

Technologies, Santa Clara, CA, USA). 



 56 

Erythrocyte membrane fatty acid (EMFA) composition was assessed by gas-

chromatography-flame ionization detection (GC-FID; GC 6850 Agilent Technologies, 

Santa Clara, CA, USA), as previously reported (Mazzucco et al. 2010). 

Red blood cell membrane level of each enlisted FA was expressed as percent ratio 

between area-under-the-curve of each selected EMFA peak and the sum of all measured 

EMFA peaks.  

The following indices were calculated: 

 

− Δ-5 desaturase index, as index of insulin sensitivity, was defined as ratio between 

arachidonic acid (20:4, n-6) and dihomo-γ-linolenic acid (20:3, n-6) membrane 

levels.  

− Δ-9 desaturase index, as index of insulin sensitivity, was calculated as ratio 

between oleic (18:1, n-9) and stearic (18:0) acid contents. 

− Arachidonic-to-eicosapentaenoic acid ratio, as index of inflammation, was 

calculated as ratio between arachidonic acid (20:4, n-6) and eicosapentaenoic acid 

(20:5, n-3) membrane levels. 
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3.2. Human study protocols 

3.2.1. The PLANHAB study (experimental hypoxia and bed rest) 

This study is was conducted at the Olympic Sport Center Planica, in Rateče, Slovenia.  

Two floors of the Olympic center are structured to simulate any altitude conditions in 

the all areas and in each room individually. Eleven male young subjects (mean ± sem; 

age 24 ± 4 yr; BMI 22 ± 2 kg/m²) were selected to participate to the experimental study. 

The experimental protocol was approved by the ethical committee of the University of 

Ljubljana (Slovenia) and was in accordance with the Declaration of Helsinki and 

following amendments. A written informed consent was obtained from each 

individuals. Subjects were physically active before the study and none of them was 

under medication. 

Subjects have been randomly assigned to three groups. Each group participated to three 

experimental campaigns: i) 10-day normoxic normoxia (21 kPa oxygen) bed rest, NBR 

ii) 10-day hypoxic (12.5 kPa oxygen, corresponding to 4000 m above sea level) bed 

rest, HBR iii) 10-day hypoxic ambulation HAMB. Each campaign was preceded by 5 

days of dietary and environmental adaptation and was followed by 5 days of recovery 

(Figure 17). A 2-month wash-out period was allowed between each campaign. Dietary 

intake was controlled to maintain subjects in eucaloric condition; before the study, 

individual resting energy expenditure (REE) was calculated according to the 

FAO/WHO equations (Muller MJ et al. 2004).  

Each subject received a dietary energy intake equals to 1.4 and 1.1 times his REE in the 

ambulatory (adaptation and recovery periods as well as hypoxic ambulation) and bed 

rest (normoxic and hypoxic bed rests) periods, respectively. Menu composition was 

adapted to individual dietary habits. Subjects received six meals daily (i.e., 3 main 

meals and 3 snacks). Each individual was tested at the baseline (normoxic ambulation) 

and at the end (day 10) of each experimental condition. All foods were weighed for 

each participant, and volunteers were asked to consume the complete meal. At the 

beginning and at the end of each experimental condition, body composition was 

assessed by DXA (Discovery W—QDr series, Hologic, Bedford USA). Whole body 

protein turnover as well as glutathione kinetics were determined by stable isotope 

infusion technique, as previously described (see experimental design section 2.1.1, 

2.2.5). 
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Statistics 

All data were expressed as mean ± S.E.M. Hypoxia and bed rest effects were analyzed 

by repeated measure ANOVA with two levels of interaction, physical activity and 

oxygen partial pressure. If significant interaction was evidenced, post hoc analysis was 

performed using Student t-test with Bonferroni correction. Statistical significance was 

achieved with p-value <0.05. Statistical analysis was performed using SPSS software 

(version 12; SPSS, Inc., Chicago, IL). 

 

 
Figure 17. The PLANHHAB Study experimental design 
Subjects were randomly assigned to three groups. Each group participated to three experimental campaigns: i) 10-day normoxic 

normoxia  bed rest (yellow) ii) 10-day hypoxic bed rest (red) iii) 10-day hypoxic ambulation (blue). A 2-month wash-out period was 

allowed between each campaign. 

  

METHODS

• BODY COMPOSITION: DXA

• WHOLE-BODY PROTEIN KINETICS                   
Phe/Tyr stable isotope infusion in the 
postabsorptive state

10-d BED REST IN NORMOXIC CONDITION (n=11)
21 kPa oxygen

10-d BED REST IN HYPOXIC CONDITION (n=11)
12.5 kPa oxygen

10-d NORMAL PHYSICAL ACTIVITY IN HYPOXIC CONDITION (n=11)
12.5 kPa oxygen
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3.2.2. The PANGeA study (bed rest in the elderly) 

PANGeA is an European program (INTERREG) aiming to answer to some scientific 

questions that refer to the impact of motor inactivity on the elderly and, consequently, 

on their health. 

The bed rest study was conducted at the Valdoltra Hospital (University of Primorska, 

Ankaran-Capodistria, Slovenia). Fifteen healthy male subjects were enrolled: 7 young 

males (mean ± S.E.M.; age 23±1 years; BMI 24.0±0.9 kg/m2) and 8 elderly subjects 

(mean ± S.E.M.; age 59±1 years; BMI 26.8±1.5 kg/m2). Body weight of all subjects had 

been stable from the previous 3 months. Preliminary standard anthropometric measures 

and routine medical screening were performed. Volunteers were admitted at the hospital 

one week before the bed rest period for dietary and environmental adaptation phase 

(Ambulatory period). At the end of this period, each subject underwent 14 days of bed 

rest in which all daily activities were performed in horizontal conditions. 

The experimental protocol was approved by the ethical committee of the University of 

Ljubljana (Slovenia) and was in accordance with the Declaration of Helsinki and 

following amendments. A written informed consent was obtained from each persons. 

Subjects were physically active before the study and none of them was under 

medication, or had any acute or chronic illness at least from the three months preceding 

the protocol.  

Dietary intake was controlled to maintain subjects in eucaloric condition; before the 

study, individual resting energy expenditure (REE) was calculated according to the 

FAO/WHO equations (Muller MJ et al. 2004). Participants received a diet containing 

1.4 and 1.1 times their calculated REE during the ambulatory and the bed rest periods, 

respectively; All foods were weighed for each participant, and volunteers were asked to 

consume the complete meal. 

Menu composition was adapted to individual dietary habits. Subjects received three 

meals daily (i.e., breakfast, lunch and dinner). Each individual was tested at the baseline 

(BR0) and at the end (BR+14) of the experimental condition. In these days all subjects 

underwent to a metabolic test in order to estimate both insulin sensitivity and anabolic 

sensitivity in fed state through a new, simple, safe and quick method, as previously 

described (see experimental design section - 2.2.2, 2.2.3) 

At the beginning and at the end of each experimental condition, body composition was 

assessed by bioimpedentiometry (BIA 101, Akern Srl, Italy, following manufacture 

instructions) (Figure 18). 
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Statistics 

Data are expressed as mean ± SEM. In order to evaluate the effect of the bed rest and/or 

the effects of aging on the insulin resistance and on the anabolic resistance, multivariate 

ANCOVA statistical analysis was applied. Basal values were used as covariate. the 

changes induced by bed rest and/or aging, were assessed through a Student T-test. 

Linear regression analyses were performed using Pearson’s correlation. Data were 

logarithmic transformed when appropriate. P-values <0.05 were considered statistically 

significant. Statistical analysis was performed using SPSS software (version 12; SPSS, 

Inc., Chicago, IL). 

 

 
Figure 18. The PANGeA Study experimental design. 
During each experimental day (BR0 and BR+14), after basal blood sampling, at time 0 (t0), an oral load of 0.3g of 2H5-

phenylalanine, dissolved in 15-20mL of water, was administred to the volunteers to be drank in 5 minutes. Blood samples were 

drawn at 30, 60, 120, 180, 240, 300 and 360 minutes after the the loading. 
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4. RESULTS 

4.1. The PLANHAB study (experimental hypoxia and bed rest). 

4.1.1. Body composition 

As reported elsewhere (Debevec T. et al. 2014) there was a significant reduction in 

body weight in all 3 conditions (–2.1%, –2.8%, and –2.0% for HAMB, HBR, and NBR, 

respectively; p<0.05), due to a significant decrease in lean body mass (–3.8%, –3.8%, –

4.3% for HAMB, HBR, and NBR, respectively; figure 19A) with a slight but not 

significant increase in fat mass (Figure 19B). 

 
Figure 19. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on body composition. 
N=11. Body composition changes before (basal, white columns) and after (intervention, black columns) ambulatory hypoxia 

(HAMB), bed rest Hypoxia (HBR) and bed rest normoxia (NBR) conditions * for p<0.05. 

 

4.1.2. Whole body protein kinetics  

As showed on table 3 Hypoxia significantly decreased whole body protein turnover 

(protein synthesis, -8±3%; protein degradation, -9±3%) in ambulatory conditions, while 

hypoxia tended to increase the rates of synthesis (+4±4%) and degradation (+2±4%) in 

bed rest. There were not significant effects of hypoxia or bed rest on the rates of 

phenylalanine hydroxylation to tyrosine (Figure 18), an index of net protein loss in the 

postabsorptive state (Basal 0.12±0.01, HAMB 0.11±0.01, NBR 0.12±0.01, HBR 
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0.11±0.01 mmol/min/kg LBM; bed rest effect p=0.98, hypoxia effect p=0.08, 

interaction 0.66).  

 

Table 3 Effects of 10-d bed rest and hypoxia, per se or in combination, on protein 

metabolism. 
 Ambulatory Bed Rest p# 

 Control Hypoxia Control Hypoxia Bed rest 
effect 

Hypoxia 
effect Interaction 

Rd to protein synthesis 
(mmol/min/kg LBM) 0.96±0.03 0.88±0.03* 0.92±0.02 0.95±0.03 0.86 0.57 0.001 

Ra from proteolysis  
(mmol/min/kg LBM) 1.08±0.03 0.99±0.04* 1.04±0.02 1.06±0.03 0.91 0.36 0.001 

Rd to hydroxylation 
(mmol/min/kg LBM) 0.12±0.01 0.11±0.01 0.12±0.01 0.11±0.01 0.98 0.08 0.66 

N=11. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor repeated measure ANOVA. Rd, rate of 

disappearance. Ra, rate of appearance. * p<0.05 

On figure 20 are shown the effects of hypoxia and bed rest, alone or in combination, on 

the rates of whole body protein synthesis and degradation. There was significant 

hypoxia×bed rest interaction for the rates of protein synthesis and degradation.  

 

 
Figure 20. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on whole body protein kinetics. 
N=11. Whole body protein kinetics changes in ambulatory and bed rest states during hypoxia (white columns), or normoxia (black 

columns) conditions * for p<0.05. 
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No changes were observed on phenylalanine hydroxylation an index of net protein loss 

(Figure 21). 

 

 
Figure 21. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on phenylalanine hydroxylation. 
N=11. phenylalanine hydroxylation changes in ambulatory and bed rest states during hypoxia (white columns), or normoxia (black 

columns) conditions * for p<0.05. ns = non significant  
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4.1.3. Plasma lipid profile 

Effects of hypoxia per se and/or combined to bed rest lipid profile are reported on table 

4.  

 

Table 4. Effects of 10-d bed rest and hypoxia, per se or in combination on plasma 

lipid profile. 

 

Ambulatory Bed Rest p# 

Normoxia Hypoxia Normoxia Hypoxia 
Bed rest 

effect 

Hypoxia 

effect 
Interaction 

PLASMA LIPIDS 

Total cholesterol (mg·dL-1) 184±13 173±8 174±10 180±11 0.66 0.67 0.12 

Tryglicerides (mg·dL-1) 94±14 113±14* 109±20 102±13 0.65 0.38 0.02 

HDL cholesterol (mg·dL-1) 49±3 41±2* 42±2 39±3 <0.01 <0.001 0.02 

LDL cholesterol (mg·dL-1) 117±12 110±7 110±7 121±9 0.57 0.70 0.14 

HDL2-to-HDL3 ratio 0.48±0.08 0.43±0.07 0.55±0.09 0.38±0.05 0.93 0.26 0.55 

ENZYMES INVOLVED IN LIPID METABOLISM 

Cholesteryl ester transfer 

protein (µg·mL-1) 
2.91±0.23 3.00±0.16 2.86±0.20 3.01±0.19 0.87 0.31 0.85 

Lecithin-cholesterol 

acyltransferase (ng·L-1) 
21.8±4.2 20.3±4.3 21.7±4.7 23.8±6.3 0.66 0.99 0.45 

Lipoprotein lipase (ng·L-1) 28.4±3.3 23.9±3.6 27.5±4.0 26.8±3.7 0.48 0.28 0.43 

Hepatic lipase (U·mL-1) 0.72±0.10 0.79±0.09 0.80±0.09 0.90±0.08 0.15 0.04 0.81 
N=11. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor repeated measure ANOVA. *p<0.05 

HDL concentrations were significantly decreased both by bed rest and hypoxia with a 

significant negative bed rest×hypoxia interaction (Figure 20).  

Furthermore the ratio between HDL and total cholesterol (Figure 20) was significantly 

decreased by physical inactivity (-8±4%, p=0.001) and hypoxia (-11±4%, p=0.003).  

The ratio between HDL2 and HDL3 were not significantly changed. Plasma levels of 

total cholesterol, LDL and triglycerides were not significantly affected by 10-d of bed 

rest with or without hypoxia. On the other hand, the exposure to hypoxia in ambulatory 

conditions increased the triglycerides concentrations without changes in the other 

plasma lipid fractions (Figure 22). 
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Figure 22. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on total and HDL cholesterol. 
N=11. HDL cholesterol (A), Total Cholesterol (B) and HDL-to-total cholesterol ratio (C) modifications in ambulatory and bed rest 

states during hypoxia (black columns), or normoxia (white columns) conditions. Data were analyzed with the use of a 2-factor 

repeated measure ANOVA. Significance for p<0.05. 
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Among the enzymes involved in lipid metabolism only HL was modified, with a 

significant increase in hypoxic conditions, together with a decreased LPL-to-HL ratio 

(p=0.05), independently from the physical activity levels (Figure 23). 

 

 
Figure 23. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 
on enzymes involved in lipid metabolism. 
N=11. LPL-to-HL ratio modifications in ambulatory and bed rest states during hypoxia (black columns), or normoxia (white 

columns) conditions. Data were analyzed with the use of a 2-factor repeated measure ANOVA. Significance for p<0.05. LPL, 

Lipoprotein lipase. HL, Hepatic Lipase. 

4.1.4. Insulin sensitivity. 

There were no significant effects of hypoxia or bed rest on plasma glucose and insulin 

concentrations or on HOMA-IR index (Table 5). However the Δ-5 desaturase index was 

significantly reduced by both exposure to bed rest (p=0.03) and hypoxia (p=0.02). The 

index decreased by 5±2% after 10 days of physical inactivity and by 6±2% after 10 days 

of hypoxia, as compared to baseline conditions (Figure 24). A bed rest×hypoxia 

interaction was not observed (p=0.15). 
 

Table 5. Effects of 10-d bed rest and hypoxia, per se or in combination, on glucose 

metabolism. 

 Ambulatory Bed Rest p# 

INSULIN SENSITIVITY Normoxia Hypoxia Normoxia Hypoxia 
Bed rest 

effect 

Hypoxia 

effect 
Interaction 

Fasting insulin (µU·mL-1) 7±1 7±1 7±1 6±1 0.85 0.93 0.27 

Fasting glucose (mg·dL-1) 94±2 93±1 93±1 92±1 0.35 0.57 1.00 

HOMA index 1.5±0.2 1.7±0.2 1.6±0.2 1.5±0.1 0.74 0.98 0.29 
N=11. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor repeated measure ANOVA. *p<0.05 
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Figure 24. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on the activity of Δ-5 desaturase enzyme. 
N=11. Δ-5 desaturase activity modifications in ambulatory and bed rest states during hypoxia (black columns), or normoxia (white 

columns) conditions. Data were analyzed with the use of a 2-factor repeated measure ANOVA. Significance for p<0.05.  

Tumor necrosis factor Related Apoptosis Induce Ligand (TRAIL)  

Plasma TRAIL concentration was significantly increased by hypoxia (+36±6%, 

p=0.001) and a significant bed rest×hypoxia interaction was reported (p=0.04). A 

significant direct correlation between TRAIL and GSH-to-GSSG ratio was observed, as 

reported in figure 25. 

 

 
Figure 25. Correlation between TRAIL and GSH-to-GSSG ratio. 
N=11. TRAIL and GSH-to-GSSG ratio positive relationship in hypoxic bed rest conditions. Significance for p<0.05.  
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4.1.5. Inflammatory responses. 

Hypoxia, but not bed rest, significantly increased the levels of C reactive protein (CRP) 

and serum amyloid A (SAA) indices of systemic inflammation, without a significant 

bed rest×hypoxia interaction (Figure 26). 

 

 
Figure 26. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on the activity of inflammatory status. 
N=11. SAA (A) and PCR (B) modifications in ambulatory and bed rest states during hypoxia (black columns), or normoxia (white 

columns) conditions. Data were analyzed with the use of a 2-factor repeated measure ANOVA. Significance for p<0.05. SAA, 

serum amyloid A. CRP, C reactive protein. 
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4.1.6. Oxidative stress 

Glutathione redox capacity 

Data are reported on table 6. Hypoxia conditions significantly increased the hematocrit 

values (Figure 27). Thus, the results of glutathione concentrations and glutathione 

absolute turnover rate (ATR) were normalized by whole blood volume, taking into 

account the hypoxia-induced hematocrit changes, and also by erythrocyte volume. 

 

Table 6. Effects of 10-d bed rest and hypoxia, per se or in combination, on 

glutathione redox capacity in erytrocytes (RBC) and in whole blood (WB). 

 Ambulatory Bed Rest p# 

 Normoxia Hypoxia Normoxia Hypoxia 
Bed rest 

effect 

Hypoxia 

effect 
Interaction 

Hematocrit (%) 46±1 51±1 47±1 51±1 0.07 0.03 0.10 

Total glutathione 

(mmol/L RBC) 
2692±84 2620±79 2564±85 2547±86 0.03 0.22 0.42 

Glutathione ATR 

(mmol/day/L RBC) 
656±135 858±88 869±82 1250±263 0.05 0.06 0.53 

Total glutathione 

(mmol/L WB) 
1245±49 1332±51 1207±37 1302±45 0.21 <0.001 0.82 

Glutathione ATR 

(mmol/day/L WB) 
299±61 430±44 409±38 637±134 0.04 0.03 0.49 

Glutathione FTR 

(percent/day) 
25±5 33±3 35±4 50±10 0.04 0.05 0.58 

GSH/GSSG (ratio) 137±26 237±43* 221±37 176±36 0.81 0.40 0.009 
N=11. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor repeated measure ANOVA. ATR, 

absolute turnover rate. FTR, fractional turnover rate. GSH/GSSG, ratio between reduced and oxidised glutathione. RBC, red blood 

cell. WB, whole blood. Significance for p<0.05. 
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Figure 27. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on Hematocrit. 
N=11. Hematocrit modifications in ambulatory and bed rest states during hypoxia (black columns), or normoxia (white columns) 

conditions. Data were analyzed with the use of a 2-factor repeated measure ANOVA. Significance for p<0.05.  

Total glutathione concentrations normalized by erythrocytes volume significantly 

decreased following bed rest in both normoxic or hypoxic conditions, with no 

significant bed rest×hypoxia interaction (Figure 28A). 

  

 
Figure 28. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on glutathione metabolism in erythrocytes. 
N=11. Total glutathione concentration (A) and Glutathione Absolute synthesis rate (B) modifications in red blood cells during 

ambulatory and bed rest states in hypoxia (black columns), or normoxia (white columns) conditions. Data were analyzed with the 

use of a 2-factor repeated measure ANOVA. Significance for p<0.05. GSH, glutathione. ATR, absolute synthesis rate. RBC, red 

blood cell. 
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The glutathione ATR normalized by RBC volume, shows a significant increase 

following 10-d of immobilization in both normoxic and hypoxic states (Figure 28B).  

The total glutathione concentration normalized by whole blood volume shows a 

significant positive effect of hypoxia in both ambulatory and BR conditions (Figure 

29A). The glutathione ATR normalized by whole blood volume shows an increased 

turnover rate influenced both by hypoxia and physical inactivity (Figure 29B).  

The GSH/GSSG ratio, an index of the redox balance, indicates a significant 

hypoxia×bed rest interaction on the ratio. Hypoxia and BR conditions significantly 

increased the glutathione FTR (Figure 29C). 

 

 
Figure 29. Effect of hypoxia in ambulatory conditions and during 10-d of bed rest 

on glutathione metabolism in whole blood. 
N=11. Total glutathione concentration (A) and Glutathione Absolute synthesis rate (B) modifications in whole blood and 

glutathione fractional synthesis rate (C) changes, measured during ambulatory and bed rest states in hypoxia (black columns), or 

normoxia (white columns) conditions. Data were analyzed with the use of a 2-factor repeated measure ANOVA. Significance for 

p<0.05. GSH, glutathione. ATR, absolute synthesis rate. FTR fractional synthesis rate. WB, whole blood. 
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4.1.7. Plasma and erythrocyte GSH amino acid precursor 

Plasma concentrations of glutamate and cysteine were increased due to hypoxia, for 

glycine plasma levels there is a bed rest×hypoxia interaction. In erythrocytes, hypoxia 

induced a statistically significant increase in glycine concentrations while no effects 

were observed on the concentrations of the other glutathione amino acid precursor 

(Table 7). Hypoxia inversely affected plasma concentrations of glutamate and 

glutamine. Glutamine decreased by about 4%, while glutamate increased by about 12%, 

both in ambulatory and bed rest conditions. There was a significant hypoxia-induced 

increase (+19±6%, p<0.01) on the glutamate-to-glutamine ratio. The 5-oxoproline 

plasma concentrations tended to decrease in hypoxic condition both in ambulatory and 

bed rest states  

 

Table 7. Effects of 10-d bed rest and hypoxia, per se or in combination, on amino 

acid concentrations in plasma and red blood cells. 
 Ambulatory Bed Rest p# 

 Normoxia Hypoxia Normoxia Hypoxia 
Bed rest 

effect 

Hypoxia 

effect 
Interaction 

PLASMA AMINO ACID CONCENTRATIONS 

Cysteine (µmol×L-1) 294±12 299±11 277±10 304±11 0.45 0.005 0.27 

Glycine (µmol×L-1) 172±9 185±10* 196±12 185±12 0.04 0.78 0.01 

Glutamate (µmol×L-1) 61±4 69±5 62±3 67±3 0.81 0.03 0.59 

Glutamine (µmol×L-1) 541±10 515±9 552±21 522±7 0.55 0.01 0.86 

Homocysteine (µmol×L-1) 15.3±1.7 17.0±1.4 14.7±1.4 16.2±1.4 0.38 0.003 0.93 

5-oxoprolinea (µmol×L-1)a 1.01±0.08 0.91±0.06 1.00±0.07 0.91±0.06 0.92 0.08 0.90 

ERYTHROCYTE AMINO ACID CONCENTRATIONS 

Cysteine (µmol×L-1) 70±3 79±3 72±4 70±3 0.20 0.33 0.07 

Glycine (µmol×L-1) 368±11 389±13 372±12 393±12 0.49 <0.001 0.98 

Glutamate (µmol×L-1) 477±24 481±18 448±16 478±17 0.33 0.16 0.37 

Glutamine (µmol×L-1) 1053±147 1015±209 1042±141 1000±215 0.79 0.73 0.97 
N=11. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor repeated measure ANOVA. a, 5-

oxoproline concentrations have been estimated as ratio between 5-oxoproline and glutamate. Significance for p<0.05. 
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4.1.8. Red blood cell membrane lipid composition. 

Data on lipid composition in RBC membranes are reported in Table 8. There are no 

changes in FAs concentrations in any of the study protocols.  

 

Table 8. Effects of 10-d bed rest and hypoxia, per se or in combination on fatty 

acids composition (%) of erythrocyte membranes. 

  

Ambulatory Bed Rest p# 

Normoxia Hypoxia Normoxia Hypoxia 
Bed 
rest Hypoxia 

Interaction 
effect effect 

SATURATED FATTY ACIDS 
Myristic 14:00 0.20 ± 0.024 0.31 ± 0.32 0.3 ± 0.025 0.25 ± 0.020 0.45 0.08 0.01 

Palmitic 16:00 20.61 ± 0.36 20.9 ± 0.31 20.62 ± 0.26 20.81 ± 0.29 0.71 0.15 0.76 

Stearic 18:00 18.54 ± 0.20 18.42 ± 0.08 18.64 ± 0.17 18.45 ± 0.14 0.58 0.27 9.64 

SUM 39.35 ± 0.45 39.63 ± 0.37 39.55 ± 0.32 39.52 ± 0.34       

MONOUNSATURATED FATTY ACIDS 
Palmitoleic 16:1 n7 0.25 ± 0.04 0.27 ± 0.04 0.28 ± 0.04 0.26 ± 0.03 0.72 1.0 0.26 

Oleic 18:1 n9 13.34 ± 0.33 12.87 ± 0.33 12.81 ± 0.28 12.94 ± 0.34 0.08 0.1 0.06 

Elaidic trans 18:1n-9 1.03 ± 0.04 1.02 ± 0.03 1.01 ± 0.05 1.05 ± 0.05 0.7 0.45 0.14 

Eicosenoic 20:1n-9 0.31 ± 0.01 0.3 ± 0.01 0.3 ± 0.01 0.31 ± 0.01 0.86 0.75 0.1 

SUM 14.92 ± 0.37 14.46 ± 0.34 14.39 ± 0.23 14.56 ± 0.37       

n-3 POLYUNSATURATED FATTY ACIDS 
α-Linolenic acid 18:3 
n3  0.04 ± 0.02 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 ns ns ns 

Eicosapentaenoic acid 
20:5n-3  0.53 ± 0.04 0.58 ± 0.04 0.56 ± 0.03 0.54 ± 0.04 0.94 0.5 0.1 

Docosapentaenoic 
22:5n-3 2.50 ± 0.08 2.57 ± 0.10 2.55 ± 0.09 2.57 ± 0.09 0.43 0.02 0.41 

Docosahexaenoic acid 
22:6n-3 4.48 ± 0.23 4.69 ± 0.26 4.63 ± 0.25 4.80 ± 0.2 0.02 0.01 0.83 

SUM 7.50 ± 0.25 7.84 ± 0.30 7.74 ± 0.26 7.91 ± 0.19       

n-6 POLYUNSATURATED FATTY ACIDS 
Linoleic acid 18:2 n6  11.87 ± 0.35 11.72 ± 0.32 11.6 ± 0.35 11.39 ± 0.29 0.08 0.21 0.83 

Eicosadienoic acid 
20:2n-6 1.09 ± 0.51 1.47 ± 0.56 1.13 ± 0.19 0.89 ± 0.24 0.6 0.63 0.5 

Dihomo-γ-linolenic 
20:3n-6 1.97 ± 0.13 2.04 ± 0.13 2.08 ± 0.12 2.16 ± 0.13 0.001 0.02 0.98 

Arachidonic acid 
20:4n-6 18.11 ± 0.28 17.7 ± 0.27 18.16 ± 0.21 18.39 ± 0.32 0.04 0.49 0.02 

Adrenic 22:4n-6 4.15 ± 0.20 3.99 ± 0.18 4.12 ± 0.17 4.17 ± 0.18 0.07 0.02 0.02 

Docosapentaenoic 
22:5n-6 0.99 ± 0.08 1.10 ± 0.13 1.17 ± 0.17 0.98 ± 0.08 0.71 0.47 0.17 

SUM 38.22 ± 0.79 38.08 ± 0.72 38.31 ± 0.65 38.01 ± 0.64       
N=11. Values are percent of total Fatty Acids. Data were expressed as mean±S.E.M. # Data were analyzed with the use of a 2-factor 

repeated measure ANOVA Significance for p<0.05. 
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4.2. The PANGEA STUDY (bed rest in the elderly) 

4.2.1. Body composition 

Body composition was significantly modified after 14 days of BR both in young and 

elderly subjects. As showed in table 9, body weight and BMI significantly decrease 

after 14-d of resting with a reduction in FFM (Figure 30A) and a slight but significant 

increase in FM (Figure 30B). 

Table 9. Anthropometrical data before (BDC-1) and after (BR+14) bed rest in 

young and elderly subjects. 

    p# 

 subjects BDC-1 BR+14 Bed rest 
effect 

bed rest × 
group 

interaction 
Body weight 
(kg) 

Young 74.84 ± 3.32  71.59 ± 3.14 <0.001 0.08 Elderly 79.64 ± 3.71 77.58 ± 3.67 

BMI (kg/m2) Young 23.96 ± 0.89 22.91 ± 0.81 <0.001 0.12 Elderly 26.85 ± 1.47 26.15 ± 1.45 

FFM (kg) Young 60.86 ± 1.46 56.36 ± 1.43 <0.001 0.18 Elderly 59.79 ± 2.43 56.66 ± 2.41 

FM (kg) Young 13.99 ± 2.34 15.33 ± 2.66 0.01 0.74 Elderly 19.85 ± 1.75 20.91 ± 1.69 
N=7 young group; N=8 elderly gourp. Data were expressed as mean±S.E.M. #Data were analyzed with the use of a 2-factor 

repeated measure ANCOVA. BMI: Body Mass Index, FFM: Fat-Free Mass, FM: Fat Mass. 

 

Figure 30. Body composition modifications after 14-d of bed rest in young and 

elderly subjects. 
N=7 young group; N=8 elderly group. Body composition modifications in ambulatory conditions (black column) and after 14-d of 

bed rest (white column). in young and elderly subjects. Data were expressed as mean±S.E.M. Data were analyzed with the use of a 

2-factor repeated measure ANCOVA. FFM, Fat-free Mass. FM Fat Mass.  
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4.2.2. Insulin sensitivity. 

Glucose and insulin metabolism data, assessed in basal conditions and during load, 

before and after 14-d of experimental inactivity, are reported in table 10. The metabolic 

basal values were similar between the two groups. Plasma glucose concentration in 

fasting state were not significantly modified after 14-d of BR while the fasting insulin 

plasma concentration were augmented especially in young subjects (+74±21% and 

+16±12% in young and elderly individuals respectively).  

The HOMA-IR, as index of insulin resistance in fasting state, significantly increase 

after BR in both young and elderly subjects, however, young individuals shown 

significantly (p=0.04) higher values (+80±29%) than eldelry (+12±13%). 

 

Table 10. Glucose metabolism data before (BDC-1) and after (BR+14) bed rest in 

young and elderly subjects. 

     p# 

 subjects BDC-1 BR+14 
Delta % 

(BR+14 – 
BDC-1) 

Bed 
rest 

effect 

bed rest × 
group 

interaction 
Fasting glycaemia 
(mg/dL) 

Young 87 ± 4.30 86.57 ± 1.90 1.09 ± 5.74 0.45 0.54 
Elderly 96.38 ± 4.00 92.38 ± 2.39 3.29 ± 3.75 

Fasting insulinaemia 
(UI/L) 

Young 5.14 ± 1.10 8.43 ± 1.54 74.32 ± 21.06 <0.01 <0.05 
Elderly 5.25 ± 0.77 5.88 ± 0.90 15.63 ± 11.52 

HOMA index Young 1.11 ± 0.23 1.82 ± 0.35 79.67 ± 28.86 0.02 <0.05 
Elderly 1.27 ±0.20 1.34 ± 0.21 12.44 ± 12.72 

Matsuda index Young 26.93 ± 4.24 14.21 ± 2.38 -45.95 ± 4.51 <0.001 0.01 
Elderly 18.79 ± 1.50 14.95 ± 2.09 -20.34 ± 9.42 

AUCIns (UI h/L) Young 99.86 ± 17.47 207.68 ± 37.96 113.29 ± 19.12 <0.01 0.02 
Elderly 133.84 ± 12.97 198.38 ± 26.82 48.78 ± 14.24 

AUCGluc (mg h/dL) Young 311.61 ± 13.76 334.50 ± 13.82 7.84 ± 3.64 <0.05 0.94 
Elderly 372.13 ± 23.56 396.81 ± 24.47 7.58 ± 5.66 

AUCIns/AUCGluc Young 0.33 ± 0.06 0.62 ± 0.11 98.31 ± 17.22 0.001 0.02 
Elderly 0.37 ± 0.04 0.51 ± 0.07 38.93 ± 12.73 

N=7 young group; N=8 elderly gourp. Data were expressed as mean±S.E.M. #Data were analyzed with 2-factor repeated measure 

ANCOVA. data were logarithmic transformed when appropriate 
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Matsuda index, as parameter of insulin sensitivity in fed state (loading), showed a 

reduction due to the 14-d of BR (Figure 31) in both groups but it was doubled in young 

than in elderly (-46±5% vs -20±9%, respectively, p=0.04). 

 
Figure 31. Matsuda index modifications after 14-d of bed rest in young and elderly 

subjects. 
Interaction = bed rest × group interaction. Data analyzed with the 2-factor repeated measure ANCOVA 
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The area-under-the curve (AUC), i.e., the area under of both plasma glucose (AUCGly) 

and plasma insulin (AUCIns) concentrations during the test meal versus time, was 

estimated using the linear trapezoidal method. In basal condition the AUCIns values 

were comparable between the two groups while the AUCGly values were greater in 

elderly than in young people about of 19% (Figure 32B and D). After BR the AUCIns 

was augmented in both groups with a significant (p=0.02) higher increase in the young 

population (+113±19%) if compared to the elderly group (+49±14%). (Figure 32A and 

C). 

The AUCIns/AUCGly ratio, as index of insulin resistance after load, was augmented in 

both young and elderly subjects after bed rest however the young individuals showed a 

significant (p=0.01) higher increase of this value (+98±17%) than elderly population 

(+39±13%) (Table 9). 

 

 
Figure 32. Glycaemia and insulinaemia modifications before (◼ ︎) and after 14-d of 

bed rest (�) in young (A and B) and elderly (C and D) subjects. 
Interaction = bed rest × group interaction. Data analyzed with the 2-factor repeated measure ANCOVA 
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4.2.3. Anabolic resistance 

The plasma AA concentrations as well as the isotopic enrichment of D5-Phe and D4-

Tyr, before and after the bed rest period, were assessed by GCMS as previously 

reported (see methods section). 

To evaluate the effect of ageing and bed rest on anabolic resistance the AUC i.e., the 

area under of both plasma D5-Phe (AUCD5-Phe) and plasma D4-Tyr (AUCD4-Tyr) 

concentrations during the test meal versus time, were calculated. Moreover the AUCs of 

unlabeled phenylalanine (AUCPhe), tyrosine (AUCTyr) and leucine (AUCLeu) were also 

assessed (Table 11). 

As showed in table 10 AUCPhe significantly increased after 14-d of bed rest (4%) with 

no time×group interaction. No significant changes were observed after 14-d of 

experimental inactivity on AUCTyr and AUCLeu values. Leucine plasma concentrations 

are considered an index of the absorption of the amino acids from the protein 

administered with the teat meal. We observed that the leucine peak at 60 minutes was 

comparable between the ambulatory and bed rest conditions both in young and elderly 

subjects, showing no interference from the amino acid absorption rate. 

Table 11. Bed rest effect on labeled and unlabeled plasma amino acids 
concentration in young and elderly subjects 

  BDC-1 BR+14 

Delta % 
(BR+14 – 
BDC-1) 

p# 

Bed rest 
effect 

bed rest × 
group 

interaction 

AUC Phenylalanine Young 413.14 ± 27.58 430.49 ± 19.37 6.10 ± 5.93 0.03 0.60 
Elderly 401.27 ± 11.51 415.51 ± 16.13 3.61 ± 3.19 

AUC Tyrosine Young 516.02 ± 58.58 502.44 ± 44.51 0.47 ± 6.21 0.37 0.23 
Elderly 599.72 ± 44.09 614.95 ± 52.29 2.12 ± 2.92 

AUC Leucine Young 818.32 ± 41.91 815.92 ± 58.18 -0.31 ± 4.77 0.55 0.93 
Elderly 793.23 ± 43.15 798.06 ± 37.71 1.06 ± 2.64 

AUC D5-Phe Young 16.33 ± 1.67 16.44 ± 1.39 4.19 ± 9.41 0.14 0.54 
Elderly 16.13 ± 1.55 17.99 ± 2.29 13.24 ± 12.13 

AUC D4-Tyr Young 3.38 ± 0.60 3.30 ± 0.36 9.06 ± 14.06 <0.01 0.05 
Elderly 3.84 ± 0.43 4.93 ± 0.66 33.32 ± 15.78 

AUC D4-Tyr/ 
AUC D5-Phe 

(T0-T360) 

Young 0.20 ± 0.03 0.20 ± 0.01 5.20 ± 9.36 
<0.01 0.01 Elderly 

0.24 ± 0.02 0.28 ± 0.02 18.5 ± 7.27 

AUC D4-Tyr/ 
AUC D5-Phe (T120) 

Young 0.19 ± 0.02 0.19 ± 0.02 -0.53 ± 1.85 
<0.05 <0.05 

Elderly 0.21 ± 0.02 0.27 ± 0.03 6.79 ± 3.85 
N=7 young group; N=8 elderly gourp. Data were expressed as mean±S.E.M. #Data were analyzed with 2-factor repeated measure 

ANCOVA. data were logarithmic transformed when appropriate. AUC, area under the curve.   
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On figure 33 were reported the D5-Phe and D4-Tyr plasma concentrations during the 

test meal before and after the BR period on both young and elderly subjects. 

 

 
Figure 33. D5-Phe and D4-Tyr plasma concentration before (◼ ︎) and after 14-d of 

bed rest (�) in young (A and B) and elderly (C and D) subjects. 
Interaction = bed rest × group interaction. Data analyzed with the 2-factor repeated measure ANCOVA 

 

No significant changes were observed on AUCD5-Phe after 14-d of experimental BR 

while the AUCD4-Tyr vales were significantly modified. 

In basal condition, the AUCD4-Tyr/AUCD5-Phe - T360 ratio, as index of anabolic resistance, 

was comparable between the two groups, after 14-d of BR. It appear increased in both 

young and elderly subjects, but with higher values in the elderly (+19±7%) than in the 

young (+5±9%) population, as confirmed by the significant time×group interaction 

(Table 10). 
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Figure 34. Bed rest effect on anabolic resistance expressed as AUCD4-Tyr/AUCD5-Phe 

ratio in young and elderly subjects 
Interaction = bed rest × group interaction. Data analyzed with the 2-factor repeated measure ANCOVA 

 

The AUCD4-Tyr/AUCD5-Phe - T360 ratio was evaluated considering all the blood draw 

points as reported in the experimental design (Figure 18). The same index was also 

calculated using the blood draw points of the first two hours of the experimental 

protocol (AUCD4-Tyr/AUCD5-Phe - T120). As reported on figure 34 (A and B) the AUCD4-

Tyr/AUCD5-Phe - T120 ratio showed the same trend observed with the AUCD4-Tyr/AUCD5-Phe 

- T360 ratio, moreover, a significantly direct correlation (R=0.75; p<0.001) was find 

comparing the two indices (Figure 35). 
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Figure 35. Correlation between the AUCD4-Tyr/AUCD5-Phe - T360 ratio and the 

AUCD4-Tyr/AUCD5-Phe - T120 ratio 
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5. DISCUSSION 

The primary aim of the present work was to develop biomarkers useful to define, in 

vivo, in humans, the optimal protein intake in different physiological and pathological 

conditions. Within the frame of two studies sponsored by the European Community 

(i.e., the FP7 PLANHAB Study and the INTERREG ITA-SLO PANGEA bed rest 

study), we applied such methodology to investigate protein requirement in conditions of 

inactivity, with or without hypoxia, as well as in a population of healthy elderly subjects 

assessed at different levels of physical activity, from ambulatory to bed rest. 

The assessment of whole body protein kinetics is a standard methodology to detect 

conditions of impaired protein synthesis and anabolic resistance, in the fasting state and 

stimulation by protein nutrition. We applied this method in the PLANHAB Study to 

investigate protein requirement in hypoxic condition both in ambulatory and bed rested 

individuals. The PANGeA study was the second study in the world where aged healthy 

people were bed ridden and the first one in which healthy elderly subjects were 

compared to healthy young individuals (as control group), during a period of 

experimental inactivity. Moreover it was the first time that both glucose and protein 

metabolism were assessed in healthy elderly volunteers undergoing bed rest. 

In the PANGEA study we developed a new method to assess the ability to utilize 

dietary protein during and after a mixed meal. Anabolic resistance is a condition 

characterized by reduced ability of meal protein to stimulate protein synthesis, thus 

increasing protein requirements. Our new method was used to compare anabolic 

resistance and protein requirement in elderly and young subjects either in ambulatory or 

in bed rest conditions.  

Moreover this new method allowed evaluate at the same time anabolic and insulin 

resistance in the post-prandial state. We had therefore the opportunity to explore the 

relationships between changes in insulin and anabolic resistance in elderly and young 

subjects at different levels of physical activity. The quantity of protein intake, not only 

influences the rate of protein synthesis but has an impact also on other metabolic 

targets, such as the redox balance. In particular the glutathione system is influenced by 

the availability of the precursor amino acids. We have therefore investigated different 

aspects of the glutathione system in the PLANHAB study with the aim to define the 

effects of hypoxia, with or without bed rest. 
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The relative proportion of cell membrane fatty acids was determined in the PLANHAB 

study in order to detect changes induced by insulin resistance or systemic inflammation 

and oxidative stress.  

 

The main results of our work can be summarized as follows: 

5.1. Hypoxia decreases protein synthesis. 

5.2. Aging is characterized by anabolic resistance. 

5.3. Aging is a protective factor against inactivity mediated insulin resistances? 

5.4. Hypoxia per se improves oxidative stress. 

5.5. Hypoxia-bed rest interaction induces multiple metabolic changes. 

5.6. Identification of a new biomarker to evaluate anabolic (and insulin) resistance 
to define optimal protein requirements. 

 

  



 84 

5.1. Hypoxia decreases protein synthesis 

Chronic hypoxia and unloading are well-known protein catabolic factors for skeletal 

muscle (Biolo et al 2014; Di Giulio C et al. 2009). Ten days of normobaric hypoxia in 

ambulatory conditions or in horizontal bed rest in healthy volunteers led to similar 

losses of lean body mass. Bed rest in normoxic conditions led to a similar muscle 

catabolic response. Our study shows that when the two factors are applied in 

combination for 10 days in healthy volunteers they do not exhibit additive effects. The 

hypertrophic response of skeletal muscle trained in chronic hypoxia conditions was 

significantly lower than that produced in normoxia (Narici MV et al. 1995). Muscle loss 

associated with unloading is characterized by decreased protein turnover with a 

resistance to amino acid-mediated stimulation of protein synthesis as key catabolic 

mechanism. Protein synthesis is an energy consuming process. Hypoxia, which limits 

energy production, has been shown to decrease muscle protein synthesis (Preedy VR et 

al. 1985) in animal models, in vitro and in vivo. Decreased muscle protein synthesis has 

been observed also in emphysema patients with chronic respiratory failure (Morrison 

WL et al. 1988). In parallel with the rate of protein synthesis, hypoxia in ambulatory 

conditions also decreased by about 8% the rate of whole body protein degradation, 

leading to a decreased protein turnover.  

While normoxic subjects are characterized by accelerated post-exercise muscle protein 

turnover, in COPD patients with emphysema the rates of protein synthesis and 

degradation were suppressed after low-intensity exercise (Engelen MP et al. 2003). A 

blunted post-exercise suppression of muscle protein synthesis was also observed in 

experimental hypoxia (Etheridge T et al. 2011). Our results are in perfect agreement 

with these previous observations. Hypoxia in ambulatory conditions decreased by about 

8% the rates of whole body protein synthesis and degradation. In contrast, hypoxia in 

bed rest conditions did not significantly affect whole body protein turnover. As 

expected the net protein loss in the post-absorptive state was not accelerated by bed rest. 

In fact, post-prandial resistance to amino acid-mediated stimulation of protein synthesis 

is the key catabolic mechanism during muscle unloading. Net protein loss in the post-

absorptive state was not accelerated during hypoxia suggesting postprandial anabolic 

resistance also in this condition.  
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5.2. Aging is characterized by anabolic resistance 

During the PANGeA study we tested a new, simple, safe and quick method to evaluate 

the anabolic resistance to stimuli inducing protein synthesis (e.g. exercise, amino acids, 

etc.), associated with ageing. 

Our results confirm that both aging and physical inactivity impairs the sensitivity to 

anabolic stimuli (Kim IY et al. 2015; Biolo G et al. 2004). 

The development of anabolic resistance following physical inactivity was higher in the 

elderly than in the young subjects, evidencing that aging is a detrimental factor in the 

risk of an impaired inactivity-mediated protein metabolism. There is a potential decline 

in the efficiency of muscle protein synthesis with advancing age when a small amount 

of EEAs are ingested (Katsanos CS et al. 2005). Moreover, it was previously 

demonstrated (Biolo G et al. 2004) that decreased levels of physical activity in healthy 

young subjects were associated to compromise anabolic sensitivity to an amino acidic 

stimulus. After 14 days of experimental bed rest, in fact, a reduction in protein synthesis 

after AA administration was observed (Biolo G et al. 2004). Consequently, after a 

period of inactivity, it seems necessary to increase the protein intake in order to improve 

the protein anabolism in the fed state and overcome the anabolic resistance. The 

reduction of the sensibility of the muscle protein synthesis to an anabolic stimulus (i.e. 

protein intake and/or physical activity) associated with aging (Kim IY et al. 2015), leads 

to a reduction in muscle mass and strength, to an increased frailty with a higher risk of 

falls and generally to a higher morbidity and mortality (Breen L & Phillips SM. 2011). 

Moreover, this resulting loss of skeletal muscle protein could be a key factor in the 

development and the progression of sarcopenia and loss of function (Volpi E et al 

2000). 

Thus anabolic resistance is the principal catabolic mechanism responsible of muscle 

atrophy after a period of physical inactivity or during aging (Biolo G et al. 2004). The 

decreased ability to use AA for the MPS observed either with aging or in bed ridden 

young subject, seems to require an increased protein intake with the diet, especially 

when the two condition are associated. Furthermore, a larger intake of EAAs (i.e., 15 g 

in the form of beef) resulted in a similar stimulation of muscle protein synthesis (MPS), 

in young and old adults (Symons TB et al. 2007).  

However, a diet with high protein content could determine harmful effects in elderly 

subjects such as impairment of kidney function (Deutz NE et al. 2014). Nonetheless, a 

regular physical activity stimulates the MPS and contributes to maintain a positive 

protein balance, favoring the muscle mass gain both in young and elderly subjects 
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(Fiatarone MA et al.1990; Fiatarone MA et al. 1994). In healthy adults, both young and 

elderly, resistance and endurance exercise acutely stimulates muscle protein synthesis 

(Cuthbertson D et al. 2005; Short KR et al. 2004) and this effect is increased when 

physical activity is associated to protein administration (Breen L & Phillips SM. 2011). 

Our evidences suggest that during inactivity or aging there is an augmented protein 

need, and both exercise and proper nutrition could have intense effects on muscle mass 

and function. Therefore a correct lifestyle could counteract the consequences of aging. 

Specific nutritional programs can attenuate or even overcome the muscle loss associated 

to these conditions should be associated to specific training protocol. The hypothesis 

that an association of resistance training with higher protein intake from the diet or 

dietary supplements may have synergic effects has been confirmed in acute exercise 

conditions both in young and elderly subjects, (Biolo G et al. 1997; Rasmussen BB et 

al. 2006) 
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5.3. Aging is a protective factor against inactivity mediated insulin resistances? 

Aging can determine a progressive reduction of the tissues sensitivity to the insulin 

stimulation and therefore an impaired capability of the tissues to metabolize glucose 

(DeFronzo RA. 1981). The same detrimental effect is observed after a period of 

physical inactivity. Bed rest studies (Stuart CA et al. 1988) conducted on healthy young 

subjects showed that reduced insulin sensitivity develops soon after few days. 

Trained subjects show greater insulin sensitivity than individuals with a sedentary 

lifestyle. Both strength and resistance training improve insulin sensitivity and therefore 

glucose metabolism either in young or elderly subjects (Henriksen EJ. 2002), however 

if young individuals have an improved insulin sensitivity even after a single bout of 

exercise, in aged subjects more bout are required to observe the same effect (Henriksen 

EJ. 2002). These data seems to show that in healthy young trained persons the glucose 

level control is more efficient. Smorawiński J and his group have shown how, after 

three days of bed rest, both trained and untrained subjects exhibit a higher insulin 

resistance. Surprisingly the values of insulin resistance were grater in active than in the 

sedentary lifestyle subjects (Smorawiński J et al. 2000). These findings suggest that in 

trained subjects there is a faster compensatory response than in sedentary lifestyle 

individuals. 

The data observed in the PANGeA study confirm the findings of Smorawiński J and his 

group. The healthy young subjects, apparently more active than the elderly individuals, 

showed higher levels of insulin in fed state, after a period of 14-d of bed rest. The 

mechanisms of this peculiar insulin response require indeed further investigations. 

Probably aging determines a sort of adaptation to physical inactivity and consequently a 

higher resistance to alteration of the glucose metabolism. 

In ambulatory condition no insulin sensitivity changes were observed in both young and 

elderly groups, neither in fasting or fed state. 
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5.4. Hypoxia per se improves oxidative stress 

Glutathione is a critical factor in protecting cells against oxidative stress and in 

erythrocytes is critical for hemoglobin function (Dumaswala, UJ et al. 2001). In 

addition, erythrocyte glutathione contributes to the whole body redox equilibrium and is 

a marker of the glutathione status in other tissues, in particular in the liver (Biolo, G., et 

al. 2007). Glutathione redox capacity depends on the availability of total glutathione 

and by the ratio between reduced and oxidized glutathione (i.e., the GSH/GSSG ratio) 

(Biolo, G., et al. 2007). 

We have observed that hypoxia directly increased the hematocrit and total whole blood 

erythrocyte availability, while glutathione concentration per erythrocyte volume was not 

significantly changed. Such increase in total glutathione availability was associated with 

a parallel acceleration in the rate of glutathione turnover, expressed either as Fractional 

and Absolute Turnover Rate. 

The amino acid 5-oxoproline is an intermediate of the γ -glutamyl cycle and has been 

proposed as marker of glutathione status and turnover in cell systems and in animal 

models (Geenen S et al., 2013). In preliminary work we have tested the hypothesis that 

plasma 5-oxoproline level is a marker of in vivo glutathione synthesis and turnover in 

humans. We have developed a method to determine plasma 5-oxoproline levels in 

humans by stable isotopes, used as internal standard, and gas chromatography - mass 

spectrometry. The method has been validated in humans and first results have been 

published (Qi L et al. 2013). We have used the data obtained in the PLANHAB study to 

test the hypothesis that plasma 5-oxoproline levels could be suitable markers of 

glutathione turnover in red blood cells as determined by stable isotope infusions. The 

relationship between red blood cell glutathione synthesis rate and plasma 5-oxoproline 

levels, relative to the basal condition in healthy volunteers, are shown in figure 36. 

According to these results we are using plasma 5-oxoproline in conjunction with 

expression of the key enzyme for the glutathione synthesis glutamate cysteine ligase to 

assess glutathione synthesis capacity at the whole body level in the PLANHAB study.  

The 5-oxoproline in plasma tended to decrease suggesting an increased activity of the γ-

glutamyl cycle and glutathione turnover, not only in erythrocytes but also at the whole 

body level. Moreover the glutamate-to-glutamine ratio in plasma was increased in 

hypoxic conditions both in ambulatory and bed rest state, suggesting a higher disposal 

of this glutathione precursor. 
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Figure 36. Relationship between glutathione fractional synthesis rate in red blood 
cells and plasm 5-Oxoproline concentration, in healthy volunteers in the 
postprandial state. 
 

The hypoxia-mediated increase in glutathione turnover was accompanied by a rise in 

the plasma concentrations of precursor amino acids involved in the glutathione 

synthesis, i.e. glutamate and cysteine. Glycine plasma concentration is also increased by 

hypoxia but only in ambulatory conditions, however the erythrocyte concentration of 

this amino acid is increased by hypoxia in both ambulatory and bed rest condition. 

Hypoxia in ambulatory conditions also improved the GSH/GSSG ratio, suggesting a 

decreased production of reactive oxygen species (ROS). Moderate hypoxia is known to 

limit the excess production of ROS as well as reduce the oxidative damage to cells 

(Lopez-Barneo J et al. 2001). In contrast to the ambulatory condition, hypoxia in bed 

rest did not change significantly the GSH/GSSG ratio. Erythrocyte GSSG levels 

increased by about 100% following hypoxia in bed rest conditions, while it tended to 

decrease in ambulatory conditions. Evidence in vivo indicates that muscle unloading is 

characterized by oxidative stress and increased oxidized glutathione in skeletal muscle. 

We have recently shown that bed rest combined with overfeeding was associated with 

activation of erythrocyte glutathione system and markers of oxidative stress in plasma 

(Biolo, G. et al. 2008). In the present study, hypoxia enhanced glutathione redox 

capacity in either bed rest or ambulatory conditions. An increased hypoxia-mediated 

oxidative stress was demonstrated only in bed rest condition. 
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Plasma glutamine concentration. 

In our study, plasma glutamine concentrations decreased by about 4% following 

hypoxia. Glutamine depletion is often associated with stress conditions and systemic 

inflammatory response due to decreased muscle production and increased utilization by 

the immune system. Plasma glutamine concentrations have been found either normal or 

decreased in patients with COPD (Engelen MP et al. 2003). Pulmonary emphysema was 

associated with depletion of muscle glutamine (Engelen MP et al. 2000). Moreover, 

glutamine has been shown to upregulate glutathione recycling enzymes including 5-

oxoprolinase (Kaufmann Y et al. 2008). 

 

Tumor necrosis factor Related Apoptosis Induce Ligand (TRAIL) 

TRAIL is a member of the TNF-ligand family emerging as protecting factor against 

atherosclerosis (Volpato S. et al. 2011). As previously reported, TRAIL is inversely 

related to the risk of mortality in patients affected by cardiovascular disease (Biolo G. et 

al. 2012; Secchiero P. et al. 2009; Volpato S. et al. 2011). In moderately active subjects, 

in hypoxic conditions, we observed an increased TRAIL concentration that is directly 

correlated to changes in the ratio between GSH and GSSG. These data suggest that, in 

hypoxic condition, the anti-atherosclerosis properties of TRAIL are strictly related to 

hypoxia-induced increase in glutathione antioxidant defenses. The hypoxia mediated 

protective effects of TRAIL are completely blunted by exposure to physical inactivity. 
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5.5. Hypoxia-bed rest interaction induces multiple metabolic changes. 

Hypoxic diseases such as COPD and OSAS are associated with an accelerated 

atherogenesis and an increased cardiovascular morbidity and mortality (Schneider C et 

al., 2010; Ozkan Y et al., 2008). Hypoxic diseases are often associated with decreased 

physical activity till immobilization. Physical inactivity per se causes insulin resistance, 

dyslipidemia, hyperhomocysteinemia, flogosis and altered redox balance (Mazzucco S. 

et al., 2010; Biolo G. et al., 2005; Biolo G. et al., 2008). However, the separated and 

combined effects of hypoxia and/or inactivity on cardiovascular risk are not well 

defined (Drager L. F. et al., 2010; Taylor T. C. 2009). In the PLANHAB study we have 

investigated the net effects of normobaric hypoxia and/or physical inactivity, using the 

experimental model of bed rest, in healthy young volunteers. 

Considering the relevance of the protective effect of HDLs against atherosclerosis, the 

significant reduction in the plasma levels of these lipoproteins, observed after 10 days 

of normobaric hypoxia in all conditions (HBR, HAMB), can contribute to the increased 

cardio vascular risk of hypoxia, which worsens the negative effects of physical 

inactivity. This relation between hypoxia and decreased levels of HDLs was recently 

confirmed by extensive a meta-analysis (Nadeem R. et al. 2014). Other studies, 

however, have shown contrasting results (Wee J et al. 2013) possibly from 

inhomogeneous research protocols. 

In our study, hypoxia condition per se caused an increment of HL, a lipolytic enzyme 

synthesized and secreted by the liver, localized mostly at the surface of hepatic 

sinusoidal capillaries. HL is responsible for a faster hepatic HDL clearance, through 

various mechanisms, including the insulin resistance induced by both hypoxia and/or 

inactivity. The higher HL levels with a lower LPL/HL ratio correlated with the HDL 

plasmatic levels; HL and LPL being enzymes both involved in the clearance of these 

lipoproteins (Chatterjee C.& Sparks D. L. 2011; Annema W. & Tietge UJ. 2011; Blades 

B. et al., 1993). HL transforms HDL2 to smaller and denser HDL3 particles, which are 

probably cleared faster by the liver, causing a reduction of total HDL levels. In our 

study, the HDL2-to-HDL3 ratio did not significantly change suggesting an increased 

clearance of HDL3 possibly combined with a higher HDL3 formation from HDL2, 

from an enhanced HL activity. We may speculate that a higher HL concentration 

associated with reduced HDL plasma levels, may result in an increased atherosclerosis 

risk, through the of highly atherogenic, small, low-density-lipoproteins (LDL). Other 

enzymes, including LPL, LCAT and CETP can be involved in such alteration of lipid 
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metabolism (Mazzucco S. et al., 2010), nevertheless we did not observe changes in 

these enzyme levels, possibly because of the shorter protocol duration. 

Our data showed that triglyceride (TG) levels were increased in hypoxic ambulatory 

conditions, but not after bed rest. Different studies have shown an association between 

hypoxia, from high altitude exposure (Barnholt KE et al. 2006; Farias JG et al. 2006; 

Young PM et al. 1989) or respiratory clinical disorders (Sharma SK et al. 2011; Drager 

LF et al. 2010), and increased TG plasma concentrations. The mechanisms underling 

these changes, however, have not been completely defined (Adedayo AM et al. 2014; 

Jun JC et al. 2012).  

Inflammation plays a key role in the pathogenesis of many clinical conditions. Biolo G. 

et al. have previously reported an activation of systemic inflammation following 5 

weeks of physical inactivity, during bed rest (Biolo G. et al. 2008). Other studies 

(Siervo M et al. 2014; Regazzetti C. et al., 2008) have shown the role of hypoxic 

conditions on local and/or systemic inflammation. In our study short-term BR did not 

modify CRP and SAA levels but they were augmented in all hypoxic conditions. Our 

findings are consistent with reports showing that high altitude hypoxia stimulates the 

expression of pro-inflammatory markers, including CRP (Bailey DM et al. 2004; 

Hartmann G et al. 2000) and with studies on patients with severe OSAS, characterized 

by elevated SAA level. 

SAA is a HDL-associated apolipoprotein, which is considered an acute-phase factor 

during inflammation (Kotani K et al. 2013) and a biomarker of CVD and COPD (Korita 

I et al. 2013; Bozinovski S et al. 2008). SAA may act as pro-atherogenic agent inducing 

HDL dysfunction by apoA-1 displacement (Kotani K et al. 2013; Van Lenten B et al. 

2006; Yokoyama S et al 2006; Jahangiri A. et al. 2009; Tölle M et al. 2012; Alwaili K 

et al. 2012). Furthermore, SAA has been showed to affect cholesterol efflux from cells 

to HDL (Wroblewski J.M. et al. 2011). This could have contributed to the increased 

plasma HDL clearance leading to the decreased HDL plasma levels that we have 

observed. In our study the ratio between HDL and SAA was significantly reduced, more 

by hypoxia (-37±7%, p<0.01) than bed rest (-28±9%, p<0.01) suggesting that different 

mechanisms are involved in the combined effect of inactivity and hypoxia on HDL 

metabolism.  

Homocysteine plasma level is a well-recognized marker of atherosclerosis development 

(Glueck CJ et al. 1995; Baszczuk A et al. 2014), it might be responsible, alone, for 10% 

of heart failures, with a rising of this percentage to 90% when this marker is associated 

with other classic risk factors, including reduced HDL plasma levels (Baszczuk A et al. 
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2014). Lately, evidence (Nunomiya K et al. 2013; Kai S et al. 2006; Seemungal TA et 

al. 2007) indicates an involvement of homocysteinemia in the pathogenesis of COPD 

(Seemungal TA et al. 2007). Furthermore an association between CRP and 

homocysteine plasma levels was reported in these patients (Seemungal TA et al. 2007), 

suggesting a possible contribution of hyperhomocysteinemia to the development of the 

systemic inflammation. We reported a significant increase in homocysteine plasma 

levels due to hypoxia per se in all conditions. 

Activation of systemic inflammation is often observed during the development of 

insulin resistance. Ten days of bed rest and/or hypoxia did not significantly affected 

HOMA-IR index of insulin resistance (Blanc S. et al., 2000; Alibegovic A. C. et al., 

2010; Bergouignan A. et al., 2011; Bienso R. S. et al., 2012), however, we found a 

significant negative effect of both hypoxia and bed rest on the Δ5-desaturase activity 

index in erythrocyte membranes. As previously reported Δ-5 desaturase activity, can be 

considered a reliable marker of insulin sensitivity (Mazzucco S. et al., 2010). 

 

  



 94 

5.6. Identification of a new biomarker to evaluate anabolic (and insulin) 

resistance to define optimal protein requirement. 

It is well documented that life expectancy in Europe is increasing. In the last years there 

has been a higher awareness of the metabolic alteration, associated to aging. The goal is 

to ensure a longer lifespan, together with an improved quality of life. Several metabolic 

pathologies are related to aging including: loss in muscle mass and strength (i.e. 

sarcopenia), T2DM, atherosclerosis and cardiovascular disease. These disorders are 

frequently associated to a reduced physical activity level, exercise being a key factor in 

the maintenance of the homeostasis of glucose and protein metabolism. Indeed, 

inactivity promotes the development of insulin resistance, T2DM and CVD, and can 

impair the muscle sensitivity to anabolic stimuli (e.g. amino acids, protein, etc.). On the 

contrary, higher levels of physical activity are associated with improved insulin 

sensitivity and enhanced protein synthesis in the fed state. Thus, both aging and 

physical inactivity have a negative impact on insulin and anabolic sensitivity. 

Moreover, because of the few available scientific evidences, one of the goals of the 

present work was to investigate the possible synergic effect of these two factors. 

The evaluation of “insulin resistance” and “anabolic resistance” requires complex and 

invasive techniques. The “gold standard” procedure for insulin sensitivity in human is 

the euglycemic-hyperinsulinemic clamp. This measurement consists in an infusion of 

insulin and glucose in the blood stream in order to evaluate the glucose uptake capacity 

of the tissues. Despite the extreme precision of this technique, the procedure is very 

invasive, time consuming and expansive, so it is frequently replaced by the oral glucose 

tolerance test (OGTT). This method, commonly used in clinical diagnosis, allows an 

evaluation of the glycaemia levels during and after a glucose load. The procedure 

however still remain invasive requiring at least 3 blood draws. Other methods utilize 

mathematical models that calculate insulin sensitivity in fasting or fed states (e.g. 

HOMA-IR index and Matsuda index, respectively). These models require few blood 

samplings (one for the fasting state evaluation and at least two for the after load 

measurements), are the easiest to aplly. 

To assess anabolic resistance and protein metabolism the most effective technique is the 

infusion in the blood stream of stable-labeled isotopes (tracers) and the measurement of 

the isotopic enrichment at the steady state. One the most used tracer in the assessment 

of the protein metabolism is the L-[ring-2H5]-phenylalanine (D5-Phe). After 

administration, D5-Phe is hydroxylated in [ring-2H4]-tyrosine (D4-Tyr), that represents 



 95 

an index of net protein loss. For gold standard procedures this protocol has to be assess 

during an anabolic stimulus, such as amino acids infusion. 

Stable-labeled isotopes can be administered either orally or intravenously, but the latter 

way is the most used. The intravenous infusion protocol, however, is complex (it 

requires asepsis of the tracer solutions, two vein catheters etc.) and expansive and 

requires several blood samples, decreasing the compliance of the evaluated subjects. 

The oral administration protocol, on the other hand, consists in repeated intake of the 

tracer solution, at fixed period intervals. This is safer (just one vein catheter for the 

blood draws) and requires a simpler protocol (there is no need of an aseptic tracer 

solution). However, it still remains expansive, because of the quantity of stable-isotopes 

needed, and time consuming. 

With the above-mentioned techniques is not possible to assess “insulin resistance” and 

“anabolic resistance” at the same time or, at least, in the same experimental protocol. 

The present work proposes a new, simple, safe and quick method to evaluate 

simultaneously the “insulin resistance” and the “anabolic resistance” in fed state i.e. 

after a total meal (500 ml, 500 kcal, 55% carbohydrate, 15% protein, 30% fat) load with 

the administration of a single dose of tracer solution. This method was used to assess 

insulin and anabolic resistance after 14-d of bed rest in young and elderly subjects at 

different level of physical activity. The anabolic resistance was evaluated through a new 

index (i.e. AUCD4-Tyr/AUCD5-Phe -t120 ratio), proposed in this work for the first time, 

which needs a two hours duration procedure (instead of the 6h often required) and just 2 

blood draws versus the 7 samplings required in other protocols. This method does not 

allow to determine the protein kinetics (i.e. rate of synthesis and degradation) but it 

permits to calculate an important metabolic parameter, the anabolic sensitivity. The 

anabolic sensitivity, more than protein kinetics is an important index of the detrimental 

effect of aging or sedentary life style on muscle mass and protein metabolism. A safe, 

simple and quick method with limited cost is proposed. Moreover, as already said, this 

new method allows to evaluate simultaneously, and with the same procedure, anabolic 

and insulin resistance in post-prandial conditions, with an additional reduction in time 

and cost and with an improved compliance of the evaluated individuals. 
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6. CONCLUSIONS 

− Aging and bed rest are characterized by a higher protein requirement, 

confirming data from other studies. Anabolic resistance and insulin resistance are 

shared biomarkers of these conditions associated with skeletal muscle mass and 

function loss. However, the effect of inactivity on insulin resistance is blunted in aging.  

− We developed a new method to assess at the same time the two most relevant 

metabolic biomarkers (anabolic resistance and insulin resistance) of protein requirement 

in humans. 

− Other biomarkers related to these sarcopenic conditions are inflammation and 

redox balance.  

− Chronic exposure to experimental hypoxia decreases whole body protein 

synthesis in the post-absorptive state, suggesting an increased protein requirement also 

in this condition.   

− In addition, chronic hypoxia has a strong impact on cardiovascular risk markers 

(insulin resistance, homocysteine, systemic inflammation), often additive to that of 

inactivity (HDL-cholesterol). 

− Furthermore, hypoxia, in either ambulatory or bed rest conditions, significantly 

increased total glutathione concentrations and synthesis rate in erythrocytes. Hypoxia 

significantly increased redox glutathione capacity (i.e., GSH/GSSG ratio) in ambulatory 

conditions while this effect was blunted in bed rest. 
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