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ABSTRACT
We use a public good game with rewards, played on a dynamic network, to illustrate how
self-organizing communities can achieve the provision of a public good without a central au-
thority or privatization. Given that rewards are given to contributors and that the choice
of whom to reward depends on social distance, free-riders will be excluded from rewards
and the (almost efficient) provision of a public good becomes possible. We review the re-
lated experimental economics literature and illustrate how the model can be tested in the
laboratory.
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1. Introduction

A significant part of economics is concerned with the provision of public
goods. Left to the market, public goods will be under-supplied because indi-
viduals tend to free-ride. A central authority can increase welfare by supply-
ing the public good, or, if possible, the public good can be privatized. But be-
sides provision by a central authority and privatization there is also a third
way, as the work of Nobel Laureate Elinor Ostrom shows. The enormous
amount of work done by her and her collaborators emphasizes that interper-
sonal relations are crucial in achieving the provision of public goods without
privatization or outside authorities (Ostrom, 1990; Ostrom et al., 1992). A
related strand of research, to which Ostrom also contributed, studied public
good games in controlled laboratory environments and found that the intro-
duction of rewards and punishments leads to a more efficient provision of
the public good (Rand et al., 2009; Sefton et al., 2007; Andreoni et al., 2003;
Fehr and Gächter, 2000; Ostrom et al., 1992). In fact, selective incentives

*The present work is a natural outgrowth of the investigations begun in Greiff (2011), comments and sug-
gestions by Torsten Heinrich, Ulrich Krause, Hannes Rusch, Stefan Traub and an anonymous referee are
greatly acknowledged.
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in the form of graduated rewards and sanctions are of crucial importance for
the successful provision of public goods by self-organizing communities.

From a theoretical perspective the provision of public goods within self-
organizing communities and the use of rewards and sanctions is puzzling.
For selfish and rational agents free-riding is the dominant strategy in linear
public good games, hence the first-order dilemma is the underprovision of
public goods. And, assuming that rewarding and sanctioning is costly, no
individual agent has an incentive to reward or punish. This second-order
dilemma implies that the norm that solves the first-order dilemma will not
be supplied.

Ostrom’s self-organizing communities are able to provide a public good
because they are able to solve the second-order dilemma. In this paper, I will
focus on one specific mechanism that can solve the second-order dilemma.
This mechanism is exclusion (Spiekermann, 2008; Stark and Behrens, 2010).
Althoughmany public goods are non-excludable, rewards given to those who
contributed to the public good are excludable. If the increase in utility from
receiving rewards outweighs the cost of contributing to the public good, ra-
tional agents will contribute. It has to be sure, however, that the benefit
of the rewards is concentrated on those, who give the rewards. Put bluntly,
rewards lead to the provision of the public good if those who give rewards
are the ones who receive rewards.

The aim of this paper is twofold: First, we will discuss an evolution-
ary model in which a public good game with rewards is played on an en-
dogenously evolving network. Since the adaptive dynamics operate on both
structure and strategy agents learn with whom to interact and how to act.
The dynamic network represents interpersonal relations and is a key element
in our model. Due to the dynamic nature of the network free-riders will be
excluded from rewards and only contributors who give rewards will also re-
ceive rewards. The model shows that in order to provide a public good a
community needs (i) a norm prescribing to contribute to the public good and
(ii) a mechanism for norm-enforcement. The model reveals that a norm, pre-
scribing prosocial behavior and thus solving the second-order dilemma, can
emerge from a population of selfish agents so that the public good is provided
more efficiently.1 Second, we will relate the model to the empirical evidence
from experimental economics. We will review the evidence on rewards and
punishments, partner selection, and social ties, and we will sketch how the
model presented in this paper can be tested in a laboratory experiment.

1In sketching the model, we do not discuss the related literature. For a discussion of the related literature
the reader is refered to Greiff (2011, chapter 5), or Greiff (forthcoming, section 2).
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2. A Public Good Game with Rewards

The model is a public good game with rewards, played on a network. As-
suming rational and selfish agents, a dilemma arises because individual and
social benefits do not coincide. Since nobody can be excluded from the use
of the public good, nobody has an incentive to contribute to the public good.
One way of solving the dilemma is to change the game by adding a second
stage in which rewards can be given. Assume a group of 𝑛 agents playing
a public good game. After choosing contributions, agents can give rewards.
The game is played repeatedly and each repetition is referred to as a round
of the game. Each round consists of two stages. In every stage all 𝑛 agents
simultaneously make two decisions.

• Stage 1 - Contributions to the public good: Each agent decides whether
to contribute to the public good or not. Let 𝑐 ≥ 1 be the cost of con-
tributing to the public good. The public good is nonrival in consump-
tion, hence the benefit of the public good goes to all agents while costs
are private. Assume that the quality of contributions is homogeneous
and that 𝑘𝑖 = 1 if agent 𝑖 contributed and 0 else. We assume that
the public good has a linear production function and the value of the
public good is given by:2

𝑃 𝐺(𝑘) = 𝜆𝑐
𝑛

∑
𝑖=1

𝑘𝑖
1
𝑛 < 𝜆 < 1. (1)

• Stage 2 - Giving rewards: After the contribution stage, agents observe
each others’ moves, i.e., the 𝑘𝑖’s are common knowledge. Each agent
(giver) is matched with another agent (her opponent) and has the op-
portunity to assign a reward to her opponent (receiver). Receiving a
reward results in an additional payoff of 𝑏 for the receiver at cost ℎ
for the giver. We assume the additional payoff from receiving the re-
ward is higher than the cost of giving the reward, ℎ ≤ 𝑏. A reward
can be considered to create a bond of loyalty or an obligation, thereby
affecting the social distance between giver and receiver. This is sim-
ilar to gift-giving (Offer, 1997; Mauss, 1954): Like a gift, a reward is
given voluntary, imposes costs on the giver and confers a benefit on
the receiver.

2Contributing to the public good increases an agent’s payoff by 𝜆𝑐 at cost 𝑐, hence rational agents have no
incentive to contribute and the public good will not be supplied (𝑃 𝐺(0) = 0). Rational agents earn a payoff
of zero. However, if all agents contribute, the public good will be supplied (𝑃 𝐺(𝑛) = 𝜆𝑐𝑛) and each agent’s
payoff is given by 𝜆𝑐𝑛 − 𝑐 > 0, hence, a Pareto-improvement can be achieved.
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The matchings between giver and receiver are not necessary symmet-
rical, i.e., in her role as a giver, agent A is matched with agent B in
her role as a receiver, and agent B in her role as giver is not necessarily
matchedwith agentB in her role as a receiver. If thematching happens
to be symmetrical and both agents decide to give rewards, A gives a
reward toB andA receives a reward fromB. Such a bilateral exchange
of rewards corresponds to amutually beneficial transaction, also called
direct reciprocity (e.g., cooperation, gains from trade, risk-sharing). If
matchings are not symmetrical, network reciprocity becomes possible,
e.g., if A gives a reward to B, B gives a reward to C, and C gives a
reward to A.

For each round of the game a strategy consists of three actions. Let 𝐴1 be
the agent’s action in the first stage and let𝐴2|𝐶 and𝐴2|𝑁 denote the actions
taken in the second stage conditional on the opponent’s behavior in the first
stage. A complete strategy is given by (𝐴1, 𝐴2|𝐶, 𝐴2|𝑁). We restrict the
analysis to pure strategies and assume that rewards are given only to con-
tributors, i.e., (𝐴2|𝑁) = 0 for all agents.3 This allows us to represent an
agent’s strategy as an ordered pair (𝐴1, 𝐴2|𝐶), defining the agent’s actions
in each stage of the game. Agent 𝑖’s strategy space is the set containing all
three pure strategies, 𝑆𝑖 = [(𝐶, 𝑅), (𝐶, 𝑁), (𝑁, 𝑁)], where 𝐶, 𝑅, 𝑁 corre-
spond to a contribution was given, a reward was given, and no contribution
or no reward was given, respectively.

To facilitate further discussion of ourmodel, we introduce some terminol-
ogy. Enforcers play strategy (𝐶, 𝑅) and behave prosocial in both stages since
they contribute to the public good and give rewards. Agents with strategy
(𝐶, 𝑁) contribute to the public good but do not give rewards. Call agents
with strategy (𝐶, 𝑁) Contributors. Note that both Contributors andEnforcers
contribute to the public good. The last strategy is (𝑁, 𝑁), which neither
contributes nor gives rewards. Call agents with this strategy Free-Riders.
Correspondingly, there are three pure population states in which all agents
employ the same strategy, called Enforcement State, Contribution State, and
Free-Rider State.

Table 1 summarizes the labeling of the three strategies. The first two
columns represent the strategy and its name. The third column gives the
frequency of each strategy in the population. We will refer to the vector
𝑠 = (𝑠1, 𝑠2, 𝑠3) as the state of the population. The last column gives the name
of the pure population state in which all players employ the same strategy.

3This assumption is closely in line with the experimental evidence on rewards and punishments in public
good games, mentioned in section 3 below. In Greiff (forthcoming) we relax this assumption.
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Strategy Name % Pure State

(𝐶, 𝑅) Enforcer 𝑠1 Enforcement State
(𝐶, 𝑁) Contributor 𝑠2 Contribution State
(𝑁, 𝑁) Free-Rider 𝑠3 Free-Rider State

Table 1: Strategies and population states for the public good game with re-
wards.

The solution of the game depends on matching assumption, as we will
discuss in the remainder of this section. First, we solve the model under the
random matching assumption, then we solve the model under assortative
matching, and finally, we solve the model under the assumption that the
matching process is governed by a dynamic network evolving according to
reinforcement learning dynamics. We find that under the random matching
assumption, the public good will not be supplied. Substituting assortative
matching for random matching changes the dynamics of the model and the
provision of the public good becomes possible. With assortative matching,
however, the underlying structure of the population is not explained but
simply assumed. This is different if a dynamic network is assumed because
then, the model explains how agents learn with whom to interact and how
the dynamic network evolves.

2.1. Random Matching

Suppose that 𝑛 is very large and agents are randomly drawn from the popu-
lation. All pairwise interactions are equally likely, i.e., the probability that
agent 𝑖 plays against agent 𝑗 ≠ 𝑖 in the reward stage is given by 1

𝑛 . We sum-
marize all payoffs in matrix 𝐗.

𝐗 =
⎡⎢⎢⎣

𝑃 𝐺 − 𝑐 + 𝑏 − ℎ 𝑃 𝐺 − 𝑐 − ℎ 𝑃 𝐺 − 𝑐
𝑃 𝐺 − 𝑐 + 𝑏 𝑃 𝐺 − 𝑐 𝑃 𝐺 − 𝑐

𝑃 𝐺 𝑃 𝐺 𝑃 𝐺

⎤⎥⎥⎦
(2)

The payoff for an agent using strategy 𝑖 against an agent using strategy 𝑗
is given by the (𝑖, 𝑗)-th entry of matrix 𝐗. Expected payoffs of all three
strategies are given by the rows of 𝐗 and spelled out in equations (3) to (5)
where 𝑃 𝐺 = 𝑃 𝐺((𝑠1 + 𝑠2)𝑛).

𝐸 [𝜋(𝐶, 𝑅)] = 𝑃 𝐺 − 𝑐 + 𝑠1(𝑏 − ℎ) − 𝑠2ℎ (3)
𝐸 [𝜋(𝐶, 𝑁)] = 𝑃 𝐺 − 𝑐 + 𝑠1𝑏 (4)
𝐸 [𝜋(𝑁, 𝑁)] = 𝑃 𝐺 (5)

Reproduction takes place continuously over time. Assume that strategies
evolve according to the well-known replicator dynamics (Taylor and Jonker,
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1978).4 The three differential equations (6) to (8) describe the evolution of
the population state. ̄𝜋 denotes the average payoff. The dynamics are visu-
alized in Figure 1. Each point in the simplex corresponds to a specific popu-
lation state and the arrows indicate the dynamics. The vertices correspond
to the Enforcement State (100% (𝐶, 𝑅)-agents), the Contribution State (100%
(𝐶, 𝑁)-agents) and the Free-Rider State (100% (𝑁, 𝑁)-agents), respectively.

̇𝑠1 = 𝑠1 [𝐸 [𝜋(𝐶, 𝑅)] − ̄𝜋] (6)
̇𝑠2 = 𝑠2 [𝐸 [𝜋(𝐶, 𝑁)] − ̄𝜋] (7)
̇𝑠3 = 𝑠3 [𝐸 [𝜋(𝑁, 𝑁)] − ̄𝜋] (8)

̄𝜋 = ∑ 𝑠𝑗(𝐗𝑠)𝑗 = 𝑠1𝐸 [𝜋(𝐶, 𝑅)] + 𝑠2𝐸 [𝜋(𝐶, 𝑁)] + 𝑠3𝐸 [𝜋(𝑁, 𝑁)] (9)

As we can see from the expected payoffs, Enforcers (𝐶, 𝑅) are strictly dom-
inated, 𝐸 [𝜋(𝐶, 𝑁)] > 𝐸 [𝜋(𝐶, 𝑅)]. This means that Enforcers will die out
eventually. The two remaining strategies are Contributors (𝐶, 𝑁), and Free-
Riders (𝑁, 𝑁). Since (𝑁, 𝑁) strictly dominates (𝐶, 𝑁), free-riding is the
unique Nash equilibrium. The dynamics of the population state visualized
in Figure 1 confirm that the population will end up at the pure state with
100% Free-Riders.

With random matching the unique Nash equilibrium is also the evolu-
tionary stable strategy (ESS). This can be proven by looking at the best re-
ply functions. Strategy (𝑁, 𝑁) is the only strategy which is best reply to
itself, hence it is an ESS.5

𝜋(𝑥, 𝑁𝑁) ≤ 𝜋(𝑁𝑁, 𝑁𝑁) ∀𝑥 ∈ 𝑆𝑖,
with strict equality only if 𝑥 = 𝑁𝑁 (10)

Giving a reward is costly andEnforcerswill always be dominated byContrib-
utors, as well as Contributors will be dominated by Free-Riders. No rewards
will be given and we are back to the public good game without rewards in
which the dominant strategy is to free-ride. This result holds for any size
of the reward. Rewards cannot solve the first-order dilemma because they
introduce a second-order dilemma, but if we allow for exclusion by dropping
the random matching assumption, the dilemma can be solved.

4For mathematical convenience we model a continuous process for the evolution of the population in this
section where the results are derived analytically. A discrete process is used in section 2.3 where we use simu-
lations in order to derive the results.

5Introducing the strategy (𝑁, 𝑅) would make no difference since it is weakly dominated by (𝑁, 𝑁). The
Nash equilibrium would then be any mixture of (𝑁, 𝑁) and (𝑁, 𝑅) agents who would earn the same payoff.
There are no contributions to the public good and no rewards are given. Both strategies would be behaviorally
indistinguishable. The only difference is based on a counterfactual (i.e., if another agent had contributed
(𝑁, 𝑅) would give a reward).
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Free-Rider State

Contribution StateEnforcement State

Figure 1: Simplex diagram showing the dynamics of the population state
(𝑐 = 1.0, ℎ = 0.1, 𝑏 = 1.3). A population state on the line joining the lower
left and lower right corner of the simplex correspond to an efficient provision
of the public could.

2.2. Assortative Matching

With random matching Contributors will exploit Enforcers. Enforcers will
change their strategy to (𝐶, 𝑁) first and then to (𝑁, 𝑁) (represented by a
counterclockwise movement in the simplex, Figure 1, from the lower left
corner to the upper corner). Consequently, the public good will not be sup-
plied.

This result changes if the probability of exploitation is reduced through
assortative matching which introduces a correlation between strategy and
matching probabilities (Skyrms, 1996). Assume that agents are able to rec-
ognize each other’s strategy, and that each agent prefers to interact with
another agent of the same strategy. Let the probability that an agent with
strategy𝑥will interactwith another agentwith strategy𝑥 be given by 𝑝(𝑠𝑥|𝑠𝑥).
The probability that an agent with strategy 𝑥 meets another agent with
strategy 𝑦 in the second stage is given by 𝑝(𝑠𝑦|𝑠𝑥).

𝑝(𝑠𝑥|𝑠𝑥) = 𝑠𝑥 + 𝑒(1 − 𝑠𝑥)
𝑝(𝑠𝑦|𝑠𝑥) = 𝑠𝑦 − 𝑒𝑠𝑦 ∀𝑦 ≠ 𝑥

Assortative matching changes the second stage of the game. The parame-
ter 𝑒 measures the strength of assortative matching with 𝑒 = 0 for random
matching (uncorrelated encounters) and 𝑒 = 1 for perfect correlation. Ex-
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(a) (b)

Figure 2: Simplex diagrams showing the dynamics of the population state
with (a) weak assortative matching, 𝑒 = 0.25, and (b) strong assortative
matching, 𝑒 = 0.5 (𝑐 = 1.0, ℎ = 0.1, 𝑏 = 1.3).

pected payoffs are now given by equations 11 to 13.

𝐸 [𝜋(𝐶, 𝑅)] = 𝑃 𝐺 − 𝑐 + 𝑝(𝑠1|𝑠1)(𝑏 − ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
increasing with 𝑒

− 𝑝(𝑠2|𝑠1)ℎ⏟⏟⏟⏟⏟
decreasing with 𝑒

(11)

𝐸 [𝜋(𝐶, 𝑁)] = 𝑃 𝐺 − 𝑐 + 𝑝(𝑠1|𝑠2)𝑏⏟⏟⏟
decreasing with 𝑒

(12)

𝐸 [𝜋(𝑁, 𝑁)] = 𝑃 𝐺 (13)

For all values of 𝑒 the expected payoff for free-riding, (𝑁, 𝑁), is the same
since Free-Riders neither give nor receive rewards. With random matching
(𝑒 = 0) all agents contributing to the public good (Contributors andEnforcers)
have the same chance of receiving a reward since they have the same prob-
ability of meeting an Enforcer who gives a reward, (𝑝(𝑠1|𝑠1) = 𝑝(𝑠1|𝑠2) =
𝑠1). With assortative matching (𝑒 > 0) the probability that two Enforcers
meet is larger than the probability that for a Contributor to meet an Enforcer
𝑝(𝑠1|𝑠1) > 𝑠1 > 𝑝(𝑠1|𝑠2). The expected payoff for Contributors decreases be-
cause they are less likely to meet an Enforcer who will give a reward. Hence,
Enforces will, on average, receive higher payoffs than Contributors.

Assortative matching changes the population dynamics, as can be seen
in Figure 2 showing the dynamics for different values of 𝑒. With random
matching the Nash equilibrium prediction and the evolutionary stable strat-
egy coincide. This is not the case any more if we assume assortative match-
ing. There is another stable state of the population in which all agents con-
tribute and give rewards. This is the Enforcement State corresponding to the
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Figure 3: Social network and matching probabilities 𝑝𝑖,𝑗 for 𝑛 = 5.

lower left corner in the simplex.6 If we compare Figures 2(a) and 2(b) we see
that by increasing 𝑒 the size of the basin of attraction for the Enforcement
State increases. This means that if we start from random initial conditions
the population is more likely to end up at the Enforcement State in which all
agents follow the norm (contribute and enforce the norm by giving rewards
to contributors) and the public good will be supplied.

But how exactly is assortative matching supposed to arise? In this sec-
tion it was just assumed that agents preferably interact with others of same
strategy. For agents who give rewards assortative matching is perfectly ra-
tional, but for all other agents this makes no sense because every agent is bet-
ter off if she interacts with an Enforcer and can exploit her. In the next sec-
tion, we let agents play the public good game on a dynamic network. Start-
ing from random matching the network will evolve, leading to constrained
interaction whereEnforcerswill interact with each other (assortative match-
ing).

2.3. Matching Process Governed by a Dynamic Network

With random or assortative matching, matching probabilities are exoge-
nously given. In this section, we endogenize matching probabilities by mod-
eling the social distance between agents.7 Social distances are modeled us-
ing a dynamic network. The network’s structure is a weighted and directed
graph represented by the adjacency matrix 𝑊 . The network is directed

6There is also an additional unstable equilibrium lying on the line joining the lower left and the upper
corner.

7For a detailed discussion of dynamic networks, see Skyrms and Pemantle (2000), Bonacich and Liggett
(2003) and Pemantle and Skyrms (2004).
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and the matrix will, in general, not be symmetric. Weights are assigned
to all links and each entry of the matrix 𝑊 is the weight of the link (with
𝑤𝑖,𝑗 = 0 if there is no link). We assume that 𝑤𝑖,𝑖 = 0 for all 𝑖. Each
row (𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑛) measures the closeness of all other agents to agent
𝑖. Probabilities of interaction are obtained from the weights by

𝑝𝑗,𝑖 =
𝑤𝑗,𝑖

∑𝑛
𝑠=1 𝑤𝑗,𝑠

. (14)

All probabilities are collected in a matrix 𝑃 , which represents the state of the
network.8 Figure 3 illustrates the social network and associates probabilities
of interaction for 𝑛 = 5.

𝑊 =
⎡
⎢
⎢
⎢
⎣

𝑤1,1 𝑤1,2 … 𝑤1,𝑛
𝑤2,1 … ⋱ 𝑤2,𝑛

⋮ ⋱ ⋱ …
𝑤𝑛,1 … … 𝑤𝑛,𝑛

⎤
⎥
⎥
⎥
⎦

(15)

Initially, the weights of all links are set to a constant, 𝑤𝑖,𝑗 = �̄� for all 𝑖 ≠ 𝑗.
The initial situation corresponds to random matching in the sense that all
pairwise interactions are equiprobable. Then, the weights evolve depending
on the outcome of the second stage of the game.

In the public good game with rewards an agent’s action in the first stage
affects all other agents’ payoffs in the same way. If an agent contributes,
she increases all other agents’ payoffs because of the positive externality as-
sociated with the public good; and if she defects, all other agents’ payoffs are
unaffected. We assume that agents’ actions in the first stage have no direct
effect on the social network. In the second stage of the game agents give and
receive rewards, and this is what determines the evolution of the network.
By lowering social distance the likelihood that the receiver will reciprocate
increases.

In the reward stage, we allow each agent to give 𝑚 rewards at most. Giv-
ing rewards changes the social structure by decreasing the receiver’s social
distance to the giver. Denote the set of all contributors containing all En-
forcers and Contributors by 𝐐. Each Enforcer 𝑖 selects 𝑚 other agents at most
(fewer than 𝑚 agents if there are fewer than 𝑚 contributors). The probabil-
ity that a particular contributor 𝑗 is selected by agent 𝑖 is proportional to
the strength of the link 𝑤𝑖,𝑗. This reflects the intuition that agents are more
likely to give rewards to contributors who are close to them. Denote the set

8To be precise: The weights are inversely related to social distance. Higher values for 𝑤𝑖,𝑗 indicate that the
social distance between 𝑖 and 𝑗 is lower. One possible metric for social distance between agents 𝑖 and 𝑗 is given
by (1 − 𝑝𝑖,𝑗) ∈ [0, 1]. The limiting case 𝑝𝑖,𝑗 = 0 then implies that agent 𝑖 has no link to agent 𝑗, i.e., the social
distance between them is at its maximum 𝑝𝑖,𝑗 = 1.
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of all agents selected by agent 𝑖 as 𝐐𝑖 ⊆ 𝐐. Agent 𝑖 now gives a reward to
each agent she has selected (all agents in 𝐐𝑖). We assume that each Enforcer
gives either zero or one reward (but not two ormore rewards) to each contrib-
utor. At the end of the reward stage, the weights of the network are updated
according to equation 16.

𝑤𝑗,𝑖(𝑡 + 1) = {
𝑑𝑤𝑗,𝑖(𝑡) + 𝑏 if player 𝑖 gave a reward to agent 𝑗
𝑑𝑤𝑗,𝑖(𝑡) else (16)

The parameter 𝑑 ∈ [0, 1] is a discount factor giving less weights to payoffs
accumulated in the past, and 𝑏 > 0 is the reward. Thus, interactions that
resulted in a higher payoff are more likely to be repeated.

At this point it should be clear that the structure of the network is of cru-
cial importance. Both Enforcers and Contributors are in the set 𝐐 and receive
rewards. The distribution of rewards between Enforcers and Contributors de-
pends on the structure of the network and determines the payoffs which in
turn determine the population dynamics.

In a nutshell, a typical round of the public good game with rewards on
a dynamic network can be summarized as follows: In the first stage, all
agents decide whether to contribute or not. In the second stage of the game,
agents are matched, and partner choice is governed by matching probabil-
ities (equation 14). This implies that agents will interact more often with
agents who are close to them, and if they give rewards, they will give them
more often to agents who are close to them. At the end of each round, weights
evolve according to the learning dynamics (equation 16).9 In the following
section, we illustrate the dynamics of the networkwhen agents’ strategies are
fixed, before we present the results for the case in which agents’ strategies
and the network coevolve.

2.3.1. Fixed Strategies

In this section we fix strategies and focus on the evolution of the network.
Let there be 𝑛 agents and assume that the three strategies (Enforcers, Con-
tributors, Free-Riders), are randomly distributed. Agents keep their initial
strategy but the social structure evolves according to equation 16.

Figure 4 shows the structure of the network after 1.000 periods and illus-
trates how agents who do not behave as prescribed by the social norm are ex-
cluded from its benefits. Figure 4(a) depicts a public good gamewhere agents
could give 𝑚 = 1 reward. We see that Enforcers form dyads and reciprocally

9There is a growing literature on rational choice models of network formation, which is beyond the scope
of this paper. For surveys, see Kosfeld (2004); Jackson (2005).
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Figure 4: A reciprocal network. No updating of strategies, 𝑚 = 1 (left) and
𝑚 = 2 (right), 𝑑 = 0.9. (𝐶, 𝑅) agents (yellow) have reciprocal links, (𝐶, 𝑁)
agents (red) have only outgoing links, and (𝑁, 𝑁) agents (blue) get isolated.
Darker links correspond to higher probabilities of interaction (black if 𝑝 =
1.0, white if 𝑝 = 0.0).

give rewards to each other.10 Social distances are symmetric indicating the
absence of hierarchical relations. Contributors have only outgoing links. The
absence of incoming links reflects the fact that they do not give rewards. The
last group consists of Free-Riders who neither contribute nor give rewards.
Since they do not give or receive any rewards they are isolated.

Figure 4(b) shows the structure of the network after 1.000 periods when
players are allowed to give 𝑚 = 2 rewards. While before Enforcers formed
dyads, now they form triads. Within the triads social distances are symmet-
ric indicating reciprocity.

Generally, it holds that without updating of strategies all Enforcers form
a reciprocal network. Enforcers exchange rewards with each other in a re-
ciprocal way and all other agents are excluded from receiving rewards. In
the long-run, the probability that Contributors and Free-Riders will receive
rewards converges to zero. This result (exclusion) holds independently of the
parameters 𝑏, 𝑑 and 𝑚. Changing the parameters only changes the time in
which we arrive at the result.11

At first sight, the networks in Figure 4 seem to be peculiar. Agents in-

10In case the number of Enforcers is odd there will be dyads and one star consisting of three agents. In each
period the agent at the center of the star receives rewards from both other agents and gives a reward to each
of the two other agents with probability 0.5.

11For a proof, see (Greiff, 2011, p. 152).
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teract with one or two other agents, ignoring all others. Clearly, this is not
a realistic feature of the model, but it is worth looking at it for the following
reasons. First, in studying the evolution of the dynamic network, we look
at the tendency of matching probabilities to converge toward some limit-
ing values, which is interesting from a mathematical point of view, but not
representative of actual interactions. In fact, the model’s limiting behav-
ior does not intend to give a realistic account of networks of interpersonal
relations. Rather, the aim of the model is to explain the mechanisms un-
derlying network formation in the most simple models, so that these simple
models can serve as building blocks for more complex models. Second, the
long-run behavior of the dynamic network does not resemble the structure of
real-world networks, because long-run limiting behavior might not be seen
in reality. This is because of the time it takes in order to arrive at the limiting
state, and because of exogenous shocks. Even if the underlying game would
be representative of real-world interactions, we would not expect to find a
real-world network that closely resembles the long-run prediction, because
the time it takes in order to arrive at this state is simply too long. Also, in
order to arrive at the long-run structure of the network, the game must be
played for a large number of rounds without any exogenous shocks. In sim-
ulating how agents play the game, this is exactly what we do, but in the real
world, there will be exogenous shocks (e.g., changes in the payoffs, muta-
tion in agents’ strategies, arrival of new agents and death of existing agents)
which will prevent the network from converging to its long-run structure.

2.3.2. Coevolution of Strategies and Network

In this section, we consider the same model as above but, in addition, we
allow agents to change their strategy. At the end of each round each agent
reconsiders her strategy with probability 𝛼. She looks at the agent who has
earned the highest payoff this round and imitates her strategy. With a small
probability (𝜂) agents mutate and adopt a randomly chosen strategy. Since
strategies and network coevolve, an equilibrium must be an equilibrium in
strategies and in the structure of the network.

First, consider what happens if mutation is turned off, 𝜂 = 0%. Table
2 gives the number of simulations that converged to the Enforcement State,
the Contributing State and the Free-Rider State. For each value of 𝛼, 100
simulations were run for 500 periods. Since all columns sum up to 100, we
know that all simulations converged to one of the three pure states. At the
pure states all agents employ the same strategy and the network remains
constant. If all agents are Enforcers the network will be reciprocal, as de-
scribed in section 2.3.1. By looking at the first row (Table 2) we find that
convergence to the Enforcement State becomes less likely if agents change
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𝛼 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14

Enforcement State 99 95 86 70 67 61 43 36 25 14 10
Contribution State 0 2 5 19 21 20 36 41 53 57 63
Free-Rider State 1 3 9 11 12 19 21 23 22 29 27

Table 2: No mutation. Number of simulations (out of 100) that converged
to the prosocial, dissembling and antisocial state. Parameters: 𝑛 = 100,
𝑑 = 0.9, 𝑐 = 1.0, 𝑚 = 1, 𝑏 = 1.3, ℎ = 0.1, 𝑡 = 500.

their strategies more often (higher 𝛼). From rows 2 and 3 we see that, if
agents change their strategies more often, the population converges to the
Contributing Statemore often than to the Free-Rider State. This follows from
the fact that for high values of 𝛼 Contributors receive the highest payoff. If
Enforcers are present, they will give rewards to Contributors. Since Contrib-
utors have the highest payoff, they will be imitated by all others and the
population converges to the Contributing State. Of course this happens only
if the network has evolved in such a way that Contributors are not excluded
from the benefits of rewards. Otherwise, the population will converge to the
Enforcement or Free-Rider State.

Now we introduce a small, positive probability of mutation (𝜂 = 1%). In
the presence of mutation it is still possible that the population converges to
one of the states where all agents have the same strategy, but the population
will not stay there for long. All three pure states (i.e., states in which all
agents have the same strategy) are unstable since they can be invaded by a
small number of mutating players.

Consider a situation in which every agent is an Enforcer and the average
payoff is 𝑃 𝐺 − 𝑐 + 𝑚(𝑏 − ℎ). Contributors can invade the population. If an
Enforcer randomly changes her strategy and becomes a Contributor she will
not pay the cost of enforcing the norm (i.e., the cost of giving a reward) but
she will receive rewards. Assuming that she receives 𝑚 rewards, her payoff is
given by 𝑃 𝐺 − 𝑐 + 𝑚𝑏. Since the Contributor’s payoff is higher than the En-
forcer’s payoff, the fraction of Contributors will increase. As more and more
players become Contributors, the total amount of rewards given decreases
and, over time, Enforcers learn that Contributors do not reciprocate by re-
turning rewards. Consequently, the network changes Contributorswill be ex-
cluded from rewards, hence they now receive a lower payoff than Enforcers
and Contributor’s population share starts decreasing.

If every agent is a Contributor the population can be invaded either by
one Free-Rider or by two Enforcers. In a population of 100 % Contributors
each agent’s payoff is given by 𝑃 𝐺 − 𝑐. A single agent changing her strategy
to Free-Rider would earn a higher payoff, hence the fraction of Free-Riders
would increase. Alternatively, it is possible that two agents change their
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strategies to Enforcer. These two Enforcers contribute to the public good
and give rewards to each other; their payoff is 𝑃 𝐺 − 𝑐 + 𝑚(𝑏 − ℎ) while the
payoff of a typical Contributor is 𝑃 𝐺−𝑐. SinceEnforcers earn a higher payoff
than Contributors the fraction of Enforcers will increase. In a similar way a
population of 100 % Free-Riders can be invaded by Enforcers.

Given that the state of the population will not converge to a pure state,
how will the population state evolve? To answer this question we ran sim-
ulations for varying values of 𝛼 and estimated average population shares of
Enforcers, Contributors andFree-Riders. For each value of 𝛼, 100 simulations
were run for 𝑡 = 600 periods; the first 100 observations were discarded to
avoid the influence of initial fluctuations. Figure 5 shows the mean values
and standard deviations of the population shares for different values of 𝛼.

We see that as 𝛼 increases the share of Enforcers decreases (Figure 5(a)).
The share of Contributors increases until about 𝛼 = 10% and then decreases
slightly but is relatively high (between 60% and 80%, see Figure 5(b)). For
Free-Riders it is noteworthy that their share increases as 𝛼 increases beyond
10% and standard deviations increase also (Figure 5(c)). The large standard
deviations can be explained by looking at the representative simulation runs
in Figures 6 and 7.

The representative simulations were run for 𝑡 = 2.000 periods. The sim-
plexes (Figure 6) represent the population states, ignoring the time dimen-
sion, and the other graphs in Figure 7 show the evolution of the strategy
shares over time. For very small values of 𝛼 the share of Contributors is high
(see Figures 5(b) and 7(d)) while the shares ofEnforcers andFree-Riders (Fig-
ures 7(a) and 7(g)) are small but positive. Moreover, population shares are
relatively stable. As the simplex (Figure 6(a)) shows, the populations spends
most of its time in the neighborhood of the lower right vertex, representing
100% Contributors. Although agents still change their strategies the distri-
bution of strategies remains roughly constant. There are periods in which
Contributors have the highest payoff alternating with periods in which either
Enforcers or Free-Riders have the highest payoff. If a well-connected En-
forcermutates and becomes a Contributor, this particular Contributor receives
the highest payoff and will be imitated, leading to an increase in the share of
Contributors. After a while, however, Contributors are excluded from rewards
and have an incentive to change back to the Enforcer strategy. Since both
Enforcers and Contributors contribute to the public good a stable and sus-
tainable provision can be achieved. This slightly noisy equilibrium persists
and is robust to mutations. Almost all agents contribute to the public good
although there are only very few agents enforcing the norm. After a while
(the first 200 periods) in which the share of Enforcers was high most agents
contribute to the public good and there is no need for much enforcement, so
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Figure 5: Statistical results: Mean values and standard deviations for En-
forcers (top), Contributors (middle) and Free-Riders (bottom); 𝜂 = 1%, 𝑚 =
1, 𝑏 = 1.3, ℎ = 0.1, 𝑑 = 0.9, 𝑛 = 100.

73



MATTHIAS GREIFF

(a) Simplex, 𝛼 = 0.05. (b) Simplex, 𝛼 = 0.15. (c) Simplex, 𝛼 = 0.30.

Figure 6: Simplexes for 𝛼 = 0.05, 𝛼 = 0.15 and 𝛼 = 0.30.

the share of Enforcers declines (Figure 7(a)).
For high values of 𝛼 the population state evolves faster and different. It

evolves faster because more agents change their strategies within each pe-
riod and it evolves different because the evolution of strategies is faster com-
pared to the evolution of the network. It becomes less likely that anEnforcer
receives the highest payoff and gets imitated. The population state fluctu-
ates between almost all agents being Contributors and almost all agents being
Free-Riders (as can be seen in Figures 7(e), 7(h), 7(f) and 7(i)). For short pe-
riods of time the share ofEnforcers gets relatively large (see the spikes in Fig-
ures 7(b) and 7(c)) but as 𝛼 increases these fluctuations become less frequent.
There will be only short periods of time in which most agents contribute to
the public good and a stable and sustainable provision of the public good will
be impossible.

3. Evidence from Experimental Economics

In this section, we review the experimental evidence supporting the model
presented above. The experimental literature on public good games with
rewards and punishments is large and the contributions are too many to give
a complete survey. Instead, we will mention a few important studies and the
results that are robust across studies. Then, we will take a closer look at the
experimental evidence on reputation-based partner choice and social ties.

Starting with Fehr and Gächter (2000) there began an enormous inter-
est in studies investigating the effects of rewards and punishments in public
good games. A survey of the effect of punishment can be found in Chaud-
huri (2011, section 3), and the differences between rewards and punishments
are discussed in various studies (e.g.,Dickinson (2001); Andreoni et al. (2003);
Sefton et al. (2007); Rand et al. (2009)). From these and numerous other pub-
lic good experiments the main results are the following: Without rewards or
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punishments, contributions start around 40 or 50 per cent of endowment, but
then decrease with repetition. High contributions can be sustained (except
for an end-game-effect) if participants are given the opportunity to punish
or reward each other. Participants whose contributions are above average
are rewarded and participants whose contributions are below average are
punished, although a small fraction of participants are antisocial punishers,
punishing those who made high contributions.12 Regarding the effective-
ness of punishments and rewards there is no consensus. Sefton et al. (2007),
for example, argue that punishment is more effective than rewards because
over time, the use of punishment stays high while use of rewards decreases.
Rand et al. (2009) observe the opposite: Over time, the use of punishment
decreases while the use of rewards remains high. More interestingly, Rand
et al. (2009) argue that rewards are more effective than punishments because
only punishment gives rise to acts of revenge and has a negative effect on in-
terpersonal relationships. Unfortunately, they do not measure the effects of
rewards and punishments on interpersonal relationships.

Another strand of research related to interpersonal relations is the litera-
ture on reputation-based partner choice, or competitive altruism. Here, the
key idea is that cooperation is a costly signal of cooperative intent which can
be beneficial by providing better access to cooperative relationships. The
hypothesis is that, if participants are given the opportunity to choose part-
ners, they will choose partners who showed prosocial behavior in past inter-
actions. Barclay andWiller (2007), for example, conduct a public good game
between two participants. In the first stage, the two participants play one
round of the public good game while being monitored by a third participant.
In the second stage, the third participant can choose with whom to inter-
act, and in almost all cases, the third participant chose the participant who
was more generous in the first stage. Other public good games with partner
selection, which confirm that the freedom to choose an interaction partner
increases contributions are Hauk and Nagel (2001); Coricelli et al. (2004);
Page et al. (2005) and Sylwester and Roberts (2010). For dictator and trust
games, Slonim and Garbarino (2008) show that partner selection increases
altruism and trust rates.

Although these experiments do not explicitly test how rewards are given,
they provide sound evidence that, if given the freedom to choose, partici-
pants prefer to interact with those who behaved prosocially. However, the
motivation behind it is unclear. Do participants choose partners who be-
haved prosocially in the past because they expect to exploit these partners
in future interactions, or because they are conditional cooperators who ex-

12For details on antisocial punishment, see Herrmann et al. (2008) and Gächter and Herrmann (2009).
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pect mutual cooperation? Also, it is unclear what evidence we can draw from
the choice of partners to interpersonal relations.

Amore sophisticated approach directed at the measurement of social ties
is van Winden’s social ties model (van Dijk et al., 2002; van Winden et al.,
2008; van Winden, 2012). In this model, agents have social preferences with
the weight given to another agent’s payoff depending on the strength of the
social tie between both agents, which changes over time due to automatic
affective responses. Several experiments (van Dijk et al., 2002; Sonnemans
et al., 2006; Brandts et al., 2009) confirmed that the strength of social ties
depends on the success of past interactions or, to be more precise, that the
social tie between agents A and B depends on B’s contribution relative to
the some reference contribution. In principle, van Winden’s model could
be modified to incorporate rewards, so that the social tie between A and B
depends on B’s contribution and on the rewards given from B to A.

The key aspect of our model is the link between rewards and partner
choice: Receiving rewards reduces social distance (or strengthens social ties
and hence interpersonal relationships, see equation 16), and social distance
affects partner choice. Based on the evidence reviewed above, we conjecture
that our model would be confirmed by empirical tests. If carried out in the
laboratory, a test of thismodel would look as follows: A fixed group of partic-
ipants play a finitely repeated public good game with rewards. For the sake
of concreteness, assume that the game is repeated 20 rounds. Within each
round, each participant decides whether to contribute or not. Then, partic-
ipants’ decisions are made public and each participant decides whether to
reward one contributor, who can be chosen deliberately. At the beginning
of the experiment and after rounds 5, 10, 15 and 20 the strengths of social
ties are measured. This could be done using a modified version of the circle-
test, as in van Dijk et al. (2002) but with modifications as described in Greiff
(2013).13 To avoid confounding effects, participants should not be informed
about the outcomes of the ring tests until the end of the experiment. Accord-
ing to our model, we expect to see the following two behavioral regularities.
First, we expect to see that the strength of the social tie between participants
A and B is proportional to the number of rewards given from A to B. And
second, we expect to see that participants give rewards based on social dis-
tance, i.e., if both B and C contributed to the public good, participant A is
more likely to give a reward to B if 𝑤𝐴,𝐵 > 𝑤𝐴,𝐶 .

13The original source of the ring test is Liebrand (1984), where the test was used to measure social value
orientation. It’s name is derived from the design of the test: In a coordinate system with the payoff to oneself
on one axis and the payoff to the partner on the other axis, all payoff combinations lie on a circle with center
(0,0) and radius 500.
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4. Concluding Remarks

In this paper, we reviewed a model of a public good game with rewards
played on a dynamic network, surveyed the experimental evidence with a
focus of partner choice and social ties, and sketched how an experimental
investigation of this model might look like. Testing the model in the labora-
tory would be one obvious way for further research, but beyond that, other
possibilities for further research suggest themselves.

The model, as it is presented in this paper, is extremely simple. Agents
are homogeneous and have full information; actions are binary and there are
only three strategies. In principle, the model is flexible and can be taken as
a building block for more complex models, as has been indicated at the end
of section 2.3.1. In a companion paper (Greiff, forthcoming), we extend the
strategy space of the model and allow rewards to be given not only to coop-
erators but also to defectors. One possibility would be to explore more so-
phisticated learning rules for partner selection, such as experience-weighted
attraction (Camerer and Ho, 1999) and belief-based learning models. Will
the model be robust with respect to different learning rules? How will the
resulting structure of the network look if other learning rules are used? Given
the importance of social networks in the provision of public goods, we believe
that the process of network formation should receive more attention.
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