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A Code for m-Bipartite

Edge-Coloured Graphs
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Summary. - An (n + 1)-coloured graph (Γ, γ) is said to be m-
bipartite if m is the maximum integer so that every m-residue
of (Γ, γ) (i.e. every connected subgraph whose edges are coloured
by only m colours) is bipartite; obviously, every (n + 1)-coloured
graph, with n ≥ 2, results to be m-bipartite for some m, with
2 ≤ m ≤ n + 1. In this paper, a numerical code of length (2n −
m + 1)× q is assigned to each m-bipartite (n + 1)-coloured graph
of order 2q. Then, it is proved that any two such graphs have the
same code if and only if they are colour-isomorphic, i.e. if a graph
isomorphism exists, which transforms the graphs one into the
other, up to permutation of the edge-colouring. More precisely,
if H is a given group of permutations on the colour set, we face
the problem of algorithmically recognizing H-isomorphic coloured
graphs by means of a suitable definition of H-code.
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1. Introduction and preliminary notations

The basic notions of graph theory used in this paper follow [10]. In
particular, we recall that in a multigraph loops are forbidden, but
multiple edges are allowed; moreover, by a (proper) edge-colouring
on a multigraph Γ we mean a map γ from the edge-set E(Γ) to a set
C (called the colour-set), which associates different colours to any
pair of adjacent edges.

Definition 1.1. An (n + 1)-coloured graph is a pair (Γ, γ), where:

(i) Γ = (V (Γ), E(Γ)) is a multigraph whose vertices have either
degree n+1 (internal vertices) or degree n (boundary vertices);

(ii) γ : E(Γ) → ∆n = {c ∈ Z / 0 ≤ c ≤ n} is a proper edge-
colouring on Γ, such that the subgraph Γn̂ = (V (Γ), γ−1(∆n−1))
is a regular multigraph of degree n.

Note that the order #V (Γ) of Γ is always an even positive integer.
If Γ has no boundary-vertex, we will say that (Γ, γ) has empty

boundary (denoted by ∂Γ = ∅); otherwise, (Γ, γ) is said to have non
empty boundary. Note that, if ∂Γ 6= ∅, then the number of boundary
vertices of Γ is an even positive integer, too.

From now on, each (n+1)-coloured graph (Γ, γ) will be assumed
to be connected.

Two vertices v,w of (Γ, γ) will be called c-adjacent with respect
to the colouring γ (for 0 ≤ c ≤ n), iff they are the endpoints of a
c-coloured edge of (Γ, γ) (i.e., an edge e ∈ E(Γ) with γ(e) = c); if
no confusion arises, v and w are often said to be c-adjacent, without
explicit mention of the colouring γ.

Definition 1.2. For every F ⊆ ∆n, an F − residue of (Γ, γ) is a
connected component Ξ of the subgraph ΓF = (V (Γ), γ−1(F)), with
the induced edge-colouring; if the cardinality #F of F is m (with
0 ≤ m ≤ n + 1), then Ξ will be called an m − residue of (Γ, γ).
Of course, the 0-residues are the vertices of Γ, the 1-residues Γ{c},
c ∈ ∆n, are the c-colored edges and (in case c = n) the boundary
vertices of Γ, while the 2-residues Γ{c,d}, c, d ∈ ∆n, c 6= d, are
bicoloured cycles and/or (in case n ∈ {c, d}) bicoloured paths joining
two boundary-vertices of Γ.
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Definition 1.3. An (n + 1)-coloured graph (Γ, γ) is said to be m-
bipartite (for 0 ≤ m ≤ n+1) if m is the maximum integer such that
every m-residue of (Γ, γ) is bipartite.

Note that (n+1)-bipartite simply means bipartite. Furthermore,
every 2-coloured graph is 2-bipartite (i.e., bipartite) and so, every
(n+1)-coloured graph, with n ≥ 2, is m-bipartite for some m, with
2 ≤ m ≤ n + 1.

Hence, for every m-bipartite (n+1)-coloured graph (Γ, γ), the
following integer m̄(Γ) is well defined, with 2 ≤ m̄ ≤ n + 1:

m̄(Γ) =

{

n if (Γ, γ) is bipartite with non empty boundary

m otherwise

Let now H be any subgroup of the group Sn+1 of all permutations
σ : ∆n → ∆n.

Definition 1.4. Two (n+1)-coloured graphs (Γ, γ) and (Γ′, γ′) will
be called H-isomorphic if there exists a permutation σ ∈ H and a
graph isomorphism φ : Γ → Γ′ such that

γ′ ◦ φ = σ ◦ γ.

If H = {Id}, then (Γ, γ) and (Γ′, γ′) will be called strictly-
isomorphic. If H = Sn+1, then (Γ, γ) and (Γ′, γ′) will be called
colour-isomorphic, or simply isomorphic.

Note that isomorphic graphs may be not H-isomorphic, for a
fixed subgroup H of Sn+1, while H-isomorphism (for any H) trivially
implies isomorphism.

In this paper we face the problem of algorithmically recognizing
isomorphic (or, more precisely, H-isomorphic, for a given H) m-
bipartite (n + 1)-coloured graphs, by means of the introduction of a
numerical “code” c(Γ), whose length depends on the integer m; the
algorithm computing c(Γ) 1 has been implemented in the language
C, and a copy of the program is available upon request.

1Obviously, the integer m - and hence the length of the code - is directly
computed by the algorithm itself.
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The most interesting cases - from our point of view - are those
for m = n and m = n + 1. In fact, a representation theory for
PL-manifolds of arbitrary dimension n exists, which makes use of
particular n-bipartite or (n + 1)-bipartite (n + 1)-coloured graphs,
according to the orientability of the manifold (see [3], [7], [1], [9], [4,
Chapter 13] and their bibliography). Thus, since the code allows to
directly verify whether two given (n+1)-coloured graphs are isomor-
phic (and hence - obviously - represent the same PL-manifold), this
is a tool which makes possible the creation of “sufficiently essential”
catalogues of graphs representing manifolds. In particular, the in-
vestigation about the 3-dimensional orientable (resp. non-orientable)
case has been already started in [5] (resp. in [2]), by means of spe-
cific “codes”, of which the present one is a generalization. The 4-
dimensional case will be the matter of a forthcoming paper.

2. The code

Let (Γ, γ) be an (n + 1)-coloured graph of order 2q. By a vertex-
labelling of Γ we mean a bijective map l : V (Γ) → I2q, where I2q

is any subset of the integer set Z, with 0 /∈ I2q. We shall assume
I2q = {i ∈ Z / 1 ≤ i ≤ 2q}, unless otherwise stated. For each
i ∈ I2q, we shall call vi the vertex of Γ labelled i by l.

Definition 2.1. Given an (n+1)-coloured graph (Γ, γ) and a vertex-
labelling l of it, we define

A = A(Γ, γ, l) = (ai
c)

to be the [2q × (n + 1)]-matrix, with entries in I2q ∪ {0}, where for
i ∈ I2q and for 0 ≤ c ≤ n,

ai
c =











0 if c = n and vi is a boundary-vertex of Γ

k ∈ I2q if vi and vk are c-adjacent in Γ with respect to

the colouring γ

As a straightforward consequence of the definitions, eachone of
the first n columns of A results to be a permutation of I2q, having
exactly q orbits, each of size 2. Moreover, the last column of A has
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an even number of 0-entries, corresponding to the labels of Ī = {i ∈
I2q /vi is a boundary-vertex}, while the remaining entries constitute
a permutation of I2q − Ī, having exactly q − q̄ orbits, with 2q̄ = #Ī.
These properties may be summarised in the following way, for every
i, j, k ∈ I2q and c ∈ ∆n:

1) (ai
c = k) ⇐⇒ (ak

c = i);

2) (ai
c = 0) ⇐⇒ (c = n and i ∈ Ī);

3) (ai
c = aj

c 6= 0) =⇒ (i = j).

Of course, A(Γ, γ, l) = A(Γ′, γ′, l′) iff there exist a permutation
σ ∈ Sn+1 and a graph isomorphism φ : Γ → Γ′ such that γ′◦φ = σ◦γ
and l = l′ ◦ φ.

It is not difficult to check that, in case Γ, Γ′ having non empty
boundary, the above permutation σ ∈ Sn+1 always satisfies the con-
dition σ(n) = n; this leads to the following definition.

Definition 2.2. Let (Γ, γ) be an (n + 1)-coloured graph. Then, the
set of admissible colour permutations for (Γ, γ) is defined to be

H̄(Γ) =

{

Sn+1 if ∂Γ = ∅

{σ ∈ Sn+1 / σ(n) = n} if ∂Γ 6= ∅

Suppose now (Γ, γ) to be m-bipartite, for 2 ≤ m ≤ n + 1. We
want to introduce an algorithmic procedure for labelling the vertices
of Γ, which only depends on the choice of a starting vertex r ∈
V (Γ) (called the root) and of an admissible colour permutation π =
(π(0), π(1), . . . , π(n)) ∈ H̄(Γ).

First of all, we need the following preliminary construction. Let
Ξ be a regular and bipartite m̄-coloured graph of order 2q(Ξ); let
further s be any positive integer, x ∈ V (Ξ) be any vertex of Ξ and
σ = (σ(c0), σ(c1), . . . , σ(cm̄−1)) be any permutation of the colour set
C = {c0, , c1, . . . , cm̄−1}. We define

Ñ = Ñx,σ,s : V (Ξ) → {±i ∈ Z − {0} / s ≤ i ≤ s + q(Ξ) − 1}

as follows:

1. Ñ(x) = −s;
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2. Ñ(x′) = +s, where x′ is the vertex of Ξ σ(c0)-adjacent to x.

3. For i = 1, 2, . . . , q(Ξ) − 1 : let v be the last element of the
ordered sequence

(Ñ−1(+s), Ñ−1(+s + 1), . . . , Ñ−1(+s + i − 1))

such that the set of its σ(c)-adjacent vertices, with 1 ≤ c ≤
m̄ − 1, is not a subset of Ñ−1({−j ∈ Z / s ≤ j ≤ s + i − 1});
further, if yr denotes the vertex of Ξ σ(cr)-adjacent to v, with
r = 1, 2, . . . , m̄−1, let ȳ be the first element of the (m̄−1)−ple
(y1, y2, . . . , ym̄−1) not belonging to Ñ−1({−j ∈ Z / s ≤ j ≤
s + i − 1}). Then:

• Ñ(ȳ) = −(s + i);

• Ñ(ȳ′) = +s+i, where ȳ′ is the vertex of Ξ σ(c0)-adjacent
to ȳ.

By the construction itself, Ñ is a bijection; moreover:

a) the two bipartition classes of V (Ξ) are exactly Ñ−1({−i / s ≤
i ≤ s + q(Ξ) − 1}) and Ñ−1({+i / s ≤ i ≤ s + q(Ξ) − 1});

b) for every i ∈ Z, s ≤ i ≤ s+ q(Ξ)−1, the vertices Ñ−1(−i) and
Ñ−1(+i) are σ(c0)-adjacent.

For example, if Ξ is the regular and bipartite 3-coloured graph (Γ1,γ1)
depicted in Figure 1(a), and if the integer s = 1, the canonical per-
mutation σ = Id = (0, 1, 2) and the vertex x ∈ V (Γ1) pointed out
in Figure 1(a) are chosen, then the vertex-labelling Ñ = Ñx,σ,1 is
visualized in Figure 1(b).

Coming back to our m-bipartite graph (Γ, γ), for each root r ∈
V (Γ) and for each admissible colour permutation π ∈ H̄(Γ), we
define

N = Nr,π : V (Γ) → {±i ∈ Z − {0} / 1 ≤ i ≤ q}

as follows:

1. Let Ξ1 be the (regular and bipartite) {π(0), π(1), . . . , π(m̄−1)}-
residue of (Γ, γ), which contains r; then, set Nr,π|V (Ξ1) =

Ñr,π,1.
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Figures 1(a) - 1(b)

2. Further, for i = 1, 2, . . . t−1, (t being the number of {π(0), π(1),
. . . , π(m̄ − 1)}-residues of (Γ, γ)):

• let u be the last element of the ordered sequence

(N−1(−1), N−1(+1), N−1(−2), . . .

. . . , N−1(−
i

∑

j=1

q(Ξj)), N
−1(+

i
∑

j=1

q(Ξj)))

such that the set of its π(c)-adjacent vertices, with m̄ ≤
c ≤ n, is not a subset of N−1({±r ∈ Z − {0} / 1 ≤ r ≤
∑i

j=1 q(Ξj)});

• if x is the first vertex of the (n−m̄+1)-ple (ym̄, . . . , yn),
with yc π(c)-adjacent to u (m̄ ≤ c ≤ n), which does not
belong to N−1({±r ∈ Z − {0} / 1 ≤ r ≤

∑i
j=1 q(Ξj)})

and Ξi+1 is the (regular and bipartite) {π(0), . . . , π(m̄ −
1)}-residue of (Γ, γ) which contains x, then set

Nr,π|V (Ξi+1)
= Ñ

x′,π,1+
Pi

j=1 q(Ξj)

where

x′ =

{

x if N(u) > 0

the vertex π(0)-adjacent to x if N(u) < 0
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Note that, if (Γ, γ) is regular and bipartite (i.e. if m̄ = n + 1),
then the bijection N is completely defined by the rule of point (1.),
i.e. by setting Nr,π = Ñr,π,1.

2

On the contrary, if m̄ ≤ n, the rule (2.) says how to choose -
at every step - the subsequent {π(0), π(1), . . . , π(m̄ − 1)}-residue of
(Γ, γ): for every colour π(c), m̄ ≤ c ≤ n, and for every element u of
the queue of visited vertices, if the π(c)-adjacent vertex x of u has
not been visited, Nr,π labels the vertices of the m̄-residue containing
x by means of the function Ñx′,π,s where

x′ =

{

x if u is (-)-labelled

the vertex π(0)-adjacent to x if u is (+)-labelled

and s is the first not used positive integer.

The properties of the algorithm defining Nr,π are collected into
the following:

Proposition 2.3. Let (Γ, γ) be an order 2q m-bipartite (n + 1)-
coloured graph, with m̄(Γ) = m̄. Then, for every chosen root r ∈
V (Γ) and permutation π = (π(0), π(1), . . . , π(n)) ∈ H̄(Γ), the func-
tion

N = Nr,π : V (Γ) → {j ∈ Z − {0} / − q ≤ j ≤ +q}

is a vertex-labelling of Γ (with I2q = {j ∈ Z−{0} / − q ≤ j ≤ +q})
such that:

a) for every {π(0), π(1), . . . , π(m− 1)}-residue Ξ of (Γ, γ), one of
the two bipartition classes of V (Ξ) is a subset of (Nr,π)−1({−i∈
Z / 1 ≤ i ≤ q}), and the other one is a subset of (Nr,π)−1({+i ∈
Z / 1 ≤ i ≤ q});

b) for every i ∈ Z, 1 ≤ i ≤ q, (Nr,π)−1(−i) and (Nr,π)−1(+i)
are π(0)-adjacent vertices of (Γ, γ).

2 It is easy to check that this “simplified” algorithm coincides with the rooted

numbering algorithm, described in [4, Chapter 13] and in [5]. Moreover, note that
similar problems have been faced in [8].
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Proof. Both the bijectivity of N and property b) are direct conse-
quences of the construction itself, and of the homonimous properties
of function Ñ , applied to every {π(0), . . . , π(m̄−1)}-residue of (Γ, γ).

As far as property a) is concerned, note that obviously, for each
{π(0), π(1), . . . , π(m̄ − 1)}-residue Ξ of (Γ, γ), the two bipartition
classes of V (Ξ) are subsets of N−1({−i / 1 ≤ i ≤ q}) (i.e. the set of
(−)-labelled vertices) and of N−1({+i / 1 ≤ i ≤ q}) (i.e. the set of
(+)-labelled vertices) respectively; this proves statement a) for every
(n + 1)-coloured graph (Γ, γ) satisfying m = m̄.

On the other hand, if m̄ = n and m = n+1 hold, we have only to
check that the “jump” between two {π(0), . . . , π(m̄−1) = π(n−1)}-
residues always respects the bipartition property of the whole graph:
in fact, the new partial root (which is always (−)-labelled) is chosen
either as the π(n)-adjacent of a (+)-labelled vertex, or as the π(0)-
adjacent of the π(n)-adjacent of a (−)-labelled vertex.

The choice of the vertex-labelling Nr,π, together with the choice of
the “permuted” edge-colouring γ′ = π ◦γ, enables to represent (Γ, γ)
by means of a matrix Ar,π(Γ) = A(Γ, π◦γ,Nr,π), where many entries
may be recovered from the other ones.

Proposition 2.4. Let (Γ, γ) be an order 2q m-bipartite (n + 1)-
coloured graph, with m̄(Γ) = m̄. Then, for every chosen root r ∈
V (Γ) and admissible colour permutation π = (π(0), π(1), . . . , π(n)) ∈
H̄(Γ), the matrix

Ar,π(Γ) = A(Γ, π ◦ γ,Nr,π) = (ai
c)

is completely determined by its elements of type ai
c, for i ∈ {j ∈

Z / − q ≤ j ≤ −1} and c ∈ {1, . . . , n}, and (if m 6= n + 1)
by its elements of type ai

c, for i ∈ {j ∈ Z / 1 ≤ j ≤ +q} and
c ∈ {m, . . . , n}.

Proof. In order to prove the statement, it is necessary to show that
the (2n − m + 1) × q above listed elements allow to reconstruct the
whole ((2q) × (n + 1))-matrix Ar,π(Γ) = A(Γ, π ◦ γ,Nr,π).

First, we note that the properties of N = Nr,π induce the fol-
lowing properties of Ar,π(Γ) = (ai

c):

(a) for every i ∈ {j ∈ Z − {0} / − q ≤ j ≤ +q}, then ai
0 = −i;
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(b) for every c ∈ {0, 1, . . . , m̄ − 1} and for every i ∈ {j ∈ Z / 1 ≤
j ≤ +q}, then

a−i
c ∈ {j ∈ Z / 1 ≤ j ≤ +q},

a+i
c ∈ {j ∈ Z / − q ≤ j ≤ −1},

and (a−i
c = +k) ⇐⇒ (a+k

c = −i);

As a consequence of property (a), the first column of Ar,π(Γ) may
be recovered (since it is always of a standard type); moreover, as
a consequence of property (b), the “second half” of the (c + 1)-th
column of Ar,π(Γ), for c ∈ {1, . . . , m̄ − 1}, may also be recovered
(since it may be reconstructed by means of the “first half” of the
same column).

Hence, the statement results to be proved for every (n + 1)-
coloured graph (Γ, γ) satisfying m = m̄.

In order to complete the proof, we have now to consider the case
of a bipartite (n + 1)-coloured graph with non empty boundary, i.e.
the case m = n + 1 and m̄ = n. By Proposition 2.3 (property a)),
the vertex-labelling Nr,π is such that the π(n)-adjacent of a (+)-
labelled (resp. (−)-labelled) vertex, if any, is surely a (−)-labelled
(resp. (+)-labelled) vertex; thus, the “second half” of the (n + 1)-th
column of Ar,π(Γ) may be reconstructed from the “first half” of the
same column, by means of the following rule (for every i ∈ {j ∈
Z / 1 ≤ j ≤ +q}):

a+i
n =

{

0 if + i /∈ {a−j
n / 1 ≤ j ≤ q}

−k if a−k
n = +i

Remark 2.5. The 0-elements of the matrix Ar,π(Γ), if any, always
belong to the (n + 1)-th column. This is a consequence of the “ad-
missibility” of the colour permutation π ∈ H̄(Γ) : in fact, if (Γ, γ)
has non empty boundary, the permutation π = (π(0), π(1), . . . , π(n))
of ∆n is assumed to have π(n) = n.

Definition 2.6. Let (Γ,γ) be an order 2q m-bipartite (n+1)-coloured
graph. Then, for every chosen pair (r, π) ∈ V (Γ)× H̄(Γ), the (r, π)-
code cr,π(Γ) of (Γ, γ) is the ((2n − m + 1) × q)-tuple

(c1,1, c1,2, . . . , c1,q; c2,1, c2,2, . . . , c2,q; . . .
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. . . ; c2n−m+1,1, c2n−m+1,2, . . . , c2n−m+1,q),

which contains exactly the essential elements of the matrix Ar,π(Γ),
in the following order: for every j ∈ {1, 2, . . . , q}, set

ci,j =

{

a−j
i if i ∈ {1, 2, . . . , n}

a+j
m+i−n−1 if i ∈ {n + 1, n + 2, . . . , 2n − m + 1}

Definition 2.7. Let (Γ,γ) be an order 2q m-bipartite (n+1)-coloured
graph, and let H be any subgroup of the group H̄(Γ). For each pair
(r, π) ∈ V (Γ) × H, juxstapposition of the elements of the (r, π)-code
cr,π(Γ) yields a length ((2n − m + 1) × q) “word” wr,π(Γ) in the
alphabet I2q ∪ {0} = {j ∈ Z / − q ≤ j ≤ +q}. Then, if the alphabet
is ordered according to

−1 < −2 < · · · < −q < 0 < +1 < +2 < · · · < +q,

the H-code cH(Γ) of (Γ, γ) is the lexicographic maximum among the
“words” wr,π(Γ), for every pair (r, π) ∈ V (Γ) × H.

In particular, if H = H̄(Γ), then the H̄(Γ)-code is simply said to
be the code of (Γ, γ), and is denoted by c(Γ).

Remark 2.8. In case m̄ = n + 1 (resp. in case m̄ = n and m =
n + 1), i.e. in case (Γ, γ) being a regular bipartite (n + 1)-coloured
graph (resp. i.e. in case (Γ, γ) being a bipartite (n+1)-coloured graph
with non empty boundary), then the code c(Γ) reduces to a length nq
word in the alphabet {+i/1 ≤ i ≤ q} (resp. in {+i/1 ≤ i ≤ q}∪{0}).
By deleting all (positive) signs, a numerical code is obtained, which
exactly coincides (resp. which is a reasonable extension) with the
one already defined in [4, Chapter 13] and in [5].

According to Definition 2.7, the computation of the code of an
order 2q(n + 1)-coloured graph (Γ, γ) with empty (resp. non empty)
boundary would imply to determine 2q × (n + 1)! (resp. 2q × n!)
(r, π)-codes cr,π(Γ) of (Γ, γ); really, this job is not entirely necessary,
since the choice of the pair (r, π) may be restricted to those with
particular properties:

Proposition 2.9. Let (Γ, γ) be an (n+1)-coloured graph, and let H
be any subgroup of the group H̄(Γ). If the H-code cH(Γ) is obtained
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from the elements of the (r̄, π̄)-code cr̄,π̄(Γ), then the {π̄(0), π̄(1)}-
residue of Γ containing the root r̄ ∈ V (Γ) attains a maximum length
among all {c, d}-residues of (Γ, γ), with {c, d} = {π(0), π(1)} for
some π ∈ H.

In particular, if (Γ, γ) is an (n+1)-coloured graph, with empty
(resp. non empty) boundary, and the code c(Γ) is obtained from the
elements of the (r̄, π̄)-code cr̄,π̄(Γ), then the {π̄(0), π̄(1)}-residue of
(Γ, γ) containing the root r̄ ∈ V (Γ) attains a maximum length among
all the 2-residues of (Γ, γ) (resp. of Γn̂).

Proof. It is easy to check that the first part of the algorithm defining
Nr,π visits and labels all vertices of the {π(0), π(1)}-residue contain-
ing the root r, starting from r itself, following alternatively π(0)-
and π(1)-adjacencies, until the π(1)-adjacent vertex of r is reached.

Thus, the thesis directly follows from the fact that, for every pair
(r, π), the first element of the (r, π)-code cr,π(Γ) is c1,1 = a−1

1 ∈
Ar,π(Γ), i.e. the positive integer +l such that the (regular)
{π(0), π(1)}-residue of (Γ, γ) containing r has length 2l.

Proposition 2.10. Let (Γ, γ), (Γ′, γ′) be two (n+1)-coloured graphs,
and let H be any subgroup of the group H̄(Γ). Then, (Γ, γ), (Γ′, γ′)
are H-isomorphic if and only if cH(Γ) = cH(Γ′).

In particular, (Γ, γ), (Γ′, γ′) are isomorphic if and only if c(Γ) =
c(Γ′).

Proof. If (Γ, γ), (Γ′, γ′) are H-isomorphic graphs (for any fixed sub-
group H of H̄(Γ)), they have obviously the same order - 2q, say -
and the same bipartition and regularity properties: thus, H̄(Γ) =
H̄(Γ′), m̄(Γ) = m̄(Γ′) = m̄, and the length of any (r, π)-code of
(Γ, γ) equals the length of any (r′, π′)-code of (Γ′, γ′), with r ∈ V (Γ),
r′ ∈ V (Γ′), π, π′ ∈ H̄(Γ) = H̄(Γ′). Moreover, the H-isomorphism of
(Γ, γ) and (Γ′, γ′) means the existence of a permutation σ ∈ H and
a graph isomorphism φ : Γ → Γ′ such that

γ′ ◦ φ = σ ◦ γ.

It is now easy to check that this implies, for every vertex r ∈ V (Γ)
and for every colour permutation π = (π(0), . . . , π(n)) ∈ H ⊂ H̄(Γ),
Ar,π(Γ) = Aφ(r),σ◦π(Γ′). The equality cH(Γ) = cH(Γ′) directly fol-
lows.
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On the other hand, let us assume cH(Γ) = cH(Γ′), for any fixed
subgroup H of H̄(Γ).

The common order of Γ and Γ′ is 2q, q being the maximum
integer such that +q belongs to the word cH(Γ) = cH(Γ′); further,
the integer m may be easily computed, by recalling that the length
of cH(Γ) = cH(Γ′) is ((2n−m + 1)× q). Moreover, both ∂Γ and ∂Γ′

are empty if and only if cH(Γ) = cH(Γ′) contains no 0 element; so,
the equality H̄(Γ) = H̄(Γ′) obviously holds. Then, cH(Γ) = cH(Γ′)
implies the existence of a vertex r ∈ V (Γ), a vertex r′ ∈ V (Γ′)
and two colour permutations π, π′ ∈ H ⊂ H̄(Γ) = H̄(Γ′), such that
Ar,π(Γ) = Ar′,π′(Γ′). It is now easy to check the existence of a graph
isomorphism φ : Γ → Γ′, compatible with the permutation π′ ◦π−1 ∈
H, uniquely determined by φ(r) = r′. This concludes our proof.

In case of sufficiently “small” graphs (i.e., for q ≤ 26), it is con-
venient - for sake of notational simplicity - to write down an al-
phanumerical version of the code c(Γ), by substituting the elements
of {−i ∈ Z/1 ≤ i ≤ q} (resp. {+i ∈ Z/1 ≤ i ≤ q}) with the first q
small (resp. capital) letters, in orderly way.

Thus, for example, the following codes

c(Γ2) = CABCABBcbbcaCaA

c(Γ3) = CABBcbCA0CaAb0a

c(Γ4) = CABDDCBA00000D0B

c(Γ5) = CABDDCBA00D0

c(Γ6) = CABDDCBAACdcaDbB

c(Γ7) = CABDDCBAACDB

c(Γ8) = CABDGEFHDCBAHFEGEGDH0C0F

c(Γ9) = DABCFEHGHGECDBFADAGFHBCE

c(Γ10) = CABDFEGDCBAFEGE000AGFeD0Bagf

c(Γ11) = FABCDEHGHEDCBAFGFgBCDAbGfcdeHahE

identify the edge-coloured graphs (Γj, γj) (j = 2, 3, . . . , 11) depicted
in Fig. j, and every isomorphic graph. In every graph, the pair
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Figure 2

(r, π) attaining the code is identified by means of the labelling of the
vertices and of the legend of the colour set.

In every graph, the pair (r, π) attaining the code is identified by
means of the labelling of the vertices and of the legend of the colour
set.

Figure 3
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Figure 4

Figure 5
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Figure 6

Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12

Finally, note that both graphs (Λ1, λ1) and (Λ2, λ2) depicted in
Fig. 12 are (colour)-isomorphic to the graph (Γ2, γ2) depicted in Fig.
2, but neither (Λ1, λ1) nor (Λ2, λ2) is strictly isomorphic to (Γ2, γ2),
as the following codes say:

c(Γ2) = c(Λ1) = c(Λ2) = CABCABBcbbcaCaA

c{id}(Γ2) = CABCABBcbbcaCaA

c{id}(Λ1) = ABCCABbaAbcacCB

c{id}(Λ2) = CABbaAbaAcCBcCB
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