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1. Introduction

In [8], Manásevich, Zanolin and the author have used topological degree ar-

guments to study the existence of periodic solutions for some complex-valued

differential equations of the form

z′′ = f(t, z, z′). (1)

or for systems of such equations, where the nonlineary f : [0, T ] × C
2 → C

has some special structure inspired by the equations of Liénard or Rayleigh.

The existence conditions, as well as the technicalities to obtain the requested

a priori bounds, are rather involved.

On the other hand, Bereanu and the author [1, 2, 3] have considered the

existence of solutions of quasilinear differential equations or systems of the form

(φ(u′))′ = f(t, u, u′), (2)

where f : [0, T ] × R
2n → R

n satisfies Carathéodory conditions and φ : B(a) →
R

n belongs to a suitable class of so-called singular homeomorphisms between

the open ball B(a) ⊂ R
n of center 0 and radius a > 0 and R

n. A solution of (2)
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on [0, T ] is a function u ∈ C1([0, T ], Rn) such that u′(t) ∈ B(a) for all t ∈ [0, T ],
φ ◦ u′ is absolutely continuous and equation (2) holds almost everywhere. A

motivating example of singular homeomorphism comes from the relativistic

acceleration, associated to the homeomorphism

φ : B(1) → R
n, v 7→

v√
1 − |v|2

.

Despite of the apparent greater complexity of equation (2) with respect to (1),

existence conditions for periodic solutions of (2) are in general weaker than

those for (1).

Hence it may be of interest to study the problem of the existence of periodic

solutions for quasilinear complex-valued differential systems of the form

(φ(z′))′ = f(t, z, z′). (3)

where φ : B(a) ⊂ C
m → C

m is a singular homeomorphism and f : [0, T ] ×
C

2m → C
m is a Carathéodory function. This is done in Section 3, where we

state and prove fairly general results for nonlinearities containing the Liénard

or Rayleigh types. A very special case is the existence of a solution for the

problem

(
z′√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ), z′(0) = z′(T ) (4)

for every integer n ≥ 1, α ∈ C\{0}, and h ∈ L1([0, T ], C). Such a result is sharp

because, when α = 0, problem (4) has no solution when T−1
∫ T

0
h(t) dt 6= 0.

On the other hand, motivated by some work of Szrednicki [10, 11], Ma-

násevich, Zanolin and the author have proved in [7] existence conditions for

periodic solutions of some first order complex-valued differential equations. In

the special case of the complex Riccati equation

z′ = z2 + h(t), z(0) = z(T ),

interesting existence and non-existence results have been subsequently obtained

by Campos and Ortega [4, 5]. Hence it may be of interest to consider first order

periodic problems of the type

(φ(z))′ = f(t, z), z(0) = z(T ),

where φ : B(a) ⊂ C → C is a suitable singular homeomorphism. This is done

in Section 4, where a very special case of the obtained results is the existence

of a solution for the problem

(
z√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ), (5)
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for every n ≥ 1, α ∈ C \ {0} and h ∈ L1([0, T ], C) such that

∣∣∣∣∣T
−1

∫ T

0

h(t) dt

∣∣∣∣∣ < |α|.

Again, this condition is sharp because, when α = 0, problem (5) has no solution

when T−1
∫ T

0
h(t) dt 6= 0.

We end this introduction with some notations. We denote some norm in

R
n by | · |, and the usual norm in Lp := Lp(0, T ; Rn) (1 ≤ p ≤ ∞) by | · |p. For

k ≥ 0, we set Ck := Ck([0, T ], Rn) and W 1,1 := W 1,1([0, T ], Rn). The usual

norm | · |∞ is considered on C, and the space C1 is endowed with the norm

|v|1,∞ = |v|∞ + |v′|∞.

Each v ∈ C can be written v(t) = v0 + v̂(t), with v0 = v(0) and v̂(0) = 0. For

u ∈ W 1,1 such that u(0) = u(T ), we have

û(t) =

∫ t

0

u′(s) ds = −

∫ T

t

u′(s) ds,

and max[0,T ] |û| being reached either in [0, T/2] or in [T/2, T ], this gives

|û|∞ ≤
T

2
|u′|∞ (6)

It is easily shown that the constant T/2 is optimal. We define the mean value

u of u ∈ L1 by

u := T−1

∫ T

0

u(t) dt,

2. A continuation theorem for periodic solutions of

quasilinear systems involving singular φ-Laplacians

Let us consider now the periodic problem

(φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (7)

where f : [0, T ] × R
2n → R

n is a Carathéodory function and φ : B(a) → R
n

(a < +∞) satisfies the following assumption introduced in [3].

(HΦ) φ is a homeomorphism from B(a) ⊂ R
n onto R

n such that φ(0) = 0,

φ = ∇Φ, with Φ : B(a) → R of class C1 on B(a), continuous, strictly convex

on B(a), and such that Φ(0) = 0.
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The motivating example is given by the C∞-mapping Φ : B(1) ⊂ R
n → R

defined by

Φ(u) = 1 −
√

1 − |u|2 (u ∈ B(1)),

so that

φ(u) = ∇Φ(u) =
u√

1 − |u|2
(u ∈ B(1)).

Hence (φ(u′))′ describes the relativistic acceleration.

Notice that the scalar problem

(φ(u′))′ = 1, u(0) = u(T ), u′(0) = u′(T )

has no solution, because the existence of a solution would imply, by integration

over [0, T ] of both members of the differential equation and use of the boundary

conditions, that 0 = T . Hence we cannot expect an existence result for any

right-hand side of the differential system in (7).

The following continuation result essentially comes from [1], and its present

form is given in [9]. We denote by dB the Brouwer degree for continuous

mappings in R
n (see e.g. [6]).

Lemma 1. Assume that there exists an open bounded set Ω ⊂ C such that the

following conditions hold :

1. For each λ ∈ (0, 1], there is no solution of the problem

(φ(u′))′ = λf(t, u, u′), u(0) = u(T ), u′(0) = u′(T ) (8)

such that u ∈ ∂Ω.

2. There is no solution u0 ∈ ∂Ω ∩ R
n of the system in R

n

f(u0) := T−1

∫ T

0

f(t, u0, 0) dt = 0, (9)

where, in ∂Ω∩R
n, R

n is identified with the subspace of constant functions

in C.

3. dB [f,Ω ∩ R
n, 0] 6= 0.

Then problem (7) has at least one solution such that u ∈ Ω.
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3. Periodic solutions of complex-valued quasilinear

systems involving singular φ-Laplacians

In this section, let us provide R
2 with the multiplication structure of the com-

plex plane C, and consider the complex-valued periodic system in C
m ≃ R

2m

with m ≥ 1 an integer,

(φk(z′))′ = αk(t)znk

k + [Fk(t, z)]′ + hk(t, z, z′) (k = 1, 2, . . . , m)

z(0) = z(T ), z′(0) = z′(T ), (10)

where z′ = (z′1, . . . , z
′

m), z = (z1, . . . , zm), φ = (φ1, . . . , φm) : B(a) ⊂ C
m →

C
m satisfies Assumption (Hφ), nk ≥ 1 is an integer, αk ∈ L1, Fk : [0, T ]×C

m →
C

m is of class C1, and hk : [0, T ] × C
2m → C

m is a Carathéodory function

(k = 1, 2, . . . , m). For z = (z1, . . . , zm), we take

|z| = max{|z1|, . . . , |zm|},

and for z ∈ C,

|z|∞ = max
t∈[0,T ]

|z(t)|.

We set

n = min{n1, . . . , nm}, N = max{n1, . . . , nm}.

Theorem 1. Assume that, for each k = 1, 2, . . . , m, αk 6= 0, and there exist

1 ≤ σk < n and βk, γk ∈ L1 such that

|hk(t, z, v)| ≤ βk(t)|z|σk + γk(t) (11)

for a.e. t ∈ [0, T ], all z ∈ C
m and all v ∈ C

m such that |v| < a. Then

problem (10) has at least one solution.

Proof. Following Lemma 1, we introduce the homotopy

(φk(z′))′ = λ[αk(t)znk + [Fk(t, z)]′ + hk(t, z, z′)] (k = 1, 2, . . . , m)

z(0) = z(T ), z′(0) = z′(T ) (λ ∈ (0, 1]). (12)

If z(t) = z0 + ẑ(t) with z0 = z(0) is a possible solution of (12), then z′ satisfies

the inequality,

|z′|∞ < a. (13)

and hence by (6) the inequality

|ẑ|∞ <
aT

2
. (14)
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On the other hand, integrating both members of (12) over one period and using

the periodicity gives

0 =

∫ T

0

αk(t)[z0,k + ẑk(t)]nk dt +

∫ T

0

hk[t, z0 + ẑ(t), z′(t)] dt

(k = 1, 2, . . . , m),

and hence, letting Cj
n = n!

j!(n−j)! ,

αkznk

0,k = −T−1

∫ T

0




nk−1∑

j=0

Cj
nk

zj
0,kẑk(t)nk−j


 dt

−T−1

∫ T

0

hk(t, z0 + ẑ(t), z′(t)) dt (k = 1, . . . , m).

Consequently, using (11), (13) and (14),

|αk||z0,k|
nk ≤

nk−1∑

j=0

Cj
nk

(aT/2)nk−j |z0,k|
j + βk2σk [|z0|

σk + (aT/2)σ] + γk

(k = 1, . . . , m). (15)

Let k0 ∈ {1, . . . , m} be such that |z0,k0
| = |z0|. Then, either |z0| < 1 or, using

(15) with k = k0, |z0| ≥ 1 and

α|z0|
n ≤

N−1∑

j=0

Cj
Nη(a, T )N−j |z0|

j + 2σβ[|z0|
σ + η(a, T )σ] + γ,

where

α = min{|α1|, . . . , |αm|}, β = max{β1, . . . , βm}, γ = max{γ1, . . . , γm},

σ = max{σ1, . . . , σm}, η(a, T ) = max{1, aT/2}.

Hence there exists ρ > 0 depending only upon a, T , α, β and γ such that

|z0| < ρ

which, together with (14) gives

|z|∞ < max{1, ρ} +
aT

2
:= R. (16)

Thus Assumption (1) of Lemma 1 holds with Ω = B(R) ⊂ C. System (9) can

be written

fk(z0) := αkznk

0,k + T−1

∫ T

0

hk(t, z0, 0) dt = 0 (k = 1, . . . , m),
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and any of its possible solution is such that either |z0| < 1 or |z0| ≥ 1 and

α|z0|
n ≤ β|z0|

σ + γ. (17)

Consequently, |z0| < max{1, ρ} < R and Assumption (2) of Lemma 1 is satis-

fied. Finally, introducing the homotopy F : C × [0, 1] → C defined by

Fk(z0, µ) = αkznk

0,k +
µ

T

∫ T

0

hk(t, z0, 0) dt (k = 1, . . . , m; µ ∈ [0, 1])

we see that any possible solution z0 of F(z0, µ) = 0 again is such that (17)

holds, so that |z0| < R and, by the homotopy invariance of Brouwer degree,

with

p(z) = (zn1

1 , zn2

2 , . . . , znm
m )

and A is the diagonal matrix

A = diag(α1, . . . , αm),

we obtain

dB [f, B(R), 0] = dB [F(·, 1), B(R), 0] = dB [F(·, 0), B(R), 0]

= dB [Ap, B(R), 0] = dB [p, B(R), 0] = n1 n2 . . . nm,

and Assumption (3) of Lemma 1 holds.

The special case of Theorem 1 with m = 1 states as follows. Consider the

complex-valued periodic equation

(φ(z′))′ = α(t)zn + [F (t, z)]′ + h(t, z, z′), z(0) = z(T ), z′(0) = z′(T ), (18)

where φ : B(a) ⊂ C → C satisfies Assumption (Hφ), n ≥ 1 is an integer,

α ∈ L1, F : [0, T ] × C → C is of class C1 and h : [0, T ] × C
2 → C is a

Carathéodory function.

Corollary 1. Assume that α 6= 0, and that there exist 1 ≤ σ < n and

β, γ ∈ L1 such that

|h(t, z, v)| ≤ β(t)|z|σ + γ(t)

for a.e. t ∈ [0, T ], all z ∈ C and all v ∈ C such that |v| < a. Then problem (18)

has at least one solution.

Remark 1. Such a result does not hold in classical case. The problem

z′′ = −z + sin t, z(0) = z(2π), z′(0) = z′(2π),

has no solution, as shown by multiplying each member by sin t and integrating

the result over [0, 2π].
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Remark 2. Such a result does not hold in the real case. The problem

(φ(u′))′ = u2 + 1, u(0) = u(T ), u′(0) = u′(T )

has no solution, as shown by integrating each member of the differential equa-

tion over [0, 2π] and using the boundary conditions.

Remark 3. The periodic problem (18) is of course equivalent to a periodic

problem for a system of two real-valued differential equation. Getting the re-

quested a priori bounds for the solutions from the real form is less apparent,

showing the help of the complex structure in their obtention.

It follows from Corollary 1 that, for any integer n ≥ 1, any C1 function

F : C → C and any h ∈ L1 the periodic problem for the Liénard-type equation

(φ(z′))′ = α(t)zn + [F (z)]′ + h(t), z(0) = z(T ), z′(0) = z′(T ),

has a solution when α 6= 0. This is in particular the case for the complex-valued

relativistic van der Pol equation

(
z′

1 − |z′|2

)′

+ (β + γz2)z′ + αz = h(t), z(0) = z(T ), z′(0) = z′(T ) (19)

when α 6= 0, β, γ ∈ R and h ∈ L1. When α = 0, problem (19) has no solution

when h 6= 0.

Another consequence of Corollary 1 is that the problem

(φ(z′))′ = αn(t)zn +

n−1∑

k=0

αk(t, z′)zk, z(0) = z(T ), z′(0) = z′(T ),

where n ≥ 1, αn ∈ L1 and the αk : [0, T ] × C → C are Carathéodory functions

(k = 1, . . . , n − 1), has at least one solution if αn 6= 0.

In particular, for any integer n ≥ 1 and any h ∈ L1, the periodic problem

(φ(z′))′ = α(t)zn + h(t), z(0) = z(T ), z′(0) = z′(T )

has a solution for any α ∈ L1 such that α 6= 0, and the periodic problem for

the complex-valued relativistic Rayleigh equation

(
z′

1 − |z′|2

)′

+ βz′ + γz′3 + αz = h(t), z(0) = z(T ), z′(0 = z′(T ),

has a solution when α 6= 0, β, γ ∈ R and h ∈ L1.



PERIODIC SOLUTIONS 83

4. The case of first order equations

Let us consider the periodic problem for first order quasilinear systems of the

form

(φ(u))′ = f(t, u), u(0) = u(T ) (20)

where φ : B(a) ⊂ R
n → R

n satisfies Assumption (Hφ) and f : [0, T ]×R
n → R

n

is a Carathéodory function. By solution of (20) we mean a continuous function

u : [0, T ] → B(a) such that φ ◦ u ∈ W 1,1 and equation (20) holds almost

everywhere. We keep the notations of the previous sections, and define the

mapping Nf : C → W 1,1 by

Nf (u)(t) :=

∫ t

0

f(s, u(s)) ds (t ∈ [0, T ]).

The following result is the analog of Lemma 1 for problem (20).

Lemma 2. Assume that the following conditions hold.

(i) There is no solution u0 ∈ ∂B(a) ⊂ R
n of equation

f(u0) := T−1

∫ T

0

f(t, u0) dt = 0.

(ii) dB [f, B(a) ∩ R
n, 0] 6= 0.

Then problem (20) has at least one solution in B(a).

Proof. Let us consider the family of problems

(φ(u))′ = λf(t, u), u(0) = u(T ) (λ ∈ [0, 1]). (21)

We first show that, for λ ∈ (0, 1], problem (21) is equivalent to the fixed point

problem in C

u(t) = φ−1 ◦ [φ(u(0)) − Nf (u)(T ) + λNf (u)(t)] (t ∈ [0, T ]). (22)

Indeed, if u is a solution of (21), then by integrating the differential equation

from 0 to t, and from 0 to T and using boundary conditions, we get

φ(u(t)) − φ(u(0)) − λNf (u)(t) = 0, Nf (u)(T ) = 0,

hence, both equations taking values in supplementary subspaces,

φ(u(t)) = φ(u(0)) − Nf (u)(T ) + λNf (u)(t),



84 JEAN MAWHIN

which is equivalent to (22). Conversely, if u satisfies (22), then u ∈ B(a) (as

φ−1 : R
n → B(a)), and

φ(u(t)) = φ(u(0)) − Nf (u)(T ) + λNf (u)(t) (t ∈ [0, T ]). (23)

Differentiating, we get the differential equation in (21), taking t = 0 we obtain

Nf (u)(T ) = 0, (24)

and taking t = T and using (24) we get

φ(u(T )) = φ(u(0)),

which is equivalent to the boundary condition in (21).

For λ = 0, equation (22) reduces to

u(t) = φ−1 ◦ [φ(u(0)) − Nf (u)(T )] (t ∈ [0, T ])

which means that any solution u = u(0) is constant with u(0) ∈ B(a) ⊂ R
n

and u(0) solution of (24). Conversely, the solutions of (24) in B(a) are the

solutions of (22) with λ = 0.

Now, the operator M : C × [0, 1] → B(a) ⊂ C defined by

M(u)(t) := φ−1 ◦ [φ(u(0)) − Nf (u)(T ) + λNf (u)(t)] (t ∈ [0, T ])

is easily seen to be completely continuous on C, using Arzela-Ascoli’s theorem.

Hence, if Assumption (i) holds, we have

u 6= M(u, λ) ∀ (u, λ) ∈ ∂B(a) × [0, 1],

and the homotopy invariance and reduction property of Leray-Schauder degree

dLS , together with Brouwer degree results for homeomorphisms (see e.g. [6]),

imply, with P : C → C ∩ R
n, u 7→ u(0), that

dLS [I −M(·, 1), B(a), 0] = dLS [I −M(·, 0), B(a), 0]

= dLS [I − φ−1 ◦ {φ ◦ P − Nf (·)(T )}, B(a), 0]

= dB [(I− φ−1 ◦ {φ − Nf (·)(T )})|Rn , B(a) ∩ R
n, 0]

= ±dB [φ ◦ {I − φ−1 ◦ [φ − Nf (·)(T )], B(a), 0]

= ±dB [Nf (·)(T ), B(a), 0] = ±dB [f, B(a), 0] 6= 0,

using Assumption (ii). The result follows from the existence property of Leray-

Schauder’s degree.

Let us apply Lemma 2 to the periodic problem for the complex-valued

differential equation

(φ(z))′ = α(t)zn + h(t, z), z(0) = z(T ) (25)

where φ : B(a) ⊂ C → C satisfies condition (Hφ), α ∈ L1, n ≥ 1 is an integer,

and h : [0, T ] × C → C is a Carathéodory function.
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Theorem 2. Assume that α 6= 0 and that there exists 0 ≤ σ < n and β ≥
0, γ ≥ 0 such that

(a)
∣∣∣T−1

∫ T

0
h(t, z) dt

∣∣∣ ≤ β|z|σ + γ for all z ∈ B(a) ⊂ C.

(b) the unique positive root u0 of equation

|α|un = βuσ + γ

is such that u0 < a.

Then problem (25) has at least one solution z.

Proof. With the notations of Lemma 2, we have

f(z0) = αzn
0 + T−1

∫ T

0

h(t, z0) dt,

so that any possible zero z0 of f is such that

|α||z0|
n ≤ β|z0|

σ + γ, (26)

and hence, by Assumption (b), |z0| < a. Now, let us consider the homotopy

F : C × [0, 1] → C, (z0, µ) 7→ αzn
0 + µT−1

∫ T

0

h(t, z0) dt (µ ∈ [0, 1]).

If F(z0, µ) = 0, then z0 satisfies inequality (26) and hence |z0| < a. By the

homotopy invariance of Brouwer degree, we get , with p(z) := zn,

dB [f, B(a), 0] = dB [F(·, 1), B(a), 0] = dB [F(·, 0), B(a), 0]

= dB [αp, B(a), 0] = dB [p, B(a), 0] = n.

The result follows from Lemma 2.

Corollary 2. Let φ : B(a) → C satisfy condition (Hφ), n ≥ 1 be an integer

and α ∈ L1. Then the periodic problem

(φ(z))′ = α(t)zn + h(t), z(0) = z(T ) (27)

has at least one solution when α 6= 0 and |h| < |α|an.

In particular, the problem

(
z√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ) (28)
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has at least one solution when α ∈ C \ {0} and |h| < |α|. This result is sharp

because if (28) has a solution z, then letting

y =
z√

1 − |z|2
so that z =

y√
1 + |y|2

we have

y′ = α

(
y√

1 + |y|2

)n

+ h(t), y(0) = y(T ).

Hence, taking the mean value of the differential equation and using the bound-

ary conditions,

0 = αT−1

∫ T

0

(
y(t)√

1 + |y(t)|2

)n

dt + h,

which gives

|h| ≤ |α|T−1

∫ T

0

(
|y(t)|√

1 + |y(t)|2

)n

dt < |α|.

Remark 4. A result like Corollary 2 does not hold in the classical case

z′ = α(t)zn + h(t), z(0) = z(T ),

as shown by

z′ = iz + eit, z(0) = z(2π)

which has no solution, because if it were the case, we would have

(e−itz)′ = e−itz′ − ie−itz = 1, z(0) = z(2π)

leading to a contradiction by integration over [0, 2π].

Remark 5. By analogy with the results of Section 3, the reader will easily

state and proof the extension of Theorem 2 to complex-valued systems of the

form

(φk(z))′ = αk(t)znk

k + hk(t, z), z(0) = z(T ) (k = 1, . . . , m).
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