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On Simplicial Toric Varieties

of Codimension 2

Margherita Barile (∗)

Dedicated to the memory of Fabio Rossi.

Summary. - We describe classes of toric varieties of codimension 2
which are either minimally defined by 3 binomial equations over
any algebraically closed field, or are set-theoretic complete inter-
sections in exactly one positive characteristic.

1. Introduction

If K is an algebraically closed field, the minimum number of equa-
tions which are needed to define an affine algebraic variety of Kn

is called the arithmetical (ara) rank of V (or of the defining ideal
I(V ) of V in the polynomial ring K[x1, . . . , xn]). It is well-known
that araV ≥ codimV ; if equality holds, V is called a set-theoretic
complete intersection; more generally, if araV ≤ codimV+1, V is
called an almost set-theoretic complete intersection. Classes of vari-
eties which are (almost) set-theoretic complete intersections where
recently considered in several papers by the same author ([1]–[8]). In
particular, [8] contains a characterization of all toric varieties which
are set-theoretic complete intersections on binomial equations. If
charK = p > 0, these are those fulfilling a certain combinatorial
property, based on a notion introduced in [15], i.e., the property
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of being completely p-glued. This is a sufficient condition for be-
ing a set-theoretic complete intersection in characteristic p; it is not
known whether it is also necessary, although many examples pro-
vide supporting evidence. Classes of toric varieties which are not
completely p-glued for any prime p and are not set-theoretic com-
plete intersections in any characteristic where presented in [2]–[4]:
the ones treated in [3] and [4] have any codimension greater than 2,
those in [2] any codimension greater than or equal to 2. In [6] the
authors described a class of toric varieties of codimension 2 which
are completely p-glued, and set-theoretic complete intersections in
characteristic p, for exactly one prime p; [1] and [5] contain infinitely
many such examples in arbitrarily high codimension. In this paper
we give sufficient conditions on the parametrization of a toric variety
of codimension 2 which assure that it is not a set-theoretic complete
intersection in all characteristics different from a given prime p > 0.
Since, as was shown in [7], every toric variety of codimension 2 is
an almost set-theoretic complete intersection, it will follow that the
variety has arithmetical rank equal to 3 in these characteristics. This
will allow us to find a large class of toric varieties whose arithmeti-
cal rank is equal to 3 over any field; it (properly) includes the toric
varieties of codimension 2 considered in [2]. We will also find new ex-
amples of toric varieties of codimension 2 in the 5-dimensional affine
space which are set-theoretic complete intersections in exactly one
positive characteristic.

The set-theoretic complete intersection property in characteris-
tic zero is a much more complex matter. There is an arithmetic
criterion on the semigroup which assures that a toric variety is a set-
theoretic complete intersection on binomials in characteristic zero:
it is obtained from Definition 1.1 by requiring that k = 0. From [8],
Theorem 4, we know, however, that the only toric varieties which
are set-theoretic complete intersections on binomials in characteris-
tic zero are the complete intersections. Detecting other set-theoretic
complete intersections implies finding non-binomial defining equa-
tions and is therefore, in general, a difficult task. Eto has recently
proven that the toric curve (t17, t19, t25, t27) is a set-theoretic inter-
section on three equations only one of which is binomial [11], whereas
it is impossible to find three defining equations two of which are bi-
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nomial [12].

In this paper V ⊂ Kn+2 denotes a toric variety parametrized in
the following way:

V :



































x1 = ud
1

x2 = ud
2

...
xn = ud

n

y1 = ua1
1 u

a2
2 · · · uan

n

y2 = ub1
1 u

b2
2 · · · ubn

n

,

where d is a positive integer and a1, . . . , an, b1, . . . , bn are nonnegative
integers such that, for all indices i, either ai or bi is non zero. Up to
a change of parameters, we may assume that

gcd(d, a1, . . . , an, b1, . . . , bn) = 1.

The form of the first n rows of the parametrization qualifies V as a
so-called simplicial toric variety.

In [6] we considered the case where d is a prime number p. We
first proved that V is completely p-glued, then we characterized the
toric varieties V which are not q-glued for any other prime q by giving
a necessary and sufficient arithmetic condition on the exponents ai

and bi.

In this paper d is any positive integer. In Section 1 we assume
that d is a power of a prime p and show that then V is completely p-
glued (and thus a set-theoretic complete intersection on two binomial
equations if charK = p). In Section 2 we give a general condition
under which, for every prime divisor p of d, V is not a set-theoretic
complete intersection (i.e., araV = 3) in all characteristics q 6= p. We
will conclude that, whenever this condition is fulfilled by two different
prime divisors p and q of d, then araV = 3 in all characteristics. The
above discussion will settle the problem of the arithmetical rank for
many toric varieties in codimension 2, in particular those treated
in Section 3. The lower bounds for the arithmetical rank will be
provided by cohomological criteria together with diagram chasing
techniques. We will resort to étale cohomology and cohomology with
compact support; for the basic notions on this topic we refer to [13]
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or [14]. The defining equations will be determined by arithmetical
tools.

There is a subset T of N
n attached to V , namely

T = {(d, 0, 0, . . . , 0), (0, d, 0, . . . , 0), . . . , (0, 0, . . . , d),

(a1, a2, . . . , an), (b1, b2, . . . , bn)}.

The polynomials in the defining ideal I(V ) of V are the linear com-
binations of binomials

B
α+

1 α+
2 ···α+

n β+
1 β+

2

α−
1 α−

2 ···α−
n β−

1 β−
2

= x
α+

1
1 x

α+
2

2 · · · xα+
n

n y
β+
1

1 y
β+
2

2 − x
α−

1
1 x

α−
2

2 · · · xα−
n

n y
β−
1

1 y
β−
2

2

with α+
i , α

−
i , β

+
i , β

−
i nonnegative integers (not all zero) such that

α+
1 (d, 0, . . . , 0) + α+

2 (0, d, 0, . . . , 0) + · · · (1)

+α+
n (0, 0, . . . , 0, d) + β+

1 (a1, a2, . . . , an) + β+
2 (b1, b2, . . . , bn) =

α−
1 (d, 0, . . . , 0) + α−

2 (0, d, 0, . . . , 0) + · · ·

+α−
n (0, 0, . . . , 0, d) + β−1 (a1, a2, . . . , an) + β−2 (b1, b2, . . . , bn).

There is a one-to-one correspondence between the set of binomials
in I(V ) and the set of semigroup relations (1) between the elements
of T .

Let us recall a combinatorial notion due to Rosales [15], which
refers to the subgroup of Z

n generated by a set T , and is based on
the following two definitions, both quoted from [8], pp. 1894–1895.

Definition 1.1. Let p be a prime number and let T1 and T2 be non-
empty subsets of T such that T = T1∪T2 and T1∩T2 = ∅. Then T is
called a p-gluing of T1 and T2 if there are an integer k and a nonzero
element w ∈ Z

n such that ZT1 ∩ ZT2 = Zw and pk
w ∈ NT1 ∩ NT2.

Definition 1.2. An affine semigroup NT is called completely p-glued
if T is the p-gluing of T1 and T2, where each of the semigroups
NT1,NT2 is completely p-glued or a free abelian semigroup.

We will say that variety V is completely p-glued if so is the cor-
responding semigroup NT .



ON SIMPLICIAL TORIC VARIETIES etc. 13

2. When V is a set-theoretic complete intersection in

characteristic p.

Theorem 2.1 ([8], Theorem 5, p. 1899). An affine or projective toric
variety of codimension r over a field K of characteristic p > 0 is
set-theoretically defined by r binomial equations iff it is completely
p-glued. In particular, if it is p-glued, it is a set-theoretic complete
intersection.

We can easily describe large classes of completely p-glued toric
varieties. We will refer to the variety V introduced above.

Proposition 2.2 ([8], Example 1). Suppose that

supp (a1, a2, . . . , an) ⊂ supp (b1, b2, . . . , bn).

Then V is completely p-glued for all primes p (and hence a set-
theoretic complete intersection if charK 6= 0).

Proposition 2.3. Let p be a prime. If d = pr for some nonnegative
integer r, then V is completely p-glued (and hence a set-theoretic
complete intersection if charK = p).

Proof. If r = 0, then V is, over any field K, a complete intersection
on the two binomials

F1 = y1 − xa1
1 · · · xan

n , F2 = y2 − xb1
1 · · · xbn

n .

So assume that r > 0. Let

T1 = {(pr, 0, 0, . . . , 0), (0, pr, 0, . . . , 0), . . . , (0, 0, . . . , pr),

(a1, a2, . . . , an)}

and consider

T11 = {(pr, 0, 0, . . . , 0), (0, pr, 0, . . . , 0), . . . , (0, 0, . . . , pr)},

which generates a free abelian semigroup, and

T12 = {(a1, a2, . . . , an)}.
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Then T1 is the disjoint union of T11 and T12 and

ZT11 ∩ ZT12 = Zv,

where

v = ps(a1, a2 . . . , an)

=
a1

pr−s
(pr, 0, 0, . . . , 0) +

a2

pr−s
(0, pr, 0, . . . , 0) +

· · · +
an

pr−s
(0, 0, . . . , pr)

and pr−s is the maximum power of p which divides ai for all i =
1, . . . , n. It follows that v ∈ NT11∩NT12. Therefore, for all primes q,
T1 is the q-gluing of T11 and T12. Now, for all nonnegative integers
h ≥ s, we have that ph−s

v ∈ NT11 ∩ NT12, and, more precisely,

ph−s
v = ph(a1, a2 . . . , an)

= a′1(p
r, 0, 0, . . . , 0) + a′2(0, p

r, 0, . . . , 0) +

· · · + a′n(0, 0, . . . , pr), (2)

where we have set a′i = ai

pr−h for all indices i = 1, . . . , n. Moreover,
let

T2 = {(b1, b2, . . . , bn)}.

Then
ZT1 ∩ ZT2 = Zw,

where w = λ(b1, . . . , bn), and

λ = gcd{k ∈ N
∗ | (kb1, . . . , kbn) ∈ ZT1}.

Since (prb1, . . . , p
rbn) ∈ NT1, it follows that λ = pt for some nonneg-

ative integer t ≤ r, and pr−t
w ∈ NT1 ∩NT2. Hence T is the p-gluing

of T1 and T2 and the variety V given above is completely p-glued.
Of course, for all integers k ≥ r, we have that pk−t

w ∈ NT1 ∩ NT2,
i.e.,

pk−t
w = pk(b1, b2, . . . , bn)

= b′1(p
r, 0, 0, . . . , 0) + b′2(0, p

r, 0, . . . , 0) +

· · · + b′n(0, 0, . . . , pr), (3)
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where we have set b′i = bip
k−r for all indices i = 1, . . . , n. According

to [8], proof of Theorem 2, V is a set-theoretic complete intersection
on any pair of binomials:

F1 = yph

1 − x
a′
1

1 x
a′
2

2 · · · xa′
n

n , F1 = ypk

2 − x
b′1
1 x

b′2
2 · · · xb′n

n ,

which are derived from semigroup relations (2) and (3) respectively.
In particular, for h = k = r we get the binomials:

F1 = ypr

1 − xa1
1 x

a2
2 · · · xan

n , F1 = ypr

2 − xb1
1 x

b2
2 · · · xbn

n .

Example 2.4. Consider the following toric variety of codimension 2
in K5:

V :























x1 = u4
1

x2 = u4
2

x3 = u4
3

y1 = u8
1u3

y2 = u12
2 u

3
3

.

Let

T1 = {(4, 0, 0), (0, 4, 0), (0, 0, 4), (8, 0, 1)},

T11 = {(4, 0, 0), (0, 4, 0), (0, 0, 4)}, T12 = {(8, 0, 1)},

and

T2 = {(0, 12, 3)}.

Then ZT11∩ZT12 = Z(32, 0, 4), since, for all integers λ, α, β, equality
λ(8, 0, 1) = α(4, 0, 0) + β(0, 0, 4) implies that 4|λ and, on the other
hand,

4(8, 0, 1) = 8(4, 0, 0) + (0, 0, 4). (4)

Moreover ZT1 ∩ ZT2 = Z(0, 12, 3), since

(0, 12, 3) = 3(8, 0, 1) − 6(4, 0, 0) + 3(0, 4, 0).

On the other hand,

4(0, 12, 3) = 12(0, 4, 0) + 3(0, 0, 4), (5)
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so that 22(0, 12, 3) ∈ NT1 ∩ NT2, which shows that V is 2-glued.
Hence, in characteristic 2, the variety V is a set-theoretic complete
intersection on the following two binomials

F1 = y4
1 − x8

1x3, F2 = y4
2 − x12

2 x
3
3,

which are derived from semigroup relations (4) and (5) respectively.
A complete list of generating binomials for the defining ideal of V is,
in every characteristic,

y4
1 − x8

1x3, y4
2 − x12

2 x
3
3, y1y2 − x2

1x
3
2x3,

x4
1y

2
2 − x6

2x3y
2
1, x6

1y2 − x3
2y

3
1 , x2

1y
3
2 − x9

2x
2
3y1.

In Section 2 we will show that V is not a set-theoretic complete
intersection in any characteristic other than 2.

3. When V is not a set-theoretic complete intersection

in any characteristic other than p

In this section we suppose that d is any integer greater than 1.
We assume that the parametrization of V fulfils the following

conditions:

(A) there are indices i and j such that

ai = 0, bi 6= 0, and aj 6= 0, bj = 0;

(B) for all i = 1, . . . , n

(i) d|ai ⇔ d|bi;

(ii) d 6 |ai ⇔ gcd(d, ai) = 1 and d 6 |bi ⇔ gcd(d, bi) = 1;

(C) the matrix of residue classes modulo d

(

ā1 ā2 · · · ān

b̄1 b̄2 · · · b̄n

)

has proportional rows, i.e., one is an integer multiple of the
other;
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(D) there is i such that gcd(d, ai) = 1.

We will study the set-theoretic complete intersection property for the
varieties V fulfilling (A)–(D). We first show that the problem can be
reduced to certain hyperplane sections of V , then we resort to étale
cohomology. We will first reduce the proof to the case where d does
not divide any ai or bi for i ≥ 3 and then we will prove the claim
under this additional assumption. The arguments are essentially
those used in [6], which are here generalized. Let an index i ∈
{1, . . . , n} be fixed. We introduce some abridged notation. For all
indices k = 1, . . . , n, we denote by ek the kth element of the canonical
basis of Z

n, and by ēk the element of Z
n−1 obtained by skipping the

ith component of ek. Then e1, . . . , ei−1, ei+1, . . . , en are the elements
of the canonical basis of Z

n−1. Moreover we set

a = (a1, a2, . . . , an), and b = (b1, b2, . . . , bn),

ā = (a1, . . . , ai−1, ai+1, . . . , an), and b̄ = (b1, . . . , bi−1, bi+1, . . . , bn).

We consider the following toric variety in Kn+1, whose
parametrization is obtained from that of V by omitting the param-
eter ui:

V̄ :































































x1 = ud
1

x2 = ud
2

...
xi−1 = ud

i−1

xi+1 = ud
i+1

...
xn = ud

n

y1 = ua1
1 u

a2
2 · · · u

ai−1

i−1 u
ai+1

i+1 · · · uan

n

y2 = ub1
1 u

b2
2 · · · u

bi−1

i−1 u
bi+1

i+1 · · · ubn

n

.

It is associated with the following subset of N
n−1:

T̄ = {dē1, . . . , dēi−1, dēi+1, . . . , dēn, ā, b̄}.

Lemma 3.1. Suppose that d divides both the exponents ai and bi
in the parametrization of V . Let F = F (x1, x2, . . . , xn, y1, y2) ∈
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K[x1, x2, . . . , xn, y1, y2], and set

F̄ = F (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn, y1, y2)

∈ K[x1, x2, . . . , xi−1, xi+1, . . . xn, y1, y2].

Let I(V ) and I(V̄ ) be the defining ideals of V and V̄ in the rings
K[x1, x2, . . . , xn, y1, y2] and K[x1, x2, . . . , xi−1, xi+1, . . . , xn, y1, y2]
respectively. Then

F ∈ I(V ) =⇒ F̄ ∈ I(V̄ ).

Conversely, for all G ∈ K[x1, x2, . . . , xi−1, xi+1, . . . , xn, y1, y2] such
that G ∈ I(V̄ ) there is F ∈ K[x1, x2, . . . , xn, y1, y2] such that F ∈
I(V ) and F̄ = G.

Proof. It suffices to prove the claim for binomials. Let

B
α+

1 α+
2 ···α+

n β+
1 β+

2

α−
1 α−

2 ···α−
n β−

1 β−
2

be a binomial of I(V ). Then the following semi-

group relation in T holds:

α+
1 de1 + α+

2 de2 + · · · + α+
n den + β+

1 a + β+
2 b =

α−
1 de1 + α−

2 de2 + · · · + α−
n den + β−1 a + β−2 b. (6)

It follows that B
α+

1 α+
2 ···α+

n β+
1 β+

2

α−
1 α−

2 ···α−
n β−

1 β−
2

∈ I(V̄ ), since this binomial corre-

sponds to the following semigroup relation in T̄ :

α+
1 dē1 + α+

2 dē2 + · · · + α+
i−1dēi−1 + α+

i+1dēi+1 + · · · (7)

+α+
n dēn + β+

1 ā + β+
2 b̄ =

α−
1 dē1 + α−

2 dē2 + · · · + α−
i−1dēi−1 + α−

i+1dēi+1 + · · ·

+α−
n dēn + β−1 ā + β−2 b̄

derived from (6) by skipping the ith component. Conversely, every
semigroup relation (7) in T̄ gives rise to the following semigroup
relation in T :

α+
1 de1 + α+

2 de2 + · · · +

(

− β+
1

ai

d
− β+

2

bi
d

)

dei + · · ·

+α+
n den + β+

1 a + β+
2 b =

α−
1 de1 + α−

2 de2 + · · · +

(

− β−1
ai

d
− β−2

bi
d

)

dei + · · ·

+α−
n den + β−1 a + β−2 b.
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This proves the second part of the claim.

The following result will be used in the proof of Theorem 3.4.

Lemma 3.2. Suppose that I(V ) = Rad(F1, . . . , Fs). Then

I(V̄ ) = Rad(F̄1, . . . , F̄s).

Proof. Inclusion ⊃ follows from Lemma 3.1, since I(V̄ ) is a reduced
ideal. We prove inclusion ⊂. Let G ∈ I(V̄ ). By Lemma 3.1 there
is H ∈ I(V ) such that G = H̄. Then, for some positive integer m,
Hm ∈ (F1, . . . , Fs), i.e.,

Hm =
s

∑

i=1

fiFi, for some fi ∈ K[x1, x2, . . . , xn, y1, y2].

Since f̄i ∈ K[x1, x2, . . . , xi−1, xi+1, . . . , xn, y1, y2], it follows that

Gm = H̄m = Hm =

s
∑

i=1

fiFi =

s
∑

i=1

f̄iF̄i ∈ (F̄1, . . . , F̄s),

which completes the proof.

We will also use the following criterion, cited from [9], Lemma
3′. The symbol Het denotes étale cohomology.

Lemma 3.3. Let W ⊂ W̃ be affine varieties. Let d = dim W̃ \W . If
there are s equations F1, . . . , Fs such that W = W̃ ∩ V (F1, . . . , Fs),
then

Hd+i
et (W̃ \W,Z/rZ) = 0 for all i ≥ s

and for all r ∈ Z which are prime to charK.

The main result of this section is the following:

Theorem 3.4. If the variety V introduced above fulfils conditions
(A)–(D), and p is any prime divisor of d, then V is not a set-theoretic
complete intersection for charK 6= p.
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Proof. Let charK 6= p. By permuting the indices if necessary we
can assume that condition (A) takes the form:

a1 = 0, b1 6= 0, a2 6= 0, b2 = 0.

Condition (B)(i) implies that d divides a2 and b1. Hence condition
(D) implies that there is i ≥ 3 such that d is prime to ai (hence,
in view of (B), it is prime to bi as well). Our aim is to show that
V is not set-theoretically defined by two equations. By virtue of
Lemma 3.2 it suffices to show that this is true for the variety V̄
whose parametrization is obtained from that of V by omitting all
parameters ui (3 ≤ i ≤ n) for which d|ai (equivalently: d|bi). Thus
we may assume that in the parametrization of V we have d 6 |ai and
d 6 |bi for all indices i ≥ 3. Then conditions (B) and (D) reduce to
the following:

(α)n ≥ 3 and gcd(d, ai) = gcd(d, bi) = 1 for all i = 3, 4, . . . , n. (8)

Condition (C) takes the form: (β) in the matrix of residues classes
modulo d

(

ā3 ā4 · · · ān

b̄3 b̄4 · · · b̄n

)

either row is an integer multiple of the other.
The variety V has the following parametrization:

V :



































x1 = ud
1

x2 = ud
2

...
xn = ud

n

y1 = ua2
2 u

a3
3 · · · uan

n

y2 = ub1
1 u

b3
3 · · · ubn

n

.

By Lemma 3.3 it suffices to show that

Hn+4
et (Kn+2 \ V,Z/pZ) 6= 0.

Applying Poincaré Duality (see [14], Cor. 11.2, p. 276) we obtain the
equivalent statement:

Hn
c (Kn+2 \ V,Z/pZ) 6= 0,
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where Hc denotes cohomology with compact support. For the sake
of simplicity, in the sequel we shall omit the coefficient group Z/pZ.
In this and in the following proofs we shall also consider as equal to
Z/pZ all cohomology groups that are isomorphic to Z/pZ. Recall
that for all nonnegative integers m,

H i
c(K

m) =

{

Z/pZ for i = 2m,
0 otherwise.

(9)

Here we have set K0 = {0}. In the exact sequence (see [14], Remark
1.30, p. 94)

Hn−1
c (Kn+2) −→ Hn−1

c (V ) −→ Hn
c (Kn+2 \ V ) −→ Hn

c (Kn+2)

we thus have that Hn−1
c (Kn+2) = Hn

c (Kn+2) = 0, whence we get
Hn

c (Kn+2 \ V ) ≃ Hn−1
c (V ). Hence we can re-formulate our claim as

Hn−1
c (V ) 6= 0. (10)

We prove (10) by induction on n. According to (α) we have n ≥ 3.
Hence the variety to be considered for the initial step of the induction
is

U :























x1 = u1

x2 = u2

x3 = ud
3

y1 = ua2
2 u

a3
3

y2 = ub1
1 u

b3
3

.

Here we have performed a change of parameters: since d divides a2

and b1, we may adjust the parametrization of U by replacing ud
1, u

d
2,

a2/d and b1/d by u1, u2, a2 and b1 respectively. We have to show
that

H2
c (U) 6= 0.

Now K[U ] = K[u1, u2, u
d
3, u

a2
2 u

a3
3 , u

b1
1 u

b3
3 ] ⊂ K[u1, u2, u3] = K[K3].

This inclusion corresponds to a map

φ : K3 → U

defined by

(u1, u2, u3) 7→ (u1, u2, u
d
3, u

a2
2 u

a3
3 , u

b1
1 u

b3
3 ),
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which is a finite (hence a proper) morphism of schemes. Let X ⊂ K3

be the linear subspace defined by u1 = u2 = 0. Then X is a one-
dimensional affine space. Let Y = φ(X). We show that φ induces
by restriction a bijection from K3 \X to U \ Y . It suffices to show
that for all (u1, u2, u

d
3, u

a2
2 u

a3
3 , u

b1
1 u

b3
3 ) such that u1 6= 0 or u2 6= 0, u3

is uniquely determined. This is certainly true if u3 = 0. Suppose
that u3 6= 0. Since d is, by (α), prime to a3 and b3, there are integers
v,w, s, t such that

vd+ wa3 = 1, and sd+ tb3 = 1.

If u1 6= 0, then

u3 =
(ud

3)
s(ub1

1 u
b3
3 )t

ub1t
1

;

if u2 6= 0, then

u3 =
(ud

3)
v(ua2

2 u
a3
3 )w

ua2w
2

.

This proves bijectivity. Now let S be the linear subspace of K3

defined by u3 = 0, and set T = φ(S). Then φ induces by restriction
a bijection (in fact, locally an isomorphism) from K3 \ (X ∪ S) to
U \ (Y ∪T ). According to [10], Lemma 3.1, bijectivity, together with
properness, implies that φ induces, for all indices i, an isomorphism
between the ith étale cohomology groups of K3\(X∪S) and U \(Y ∪
T ) with coefficient group Z/pZ. Since K3 \ (X ∪S) and U \ (Y ∪ T )
are non singular, applying Poincaré Duality we deduce that, for all
indices i, φ induces an isomorphism

H i
c(K

3 \ (X ∪ S)) ≃ H i
c(U \ (Y ∪ T )).

Now, K3 \ (X ∪ S) and U \ (Y ∪ T ) are open subsets of K3 \X and
U \ Y = φ(K3 \X) respectively. Their complements in these spaces
can be both identified with the open subset Z of K2 defined by
u1 6= 0 or u2 6= 0; the map φ induces by restriction the identity map
on Z, hence this restriction induces the identity map in cohomology
with compact support. Thus φ gives rise, for all indices i, to the
following commutative diagram with exact rows:

H
i−1
c (Z) → H

i

c(U \ (Y ∪ T )) → H
i

c(U \ Y ) → H
i

c(Z) → H
i+1
c (U \ (Y ∪ T ))

↓ ‖ ↓ |≀ ↓ ↓ ‖ ↓ |≀

H
i−1
c (Z) → H

i

c(K
3 \ (X ∪ S)) → H

i

c(K
3 \ X) → H

i

c(Z) → H
i+1
c (K3 \ (X ∪ S))
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By the Five Lemma it follows that φ induces, for all indices i, an
isomorphism

H i
c(U \ Y ) ≃ H i

c(K
3 \X).

In view of (9), from the long exact sequence

H1
c (X)→H2

c (K3 \X)→H2
c (K3)→H2

c (X) → H3
c (K3 \X) → H3

c (K3)
‖ ‖ ‖ ‖
0 0 Z/pZp 0

we deduce that H2
c (K3\X) = 0 and H3

c (K3\X) = Z/pZ. Moreover,
by [13], Remark 24.2 (f), p. 135, inclusion

K[ud
3] = K[Y ] ⊂ K[X] = K[u3]

induces multiplication by d in cohomology with compact support.
Since X and Y are both one-dimensional affine spaces, by (9) this
yields the zero map

θ : H2
c (Y ) = Z/pZ → Z/pZ = H2

c (X),

and, furthermore,
H3

c (Y ) = H3
c (X) = 0.

Therefore, in the morphism of complexes induced by the map φ we
have the following commutative diagram with exact row:

Z/pZ
‖ f

H2
c (U) → H2

c (Y ) → H3
c (U \ Y ) → H3

c (U)

θ = 0 ↓ ↓ |≀

H2
c (X) → H3

c (K3 \X)
‖

Z/pZ

From the commutativity it follows that f must be the zero map,
which is not injective. Hence

H2
c (U) 6= 0.
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This proves the induction basis. Now assume that n ≥ 4. Since
d 6 |an and d 6 |bn, in particular, we have that an 6= 0 and bn 6= 0. Let
W be the intersection of V and the subvariety of Kn+2 defined by
xn = 0. Then W can be identified with Kn−1, so that, in view of
(9), from the exact sequence

Hn−2
c (W ) −→ Hn−1

c (V \W ) −→ Hn−1
c (V ) −→ Hn−1

c (W )
‖ ‖
0 0

we deduce that Hn−1
c (V ) ≃ Hn−1

c (V \W ). Hence our claim (10) is
equivalent to

Hn−1
c (V \W ) 6= 0. (11)

Now, since n ≥ 4, and, by (α), a3 is prime to d, we can find a positive
integer λ3 such that d divides λ3a3 + a4 + · · · + an−1 + an. On the
other hand, by (β), there is an integer µ such that d divides ai −µbi
for all i ≥ 3. It follows that d divides µ(λ3b3 + b4 + · · ·+ bn−1 + bn),
and that µ is prime to d. Hence d divides λ3b3 + b4 + · · ·+ bn−1 + bn
as well. We conclude that the coordinate ring of V \W is

K[V \W ] =K[ud
n, u

−d
n ] ⊗K

K[ũd
1, ũ

d
2, ũ

d
3, . . . , ũ

d
n−1, ũ

a2
2 ũ

a3
3 · · · ũ

an−1

n−1 , ũ
b1
1 ũ

b3
3 · · · ũ

bn−1

n−1 ],

where ũ3 = u3/u
λ3
n and ũi = ui/un, for all indices i 6= 3. Up to

renaming the parameters, thus we have

K[V \W ] = K[ud
n, u

−d
n ] ⊗K

K[ud
1, . . . , u

d
n−1, u

a2
2 u

a3
3 · · · u

an−1

n−1 , u
b1
1 u

b3
3 · · · u

bn−1

n−1 ].

From the Künneth formula for cohomology with compact support
([14], Theorem 8.5, p. 258) we deduce that

Hn−1
c (V \W ) ≃

⊕

r+s=n−1

Hr
c (K∗) ⊗K Hs

c (V1), (12)

where we have set K∗ = K \ {0}, and V1 ⊂ Kn+1 is the affine toric
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variety parametrized by

V1 :











































x1 = ud
1

x2 = ud
2

x3 = ud
3

...
xn−1 = ud

n−1

y1 = ua2
2 u

a3
3 · · · u

an−1

n−1

y2 = ub1
1 u

b3
3 · · · u

bn−1

n−1

.

Variety V1 fulfils (α) and (β), therefore the induction hypothesis
applies to it. Recall that

H i
c(K

∗) =

{

Z/pZ for i = 1, 2,
0 otherwise.

(13)

This, together with (12), implies that

Hn−1
c (V \W ) ≃ Hn−2

c (V1) ⊕Hn−3
c (V1).

Now, by the induction hypothesis,

Hn−2
c (V1) 6= 0,

because this is claim (10) for V1. This proves (11) and completes the
proof of Theorem 3.4.

In general we have the following result.

Theorem 3.5. ([7], Theorem 3, p. 889) Let V be the toric variety de-
fined above. Then V is an almost set-theoretic complete intersection
on the three binomials:

F1 = yd′
1 − x

a′
1

1 x
a′
2

2 · · · xa′
n

n ,

F2 = yd′′

2 − x
b′1
1 x

b′2
2 · · · xb′n

n ,

F3 = M −Nye
2,

for some suitable monomials M and N and some positive integer
e, where d′ = d/ gcd(d, a1, a2, . . . , an), d′′ = d/ gcd(d, b1, b2, . . . , bn),
and a′i = ai/ gcd(d, a1, a2, . . . , an), b′i = bi/ gcd(d, b1, b2, . . . , bn), for
all i = 1, . . . , n. In particular, 2 ≤ ara V ≤ 3.
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Sections 2 and 3 of [7] contain an explicit construction of M,N
and e, which we here briefly sketch. Consider the matrices

A1 =













d 0 · · · 0 a1

0 d
. . .

... a2

0 0
. . . 0

...
0 0 · · · d an













, A2 =













d 0 · · · 0 a1 b1

0 d
. . .

... a2 b2

0 0
. . . 0

...
...

0 0 · · · d an bn













,

For i = 1, 2, let gi be the greatest common divisor of all n-minors
of Ai. Then set e = g1/g2, and take any pair of monomials
M,N ∈ K[x1, x2, . . . , xn, y1] such that M −Nye

2 ∈ I(V ); this will be
a binomial F3 fulfilling the claim of Theorem 3.5.

From Proposition 2.3, Theorem 3.4 and Theorem 3.5 we deduce
the next two results.

Corollary 3.6. Suppose that the variety V fulfils conditions (A)–
(D), and let p be any prime divisor of V . Then

(i) if charK 6= p, then ara V = 3;

(ii) if d = pr for some positive integer r, then ara V = 2 for
charK = p; in particular V is a set-theoretic complete inter-
section if and only if charK = p.

Corollary 3.7. If the variety V fulfils conditions (A)–(D) and d
has two distinct prime divisors, then ara V = 3 in all characteristics,
i.e., V is not a set-theoretic complete intersection over any field.

Remark 3.8. If we put r = 1 in the claim (ii) of Corollary 3.6 we
obtain Theorem 2.1 (c) in [6].

Example 3.9. Let V ⊂ Kn+2 be the simplicial toric variety
parametrized as follows:

V :







































x1 = upr

1

x2 = upr

2
...

xn = upr

n

y1 = uprk1
1 ua3

3 · · · uam

m u
prkm+1

m+1 · · · uprkn

n

y2 = uprl2
2 uga3

3 · · · ugam

m u
prlm+1

m+1 · · · uprln
n

,
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where p is a prime, r is a positive integer, 3 ≤ m ≤ n,
k1, km+1, . . . , kn and l2, lm+1, . . . , ln are nonnegative integers, and
a3, . . . , am, g are positive integers not divisible by p. Then V ful-
fils conditions (A)–(D), so that, according to Corollary 3.6, it is a
set-theoretic complete intersection if and only if charK = p. For
m = n = 3, p = 2, r = 2, k1 = 2, a3 = 1, l2 = 3, g = 3 we
obtain the variety V of Example 2.4; we have thus shown that it is
a set-theoretic complete intersection only in characteristic 2.

Example 3.10. Let V ⊂ Kn+2 be the simplicial toric variety
parametrized as follows:

V :







































x1 = upqh
1

x2 = upqh
2

...

xn = upqh
n

y1 = upqhk1
1 ua3

3 · · · uam

m u
pqhkm+1

m+1 · · · upqhkn

n

y2 = upqhl2
2 uga3

3 · · · ugam

m u
pqhlm+1

m+1 · · · upqhln
n

,

where p and q are distinct primes, h is a positive integer, 3 ≤ m ≤ n,
k1, km+1,. . . , kn and l2, lm+1, . . . , ln are nonnegative integers, and
a3, . . . , am, g are positive integers prime to pqh. Then V fulfils con-
ditions (A)–(D), so that, according to Corollary 3.7, it is not a
set-theoretic complete intersection (i.e., ara V = 3) over any field.
This was proven in [2] in the special case where m = n = 3 and
a3 = g = 1.

In the next section we will give another extension of the class of
varieties of codimension 2 considered in [2].

4. Some toric varieties of codimension 2

In this section we will present a class of simplicial toric varieties
which are set-theoretic complete intersection in exactly one positive
characteristic, or in no characteristic. This class includes the toric
varieties of codimension 2 studied in [2]. We will consider the variety
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V ⊂ K5 with the following parametrization:

V :



























x1 = ud1
1

x2 = ud2
2

x3 = ud3
3

y1 = ua1
1 u

a3
3

y2 = ub2
2 u

b3
3

,

where d1, d2, d3, a1, a3, b2, b3 are positive integers. Up to a change of
parameters, we can assume that

gcd(d1, a1) = gcd(d2, b2) = gcd(d3, a3, b3) = 1. (14)

In the main theorem of this section we will give a sufficient criterion
on the exponents of the parametrization which assures that V is
not a set-theoretic complete intersection (i.e., araV = 3) in certain
characteristics. For the proof we will need the following preliminary
results on étale cohomology. They complete Lemma 1 in [3].

Lemma 4.1. Let n be a positive integer, and let r be an integer prime
to charK. Let d1, . . . , dn be positive integers, and consider the mor-
phism of schemes

γn : Kn → Kn

(u1, . . . , un) 7→ (ud1
1 , . . . , u

dn

n ),

together with its restrictions

δn : (K∗)n → (K∗)n,

ǫn : K × (K∗)n−1 → K × (K∗)n−1,

and the maps

κn : Hn+1
c ((K∗)n,Z/rZ) → Hn+1

c ((K∗)n,Z/rZ),

λn : Hn+1
c (K × (K∗)n−1,Z/rZ) → Hn+1

c (K × (K∗)n−1,Z/rZ),

ωn : Hn
c ((K∗)n,Z/rZ) → Hn

c ((K∗)n,Z/rZ),

induced by δn and ǫn in cohomology with compact support.
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(a) If r is prime to all integers d1, . . . , dn, then the maps κn and
λn are isomorphisms.

(b) The map ωn is an isomorphism.

Proof. In the sequel Hc will denote cohomology with compact sup-
port with respect to Z/rZ. We prove (a) by induction on n ≥ 1. For
n = 1 we have the morphism

γ1 : K → K

u1 7→ ud1
1

and its restriction
δ1 : K∗ → K∗,

whereas ǫ1 = γ1. We know from [13], Remark 24.2 (f), p. 135,
that γ1 induces multiplication by d1 in cohomology with compact
support. Thus, in view of (9) and (13), γ1 gives rise to the following
commutative diagram with exact rows in cohomology with compact
support:

0 Z/rZ Z/rZ 0
‖ ‖ ≃ ‖ ‖

H1
c ({0}) → H2

c (K∗) → H2
c (K) → H2

c ({0})

↓ κ1 λ1 ↓ ·d1

H1
c ({0}) → H2

c (K∗) → H2
c (K) → H2

c ({0})
‖ ‖ ≃ ‖ ‖
0 Z/rZ Z/rZ 0

Since by assumption d1 and r are coprime, multiplication by d1 in
Z/rZ, i.e., the map λ1, is an isomorphism. It follows that κ1 is an
isomorphism as well. Now let n > 1 and suppose the claim true for
all smaller n. Note that {0} × K × (K∗)n−2 is a closed subset of
K2 × (K∗)n−2 and (K2 × (K∗)n−2) \ ({0} × K × (K∗)n−2) can be
identified withK×(K∗)n−1. After identifying {0}×K×(K∗)n−2 with
K × (K∗)n−2 we have the following exact sequence of cohomology
with compact support:

Hn
c (K2×(K∗)n−2) → Hn

c (K×(K∗)n−2) → Hn+1
c (K×(K∗)n−1) → Hn+1

c (K2×(K∗)n−2).
(15)
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According to the Künneth formula, for all indices i we have

H i
c(K

2 × (K∗)n−2) ≃
⊕

s+s1+···+sn−2=i

Hs
c (K2) ⊗K Hs1

c (K∗) ⊗K · · · ⊗K Hsn−2
c (K∗).

In view of (9) and (13) it follows that H i
c(K

2 × (K∗)n−2) = 0 for
i < n+ 2, in particular

Hn
c (K2 × (K∗)n−2) = Hn+1

c (K2 × (K∗)n−2) = 0.

Hence γn, together with (15), gives rise to the following commutative
diagram with exact rows:

≃
0 → Hn

c (K × (K∗)n−2) → Hn+1
c (K × (K∗)n−1) → 0

↓ λn−1 ↓ λn

0 → Hn
c (K × (K∗)n−2) → Hn+1

c (K × (K∗)n−1) → 0
≃

Since, by induction, λn−1 is an isomorphism, it follows that λn is an
isomorphism.

Now, {0}× (K∗)n−1 is a closed subset of K× (K∗)n−1 and (K ×
(K∗)n−1)\({0}×(K∗)n−1) = (K∗)n. After identifying {0}×(K∗)n−1

with (K∗)n−1 we have the following exact sequence of cohomology
with compact support:

H
n
c (K × (K∗)n−1) → H

n
c ((K∗)n−1) → H

n+1
c ((K∗)n) → H

n+1
c (K × (K∗)n−1).

(16)
According to the Künneth formula, for all indices i we have

H i
c(K × (K∗)n−1)≃

⊕

s+s1+···+sn−1=i

Hs
c (K) ⊗K Hs1

c (K∗) ⊗K · · · ⊗K Hsn−1
c (K∗). (17)

In view of (9) and (13) it follows that

Hn
c (K × (K∗)n−1) = 0. (18)
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Hence γn, together with (16), gives rise to the following commutative
diagram with exact rows:

0 → Hn
c ((K∗)n−1) →Hn+1

c ((K∗)n) → Hn+1
c (K × (K∗)n−1)

↓ κn−1 ↓ κn ↓ λn

0 → Hn
c ((K∗)n−1) →Hn+1

c ((K∗)n) → Hn+1
c (K × (K∗)n−1)

Since, by induction, κn−1 is an isomorphism, and so is λn by the
first part of the proof, by the Four Lemma it follows that κn is
injective. But, by the Künneth formula and (13), Hn+1

c ((K∗)n) is a
finite group. Therefore, κn is an isomorphism. This completes the
proof of (a). Next we prove (b) by induction on n ≥ 1. In view
of (9), the map γ1 gives rise to the following commutative diagram
with exact rows:

0 0
‖ ≃ ‖

H0
c (K) → H0

c ({0}) → H1
c (K∗) → H1

c (K)
↓ ↓ ω1

H0
c (K) → H0

c ({0}) → H1
c (K∗) → H1

c (K)
‖ ≃ ‖
0 0

where the leftmost vertical arrow is the identity map, since so is the
restriction of γ1 to {0}. Hence ω1 is an isomorphism. Now suppose
that n > 1 and that ωn−1 is an isomorphism. Then from (17), (9)
and (13) we have that

Hn−1
c (K × (K∗)n−1) = 0.

Hence, in view of (18), the map γn induces the following commu-
tative diagram with exact rows:

≃
0 → Hn−1

c ((K∗)n−1) → Hn
c ((K∗)n) → 0

↓ ωn−1 ↓ ωn

0 → Hn−1
c ((K∗)n−1) → Hn

c ((K∗)n) → 0
≃

from which we conclude that ωn is an isomorphism. This completes
the proof.
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Corollary 4.2. Let n be a positive integer, and let r be an in-
teger prime to charK. Let X be the subvariety of Kn defined by
x1x2 · · · xn = 0. Consider the following restriction of the morphism
γn:

φn : X → X

(u1, . . . , un) 7→ (ud1
1 , . . . , u

dn

n ),

and the maps

µn : Hn
c (X,Z/rZ) → Hn

c (X,Z/rZ),

ξn : Hn−1
c (X,Z/rZ) → Hn−1

c (X,Z/rZ)

induced by φn in cohomology with compact support.

(a) The map µn is an isomorphism if and only if r is prime to
all integers d1, . . . , dn.

(b) The map ξn is an isomorphism.

Proof. In this proof, Hc will denote cohomology with compact sup-
port with coefficient group Z/rZ. Since Kn \X = (K∗)n, the mor-
phism γn gives rise to the following commutative diagram with exact
rows:

0 0
‖ ≃ ‖

Hn
c (Kn) → Hn

c (X) → Hn+1
c ((K∗)n) → Hn+1

c (Kn)
↓ µn ↓ κn

Hn
c (Kn) → Hn

c (X) → Hn+1
c ((K∗)n) → Hn+1

c (Kn)
‖ ≃ ‖
0 0

It follows that µn is an isomorphism if and only if κn is. By Lemma
4.1 the latter condition is true if r is prime to all integers di. Oth-
erwise, by Lemma 1 in [3], κn is not injective. This proves (a). We
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also have the following commutative diagram with exact rows:

0 0
‖ ≃ ‖

Hn−1
c (Kn) → Hn−1

c (X) → Hn
c ((K∗)n) → Hn

c (Kn)
↓ ξn ↓ ωn

Hn−1
c (Kn) → Hn−1

c (X) → Hn
c ((K∗)n) → Hn

c (Kn)
‖ ≃ ‖
0 0

where ωn is the isomorphism of Lemma 4.1. It follows that ξn is an
isomorphism, too. This completes the proof.

Suppose that the variety V introduced above fulfils the following
conditions:

(I) the system of linear congruences

a1x+ a3y ≡ 0 (mod d2)

d1x ≡ 0 (mod d2)

d3y ≡ 0 (mod d2) (19)

b3y ≡ −b2 (mod d2)

has a solution;

(II) d′3 = d3/ gcd(d3, a3) is prime to d1.

We want to give sufficient conditions on the parametrization of
this variety V which assure that it is not a set-theoretic complete
intersection in all characteristics different from a given prime p. As
we have seen in the proof of Theorem 3.4, this is certainly the case
if H2

c (V,Z/pZ) 6= 0. This motivates us to discuss the vanishing
properties of this cohomology group.

Lemma 4.3. Suppose that the variety V introduced above fulfils (I)
and (II), and let p be a prime different from charK. Then

H2
c (V,Z/pZ) = 0 if p 6 |d1d

′
3,

and
H2

c (V,Z/pZ) 6= 0 if p|d′3 and p 6 |b3.
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Proof. In this proof, Hc will denote cohomology with compact sup-
port with coefficient group Z/pZ. Let W be the intersection of V
and the subvariety of K5 defined by x2 = 0. Then

K[W ] = K[ud1
1 , u

d3
3 , u

a1
1 u

a3
3 ] = K[ud1

1 , u
d′3
3 , u

a1
1 u

a′
3

3 ],

where we have set a′3 = a3/ gcd(d3, a3). Consider the morphism of
schemes

φ : K2 →W

(u1, u3) 7→ (ud1
1 , u

d′3
3 , u

a1
1 u

a′
3

3 ),

which is finite, hence proper. Let X ⊂ K2 be the subvariety defined
by u1u3 = 0. Then φ(X) = X. The morphism φ induces by restric-
tion an isomorphism from K2 \X to W \X. It suffices to show that

for all (ud1
1 , u

d′3
3 , u

a1
1 u

a′
3

3 ) such that u1 6= 0 and u3 6= 0, u1 and u3 can

be expressed as rational functions of ud1
1 , u

d′3
3 , u

a1
1 u

a′
3

3 . Since d1 and
d′3 are coprime by (II), d1 is prime to a1 by (14), and d′3 is prime to
a′3 by definition, there are integers v,w, s, t such that

vd1 + wd′3a1 = 1, and sd′3 + td1a
′
3 = 1.

Thus

u1 =
(ud1

1 )v(ua1
1 u

a′
3

3 )wd′3

(u
d′3
3 )wa′

3

,

and

u3 =
(u

d′3
3 )s(ua1

1 u
a′
3

3 )td1

(ud1
1 )ta1

.

Consequently φ induces, for all indices i, an isomorphism of coho-
mology groups with compact support

H i
c(W \X) ≃ H i

c(K
2 \X). (20)

Note that K2 \X = K∗ ×K∗, so that, by the Künneth formula and
(13), we have, for all indices i,

H i
c(K

2 \X) ≃ ⊕s+t=iH
s
c (K

∗) ⊗K Ht
c(K

∗)

≃







Z/pZ for i = 2, 4,
Z/pZ ⊕ Z/pZ for i = 3,
0 otherwise.

(21)
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Thus, in view of (9) and (21), we have the following exact sequences:

H1
c (K2) → H1

c (X) → H2
c (K2 \X) → H2

c (K2)
‖ ‖ ‖
0 Z/pZ 0

and

H0
c (K2) → H0

c (X) → H1
c (K2 \X) → H1

c (K2)
‖ ‖ ‖
0 0 0

from which we deduce that H1
c (X) = Z/pZ and H0

c (X) = 0. Finally,
from the exact sequence

H0
c (W \X) → H0

c (W ) → H0
c (X)

‖ ‖
0 0

where we have used (20) and (21), we deduce that

H0
c (W ) = 0. (22)

Furthermore, in view of (9), (20) and (21), φ gives rise to the follow-
ing commutative diagram with exact rows:

0
‖ h

H1
c (W \X) → H1

c (W ) →H1
c (X) −→ H2

c (W \X) → H2
c (W )

↓ ↓ ξ2 ↓ |≀ ↓
H1

c (K2) →H1
c (X) −→H2

c (K2 \X) →H2
c (K2)

‖ ‖ ≃ ‖ ‖
0 Z/pZ Z/pZ 0

and ξ2 is the map defined in Corollary 4.2, which is an isomorphism.
By the commutativity of the central square it follows that h is an
isomorphism, whence

H1
c (W ) = 0. (23)
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We also have the following commutative diagram with exact rows:

k
H1

c (X)→ H2
c (W \X) → H2

c (W )→ H2
c (X)→ H3

c (W \X)
ξ2 ↓ |≀ ↓ |≀ ↓ φ̄ ↓ µ2 ↓ |≀
H1

c (X)→H2
c (K2 \X)→H2

c (K2)→H2
c (X)→ H3

c (K2 \X)→H3
c (K2)

‖ ‖ ≃ ‖
Z/pZ 0 0

where ξ2 and µ2 are the maps defined in Corollary 4.2. Hence µ2 is
an isomorphism if and only if p 6 |d1d

′
3. In this case, by virtue of the

Five Lemma, φ̄ is an isomorphism, so that H2
c (W ) = 0. Otherwise µ2

is not injective. The commutativity of the right square then implies
that k is not injective, so that H2

c (W ) 6= 0. We have thus proven
that

H2
c (W ) = 0 if and only if p 6 |d1d

′
3. (24)

Let (s, t) be an integer solution of the equation system (19). Then
the coordinate ring of V \W is

K[V \W ] = K[ud2
2 , u

−d2
2 ] ⊗K K[ũd1

1 , ũ
d3
3 , ũ

a1
1 ũ

a3
3 , ũ

b3
3 ],

where ũ1 = us
1/u2 and ũ3 = ut

3/u2. Up to renaming the parameters,
thus we have

K[V \W ] = K[ud2
2 , u

−d2
2 ] ⊗K K[ud1

1 , u
d3
3 , u

a1
1 u

a3
3 , u

b3
3 ]. (25)

Let e = gcd(d3, b3), and consider the varieties W̃ ⊂ K4 and
W̄ ⊂ K3 parametrized in the following ways.

W̃ :















x1 = ud1
1

x3 = ud3
3

y1 = ua1
1 u

a3
3

y2 = ub3
3

, W̄ :







x1 = ud1
1

x3 = ue
3

y1 = ua1
1 u

a3
3

.

Consider the (finite, proper) morphism of schemes

ψ : W̄ → W̃

(ud1
1 , u

e
3, u

a1
1 u

a3
3 ) 7→ (ud1

1 , u
d3
3 , u

a1
1 u

a3
3 , u

b3
3 ).

Let Y be the intersection of W̄ and the subvariety of K3 defined
by u3 = 0. Then Y is a one-dimensional affine space over K, and
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the restriction of ψ to Y is the identity map of Y . Moreover, the
restriction

ψ|W̄\Y : W̄ \ Y → W̃ \ Y

is an isomorphism. Hence it induces isomorphisms in cohomology
with compact support. For all indices i the morphism ψ thus gives
rise to a commutative diagram with exact rows:

Hi−1
c (Y ) → Hi

c(W̃ \ Y ) → Hi
c(W̃ ) → Hi

c(Y ) → Hi+1
c (W̃ \ Y )

↓ || ↓ |≀ ↓ ↓ || ↓ |≀
Hi−1

c (Y ) → Hi
c(W̄ \ Y ) → Hi

c(W̄ ) → Hi
c(Y ) → Hi+1

c (W̄ \ Y )

From the Five Lemma it follows that the middle vertical arrow is an
isomorphism. Hence, for all indices i we have

H i
c(W̃ ) ≃ H i

c(W̄ ). (26)

Note that (II) implies that gcd(d3, d1) divides gcd(d3, a3), whence
gcd(d3, b3, d1) divides gcd(d3, b3, a3); by (14) it follows that
gcd(e, d1) = gcd(d3, b3, d1) = 1. Moreover, by (14) we also have
that gcd(d1, a1) = gcd(e, a3) = 1. Therefore, (22), (23) and (24)
apply to W̄ : it suffices to replace a′3 with a3 and d′3 with e in the
argumentation that has been developed above for W . In view of (26)
thus follows that

H0
c (W̃ ) = H1

c (W̃ ) = 0,

H2
c (W̃ ) = 0 if and only if p 6 |d1e. (27)

On the other hand, from (25) and the Künneth formula we deduce
that, for all indices i,

H i
c(V \W ) ≃ ⊕s+t=iH

s
c (K

∗) ⊗K Ht
c(W̃ ).

Hence, in view of (13) and (27), we conclude that

H2
c (V \W ) = 0 and H3

c (V \W ) = 0 if and only if p 6 |d1e.
(28)

From the exact sequence

H2
c (V \W ) → H2

c (V ) → H2
c (W ) → H3

c (V \W )
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we deduce that H2
c (V ) = 0 if H2

c (V \W ) = H2
c (W ) = 0. In view of

(24) and (28), we thus have

H2
c (V ) = 0 if p 6 |d1d

′
3.

We also deduce that H2
c (V ) 6= 0 if H2

c (W ) 6= 0 and H3
c (V \W ) = 0,

which, in view of (24) and (28), occurs if p 6 |d1e and p|d′3. Since d1

and d′3 are coprime by assumption (II), the latter condition implies
that p 6 |d1. Moreover, since p|d3, p 6 |e is equivalent to p 6 |b3. Hence
we have that

H2
c (V ) 6= 0 if p|d′3 and p 6 |b3.

This completes the proof.

Theorem 4.4. If the variety V introduced above fulfils conditions (I)
and (II) and p is a prime divisor of d′3 and not of b3, then ara V = 3
for charK 6= p. In particular, if d′3 has two distinct prime divisors
not dividing b3, then ara V = 3 over every field.

Proof. As in the proof of Theorem 3.4, it suffices to prove that, under
the given assumption, if charK 6= p, then

H2
c (V,Z/pZ) 6= 0.

But this follows from Lemma 4.3. This completes the proof.

Example 4.5. Theorem 4.4 allows us to find new examples of toric
varieties which are set-theoretic complete intersections in exactly one
positive characteristic, in addition to those presented in [1], [5] and
[6]. Let p and q be distinct primes and consider the variety

V :























x1 = ud1
1

x2 = uq
2

x3 = upq
3

y1 = ua1
1 u

cq
3

y2 = ub2
2 u

b3
3

,

where gcd(d1, a1) = 1, d1 and c are not divisible by p, b2 is not
divisible by q, and b3 is not divisible by p and q. If

T1 = {(d1, 0, 0), (0, q, 0), (0, 0, pq), (a1, 0, cq)},

T11 = {(d1, 0, 0), (0, q, 0), (0, 0, pq)}, T12 = {(a1, 0, cq)},
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and
T2 = {(0, b2, b3)},

then ZT11 ∩ ZT12 = Zd1p(a1, 0, cq), since gcd(d1, a1) = 1 and p does
not divide d1 nor cq. In fact

d1p(a1, 0, cq) = a1p(d1, 0, 0) + d1c(0, 0, pq) ∈ NT11 ∩ NT12. (29)

Now, for every integer α, Zα(0, b2, b3) ∈ ZT1 ∩ZT2 holds if and only
if there are integers α1, α2, α3, α4 such that

α(0, b2, b3) = α1(d1, 0, 0) + α2(0, q, 0) + α3(0, 0, pq) + α4(a1, 0, cq),

i.e.,

0 = α1d1 + α4a1, (30)

αb2 = α2q, (31)

αb3 = α3pq + α4cq. (32)

From (31) we deduce that q divides α, because q does not divide b2.
On the other hand, since p does not divide d1c, there are integers
λ, µ such that b3 = λp+ µd1c, whence

qb3 = λpq + µd1cq.

Hence (30), (31) and (32) are fulfilled for α = q, α1 = −µa1, α2 =
b2, α3 = λ, α4 = µd1. Thus

ZT1 ∩ ZT2 = Zq(0, b2, b3).

But

pq(0, b2, b3) = b2p(0, q, 0) + b3(0, 0, pq) ∈ NT1 ∩ NT2, (33)

which, together with (29), shows that V is completely p-glued. Hence,
for charK = p, V is a set-theoretic complete intersection on the two
binomials

F1 = yd1p
1 − xa1p

1 xd1c
3 , F2 = ypq

2 − xb2p
2 xb3

3 ,

which are derived from semigroup relations (29) and (33) respec-
tively. Since d′3 = p is prime to d1, we also have that (II) is fulfilled.
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Since b3 and d2 = q are coprime, there is an integer y such that
b3y ≡ −b2 (mod q). Then (q, y) is a solution of (19), so that (I)
is fulfilled, too. Hence, by Theorem 4.4, V is not a set-theoretic
complete intersection, i.e., ara V = 3, if charK 6= p.

Example 4.6. Theorem 4.4 also allows us to find new examples of
toric varieties which are not set-theoretic complete intersections in
any characteristic, in addition to those presented in [2]. Let

V :



























x1 = ud1
1

x2 = u2

x3 = ud3
3

y1 = ua1
1 u

a3
3

y2 = ub2
2 u

b3
3

,

where gcd(d1, a1) = gcd(d1, d3) = 1, d3 is divisible by two distinct
primes p and q, and p and q do not divide a3 nor b3. Then (I) and
(II) are trivially fulfilled; since p and q divide d′3, by Theorem 4.4 it
follows that V is not a set-theoretic complete intersection over any
field, i.e., ara V = 3 over any field. For d1 = a3 = b3 = 1 we obtain
the varieties presented in [2].

Example 4.7. Let p be a prime, r a positive integer and consider
the variety

V :























x1 = upr

1

x2 = u2

x3 = u3

y1 = ua1
1 u

a3
3

y2 = ub2
2 u

b3
3

,

where a1, a3, b2, b3 are arbitrary positive integers. Then (I) and (II)
are fulfilled, and, by Lemma 4.3, for all primes q 6= p, we have that
H2

c (V,Z/qZ) = 0 if charK 6= q. This means that our cohomological
criterion for V being not a set-theoretic complete intersection in all
characteristics different from q does not apply. In fact, we obtain
an equivalent parametrization for V if we replace u2 and u3 with
upr

2 and upr

3 respectively; then the parametrization takes the form
considered in Proposition 2.3, which allows us to conclude that V is
a set-theoretic complete intersection if charK = p. If r = 0, then V
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is a complete intersection over every field K. It can be easily shown
that we have, at the same time, (14), condition (I), and, with respect
to the notation of Lemma 4.3, p 6 |d1d

′
3 for every prime p, if and only

if, up to a change of parameters, d1 = 1, d2 divides d3 and d3 divides
a3. In this case V is a complete intersection on

F1 = y1 − xa1
1 x

a3/d3

3 , F2 = yd3
2 − x

b2d3/d2

2 xb3
3 .

Final Remark. All the examples of toric varieties presented here
and in the papers quoted in the references are either

- p-glued for every prime p, or

- p-glued for exactly one prime p, or

- not p-glued for any prime p.

In all the cases where we could determine the arithmetical rank in all
prime characteristics, it turned out that the variety is, respectively,

- a set-theoretic complete intersection on binomials in every
prime characteristic p, or

- a set-theoretic complete intersection (on binomials) in exactly
one prime characteristic p, or

- not a set-theoretic complete intersection in any prime char-
acteristic p.

This leaves the following questions open.

(1) Is there any toric variety which is p-glued for two distinct
primes p, but not for all primes p?

(2) Is there any toric variety which is a set-theoretic complete
intersection, but not on binomials, in some prime characteristic
p?

(3) Is there any toric variety which is a set-theoretic complete
intersection in two different prime characteristics, but not in
all prime characteristics p?
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