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Chapter 1.

Introduction

The subject of this thesis is the study of the class of the Open Quantum Systems, i.e.
quantum systems which are in weak interaction with an external environment, often
acting as a reservoir, and whose evolution is consequently influenced by this interaction.

Since the coupling of the system with the reservoir is weak, it makes sense to try to
disentangle the dynamics of the system of interest from the global time-evolution. However,
a particular attention must be taken in the derivation of the reduced evolution law, which
is expressed by a Master Equation. When the reduced dynamics of the system has to be
extracted from the dynamics of the compound system, different Master Equations can
be obtained by the application of different kinds of Markovian approximations, which in
turn give different evolution laws.

In order to sort out the disparate often incompatible open quantum dynamics, a
leading criterion is to ensure that they do not violate important physical properties that
a proper reduced dynamics must fulfill. In primis the positivity requirement, that ensures
that any physical initial state is mapped into another physical state at any later time.
Secondly, the complete positivity condition, that guarantees that physical consistency
is preserved also when dealing with open quantum systems which are entangled with
other systems. Usually, complete positivity is justified in terms of the existence of
entangled states of the open quantum system coupled to an arbitrary, inert ancilla.
Complete positivity avoids the appearance of negative probabilities in the spectrum of
the time-evolving states of system plus ancilla. The main bulk of this thesis work is to
show that a non completely positive dynamics can lead to violations of the Second Law
of Thermodynamics.

The thesis is structured in the following way.

After a short introduction to Open Quantum System theory, the properties of positivity
and complete positivity are presented and their importance is explained. Then, a few
types of Master Equations are briefly summarized and their differences are stressed.
In the third chapter we discuss the Second Law of Thermodynamics in the context of
the open quantum systems and we put in evidence the connection between complete
positivity and the Second Law. In the fourth chapter a specific open quantum system is
examined, constituted by a minimal three-sites circuit whose current is produced by a
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4 Introduction

single free electron. The circuit is immersed in a dissipative thermal bath and driven
by an alternating potential. Its evolution with time and in particular the asymptotic
stsates are studied, with respect to two different Master Equations. We show – through
analytical and numerical means – that only when the Master Equation is derived, in
the weak coupling limit, in according to the so-called Davies’s prescription of eliminating
the fast oscillations via an ergodic average, the requirements of complete positivity are
fulfilled and the Second Law of Thermodynamics is not violated, while more rough
approximations may give rise to negative entropy production.

In the last chapter we focus on the possible metrological applications of entanglement,
and in particular on the possibility of improving the estimation of quantum parameters
by preparing systems of many ultra-cold atoms in entangled states. After introducing
a suitable notion of entanglement which takes into account the indistinguishability of
identical particles, we show that spin-squeezing techniques are not useful to improve
the sensitivities of interferometric measurements when dealing with systems of identical
bosons.



Chapter 2.

Open Quantum Systems

The primary subject of study in Quantum Mechanics is the class of closed quantum
systems, namely those systems that can be considered isolated. The time-evolution of
a closed quantum system is described by means of a one-parameter group of unitary
operators on a Hilbert space mapping the initial state onto its evoluted at a given time t.
The group structure ensures that the dynamics is completely reversible: this means that
the knowledge of the physical state at time t allows to determine the physical state at
any time t′, that can be taken to be in the future or in the past of t.

Nevertheless many real-world physical systems are not isolated, as they interact in a
non-negligible way with the surrounding systems, what we call the environment. The
latter is generally viewed as a much larger system, consisting of a very high number
of degrees of freedom (possibly infinite). When dealing with an open quantum system
one cannot assume that its dynamics is reversible, because the interaction with the
environment, which involves exchange of energy and entropy, provokes the breaking of the
reversibility. Of course if one decides to study the environment E and the open system S
as a whole, then the total system S+E is again a closed system; but its dynamics can be
practically impossible to determine. Due to the extreme complication in the description
of a system with infinite degrees of freedom one might try to single out the evolution of
the system S, which is the relevant one.

The idea underlying the study of the open quantum systems, instead, is to examine
those situations in which the interaction between the system S and the environment
E is weak enough to allow the description of S and its dynamics by referring to its
own degrees of freedom. By means of suitable approximations which lead to a Master
Equation, the reduced dynamics of the system is determined with sufficient precision and
embodies dissipation and noisy effects caused by the interaction system-environment.

The literature on Open Quantum Systems is very large. In the references we have listed
only a selection of the relevant publications [1–16], without the claim to be exhaustive.

In Quantum Mechanics a physical system is described introducing a Hilbert space
whose normalized vectors represent its possible states. In the case of small systems with
a finite number n of degrees of freedom – the case in which we are mainly interested
– this Hilbert space can be identified with Cn. Furthermore, a subclass of the set of
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6 Open Quantum Systems

linear operators on Cn, the Hermitian operators, corresponds to the set of the physical
observables of the system. They can be represented by the algebra Mn(C) of n × n
complex Hermitian matrices X = X†.

The dynamics of a closed quantum system is determined by a Hermitian operator
H ∈Mn(C), the Hamiltonian, entering the expression of the Schrödinger equation

∂t |ψt〉 = −iH |ψt〉 , (~ ≡ 1).

The statistical character of standard Quantum Mechanics is based on the idea of
considering, instead of a single physical system, a large collection of identical systems
E = {S(1), S(2), . . . , S(N)} that can be prepared in the same experimental conditions,
defined by some suitable parameters. This ensemble is described at time t by a normalized
vector |ψt〉 in the Hilbert space of states Cn, as mentioned above.

A second postulate fixes the statistical interpretation (due to Von Neumann [17]): the
measurable quantities are represented by self-adjoint operators on Cn, called observables ;
the outcomes of the process of measurement of an observable R are exactly the real values
r of its spectrum; this spectrum is characterized by a distribution function fψ(r) that
allows to determine the probability that the outcome falls into a given subset B ⊂ R:

P (B) =

∫
B

rfψ(r)dr

and the expectation value

E(R) = 〈R〉ψ =

∫ +∞

−∞
rfψ(r)dr = 〈ψ |R |ψ〉 .

2.1. Density matrix formalism

A more general way to represent quantum statistical ensemble of S is the density matrix
formalism. It consists in considering a collection of M ensembles E1, E2, . . . , EM , each
described by a normalized vector |ψα〉, α = 1, . . . ,M in Cn. Taking a large number Nα

of systems from each Eα we obtain a new ensemble E of N =
∑

αNα systems. We call
weights the ratios wα = Nα/N . It follows that the mean value of the observable R is now
given by the expression

E(R) =
∑
α

wα 〈ψα |R |ψα〉 .

Introducing the density matrix

ρ =
∑
α

wα |ψα〉 〈ψα| , (2.1)
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the expection value can be computed as a trace operation:

E(R) = Tr(Rρ) ≡
∑
i

〈φi |Rρ |φi〉 ,

for an arbitrary orthonormal basis {|φi〉}i=1,...,n ⊂ Cn.

Since 0 ≤ wα ≤ 1,
∑

αwα = 1, from (2.1) it easily verified that ρ is self-adjoint,
positive semi-definite and normalized (its trace is equal to 1):

ρ† = ρ, (2.2)

ρ ≥ 0 ⇔ 〈ψ | ρ |ψ〉 ≥ 0 ∀ |ψ〉 ∈ Cn, (2.3)

Tr ρ = 1. (2.4)

The positivity and normalization of ρ guarantee that the eigenvalues of ρ are non-
negative and smaller than (or equal to) 1, so that the spectral decomposition of ρ
reads:

ρ =
∑
i

pi |φi〉 〈φi| ,

Tr ρ =
∑
i

pi = 1,
(2.5)

where |φi〉 and pi are the orthonormal eigenvectors and eigenvalues of ρ: ρ |φi〉 = pi |φi〉.

A special class of density matrices is formed by the pure states, i.e. projectors onto
specific (normalized) vectors of Cn:

ρ = |ψ〉 〈ψ|

which are idempotent (ρ2 = ρ).

Any linear convex combination of projectors
∑

j µj |ψj〉 〈ψj| (0 ≤ µj ≤ 1,
∑

j µj = 1)
is a density matrix fulfilling conditions (2.2), (2.3) and (2.4) and it is called statistical
mixture. It is straightforward to notice that every linear convex combination of statistical
mixtures is still a statistical mixture. We denote with S(S) the (convex) set of statistical
mixtures. From the physical point of view the convexity of S(S) means that the density
matrices description, based on the choice of a statistical ensemble of many copies of the
system S, is still consistent if we take a mixture of statistical ensembles.

The need of generalizing the notion of states from pure state projectors to convex
combinations of them comes from the effects of the quantum measurement processes.

The theory of measurement in Quantum Mechanics can be formulated in many
different ways, the first one due to Von Neumann [17]. Even though more complicate
descriptions have since been proposed, in the attempt to remove some of the unsatisfactory
aspects of the original formulation, for our purpose the following scheme will be sufficient.
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We will deal with open quantum systems with finite number of degrees of freedom,
thus to every observable R is associated a self-adjoint operator with a discrete spectrum
{λi}, that can be written with respect to its spectral family of orthogonal one-dimensional
eigenprojectors

Pi ≡ |ψi〉 〈ψi| , (2.6)

PiPj = δijPi, (2.7)∑
i

Pi = 1, (2.8)

as

R =
∑
j

λjPj, λj ∈ R. (2.9)

According to the postulates of Quantum Mechanics, if the system S is in a pure
state ρ = |ψ〉 〈ψ|, then the possible outcomes of the measurement of R are exactly its
eigenvalues {λi}. Furthermore:

• the probability to get the outcome λi is |〈ψi |ψ〉|2 = 〈ψi | ρ |ψi〉 = Tr(ρPi),

• if the measurement gives λi, then the post-measurement state is Pi = |ψi〉 〈ψi|.

Consequently, after repeating the measurement of R on many equally prepared copies
of the system S, all described by the density matrix |ψ〉 〈ψ|, collecting all the resulting
post-measurement states, the system has collapsed onto the state

ρ′ =
∑
i

〈ψi | ρ |ψi〉 |ψi〉 〈ψi| =
∑
i

PiρPi. (2.10)

The above process is then extended to any statistical mixture ρ ∈ S(S) by linearity.

2.1.1. Dynamics in density matrix formalism

In the density matrix formalism the Schrödinger equation translates into the Liouville-Von
Neumann equation in Cn

∂tρt = −i[H, ρt].

Indeed, from the Schrödinger equation the time-evolution law is simply

|ψ(t)〉 = Ut |ψ(0)〉 |ψ(0)〉 initial state,

where Ut = e−iHt is the unitary evolution operator.
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This allows to derive the evolution law for a density matrix by linearity: starting
from the initial state ρ0 =

∑
j λj |ψj〉 〈ψj|, one gets ρt =

∑
j λj |ψj(t)〉 〈ψj(t)|, whence

∂tρt =
∑
j

λj(−iH |ψj(t)〉 〈ψj(t)|+ i |ψj(t)〉 〈ψj(t)|H) = −i[H, ρt]. (2.11)

The solution of the Liouville-Von Neumann equation is

ρt = Utρ0U−t = e−iHtρ0e
iHt (2.12)

The maps

Ut : ρ0 7→ Utρ0U−t, t ∈ R (2.13)

form a one-parameter group of linear maps in S(S):

Ut ◦ Us = Ut+s, t, s ∈ R, (2.14)

which is the hallmark of the reversible character of the dynamics of closed systems.

In terms of the generator LH

LH [ρ] ≡ −i[H, ρ],

Ut can be formally written as

Ut = etLH =
∞∑
k=0

tk

k!
Lk
H .

Acting on S(S), Ut preserves the spectrum of all states ρ and transforms pure states into
pure states.

2.2. Open quantum systems

Since the main object of study of the present work is the family of open quantum
systems, it is necessary to briefly introduce the fundamentals of the quantum mechanical
description of compound systems. In the following we will deal with a system S interacting
with an environment which is characterized by a very large number of degrees of freedom.
Calling H the environment Hilbert space, the Hilbert space of the total system S + E is
Cn ⊗H.

Moreover, if ρS+E is a generic state (density matrix) of the compound system, the
statistical properties of the subsystem S are given by a density matrix ρS obtained by
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taking the partial trace over the degrees of freedom of E:

ρS ≡ TrE(ρS+E). (2.15)

This partial trace provides a reduced density matrix describing the state of the system
S alone. Indeed, this is what results by considering mean values of observables AS ⊗ 1E

on Cn ⊗H, as one can see by using an orthonormal basis
{∣∣ψSk ⊗ φEα 〉k,α} for Cn ⊗H:

TrS+E (ρS+EAs ⊗ 1E) =
n∑
k=1

∑
α

〈
ψSk ⊗ φEα

∣∣ (ρS+E · AS ⊗ 1E)
∣∣ψSk ⊗ φEα 〉 = (2.16)

=
n∑
k=1

〈
ψSk

∣∣∣(∑
α

〈
φEα
∣∣ ρS+E

∣∣φEα 〉 )AS∣∣∣ψSk〉 = (2.17)

= TrS (TrE(ρS+E)AS) . (2.18)

When we switch to a compound system S +E, which is closed if considered as whole,
its time evolution is described by a group of dynamical maps

US+E
t = etLS+E

on the state space S(S + E) of the density matrices ρS+E, where LS+E is the generator
of the overall dynamics, that it is assumed to be the sum of three generators:

Lλ
S+E = LS + LE + λL′. (2.19)

They are defined by the commutators

LS[ρS+E] = −i[HS ⊗ 1E, ρS+E], (2.20)

LE[ρS+E] = −i[1S ⊗HE, ρS+E], (2.21)

λL′[ρS+E] = −iλ[H ′, ρS+E]. (2.22)

The Hamiltonian H ′ describes the interaction between the system and the environment
whose strength is measured by the a-dimensional coupling λ.

From the density matrix ρS+E of the compound system, the statistical properties of
the system S are derived by taking the partial trace over the degrees of freedom of E:

ρS(t) = TrE
(
US+E
t [ρS+E]

)
. (2.23)

The map

Gt : S(S) 3 ρS 7→ ρS(t) = TrE
(
US+E
t [ρS+E]

)
∈ S(S)
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is called reduced dynamics on the space of states S(S) of the open quantum system S.

It has been shown [18] that if one requires that the maps Gt preserve the convex
structure of S(S), i.e.

Gt

[∑
j

λjρ
j
S

]
=
∑
j

λjGt[ρ
j
S]

then it is necessary that the initial state of the compound system be factorized:

ρS+E = ρS ⊗ ρE, (2.24)

where ρE is a fixed state of the environment.

The family of maps Gt is neither a one-parameter group nor a semigroup; namely we
cannot expect Gt ◦Gs = Gt+s for t, s ≥ 0, in general, because the partial trace operation
can introduce irreversibility and memory effects.

In the following we will always consider factorized initial states for the compound
system of the form ρS+E = ρS ⊗ ρE.

By using the spectral representation of ρE, ρE =
∑

j r
E
j

∣∣rEj 〉 〈rEj ∣∣, we can write

ρS(t) = Gt[ρS] =

= TrE
(
US+E
t [ρS ⊗ ρE]

)
=

=
∑
j,k

rEk
〈
rEj
∣∣ (US+E

t ρS ⊗
∣∣rEk 〉 〈rEk ∣∣)US+E

−t
∣∣ rEj 〉 =

=
∑
j,k

Wjk(t)ρSW
†
jk(t), (2.25)

where Wjk(t) =
√
rEk
〈
rEj
∣∣US+E

t

∣∣ rEk 〉 are operators on Cn, i.e. elements of Mn(C), that
satisfy the relation ∑

j,k

W †
jk(t)Wjk(t) = Tr(ρEU

S+E
−t US+E

t ) = 1n.

Given the unitary time-evolution one can always pass from the Schrödinger to the
Heisenberg picture through the duality relation

Tr [Ut[ρ]X] = Tr [ρU∗t [X]] , ∀ρ ∈ S(S), X ∈Mn(C). (2.26)

This defines the action of the dual map UT
t on X ∈Mn(C):

X 7→ UT
t [X] = U−tXUt = e−tL[X].
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In the case of the reduced dynamics (2.25), the dual map of Gt is

Mn(C) 3 X 7→ GT
t [X] =

∑
j,k

W †
jk(t)XWjk(t) ∈Mn(C). (2.27)

2.3. Positivity and complete positivity

Time-evolving density matrices must remain positive in order to keep their statistical
meaning; therefore, any dynamical map ρ 7→ Gt[ρ] describing the time-evolution from an
initial state ρ to a state ρt at time t ≥ 0 must preserve the positivity of ρt at all positive
times. Namely:

〈ψ |Gt[ρ] |ψ〉 ≥ 0, ∀ |ψ〉 ∈ Cn, ∀ρ ∈ S(S), ∀t ≥ 0. (2.28)

Definition 1. We say that a linear map Λ: Mn(C) → Mn(C) is positive if it sends
positive matrices into positive matrices:

0 ≤ X 7→ Λ[X] ≥ 0.

It is easy to check that Gt in (2.25) is indeed positive:

〈ψ |Gt[ρS] |ψ〉 =
∑
j,k

〈
ψ
∣∣∣Wjk(t)ρSW

†
jk(t)

∣∣∣ψ〉 ≥ 0, (2.29)

since ρS is positive definite.

While positivity is a necessary requirement for the physical consistency of the groups
and semi-groups of dynamical maps, it is not sufficient to ensure a fully physical consistent
behaviour when dealing with compound systems. In this case another stronger condition
is required: complete positivity. In order to clarify this concept we consider, together
with the n-dimensional system S, a second inert m-dimensional system A, called ancilla,
that may have interacted with S in the past but has been decoupled from S at time t = 0.
In this context “inert” means that A does not evolve anymore, even though statistical
correlations might have been established between S and A, encoded in the initial state
of the compound system S + A: ρS+A(0).

Thus the kind of evolution we are considering for the compound system is described
by a dynamical map of the form Λ⊗ idA, where Λ acts on Mn(C) and idA is the identity
action on Mm(C). We can give the following definition:

Definition 2 (Complete Positivity). A linear map Λ: Mn(C) → Mn(C) is completely
positive if Λ⊗ idm is positive on Mn(C)⊗Mm(C) (“m-positive”) for all m ≥ 1.

Every completely positive map is also positive but the converse is not always true.
Indeed, let us consider one qubit S, that is a two level system, with an ancilla A = S
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and the transposition map:

T2 :

(
a b

c d

)
→

(
a c

b d

)
.

T2 is a positive map because it does not alter the spectrum of operators. If we take the

projector P
(2)
+ ≡

∣∣∣ψ(2)
+

〉〈
ψ

(2)
+

∣∣∣, onto the following state of S + S,

∣∣∣ψ(2)
+

〉
≡ 1√

2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
, |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
,

then P
(2)
+ is a 4× 4 matrix with eigenvalues 0 and 1

P
(2)
+ =

1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 , (2.30)

while

T2 ⊗ id2[P
(2)
+ ] =

1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


has eigenvalues ±1.

Namely, T2 ⊗ id2 sends a positive matrix into a non-positive matrix, which means
that T2 is not even 2-positive and thus not completely positive.

The same considerations above can be extended to the projector on the totally
symmetric state of S + S, where S is an n-level system:

P
(n)
+ ≡

∣∣∣ψ(n)
+

〉〈
ψ

(n)
+

∣∣∣ , ∣∣∣ψ(n)
+

〉
≡ 1√

n

n∑
j=1

|j〉 ⊗ |j〉 ,

{|j〉}j=1,...,n being an orthonormal basis in Cn. The action of the partial transposition

Tn ⊗ idn on P
(n)
+ is given by

Tn ⊗ idn[P
(n)
+ ] =

1

n

n∑
j,k=1

|k〉 〈j| ⊗ |j〉 〈k|
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and corresponds to the flip operator on Cn ⊗ Cn

V (|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉

that has eigenvalue −1 on any anti-symmetric state of Cn ⊗ Cn.

Completely positive maps have been intensively studied since the seventies: a series of
theorems have fixed some of their features and in particular their formal representation.
Here we limit ourselves to summarize only the results which are essential for our aims, in
a slightly different formulation with respect to the original one, that is more suited to
our needs.

Theorem 1 (Choi [19]). A linear map Λ: Mn(C) → Mn(C) is completely positive if
and only if it can be written in the form

Λ[X] =
∑
α

W ∗
αXWα Kraus - Stinespring form.

where Wα ∈Mn(C) and the sum extends at most n2 terms.

Looking at the expression of the map t 7→ ρS(t) in (2.25) in terms of the operators
Wjk(t), it is evident from the Kraus theorem that the reduced dynamics {Gt}t≥0 of open
quantum systems consists of CP (completely positive) maps. Before going further, we
want to underline another important feature of the CP maps: its tight relation with the
concept of entanglement.

Definition 3 (Entanglement). Given two state-spaces, S(S1) and S(S2) of two quantum
ssytems S1, S2, a state ρS1+S2 ∈ S(S1 + S2) ≡ S(S1)⊗ S(S2) is said separable if it can
be written as a convex linear combination of product states ρ1

i ⊗ ρ2
j :

ρS1+S2 =
∑
i,j

λijρ
1
i ⊗ ρ2

j , λij ≥ 0,
∑
i,j

λij = 1.

If it cannot be written as linear convex combinations of product states ρ1
i ⊗ ρ2

j , then it is
called entangled.

The state P
(2)
+ introduced in (2.30) is an entangled state as well as the more general

projector P
(n)
+ .

The following theorems establish the connections between completely positive maps
and entangles states of S + S, S an n-level system. [20]

Theorem 2. A linear map Λ: Mn(C)→Mn(C) is positive iff〈
ψ ⊗ φ

∣∣∣Λ⊗ idn(P
(n)
+ )

∣∣∣ψ ⊗ φ〉 ≥ 0 ∀ψ, φ ∈ Cn.
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Theorem 3. A linear map Λ: Mn(C)→Mn(C) is completely positive iff〈
ψ
∣∣∣Λ⊗ idn[P

(n)
+ ]

∣∣∣ψ〉 ≥ 0 ∀ψ ∈ Cn ⊗ Cn.

Theorem 2 can be restated saying that Λ is positive if and only if Tr(Λ⊗ idn[P
(n)
+ ]ρ) ≥ 0

for all separable density matrices ρ. Theorem 3 implies that if the map Λ is positive but
not CP, then Λ⊗idn[P

(n)
+ ] is not a positive matrix. This means that the totally symmetric

projector P
(n)
+ , which is a physically possible state for S + S, is not transformed into a

physical state by Λ⊗ idn.

Consequently completely positivity is a necessary requirement for the physical consis-
tency of the evolution law of a system entangled with an ancilla.

Concretely: if a map is only positive, then there surely exists an entangled state
ρent of S + S such that ρ′ent = ΛT ⊗ idn[ρent] has negative eigenvalues in order to make

Tr(ρ′entP
(n)
+ ) < 0.

2.4. Master Equation for the reduced dynamics

We have seen that maps of the form (2.25)

ρS 7→ Gt[ρS] =
∑
j,k

Wjk(t)ρsW
†
jk(t)

are completely positive and describe a physically consistent evolution of an open system
S in contact with an environment E, provided that the initial state ρS+E of S + E
factorizes: ρS+E = ρS ⊗ ρE.

A convenient expression for the differential equation describing such a time-evolution
of the system state ρS (the Master Equation) can be very tricky to find out since the
maps Gt carry memory effects due to the coupling between S and E. Nevertheless,
under the assumption that the coupling is weak enough, one can find an approximated
time-evolution law for S, determined by a one-parameter semi-group γt (t ≥ 0). There are
different ways to derive the Master Equation, each of them depending on the particular
adopted approximation.

All of them will have the form:

∂tρS(t) = (LH + D)[ρS(t)], (2.31)

where LH [·] ≡ −i[H, ·] corresponds to the standard Schrödinger time-evolution due to a
Hamiltonian H, while D is a linear operator on the space of states S(S) that encodes
the noisy and dissipative effects of the environment, often called “dissipator”.
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Remark 2.1. It is worth to anticipate that the Hamiltonian H associated to the operator
LH in the Master Equation (2.31), is not, in general, the Hamiltonian HS of the isolated
system S. In particular, if (2.19) is the total generator for the compound system S + E,
we will see that the action of the operator LH will be given by an expression of the kind

LH [ρS] = LS[ρS]− iλ2[H(1), ρS], (2.32)

where LS is the same as in (2.20), but with the addition of a Lamb shift correction,
coming from the interaction with the environment, represented by an hermitian operator
H(1) modulated by the square of the coupling factor, λ2. �

An immediate consequence of (2.31) is that the semigroup {γt}t≥0 consists of the
formal maps:

γtρS = et(LH+D)ρS. (2.33)

Interestingly the imposition of the basic requirements of physical consistency out-
lined above fixes the form of the generator LH . Indeed, asking for the maps γt to be
completely positive and trace-preserving provides a Master Equation in the so called
Gorini-Kossakowski-Sudarshan-Lindblad form1:

Theorem 4. [21] Let γt : Mn(C)→Mn(C), t ≥ 0, form a time-continuous semigroup of
completely positive trace-preserving linear maps. Then, γt = exp(t(LH + D)), where the
generators are given by

LH [ρ] = −i[H, ρ] (2.34)

D[ρ] =
n2−1∑
j,k=1

Cjk

(
V †k ρVj −

1

2

{
VjV

†
k , ρ

})
(2.35)

where the matrix of coefficients Cjk (Kossakowski matrix) is non-negative, the Vj are

orthogonal: Vn2 = 1n, Tr(V †j Vk) = δjk, and {·, ·} denotes the anticommutator.

Also the converse is true, namely:

Theorem 5. [22], [21] A semigroup {γt}t≥0 = et(LH+D) where LH and D are of the form
and (2.34) and (2.35), as in the theorem above, consists of completely positive maps if
and only if the Kossakowski matrix is positive definite.

Example 1. Thanks to Theorem 5 we can better understand the importance of com-
pletely positivity with the following example, which makes use of the CP check on the
Kossakowski matrix.

1The original formulation was given in the dual representation of the algebra Mn(C)
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Consider for a qubit state

ρ =
1

2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
r1, r2, r3 ∈ R, r2

1 + r2
2 + r2

3 ≤ 1, (2.36)

the following time-evolution (T1, T2 > 0):

ρ 7→ ρt =
1

2

(
1 + r3e

−t/T1 (r1 − ir2)e−t/T2

(r1 + ir2)e−t/T2 1− r3e
−t/T1

)
=

1

2

(
1 + r3(t) r1(t)− ir2(t)

r1(t) + ir2(t) 1− r3(t)

)
.

(2.37)

Clearly, r2
1(t) + r2

2(t) + r2
3(t) ≤ 1 so that any initial state is mapped into another state at

time t, its spectrum being always non-negative.

Using the Bloch representation with respect to the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.38)

one finds

dρt
dt

= −1

2

(
e−t/T2

T2

(r1σ1 + r2σ2) +
e−t/T1

T1

r3σ3

)
. (2.39)

This equals the action of the generator

L[ρt] =
1

4T1

(σ1ρtσ1 − ρt) +
1

4T1

(σ2ρtσ2 − ρt) +

(
1

2T2

− 1

4T1

)
(σ3ρtσ3 − ρt), (2.40)

as one can check by considering that

L[σ1] = −σ1

T2

, L[σ2] = −σ2

T2

, L[σ3] = −σ3

T1

. (2.41)

The Kossakowski matrix of this generator is

C =
1

4


1
T1

0 0

0 1
T1

0

0 0 2
T2
− 1

T1
.

 (2.42)

Thus, the semigroup γt = etL consists of completely postive maps if and only if

2

T2

− 1

T1

≥ 0⇔ 2T1 ≥ T2. (2.43)
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Let us now couple the open qubit to another inert qubit so that their common time-
evolution is given by γt ⊗ id. Given the completely symmetric entangled initial state

|ψ〉S+S =
|00〉+ |11〉√

2
where σ3 |0〉 = |0〉 , σ3 |1〉 = − |1〉 , (2.44)

after writing

|ψ〉 〈ψ|S+S =
1

4
[1⊗ 1 + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3], (2.45)

one finds

γt ⊗ id
[
|ψ〉 〈ψ|S+S

]
=

1

4

[
1⊗ 1 + e−t/T2(σ1 ⊗ σ1 − σ2 ⊗ σ2) + e−t/T1σ3 ⊗ σ3

]
. (2.46)

As a 4× 4 matrix this operator reads

γt ⊗ id
[
|ψ〉 〈ψ|S+S

]
=

1

4


1 + e−t/T1 0 0 2e−t/T2

0 1− e−t/T1 0 0

0 0 1− e−t/T1 0

2e−t/T2 0 0 1 + e−t/T1

 . (2.47)

It has eigenvalues λ1(t) = 1− e−t/T1 (twice degenerate), λ2(t) = 1 + e−t/T1 + 2e−t/T2 and
λ3(t) = 1 + e−t/T1 − 2e−t/T2 .

For small times λ3(t) ∼ 1 + 1 − t/T1 − 2 + 2t/T2 = t
(

2
T2
− 1

T1

)
remains positive if

and only if T2 ≤ 2T1 that is if and only if the maps γt are completely positive. �

The standard procedure to derive the Master Equation is a technique based on the
use of projection operators on the overall state-space S(S +E). In particular one defines

PρS+E ≡ TrE[ρS+E]⊗ ρE = ρ⊗ ρE (2.48)

by the partial trace operation over the environment degrees of freedom, ρE being a
suitable equilibrium environment state: LE[ρE] = −i[HE, ρE] = 0. In most cases of
interest ρE is nothing but the thermal Gibbs equilibrium state. Indeed, usually E is
taken to be a thermal bath, i.e. a system that is so large that it is left untouched by the
interaction with the smaller system S and consequently stays in its equilibrium state.

Notice that P acts projectively on S(S): P2ρS+E = Pρ⊗ρE, with orthogonal projector
Q ≡ 1S+E −P.

Let us consider the global reversible time-evolution equation

∂tρS+E(t) = Lλ
S+E[ρS+E(t)], (2.49)

for the compound system S + E with generator as in (2.19).
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Using P and Q one can split the above equation:

∂tPρS+E(t) = LPP
S+E [PρS+E(t)] + LPQ

S+E [QρS+E(t)] ; (2.50)

∂tQρS+E(t) = LQP
S+E [QρS+E(t)] + LQQ

S+E [QρS+E(t)] , (2.51)

where LPP
S+E ≡ P ◦ LS+E ◦ P, LQQ

S+E ≡ Q ◦ LS+E ◦ Q, LPQ
S+E ≡ P ◦ LS+E ◦ Q, and

LQP
S+E ≡ Q ◦ LS+E ◦P.

The latter equation can be formally integrated, yelding:

QρS+E(t) = etL
QQ
S+E [QρS ⊗ ρE] +

∫ t

0

ds e(t−s)LQQS+E ◦ LQP
S+E [PρS+E(s)] =

=

∫ t

0

ds e(t−s)LQQS+E ◦ LQP
S+E [PρS+E(s)] .

Indeed QρS ⊗ ρE = 0.

Inserting this expression into (2.50), one obtains:

∂tρS(t)⊗ ρE = LPP
S+E[ρS(t)⊗ ρE] +

∫ t

0

dsLPQ
S+E ◦ e

(t−s)LQQS+E ◦ LQP
S+E [ρS(s)⊗ ρE] .

(2.52)

At this point we can trace out the environment taking into account that ρE is an
equilibrium state for the environment E.

The interaction Hamiltonian H ′ in (2.22) can always be written in the form

H ′ =
∑
α

Sα ⊗Rα, (2.53)

where Sα and Rα are hermitian operators on the system S and the environment E,
respectively.

Moreover, one can always assume Tr(ρERα) = 0, a condition always obtainable by a
suitable redefinition of Rα that only redefines the system Hamiltonian HS.

A typical environment is a system consisting of infinitely many free bosons described
by bosonic creation and annihilation operators a†α, aα: [aα, a

†
α′ ] = δαα′ . Operators Rα are

usually assumed to be field operators of the type:

Rα = fα
(
a†α + aα

)
,
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where fα is an energy density function. After some manipulations, the final Master
Equation for the reduced dynamics reads2:

∂tρS(t) = LS[ρS(t)] + λ2

∫ t

0

dsTrE

(
L′ ◦ e(t−s)LQQS+E ◦ L′[ρS(s)⊗ ρE]

)
, (2.54)

where L′ is the interaction generator (2.22).

This generalized Master Equation is exact and free of any approximation. Its first
derivation dates back to Nakajima [23] and Zwanzig [24]. Starting from the integro-
differential equation, which clearly contains memory terms, different approximations can
be performed in order to obtain a Markovian evolution of the form:

ρS(t) = e(LS+λ2K)tρS(0), (2.55)

where K is some kind of generator to be determined.

2.4.1. Weak coupling limit in the Markovian approximation

The hypothesis of weak coupling between the system and the environment lies in the
assumption that the typical decay time-scales of the two systems largely differ: in
particular, if τE is the environment decay time-scale (i.e. roughly speaking the time
needed to reach the equlilibrium) and τS the system evolution time-scale, then the ratio
τE/τS must be very small. Practically speaking the idea is to introduce the slow time-scale
τ ≡ λ2t and to let λ go to zero. Indeed, it is evident that the dissipative action of the
second term in (2.54) becomes relevant only for t ∼ λ−2.

The simplest and most used approximation in literature is based on the substitution
of the integral in (2.54) with

λ2

∫ +∞

0

dsTrE{L′ ◦ e(LS+LE)s ◦ L′[ρS(t)⊗ ρE]} (2.56)

which corresponds to a choice of the generator K given by

K1[ρS] =

∫ +∞

0

dsTrE{L′ ◦ e(LS+LE)s ◦ L′[ρS ⊗ ρE]}. (2.57)

2Details in Appendix A
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The idea behind this approximation is to rewrite the second term in (2.54) as∫ t

0

dsTrE

(
L′ ◦ esL

QQ
S+E ◦ L′[ρS(t− s)⊗ ρE]

)
=

=

∫ τ/λ2

0

dsTrE

(
L′ ◦ esL

QQ
S+E ◦ L′

[
ρS

( τ
λ2
− s
)
⊗ ρE

])
, (2.58)

so that, when λ→ 0, one can extend the integration to +∞ and replace ρS(τ/λ2 − s) by
ρS(τ/λ2).

Despite its popularity this approximation is quite rough and in general leads to reduced
dynamics that are not even positive preserving, let alone being completely positive. It
can be refined starting from the integral version of the Master Equation (2.54)3:

ρS(t) = etLSρS(0) + λ2

∫ t

0

ds

∫ s

0

du eLS(t−s)TrE{L′ ◦ e(LQQS+E)(s−u) ◦ L′[ρS(u)⊗ ρE]}

(2.59)

With a suitable change of integration variables it can be recast in the form

ρS(t) = etLSρS(0) + λ2

∫ t

0

du e(t−u)LS

{∫ t−u

0

dv e−vLSTrE(L′ ◦ ev(LS+E) ◦ L′[ρS(u)⊗ ρE])

}
.

(2.60)

By the same arguments as before, by going to τ = tλ2 and letting λ→ 0, one replaces
the term in curly brackets with

K2[ρS(t)] =

∫ +∞

0

dv e−vLSTrE

(
L′ ◦ ev(LS+LE) ◦ L′[ρS(u)⊗ ρE]

)
, (2.61)

which corresponds to a Master Equation of the form

∂tρS(t) = LS[ρS(t)] + λ2K2[ρS(t)]. (2.62)

This is known as Redfield equation, with formal solution

ρS(t) = et(LS+λ2K2)ρS(0). (2.63)

Again, it can be shown that the semigroup generated by (2.62) does not in general
consists even of positive maps. Consequently a better approximation is needed; this is
constructed as follows.

3See in particular Davies’s works [25],[26]
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One formally integrates the Redfield equation (2.62):

ρS(t) = etLSρS(0) + λ2

∫ t

0

ds e(t−s)LSK2e
s(LS+λ2K2)ρS(0).

Then, one goes to τ = λ2t and switches to the Interaction Picture

ρS 7→ eiHS
τ
λ2 ρSe

−iHS τ
λ2 = e−

τ
λ2 LSρS, (2.64)

so that

e−
τ
λ2 LSe

τ
λ2 (LS+λ2K2)ρS(0) = ρS(0)+

+

∫ τ

0

ds
{
e−

s
λ2 LSK2e

s
λ2 LS

}
e−

s
λ2 LSe

s
λ2 (LS+λ2K2)ρS(0). (2.65)

It has been shown by Davies [25–27] that, in the limit λ→ 0, only the non-oscillating
terms survive and the operator in curly brackets can be substituted by the ergodic
average:

K3[ρ] ≡ lim
T→∞

1

2T

∫ +T

−T
dt e−tLSK2e

tLSρ. (2.66)

Now, setting γτ ≡ limλ→0 e
− τ
λ2 LSe

τ
λ2 (LS+λ2K2), we have ∂tγtρS(0) = K3[γtρS(0)]. By

noticing that K3e
− τ
λ2 LS = e−

τ
λ2 LSK3, going from τ/λ2 back to t, one gets another

Markovian Master Equation:

∂tρS(t) = (LS + λ2K3)[ρS(t)]. (2.67)

In the end we have derived three different Master Equations. It is worth discussing
which of them is the best candidate to describe physically consistent time-evolutions.
Again, we will summarize Davies’s results [25–27] following [28].

Let γλt denote the operator mapping the initial state ρS(0) into the state evoluted at
time t:

γλt ρS(0) = TrE

(
e−tL

λ
S+E ρS(0)⊗ ρE etL

λ
S+E

)
(2.68)

and let us introduce the environment time correlators

Fαβ(t) ≡ TrE(eitHERαe
−itHERβρE). (2.69)

Then, in the hypothesis that for some δ > 0∫ +∞

0

dt |Fαβ(t)|(1 + t)δ < +∞,
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we have the following results
lim
λ→0

sup
0≤λ2t≤τ

‖γλt ρS(0)− e(LS+λ2K2)tρS(0)‖ = 0;

lim
λ→0

sup
0≤λ2t≤τ

‖γλt ρS(0)− e(LS+λ2K3)tρS(0)‖ = 0;
(2.70)

in the trace norm. But this result is not true, in general, if we put K1 in place of K2 or
K3. Consequently the solution of (2.67) converges to the real reduced dynamics (2.68)
in the limit λ→ 0, at any finite time, while the reduced dynamics generated by K1 do
not always converge to the same map.

Dümcke and Spohn [28] proved that, except for some trivial cases, the generators K1

and K2 do not preserve positivity: this rules them out as reliable descriptions of proper,
physically consistent time-evolutions.

On the other hand, K3 is such that the solutions of (2.67) are completely positive.

In order to prove this assertion, it is convenient to develop the action of operator K3

on a generic state ρ. The details are given in A.2. We have

K3[ρ] =
∑
ω

∑
β,α

F̂βα(−ω)

(
S†α(ω)ρSβ(ω)− 1

2

{
Sβ(ω)S†α(ω), ρ

})
− i[H(1), ρ]. (2.71)

Here {Sα(ω)} are the components of the Fourier expansion of the operators {Sα}
written in the interaction picture:

Sα(t) = eiHStSαe
−iHSt =

∑
ω

eitωSα(ω), (2.72)

while H(1) is a self-adjoint operator acting as a correction, modulated by the arbitrary
small coupling λ2, to the system Hamiltonian HS. F̂αβ(ω) are the Fourier components of
the bath correlators in (2.69):

F̂αβ(ω) =

∫ +∞

−∞
dt e−itωFαβ(t). (2.73)

We can now justify the remark in 2.1, where we anticipated that the general structure
of the Master Equation has the form (2.31). Indeed, with the definitions

D[ρ] ≡ λ2
∑
ω

∑
β,α

F̂βα(−ω)

(
S†α(ω)ρSβ(ω)− 1

2

{
Sβ(ω)S†α(ω), ρ

})
, (2.74)

LH [ρ] ≡ −i[HS, ρ]− iλ2[H(1), ρ], (2.75)
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the Master Equation (2.67) can be rewritten as

∂tρS(t) = (LH + D)[ρS(t)]. (2.76)

In A.3 it is shown that the Kossakowski-Lindblad matrix in (2.71) is positive, hence
the reduced dynamics generated by K3 is completely positive.

2.5. Conclusions

We summarize here the main concepts and results of this chapter.

• The time-evolution of an open quantum system in contact with a thermal environ-
ment is described by a reduced dynamics obtained from the dynamics of the whole
system by partial tracing over the environment degrees of freedom.

• In order to be physically consistent, i.e. in order to preserve the quantum statistical
meaning of the time-evoluted states, the reduced dynamics must be completely
positive, which is a stronger condition than positivity alone. While the latter
corresponds to keeping the positivity of the spectrum of time-evolving density
matrices, only the former guarantees a similar robustness against coupling with
ancillas.

• The reduced dynamics can be determined, as a Markovian approximation, under
the assumnption of weak coupling limit and factorization of the initial state of the
total system, by deriving a Master Equation for the reduced dynamics of the open
quantum system alone.

• Master Equations can be derived within different levels of approximations: some of
them do not give rise to completely-positive (not even positive) dynamical maps or
their solutions do not converge to the real reduced dynamics in the limit of arbitrary
small couplings.

• It is always possible to formulate a Master Equation fulfilling the requirement of
complete positivity and which converges to the real reduced dynamics when the
coupling strength goes to zero.

In the fourth chapter we will see a direct application of these ideas to a concrete
physical model.



Chapter 3.

Thermodynamics of Open Quantum
Systems

In the previous chapter it was discussed how lack of the specific requirement of complete
positivity in the dynamical semigroup arising from a given Master Equation can lead to
results that conflict with the “real”, i.e. non approximated, reduced dynamics. Practically
speaking, if the reduced dynamics γt of the system S is not completely positive, then
there surely exists an entangled initial state ρent

S+S of the system S coupled with an ancilla
A = S such that γt ⊗ id[ρent

S+S] develops negative eigenvalues ad loses its meaning as a
physical state.

In this chapter we will see how the complete positivity requirement can also avoid
violations of the Second Law of Thermodynamics, which states (in one of its formulations)
that internal entropy can never decrease. To prove this relation we need to introduce a
formulation of the Second Law in the context of open quantum systems, conveniently
defining the entropy function and a quantity called entropy production.

We start by summarizing the Classical Laws of Thermodynamics and then extend
them to quantum systems.

3.1. Laws of Classical Thermodynamics

The Zero Law of Thermodynamics deals with the intuitive concepts of thermal equilibrium
and heat and the related idea of temperature.

Definition 4. Zero Law of Thermodynamics. Two systems are in thermal equilibrium
with each other if, when put into direct contact and heat exchange is allowed, nothing
changes macroscopically.

As an experimental fact, we also know that when two bodies at different temperatures
are allowed to exchange heat, the latter flows from the higher temperature body to the
lower temperature body.

25
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The First Law of Thermodynamics is essentially the statement of energy conservation.
Given a system S in interaction with one or more thermal reservoirs (the environment),
once we have established suitable operative definitions of

• Internal Energy E;

• Work W performed by the system on the environment;

• Heat Q transferred from the environment to the system;

we can give the formulation of the First Law:

Definition 5. First Law of Thermodynamics.

dE = δQ− δW. (3.1)

All these quantities have the dimension of energy. A positive δQ corresponds to an
increase of internal energy E of the system while a positive δW produces a decrease of it.

We also note the different notation to distinguish the exact differential, expressed with
d, from the infinitesimal variation of work and heat, expressed with δ: internal energy
can be defined as a function of the state of the system, intended as a set of macroscopic
observables that describe it completely, while the work and the heat exchanged always
depend on the particular transformation that the system is undergoing. So, while after a
transformation affecting the system the variation of its internal energy dE depends only
on the initial and final macroscopic states, the amount of work and heat exchanged with
the environment depends on the particular path followed during the transformation.

The Second Law of Thermodynamics has different formulations. Here we will use
a formulation which makes use of the concept of entropy. In classical thermodynamics
entropy is defined as follows. One says that the transformation of a system in contact
with an environment is quasi-static if it is slow enough that at any time the system is in
thermal equilibrium with the environment.

Definition 6. Entropy in classical thermodynamics. The variation of entropy in a system
evolving from a state A to a state B in a quasi-static process is given by

SA,B ≡
∫ B

A

δQ

T
. (3.2)

Hence the expression for the differential entropy can be written

dS =
δQ

T
. (3.3)

With respect to this definition of entropy, the Second Law can be formulated as follows
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Definition 7. Second Law of Thermodynamics. In every closed and isolated system the
entropy never decreases.

In general the entropy of an open system can vary due to its interaction with the
environment or because of its internal dynamics. So we can separate the variation dS
into two contributions:

dS = dSext + dSint. (3.4)

If we consider a system interacting with N thermal baths each at temperature Ti,
i = 1, . . . , N , then the external contribution to the entropy variation reads

dSext =
N∑
i=1

δQi

Ti
. (3.5)

For a closed and isolated system δQi = 0, ∀i and therefore dSext = 0. The Second
Law implies

dSint ≥ 0. (3.6)

3.2. The laws of thermodynamics in open quantum

systems

Consider an open quantum system in interaction with N thermal reservoirs each at tem-
perature Ti = 1/(κBβi) (κB being the Boltzmann constant). Let be H0 the Hamiltonian
of the system and for simplicity let its spectrum be discrete and finite. If the interaction
with the environment is weak and the Markovian approximation is valid then the reduced
dynamics of the system can be described by means of the Master Equation

∂tρ(t) = −i[H0, ρ(t)] +
N∑
m=1

Dm[ρ(t)], (3.7)

where the linear operators Dm are assumed to be of the Kossakowski-Lindblad (2.35)
form and to satisfy the completely positivity condition. Furthermore we assume that for
every bath there exists a stationary state ρeq

m of the system in thermal equilibrium with
the bath, which is a Gibbs state of the form:

ρeq
m =

e−βmH0

Tr(e−βmH0)
. (3.8)
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Since −i[H0, ρ
eq
m ] = 0, the stationarity requirement for ρeq

m corresponds to the condition

Dm[ρeq
m ] = 0. (3.9)

If there exists a unique bath then the thermal state ρeq
m is stationary for the overall dy-

namics and eq. (3.9) can be viewed as a formulation of the zeroth Law of Thermodynamics
for open quantum systems.

Next we can consider a slightly more complicated scenario in which the system
can produce some kind of mechanical work. For this aim we introduce a family of
explicitly time-dependent self-adjointed operators {ht; t ≥ 0} on the system Hilbert space.
Consequently, since the new Hamiltonian has become time-dependent

H(t) = H0 + ht, (3.10)

also the dissipators have become time-dependent: Dm = Dm(t). Even though this may
seem a potential problem, since an explicitly time-dependent Master Equation cannot
be immediately integrated in an exponential map, there is another condition, which
can be considered fulfilled in many cases of interest, that allow us to apply the same
considerations above and to give a formulation of the Zero Law of Thermodynamics.
Indeed it is not too restrictive to assume that the time scale τW at which ht changes
is much longer than the typical time scale required for a bath to thermalize, τB. So
at any time t′ in a time interval ∆t such that τB � ∆t � τW , ht′ can be considered
nearly constant as in a quasi-static process. Under these conditions the derivation of the
Markovian Master Equation discussed in the first chapter is still valid and we can state the

Definition 8. Zero Law of Thermodynamics for open quantum systems. Let a system
be subjected to the time-varying Hamiltionan H(t) and interact with N thermal baths,
whose dissipative actions are given by the operators {Dm(t)}Nm=1. Then, the dynamics of
the system is governed by the Master Equation

∂tρ(t) = −i[H(t), ρ(t)] +
N∑
m=1

Dm(t)[ρ(t)], (3.11)

and the Zero Law of Thermodynamics is embodied by the following two requirements

• ρeq
m(t) = e−βmH(t)

Tre−βmH(t) ,

• Dm(t)[ρeq
m(t)] = 0 .

In order to give a quantum formulation of the First Law we need to give the definition
of internal energy.1

Definition 9. Internal energy. The internal energy of a quantum system whose state at
time t is described by the density matrix ρ(t) is the expectation value of the Hamiltonian

1The following definitions and the formulations of the I and II Laws are given following [29].
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H(t) on this state:

E(t) ≡ 〈H(t)〉ρ = Tr(ρ(t)H(t)). (3.12)

Coherently, the work performed by the system in an infinitesimal transformation is
given by

δW (t) ≡ −Tr
(
ρ(t)

dht
dt

)
dt, (3.13)

while the infinitesimally exchanged heat has the expression

δQ(t) ≡ Tr

(
dρ(t)

dt
H(t)

)
dt =

(∑
m

Tr (H(t)Dm(t)[ρ(t)])

)
dt, (3.14)

having used the relation Tr (−i[H(t), ρ]H(t)) = 0.

With these definitions the First Law of Thermodynamics can be written as a differential
equation

dE

dt
=
δQ

dt
− δW

dt
. (3.15)

Integrating the latter we have

Q(0, t) =

∫ t

0

Tr

(
dρ(s)

ds
hs

)
ds =

∑
m

Qm(0, t)

Qm(0, t) ≡
∫ t

0

Tr (H(s)Dm(s)[ρ(s)]) ds

(3.16)

where Qm(0, t) represents the heat exchanged with the m-th bath in the time interval
[0, t].

3.3. Entropy production and Second Law

3.3.1. Von Neumann entropy

Before stating the Second Law of Thermodynamics in the context of open quantum
systems, it is necessary to introduce the Von Neumann entropy of quantum states and
some of its properties. We start from the Shannon entropy first:

Definition 10. Shannon entropy. Consider a classical discrete probability distribution
Π: a set of n events with an associated set of probabilities Π = {pi}i=1...n. The Shannon
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entropy attributed to such a distribution is

H(Π) := −
∑
i

pi log pi ≥ 0,

where the contribution of each single event is −pi log pi if pi 6= 0 or 0 otherwise, by
continuity.

The Shannon entropy is semipositive defined, since all the probabilities pi are smaller
or equal to 1. Also: H(Π) = 0 if and only if pi = 1 for one i and all the others are zero,
while in the maximally random distribution, that is pi = 1/n ∀i, we have H(Π) = log n.

Definition 11. Von Neumann entropy. For a quantum state described by a density
matrix ρ, the Von Neumann entropy is defined as

S(%) := −κB
∑
j

λj log λj = −κBTr(ρ log %) ≥ 0. (3.17)

The extreme cases of maximum and minimum entropy correspond respectively to the
state 1/n and to any pure state.

Furthermore, the Von Neumann entropy is inviarant under unitary transformations

S(UρU †) = S(ρ), if U †U = 1, (3.18)

and is sub-additive on bipartite systems A+B , which means that

S(ρ) ≤ S(ρA) + S(ρB), (3.19)

where ρ is a state of the whole system A+B and ρA = TrBρ, ρB = TrAρ. For a separable
state the equality is verified: S(ρ) = S(ρA) + S(ρB), while for entangled systems this is
not true.

3.3.2. Entropy production

Given an open quantum system whose reduced dynamics is assigned by a time-evolution
law t 7→ ρ(t), its entropy is also a function of time

S(t) = −κBTr(ρ(t) log ρ(t)). (3.20)

We have seen that, in the classical case, we can distinguish an internal and an external
contribution to the entropy variation upon an infinitesimal transformation of the system.
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This suggests us to introduce the quantities

JSm ≡
1

Tm

δQm(t)

dt
= κBβmTr (H(t)Dm(t)[ρ(t)]) , ∀m = 1, . . . , N, (3.21)

that we call quantum entropy flows. By virtue of eq. (3.5) we have

dSext(t)

dt
=
∑
m

JSm. (3.22)

This leads us to the introduction of the entropy production as the variation of entropy
due to the the internal dynamics of the system:

Definition 12. Entropy production of a system in contact with N thermal baths.

σ(t) ≡ dSint

dt
=

dS(t)

dt
−
∑
m

JSm = −κB
∑
m

Tr
(
Dm(t)[ρ(t)](log ρ(t) + βmH(t))

)
. (3.23)

Notice that the last equality follows from the ciclity of the trace and Trρ = 1.

Now, in the situations of physical interest, one may assume that the system has
states ρeq

m(t) in thermal equlibrium with each bath Bm at each time t: their form
is given by the Gibbs expression (3.8). In this case βmH(t) can be written also as
− log(Tr(e−βmH(t)) · ρeq

m(t)).

Taking the trace of Dm(t)[ρ(t)]βmH(t) in (3.23) we have:

−
∑
m

Tr
(
Dm(t)[ρ(t)] log

(
Tr(e−βHm(t))ρeq

m

))
= −

∑
m

Tr (Dm(t)[ρ(t)] log ρeq
m) . (3.24)

where we have used
∑

m Tr(Dm[ρ(t)]) = 0 which follows from the assumed trace conser-
vation property of the dynamics.

As a consequence we get the following general expression for the entropy production:

σ(t) = −κB
∑
m

Tr (Dm(t)[ρ(t)](log ρ(t)− log ρeq
m(t))) . (3.25)

We shall now focus upon a system in interaction with one single bath; and consider
the internal entropy production

σ(t) = −κBTr (D(t)[ρ(t)] (log ρ(t)− log ρβ)) , D(t)[ρβ] = 0. (3.26)

In order to show the main result of this chapter, we introduce another quantity, that
will allow us to express the entropy production as a derivative. This quantity is called
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relative entropy and is defined for every pair of states ρ and ρ′.

Definition 13. Relative entropy of ρ, ρ′ ∈ S(S):

S(ρ|ρ′) ≡ κBTr (ρ(log ρ− log ρ′)) . (3.27)

The relative entropy can be used as follows. For fixed t, let Λs be the semigroup of
maps generated by D(t): Λs = esD(t), s ≥ 0. Notice that Λs[ρβ(t)] = ρβ(t). Then, taking
the derivative with respect to s at s = 0 of

S (Λs[ρ(t)]|Λs[ρβ(t)]) = Tr (Λs[ρ(t)](log Λs[ρ(t)]− log ρβ(t))) , (3.28)

one gets

− d

ds
S (Λs[ρ(t)]|Λs[ρβ(t)])|s=0

= −Tr (D(t)[ρ(t)](log Λs[ρ(t)]− log ρβ(t)) = σ(t). (3.29)

Indeed, Tr
(
Λs[ρ(t)] d

ds
log Λs[ρ(t)]|s=0

)
= Tr(D(t)[ρ(t)]) = 0.

The last step we need is the so-called Lindblad H-theorem for semigroups of completely
positive maps [30] which follows from the monotonicity of the relative entropy under
completely positive, trace-preserving maps.

Theorem 6. [30] Given a completely positive trace-preserving map Λ and an invariant
state ρ′ such that Λ[ρ′] = ρ′, then

S(Λ[ρ]|Λ[ρ′]) ≤ S(ρ|ρ′) ∀ρ, ρ′ ∈ S(S). (3.30)

Since the time-dependent Master Equation

∂tρ(t) = −i[H(t), ρ(t)] + D(t)[ρ(t)] (3.31)

is assumed to be of the Kossakowski-Lindblad type, the time-evolution considered here
is such that {Λs}s≥0, Λs = esD(t), is a semigroup of completely positive, trace-preserving
maps for any fixed t ≥ 0.

Thus, using this theorem, one concludes that the entropy production in the class of
quantum systems we are dealing with is always non-negative at any time t ≥ 0:

σ(t) = −κBTr (D(t)ρ(t)(log ρ(t)− log ρβ(t))) ≥ 0. (3.32)

This result easily extends to more than one bath.

We summarize here the conditions we require for this result to be true. For every
bath Bm:

• Dm(t) is slowly varying in t with respect to the m-th reservoir relaxation time;
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• ρeq
m(t) is a Gibbs thermal state such that Dm(t)[ρeq

m(t)] = 0 at each fixed t: this is
necessary for writing the entropy production σ(t) in terms of the relative entropy;

• Dm(t) generates a completely positive dynamics: sufficient for ensuring a non-
negative internal entropy production.

These requirements may seem rather restrictive, especially the assumption that the
system admits a stationary state in the Gibbs form for every bath Bm, nevertheless the
definition of entropy production can be generalized to the case of a generic time-evolution
described by a semigroup of completely positive maps, as follows [spohn˙entropy˙2008 ]:

Definition 14. Entropy production. Let {Λt}t≥0 be a semigroup of completely positive
dynamical maps Λt = etL, and let ρst be a state invariant for Λt, i.e. Λt[ρst] = 0, for all
t ≥ 0. Then the entropy production σ in the state ρt = Λt[ρ] relative to ρst is defined by

σ(ρt) ≡ −
d

dt
S(Λt[ρ]|ρst) = −Tr (L[ρt](log ρt − log ρst)) , (3.33)

whenever the derivative exists.

In the latter definition there is no explicit time-dependence in the generator L of the
reduced dynamics, so that we have a Markovian one-parameter semigroup. It has been
shown [spohn˙entropy˙2008 ] that

• σ ≡ 0 if and only if the generator of the dynamics is purely Hamiltonian: L ≡ 0;

• σ is convex: if ρ1 and ρ2 are two states of the system, and λ1, λ2 ≥ 0, λ1 + λ2 = 1,
then

σ(λ1ρ1) + σ(λ2ρ2) ≥ σ(λ1ρ1 + λ2ρ2). (3.34)

In the end, the non-negativity of the entropy production for a completely positive
dynamics, as defined by (3.33), is an important result that maintains its validity also in
more general situations, where the stationary state is not necessary a thermal Gibbs state.
Complete positivity is a sufficient requirement and not a necessary one, nevertheless lack
of CP is associated to violations of the Second Law of Thermodynamics, as we will see
in the next chapter.
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Chapter 4.

A concrete case: current pumping in
a minimal ring model

In this chapter we consider a concrete application of the results discussed in the previous
chapters; namely, we study from a thermodynamical point of view a specific open
quantum system [31]: three electrons can freely move in a minimal three-site circuit,
where an external periodical pumping is applied. The setup is such that there exists
one degenerate doubly-occupied ground-state, and the overall system dynamics can be
reduced to the dynamics of a pseudospin (or “qubit”) under the action of a periodic
Hamiltonian. Furthermore, the influence of a noisy environment has a dissipative effect
which eventually produces the establishing of a steady DC current in a regime condition.
The dependence of the steady current on the driving frequency is the key point of the
original paper; since this observable turns out to be proportional to the pseudospin
polarization at large times, its final value is directly related to the asymptotic state of
the system.

35
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4.1. The model

The minimal circuit ring is constituted by three identical sites a, b, c, each characterized
by an electronic level whose energy is cyclically modulated according to the law εi(t) =
−~∆ cos(Ωt + φi) (i = a, b, c), with phases φa = 0, φb = −2π/3, φc = 2π/3. ∆ is the
amplitude of the applied potential, and Ω the frequency. Every couple of sites (i, j) is
separated by an energy hopping γij. In the scheme considered in [31] all these hoppings
are identical: γij = γ0 (i, j = 1, 2, 3), hence the net current inside the circuit is generated
by the external pumping.

The Hamiltonian can be expressed with respect to the orthonormal basis of orbitals
|a〉, |b〉, |c〉: εa(t) −γ0 −γ0

−γ0 εb(t) −γ0

−γ0 −γ0 εc(t)

 , (4.1)

The bare Hamiltonian without the application of any external bias is

H0 =

 0 −γ0 −γ0

−γ0 0 −γ0

−γ0 −γ0 0

 . (4.2)
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The spectrum of this Hamiltonian is {−2γ0, γ0}, where −2γ0 is the energy of the
ground state

|0〉 =
|a〉+ |b〉+ |c〉√

3
, (4.3)

and γ0 is the 2-degenerated energy level with eigenstates

|x〉 =
|b〉 − |c〉√

2
;

|y〉 =
2 |a〉 − |b〉 − |c〉√

6
.

(4.4)

In the lowest energy configuration and in the hypothesis that electron-electron inter-
actions are negligible when compared to the energy hoppings γ0, two electrons occupy
the ground state |0〉 while the third is in a state living in the subspace spanned by the
excited doublet {|x〉 , |y〉}. When the periodic potential is switched on, H0 is incremented
by a perturbing Hamiltonian given by the diagonal matrix Diag(εa(t), εb(t), εc(t)), which
can be rewritten in the basis {|0〉 , |x〉 , |y〉} as

Hbias(t) =


0 εb(t)−εc(t)√

6

εa(t)√
2

εb(t)−εc(t)√
6

− εa(t)
2

εc(t)−εb(t)
2
√

3
εa(t)√

2

εc(t)−εb(t)
2
√

3

εa(t)
2

 . (4.5)

As long as the applied bias is a small perturbation of the bare Hamiltonian H0, namely
if the energy gap γ0 − (−2γ0) = 3γ0 between the ground state and the excited doublet is
much greater than the pumped energies |εi(t)|, we can exclude transitions between |0〉
and the subspace spanned by {|x〉 , |y〉}; consequently we can still assume that the ground
state remains occupied by two electrons and the dynamics of the system is determined by
the third electron, whose state vector is a qubit in the 2-dimensional subspace {|x〉 , |y〉}.

The evolution of this pseudospin system is therefore described by the Hamiltonian

HS(t) = − 1

2
√

3

( √
3εa(t) εb(t)− εc(t)

εb(t)− εc(t) −
√

3εa(t)

)
. (4.6)

Substituting the periodic potentials
εa(t) = −~∆ cos Ωt

εb(t) = −~∆ cos(Ωt− 2π/3)

εc(t) = −~∆ cos(Ωt+ 2π/3),

(4.7)
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into (4.6), we have finally

HS(t) =
~∆

2
(cos(Ωt)σz + sin(Ωt)σx), (4.8)

written in terms of the Pauli matrices.

In order to be consistent with the notation used in the preceding chapters, in the
following we will use the natural units: ~ = 1.

To introduce the dissipative effect of the environment the latter is modeled as an
ensemble of non-interacting harmonic oscillators in thermal equilibrium at temperature T .
Since the system has only two modes, we can assume the oscillators to be bidimensional.
Therefore the Hamiltonian HE for the thermal bath must have the form

HE =
∑
ξ=z,x

∑
ν

(
p2
ξ,ν

2m
+
mω2

νq
2
ξ,ν

2

)
, (4.9)

where ων is the frequency of the ν-th oscillator, qξ,ν are the oscillators position observables
and pξ,ν their conjugate variables (the momenta).

The coupling betweem the system modes and the thermal bath is determined by the
interaction Hamiltonian

HSE =
∑
ξ=z,x

∑
ν

√
2mωνλξ,νσ

ξ ⊗ qξ,ν . (4.10)

λξ,ν are the coupling constants (in principle depending also on the specific mode, but we
will assume λξ,ν ≡ λν).

We see that HSE is formally analogous to the λH ′ interaction Hamiltonian introduced
in (2.53), the only difference being the use of many coupling constant instead of one,
which is irrelevant since we are interested in the limit λξ.ν → 0; thus we can always
redefine the operators in order to have a single λ going to zero.

Hence the global Hamiltonian of the system is given by HS(t) +HSE +HE.

The aim of the original article is to determine the steady asymptotic DC current
flowing in the circuit and its dependence on the applied frequency Ω.

In our pseudospin representation the current I(t) generated by the free electron inside
the circuit is proportional to the expectation value of σy1

I(t) = I0 〈σy〉ψ(t) , (4.11)

1See Appendix A.4
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where |ψ(t)〉 is the state at time t and I0 given by

I0 =
eγ0√

3
e = elementary charge. (4.12)

With the introduction of the unitary transformation

Ry(Ωt) = e−i
Ωt
2
σy , (4.13)

geometrically corresponding to a rotation about the y axis, one can perform a change of
reference frame, by mapping every state |ψS(t)〉 of the system to a state |ψ̃S(t)〉 given by:

|ψ̃S(t)〉 ≡ R−1
y (Ωt) |ψS(t)〉 . (4.14)

It follows that HS(t) can be rewritten as

HS(t) =
∆

2
Ry(Ωt)σ

zR−1
y (Ωy). (4.15)

In this rotating reference frame, the Schrödinger equation for |ψ̃S(t)〉 reads

i∂t|ψ̃S(t)〉 = i

(
i
Ω

2
σyR−1

y (Ωt)

)
|ψS(t)〉+ iR−1

y (Ωt)∂t |ψS(t)〉 =

= −Ω

2
σy|ψ̃S(t)〉+R−1

y (Ωt)HS(t)Ry(Ωt)|ψ̃S(t)〉 =

= −Ω

2
σy|ψ̃S(t)〉+R−1

y (Ωt)

(
∆

2
Ry(Ωt)σ

zR−1
y (Ωt)

)
Ry(Ωt)|ψ̃S(t)〉 =

=

(
−Ω

2
σy +

∆

2
σz
)
|ψ̃S(t)〉 = Heff |ψ̃S(t)〉,

(4.16)

with a new, time-independent Hamiltonian

Heff =
∆

2
σz − Ω

2
σy =

ω′

2
n̂ · σ, (4.17)

with frequency

ω′ =
√

Ω2 + ∆2, (4.18)

and unit vector

n̂ =

(
0,−Ω

ω′
,

∆

ω′

)
. (4.19)
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Thus, if we consider just the isolated micro-circuit, the time-evolution in the cor-
responding qubit description consists in a Larmor precession around the n̂-axis with
frequency ω′.

Since Ry(Ωt) commutes with σy, the current supported by the microcircuit at time t
can be computed as

I(t) = I0〈ψ̃S(t)|σy|ψ̃S(t)〉. (4.20)

It is convenient to make a change of basis from σx, σy, σz to a new Pauli triple
σ̂x, σ̂m, σ̂n: 

σ̂x = σx

σ̂m =
∆

ω′
σy +

Ω

ω′
σz

σ̂n = −Ω

ω′
σy +

∆

ω′
σz

. (4.21)

The inverse transformation for σy gives:

σy =
∆

ω′
σ̂m − Ω

ω′
σ̂n. (4.22)

We can write σ̂m in terms of the ladder operators for the σ̂n eigenstates:
σ̂n+ |n̂,+〉 = 0

σ̂n+ |n̂,−〉 = |n̂,+〉
σ̂n− |n̂,+〉 = |n̂,−〉
σ̂n− |n̂,−〉 = 0

, (4.23)

with σ̂n± = 1
2

(σ̂x ± iσ̂m).

Consequently

σ̂m =
1

i

(
σ̂n+ − σ̂n−

)
. (4.24)

Therefore, if the initial state is one of the two σ̂n eigenstates, |n̂,+〉 or |n̂,−〉, the
system does not evolve and the current I is a steady DC current given by ∓I0

Ω
ω′

,
respectively. Indeed, the expression (4.20) of the current yields

I(t) = I0
∆

ω′
〈n̂,± | σ̂m | n̂,±〉 − I0

Ω

ω′
〈n̂,± | σ̂n | n̂,±〉 =

= ∓I0
Ω

ω′
.

(4.25)
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Any other initial condition gives rise to an AC current in addition to the DC, due
to the Larmor precession of the ket |ψ̃S(t)〉, and the DC current is determined by the
projection of this state on the eigenstates of Heff = ω′σ̂n/2: |n̂,±〉.

In the density matrix formalism the system state is characterized by a matrix ρ̃S that
will be conveniently expanded in the basis {σ̂x, σ̂m, σ̂n}, giving the Bloch representation

ρ̃S =
1

2
(1 + aσ̂x + bσ̂m + cσ̂n), (4.26)

where (1, a, b, c) is the so-called Bloch vector associated with ρ̃S. Since the time-evolution
law now reads equation:

∂tρ̃S = −iω
′

2
[σ̂n, ρ̃S], (4.27)

the net DC contribution to the current I(t) – that is the observable in which we are
interested – is determined by the third component of the Bloch vector of ρ̃S, c, the only
component that does not change in time under (4.27).

Denoting by P

P = −Tr(σ̂nρ̃S), (4.28)

the opposite of c, then the DC current sustained by the microcircuit becomes

I = I0P
Ω

ω′
. (4.29)

In passing to the rotating reference frame in the global Hamiltonian H = HS(t) +
HE +HSE the system’s observables change as follows:

σ̃ξ(t) = R−1
y (Ωt)σξRy(Ωt). (4.30)

Consequently HSE changes into a time-dependent interaction term:

H̃SE(t) =
∑
ξ=z,x

∑
ν

√
2mων σ̃

ξ(t)⊗ qξ,ν , (4.31)

while HE of course remains unchanged.

The total Hamiltonian in the rotating reference frame thus becomes

H̃T (t) = Heff + H̃SE(t) + H̃E, (4.32)

where Heff stands for Heff ⊗ 1E and H̃E for 1S ⊗ H̃E.
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With this transformation we have obtained an Hamiltonian whose explicit time
dependence is transferred from the system Hamiltonian to the interaction term H̃SE.

4.2. Master Equation and stationary state

While the microcircuit is represented as a two-level (qubit) system, the environment is
described by a many-body system; though the number of its degrees of freedom is taken
to be infinite, we shall stick to its states being represented by

We assume that at time t = 0 the system and the environment are uncorrelated:

ρ̃S+E(0) = ρ̃S(0)⊗ ρE, (4.33)

where is ρE a given equilibrium state of the environment and ρ̃S(t) the density matrix
for the system.

The Liouville-Von Neumann equation is

∂tρ̃S+E = L̃S+E(t)[ρ̃S+E], (4.34)

with

L̃S+E(t)[·] = −i[Heff , ·]− i[H̃E , ·]− i[H̃SE(t) , ] = (4.35)

= L̃S[·] + L̃E[·] + L̃SE[·]. (4.36)

We are seeking an expression of the Master Equation for the reduced dynamics of the
form:

∂tρ̃S(t) = −i[Heff , ρ̃S(t)] + K[ρ̃S(t)]. (4.37)

In Appendix A.5 we derive in full details the Master Equation, following the procedure
sketched in Appendix A.1, obtaining the following result

∂tρ̃S(t) = −i[Heff , ρ̃S(t)]−
∑
ξ=z,x

∫ +∞

0

dw
{
Gξ(w)

[
e−wL̃S σ̃ξ(w + t), σ̃ξ(t)ρ̃S(t)

]
+

+ G∗ξ(w)
[
ρ̃S(t)σ̃ξ(t), e−wL̃S σ̃ξ(w + t)

]}
, (4.38)

where we have introduced the functions Gξ(w), which are the time correlators calculated
tracing over the bath degrees of freedom

Gξ(w) ≡
∫ +∞

0

dk Jξ(k)

(
cos kw coth

βk

2
− i sin kw

)
. (4.39)
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β = κBT is the Boltzmann factor and Jξ(k) is the spectral density

Jξ(k) ≡
∑
µ

λ2
ξ,µδ(k − ωµ). (4.40)

Under the further assumption that spectral density be homogeneous in the modes
z, x, Jz(k) = Jx(k) ≡ J(k), in the M.E. the explicit time dependence disappears.

Again, we make a change of basis from σx, σy, σz to
σ̂x = σx

σ̂m =
∆

ω′
σy +

Ω

ω′
σz

σ̂n = −Ω

ω′
σy +

∆

ω′
σz

. (4.41)

or, in compact form,

ση =
∑

τ=x,m,n

Λητ σ̂
τ , Λ =

1 0 0

0 ∆
ω′
− Ω
ω′

0 Ω
ω′

∆
ω′
.

 (4.42)

Since we have performed an orthogonal rotation, the new basis keeps the commutation
rules of the original Pauli matrices, once we substitute (σx, σy, σx) 7→ (σx, σm, σn).

We can also write the rotated system observables σ̃ξ (4.30) as linear combinations of
the x, y, z Pauli matrices:

σ̃ξ(t) = R−1
y (Ωt)σξRy(Ωt) =

∑
η=x,y,z

R(Ωt)ξησ
η, (4.43)

with

R(Ωt) =

 cos Ωt 0 sin Ωt

0 1 0

− sin Ωt 0 cos Ωt

 , (4.44)

Then we can write σ̃ξ(t) in terms of (σ̂x, σ̂m, σ̂n)

σ̃ξ(t) =
∑

η=x,y,z

∑
τ=x,m,n

R(Ωt)ξηΛητ σ̂
τ (4.45)
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and consequently the expression e−wL̃S σ̃ξ(w + t) becomes

e−wL̃S σ̃ξ(w + t) =
∑

χ=x,y,z

∑
µ,λ∈{x,m,n}

R(Ω(w + t))ξχΛχµQ(−wω′)µλσ̂λ, (4.46)

where the matrix Q(−wω′)

Q(−wω′) =

cosω′w − sinω′w 0

sinω′w cosω′w 0

0 0 1

 , (4.47)

performs a rotation about the n̂-axis, corresponding to the action of the effective Hamil-
tonian Heff (4.17)

eiwω
′σ̂n/2σ̂xe−iwω

′σ̂n/2 = coswω′σ̂x − sinwω′σ̂m (4.48)

eiwω
′σ̂n/2σ̂me−iwω

′σ̂n/2 = sinwω′σ̂x + coswω′σ̂m. (4.49)

Substituting (4.45) and (4.46) into the first commutator of eq. (4.38) we have 2

[
ρ̃Sσ̃

ξ(t), e−wL̃S σ̃ξ(t+ w)
]

=

=
∑

η,χ=x,y,z

∑
τ,µ,λ=x,m,n

Λ−1
τη

(∑
ξ=x,z

R(−Ωt)ηξR(Ω(t+ w))ξχ

)
ΛχµQ(−wω′)µλ

[
ρ̃S(t)στ , σλ

]
,

(4.50)

we find that the explicit time dependence of this expression disappears: the underlined
expression in the previous equation is worked out in A.6 and gives R̃(Ωw)ηχ, where the
matrix R̃(Ωw) is

R̃(Ωw) ≡

 cos Ωw 0 sin Ωw

0 0 0

− sin Ωw 0 cos Ωw

 . (4.51)

The second commutator is just the hermitian conjugate of the first.

2in the following we will omit the hatˆover the sigmas
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Further developing the matricial expressions we arrive at the following compact form
of the operator K (see Appendix A.7):

K[ρ̃S] = −
∑

τ,λ∈{x,m,n}

(
A(Ω, ω′)τλ

[
ρ̃Sσ

τ , σλ
]

+ A(Ω, ω′)∗τλ[σ
λ, στ ρ̃S]

)
(4.52)

=
∑

τ,λ∈{x,m,n}

C(Ω, ω′)τλ

(
σλρ̃Sσ

τ − 1

2

{
στσλ, ρ̃S

})
− i[H(1), ρ̃S] = (4.53)

= D[ρ̃S]− i[H(1), ρ̃S], (4.54)

where

C(Ω, ω′)τ,λ = A(Ω, ω′)τλ + A(Ω, ω′)∗λτ , (4.55)

H(1) =
i

2

∑
τ,λ∈{x,m,n}

(A(Ω, ω′)τλ − A(Ω, ω′)∗λτ )σ
τσλ, (4.56)

A(Ω, ω′) =

∫ +∞

0

dwΛ−1R̃(Ωw)ΛQ(−ω′w)G(w)∗. (4.57)

From eq. (4.52) we have immediately the Kossakowski-Lindblad version of the Master
Equation, where the purely dissipative part has been separated from the anti-hermitian
generator −i[H(1), ·], which is hidden into the double commutator form (4.38), and
corresponds to the action of a correction Hamiltonian H(1), often called “Lamb shift”
Hamiltonian. The Lamb-shift correction is a λ2 order contribution to the effective
Hamiltonian, as it can be easily observed noting that the time correlator G(w), containing
the λ2

ξ,ν coupling constants, appears in the expression of H(1) through A(Ω, ω′).

4.3. Asymptotic current in the weak coupling limit

In order to determine the DC current I(t) (4.29) we need to study the evolution of the
system state ρ̃S(t). We have already seen that, in absence of external perturbations,
there exist two opposite steady current ∓I0

Ω
ω′

corresponding to the eigenstates |n̂,±〉 of
the effective Hamiltonian Heff : this means that if the system starts from an initial state
ρ̃S(0) polarized along n̂

ρ̃S(0) =
1

2
(1 + cσ̂n),

then it remains in that stationary state, producing a DC current. What happens if the
initial state is generic and we switch on the interaction with the thermal bath? We will
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see that even if we start from a non-stationary state, the dissipation will eventually lead
the system to an asymptotic state.

First of all we need to reconsider the Master Equation in the light of the considerations
in section 2.4.1. On the basis of the integral form of (A.68), we can recognize the same
structure of (2.61). This means that the Master Equation corresponds to the generator
of type K2:

∂tρS = −i[Heff , ρS] + λ2

∫ +∞

0

dv e−vLSTrE

(
L′ ◦ ev(LS+LE) ◦ L′[ρS ⊗ ρE]

)
, (4.58)

that is of Redfield type. As already observed, these kind of equations are in general
neither completely positive nor positive. In order to get a physically consistent Master
Equation, as indicated in section 2.4.1, one need to perform the so called rotating wave
approximation. Concretely, following the Davies’s prescription we will replace the operator
K2 with its ergodic average

K3[ρ̃S] ≡ lim
T→∞

1

2T

∫ +T

−T
dτ
(
e−τ L̃S ◦K2 ◦ eτ L̃S

)
[ρ̃S]. (4.59)

This will guarantee both the completely positive requirement and the convergence of
the approximate solution ρ̃S(t) to the real evolution, in the limit λ→ 0, i.e. for arbitrary
small couplings.

It is convenient to rewrite the M.E. in the Bloch representation. The Hamiltonian
part becomes

−i[Heff , ρ̃S] = −i
[
ω′

2
σn, ρ̃S

]
= −iω

′

2

[
σn,

aσx + bσm

2

]
=
ω′

2
(aσm − bσx)

(in Bloch representation) = −2


0 0 0 0

0 0 ω′

4
0

0 −ω′

4
0 0

0 0 0 0




1

a

b

c

 ≡ −2Heff |ρ̃S〉 .
(4.60)

Consequently, we can write e−τ L̃S in Bloch representation as

e2τHeff =


1 0 0 0

0 cos ω′τ
2

sin ω′τ
2

0

0 − sin ω′τ
2

cos ω′τ
2

0

0 0 0 1

 . (4.61)
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Next, we need to perform the ergodic average in (4.59) with the choice of an ohmic
spectral density made in [31]:

J(k) = αke−
k
kc . (4.62)

With this choice, once we have worked out the term K2 (4.52), evaluated the integrals
in dw and written it in Bloch notation, we can make the ergodic average and we get a
matrix of the kind:

K̃ ≡ K3 ≡ lim
T→∞

1

2T

∫ +T

−T
dτ e2τHeff ◦ K2 ◦ e−2τHeff =

=


0 0 0 0

0 K2(11) +K2(22) −K2(21) +K2(12) 0

0 K2(21) −K2(12) K2(11) +K2(22) 0

K2(30) 0 0 K2(33)

 , (4.63)

where K2(ij) is the (i, j) component of the 4× 4 matrix K2, representing the operator K2

in Bloch form.

The complete M.E. in Bloch representation

∂t |ρ̃S〉 = −2(Heff + K̃) |ρ〉 , (4.64)

admits a stationary state ρ̂ = 1
2
(1− K̃30

K̃33
σn):

ρ̂ =
1

2
1− 1

2

(
=gcs − 2 Ω

ω′
=gsc + Ω2

ω′2
=gcs

<gcc + 2Ω
ω′
<gss + Ω2

ω′2
<gcc

)
σn, (4.65)

where we have defined the quantities gcs, gsc, gcc, gss:

gcs =

∫ ∞
0

dwG(w) cos(−Ωw) sin(−ω′w)

gsc =

∫ ∞
0

dwG(w) sin(−Ωw) cos(−ω′w)

gss =

∫ ∞
0

dwG(w) sin(−Ωw) sin(−ω′w)

gcc =

∫ ∞
0

dwG(w) cos(−Ωw) cos(−ω′w)

(4.66)

arising from the calculation of the bath time-correlators.
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The factors in which we are interested are, after performing the integration:
=gcs =

πα

4

(
(ω′ + Ω)e−

Ω+ω′
ωc + (ω′ − Ω)e−

ω′−Ω
ωc

)
=gsc =

πα

4

(
(ω′ + Ω)e−

Ω+ω′
ωc − (ω′ − Ω)e−

ω′−Ω
ωc

) (4.67)


<gcc =

πα

4

(
(ω′ + Ω)e−

Ω+ω′
ωc coth

(
β(ω′ + Ω)

2

)
+ (ω′ − Ω)e−

Ω−ω′
ωc coth

(
β(ω′ − Ω)

2

))
<gss =

πα

4

(
(ω′ + Ω)e−

Ω+ω′
ωc coth

(
β(ω′ + Ω)

2

)
− (ω′ − Ω)e−

Ω−ω′
ωc coth

(
β(ω′ − Ω)

2

))
(4.68)

In the end we have found that the system under examination admits a stationary
state that is polarized along the n̂ axis with a polarization P = −Tr(ρ̃Sσ

n) given by

P =
(ω′ − Ω)2J+ + (ω′ + Ω)2J−

(ω′ − Ω)2c+J+ + (ω′ + Ω)2c−J−
, (4.69)

where

J± ≡ J(ω′ ± Ω) = α(ω′ ± Ω)e−
(ω′±Ω)
ωc , (4.70)

c± ≡ coth

[
β(ω′ ± Ω)

2

]
. (4.71)

This polarized state is exactly the same found by [31], the main difference being the
fact that, while their result is claimed to be valid only in the limit α→ 0 (or λ2

ν → 0)
and their Master Equation does not admit an exact stationary state, in our treatment
the stationary state ρ̂ is the real stationary state.

4.4. Complete positivity and positivity

As we have discussed in 2.4.1, any Master Equation derived in a Markovian approximation
regime applying the ergodic average, i.e. any Master Equation of the kind (2.67)

∂tρS(t) = (LS + λ2K3)[ρS(t)], (4.72)

with K3 given by

K3[ρ] ≡ lim
T→∞

1

2T

∫ +T

−T
dt e−tLSK2e

tLSρ, (4.73)
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ensures that the reduced dynamics is described by a continuous one-parameter semigroup
{γt}t≥0 of maps γt that are completeley positive (hence also positive). Consequently our
result can be considered free of any physical inconsistency.

On the opposite, we want to show that the dynamics arising from the Master Equation
proposed in [31] is not completely positive and, in some cases, is not even positive.

Following a general scheme frequently used in literature [10], they write

∂ρ̃S(t)

∂t
= −i[Heff , ρ̃S(t)]− 1

~2

∑
ξ=z,x

∫ ∞
0

dτ
{
Gξ(τ)

[
σ̃ξ(t), U †0(−τ)σ̃ξ(t− τ)U0(−τ)ρ̃S(t)

]
+ G∗ξ(τ)

[
ρ̃S(t)U †0(−τ)σ̃ξ(t− τ)U0(−τ), σ̃ξ(t)

]}
, (4.74)

where

U0(τ) = exp(−iHeffτ). (4.75)

In appendix A.8 we derive explicitly this Master Equation and we show that it
corresponds to the first Markovian approximation discussed in sec. 2.4.1, with a generator
of the form

L[·] = −i[Heff , ·] + λ2K1[·]. (4.76)

In order to check whether the dynamics generated is completely positive, we recast
this equation in Kossakowski-Lindblad form (2.35). We choose as Lindblad operators

V1 ≡ Vz1 =
1

~

∫ ∞
0

dτ G(τ)U †0(−τ)σ̃z(t− τ)U0(−τ) (4.77a)

V †2 ≡ V †z2 =
1

~
σ̃z(t) (4.77b)

V3 ≡ Vx1 =
1

~

∫ ∞
0

dτ G(τ)U †0(−τ)σ̃x(t− τ)U0(−τ) (4.77c)

V †4 ≡ V †x2 =
1

~
σ̃x(t) (4.77d)

and the operator K, including with the Lamb shift Hamiltonian H(1), becomes

K[ρ̃S] =
∑
ξ=z,x

∑
j,k=1,2

Cjk

(
Vξkρ̃SV

†
ξj −

1

2

{
V †ξjVξk

})
− i[H(1), ρ̃S], (4.78)

where the matrix C is (
0 1

1 0

)
. (4.79)
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In terms of V1, V2, V3, V4 eq. (4.78) can be easily rewritten

K[ρ̃S] =
4∑

j,k=1

C̃jk

(
Vkρ̃SV

†
j −

1

2
{V †j Vk, ρ̃S}

)
− i[H(1), ρ̃S], (4.80)

with the Kossakowski-Lindblad matrix C̃

C̃ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (4.81)

which is clearly non-positive definite. By virtue of the Gorini-Kossakowski-Sudarshan-
Lindblad theorem, the generated dynamics is not completely positive.

In appendix A.9 we also show that, in certain circumstances, the dynamics generated
by the M.E. (4.74) can be non-positive.

4.5. Entropy production

In the previous sections we have observed that, while the Master Equation derived in
the weak coupling limit according to the Davies’s procedure gives rise to a semigroup of
completely positive dynamical maps, the dynamics generated by the M.E. proposed in[31]
is not completely positive and in some circumstances is not even positive. In this section
we want to highlight another important consequence of the lack of complete positivity:
the violation of the Second Law of Thermodynamics as formulated in 3.3.2, in the context
of the Open Quantum Systems; in particular we will see that the non-CP dynamics can
be affected by a negative entropy production for a very large and significative set of
initial states and for certain values of the bath temperatures and of the applied frequency.
In order to accomplish this task, we must find a suitable expression for the entropy
production σ(t).

4.5.1. Analytical study

The entropy production formula (3.33) is defined through the relative entropy

σ(ρ) = −κBTr

(
L[ρ]

(
log ρ− log ρeq

))
, L[ρeq] = 0 , (4.82)

where ρeq is the equilibrium state, L is the total generator. The possible time-dependence
is hidden into the σ(t) time-dependence, whenever we consider a system evolving in time.
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In this section we are only interested in the dependence of σ on the states, since we want
to find in which set of states we can have negative entropy production.

Once we express ρ in the Bloch representation with respect to the basis σx, σm, σn,
the action of the generator L can be written after the definitions

Lx := L10 + L11a+ L12b+ L13c

Lm := L20 + L21a+ L22b+ L23c

Ln := L30 + L31a+ L32b+ L33c

⇒ L[ρ] = −2
(
Lxσ

x + Lmσ
m + Lnσ

n
)
. (4.83)

ρ can be expressed by the following spectral decomposition:

ρ =

(
1 + r

2

)
σ0 + r̂ · σ

2
+

(
1− r

2

)
σ0 − r̂ · σ

2
(4.84)

where r2 = a2 + b2 + c2, r̂ = r
r

and σ = (σx, σm, σn).

Looking at the two eigenvalues in brackets one can notice that:

• they are both positive and ≤ 1 if and only if 0 ≤ r ≤ 1;

• each of them is 0 if and only if the other is 1, whenever r = 1. In this case the
density matrix is a projector and represents a pure state, as expected.

Therefore, for 2-level systems, states are identified by points in the Bloch unit sphere
{r ∈ R3, r2 ≤ 1}, with the pure states on the surface.

With this formalism we can calculate the first term in (4.82). First we obtain

L[ρ] · log ρ = −2
(
Lxσ

x + Lmσ
m + Lnσ

n
)[

log

(
1 + r

2

)(
σ0

2
+
aσx + bσm + cσn

2r

)
+

+ log

(
1− r

2

)(
σ0

2
− aσx + bσm + cσn

2r

)]
,

(4.85)

and then the trace

−Tr
[
L[ρ] · log ρ

]
=

2

r
log

(
1 + r

1− r

)[
aLx + bLm + cLn

]
. (4.86)

For the second term in (4.82) we have

Tr
[
L[ρ] · log ρeq

]
=

2

req

log

(
1 + req

1− req

)[
aeqLx + beqLm + ceqLn

]
, (4.87)

where req =
√
a2

eq + b2
eq + c2

eq.
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In the end, the final expression is (κB-normalized)

σ(ρ)

κB
=

2

r
log

(
1 + r

1− r

)(
aLx + bLm + cLn

)
−

− 2

req

log

(
1 + req

1− req

)(
aeqLx + beqLm + ceqLn

)
.

(4.88)

First of all we calculate the entropy production for a state chosen as a small pertur-
bation along the n̂-axis of the asymptotic state, that we have found in our analysis

ρ =
1− Pσn

2
+
ε

2
σn, (4.89)

where the polarization P is given by (4.69):

P =
(ω′ − Ω)2J+ + (ω′ + Ω)2J−

(ω′ − Ω)2c+J+ + (ω′ + Ω)2c−J−
, (4.90)

and is positive and lesser than 1.

The positivity condition for the perturbed density matrix imposes

ε ∈ [−1 + P ; 1 + P ] . (4.91)

Inserting (4.89) into (4.88) we have (here and in the following pages κB ≡ 1)

σ(ρ) =2Ln

(
1

| − P + ε|
log

(
1 + | − P + ε|
1− | − P + ε|

)
(−P + ε)− log

(
1 + P

1− P

))
=

=2
(
L30 − (P − ε)L33

)
log

(
(1− P + ε)(1 + P )

(1 + P − ε)(1− P )

)
.

(4.92)

Since P = L30/L33 the factor in round brackets is always non-negative if ε ≥ 0 and the
logarithm is non-negative as well, in the same condition. Consequently the Second Law
of Thermodynamics cannot be violated.

Remark 4.1. It is very important to notice, however, that if we consider, instead of the
asymptotic stationary state ρeq, the Gibbs thermal state

ρβ =
1− tanh(βω′/2)σn

2
, (4.93)

where β is the inverse temperature of the environment, with respect to the Hamiltonian
Heff = ω′/2 · σn, then (4.92) becomes negative for

ε ∈ [− tanh(βω′/2 + P, 0] . (4.94)
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This is a confirmation that the non-negativity of the entropy production, as a consequence
of the Lindblad H-theorem, is verified only when the reference state is stationary. Even
though the thermal state converges to the stationary state when β →∞ or ω → 0, it is
immediate to notice that under these conditions the interval of ε values that cause the
negative entropy production becomes vanishingly small.

Even if the non-completely positive dynamics does not violate the Second Law when
considering reference states as small perturbations of the stationary ρeq along the n̂
direction, it turns out that if we perturb ρeq along the m̂ and n̂ directions, we do have
negative entropy production for a specific set of values of b and c. In fig. 4.1, using
Maxima, we have plotted the entropy production as a function of the components b and
c and we can observe that there is a region where σ < 0.

Figure 4.1.: σ(%) surface, in units of κ∆. Parameters: α = 0.005, ωc = 1000, β = 100, ω = 2.

4.5.2. Numerical study

Once the master equation coefficients are known, the full time-evolution {ρ(t), t ≥ 0}
from any chosen initial state ρ0 can be calculated thanks to an algorithm integrating
the equations of motion. In this case, a standard Runge-Kutta algorithm was used, with
Klash-Karp fifth order step method and adaptive step size, taken directly from[32]. The
entropy production can then be evaluated at each iteration step.
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The stationary reference state for the calculation of σ is obtained thanks to the
Kramer rule, just after the evaluation of {Ljk}, while the thermal state is calculated
thanks to eq. (4.93).

Once L is calculated for some given values of the parameters β, Ω, ∆, ωc and α, it
is possible to generate a map of σ on all the states in the Bloch sphere, searching for
violations of positivity.

The physical quantities entering the model as parameters are:

• Inverse temperature β

• Pumping frequency Ω

• Pumping amplitude ∆; ω′ =
√

Ω2 + ∆2

• Critical frequency ωc

• Coupling constant α.

The following adimensional quantities are defined:

x := Ω/∆ ⇒ Ω = x∆, ω′ = ∆
√

1 + x2

xc := ωc/∆ ⇒ ωc = xc∆

y := κBT/(~∆) ⇒ κBT = y~∆

(4.95)

The direct inspection of the Master Equation proposed in[31], in its explicit form (A.146),
reveals that it can be fully expressed in terms of the above adimensional quantities, plus
the coupling constant α which is already adimensional. After the substitutions, an overall
factor ∆ comes out in front of everything, which is dimensionally consistent with the fact
that the Master Equation takes ρ(t) and gives out ρ̇(t). This suggests to parametrize the
time t with the adimensional quantity

t̄ := t∆ (4.96)

Therefore the parameter ∆ has the sole physical role of fixing the time scale of the
description: once the system is parametrized in terms of the above adimensional quantities
Eq. (4.95), varying ∆ results only in a dilatation/contraction of the time scale. For this
reason, ∆ was kept fixed to the value of 1 throughout our investigations, as was done
in[31].

Entropy production positivity violations

Our first investigation aimed to create a map of σ over the whole space of states, that is
the set of all Bloch vectors with r < 1. All pure states are excluded since the practical
formula for calculating σ, Eq. (4.88), diverges for r = 1.
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The implemented program takes the parameters α, ωc, Ω, ∆ and β as input, calculates
their adimensional equivalent as to Eq. (4.95), calculates the coefficients {Ljk} and obtains
both the stationary state and the thermal state in the Bloch parametrization. Then
it evaluates the entropy production on any chosen state, with respect either to the
stationary or to the thermal state.

Here we present only the results obtained with the stationary reference state, believing
them to be the most significant as explained previously. In addition, the calculation
with the thermal state fails in the high frequency and/or low temperature regime,
because tanh (β~ω′/2)→ 1 and ρβ becomes indistinguishable from a pure state, causing
a divergence in Eq. (4.88). The stationary state does not cause such problems because it
is never completely pure, for close it may be to the edge of the Bloch sphere.

For every chosen set of the physical parameters, σ[ρ] was evaluated in roughly 6
million points randomly selected inside the Bloch sphere. Some violations of the second
law were indeed observed, with an incidence reaching peaks of 45% of the total number
of states, more frequently as the temperature is lowered, while in general no violation
was observed for high temperatures.

The most important data are collected in Tables 4.1 and 4.2. Results are displayed
only for values of β and Ω that produce a negative entropy production. Furthermore,
the tables report also 〈σ〉, the average value of σ, and 〈neg.σ〉, the average value of σ
performed only on states where it is negative, in order to have an idea of the magnitude
of the violations. Errors were obtained through statistics; for 〈σ〉 and for 〈neg.σ〉 they
are not displayed, being typically of order of 1% ∼ 0.01%.

It is interesting to consider the proximity of ρβ to ρeq, measured through the following
definition of a distance between states, descending from the trace norm:3

d(ρ1, ρ2) : = ‖ρ1 − ρ2‖ = Tr
√

(ρ1 − ρ2)2 =

=
1

2

(
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

)
,

(4.98)

the last passage coming from the direct calculation with the Bloch parametrization of
ρ1 and ρ2. Apart from the factor 1/2, ‖ρ1 − ρ2‖ is nothing but the Euclidean distance
between the corresponding points in the Bloch space.

Tables 4.1 and 4.2. We believe the cases when ‖ρeq − ρβ‖ is particularly small to be
the most significant, because when ρeq ' ρβ the physical description is fully adherent to
thermodynamics, therefore an observed negative entropy production represents indeed a
violation to the Second Law of Thermodynamics as formulated in 3.3.2.

3 The trace norm for a generic operator on some Hilbert space is defined as

‖A‖ := Tr
√
A†A . (4.97)

Since density matrices are hermitian and positive-defined, their trace norm is simply the trace.
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β = 2

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 0.0097 2.496 ± 0.024 -0.00428 0.07861

0.250 0.0365 2.868 ± 0.011 -0.00419 0.07564

0.500 0.1164 3.733 ± 0.025 -0.00408 0.06822

1.000 0.2581 4.440 ± 0.031 -0.00385 0.05798

2.000 0.3764 3.811 ± 0.024 -0.00321 0.05074

4.000 0.4379 1.874 ± 0.013 -0.00210 0.04676

8.000 0.4688 0.04433 ± 0.00056 -0.00088 0.04441

β = 5

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 0.0019 4.063 ± 0.030 -0.01585 0.10343

0.250 0.0074 6.866 ± 0.016 -0.01842 0.09399

0.500 0.0288 13.15 ± 0.21 -0.02188 0.07570

1.000 0.0981 20.128 ± 0.082 -0.02135 0.05245

2.000 0.2283 23.10 ± 0.19 -0.01724 0.03376

4.000 0.3492 23.855 ± 0.060 -0.01405 0.02405

8.000 0.4226 23.413 ± 0.078 -0.01166 0.01991

β = 10

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 9.13× 10−5 3.211 ± 0.026 -0.01988 0.14582

0.250 4.40× 10−4 7.725 ± 0.033 -0.02660 0.12478

0.500 0.0015 16.47 ± 0.16 -0.03647 0.10055

1.000 0.0134 26.34 ± 0.17 -0.04116 0.06777

2.000 0.0824 31.55 ± 0.27 -0.03196 0.03542

4.000 0.2241 32.903 ± 0.088 -0.02165 0.01868

8.000 0.3488 33.423 ± 0.19 -0.01635 0.01232

Table 4.1.: Entropy production data for ' 6 · 106 points randomly chosen in the Bloch space.
Parameters: α = 0.005, ωc = 1000.
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β = 20

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 2.08× 10−8 3.749 ± 0.019 -0.02198 0.14606

0.250 2.03× 10−7 8.489 ± 0.024 -0.02887 0.12586

0.500 6.20× 10−6 17.25 ± 0.149 -0.03983 0.10505

1.000 4.31× 10−4 28.43 ± 0.090 -0.05365 0.07814

2.000 0.0084 36.55 ± 0.45 -0.05636 0.04486

4.000 0.0776 39.16 ± 0.22 -0.03674 0.01978

8.000 0.2231 39.52 ± 0.27 -0.02218 0.00959

β = 40

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 5.13× 10−16 4.038 ± 0.021 -0.02278 0.14479

0.250 3.40× 10−14 8.693 ± 0.034 -0.02933 0.12554

0.500 2.66× 10−11 17.35 ± 0.13 -0.04011 0.10506

1.000 1.09× 10−8 28.537 ± 0.094 -0.05427 0.07849

2.000 1.50× 10−4 37.38 ± 0.38 -0.06504 0.04834

4.000 0.0071 42.34 ± 0.21 -0.06135 0.02477

8.000 0.0763 43.69 ± 0.11 -0.03629 0.01018

β = 80

Ω ‖ρβ − ρeq‖ neg. points (%) 〈neg.σ〉 〈σ〉
0.125 0. 4.115 ± 0.021 -0.02296 0.14451

0.250 0. 8.735 ± 0.036 -0.02942 0.12549

0.500 0. 17.37 ± 0.14 -0.04017 0.10506

1.000 6.94× 10−15 28.550 ± 0.095 -0.05434 0.07850

2.000 1.19× 10−8 37.40 ± 0.39 -0.06522 0.04839

4.000 1.04× 10−4 42.74 ± 0.21 -0.06839 0.02626

8.000 0.0068 45.65 ± 0.15 -0.05992 0.01278

Table 4.2.: Entropy production data for ' 6 · 106 points randomly chosen in the Bloch space.
Parameters: α = 0.005, ωc = 1000.
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Entropy production time-evolution

Having stated that the model at study may indeed generate a negative entropy production,
the question arose whether these violations have only a transient character, vanishing
quickly after a short time interval, or can indeed persist in time, even after many pumping
cycles. To answer such question we employed the numerical integration algorithm to
obtain the time-evolution of ρ(t) from any chosen initial state, and therefore also the
time-evolution of σ(t).

Results were quite intriguing, especially when compared to the same calculations
performed in the completely positive case. To summarize, the completely positive
dynamics produces always a σ(t) time-evolution curve looking almost like a damped
exponential, positive and converging to 0, the expected value for σ in the stationary
state. The original master equation has a similar behavior, but in addition the σ(t)
curve appears often oscillating about an average value that is mostly coincident or very
close to the time-evolution curve in the completely positive case. The structure of these
oscillations may be very simple and clear, or more irregular and complex, depending on
the choice of β, Ω and the initial state, but the main oscillating character is always present
and the main frequency is independent of the initial state, the latter often affecting the
amplitude instead. In general, the oscillations get clearer and cleaner as the temperature
decreases.

Figures 4.2 and 4.3 report two relevant examples, showing in the same graph the σ(t)
curves for both master equations with the same parameters, in units of κ∆. Figures
4.4 and 4.5 report two examples of ρ(t) time-evolution, expressed through the curves
a(t), b(t), c(t) and r(t), the latter serving as a check against positivity violations, occurring
for r > 1. The simulation time must be intended as the adimensional variable t̄ = t∆. In
general there isn’t any visible difference between the evolution curves generated by the
original master equation and those of the completely positive case; the reported graphs
are from the former. Indeed, the direct numerical inspection of the two generators shows
they are generally very close: the two central coefficients L11 and L22 have at best a
relative difference around 15% in extremes conditions, while generally being much closer,
while all the others entries are always within few per cents of each other. In particular,
the coefficients that are 0 in the completely positive master case, are of order 10−3 in the
other one.

The initial chosen state in the two simulations presented here was the pure state
|z,−〉, following the indications in[31]; in the Bloch parametrization it is expressed by

|z,−〉 〈z,−| =

(
0 0

0 1

)
=
σ0 − σz

2
=
σ0 − (Ωσm + ∆σn)/ω′

2
(4.99)

(4.100)
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therefore the corresponding Bloch vector is

−
(

0,
Ω

ω′
,

∆

Ω′

)
. (4.101)

Analyzing Fig. 4.2 one can notice that the oscillations seem to be connected with the
observed violations of σ positivity: they bring σ into the negative region, in some cases
even after σ has been positive for a considerable number of periods.

Origin of the oscillations

The issue addressed here is the origin of the oscillations observed in σ(t) time-evolution
generated by the original master equation; more specifically:

• Have they constant frequency? If so, which is the value of the frequency?

• Is it possible to identify a Hamiltonian operator responsible for the oscillations?

• Why do the oscillations not appear in the completely positive case?

The answer turned out to be the following: the oscillations have constant frequency
and are due to the Hamiltonian part of the generator L, that is that part of L whose action
on ρ can be written in the form of −i/2 times a commutator, equivalent to the action of
Heff plus a (usually small) correction coming from the system-environment interaction.
This Hamiltonian will be noted with H̃ and ω̃ will be the associated frequency.4 The
reason why we observe oscillations is that even though L[ρeq] = 0, H̃ does not commute
with ρeq, in other words ρeq is not an invariant state for the Hamiltonian part alone of
the generator. In the completely positive case this condition is verified instead, as will
be discussed in a while.

In order to explain how this result was obtained, a theoretical preamble is needed. Con-
sider the most generic Hamiltonian acting on a spin-1/2 system, in the usual {σx, σm, σn}
base for the operators:

H = αxσ
x + αmσ

m + αnσ
n, αx, αm, αn ∈ R .

4In this context, the new notation employing˜does not serve to distinguish quantities in the rotated
frame with respect to their counterparts in the original frame; we have been working only in the
rotated frame since its introduction.



60 A concrete case: current pumping in a minimal ring model

Figure 4.2.: σ(t) curves for both master equations, in units of κ∆: the red (darker) curve for
the completely positive case, the green (lighter) one from the original master
equation. Time-evolution as a function of the adimensional variable t̄ = t∆.
Parameters: α = 0.005, ωc = 1000, β = 1, Ω = 2; initial state: |z,−〉, whose
Bloch vector is written in the figure.

Figure 4.3.: σ(t) curves for both master equations in units of κ∆. Parameters: α = 0.005,
ωc = 1000, β = 100, Ω = 2; initial state: |z,−〉, the corresponding Bloch vector
is written in the figure.
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Figure 4.4.: Example of ρ(t) time-evolution. Parameters: α = 0.005, ωc = 1000, β = 1, Ω = 2;
initial state: |z,−〉.

Figure 4.5.: Example of ρ(t) time-evolution. Parameters: α = 0.005, ωc = 1000, β = 100,
Ω = 2; initial state: |z,−〉.
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Its action on whatever state through the commutator −i/2[H, ·] can be expressed as a
4× 4 matrix acting from the left on a Bloch state:

− i
2

[H, ·] ⇔ 1

2


0 0 0 0

0 0 −αn αm

0 αn 0 −αx
0 −αm αx 0

 . (4.102)

This is the most general form of antisymmetric matrix acting on a Bloch vector, therefore
we conclude that every Hamiltonian can always be expressed as a fully antisymmetric
matrix. The vice versa is also true: any antisymmetric matrix can be uniquely associated
to a certain Hamiltonian, acting on density matrices via −i/2 times the commutator.

The generic antisymmetric matrix Eq. (4.102), corresponding to H, can always be
diagonalized:

H |v1,2〉 = ε1,2 |v1,2〉
⇒ H = ε1P1 + ε2P2, P1,2 = |v1,2〉 〈v1,2|

and since TrH = 0 and TrP1,2 = 1, it follows ε1 = −ε2, so one can choose ε1 ≡ ε > 0 and
ε2 ≡ −ε, whence

H = ε(P1 − P2) . (4.103)

The direct calculation leads finally to

ε =
1

2

√
α2
x + α2

m + α2
n ⇒ P1,2 =

σ0 ±H/ε
2

. (4.104)

Let us focus now on the Hamiltonian part of the generator L, that is H̃, which can
be calculated by taking the antisymmetric part of L, the matrix representing L:

LA = −


0 0 0 0

0 0 L12 − L21 L13 − L31

0 L21 − L12 0 L23 − L32

0 L31 − L13 L32 − L23 0


and comparing this to Eq. (4.102) leads to

αx = 2(L23 − L32)

αm = −2(L13 − L31)

αn = 2(L12 − L21) .

(4.105)
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Finally, by identifying the energy ε with ω̃, one finds the real intrinsic frequency of the
Hamiltonian affecting the system.

It is also possible to calculate the thermal state given by H̃, employing Eq. (4.104):

ρ̃β =
e−βH̃

Tre−βH̃
=
e−βε/2P1 + eβε/2P2

2 cosh (βε/2)
=

=
σ0 − tanh (βε/2)H̃/ε

2

(4.106)

⇒ ãβ = −αx
ε

tanh

(
βε

2

)
, b̃β = −αm

ε
tanh

(
βε

2

)
, c̃β = −αn

ε
tanh

(
βε

2

)
One can now compare this new thermal state to ρβ, the one obtained from Heff, as well
as the frequencies ω̃ and ω′. Results for the first comparison do not offer any surprise:
since the coupling is weak, H̃ is actually very close to Heff, and so ρ̃β is very close to ρβ.

The frequencies deserve closer attention because of their relation with the observed
frequencies ωm of σ(t) oscillations, which were obtained by measuring the time interval
between two subsequent maximum points while running the simulations. The agreement
between ω′, ω̃ and the measured frequency is indeed very good: the relative differences

δ′ =
|ω′ − ωm|

ω′
, δ̃ =

|ω̃ − ωm|
ω̃

(4.107)

never exceed 7% and in most cases are below 1%, as shown in Table 4.3, presenting three
examples at very high, intermediate and very low temperature.

As can can be seen from the figures, ωm is usually closer to ω̃ than to ω′, but not
always. The three frequencies are always very close to each other.

In all these computations the initial state was (0.2, 0.2,−0.7), because it seemed to
produce the largest and cleanest oscillations. Other states produced often more complex
secondary structures between the main oscillation peaks, therefore even though the main
oscillating pattern is still recognizable, in practice it is more difficult to measure the
frequency. Since the oscillations are clearer and cleaner for low temperatures and for
high frequencies, in the case β = 1 it was not possible to measure ωm for ω < 1.

The last issue to be faced is the fact that [H̃, ρeq] 6= 0: this was verified numerically,
comparing also the original master equation to the completely positive case, for which
instead the commutator is 0. In the latter case in fact the stationary state is exactly
polarized along σn and since the coefficients L13, L23, L31 and L32 are identically 0, the
antisymmetric part of the generator can only have the coefficient αn different from 0, so
the corrected Hamiltonian is also polarized along σn, see Eq. (4.102) and (4.105).



64 A concrete case: current pumping in a minimal ring model

β = 1

Ω ω′ ω̃ ωm δ′ δ̃

1.000 1.41421 1.37902 1.3706±0.0025 0.0318 0.00612

2.000 2.23607 2.21395 2.1978±0.0046 0.0175 0.00739

4.000 4.12310 4.11111 4.0934±0.0060 0.00726 0.00433

8.000 8.06226 8.05609 8.0443±0.0059 0.00223 0.00146

β = 10

Ω ω′ ω̃ ωm δ′ δ̃

0.125 1.00778 0.94521 0.94527±0.00039 0.0661 0.000057

0.250 1.03078 0.96933 0.96945±0.00065 0.0633 0.000122

0.500 1.11803 1.06051 1.06112±0.00084 0.0536 0.000576

1.000 1.41421 1.36703 1.3678±0.0010 0.0339 0.000565

2.000 2.23607 2.20488 2.2059±0.0011 0.0137 0.000436

4.000 4.12311 4.10574 4.105352±0.000049 0.00433 0.000095

8.000 8.06226 8.05327 8.0514±0.0040 0.00135 0.000236

β = 100

Ω ω′ ω̃ ωm δ′ δ̃

0.125 1.00778 0.94486 0.94372±0.00024 0.0679 0.00121

0.250 1.03078 0.96892 0.96869±0.00094 0.0641 0.000242

0.500 1.11803 1.05986 1.06049±0.00070 0.0542 0.000601

1.000 1.41421 1.36567 1.36613±0.00072 0.0352 0.000334

2.000 2.23607 2.20256 2.2027±0.0014 0.0151 0.000080

4.000 4.12311 4.10317 4.1027±0.0017 0.00497 0.000112

8.000 8.06226 8.05123 8.05169±0.00019 0.00131 0.000057

Table 4.3.: Comparison between the system Hamiltonian frequency, the full generator fre-
quency and the observed frequency in σ(t) oscillations. Parameters: ωc = 1000,
α = 0.005; initial state: (0.2,0.2,-0.7).
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The commutator −i[H̃, ρeq] was computed by calculating the matrix Eq. (4.102) and
making it acting on ρeq from the left. The x and m values of the resulting vector represent
the magnitude of the ”commutativity violation”, which showed to be generally of the same
order of magnitude as the coefficients L13, L23, L31 and L32, that is roughly 10−4 ∼ 10−2,
which is not surprising since P is typically of order 1. By comparison, the action of L[ρeq]
is always not much bigger than the machine precision, roughly 10−18 ∼ 10−19.

Remark 4.2. As Fig. 4.2 and 4.3 show, the completely positive dynamics may produce
slight oscillations as well. This fact can be understood inspecting the generator LCP ,

ρ̇ = −2LCP [ρ] (4.108)

which, representing LCP with the matrix LCP , reads:
1

ȧ(t)

ḃ(t)

ċ(t)

 = −4LCP


1

a(t)

b(t)

c(t)

 = −4


0 0 0 0

0 L11 L12 0

0 L21 L22 0

L30 0 0 L33




1

a(t)

b(t)

c(t)

 . (4.109)

LCP can be rewritten in the following form, where the symmetric and antisymmetric
part are made explicit:

−4LCP =


0 0 0 0

0 L11 s+ ω̃ 0

0 s− ω̃ L22 0

L30 0 0 L33

 , (4.110)

where s = (L12 + L21)/2 and ω̃ = (L12 − L21)/2.

Let us introduce the matrix

D3 =

 L11 s+ ω̃ 0

s− ω̃ L22 0

0 0 L33

 , (4.111)

thanks to which Eq. (4.109) readsȧ(t)

ḃ(t)

ċ(t)

 = −4D3

a(t)

b(t)

c(t)

− 4L33

0

0

1

 , (4.112)

To solve this inhomogeneous system of linear differential equations, one needs to find
the general solution of the associated homogeneous system and add a particular solution
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of the inhomogeneous. The latter is readily provided by the known stationary solution:aeq

beq

ceq

 = −L30

L33

0

0

1

 , (4.113)

since P = L30/L33; the general solution then formally readsa(t)

b(t)

c(t)

 = e−4D3t

āb̄
c̄

− L30

L33

0

0

1

 (4.114)

with (ā, b̄, c̄) some vector to be determined from the initial conditions; denoting them by
(a0, b0, c0) and substituting them into the above expression, one findsa(t)

b(t)

c(t)

 = e−4D3t

a0

b0

c0

− L30

L33

(
1− e−4L33t

)0

0

1

 . (4.115)

Now the spectrum of D3 has to be examined: it turns out to be

λ± =
L11 + L22 ±

√
(L11 − L22)2 + 4(s2 − Ω2)

2
, λ3 = L33 (4.116)

and one concludes that LCP may produce oscillations only if the initial vector has a zero
(or small) c0 component: only a(t) and b(t) can oscillate because λ± can be complex,
whereas λ3 is always real. In addition, the time-evolution will eventually drive every
initial state towards the equilibrium one, which is polarized along σn, therefore, as the
system approaches equilibrium and a(t), b(t) → 0, one may expect the oscillations to
disappear.

4.6. Conclusions

In this chapter, which presents the main result of this thesis, we have studied a model
of minimal circuit immersed in a dissipative thermal bath and driven by an applied
alternating potential. This concrete case of open quantum system has already been the
subject of an article published in 2011 [31]. The authors of the model proposed a Master
Equation to describe the time-evolution of the system from which an approximated
expression of the asymptotic steady current is derived.

The Master Equation turns out to generate a non-completely positive reduced dynam-
ics. In view of the considerations exposed in Chap. 3, it was interesting to investigate
whether the lack of the complete positivity requirement may lead, in the case at hands,
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to the violation of the Second Law of Thermodynamics, more concretely if it causes a
negative entropy production. Our study showed that, indeed, the dynamics determined
by the Master Equation proposed in the original article does violate the Second Law, to
an extent depending on how the physical paramaters (temperature, pumping frequency
and amplitude) are varied. In particular these violations appear to be very strong when
the temperature is very low while they vanish for high ones.

By means of both analytical and numerical investigation of the time-evolution of
the system state and of its entropy production, we have compared the behaviour of the
original M.E. with another Master Equation that we have derived in the weak coupling
limit, following the prescription of eliminating the fast oscillating terms in the generator
of the dynamics by taking an ergodic average. By construction, the resulting dynamics
is completely positive, hence positive, while the original one also suffers of the lack of
positivity in certain circumstances (which means that it maps some physical states onto
non positive density matrices, that cannot be admissable physical states). As expected
from the application of the Lindblad-H theorem, the complete positive dynamics is not
affected by negative entropy production, even though the asymptotic stationary state
turns out to be the same, and consequently the steady current.

The results of this work will appear in an article in preparation, with the precious
contributions of Marco Pezzutto and my supervisor, Fabio Benatti.
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Chapter 5.

Entangled identical particles and
noise

While for many decades entanglement has been just an epistemological curiosity, in
recent times it is becoming an experimentally accessible resource; in particular, entangled
N -qubit states have been proposed as means to beat the so-called shot-noise limit
accuracy in parameter estimation. The literature on quantum parameter estimation and
metrological applications of many body systems is vast: see for example [33–56] and
references therein. Notable steps in this direction using many-body systems have been
recently realized: entangled states in systems of ultra-cold atoms have been generated
through spin-squeezing techniques [55],[56]. The aim is to use them as input states in
interferometric apparatuses, specifically constructed for quantum enhanced metrological
applications. In such devices, the initial N -qubit states are rotated by means of collective
pseudo-spin operators; for distinguishable qubits, the relevance of entangled states is
readily exposed by addressing single particle contributions to the collective operators [46,
54]; however, in the case of trapped ultra-cold atoms, the qubits involved are identical
and thus not addressable, a fact that has often not been fully appreciated in the recent
literature on quantum metrology and that has been tackled in Refs. [57, 58].

In this chapter, we characterize the entangled states of N boson systems according
to the generalized notion of separability given in Ref. [57]; in particular, we show that
the negativity, which measures the lack of positivity of partially transposed states, is
an exhaustive bipartite entanglement witness. This is to be contrasted with the case of
distinguishable qubits where, apart for two qubits or one qubit and one qutrit, there
exist entangled states with zero negativity [59].

Then, we show that a purely dephasing noise which, for distinguishable qubits, is
responsible for mere decoherence, in the framework of identical bosons can instead
generate entanglement; however, we also show that this noise-induced entanglement
cannot be used to improve on the sensitivities of matter interferometric devices based on
such systems [60].
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5.1. Entanglement of identical bosons

The definition of entanglement for the states of a system composed of N distinguishable
particles is based on the tensor product structure of the total Hilbert space of the system:
H = H1⊗H2⊗ . . .⊗HN , where Hi is the Hilbert space of the i-th particle states. Then,
if ρ is the density matrix representing a generic state of the N-particle system, the state
is said separable if it can be written as a convex linear combination of the single-particle
states,

ρ =
∑

i=1,...,N

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(N)
i , pi ≥ 0,

∑
i=1,...,N

pi = 1, (5.1)

otherwise the state ρ is said to be entangled.

The tensor product structure of H allows to define linear local operations on the
system, i.e. maps of the form

Λ = Λ(1) ⊗ Λ(2) ⊗ . . .⊗ Λ(N) , (5.2)

where the linear map Λ(i) : ρ(i) 7→ Λ(i)
[
ρ(i)
]

acts only upon the i-th particle density
matrix.

It is also known, however, that the Hilbert space of a system of identical bosons is
not given by the tensor product of the single-particle Hilbert spaces, but is formed by
the subspace of it spanned by the symmetric combinations of tensor products of the
single-particle vectors. For example, the Hilbert space for two identical bosonic qubits is
the subspace of C4 spanned by

| ↑↑〉, | ↓↓〉, | ↑↓〉+ | ↓↑〉√
2

, (5.3)

where |i〉, i =↑, ↓, is any orthonormal basis in C2. Coherently, a mixed state for identical
bosons must be a linear convex combination of projections |ψ〉 〈ψ| onto symmetrized
vectors.

Consequently, eq. (5.1) cannot be a valid definition of separable state for a system of
N identical particles, which is also evident from the fact that, even after a symmetrization,
it would remain a mixture of states where the single particles can be distinguished by
the labels. Furthermore, also states of the form

ρ =
∑
i

pi ρi ⊗ ρi ⊗ . . .⊗ ρi , (5.4)

cannot be, in general, admissable states for a system of identical particles. This fact can
be clarified using again the example of two identical bosonic qubits. Indeed, any element
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ρ
(1)
i ⊗ ρ

(2)
i of the convex sum

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i , (5.5)

is a 4 × 4 generic density matrix, as their linear convex combination ρ. Therefore it
cannot be written, in general, as a convex combination of solely projections onto the
symmetric states.

The notion of entanglement in many-body systems has been addressed and discussed
in literature (see, for instance, Ref.[61–76]), however, only limited results actually apply
to the case of identical particles. In Ref. [57] a notion of separability based on algebraic
bipartition has been proposed, that will be briefly illustrated in the following.

Given a system of particles and its Hilbert space H, let us denote with B(H) the
algebra of all bounded operators on it. We give the following definitions.

• An algebraic bipartition of the algebra B(H) is any pair (A,B) of commuting
subalgebras of B(H).1

• An element (operator) of B(H) is said to be local with respect to the bipartition
(A,B) if it is the product AB of an element A of A and another B of B.

• A state ω on the algebra B(H) will be called separable with respect to the bipartition
(A,B) if the expectation ω(AB) of any local operator AB can be decomposed into
a linear convex combination of products of expectations:

ω(AB) =
∑
k

λk ω
(1)
k (A)ω

(2)
k (B) , λk ≥ 0 ,

∑
k

λk = 1 (5.6)

where ω
(1)
k and ω

(2)
k are states on B(H); otherwise the state ω is said to be entangled

with respect the bipartition (A,B).

The new definition of entanglement reduces to the standard notion of entanglement
for distinguishable particles. For instance, in the case of a two qubit system, by choosing
the algebraic bipartition A = B = M2(C), where M2(C) is the algebra of 2× 2 matrices
over C2, and the expectation value ω(AB) = Tr (ρA⊗B) defined in the usual way
through the trace with the two-qubit density matrix ρ, condition (5.6) readily gives that
ρ must be a convex combination of product states.

One can apply the previous notions of separability and entanglement to the case of a
system of N bosons confined in an optical trap, for instance a system of N cold atoms
trapped in a double-well potential. The dynamics of this kind of system can be very
well described by a Bose-Hubbard Hamiltonian, that in second quantization assumes the

1Notice that the two subalgebras A and B need not reproduce the whole algebra B(H), i.e. in general
A ∪ B ⊂ B(H). In this respect, the term “bipartition” is not strictly appropriate and has been
adopted for sake of simplicity. However, in the case of the system discussed below, the considered
mode partitions actually generate the whole algebra B(H).
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form:

HBH = εaa
†a+ εbb

†b+ U((a†a)2 + (b†b)2)− J(a†b+ ab†), (5.7)

where the first two terms are the contributions of the trapping potential and are propor-
tional to the depths of the wells εa, εb; the last term is a hopping term proportional to
the tunneling amplitude J and the remaining term, which is quadratic in the number op-
erators, describes the repulsive Coulomb interactions inside each well. Usually symmetric
double-well potential are considered, where εa = εb = ε.

In this situation, the states |i〉, i =↑, ↓, describing one atom located within the left,
respectively the right well, correspond to two spatial modes and are created by the action
on the vacuum state |0〉 of creation operators a†, b†: a†|0〉 = |↓〉, b†|0〉 = |↑〉.

When the total number N is conserved, the symmetric Fock space of this two-mode
system is generated by the N + 1 orthonormal vectors:

|k,N − k〉AB =
(a†)k(b†)N−k√
k!(N − k)!

|0〉 , 0 ≤ k ≤ N . (5.8)

When the tunneling term can be neglected, these states are eigenstates of the Bose-Hubbard
Hamiltonian.

Because of the orthogonality of the spatial modes, by considering the norm-closures of
all polynomials Pa in a, a†, respectively Pb in b, b†, one obtains two commuting subalgebras
A and B that in turn generate the whole algebra of bounded operators for this two mode
bosonic system.

One can show that (A,B)-separable density matrices must be convex combinations of
projections |k,N − k〉AB〈k,N − k| (see Ref. [57]):

ρ =
N∑
k=0

pk|k,N − k〉AB〈k,N − k| , pk > 0 ,
N∑
k=0

pk = 1 . (5.9)

This is so because A and B generate the whole two-mode N -boson algebra so that the
only pure (A,B)-separable states are projections onto the eigenstates (5.8) of the number
operator a†a+ b†b which thus span the convex subset of (A,B)-separable mixed states.

5.1.1. Negativity

For bipartite systems of distinguishable particles one knows that states ρ that do not
remain positive under partial transposition are entangled [59] and are witnessed by the
so-called negativity :

N (ρ) = ‖ρΓ‖1 − 1 , ‖ρΓ‖1 = Tr
(√

(ρΓ)†ρΓ
)

(5.10)
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where ρΓ is the transposition with respect to the first party.

Since Tr(ρ) = Tr(ρΓ) = 1, if ρ does not remain positive under partial transposition,
then ‖ρΓ‖1 > 1 and N (ρ) > 0. Indeed, let ρΓ =

∑
k λk |ψk〉 〈ψk| be the spectral

decomposition of ρΓ ({|ψk〉}k o.n.b. of eigenvectors of ρΓ), then√
(ρΓ)† ρΓ =

∑
k

|λk| |ψk〉 〈ψk| , (5.11)

hence

N (ρ) =
∑
k

|λk| − 1 =
∑
k

(|λk| − λk) > 0 ⇔ ∃λk̄ < 0 for some k̄. (5.12)

Unfortunately, there can be entangled states that remain positive under partial trans-
position whence N (ρ) = 0; therefore, the negativity is not an exhaustive entanglement
witness for generic bipartite states of distinguishable particles.

Remarkably, negativity is instead an exhaustive entanglement witness for the case at
hands: indeed, by performing the partial transposition with respect to the first mode of
a generic two mode N -Boson state

ρ =
N∑

k,`=0

ρk`|k,N − k〉AB〈`,N − `| ,
N∑
k=0

ρkk = 1 , (5.13)

one obtains an operator on a larger Hilbert space than the sector of the Fock space with
fixed N , namely

ρΓ =
N∑

k,`=0

ρk`|`,N − k〉AB〈k,N − `| , (5.14)

which is such that

(ρΓ)†ρΓ =
∑
k,`

|ρk`|2 |k,N − `〉AB〈k,N − `| , (5.15)

whence the negativity

N (ρ) =
N∑

k 6=`=0

∣∣∣ρk`∣∣∣ (5.16)

vanishes if and only if ρ has null off-diagonal element with respect to the Fock states
relative to the chosen bipartition, i.e. it is separable because of the form (5.9).
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It is important to stress that negativity is always related to a given algebraic bipartition:
a state which is entangled with respect to the bipartition (AB) can be separable with
respect to another bipartition (C,D).

While the Fock number states (5.8) are (A,B)-separable, important examples of
(A,B)-entangled states are the so-called discrete coherent states

|ξ, ϕ〉AB =
1√
N !

(√
ξe−iϕ/2 a† +

√
1− ξeiϕ/2 b†

)N
|0〉 (5.17)

=
N∑
k=0

√(
N

k

)
ξk/2(1− ξ)(N−k)/2 e−ikϕ+iNϕ/2 |k,N − k〉AB, (5.18)

where 0 ≤ ξ ≤ 1. These states describe the situation when all N boson are in the same
single particle state (

√
ξ exp(−iϕ/2) ,

√
1− ξ exp(iϕ/2)): their off-diagonal elements do

not vanish. Therefore, the corresponding negativity is also non-vanishing; indeed, it reads

N
(
|ξ, ϕ〉AB〈ξ, ϕ|

)
=
∑
k 6=`

√(
N

k

)(
N

`

)
ξ(k+`)/2(1− ξ)N−(k+`)/2 . (5.19)

The Bogolubov transformation

c =
a+ b√

2
, d =

a− b√
2

, (5.20)

changes the spatial modes a, b into energy modes; indeed, it corresponds to a change of
basis from that of spatially localized states, to the one of the eigenstates

c† |0〉 =
|↓〉+ |↑〉√

2
, d† |0〉 =

|↓〉 − |↑〉√
2

, (5.21)

of the Bose-Hubbard Hamiltonian when the tunneling term can be neglected:

HBH

(
c† |0〉

)
= 1/

√
2(ε+ U)

(
c† |0〉

)
, HBH (c |0〉) = 1/

√
2(ε− U) (c |0〉) . (5.22)

The algebras C, respectively D, constructed by means of polynomials in c, c†, respec-
tively d, d†, commute, generate the two-mode N Boson algebra and thus provide another
possible algebraic bipartition. It thus turn out that the (A,B)-entangled coherent state

|1/2, 0〉AB =
1√
N !

(a† + b†√
2

)N
=

(c†)N√
N !
|0〉, (5.23)

results the Fock number state |N, 0〉CD for the number operator c† c+ d† d, and therefore
it results (C,D)-separable. Thus, when we refer to the negativity of a state ρ, one must
specify with respect to which algebraic bipartition the partial transposition is performed;
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indeed,

NAB
(
|1/2, 0〉AB〈1/2, 0|

)
> 0 while NCD

(
|1/2, 0〉AB〈1/2, 0|

)
= 0. (5.24)

As another instance of the dependence of the notions of entanglement and non-locality
on the chosen bipartition, consider the operators

Jx =
1

2
(a†b+ ab†) , Jy =

1

2i
(a†b− ab†) , Jz =

1

2
(a†a− b†b) , (5.25)

that satisfy the SU(2) algebraic relations [Jx , Jy] = i Jz and their cyclic permutations.
They are all non-local with respect to the algebraic bipartition (A,B), because they
cannot be factorized as Ji = AiBi (Ai ∈ A, Bi ∈ B), and such are the rotations eiθJx and
eiθJy they generate, while eiθJz = eiθa

†ae−iθb
†b is (A,B)-local.

By means of the Bogolubov transformation (5.20) one rewrites

Jx =
1

2
(c†c− d†d) , Jy =

1

2i
(d†c− dc†) , Jz =

1

2
(c†d+ cd†) . (5.26)

Relatively to (C,D), it is now eiθ Jx = eiθ c
†ce−iθ d

†d which acts locally.

5.1.2. Two-mode N bosons and noise

An important feature of matter interferometry based upon ultracold atoms trapped in
double-well potential is the coherence between the spatial modes; this is endangered by
the presence of a dephasing noise that tends to suppress the off-diagonal matrix elements
ρk` = AB 〈k,N − k | ρ | `,N − `〉AB, k 6= `, with respect to the orthonormal basis of Fock
states (5.8). The effects of this kind of noise can be described by the following Master
Equation 2

∂tρ(t) = γ
(
Jz ρ(t) Jz −

1

2
{J2

z , ρ(t)}
)
, (5.27)

where ρ is the N boson density matrix, γ measures the strength of the noise and Jz is
the collective spin operator in (5.25) that commutes with the number operator a† a+ b† b.
One easily checks that the matrix elements with respect to the eigenstates (5.8) satisfy

∂tρk`(t) = −γ
2

(k − `)2 ρk` , (5.28)

2This Master Equation is standard in the theory of open quantum systems; for details see
Refs. [1, 7, 16, 77, 78]. For more recent applications to trapped ultracold gases, e.g. see Ref. [79–85].
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whence this kind of noisy irreversible time-evolution tends to diagonalize the system
states with respect to their basis:

ρ(t) =
N∑

k`=0

e−tγ(k−`)2/2 ρk` |k,N − k〉AB〈`,N − `| . (5.29)

It thus follows that the (A,B)-negativity either decreases exponentially in time,

NA,B(ρ(t)) =
∑
k 6=`

e−tγ(k−`)2/2 |ρk`| ≤ e−tγ/2NA,B(ρ) , (5.30)

if the initial state is (A,B)-entangled, or remains zero as the dephasing noise has no
possibility of creating non-local effects with respect to the bipartition (A,B). This is
best seen by rewriting the solution (5.29) in the more suggestive form

ρ(t) =
1

2
√
π

∫ +∞

−∞
du e−u

2/4 e−i
√
tγ/2uJz ρ e+i

√
tγ/2uJz , (5.31)

which, on one hand, explicitly exhibits the Kraus form (2.25) of the completely positive
maps solutions to (5.28) and, on the other hand, shows the impossibility of generating
(A,B)-entanglement as the rotations generated by Jz are all (A,B)-local.

However, they are not local with respect to the bipartition (C,D) obtained by the
Bogolubov transformation (5.20) and are thus able to raise from zero the (C,D)-negativity
of an initial (C,D)-separable state. For instance, consider the pure state (5.23) as initial
state. Using (5.20) one finds

e−iβJz |N, 0〉CD =
1√
N !

(a†e−iβ/2 + b†eiβ/2√
2

)N
|0〉 =

∣∣∣ cos2 β/2, π/2
〉
CD
, (5.32)

so that the time-evolving state reads

ρ(t) =
1

2
√
π

∫ +∞

−∞
du e−u

2/4
∣∣∣ cos2(u

√
tγ/2), π/2

〉
CD

〈
cos2(u

√
tγ/2), π/2

∣∣∣. (5.33)

The time-evolution thus results in a mixed state which surely has non-vanishing off-
diagonal elements

CD〈k,N − k|ρ(t)|`,N − `〉CD =
1√
π

∫ +∞

0

du e−u
2/4

√(
N

k

)(
N

`

)
×

× cosk+`
(
u

√
tγ

2

)
sin2N−k−`

(
u

√
tγ

2

)
e−iπ/4(k−`),

with respect to the orthonormal basis of eigenstates of c†c+ d†d and thus NCD(ρ(t)) > 0.
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5.2. Metrology and entanglement

The use of N bosons states for measuring an angle θ by interferometric techniques is
based on the following scheme: an input state ρ is rotated by θ into a final state

ρθ = e−iθJn1 ρ eiθJn1 , (5.34)

by means of the collective spin operator in the direction of a unit vector n1: Jn1 = n1 ·J ;
then, on the rotated state one performs the measurement of a collective spin operator Jn2 ,
where n2 ⊥ n1 and, for sake of convenience, we choose ρ such that 〈Jn3〉 = Tr(ρ Jn3) 6= 0
along the third orthogonal unit vector n3. By error propagation, the mean square error

∆Jn2 =
√〈

J2
n2

〉
− 〈Jn2〉

2 is related to the error δθ in the measurement of the small

rotation angle θ by [41]:

δ2θ =
∆2Jn2(

∂θ 〈Jn2〉θ|θ=0

)2 =
∆2Jn2

〈Jn3〉
2 =

ξ2
W

N
, (5.35)

where the parameter

ξ2
W :=

N∆2Jn2

〈Jn3〉
2 , (5.36)

measure the amount of squeezing in the state ρ. Indeed, for any orthogonal triplet of
space-directions n1, n2, n3, the Heisenberg uncertainty relations read

∆2Jqn1∆2Jn2 >
1

4
〈Jn3〉

2 , (5.37)

and ρ is a squeezed state if one of the variances can be made smaller than 1
2

∣∣∣ 〈Jn3〉
∣∣∣.

The value δ2θ = 1/N is called shot-noise limit; in the case of distinguishable qubits, it
gives the lower bound to the attainable accuracies when the input state ρ is separable [46].
Therefore, for systems consisting of distinguishable qubits, entanglement in the initial
state ρ is necessary to achieve sub-shot-noise accuracies. An entangled initial state
is usually prepared by preliminary squeezing operations [55, 56]; indeed, from (5.35),
preparing the initial state ρ such that ξ2

W < 1 guarantees an achievable sub-shot-noise
accuracy in the determination of θ. However, in Ref. [58] it is shown that this is not
strictly necessary in ultracold atom interferometry; indeed, in such experimental contexts,
one is dealing with identical bosons and then the necessary non-local effects necessary
for beating the shot-noise limit can be provided by the interferometric apparatus itself.

In the previous section we have seen that the presence of dephasing noise destroys
(AB)-entanglement, but creates (CD)-entanglement. It is thus of interest to see whether
this latter fact allows one to achieve sub-shot-noise accuracies by simply letting the
(CD)-non-local noisy mechanism act. In order to do so we need compute the mean values
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〈Jn〉t and 〈J2
n〉t of collective spin operator aligned along the unit vector n with respect

to the time-evolving state (5.29); use of (5.31) yields

〈Jn〉t =
1

2
√
π

∫ +∞

−∞
du e−u

2/4 Tr(ρ Jn(u,t)), (5.38)

in terms of the rotated unit vector

n(u, t) =


cos
(
u
√

tγ
2

)
sin
(
u
√

tγ
2

)
0

− sin
(
u
√

tγ
2

)
cos
(
u
√

tγ
2

)
0

0 0 1

 n . (5.39)

Furthermore, given the mean value

〈
J2
n

〉
t

=
1

2
√
π

∫ +∞

−∞
du e−u

2/4 Tr(ρ J2
n(u,t)), (5.40)

one finds

∆2
tJn =

〈
J2
n

〉
t
− 〈Jn〉2t =

1

2
√
π

∫ +∞

−∞
du e−u

2/4 ∆2Jn(u,t) +

+
1

2
√
π

∫ +∞

−∞
du e−u

2/4
(

Tr(ρ Jn(u,t))
)2

−

(
1

2
√
π

∫ +∞

−∞
du e−u

2/4 Tr(ρ Jn(u,t))

)2

.

Because of the convexity of the function f(x) = x2, the second line above is positive and
one estimates

∆2
tJn =

〈
J2
n

〉
t
− 〈Jn〉2t ≥

1

2
√
π

∫ +∞

−∞
du e−u

2/4 ∆2Jn(u,t). (5.41)

If the initial state ρ is such that for no orthogonal directions n2,3 the squeezing parame-
ter (5.36) is less than one, then, as n2(u, t) ⊥ n3(u, t), one gets

1

2
√
π

∫ +∞

−∞
du e−u

2/4 ∆2Jn2(u,t) ≥
1

N

1

2
√
π

∫ +∞

−∞
du e−u

2/4
〈
Jn3(u,t)

〉2
, (5.42)

and, again by convexity,

1

N

1

2
√
π

∫ +∞

−∞
du e−u

2/4
〈
Jn3(u,t)

〉2 ≥ 1

N

(
1

2
√
π

∫ +∞

−∞
du e−u

2/4
〈
Jn3(u,t)

〉)2

=
1

N
〈Jn3〉

2
t .
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Thus, although under the dephasing noise some N -bosons states can get entangled, no
squeezing can be achieved by such means; indeed,

N∆2
tJn2

〈Jn3〉
2
t

≥ 1. (5.43)

Though not metrologically relevant, such an environment generated entanglement might
however be useful for other quantum informational tasks like those involving quantum
gates constructed by using systems of ultracold bosons trapped in optical lattices [85].

5.3. Conclusions

We have seen that when dealing with a system of identical bosons it is necessary to
introduce a new, algebraic definition of separability; indeed, the standard one based
on an a priori factorized form of the involved Hilbert space is no longer available. A
natural notion of entanglement given in terms of correlations among commuting sub-
algebras of observables can be defined. With respect to this notion of entanglement,
unlike what happens for distinguishable qubits, entangled states of N bosonic qubits
are completely identified by their non-zero negativity which is therefore an exhaustive
bipartite entanglement witness for such systems. Furthermore, we have showed that even
a simple dephasing noise which, for distinguishable particles exhibits merely decoherence
effects, can instead generate entanglement among identical bosons. These results may be
relevant in concrete applications to systems of ultracold atoms trapped in optical lattices;
however, while the entanglement generated by purely dephasing noise can be used for
the practical implementation of quantum informational protocols, it cannot augment the
sensitivity of ultracold atom based interferometric devices.
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Appendix A.

Complementary material

A.1. Nakajima-Zwanzig Equation

Here we derive explicitly eq. (2.54), known in literature as Nakajima-Zwanzig equation,
using the projectors P and Q

PρS+E ≡ TrE[ρS+E]⊗ ρE
Q ≡ 1S+E −P

and the relations

LE[ρE] = 0 (A.1)

TrE(RαρE) = 0. (A.2)

First of all we start from the expression of the total Hamiltonian of the system and
environment:

HS ⊗ 1E + 1S ⊗HE + λ
∑
α

Sα ⊗Rα (A.3)

Then we work out the following expressions from (2.52)

LλPP
S+E [ρS(t)⊗ ρE] = P ◦ LS+E [ρS(t)⊗ ρE] =

= P [−i[HS, ρS(t)]⊗ ρE] + P [−iρS(t)⊗ [HE, ρE]] +

+ P
[
− iλ

∑
α

Sα ⊗Rα, ρS(t)⊗ ρE
]

=

= −i[HS, ρS(t)]⊗ ρE − iλ
∑
α

[Sα, ρS(t)] TrE(RαρE)⊗ ρE =

= −i[HS, ρS(t)]⊗ ρE =

= LS[ρS(t)]⊗ ρE

(A.4)
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LλPQ
S+E [ρS+E] =

(
TrE(Lλ

S+E[ρS+E])− TrE

(
Lλ
S+E[TrEρS+E ⊗ ρE]

))
⊗ ρE (A.5)

We calculate the second term

TrE

(
Lλ
S+E[TrEρS+E ⊗ ρE]

)
= −iTrE[HS ⊗ 1E,TrEρS+E ⊗ ρE]− iTrE[1S ⊗HE,TrEρS+E ⊗ ρE]+

− iλTrE

[∑
α

Sα ⊗Rα , TrEρS+E ⊗ ρE

]
=

= −i[HS,TrEρS+E]− iλ
∑
α

[Sα,TrEρS+E] TrE(RαρE) =

= −i[HS,TrEρS+E]

(A.6)

and then the first

TrE(Lλ
S+E[ρS+E]) = −iTrE

(
[HS ⊗ 1E, ρS+E] + [1S ⊗HE, ρS+E] + λ

∑
α

[Sα ⊗Rα, ρS+E]

)
(A.7)

We use an o.n.b. {|σ〉 ⊗ |ε〉}σ,ε ∈ HS ⊗HE made up of the eigenvectors of the two
Hamiltonians HS and HE: HS =

∑
σ |σ〉Eσ 〈σ|, HE =

∑
ε |ε〉 ε 〈ε| and the first term

of (A.7) becomes, expanding the Hamiltonians into their eigenbases,

−iTrE[HS ⊗ 1E, ρS+E]στ = −i
∑
ε

〈σ| ⊗ 〈ε|HS ⊗ 1E · ρS+E − ρS+E ·HS ⊗ 1E |τ〉 ⊗ |ε〉 =

− i
∑
ε,µ

〈σ| ⊗ 〈ε| |µ〉Eµ 〈µ| ⊗ 1E · ρS+E |τ〉 ⊗ |ε〉+

+ i
∑
ε,µ

〈σ| ⊗ 〈ε| ρS+E · |µ〉Eµ 〈µ| ⊗ 1E |τ〉 ⊗ |ε〉 =

= −i
∑
ε,µ

(δσµEµ 〈µ| ⊗ 〈ε| ρS+E |τ〉 ⊗ |ε〉+

−δµτEµ 〈σ| ⊗ 〈ε| ρS+E |µ〉 ⊗ |ε〉) =

− i
∑
ε

(Eσ 〈σ| 〈ε| ρS+E |τ〉 |ε〉 − Eτ 〈σ| 〈ε| ρS+E |τ〉 |ε〉) =

= −i [HS,TrEρS+E]στ
(A.8)
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By the same method we get for the second term in (A.7)

−iTrE[1S ⊗HE, ρS+E]στ = −i
∑
ε

(〈σ| 〈ε|1S ⊗HE · ρS+E − ρS+E · 1S ⊗HE |τ〉 |ε〉) =

= −i
∑
ε,ν

〈σ| 〈ε|1S ⊗ |ν〉 ν 〈ν| · ρS+E |τ〉 |ε〉+

+ i
∑
ε,ν

〈σ| 〈ε| ρS+E · 1S ⊗ |ν〉 ν 〈ν| |τ〉 |ε〉 =

= −i
∑
ε

ε 〈σ| 〈ε| ρS+E |τ〉 |ε〉+ i
∑
ε

ε 〈σ| 〈ε| ρS+E |τ〉 |ε〉 =

= 0

(A.9)

Collecting (A.8) and (A.9) and subtracting (A.7) from (A.6) we arrive at

LλPQ
S+E [ρS+E] = −iλ

∑
α

TrE[Sα ⊗Rα, ρS+E]⊗ ρE =

= λP ◦ L′[ρS+E] =

= λP ◦ L′ ◦ (P + Q)[ρS+E] =

= λP ◦ L′ ◦Q[ρS+E]

(A.10)

because P ◦ L′ ◦P[ρS+E] = 0 as we have seen in the last passage of (A.6).

LλQP
S+E [ρS(s)⊗ ρE] is rather simple:

LλQP
S+E [ρS(s)⊗ ρE] = (1−P) ◦ LS+E ◦P[ρS(s)⊗ ρE] =

= Lλ
S+E[ρS(s)⊗ ρE]−P ◦ LS+E[ρS(s)⊗ ρE] =

= −i[HS, ρS(s)]⊗ ρE − iρS(s)⊗ [HE, ρE]− iλ
∑
α

[Sα ⊗Rα, ρS(s)⊗ ρE]+

−
(
− i[HS, ρS(s)]⊗ ρE − iλ

∑
α

[Sα, ρS(s)] TrE(RαρE)⊗ ρE
)

=

= +λL′[ρS(s)⊗ ρE]

(A.11)

Finally, eqs. (A.6), (A.10) and (A.11) allow us, starting from (2.52) and tracing out
the environment degrees of freedom, to write down the generalized Master Equation in
the form (2.54):

∂tρS(t) = LS[ρS(t)] + λ2

∫ t

0

dsTrE

(
L′ ◦ e(t−s)LQQS+E ◦ L′[ρS(s)⊗ ρE]

)
(A.12)
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A.2. Davies’s Master Equation

In this section we find an explicit expression of the generator K3 (eq. (2.67)) in the
Kossakowski-Lindblad form and we show that the related dynamics is completely positive.

Starting from (2.66), we have

K3[ρ] = lim
T→∞

1

2T

∫ T

−T
dt e−tLSK2e

tLSρ = (A.13)

= lim
T→∞

1

2T

∫ T

−T
dt e−tLS

∫ +∞

0

dv e−vLSTrE

(
L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]

)
(A.14)

We work out every argument in the formula above, starting from the inner and
proceding outwards. Thus:

L′[etLSρ⊗ ρE] = −i
∑
α

(
Sαe

tLS [ρ]⊗RαρE − etLS [ρ]Sα ⊗ ρERα

)
(A.15)

The action of the unitary operator etLS on the operators Sα

evLS [Sα] = e−ivHS [Sα]eivHS ≡ Sα(−v) (A.16)

corresponds, up to a minus, to the switch from the Schrödinger to the Interaction Picture

Sα(t) ≡ eitHSSαe
−itHS . (A.17)

The same for etLE and the operators Rα.

Therefore we have

ev(LS+LE) ◦ L′[etLSρ⊗ ρE] =

= −i
∑
α

(
Sα(−v)e(t+v)LS [ρ]⊗Rα(−v)ρE − e(t+v)LS [ρ]Sα(−v)⊗ ρERα(−v)

)
, (A.18)

and

L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE] =

= −
∑
β,α

(
SβSα(−v)e(t+v)LS [ρ]⊗RβRα(−v)ρE − Sα(−v)e(t+v)LS [ρ]Sβ ⊗Rα(−v)ρERβ+

−Sβe(t+v)LS [ρ]Sα(−v)⊗RβρERα(−v) + e(t+v)LS [ρ]Sα(−v)Sβ ⊗ ρERα(−v)Rβ

)
. (A.19)
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In order to calculate the trace over E we define the two-point correlation functions

Fβα(v) ≡ 〈RβRα(−v)〉 = TrE(RβRα(−v)ρE), (A.20)

having the following property

Fαβ(−v) ≡ TrE(RαRβ(v)ρE) = TrE(e−iHEvRαe
iHEvRβe

−iHEvρEe
iHEv) =

= TrE(Rα(−v)RβρE) = TrE(ρERα(−v)Rβ) = (TrE(RβRα(−v)ρE))∗ =

= Fβα(v)∗. (A.21)

Consequently we can write

TrE(L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]) =

= −
∑
β,α

(
SβSα(−v)e(t+v)LS [ρ]Fβα(v)− Sα(−v)e(t+v)LS [ρ]SβFβα(v)+

−Sβe(t+v)LS [ρ]Sα(−v)Fαβ(−v) + e(t+v)LS [ρ]Sα(−v)SβFαβ(−v)
)
. (A.22)

Proceding further we get

e−vLSTrE(L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]) =

= −
∑
β,α

(
Sβ(v)Sαe

tLS [ρ]Fβα(v)− SαetLS [ρ]Sβ(v)Fβα(v)+

−Sβ(v)etLS [ρ]SαFαβ(−v) + etLS [ρ]SαSβ(v)Fαβ(−v)
)
, (A.23)

and

e−tLS
∫ +∞

0

dv e−vLSTrE(L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]) =

= −
∑
β,α

∫ +∞

0

dv (Sβ(t+ v)Sα(t)ρFβα(v)− Sα(t)ρSβ(t+ v)Fβα(v)+

−Sβ(t+ v)ρSα(t)Fαβ(−v) + ρSα(t)Sβ(t+ v)Fαβ(−v)) . (A.24)

Finally the expression of the generator K3 will be given by the limit T → +∞ of

1

2T

∫ +T

−T
dt e−tLS

∫ +∞

0

dv e−vLSTrE(L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]) =

= − 1

2T

∑
β,α

∫ +T

−T
dt

∫ +∞

0

dv (Sβ(t+ v)Sα(t)ρ− Sα(t)ρSβ(t+ v))Fβα(v) + h.c. .

(A.25)
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We can expand Sβ(t+ v) and Sα(t) in Fourier series:

Sβ(t+ v) =
∑
ω

eiω(t+v)Sβ(ω)

Sα(t) =
∑
ω′

eiω
′tSα(ω′).

(A.26)

So we have for (A.25)

1

2T

∑
β,α

∑
ω,ω′

∫ +T

−T
dt

∫ +∞

0

dv Fβα(v) (Sα(ω′)ρSβ(ω)− Sβ(ω)Sα(ω′)ρ) eivωeit(ω+ω′) + h.c. .

(A.27)

Taking the limit T → +∞ the integration 1
2T

∫ +T

−T dt ei(ω+ω′)t gives a δ(ω + ω′) and
we can write

∑
β,α

∑
ω

∫ +∞

0

dv Fβα(v) (Sα(−ω)ρSβ(ω)− Sβ(ω)Sα(−ω)ρ) eivω + h.c. =

=
∑
β,α

∑
ω

∫ +∞

0

dv Fβα(v)
(
S†α(ω)ρSβ(ω)− Sβ(ω)S†α(ω)ρ

)
eivω + h.c. , (A.28)

since Sα(−ω) = S†α(ω).

The hermitian conjugate of the above expression is

∑
β,α

∑
ω

∫ +∞

0

dv Fαβ(−v)
(
S†β(ω)ρSα(ω)− ρSα(ω)S†β(ω)

)
e−ivω =

=
∑
β,α

∑
ω

∫ 0

−∞
dv Fαβ(v)

(
S†β(ω)ρSα(ω)− ρSα(ω)S†β(ω)

)
eivω =

=
∑
β,α

∑
ω

∫ 0

−∞
dv Fβα(v)

(
S†α(ω)ρSβ(ω)− ρSβ(ω)S†α(ω)

)
eivω, (A.29)

where we have made a change of integration variable in the first passage and swapped α
and β indices in the second.
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So we can write the expression

lim
T→+∞

1

2T

∫ +T

−T
dt e−tLS

∫ +∞

0

dv e−vLSTrE(L′ ◦ ev(LS+LE) ◦ L′[etLSρ⊗ ρE]) =

=
∑
β,α

∑
ω

(∫ +∞

−∞
dv Fβα(v)S†α(ω)ρSβ(ω)eivω −

∫ +∞

0

dv Fβα(v)Sβ(ω)S†α(ω)ρeivω+

−
∫ 0

−∞
dv Fβα(v)ρSβ(ω)S†α(ω)eivω

)
. (A.30)

The first integral is just the Fourier transform of Fβα:

F̂βα(−ω) =

∫ +∞

−∞
dv e−iv(−ω)Fβα(v). (A.31)

Introducing the Heaviside step function

H(v) =

{
1 v ∈ [0,+∞];

0 v ∈ [−∞, 0[,
(A.32)

with Fourier transform

Ĥ(ω) =

(
p.v.

1

ik
+ πδ(k)

)
, (A.33)

we can define fβα(v) ≡ H(v)Fβα(v) and in the second integral we can devise the Fourier
transform of fβα:∫ +∞

0

dv Fβα(v)eivω = f̂βα(−ω) = Ĥ · Fβα(−ω) =
1

2π

∫ +∞

−∞
dk Ĥ(k)F̂βα(−ω − k) =

=
1

2π

∫ +∞

−∞
dk

(
p.v.

1

ik
+ πδ(k)

)
F̂βα(−ω − k) =

=
1

2
F̂βα(−ω)− i

2π
p.v.

∫ +∞

−∞
dk

F̂βα(−ω − k)

k
. (A.34)

Here we have used the convolution integral to express the Fourier transform of the
product H · Fβα.
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Analogously:∫ 0

−∞
dvFβα(v)eivω =

∫ +∞

−∞
dvH(−v)Fβα(v)eivω =

∫ +∞

−∞
dv H(v)Fβα(−v)︸ ︷︷ ︸

gβα(v)

e−ivω =

= ˆgβα(ω) = Ĥ · F (−)
βα (ω), (A.35)

where F
(−)
βα (v) ≡ Fβα(−v).

⇒
∫ 0

−∞
dv Fβα(v)eivω =

1

2π

∫ +∞

−∞
dk Ĥ(k)F̂

(−)
βα (ω − k) =

∫ +∞

−∞

dk

2π
Ĥ(k)F̂βα(k − ω) =

=
1

2
F̂βα(−ω)− i

2π
p.v.

∫ +∞

−∞
dk

F̂βα(k − ω)

k
. (A.36)

Summing the two “half-Fourier transforms” and (A.34) and (A.36):

−
(∫ +∞

0

dv Fβα(v)eivωSβ(ω)S†α(ω)ρ+

∫ 0

−∞
dv Fβα(v)eivωρSβ(ω)S†α(ω)

)
=

=
i

2π

∫ +∞

−∞
dk

(
F̂βα(−ω − k)

k
Sβ(ω)S†α(ω)ρ+

F̂βα(−ω + k)

k
ρSβ(ω)S†α(ω)

)
+

− F̂βα(−ω)

2

(
Sβ(ω)S†α(ω)ρ+ ρSβ(ω)S†α(ω)

)
. (A.37)

In the end K3[ρ] becomes:

K3[ρ] =
∑
ω

∑
β,α

F̂βα(−ω)

(
S†α(ω)ρSβ(ω)− 1

2

{
Sβ(ω)S†α(ω), ρ

})
+

+ i p.v.

∫ +∞

−∞
dk

(
F̂βα(−ω + k)

−k
Sβ(ω)S†α(ω)ρ+

F̂βα(−ω + k)

k
ρSβ(ω)S†α(ω)

)
. (A.38)

The first term has clearly the structure of a Kossakowski-Lindblad dissipator, while
the second one can be read as the action of a Hamiltonian generator L(1)[·] = −i[H(1), ·],
once we define

H(1) = p.v.

∫ +∞

−∞
dk

F̂βα(−ω + k)

k
Sβ(ω)S†α(ω). (A.39)

The spurious Hamiltonian H(1) is sometimes called Lamb-shift correction, and it is self-
adjoint, as it should be, and this can be easily shown observing that F̂βα(x)∗ = F̂αβ(x).
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A.3. Positivity of the Kossakowski-Lindblad matrix

In this section we prove that the Kossakowski matrix appearing in the expression (A.38)
of the operator K3 is positive, hence that the reduced dynamics generated by K3 is
completely positive. We will make the assumption that the environment state ρE be a
Gibbs state ρE = e−βHE/Tr(e−βHE); namely, that the environment is a thermal reservoir,
which is the case of the open quantum systems in which we are interested.

The positivity of the matrix of elements F̂βα(−ω) corresponds to the condition

n∑
α,β=1

u∗αF̂βα(−ω)uβ ≥ 0, (A.40)

for every |u〉 = (u1, . . . , un) ∈ Cn.

Rewriting the F̂βα(−ω) as Fourier transforms of the bath correlators, as in (A.31),
we have

n∑
α,β=1

u∗αF̂βα(−ω)uβ =

∫ +∞

−∞
dt eitω

n∑
α,β=1

u∗αFαβ(t)uβ =

=

∫ +∞

−∞
dt eitω

n∑
α,β=1

u∗αuβTrE(eitHERαe
−itHERβρE) =

=
∑
ε,ε′

∫ +∞

−∞
dt eitωu∗αuβe

it(ε−ε′) 〈ε |Rα | ε′〉 〈ε′ |Rβ | ε〉 r(ε) =

=
∑
ε,ε′

r(ε)

∫ +∞

−∞
dt eitω〈ε|

n∑
α=1

u∗αRα|ε′〉〈ε′|
n∑
β=1

uβRβ|ε〉 =

= 2π
∑
ε.ε′

r(ε)δ(ω − ε+ ε′)|〈ε|
n∑

α=1

u∗αRα|ε′〉|2 ≥ 0.

(A.41)

Where we have taken the trace with respect to the o.n.b. of HE, {|ε〉}, inserted a
completeness

∑
ε′ |ε′〉 〈ε′|, and used the fact that the thermal Gibbs state ρE = e−βHE/Zβ

has the same energy eigenvectors of HE: ρE |ε〉 = r(ε) |ε〉, with r(ε) > 0.

A.4. Current expression for the quantum pumping

model

The current I(t) flowing in the circuit must be proportional to the probability density
flux from one node to another, for example from a to b. If |ψt(b)|2 is the probability of
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finding the free electron in the site b, then we have:

d

dt
|ψt(b)|2 =

d

dt
|〈b |ψt〉|2 =

= 〈b | −iHS |ψt〉 〈ψt | b〉+ 〈b |ψt〉 〈ψt | iHS | b〉 =

= −i(−γ0) ((〈a |ψt〉+ 〈c |ψt〉) 〈ψt | b〉) + i(−γ0) (〈b |ψt〉 (〈ψt | a〉+ 〈ψt | c〉)) =

= iγ0(〈ψt | b〉 〈a |ψt〉 − 〈ψt | a〉 〈b |ψt〉+ 〈ψt | b〉 〈c |ψt〉 − 〈ψt | c〉 〈b |ψt〉) =

= 〈iγ0(|b〉 〈a| − |a〉 〈b|)〉ψt + 〈iγ0(|b〉 〈c| − |c〉 〈b|)〉ψt ,
(A.42)

where in the last passage we have written the result as sum of the expectation values of
the two observables iγ0(|b〉 〈a| − |a〉 〈b|) and iγ0(|b〉 〈c| − |c〉 〈b|) on the state |ψt〉.

Thus the flux of probability from a to b is

〈iγ0(|b〉 〈a| − |a〉 〈b|)〉ψt , (A.43)

while the flux from b to c is

〈iγ0(|c〉 〈b| − |b〉 〈c|)〉ψt . (A.44)

Coherently, the variation in time of the probability density |ψt(b)|2 is given by the
difference between the flux from a to b and the flux from b to c.

The current from a to b is then determined by

Iab = γ0 〈−ie(|b〉 〈a| − |a〉 〈b|)〉ψt (A.45)

where e is the elementary charge.

Writing this expression in the basis {|0〉 , |x〉 , |y〉} by means of the transformation

|a〉 =
|0〉+

√
2 |y〉√

3

|b〉 =

√
2 |0〉+

√
3 |x〉 − |y〉√
6

|c〉 =

√
2 |0〉 −

√
3 |x〉 − |y〉√
6

,

one has

Iab =
ieγ0

3
√

2

(√
3 |0〉 〈x| − |0〉 〈y|+ 2 |y〉 〈0|+

√
6 |y〉 〈x| −

−2 |0〉 〈y| − 3 |x〉 〈0| −
√

6 |x〉 〈y|+ |y〉 〈0|
)
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This expression gives Iab in the most general case, when all the states |0〉 , |x〉 and |y〉
are taken into account; in the pseudospin-1/2 approximation however the transitions
involving |0〉 are neglected, therefore all the terms involving this state can be dropped
from the above formula, whence

Iab =
ieγ0√

3

(
|y〉 〈x| − |x〉 〈y|

)
=
eγ0√

3
σy

where the last passage follows from choosing

|x〉 =

(
1

0

)
, |y〉 =

(
0

1

)
. (A.46)

Finally, the expectation value of Iab is

I(t) = 〈Iab〉ρS(t) = I0〈σy〉ρS(t) = I0Tr(ρS(t)σy) , (A.47)

where I0 = eγ0/
√

3 and ρS(t) is the 2× 2 density matrix describing the system.

A.5. Master Equation for the quantum pumping

model

We summarize the derivation of the Master Equation for the open quantum system
analyzed in Chapter 4, following the general procedure based on projectors, used in
Appendix A.1.

We introduce the projector P on S(S + E):

P[ρS+E] ≡ TrE(ρS+E)⊗ ρE (A.48)

and its orthogonal operator Q ≡ 1−P.

P maps any factorized state into itself, while Q annihilates them:

P[ρS ⊗ ρE] = ρS ⊗ ρE (A.49)

Q[ρS ⊗ ρE] = 0 (A.50)

Splitting the Liouville-Von Neumann equation (4.34) into two parts we get:

∂tPρ̃ = L̃PPS+E(t)[Pρ̃] + L̃PQS+E(t)[Qρ̃] (A.51)

∂tQρ̃ = L̃QPS+E(t)[Pρ̃] + L̃QQS+E(t)[Qρ̃] (A.52)
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where

L̃PPS+E = P ◦ L̃S+E ◦P

L̃PQS+E = P ◦ L̃S+E ◦Q

L̃QPS+E = Q ◦ L̃S+E ◦P

L̃QQS+E = Q ◦ L̃S+E ◦Q

In the following, in order to improve the readability, we will often write ρ instead of
ρ̃S+E, LPP (t) for L̃PPS+B(t) and so on, and we will omit the variable t where possible.

The formal solution for (A.52) is:

Qρ = UQQ(t)[ρ0] +

∫ t

0

duUQQ(t, u)LQP (u)Pρ(u) (A.53)

where UQQ is the solution of

d

dt
UQQ(t, t0) = LQQ(t)UQQ(t, t0) (A.54)

We look for ρ starting from a factorized initial state ρ0 = ρS(0)⊗ ρE.

Inserting (A.53) in (A.51):

∂tPρ = LPP (t)Pρ+ LPQ(t)

∫ t

0

duUQQ(t, u)LQP (u)Pρ(u)

The first term is:

LPPP[ρ] =

= P
(
−i[Heff ⊗ 1E + 1S ⊗HE + H̃SE , TrE(ρ)⊗ ρE]

)
=

= P (−i[Heff ,TrE(ρ)]⊗ ρE) =

= −i[Heff , TrE(ρ)]⊗ ρE (A.55)

This follows from

[HE, ρE] = 0 (A.56)

TrE(HEρE) = 0 (A.57)

TrE(qξ,νρE) = 0 (A.58)
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In order to calculate the second term we expand LPQ[X] on a generic matrix
X ∈Mn(C)⊗Mm(C):

LPQ[X] = P ◦ L[X]−P ◦ L ◦P[X] =

= (TrE(L[X])− TrE(L[TrE(X)⊗ ρE]))⊗ ρE =

= −iTrE

([
Heff ⊗ 1E + 1S ⊗ H̃E + H̃SE , X

])
⊗ ρE+

+ i[Heff , TrE(X)]⊗ ρE (A.59)

The first and fourth term cancel out while the second vanishes and we have:

LPQ[X] = −iTrE([H̃SE, X])⊗ ρE

So the Master Equation takes the form:

∂tPρ = −i[Heff , TrE(ρ)]⊗ ρE − iTrE

[
H̃SE(t) ,

∫ t

0

duUQQ(t, u)LQP (u)Pρ

]
⊗ ρE

Following a very similar reasoning we have:

LQP [ρ] = −i[H̃SE , TrE(ρ)⊗ ρE]

And finally we get the Master Equation

∂tPρ = ∂tTrE(ρ)⊗ ρE =

= −i[Heff , TrE(ρ)]⊗ ρE+

−
∫ t

0

duTrE

[
H̃SE(t) , UQQ(t, u)[H̃SE(u), ρ(u)]

]
⊗ ρE

which can be written with respect to the reduced dynamics (ρ̃S = TrE(ρ)):

∂tρ̃S = −i[Heff , ρ̃S] −
∫ t

0

duTrE

[
H̃SE(t) , UQQ(t, u)[H̃SE(u), ρ̃S(u)⊗ ρE]

]
(A.60)

The integral version of this Master Equation is

ρ̃S(t) = etL̃S ρ̃S(0)+

−
∫ t

0

du e(t−u)L̃S
[ ∫ u

0

dvTrE

[
H̃SE(u) , UQQ(u, v)[H̃SE(v), ρ̃S(u)⊗ ρE]

]]
(A.61)
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We operate a change of coordinates in the double integral
∫ t

0
du
∫ u

0
dv:{

x(u, v) ≡ v

y(u, v) ≡ −u
⇒

{
u = −y
v = x

det
∂(x, y)

∂(u, v)
=

∣∣∣∣∣ 0 1

−1 0

∣∣∣∣∣ = 1

Thus
∫ t

0
du
∫ u

0
dvf(u, v) =

∫ t
0

dx
∫ −x
−t dyf(−y, x), and then, with another change of vari-

able:

w ≡ −x− y

⇒
∫ −x
−t

dy = −
∫ −x−(−x)

−x−(−t)
dw =

∫ t−x

0

dw

and the integral in (A.61) can be rewritten as∫ t

0

dx e(t−x)L̃S

∫ t−x

0

dw e−wL̃STrE

[
H̃SE(w + x) , UQQ(w + x, x)[H̃SE(x), ρ̃S(x)⊗ ρE]

]
(A.62)

Now we want to study this integral in the weak coupling limit condition: we assume
that the ratio τE/τS of the typical decay time-scales of the correlations between the
system and the environment is very small. For the sake of simplicity we replace the
coupling constants λξν with one single parameter λ, appearing in H̃SE.

Thus the dissipation effects are relevant only on the very slow time-scale τ = λ2t.
Setting t = τ/λ2 in the dw integration in (A.62):

λ2
∑
ξ,ν,χ,µ

∫ τ
λ2−x

0

dw e−wL̃S ·

· TrE

[
σ̃ξ(w + x)⊗ qξ,ν , UQQ(w + x, x)[σ̃χ(x)⊗ qχ,µ, ρ̃S(x)⊗ ρE]

]
(A.63)

We search for an approximated expression for UQQ, solution of the equation

d

dt
UQQ(t, s) = L̃QQS+E(t)UQQ(t, s) (A.64)
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Introducing the time-ordered operator T we can write

UQQ(w + x, x) = T
(

exp

∫ w+x

x

du L̃QQS+E(u)

)
=

= T

(
exp

{
w(L̃S + L̃E)QQ − iλ

∑
ξ,ν

∫ w+x

x

duQ ◦ [σ̃ξ(u)⊗ qξ,ν , ·] ◦Q

})
(A.65)

In the limit λ→ 0 this becomes

UQQ(w + x, x) ' exp
(
w(L̃S + L̃E)QQ

)
(A.66)

while in the integral (A.63) a correction of the λ2 order survives:

λ2
∑
ξ,ν,χ,µ

∫ +∞

0

dw e−wL̃S ·

· TrE

[
σ̃ξ(w + x)⊗ qξ,ν , ew(L̃S+L̃E)QQ [σ̃χ(x)⊗ qχ,µ, ρ̃S(x)⊗ ρE]

]
(A.67)

In the end the double integral (A.62) becomes:

−
∫ t

0

dx e(t−x)L̃S
∑
ξ,ν,χ,µ

2m
√
ωνωµλξ,νλχ,µ

∫ +∞

0

dw e−wL̃S ·

· TrE

[
σ̃ξ(w + x)⊗ qξ,ν , ew(L̃S+L̃E)QQ [σ̃χ(x)⊗ qχ,µ, ρ̃S(x)⊗ ρE]

]
(A.68)

It is important to recall that we are interested in the dissipator D appearing in the
Master Equation (2.31), which is a differential equation. One can notice that the above
formula, and the way in which it has been derivated, corresponds exactly to the action
of the operator K2 seen in (2.61). In the rest of this section we will derive an explicit
expression for K2.

We define the self-adjoint operators on HS:

Λξν(x) ≡
√

2mωνλξ,ν σ̃
ξ(x) (A.69)

The second argument of the external commutator in (A.68) can be written

ew(L̃S+L̃E)QQ
∑
χ,µ

(Λχµ(x)ρ̃S(x)⊗ qχ,µρE − ρ̃S(x)Λχµ(x)⊗ ρEqχ,µ) (A.70)

where of course we can factorize ew(L̃S+L̃E)QQ = ewL̃
QQ
S ⊗ ewL̃

QQ
E

We show that L̃SQ = QL̃S.
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For every ρ ∈ S(S + E):

[L̃S,Q]ρ = L̃S[(1−P)ρ]− (1−P)[L̃Sρ] =

= L̃Sρ+ i[Heff ,TrEρ]⊗ ρE − L̃Sρ+ TrE(L̃Sρ)⊗ ρE =

= i[Heff ,TrEρ]⊗ ρE − iTrE[Heff ⊗ 1E, ρ]⊗ ρE = 0 (A.71)

(the last equality is proved in the same way as (A.8)).

Also L̃EQ = QL̃E:

[L̃E,Q]ρ =

= −i[1S ⊗HE, ρ− TrE(ρ)⊗ ρE]− (−i[1S ⊗HE, ρ] + iTrE[1S ⊗HE, ρ]⊗ ρE) =

= i[1S ⊗HE,TrE(ρ)⊗ ρE]− iTrE[1S ⊗HE, ρ]⊗ ρE = 0 (A.72)

since [HE, ρE] = 0 and TrE[1S ⊗HE, ρ] = 0 (cfr. (A.9)).

This means that we can factorize ew(L̃S+L̃E)QQ in (A.70), drop the QQ indices and
write

ewL̃E [qχ,µρE] = e−iwHEqχ,µe
iwHEρE =: qχ,µ(w)ρE (A.73)

ρE being the equilibrium state.

The trace in (A.68) can be rewritten∑
ξ,ν

∑
χ,µ

TrE

([
Λξν(w + x)⊗ qξ,ν , ewL̃S [Λχ,µ(x)ρ̃S(x)]⊗ qχ,µ(w)ρE+

−ewL̃S [ρ̃S(x)Λχ,µ(x)]⊗ ρEqχ,µ(w)
])

(A.74)

For each choice of indices we have four terms to trace over the environment, but for
the ciclity property they actually reduce to two:

TrE(qξ,νqχ,µ(w)ρE) (A.75a)

TrE(qξ,νρEqχ,µ(w)) (A.75b)

In second quantization qχ,µ(w) = 1√
2mωµ

(
a†χµ(w) + aχµ(w)

)
, and the differential

equation for a†χµ(w)

d

dw
a†χµ(w) = −ie−iwHE [HE, a

†
χµ]eiwHE = −iωµe−iwHEa†χµeiwHE ,

has the solution

a†χµ(w) = e−iwωµa†χµ(w).
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The thermal equilibrium state of the environment has the usual form:

ρE =
e−βHE

Zβ

Zβ =
N∏
ν=0

∞∑
nνz ,nνx=0

e−βων(nνz+nνx+1)

and Zβ is the partition function, whose expression is easily derived if we rewrite HE in
second quantization

HE =
N∑
ν=0

∑
ξ=z,x

ων

(
a†ξνaξν +

1

2

)

e−βHE =
N⊗
ν=0

e−βων
∑
ξ(a
†
ξνaξν+ 1

2) (A.76)

Consequently the first trace (A.75a)

TrE(qξ,µqχ,µ(w)ρE) = TrE

(
qξ,ν

1√
2mωµ

(
e−iwωµa†χµ + eiwωµaχµ

) e−βHE
Zβ

)
(A.77)

can be calculated with respect to the Fock orthonormal basis formed by all the pos-
sible tensor products in

⊗N
ν=0HE,ν of the eigenstates {|nνx, nνz〉}nνx.nνz of the set of

Hamiltonians of each oscillator HE,ν =
∑

ξ=z,x ων

(
a†ξνaξν + 1

2

)
:

a†ξνaξν |nνx, nνz〉 = (nνxδξx + nνzδξz) |nνx, nνz〉 (A.78)

HE,ν |nνx, nνz〉 = ων(nνx + nνz +
1

2
) |nνx, nνz〉 (A.79)

Due to the orthogonality, only the following terms survive in (A.77):

1

Zβ
√

2mωµ
TrE

(
e−iwωµaχµa

†
χµe
−βHE√

2mωµ
+
eiwωµa†χµaχµe

−βHE√
2mωµ

)
(A.80)

With respect to the Fock basis (A.78), the trace of a generic operator A can be written

TrEA =
∞∑

n0x,n0z=0

. . .
∞∑

nNx,nNz=0

〈n0x, n0z| . . . 〈nNx, nNz |A |n0x, n0z〉 . . . |nNx, nNz〉 (A.81)
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and we have

TrE(aχµa
†
χµe
−βHE) =

∞∑
n0x,n0z=0

. . .
∞∑

nNx,nNz=0

N∏
ν=0

e−β(nνx+nνz+1)ων (nµχ + 1) =

=
∏
ν 6=µ

∞∑
nνx,nνz=0

e−β(nνx+nνz+1)ων

∞∑
nµx,nµz=0

e−β(nµx+nµz+1)ωµ(nµχ + 1) (A.82)

Now we use the geometric series and its derivative to evaluate the second sum (here
n stands for either nµx or nµz, depending on the value of χ)

∑
n

(
ne−βωµn + e−βωµn

)
=

1

1− e−βωµ
+

1

−β
d

dωµ

1

1− e−βωµ
=

=
eβωµ/2

eβωµ/2 − e−βωµ/2
+

e−βωµ

(1− e−βωµ)2
=

=
eβωµ/2

eβωµ/2 − e−βωµ/2
+

e−βωµ

e−βωµ(eβωµ/2 − e−βωµ/2)2
=

=
eβωµ

(eβωµ/2 − e−βωµ/2)2
(A.83)

that must be multiplied by

e−βωµ
∞∑
n=0

e−βωµn (A.84)

so the second sum becomes:

1

1− e−βωµ
1

(eβωµ/2 − e−βωµ/2)2
(A.85)

In order to evaluate the first factor in (A.82), we observe that the partition function
for the ν-th oscillator is

Zν(β) =
∞∑

nνz ,nνx=0

e−βων(nνz+nνx+1) =
1

(eβων/2 − e−βων/2)2
(A.86)

while the total partition function is

Zβ =
∏
ν

Zν(β) (A.87)
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Consequently we can write the first factor as

∏
ν 6=µ

∞∑
nνx,nνz=0

e−β(nνx+nνz+1)ων =
Zβ

Zµ(β)
(A.88)

and the final expression for (A.82) becomes

TrE(aχµa
†
χµe
−βHE) =

Zβ
Zµ(β)

1

1− e−βωµ
1

(eβωµ/2 − e−βωµ/2)2
(A.89)

In a very similar way we get the final expression for the second term in (A.80):

TrE(a†χµaχµe
−βHE) =

Zβ
Zµ(β)

e−βωµ

1− e−βωµ
1

(eβωµ/2 − e−βωµ/2)2
(A.90)

Going back to (A.77)

TrE(qξ,µqχ,µ(w)ρE) = TrE

(
qξ,ν

1√
2mωµ

(
e−iwωµa†χµ + eiwωµaχµ

) e−βHE
Zβ

)
=

=
1

2mωµZµ(β)

e−βωµ

1− e−βωµ

(
eiωµw

(eβωµ/2 − e−βωµ/2)2
+

eβωµe−iωµw

(eβωµ/2 − e−βωµ/2)2

)
=

=
1

2mωµZµ(β)

e−βωµ/2

1− e−βωµ

(
cosωµw(eβωµ/2 + e−βωµ/2)− i sinωµw(eβωµ/2 − e−βωµ/2)

(eβωµ/2 − e−βωµ/2)2

)
=

=
1

2mωµZµ(β)

1

(eβωµ/2 − e−βωµ/2)2

(
cosωµw coth

βωµ
2
− i sinωµw

)
(A.91)

and using (A.86)

TrE(qξ,µqχ,µ(w)ρE) =
cosωµw coth βωµ

2
− i sinωµw

2mωµ
(A.92)

It is straightforward to observe that the other trace (A.75b) is exactly the complex
conjugate of the latter:

TrE(qξ,νρEqχ,µ(w)) =
cosωµw coth βωµ

2
+ i sinωµw

2mωµ
(A.93)

We can go back to the trace (A.74) and perform the sum over χ = x, z and µ =
0, . . . , N (since ξ = χ and ν = µ as seen above).
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∑
χ,µ

([
Λχµ(w + x)⊗ qχ,µ , ewL̃S [Λχ,µ(x)ρ̃S(x)]⊗ qχ,µ(w)ρE+

−ewL̃S [ρ̃S(x)Λχ,µ(x)]⊗ ρEqχ,µ(w)
])

=

=
∑
χ,µ

λ2
χ,µ

(
cosωµw coth

βωµ
2
− i sinωµw

)[
σ̃χ(w + x), ewL̃S [σ̃χ(x)ρ̃S(x)]

]
+

+
∑
χ,µ

λ2
χ,µ

(
cosωµw coth

βωµ
2

+ i sinωµw

)[
ewL̃S [ρ̃S(x)σ̃χ(x)], σ̃χ(w + x)]

]
(A.94)

We can now introduce a continuous spectral density Jχ(k) defined by:

Jχ(k) ≡
∑
µ

λ2
χ,µδ(k − ωµ) (A.95)

and substitute the sum over the µ-frequencies with an integral, and define

Gχ(w) ≡
∫ +∞

0

dk Jχ(k)

(
cos kw coth

βk

2
− i sin kw

)
(A.96)

Finally we have to multiply on the left by e−wL̃S and integrate over w in order to get
the final expression for K2, from the integral version (A.68)

K2[ρ̃S(t)] = −
∑
χ=z,x

∫ +∞

0

dw
{
Gχ(w)

[
e−wL̃S σ̃χ(w + t), σ̃χ(t)ρ̃S(t)

]
+

+ G∗χ(w)
[
ρ̃S(t)σ̃χ(t), e−wL̃S σ̃χ(w + t)

]}
. (A.97)

which gives the (4.38) Master Equation that we have presented in 4.2.

A.6. Time independence of the Master Equation

Here we show the time independence of eq. (4.50) and, in turn, of the Master Equation
in the rotated frame.

∑
ξ=x,z

R(−Ωt)ηξR(Ω(w + t))ξχ =
∑

ξ=x,y,z
Θ=x,y,z

R(−Ωt)ηΘP
xz
ΘξR(Ω(w + t))ξχ =

(R(−Ωt)P xzR(ω(w + t))ηχ , (A.98)
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where

P xz =

1 0 0

0 0 0

0 0 1

 . (A.99)

Since R(−Ωt)P xz = P xzR(−Ωt), we have that (A.98) becomes∑
ξ=x,z

R(−Ωt)ηξR(Ω(w + t))ξχ =

(P xzR(−Ωt)R(Ω(w + t))ηχ =

(P xzR(Ωw))ηχ = R̃(Ωw)ηχ, (A.100)

having used the group properties of the rotation matrix R and defined

R̃(Ωw) ≡

 cos Ωw 0 sin Ωw

0 0 0

− sin Ωw 0 cos Ωw

 (A.101)

A.7. Master Equation in the Kossakowski-Lindblad

form

In order to obtain the final form of the operator (4.52) we work out the matricial products
in (4.50)∑

η=x,y,z

Λ−1
τη R̃(Ωw)ηχ =

=

1 0 0

0 ∆
ω′

Ω
ω′

0 − Ω
ω′

∆
ω′


 cos Ωw 0 sin Ωw

0 0 0

− sin Ωw 0 cos Ωw

 =

 cos Ωw 0 sin Ωw

− Ω
ω′

sin Ωw 0 Ω
ω′

cos Ωw

−∆
ω′

sin Ωw 0 ∆
ω′

cos Ωw

 ≡ X

(A.102)
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∑
χ=x,y,z

XτχΛχµ =

 cos Ωw 0 sin Ωw

− Ω
ω′

sin Ωw 0 Ω
ω′

cos Ωw

−∆
ω′

sin Ωw 0 ∆
ω′

cos Ωw


1 0 0

0 ∆
ω′
− Ω
ω′

0 Ω
ω′

∆
ω′

 =

=

 cos Ωw Ω
ω′

sin Ωw ∆
ω′

sin Ωw

− Ω
ω′

sin Ωw Ω2

ω′2
cos Ωw ∆Ω

ω′2
cos Ωw

−∆
ω′

sin Ωw ∆Ω
ω′2

cos Ωw ∆2

ω′2
cos Ωw

 = Y (A.103)

∑
µ=x,y,z

YτµQ(−ω′w)µλ =

=

 cos Ωw Ω
ω′

sin Ωw ∆
ω′

sin Ωw

− Ω
ω′

sin Ωw Ω2

ω′2
cos Ωw ∆Ω

ω′2
cos Ωw

−∆
ω′

sin Ωw ∆Ω
ω′2

cos Ωw ∆2

ω′2
cos Ωw


cosω′w − sinω′w 0

sinω′w cosω′w 0

0 0 1

 =

=

 cc′ + Ω
ω′
ss′ cs′ − Ω

ω′
sc′ −∆

ω′
s

Ω
ω′
sc′ − Ω2

ω′2
cs′ Ω

ω′
ss′ + Ω2

ω′2
cc′ ∆Ω

ω′2
c

∆
ω′
sc′ − ∆Ω

ω′2
cs′ ∆

ω′
ss′ + ∆Ω

ω′2
cc′ ∆2

ω′2
c

 = a(Ω, ω′, w) (A.104)

where c ≡ cos(−Ωw), s ≡ sin(−Ωw), c′ ≡ cos(−ω′w) and s′ ≡ sin(−ω′w).

Consequently, the matricial product in (4.50) is given by the matrix a(Ω, ω′, w) as
defined above, while the second commutator term in (4.38) is exactly the hermitian
conjugate of the first. Hence we can write the K operator, corrisponding to the integral
in (4.38), as

K[ρ̃S] = −
∑

τ,λ∈{x,m,n}

(
A(Ω, ω′)τλ

[
ρ̃Sσ

τ , σλ
]

+ A(Ω, ω′)∗τλ[σ
λ, στ ρ̃S]

)
, (A.105)

where A(Ω, ω′) is given by

A(Ω, ω′) =

∫ +∞

0

dwΛ−1R̃(Ωw)ΛQ(−ω′w)G(w)∗ =

∫ +∞

0

dw a(Ω, ω′, w)G(w)∗.

(A.106)
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Finally we write down the complete expression of the operator K, containing both
the dissipation term and the Lamb shift correction:

K[ρ̃S(t)] =K

[
1

2
(1 + a(t)σx + b(t)σm + c(t)σn)

]
=

=− 2σx
{
a(t)

(
Ω

ω′
<gss +

Ω2

ω′2
<gcc +

∆2

ω′2
<gc0

)
+ b(t)

(
−<gcs +

Ω

ω′
<gsc

)
+c(t)

(
∆

ω′
<gs0

)
+

(
∆Ω

ω′2
=gc0 −

∆

ω′
=gss −

∆Ω

ω′2
=gcc

)}
− 2σm

{
a(t)

(
−Ω

ω′
<gsc +

Ω2

ω′2
<gcs

)
+ b(t)

(
<gcc +

Ω

ω′
<gss +

∆2

ω′2
<gc0

)
+

+c(t)

(
−∆Ω

ω′2
<gc0

)
+

(
∆

ω′
=gs0 +

∆

ω′
=gsc −

∆Ω

ω′2
=gcs

)}
− 2σn

{
a(t)

(
−∆

ω′
<gsc +

∆Ω

ω′2
<gcs

)
+ b(t)

(
−∆

ω′
<gss −

∆Ω

ω′2
<gcc

)
+

+c(t)

(
<gcc + 2

Ω

ω′
<gss +

Ω2

ω′2
<gcc

)
+

(
=gcs − 2

Ω

ω′
=gsc +

Ω2

ω′2
=gcs

)}
(A.107)

where we defined 

gcs =

∫ ∞
0

dwG(w) cos(−Ωw) sin(−ω′w)

gsc =

∫ ∞
0

dwG(w) sin(−Ωw) cos(−ω′w)

gss =

∫ ∞
0

dwG(w) sin(−Ωw) sin(−ω′w)

gcc =

∫ ∞
0

dwG(w) cos(−Ωw) cos(−ω′w)

gc0 =

∫ ∞
0

dwG(w) cos(−Ωw)

gs0 =

∫ ∞
0

dwG(w) sin(−Ωw)

(A.108)

A.8. Derivation of the non-completely positive

Master Equation

Here we we discuss the derivation of the master equation (4.74): we follow the so-called
projection technique already shown in A.1 applied to the interaction representation. We
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thus set

RSB(t) = eit(Heff+HB)/~ %̃SB(t) e−it(Heff+HB)/~ (A.109)

KSB(t) = eit(Heff+HB)/~ H̃SB(t) e−it(Heff+HB)/~ , (A.110)

whence

dRSB(t)

dt
= λKt[RSB(t)], Kt[RSB(t)] = − i

~
[KSB(t) , RSB(t)]. (A.111)

Let us then introduce the following projectors acting on the space of density matrices
%̃SB(t) of the compound system S + B:

P[RSB(t)] = (TrBRSB(t))⊗ %B = Rt ⊗ %B , Q = id− P , (A.112)

where %B is the bath thermal state at temperature T : [HB , %B] = 0. Notice that the
trace of RSB(t) over the bath degrees of freedom,

Rt = TrBRSB(t) = eitHeff/~ TrB%̃B e
−itHeff/~ , (A.113)

gives the time-evolving density matrix of the open quantum system S in its own interaction
representation.

By means of the two projections P and Q we split (A.112) into two coupled differential
equations

dP[RSB(t)]

dt
= λKPP

t ◦ P[RSB(t)] + λKPQ
t ◦Q[RSB(t)] (A.114)

dQ[RSB(t)]

dt
= λKQP

t ◦ P[RSB(t)] + λKQQ
t ◦Q[RSB(t)] , (A.115)

where ◦ denotes the composition of maps, while KPP
t = P ◦ Kt ◦ P, KPQ

t = P ◦ Kt ◦ Q,
KQP
t = Q ◦Kt ◦ P and KQQ

t = Q ◦Ht ◦Q. The second equation is formally solved by

Q[RSB(t)] = WQQ
t,0 ◦Q[RSB] + λ

∫ t

0

dsWQQ
t,s ◦KQP

s ◦ P[RSB(s)] (A.116)

with the WQQ
t,s the time-ordered solution of

dWQQ
t,s

dt
= λKQQ

t ◦WQQ
t,s , Ws,s = id . (A.117)

By choosing as initial condition %̃SB = %⊗ %B yields Q[RSB] = Q[%̃SB] = 0 whence

Q[RSB(t)] = λ

∫ t

0

dsWQQ
t,s ◦KQP

s ◦ P[RSB(s)] . (A.118)
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Once inserted into (A.114), this provides a master equation involving P[RSB(t)] alone:

dP[RSB(t)]

dt
= λKPP

t ◦ P[RSB(t)] + λ2

∫ t

0

dsKPQ
t ◦WQQ

t,s ◦HQP
s ◦ P[RSB(s)] . (A.119)

Because of the action of P in (A.111), of the form of the interaction Hamiltonian and of
the fact that, with %B a thermal Gibbs state, the position operators have vanishing mean

values, one gets TrB

(
%BKSB(t)

)
= 0. Therefore, from P[RSB(t)] = Rt ⊗ %B, one gets

dRt

dt
= − λ

2

~2

∫ t

0

duTrB

([
KSB(t),Q ◦WQQ

t,u ◦Q
[
KSB(u) , Ru ⊗ %B

]])
. (A.120)

The above equation depends on the history of the system S state Rs for all times
0 ≤ s ≤ t; in order to eliminate this dependence, one takes into account the weak-
coupling hypothesis λ � 1 and looks at the dynamics as a function of a slow time
parameter τ = tλ2. Firstly, by a change of integration variable s = t − u, (A.120) is
recast as

dRt

dt
= − λ

2

~2

∫ t

0

duTrB

([
KSB(t),Q ◦WQQ

t,t−u ◦Q
[
KSB(t− u) , Rt−u ⊗ %B

]])
. (A.121)

Then, letting λ→ 0, WQQ
t,s → id for the right hand side in (A.111) is proportional to λ,

and

Q ◦WQQ
t,s ◦Q

[[
KSB(s) , Rs ⊗ %B

]]
→ Q

[[
KSB(s) , %̃s ⊗ %B

]]
=
[
KSB(s) , %̃s ⊗ %B

]
,

where the last equality follows since, as explained before, the bath operators have
vanishing mean-values with respect to the thermal state %B.

At this point, one usually sends the integration upper limit to +∞ and replaces
t−u = τ/λ2−u with t in Rt−u whence the second term on the right hand side of (A.121)
reads

Dt[Rt] = −λ
2

~2

∫ +∞

0

duTrB

([
KSB(t) ,

[
KSB(t− u) , Rt ⊗ %B

]])
. (A.122)

By going back to the initial picture, one gets the following master equation for %̃t,

d%̃t
dt

= − i
~

[
Heff , %̃t

]
+ λ2 D̃t[%̃t] (A.123)

D̃t[%̃t] = − 1

~2

∫ +∞

0

duTrB

([
H̃SB(t) ,

[
eu(Heff+HB)[H̃SB(t− u)] , %̃t ⊗ %B

]])
,(A.124)

where

eu(Heff+HB)[X] = e−iu(Heff+HB)/~X eiu(Heff+HB)/~ . (A.125)
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It is immediate to recognize that the operator D̃t corresponds to the K1 operator in
the classification of the different Markovian approximation that we discussed in sec. 5.
Moreover, by substituting the interaction Hamiltonian with its expression (4.10) and

after calculating the trace as in sec. A.7, one can easily show that D̃t is exactly the
integral operator in (4.74).

A.9. Violations of the positivity requirement

We want to show that the dynamical semigroup given by

γt[ρ] ≡ etL[ρ] (A.126)

L[ρ] ≡ −i [Heff , ρ] + K[ρ] (A.127)

with K = K1, from eq. (4.78), is not even a positive map, for certain values of the
parameters Ω, ω′.

We look for a pure state |ψ〉 〈ψ| such that its evoluted state breaks positivity at first
order in t. To be precise, given

|ψ〉 〈ψ| 7→ γt[|ψ〉 〈ψ|] = |ψ〉 〈ψ|+ tL[|ψ〉 〈ψ|] +O(t2), (A.128)

we can construct a state |φ〉 which shows the non-positivity of the map γt, in the sense
that it violates

0 ≤ 〈φ |ψ〉 〈ψ |φ〉+ t 〈φ |L[|ψ〉 〈ψ|] |φ〉+O(t2) =

= |〈φ |ψ〉|2 + t 〈φ |L[|ψ〉 〈ψ|] |φ〉+O(t2).
(A.129)

Since the source of negativity in the above expression can only come from the term
proportional to t, we choose |φ〉 ⊥ |ψ〉, so that

〈φ |L[|ψ〉 〈ψ|] |φ〉 = 〈φ |K[|ψ〉 〈ψ|] |φ〉 =

= 〈φ |V1 |ψ〉
〈
ψ
∣∣∣V †2 ∣∣∣φ〉+ 〈φ |V2 |ψ〉

〈
ψ
∣∣∣V †1 ∣∣∣φ〉+

+ 〈φ |V3 |ψ〉
〈
ψ
∣∣∣V †4 ∣∣∣φ〉+ 〈φ |V4 |ψ〉

〈
ψ
∣∣∣V †3 ∣∣∣φ〉 . (A.130)

Now, we have already seen that the Master Equation (4.74), expressed in the ro-
tated frame of reference, is actually time-independent, and therefore the Lindblad
operators (4.77) can be evaluated at any time, for example at t = 0. In particular
V2 = σz = V †2 and V4 = σx = V †4 .



Complementary material 107

With the parametrization

|ψ〉 =
1√

1 + |ξ|2

(
1

ξ

)
, |φ〉 =

1√
1 + |ξ|2

(
−ξ∗

1

)
, ξ = |ξ|ei arg ξ ∈ C, (A.131)

we have

〈ψ |σz |φ〉 = − 2ξ∗

1 + |ξ|2
, 〈ψ |σn |φ〉 =

1− ξ∗2

1 + |ξ|2
. (A.132)

Then, by defining

γ1 ≡ 〈φ |V1 |ψ〉 , γ3 ≡ 〈φ |V3 |ψ〉 , (A.133)

we obtain

0 ≤ 〈φ |K[|ψ〉 〈ψ|] |φ〉 =
2

1 + |ξ|2
<
{
γ1(−2ξ∗) + (1− ξ∗2)γ3

}
, (A.134)

where

γ1 =
1

1 + |ξ|2
(
−ξV1(00) + V1(10) − ξ2V1(01) + ξV1(11)

)
, (A.135)

γ3 =
1

1 + |ξ|2
(
−ξV3(00) + V3(10) − ξ2V3(01) + ξV3(11)

)
, (A.136)

V1(ij), V3(ij), being the matrix components of V1, V3 in the basis {|0〉 , |1〉}.

Consequently, the positivity condition (A.129), is expressed by

0 ≤ <
{(

2|ξ|2V1(00) − 2ξ∗V1(10) + 2|ξ|2ξV1(01) − 2|ξ|2V1(11)

)
+

+
(
−ξV3(00) + V3(10) − ξ2V3(01) + ξV3(11)

)
+

+
(
|ξ|4V3(01) + |ξ|2ξ∗V3(00) − |ξ|2ξ∗V3(11) − ξ∗2V3(10)

)}
, (A.137)

for all ξ ∈ C.

We are interested in the sign of the coefficient of the highest power of |ξ|, V3(01).

V3(01) =
∑
j,k=0,1

∫ ∞
0

dtG(τ)U †0(−τ)0jσ̃
x(−τ)jkU0(−τ)k1. (A.138)

The integrand can be worked out after evaluating σ̃x(−τ):

σ̃x(−τ) = R−1
y (−Ωτ)σxRy(−Ωτ) = e−i

Ωτ
2
σyσxei

Ωτ
2
σy = σx cos Ωτ − σz sin Ωτ, (A.139)
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and then1

U †0(−τ)σ̃x(−τ)U0(−τ) = e−i
ω′
2
σnτ (σx cos Ωτ − σz sin Ωτ)ei

ω′
2
σnτ =

=

(
cosω′τ cos Ωτ +

Ω

ω′
sinω′τ sin Ωτ

)
σx+

+

(
sinω′τ cos Ωτ − Ω

ω′
cosω′τ sinω′τ

)
σm − ∆

ω′
σn =

=

(
cosω′τ cos Ωτ +

Ω

ω′
sinω′τ sin Ωτ

)
σx+

+

(
∆

ω′
(sinω′τ cos Ωτ − Ω

ω′
cosω′τ sin Ωτ) +

∆Ω

ω′2
sin Ωτ

)
σy+

+ f(Ω, ω′, τ)σz.

We study the sign of |ξ|4<V3(01)

<V3(01) =

∫ +∞

0

dτ <G(τ)

(
cosω′τ cos Ωτ +

Ω

ω′
sinω′τ sin Ωτ

)
+

+

∫ +∞

0

dτ =G(τ)

(
∆

ω′
sinω′τ cos Ωτ − ∆Ω

ω′2
cosω′τ sin Ωτ +

∆Ω

ω′2
sin Ωτ

)
=

= <gcc +
Ω

ω′
<Gss −

∆

ω′
=gcs −

∆Ω

ω′2
=gsc −

∆Ω

ω′2
=gs0 =

=
απ

4

{
(ω′ + Ω)e−

ω′+Ω
ωc coth

β(ω′ + Ω)

2
+ (ω′ − Ω)e−

ω′−Ω
ωc coth

β(ω′ − Ω)

2
+

− Ω

ω′

(
(ω′ + Ω)e−

ω′+Ω
ωc coth

β(ω′ + Ω)

2
− (ω′ − Ω)e−

ω′−Ω
ωc coth

β(ω′ − Ω)

2

)
+

− ∆

ω′

(
(ω′ + Ω)e−

ω′+Ω
ωc − (ω′ − Ω)e−

ω′−Ω
ωc

)
+

−∆Ω

ω′2

(
(ω′ + Ω)e−

ω′+Ω
ωc − (ω′ − Ω)e−

ω′−Ω
ωc

)}
− ∆Ω

ω′2
=gs0. (A.140)

1The σz coefficient, f(Ω, ω′, τ), is irrelevant in the calculation of (A.138), because the (01) element
appears only in σx and σy.
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=gs0 is given by:

=gs0 =

∫ +∞

0

dτ sin(−Ωτ)=G(τ) =

=

∫ +∞

0

dτ sin(−Ωτ)

∫ +∞

0

dk αke−k/ωc={cos kτ coth
βk

2
− i sin kτ} =

= α

∫ +∞

0

dk ke−k/ωc
∫ +∞

0

dτ sin Ωτ sin kτ =

= −απ
4

∫ +∞

0

dk 2ke−k/ωc (δ(k + Ω)− δ(k − Ω)) =

=
πα

2
Ω
(
e−

Ω
ωc − e

Ω
ωc

)
. (A.141)

We can study the limit Ω → ∞ but we must also impose how ω′, which is always
greater than Ω, goes to infinity. For example we could impose that the ratio Ω/ω′ remains

constant and let ω′ →∞. It’s evident that this implies that coth β(ω′±Ω)
2

ω′→∞−−−→ 1 while

the exponentials e−
ω′±Ω
ωc kill all the terms but the last one in (A.140)

−∆Ω

ω′2
=gs0 = −π∆α

2

Ω2

ω′2
(
e−Ω/ωc − eΩ/ωc

) ω′→∞−−−→ +∞. (A.142)

This means that even if we increase ξ in (A.131) in order to make the |ξ|4 term
dominate, we cannot ensure the positivity violation for large Ω, because its coefficient
goes to ∞.

But in the same way we can show that the zero order term, independent from ξ,
which is <V3(10), is increasily negative in the same limit for Ω, ω′. Indeed

<V3(10) =

∫ +∞

0

dτ<
{
G(τ)

[
U †0(−τ)σ̃x(−τ)U0(−τ)

]
10

}
=

=

∫ +∞

0

dτ<
{
G(τ)

[
cosω′τ cos Ωτ +

Ω

ω′
sinω′τ sin Ωτ+

+i

(
∆

ω′

(
sinω′τ cos Ωτ − Ω

ω′
cosω′τ sin Ωτ

)
+

∆Ω

ω′2
sin Ωτ

)]}
=

= <gcc +
Ω

ω′
<Gss +

∆

ω′
=gcs +

∆Ω

ω′2
=gsc +

∆Ω

ω′2
=gs0, (A.143)

where the sign is inverted.

Consequently, if we choose ξ = 0 in (A.131), i.e.

|ψ〉 =

(
1

0

)
, |φ〉 =

(
0

1

)
, (A.144)



110 Complementary material

then

〈φ |L[|ψ〉 〈ψ|] |φ〉 Ω,ω′→∞−−−−−→ −∞. (A.145)

So one can conclude that there certainly exist pure states that are mapped by the
dynamics γt = etL generated by the M.E. proposed in [31], into density matrices γt[|ψ〉 〈ψ|]
which are non-positive, hence non-physical, for some suitable values of the parameters Ω,
ω′.

A.10. Explicit expression of the original Master

Equation

In this section we report for convenience the explicit form of the Master Equation
proposed by Tosatti et al. in[31]:

∂ρ̃S(t)

∂t
= −2

{
∆

ω′

(
− Ω

ω′
<gc0 + =gss +

Ω

ω′
=gcc

)
+

(
∆2

ω′2
<gc0 +

Ω

ω′
<gss +

Ω2

ω′2
<gcc

)
a+(

ω′

4
+

Ω

ω′
<gsc −

Ω2

ω′2
<gcs

)
b+

∆

ω′

(
<gsc −

Ω

ω′
<gcs

)
c

}
σx+

−2

{
∆

ω′

(
=gs0 + =gsc −

Ω

ω′
=gcs

)
+

(
− ω′

4
− Ω

ω′
<gsc + <gcs

)
a+(

∆2

ω′2
<gc0 + <gcc +

Ω

ω′
<gss

)
b− ∆

ω′

(
=gs0 + =gsc −

Ω

ω′
=gcs

)
c

}
σm+

−2

{(
− 2

Ω

ω′
=gsc +

Ω2 + ω′2

ω′2
=gcs

)
− ∆

ω′
<gs0a+

− Ω∆

ω′2
<gc0b+

(
Ω2 + ω′2

ω′2
<gcc + 2

Ω

ω′
<gss

)
c

}
σn .

(A.146)
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