On J. Deák's Construction for Quasi-uniform Extensions

Ákos Császár (*)

SUMMARY. - Let (X, \mathcal{U}) be a quasi-uniform space, $Y \supset X$, \mathcal{T} a topology on Y. An extension compatible with $(\mathcal{U}, \mathcal{T})$ is a quasi-uniformity \mathcal{W} on Y such that the restriction $\mathcal{W} \mid X$ of \mathcal{W} to X coincides with \mathcal{U} and the topology \mathcal{W}^{tp} induced by \mathcal{W} equals \mathcal{T} .

The paper [1] contains a construction of such extensions. The purpose of the present paper is to give some applications of the result in [1]. Without explicit mention of the contrary, we shall use the terminology and notation of [2].

1. Preliminaries

Let \mathcal{V} be a quasi-uniformity on Y and suppose $\mathcal{U} \subset \mathcal{V} \mid X$. According to [1], we define, for $V \in \mathcal{V}, U \in \mathcal{U}$,

$$V + U = V \cup V \circ U \circ V.$$

Evidently V + U is an entourage on Y, and

$$\{V + U : V \in \mathcal{V}, U \in \mathcal{U}\}$$

is a base for a quasi-uniformity $\mathcal{V} + \mathcal{U}$ on Y ([1], Lemma 1.5). By [1], Lemma 1.4, we have $(\mathcal{V} + \mathcal{U}) \mid X = \mathcal{U}$ and, by [1], Lemma 1.2, $(\mathcal{V} + \mathcal{U})^{tp} = \mathcal{V}^{tp}$ provided the traces on X of the \mathcal{V}^{tp} -neighbourhood filters of the points of Y are \mathcal{U} -round (if a point does not belong to the \mathcal{V}^{tp} -closure of X then this trace coincides with the zero filter

^(*) Author's address: H-1052 Budapest, Pàrizsi utca 6/a

Research supported by Hungaria Foundation for Scientific Research, grant no. T016094.

exp X); a filter \mathfrak{s} on X is said to be \mathcal{U} -round iff $S \in \mathfrak{s}$ implies the existence of $S' \in \mathfrak{s}$ and $U \in \mathcal{U}$ such that $U(S') \subset S$. Therefore, in this case, $\mathcal{V}+\mathcal{U}$ is an extension compatible with $(\mathcal{U}, \mathcal{V}^{tp})$. Moreover, if \mathcal{W} is a $(\mathcal{U}, \mathcal{T})$ -compatible extension coarser than \mathcal{V} , then $\mathcal{W} \subset \mathcal{V}+\mathcal{U}$ ([1], Lemma 1.6).

It is not difficult to prove with the help of these results:

THEOREM 1.1. ([1], Theorem 1.7). Let (X, \mathcal{U}) be a quasi-uniform space, $Y \supset X$, \mathcal{T} a topology on Y. There exists a $(\mathcal{U}, \mathcal{T})$ -compatible extension iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$, the trace on X of the \mathcal{T} -neighbourhood filters of the points of Y are \mathcal{U} -round, and $\mathcal{U} \subset \mathcal{V} \mid X$ for the fine quasi-uniformity \mathcal{V} of \mathcal{T} .

We shall establish similar existence theorems for special classes of quasi–uniformities.

We first consider transitive quasi-uniformities.

LEMMA 1.2. Let U and V be transitive entourages on X and $Y \supset X$, respectively, and suppose $V \mid X = V \cap (X \times X) \subset U$. Then V + U is a transitive entourage on Y.

Proof. Assume (a, b), $(b, c) \in V + U = V \cup (V \circ U \circ V)$. If (a, b), $(b, c) \in V$ then clearly $(a, c) \in V \subset V + U$. If $(a, b) \in V$, $(b, c) \in V \circ U \circ V$ then there are $x, y \in X$ such that $(b, x) \in V$, $(x, y) \in U$, $(y, c) \in V$. Hence $(a, x) \in V$ and $(a, c) \in V \circ U \circ V \subset V + U$.

The case $(a, b) \in V \circ U \circ V$, $(b, c) \in V$ is similar.

Finally if (a, b), $(b, c) \in V \circ U \circ V$ then there are $x, y, z, u \in X$ such that

$$(a, x) \in V, (x, y) \in U, (y, b) \in V, (b, z) \in V, (z, u) \in U, (u, c) \in V.$$

Therefore $(y, z) \in V \mid X \subset U$ by hypothesis, hence $(x, u) \in U$, and $(a, c) \in V \circ U \circ V \subset V + U$.

THEOREM 1.3. Let (X, \mathcal{U}) be a transitive quasi-uniform space, $Y \supset X$, \mathcal{T} a topology on Y. There exists a transitive $(\mathcal{U}, \mathcal{T})$ -compatible extension iff $\mathcal{U}^{tp} = \mathcal{T}$, the traces on X of the \mathcal{T} -neighbourhood filters of the points of Y are \mathcal{U} -round, and $\mathcal{U} \subset \mathcal{V} \mid X$ for the fine transitive quasi-uniformity \mathcal{V} of \mathcal{T} .

Proof. The necessity is evident, and the hypotheses imply that the $(\mathcal{U}, \mathcal{T})$ -compatible extension $\mathcal{V} + \mathcal{U}$ is transitive: the entourages V + U such that $V \in \mathcal{V}, U \in \mathcal{U}$ and $V \mid X \subset U$ clearly constitute a base for $\mathcal{V} + \mathcal{U}$, so that 1.2 applies.

COROLLARY 1.4. Under the above hypotheses, $\mathcal{V} + \mathcal{U}$ is the finest transitive $(\mathcal{U}, \mathcal{T})$ -compatible extension.

We next turn to the case of totally bounded spaces. Let \mathfrak{r} be a cover of the set X, and define

 $U(\mathfrak{r}) = \{ (x, y) \in X \times X : y \in \cap \{ C \in \mathfrak{r} : x \in C \} \}.$

Then $U(\mathfrak{r})$ is an entourage on X, and clearly $U(\mathfrak{r}) | X_0 = U(\mathfrak{r} | X_0)$ for $X_0 \subset X$ and $\mathfrak{r} | X_0 = \{C \cap X_0 : C \in \mathfrak{r}\}$. It is easily seen (and well-known) that, it \mathcal{T} is a topology on X, the entourages $U(\mathfrak{r})$, where \mathfrak{r} runs over the finite open covers of X satisfying $X \in \mathfrak{r}$, constitute a base for the Pervin quasi-uniformity of \mathcal{T} , i.e. (see [2], 2.2) the finest totally bounded quasi-uniformity inducing \mathcal{T} .

LEMMA 1.5. Let \mathcal{T} be a topology on $Y \supset X$, $\mathcal{T}_0 = \mathcal{T} \mid X$, \mathcal{P} and \mathcal{P}_0 the Pervin quasi-uniformities of \mathcal{T} and \mathcal{T}_0 , respectively. Then $\mathcal{P}_0 = \mathcal{P} \mid X$.

Proof. If \mathfrak{r} runs over the finite \mathcal{T} -open covers of Y then $\mathfrak{r} \mid X$ runs over the finite \mathcal{T}_0 -open covers of X.

THEOREM 1.6. Let (X, \mathcal{U}) be a totally bounded quasi-uniform space, \mathcal{T} a topology on $Y \supset X$. There exists a totally bounded $(\mathcal{U}, \mathcal{T})$ compatible extension iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$ and the traces on X of the \mathcal{T} -neighbourhood filters of the points in Y are \mathcal{U} -round.

Proof. The necessity is contained in Theorem 1.1. Sufficiency: if \mathcal{P} is the Pervin quasi-uniformity of \mathcal{T} , then $\mathcal{P} \mid X$ is the Pervin quasi-uniformity on \mathcal{U}^{tp} by 2.4. Hence $\mathcal{U} \subset \mathcal{P} \mid X$ and $\mathcal{P} + \mathcal{U}$ is a $(\mathcal{U}, \mathcal{T})$ -compatible extension. By [1](5a), we have $\mathcal{P} + \mathcal{U} \subset \mathcal{P}$, so that $\mathcal{P} + \mathcal{U}$ is totally bounded.

COROLLARY 1.7. Under the above hypotheses, $\mathcal{P} + \mathcal{U}$ is the finest totally bounded $(\mathcal{U}, \mathcal{T})$ -compatible extension.

References

- J. DEÁK, Quasi-uniform extensions for finer topologies, Studia Sci. Math. Hungar 25 (1990), 97–105.
- [2] P. FLETCHER AND W.F. LINDGREN, Quasi-uniform spaces, Marcel Dekker Inc., New York and Basel, 1982.

Received December 15, 1997.