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1 Abstract 

 

The main goal of this research work was the determination of some important micro and 

nano structural characteristics of polymeric matrices intended for biomedical 

applications. In particular, the attention was focused on the application of the Low-Field 

Nuclear Magnetic Resonance (LF-NMR), a fast and non destructive technology used in 

food and polymeric companies to study homogeneous (i.e. not porous) and porous 

polymeric matrices. 

Indeed, in the case of homogeneous matrices (typically used as delivery systems), LF-

NMR can provide interesting informations about the polymeric network mesh size 

distribution, this being a key parameter ruling the drug release kinetics. One of the most 

interesting homogeneous matrix studied was that composed by alginate and pluronic 

F127. This is a composite polymeric blend proposed for artery endoluminal delivery of 

an emerging class of molecules called nucleic acid based drugs (NABDs). The physical 

characterization of this gel was performed according to rheology, low/high field NMR 

and TEM. In particular, it was observed that Pluronic micelles, organizing in cubic 

ordered domains, generate, upon alginate crosslinking (due to the addition of divalent 

cations), meshes (≈ 150 nm) larger than those occurring in a Pluronic-free alginate 

network (≈ 25 nm). Accordingly, the gel structure is quite inhomogeneous, where big 

meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and 

un-structured PF127 micelles). The presence of big and small meshes indicates that drug 

release may follow a double kinetics characterized by a fast and a slow release. Notably, 

this behaviour is considered appropriate for endoluminal drug release to the arterial wall. 

In this context, it was also explored the possibility of recurring to cryoporosimetry in 

order to evaluate the mesh size distribution of both alginates and polyvinylpirrolidone 

gels. Indeed, cryoporosimetry relies on the depression of the ice melting point when 

nanocrystals are considered (the smaller the nanocrystal size, the smaller the melting 

temperature and enthalpy). Upon gel freezing, the water contained in the polymeric 

network cannot give origin to a unique macro-crystals due to the presence of the three-
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dimensional polymeric network that obliges water to crystallize in many nanocrystals 

confined in the polymeric meshes. Thus, the evaluation of the melting temperature 

depression of the water contained in the hydrogel enables the determination of 

nanocrystals size distribution and, thus, of the mesh size distribution. This study 

evidenced that the application of cryoporosimetry to polymeric gels, although not so 

uncommon in literature, requires extreme care as the water melting point can be 

influenced not only by the mesh size but also by the presence of unreacted polymer, 

crosslinker, salts and impurities. Accordingly, it is highly recommended comparing the 

water melting temperature variation in the polymeric network and the melting 

temperature occurring in a water – polymer solution of the same concentration. 

In the case of porous matrices, typically used as scaffolds for tissue engineering and 

regenerative medicine, low field NMR can provide interesting information about the size 

distribution of matrix pores, this being a key parameter for cells growth. Indeed, it is well 

know that cells can grow on condition that pores are sufficiently wide (typically around 

100 microns in diameters). By measuring the apparent reduction of the water self-

diffusion coefficient inside the scaffold, it was possible estimating the mean pores 

dimension according to the Mitra theory. Then, the Brownstein and Tarr approach, 

suitable for mono-dispersed spherical pores, was extended to a micro-porous structure 

characterized by poly-dispersed spherical pores according to the Chui approach. On the 

basis of this study, it was finally possible getting the pore size distribution relying on 

transverse relaxation measurements. In order to verify the robustness and reliability of 

this approach, different systems were considered: 

 Spherical glass beads 

 Styrene-butadiene rubber 

 Toasted coffee seeds 

 Bacterial Cellulose/ Acrylic Acid gels 

In the case of glass beads, the correctness of the low field NMR approach was proved by 

means of a theoretical evaluation of the mean diameter of the voids formed among beads. 

In the case of the styrene-butadiene rubber (used to produce pillows and mattresses) the 

estimation of pores diameter according to low field NMR approach completely agreed 

with the outcomes deriving from SEM images of the same rubber. Interestingly, the low 

field NMR approach yielded important results also in the evaluation of pores dimension 
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in swollen toasted coffee seeds. At our knowledge, this aspect of coffee seeds has never 

been accounted for and it could represent an important parameter for the determination 

of coffee quality and/or maintenance of coffee seeds properties. Once the reliability of 

the low field NMR approach was definitively proved, the attention moved on more 

interesting, from the biomedical point of view, systems. In particular, two different kinds 

of scaffolds were considered: 

 Poly Left lactide Acid (PLLA) scaffolds  

 Alginate/Hydroxyapatite (Alg/Hap) scaffolds. 

In this framework, the attention was devoted to the production of PLLA scaffolds with 

and without functionalizing agents such as collagen and glycosaminoglycans (GAGs), 

polysaccharides devoted to ameliorate the environment for cells growth. Indeed, cells 

vitality after seeding in the PLLA scaffolds was improved by the GAGs presence. Also 

in this case the low field approach furnished an estimation of pores size distribution in 

agreement with what evaluable by means of SEM and microCT. Interestingly, this 

agreement holds also when different operating conditions are considered in the scaffold 

preparation, this yielding to different mean pores diameter. Undoubtedly, one of the most 

important results reached in this work was connected to the characterization of alginate - 

hydroxyapatite scaffold intended for osteocytes growth in the bone regeneration frame. 

Indeed, it was possible observing the temporal evolution of the pore size distribution of 

the scaffold without and with seeded cells. Interestingly, it was observed that while the 

temporal evolution of pores size, for what concerns smaller pores (< 100 m), is similar 

for scaffolds hosting or not living cells, a different behaviour was observed for bigger 

pores. Indeed, in this case, the presence of cells made the time evolution of the pores size 

different from what occurred in the scaffolds without cells. This sounds reasonable as the 

effect of cell growth should be evident only in bigger pores while, in smaller pores, where 

cells access is more difficult, cells effect should be less evident if not negligible. 

Finally, it is important to stress that low field NMR proved to be a reliable, not invasive 

approach for the characterization of scaffolds structure also in the presence of living cells, 

this being not the case of many other characterization approaches that unavoidably tend 

to kill the seeded cells. Vitality tests proved that cells are alive up to 20 days after seeding, 

despite the numerous expositions to the low field NMR for the determination of pore size 

evolution.
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2  Introduction 

 

2.1 Tissue Engineering 
Tissue or organ failure is one of the most frequent and devastating problem medicine. 

Current therapeutics approaches (allografts, xenografts, autografts and implantation of 

biomedical devices) had largely improved the quality of life but they are associated with 

clear limitations including donor availability, infection, poor integration and potential 

rejection of the implant. Regenerative medicine was developed with the aim to overcome 

such limitations and to find revolutionary and powerful therapies for the treatment of 

tissues diseases, with the basic idea to repair or re-create tissues or organs in order to 

restore impaired functions [1, 2]. Since its origin, regenerative medicine has rapidly 

grown and has attracted the interest of many scientists and surgeons throughout the world. 

Nowadays regenerative medicine encompasses different strategies for the creation of new 

tissue including the use of cloning, of isolated cells, of non-cellular structures and of cells 

constructs. 

The latter approach, which is usually referred to as Tissue Engineering (TE), is believed 

to be highly promising for regenerating tissues. It is pointed out that a clear distinction 

between TE and regenerative medicine does not exist in the literature and some scientists 

use these terms as synonyms.  

Even if the term “Tissue Engineering” was firstly coined in the mid of 1980’s, it became 

part of the scientists common language only in 1993, when Robert Langer and Joseph P. 

Vacanti defined TE as “an interdisciplinary field that applies the principles of engineering 

and life science towards the development of biological substitutes that restore, maintain, 

or improve tissue function or a whole organ” [3]. 

Figure 2.1 sketches TE approach for the preparation of cell constructs: cells are cultured 

in vitro under precisely controlled culture conditions on a porous three-dimensional (3D) 

materials that act as a scaffolds for cell growth and proliferation. Those structures are 

characterized by an interconnected pore network able to guide, after the degradation of 

the scaffold, the implanted cells to form a new tissue showing a well-integrated structure. 
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Figure 2.1: TE approach by using cell-scaffolds constructs 

 

Significant progress has been realized in TE since its principles were defined and to date 

several products, incorporating cells together with scaffold, have gained regulatory 

approval [4]. Commercial devices are mostly dedicated to skin, bone and cartilage 

engineering whereas products for cardiac, nerve, kidney or pancreas engineering are not 

widespread yet [4]. 

 

2.2 Tissue Engineering Products 

Based on the concept that each tissue is characterized by different functions and features 

the tissue engineering products design strongly depends on material properties and on 

cellular response to the chosen biomaterials. In addition, the ability to shape into the 

suitable cellular level architecture has to be taken into account and the final architecture 

must be compatible with the desired tissue response. The proper biomaterial selection is 

assisted by the development of methods and sophisticated modeling techniques that 

permit prediction of polymer properties and cellular response to the material. Such 

techniques allow a wide use of biodegradable polymers for tissue engineering 
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applications. Tissue engineering products can be designed to conduct, induct or block 

tissue responses and architectures. Depending on the final purpose barriers (membranes 

or tubes), gels or matrices can be developed [5]. 

Membranes are required where cell activity is needed on one surface of a device 

precluding transverse movement of surrounding cells onto that surface. For instance 

peripheral nerve regeneration needs an axonal growth and, at the same time, preventing 

fibroblast activity that would produce neural-inhibiting connective tissue [6]. 

Furthermore, collagen membranes used in periodontal repairing provide the right 

environment for periodontal ligament regrowth and attachment but at the same time they 

avoid the epithelial ingrowth into the healing site [7]. Prevention of post-surgical 

adhesion obtained by using hyaluronic acid compounds is another example of barrier 

biomaterials. Hydrogel biomaterials can encapsulate and represent a specialized 

environment for isolated cells. Collagen gels, for instance, can be used for the 

preservation and immuneprotection xenograft and homograft cells, such as hepatocytes, 

chondrocytes, and islets of Langerhans, used for transplantation. Semipermeable gels can 

be a support for cells in systems where cell-cell communication and interaction with 

surrounding tissue has to be minimized as well as the movement of peptide factors and 

nutrients through the implant. 

Gels are particularly suitable in applications such as bone and cartilage tissue 

regeneration where the material has to be injectable and polymerization in situ is needed 

[8].  

Tissue engineering scaffolds or matrices are an important component for tissue 

development and their characteristics such as pore size and the structure, ordered and 

regular or randomly distributed, are fundamental in forming tissues with a proper cell 

morphology, orientation, arrangement of intercellular material, and the relationship 

between different cell types. Besides several techniques have been developed to form well 

defined scaffolds using different kind of biomaterials and physical characteristics of the 

matrices can be varied to maximize cellular and tissue responses [5, 9, 10]. 
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2.3 Biological Tissues 

Detailed understanding of structure and function of normal biological tissues is central to 

the design of artificial organs and to the development of tissue engineering strategies. In 

general biological tissues are composed of cell and of a not cellular part called 

Extracellular Matrix (ECM). Physiological functions in the human body are 

coordinated by different types of organs composed of a great variety of mammalian cells 

surrounded by ECM, which displays different chemical compositions and different 

spatially organized configurations depending on the type of organ. 

The ECM is composed of carbohydrates and proteins locally secreted by cells and 

assembled in an organized network. For the sake of simplicity ECM can be composed of 

[11]: 

 A gel like component 

 A fibrous component  

 Specialized proteins. 

The highly viscous and hydrated gel-like part confers lubricant and hit-absorption 

properties to the ECM. It consist of carbohydrates assembled to form polysaccharides 

commonly called glycosaminoglycans which, in turn, are covalently attached to a protein 

backbone to form proteoglycans. The fibrous component of ECM is essentially composed 

of collagen and elastin that create a complex network of fibers with diameters ranging 

from few to hundreds of nanometers, imparting rigidity and strength to the entire tissue. 

Finally, ECM holds proteins such as growth factors (GFs), cytokines, enzymes and 

multidomain proteins (e.g. fibronectin, laminin, vibronectin, etc.) that play a key function 

in the communication with the surrounding cells. Besides providing structural support to 

cells, ECM plays a central role in modulating cell behavior and in maintaining tissue 

architecture and functions thanks to its dynamic interaction with cells. Indeed, cells 

continuously interact with the external environment via membrane proteins (receptors, 

e.g. integrins) that bind external proteins (ligands, e.g. fibronectin) located both on the 

surface of surrounding cells and in the ECM, by following a lock-and-key mechanism. 

Through an intracellular cascade of reactions, the ligand-receptor interaction is translated 

into a specific signal to guide the cell to a specific activity [12]. 
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Figure 2.2: The structure of ECM 

 

This dynamic interaction allows to finely control cell fate, shape and behavior in response 

to even small changes in ECM composition [13-16]. 

Generally, ECM functions can be summarized as follow [17]: 

 Establishment of a hierarchical patterned micro/nano environment; 

 Mechanical and structural support; 

 Regulation of cell shape and cell polarity; 

 Storage of regulatory molecules (enzymes, GFs, multidomain proteins); 

 Regulations of cell function (e.g. proliferation, growth, survival, migration and 

differentiation). 

Given the central role of ECM and of cell environment in determining cell response and 

behavior, it is quite evident that biologists and biochemists need to deeply understand the 

biological phenomena that rule cell-ECM and cell-cell interactions. It is also clear that 
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cells must be provided with a scaffold, having suitable biological and mechanical features 

to ensure cell attachment, proliferation and spontaneous deposition of ECM by cells. To 

this aim, materials science play its role in TE field, by fabricating and ECM-substitute 

scaffold with appropriate physical and chemical properties and with a proper 3D structure 

and architecture. 

 

2.4 Biomaterials 

A biomaterial can be considered a synthetic material used to make a device designed to 

replace a part or a function of the body. The commonly accepted definition of biomaterial 

was proposed at the Conference of the European Society for Biomaterials (England, 

1986): “any substance, other than a drug, or combination of substances, synthetic or 

natural in origin, which can be used for any period of time, as a whole or as a part of a 

system which treats, augments, or replaces any tissue, organ, or function of the body” 

[18]. 

The basic requirement of a biomaterial is to be biocompatible, namely “to perform with 

an appropriate host response in a specific application” [18]. The biomaterial itself, but 

also additives or degradation products, must not cause harmful reactions in contact with 

the body. For this reason the design and the fabrication of a biomedical device, in terms 

of synthesis of the raw materials but also of manufacture technologies, must respect, first 

to all, the biocompatibility requirement. Biocompatibility must be tested and the device 

must be approved by appropriate regulatory agencies (such as Food and Drug 

Administration, USA) before it can marketed. According to the definition of biomaterial 

reported above, the following devices fall within this category: 

 Implantable devices, e.g. dental implants, pacemakers, orthopedic and vascular 

prostheses, etc.; 

 Devices working in contact with biological tissues/fluids for a limited period of 

time, e.g. surgical instruments, catheters, contact lenses, sutures, etc.; 

 Devices for extra-body treatments, e.g. dialysis membranes, blood vessels.  

According to their chemical nature, synthetic biomaterials can be classified as: 

 Polymers 

 Metals 
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 Ceramics  

 Composites. 

Table 2.1 reports some examples of application, together with some considerations about 

advantages and disadvantages related to each class of biomaterial. 

Materials  Uses  Advantages Disadvantages 

Polymers 

Polyammides, silicon rubber, 

polyesters, polyurethans, 

polytetrafluoroethylene, 

polymethylmetharilate, etc. 

Sutures, blood 

vessels, catheters, 

devices for drug 

delivery, contact 

lens, etc. 

Resilient  

Easy to 

fabricate 

Wide range of 

mechanical 

properties 

Biodegradable  

Not strong 

Deformation 

with time 

 

Metals 

Ti and its alloys, stainless 

steels, Au, Ag, Co-Cr alloys, 

etc. 

Join replacements, 

bone plates and 

screws, dental 

implants, surgical 

instruments, etc. 

Strong  

Tough 

Ductile 

 

 

May corrode 

High densities 

Ceramics 

Aluminium oxides, calcium 

phosphates, hydroxyapatite, 

bioglasses, etc. 

Dental implants, 

femoral heads, 

coating of 

orthopaedic 

devices 

Strong under 

compression 

Good 

trybological 

properties 

Brittle 

Not resilient 

 

Composites 

 

Joint implants, 

tendon and hip 

replacements,  

Heart valves 

Strong 

Tailor-made 

Difficult to 

fabricate 

Table 2.1: Categories of Biomaterials (adopted from [19]). 

 

Thanks to the continuous progress in molecular biology and in the comprehension of cell-

biomaterial interactions, since its birth, biomaterial science has seen an extraordinary 

evolution in the development of increasingly biocompatible, bioactive and specifically 

functional biomedical devices. The improvement of biomaterial features went through 

three different stages, each concerning different purposes [20]. The “first generation” of 
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biomaterials, development in 1960s as implantable devices, were designed to possess 

suitable physical properties in view of their function as organ substitutes, and they were 

intended to be inert, namely to cause minimal tissue reactions. Later in the 1980s, the 

“second generation” of biomaterials was born with the necessity not only to be tolerated 

by the organism, but also to elicit desired and controlled response by the biological tissue, 

again with no harmful effects. The so called bioactive materials were used, for example, 

in orthopaedic surgery (Bioglass). 

Moreover, in this period problems connected with long term tissue-biomaterial 

interactions were minimized with the development of bioresorbable materials that were 

used also as drug delivery systems. Subsequently biomaterials have evolved into their 

“third generation” and nowadays they are intended to stimulate highly precise reactions 

at the molecular level with biological tissues. With this aim it is clear that precise surface 

engineering and nanotechnology are needed in order to build tailored architectures for 

specific applications. Scaffolds for tissue engineering can be considered as “third 

generation” biomaterials. For this reason it is clear that raw materials suitable to produce 

bioresorbable scaffolds are exclusively either biodegradable polymers (either natural or 

synthetic ones) or biodegradable ceramics (calcium phosphates) that must disappear in 

the human body as a consequence of hydrolytic and/or enzymatic degradation, whereas 

metals and all the other non-degradable materials are not used in this context.  

Biodegradable ceramics, most of all hydroxyapatite (Hap) and -tricalcium phosphate (-

TCP), are naturally found in bone and they are used in combination with degradable 

polymers to make composite scaffolds for bone tissue regeneration [21-23]. Indeed, these 

inorganic substances are often difficult to be processed by their own into highly porous 

structures. Moreover, their inherent brittleness limits their use as plain materials for 

scaffolds, so that, in order to obtain structural resistant supports, it is necessary to combine 

them with polymer matrices [24]. Natural polymers such as proteins (e.g. gelatin, 

collagen, fibrin, starch, etc.), polysaccharides (e.g. hyaluronic acid, alginate, chitin, etc.) 

and bacterial polyesters (e.g. polyhydroxybutyrate, etc.) are widely used to produce 

scaffolds with different topography, either as pure materials or in combination with 

synthetic polymers or inorganic substances [25-28]. The use of natural polymers ensured 

excellent bioactivity towards biological environment because of their inherent properties 

of biological recognition. In particular, if ECM polymers, such as collagen or hyaluronic 
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acid, are employed, scaffolds that mimic the chemical properties of natural ECM are 

obtained. Biomimetic features are so relevant that, besides pure natural polymers, 

decellularized ECM, containing multiple natural macromolecules, is also used as 

scaffolds for tissue repair. Despite the incredible advantage of biomimicry, some issues, 

associated with purification, pathogen transmission, processability into porous structure 

and sustainable production, restrict the use of natural polymers for scaffolds fabrication. 

Moreover, poor control of mechanical properties and degradation rate limits the 

possibility to tailor their employment to specific functions. Some problems associated 

with the use of natural materials can be overcome with the employment of synthetic 

polymers. Indeed, the latter, besides being less expensive and better processable, can be 

synthesized ad hoc with a precise control of molecular structure to tune mechanical and 

degradation properties. Furthermore, polymers can be synthesized with specific 

functional groups in order to make them bioactive towards biological environment. These 

characteristics make synthetic polymers extremely attractive raw materials for scaffolds 

fabrication. The molecular structures of the most common ones are reported in Figure 2.3 

[29, 30]. 

 
Figure 2.3: Common synthetic biodegradable polymers for scaffolds based TE. 
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Scientific literature focuses its efforts mainly in the development of scaffolds made of 

polyesters, which possess the most suitable features to be employed in this context. This 

class of materials can degrade in water as consequence of ester bond hydrolysis. It is 

pointed out, however, that hydrolysis occurs depending mainly on material hydrophilicity 

and for this reason, not all polyesters can be considered as hydrolizable materials. 

Currently, the most widely investigated and most commonly used biomedical polyesters 

are polylactide (PLA), polyglicolide (PGA) and their copolymer, usually referred as poly-

α-hydroxyacids [31, 32]. These materials degrade upon water exposure into products 

absorbable by the organism: lactic acid, which is normally produced by muscular 

contraction, can be metabolized through the citric acid cycle whereas glycolic acid may 

be eliminated directly in urine or may be converted to enter the citric acid cycle [33]. 

Poly-α-hydroxyacids are usually synthesized by ring-opening polymerization of the 

cyclic dimers of lactic acid and glycolic acid (lactide and glycolide). Lactic acid is a chiral 

molecule existing as L or D isomer, thus polylactide can be optically pure, poly(L) lactide 

or poly (D) lactide, or it can exist in the racemic form, poly (D,L) lactide, depending on 

the starting monomer. PGA and the stereo regular forms of PLA are semicristalline 

polymers whereas PLGA copolymers can be amorphous depending on molecular 

composition because the presence of a co-monomer disturbs the crystallization ability of 

the chains. It has been reported that PLAGA random copolymers with L-lactic acid units 

are amorphous when glycolic acid amounts falls within the range 25-75%, whereas 

PLAGA copolymers with lactic acid in both L and D forms are amorphous in the range 

0-75% of glycolic acid content [34]. Copolymerization modulates not only the phase 

morphology (amorphous to crystalline phase ratio) and the thermal properties (glass 

transition temperature, crystallization and melting temperature) but also the degradation 

rate. Degradation mechanism and kinetics of this series of polymers have been intensively 

studied [35, 36]. Hydrolysis rate is primarily correlated with hydrophobicity of the 

material that changes depending on the copolymer composition, being lactic acid more 

hydrophobic than glycolic acid because of the presence of an extra CH3 group. The 

hydrophobicity of lactic acid limits the water uptake and, accordingly, the homopolymer 

PGA should be the faster degrading one, with degradation rate that should decrease with 

the increase of lactic acid content. However, hydrophobicity is not the only parameter 

affecting degradation rate, which is deeply influenced also by phase morphology. Indeed, 
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molecular chains packed in the crystalline phase absorb a lower amount of water with 

respect to the less dense amorphous phase. This fact explains why the amorphous 

PLA50GA50 degrades faster than the semicrystalline PGA, even if the latter is more 

hydrophilic [37, 38]. Other factors affecting degradation kinetics are polymer molecular 

weight and shape of the device. The possibility to modulate, within a wide range, 

degradation rate and mechanical properties by controlling copolymer composition and 

molecular structure makes these polyesters the most widely employed bioresorbable 

materials suitable for many and different applications, such as resorbable surgical sutures, 

drug delivery systems, orthopaedic appliances and scaffolds. 

Polyesters with a long carbon backbone chain are identified as ω‐polyhydroxyalcanoates 

among which poly‐ε‐caprolactone (PCL) is frequently employed to produce scaffolds 

(Fig. 2.3). As these polymers are highly hydrophobic and semicrystalline, their 

degradation kinetic is extremely slow, thus they are suitable for long‐term tissue 

engineering applications. In particular, ε‐caprolactone is largely used also as co‐monomer 

to slow down degradation rate of homopolymers such as PLA (giving rise to PLAxCLy 

copolymers) [39‐41]. Aliphatic polycarbonates are also applied in tissue engineering [42], 

in particular poly (1,3‐trimethylene carbonate) (PTMC), an elastomeric polymer 

potentiallycandidate for soft tissue engineering. Trimethylene carbonate is also widely 

used as co‐monomer with lactic acid, glicolic acid or ε‐caprolactone in order to obtain 

scaffolds with elastomeric properties [43‐47]. 

Other categories of materials are currently under investigation [48]: 

 Polyphosphazenes: these polymers with a backbone of alternating phosphorus and 

nitrogen atoms are at the interface between inorganic and organic polymers. 

Biodegradable polyphosphazenes can be synthesized by incorporating side groups 

on phosphorous atoms with the possibility to modulate the degradation rate over 

hours, days, months, or years by carefully controlling the nature and composition 

of side substitutes [49, 50]. Thanks to their synthetic flexibility, good 

biocompatibility, not-toxic degradation products and tailored mechanical 

properties they are very good candidates for various soft and hard tissue 

engineering appliations [51-53]. 

 Poly (propylene fumarate): being available as an injectable system that is cross-

linked in situ, it is very interesting material for bone tissue engineering in the 
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treatment of crevices and defects. Its mechanical properties vary according to the 

cross-linking agents used and they often improved by the addiction of inorganic 

particles such as β-TCP [54-56]. 

2.5 Polymeric Hydrogels 

Polymeric hydrogels are three-dimensional networks of polymer chains that are loosely 

cross-linked, enabling the system to entrap a high amount of water and causing the matrix 

to swell [57, 58]. In the last years, these materials have been used in numerous 

applications, with special emphasis on the biomedical and pharmaceutical fields. In tissue 

engineering and regenerative medicine, hydrogels have shown to be promising materials 

for the repair of cartilage [59, 60], bone [61, 62] and soft tissue [63, 64], where they form 

scaffolds for cell growth and proliferation. The applicability in biomedical devices, such 

as films, sponges and biosensors is also recognized [65]. In drug delivery, hydrogels have 

been widely used as depot systems, for instance through the oral [66], topical and 

transdermal [66, 68], gastrointestinal [69, 70], ocular [71], nasal [72] and vaginal [73] 

administration routes. 

2.5.1 Properties of Hydrogels 

Hydrogels are water swollen polymer matrices, with a tendency to imbibe water when 

placed in aqueous environment. This ability to swell, under biological conditions, makes 

it an ideal material for use in drug delivery and immobilization of proteins, peptides, and 

other biological compounds. Due to their high water content, these gels resemble natural 

living tissue more than any other type of synthetic biomaterial [74]. These networks, have 

a three dimensional structure, crosslinked together either physically (entanglements, 

crystallites), or chemically (tie-points, junctions). This insoluble crosslinked structure 

allows immobilization of active agents, biomolecules effectively, and allows for its 

release in well-defined specific manner. Thus the hydrogels‟ biocompatibility and 

crosslinked structure are responsible for its varied applications. 

2.5.2 Mechanical properties 

For not biodegradable applications, it is essential that the carrier gel matrix maintain 

physical and mechanical integrity. Mechanical stability of the gel is, therefore, an 

important consideration when designing a therapeutic system. For example, drugs and 
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other biomolecules must be protected from the harmful environments in the body such 

as, extreme pH environment before it is released at the required site. To this end, the 

carrier gel must be able to maintain its physical integrity and mechanical strength in order 

to prove an effective biomaterial. The strength of the material can be increased by 

incorporating crosslinking agents and increasing degree of crosslinking. There is however 

an optimum degree of crosslinking, as a higher degree of crosslinking also leads to 

brittleness and less elasticity. Elasticity of the gel is important to give flexibility to the 

crosslinked chains, to facilitate movement of incorporated bioactive agent. Thus a 

compromise between mechanical strength and flexibility is necessary for appropriate use 

of these materials. 

2.5.3 Biological properties 

It is important for synthetic materials, such as hydrogels, to be biocompatible and non 

toxic in order for it to be a useful biomedical polymer. Most polymers used for biomedical 

application must pass a cytotoxicity and in-vivo toxicity tests. Most toxicity problems 

associated with hydrogels arise due to unreacted monomers, oligomers and initiators that 

leach out during application. Thus an assessment of the potential toxicity of all materials 

used for fabrication of gel is an integral part of determining suitability of the gel for 

biological applications. To lower chances of toxic effects, the use of initiators is being 

eliminated, with the advent of γ-irradiation as polymerization technique. Steps are also 

taken to eliminate contaminants from hydrogels, by repeated washing and treatment. 

2.5.4 Classification of hydrogels 

Hydrogels can be classified as neutral or ionic, based on the nature of side groups. In 

neutral hydrogels, the driving force for swelling is due to the water-polymer 

thermodynamic mixing contribution to the overall free energy, along with elastic polymer 

contribution [75]. The swelling of ionic hydrogels is also affected by the ionic interactions 

between charged polymers and free ions [76]. Ionic hydrogels containing ionic groups, 

such as carboxylic acid, imbibe larger amount of water, because of its increased 

hydrophilicity. Hydrogels are also classified as homopolymers or copolymers, based on 

the method of preparation. Hydrogels can be classified based on the physical structure of 

the network as amorphous, semicrystalline, hydrogen bonded structures, supermolecular 

structures and hydrocolloidal aggregates [75]. An important class of hydrogels are the 
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stimuli responsive gels [77]. These gels show swelling behavior dependent on their 

physical environment. These gels can swell, or de-swell in response to changes in pH, 

temperature, ionic strength, and electromagnetic radiation [78]. These properties allow 

for usage in a number of applications, such as separation membranes, biosensors, artificial 

muscles, and drug delivery devices [74]. 

2.6 Preparation Methods of Hydrogels 

Hydrogels are polymeric networks. This implies that crosslinks have to be present in order 

to avoid dissolution of the hydrophilic polymer chain in aqueous solution. Hydrogels are 

most frequently used for controlled release of bioactive agents and for encapsulation of 

cells and biomolecules. In many of these cases the three dimensional structure of the 

hydrogels have to disintegrate into harmless non toxic products to ensure biocompatibility 

of the gel. The nature of the degradation products can be tailored by a proper selection of 

the hydrogel building blocks. Keeping this consideration in mind, various chemical and 

physical crosslinking methods are used today for the design of biocompatible hydrogels. 

Chemically crosslinked gels have ionic or covalent bonds between polymer chains. Even 

though this leads to more mechanical stability, some of the crosslinking agents used can 

be toxic, and give unwanted reactions, thus rendering the hydrogel unsuitable for 

biological use. These adverse effects can be removed with the use of physically 

crosslinked gels. In physically crosslinked gels, dissolution is prevented by physical 

interactions between different polymer chains. Both of these methods are used today for 

preparation of synthetic hydrogels and are discussed in detail. 

2.6.1 Chemically Crosslinked Gels 

As stated earlier, chemically crosslinked gels are mechanically quite stable due to the 

ionic and covalent bond which comprises these gels. The various methods for chemical 

crosslinking are as follows [79]: 

 Copolymerization/Crosslinking Reactions 

Initiators used in these reactions are radical and anionic initiators. 

 Crosslinking of polymers 

In this method chemically crosslinked gels are formed by radical polymerization of low 

molecular weight monomers, or branched homopolymers, or copolymers in the presence 
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of crosslinking agent. This reaction is mostly carried out in solution for biomedical 

applications. 

 Crosslinking by High Energy Radiation 

High energy radiation, such as gamma [1.38] and electron beam radiation can be used to 

polymerize unsaturated compounds. 

 Crosslinking Using Enzymes 

In this method chemically crosslinked hydrogels are formed by enzymes addition such us 

transglutaminase into solution.  

 

2.6.2 Physically Crosslinked Gels 

Chemically crosslinked gels imply use of a crosslinking agent, which is often toxic. This 

requires that the crosslinking agent be removed from gel, which can affect the gel 

integrity. For these reasons, physically crosslinked gels are now coming into prominence. 

Several methods have been investigated exploring preparation of physically crosslinked 

gels. Below are mentioned some of the most widely used methods and their areas of 

application [79]: 

 Crosslinking by Ionic Interactions 

An example of crosslinking via ionic interactions is crosslinking of Alginate. Alginate 

consists of glucuronic acid residues and mannuronic acid residues and can be crosslinked 

by calcium ions. Crosslinking can be carried out at normal temperature and pH. These 

gels are used as matrix for encapsulation of cells and for release of proteins. Also Chitosan 

based hydrogels, as well as dextran based hydrogels, crosslinked with potassium ions are 

also other gels synthesized with ionic interactions. In addition to anionic polymers being 

crosslinked with metallic ions, hydrogels can also be obtained by complexation of 

polyanions and polycations. 

 Crosslinking by Crystallization 

An aqueous solution of PVA that undergoes a freeze-thaw process yields a strong highly 

elastic gel. Gel formation is attributed to the formation of PVA crystallites which act as 

physical crosslinking sites in the network. The gel properties could be modified by 

varying polymer concentration, temperature, and freezing and thawing cycle times. These 

gels have been shown to be useful for drug release 

 Crosslinking by Hydrogen Bonds 
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Poly(acrylic acid) and poly(methacrylic acid) form complexes with poly(ethylene glycol) 

by hydrogen bonding between the oxygen of the poly(ethylene glycol) and the carboxylic 

acid group of poly((meth)acrylic acid). The hydrogen bonds are only formed when the 

carboxylic acid groups are protonated. This also implies that the swelling of gels is pH 

dependent [79]. 

 

2.7 The scaffolds 

The officially accepted definition considers a scaffold as a “support, delivery vehicle or 

matrix for facilitating the migration, binding or transport of cells or bioactive molecules 

used to replace, repair or regenerate tissues” [80]. Indeed, recent scaffolds are not 

intended only to support cell growth but they can also load bioactive molecules having a 

specific biological function. Moreover, it is worth noting that last generation scaffolds are 

intended to be as much biomimetic as possible, in terms of mechanical performances, 3D 

morphology and surface chemistry, and they are designed according to this scope. It is 

well-accepted that an ideal functional scaffold should meet the following challenging 

requirements [81, 84]: 

 To be biocompatible; 

 To have mechanical properties consistent with those of the tissue it replaces; 

 To be bioresorbable; 

 To degrade at a rate matching that of new tissue formation; 

 To have proper surface properties to enable cell attachment, growth, 

proliferation, and differentiation as well as to promote extracellular matrix 

formation; 

 To have the optimum architectural properties in terms of pore size, porosity, 

pore interconnectivity, and permeability in order to allow efficiently delivery 

of nutrients and removal of waste. 

The imperative requirement for a scaffold is to be biocompatible. Since the scaffold works 

in contact with leaving cells in vitro and with tissue, once implanted in vivo, it must not 

elicit harmful response from the biological environment, i.e. it should interact with cells 

and host tissue without inducing cytotoxicity or adverse immune response. 
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Scaffolds mechanical properties are another key element that distinguishes a successful 

implant from a failed one. Indeed, since many tissues undergo mechanical stress and 

strains, it is extremely important that mechanical properties of the scaffolds match as 

closely as possible those of the tissue intended to regenerate, so that formation of new 

ECM is not limited by mechanical failure of the scaffold. Moreover, a good mechanical 

transfer between the scaffolds and the new forming tissue is required in order to provide 

sufficient mechanical stimulation for ensuring a proper tissue growth [85].  

Scaffolds are intended to be a temporary support that is eventually replaced in the 

organism by new regenerated tissue. Hence, scaffolds must be degradable in the human 

body through molecular fragmentation mechanisms that results in the formation of 

degradation by-products and the gradual disappearance of the scaffold. Degradation can 

occur via hydrolysis or it can be mediated by enzymes, depending on polymer chemical 

structure. In any case, the long‐term success of an engineered tissue will be achieved only 

if degradation products are completely resorbed by the organism by naturally occurring 

metabolic pathways, i.e. if the scaffold is bioresorbable [86, 87]. Moreover, scaffold 

degradation rate should mirror the rate of tissue formation. This criterion is extremely 

difficult to achieve but it is particularly important as regards the structural supporting role 

of the scaffold. Indeed, in order not to compromise the integrity of the implant, the 

scaffold should maintain its structural function until the regenerated tissue can assume its 

supporting role and, over time, the degrading scaffold should gradually transfer its 

function of load bearing to the new forming tissue. The control of the scaffold mechanical 

properties over time and during degradation process remains one of the greatest 

challenges in tissue engineering [88, 89].  

Another significant feature of the scaffold is its surface properties which are directly 

connected to its capability of creating a chemically suitable environment that promotes 

cell adhesion, migration and proliferation in order to obtain an entirely colonized 3D cell 

construct. Cell adhesion is always a receptor–mediated process that occurs via interaction 

between membrane proteins, called integrins and multidomain protein that act as ligand. 

In natural tissues, typical ligands dislocated in the ECM are fibronectin, laminin and 

vitronectin that binds integrins, forcing the cells to attach to the ECM [90, 91]. Cell‐

scaffold interaction similarly occurs. Therefore cell‐scaffold interactions are related to the 

composition of the protein layer attached to the scaffold surface. It has been largely 
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demonstrated that polymers can adsorb many proteins [92] and it is also possible to adapt 

a material presenting good bulk properties by improving its surface properties towards 

cell adhesion through surface modification. Many techniques have been developed to 

modify material surfaces such as plasma or ion treatment but, more recently, ECM 

biomolecules, such as proteins, peptides or growth factors, have been immobilized on 

scaffold surface with the aim to obtain bioactive and biomimetic scaffolds [93].  

Cell colonization of the scaffold depends not only on scaffold surface properties but also, 

indirectly, on its 3D architecture.  

Porosity (the amount of void space), size, geometry, orientation and interconnectivity of 

pores and channels directly affect the transport and delivery of nutrients for cells 

throughout the scaffold [94]. In particular high porosity, high surface area to volume ratio 

and high pore interconnectivity are required in order to ensure uniform tissue ingrowth, 

efficient delivery of nutrients to the interior of the scaffold and removal of waste towards 

the exterior [95].  

The optimum porosity is strictly connected to the tissue type and diverse nature tissue 

architectures can be associated to a different microenvironment to reproduce. Cell 

dimension, together with cell activity behavior, phenotypic expression and ECM 

production has also to be taken into account when designing a scaffold for tissue 

regeneration. In bone tissue regeneration, for instance, the minimum pore size required is 

considered to be about 100 μm due to cell size, migration conditions and transport. 

However, pore sizes bigger than 300 μm are recommended, to improve new bone 

formation and to develop a net of capillaries [96]. In PLLA scaffolds, vascular smooth 

muscle specifically bind to one range of pore sizes (63 – 150 μm) while fibroblast, for 

their ability to form bridge connections, to a wider range (38 - 150 μm) [97]. 

The above described scaffold characteristics (i.e. biocompatibility, mechanical properties, 

bioresorbability, surface properties and architecture) are strictly related to two major 

factors that interplay in controlling scaffold properties: 

1. The type of polymer material 

2. The scaffold fabrication technology. 

The supply of nutrients and oxygen is realized in vivo by the blood vascular system. The 

achievement of vascularization of 3D scaffolds is still one of the greatest challenges in 

TE. For instance, toxic residual substances can be released from the scaffold causing 
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harmful effects. Such substances can be either monomers or impurities in the starting 

material or substances deriving from material processing (e.g. degradation products, 

organic solvents, etc.) Mechanical properties primary depend on the raw material but they 

can dramatically change according to scaffold architecture which, in turn, is determined 

by the technique employed to produce the scaffold. Another example is bioresorbability 

and, in particular, the degradation rate that depends not only on polymer properties (i.e. 

chemical composition, monomer distribution and microstructure in copolymers and 

molecular weight) but also on scaffold architecture (i.e. scaffold dimension and pore 

walls). 

It is clear that the correct design of a scaffold for a specific application requires to 

accurately know which properties it should exhibit in order to successfully achieve its 

function. Once the necessary scaffold features are clearly defined, material science 

intervenes in selecting the proper polymer material, the suitable scaffold fabrication 

technology and the appropriate treatments in order to obtain a scaffold that matches as 

closely as possible the specific requirements. 

The following subchapters outline the principles of biomaterials science and describe the 

more frequently used biomaterials for tissue engineering applications, with particular 

attention towards polymeric ones. Common scaffold fabrication approaches are 

introduced, focusing mainly on freeze drying and thermally induced phase separation. 

 

2.8 Scaffold fabrication technologies 

Selection of the raw material for producing the scaffold is complementary to the choice 

of the proper fabrication technology suitable to achieve the desired aim and even 

nowadays new methods are invented, though they are mostly modification or smart 

combination of already existing techniques. This section aims at providing an overview 

of conventional and well‐known processes for scaffold fabrication by illustrating the 

characteristics of the obtained scaffold. 

2.8.1 Solvent casting and particulate leaching 

This technique, firstly described by Mikos et al. in 1994 [98], uses a water soluble 

porogen to produce pores within a polymer matrix. In brief, a polymer solution is cast in 

a mould containing particles of desired dimension. After solvent evaporation, particles 
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are leached out by immersion in water. Mainly PLA and PLAGA scaffolds were produced 

with this approach. Salts are the most commonly used porogen [99], but also sugar [98], 

paraffin [100] and gelatin spheres have been employed. This method enables to tune 

independently pore size (up to 500 mm in diameter) and porosity (up to 90%) by 

controlling particle dimensions and porogen/polymer ratio respectively. However, due to 

gravity, homogeneous pore distribution is only obtained in scaffolds less than a few 

millimeters thick [101] and complete elimination of both organic solvent and porogen is 

rather difficult to achieve if pores are not completely interconnected. Moreover, 

biomolecules potentially added to the scaffold can be partially removed during the 

leaching step in water. 

2.8.2 Freeze drying 

Freeze drying is a technique based on sublimation, very easily performed and widely used 

to fabricate porous scaffolds [102]. The polymer is dissolved in a solvent (water, acetic 

acid or benzene), poured into a mould, frozen and finally freeze-dried under high vacuum. 

Pore size can be modulated depending on pH or freezing rate (a rapid lyophilization 

produces smaller pores) [103, 105]. Forcing unidirectional solidification, homogenous 

and well-ordered porous structures can be obtained. The choice of freeze drying can be 

advantageous since it does not require high temperature or a washing step to remove the 

porogen. Its limits are the small pore size and the long fabrication time [106]. 

2.8.3 Thermally Induced Phase Separation  

The phase separation technique is based on thermodynamic demixing of a homogeneous 

polymer–solvent solution into a polymer-rich phase and a polymer-poor phase, usually 

by either exposure of the solution to another immiscible solvent or cooling the solution 

to a point below the binodal solubility curve [107]. Particularly, thermally induced phase 

separation (TIPS) uses thermal energy as the latent solvent to induce phase separation 

[108]. The polymer solution is quenched below the freezing point of the solvent and 

subsequently freeze dried, producing a porous structure which can be finely tuned 

byadjusting the variousthermodynamic and kinetic parameters [109, 110].  

2.8.4 Solid freeform fabrication 

Solid freeform fabrication process is a computerized technique involving the design of a 

scaffold model through a CAD system which elaborates it as a seriesof cross sections 
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[111, 116]. These sections are built by a rapid prototyping machine that lays down layers 

of material starting from the bottom and moving up a layer at a time to create the scaffold. 

This method enables to fabricate large and complex 3D objects with a precise control of 

pore architecture. Unfortunately, this top‐down approach does not create nano‐scaled 

structures and requires expensive equipments. 

2.8.5 Gas foaming 

Gas foaming has been commonly employed to produce microcellular foams of 

thermoplastic polymers [116, 119] such as polymethylmethacrylate and polystyrene, but 

only in 1994 Mooney et al. applied this method for the production of PLA50GA50 scaffolds 

for TE [120]. Since then gas foaming has become an appealing technique for fabricating 

microporous scaffolds [121, 122]. 

Supercritical carbon dioxide (scCO2) is the most common substance employed, which, 

once turned into gas phase, acts as a porogen to generate pores within a polymer 

matrix.The method exploits the unique properties of scCO2 that, combining liquid‐like 

densities (high solvent power) with gas‐like viscosities (high diffusion rates) [123], is 

used for a wide range of applications in polymer synthesis, extraction and impregnation 

processes, particle formation and blending [124, 125]. Moreover, CO2 has a relatively 

low critical point (Tc = 31 °C, Pc = 7.4 MPa) that can be easily achieved in a high‐pressure 

equipped laboratory. 

Briefly, the method consists in dissolving scCO2 in a solid polymer at high pressure, 

generating a low viscosity mixture. Subsequently, the depressurization decreases scCO2 

solubility in the polymer and leads to the phase transition of CO2 from supercritical to 

gas. CO2 bubble nucleation occurs and nuclei growth generates pores within the polymer. 

Concomitantly, viscosity of the polymer scCO2 mixture increases till all the gas has 

escaped from the polymer, leavingbehind a solid structure with “locked in” pores [126]. 

Scaffold morphology can be controlled by varying the amount of scCO2 incorporated and 

its release rate from the polymer. 

The main benefit of using scCO2 foaming for the production of scaffolds is the reduction 

of problems associated with residual solvents that can be toxic to mammalian cells. The 

capability of producing scaffolds without the use of any toxic solvent makes this 

technique unique and extremely interesting with respect to all other scaffold fabrication 

methods known to date. However, it is well documented that foamed scaffolds can exhibit 
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inadequate pore interconnectivity especially at the scaffold surface, where a non‐porous 

layer forms probably because of the rapid diffusion of the CO2 from the surface as the 

pressure is released [127]. This issue has been overcome by combining gas foaming with 

the salt leaching procedure [98, 128] or by trimming off the non‐porous skin from the 

scaffold after its fabrication [129, 130]. 

2.8.6 Electrospinning 

Electrospinning is a technique used widely to fabricate micro and nano-fibrous scaffolds 

that mimic the native ECM environment to various degrees [131]. 

The electrospinning setup and process mechanism is very simple (Fig. 2.4). The polymer 

solution is supplied through the nozzle connected to a high voltage power supply. Due to 

electrostatic forces, overcoming solution surface tension forces, Taylor’s cone is created 

at the end of the nozzle [132]. The electrostatic field between the nozzle and grounded 

collector causes polymeric jet to stretch and bend, generating ultrafine polymeric fibres 

with diameter in the submicron range. Fibres produced this way are collected on a 

grounded collector as non-woven randomly aligned sheets or arrays. The simplicity of 

the process, its versatility, and the ability to control generated material properties makes 

electrospinning technique extremely suitable for production of specifically designed 

scaffolds for tissue engineering and cell culturing [133]. Nature of electrospinning 

inspires many scientists to find the best conditions to produce desired nano and 

microfibrous polymeric materials for biomedical applications. 

 

Figure 2.4: Schematic of the electrospinning setup. 
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3  Investigation Methods 

 

In this chapter, five main techniques for matrices structure characterization were 

presented. The first one is the Nuclear Magnetic Resonance (NMR), in particular the low 

field NMR analysis, that allows the investigation of microscopic matrices characteristics. 

The second one is the Rheology that, instead, allows to study the effect of the matrices 

structure on the macroscopic and mechanical behavior. The third one is called 

Cryoporosimetry, an indirect method for the determination of pore size and shape in 

matrices. Last, but not least, two other methods were described for the structural 

characterization of polymeric matrices. They are the Scanning Electron Microscope and 

the Micro Computed Tomography. In the following sections it is explained how it is 

possible to adapt this technique also for the estimation of the matrices mesh size.  

 

3.1  Nuclear Magnetic Resonance (NMR) spectroscopy 

The physical principles of the Nuclear Magnetic Resonance (NMR) spectroscopy, are 

based on the magnetic properties of the atomic nuclei [1]. According to the quantum 

mechanics rules, the interaction of the magnetic moment of an atomic nucleus with an 

external magnetic field (B0) separates the nuclear energetic levels. The energetic levels 

separation happens because, the nuclear magnetic energy is restricted to discrete values 

Ep called autovalues.  

The autovalues are associated to the autostates, also called steady states that are the only 

possible existing states of an elementary particle. Irradiating the nucleolus with an 

electromagnetic radiation of appropriate frequency, it is possible to induce a transition 

within steady stated and the energetic abortion could be detected by the instrument and 

registered as a signal on a spectrum. With this method it is possible to obtain the spectrum 

of a compound that contains atoms with nuclear magnetic moment different from zero. 

The most analyzed nuclei are the protons (1H), fluorine (19F), the isotopes 14N and 15N of 

the nitrogen and the isotope 13C of carbon [1]. 
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3.1.1 NMR principles 

3.1.1.1  Quantum mechanics model for an isolated nucleus 

Many atomic nuclei have an angular moment (P) that is responsible for the exhibition of 

a magnetic moment () [2]. The relation within P and is expressed by the following 

equation: 

μ = P           (3.1) 

Where γ is the gyromagnetic ratio, a characteristic of the specific nucleus. For the 

Quantum theory, the angular moment and the magnetic moment are quantized, a fact that 

is not explained by classical physics. The allowed autovalues of the angular moment 

maximum component in the z direction in an arbitrary cartesian system, are defined by 

the relation: 

𝑃𝑧 =
ℎ

2𝜋
𝑚𝐼          (3.2) 

Where mI is the magnetic quantum number of the correspondent nucleus steady states and 

h is the Plank constant. According to the quantistic condition, the magnetic quantum 

numbers mI are related to nuclear spin quantum number (I) and can assume a integer 

number within +I and –I. 

Therefore, the number of steady states or possible energy levels is: 

Number of possible energy levels = 2I +1      (3.3) 

For the proton (1H nucleus), the nuclear spin quantum number is 𝐼 = 1
2⁄  and the regular 

moment z component becomes: 

𝑃𝑧 =  ±
ℎ

2𝜋
 𝐼          (3.4)  

In consequence of I, the proton can exist in only two spin state with a magnetic quantum 

number respectively of 𝑚𝐼 =  + 1
2⁄  and 𝑚𝐼 = − 1

2⁄ . The magnetic moment in the z 

direction is: 

𝜇𝑧 = 𝛾
ℎ

2𝜋
𝑚𝐼 = ±𝛾

ℎ

4𝜋
        (3.5) 

The proton therefore, can be represented as a magnetic dipole where μz is parallel or anti-

parallel to the positive direction of z axes in the cartesian coordinates and the direction of 

μ vector is quantified (Fig. 3.1a). In normal situation, without an orienting system, the 

two states have the same energy and are so called degenerated. In presence of an external 

magnetic field B0, the interaction with μ causes an energetic differentiation of the two 
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states. If B0 is parallel to z axes, the energy of a magnetic dipole is +𝜇0𝐵0 when the dipole 

is oriented in the same direction of B0, while it is – 𝜇0𝐵0
 , when it is oriented in opposite 

direction (Fig. 3.1b). 

 

 

Figure 3.1: The quantified magnetic moment  vector direction in absence (a) or in 

presence (b)of an external magnetic field B0. 

 

Therefore, the energy difference within the two spin states is proportional to the intensity 

applied magnetic field B0 (Fig. 3.2) with the relation: 

∆𝐸 = 2𝜇𝑧𝐵0          (3.6) 

The lower energy state 𝑚𝐼 = + 1
2⁄  is more stable and to induce the transition to the 

higher energy level a quantum of energy corresponding to ΔE is required. 

oozo B
h

BhE



2

2 
        (3.7) 

In other terms, the nucleus must be irradiated with a frequency equal to: 

𝑣0 =
𝛾𝐵0

2𝜋
          (3.8) 

Or, considering 𝜔0 = 2𝜋𝑣0, the expression (3.8) can be written as: 

𝜔0 = 𝛾𝐵0          (3.9) 

This equation expresses the resonance condition when the radiations frequency is equal 

to ΔE within the two states. In the equation (3.8), v0 (in Hertz; Hz= cycle sec -1) or 𝜔0 

(rad sec -1) is the Larmor frequency and depends linearly on the applied B0 intensity. For 

example, the proton has a giromagnetic ratio γH= 2,675x108 T -1 sec -1. In a magnetic 

fields of 1,41 T, the Larmor frequency is 60 MHz (λ= 5 meters, in the region of radio 

wave). Figure 3.3 shows different v0 values as function of imposed magnetic field [3]. 
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Figure 3.2: energetic separation with ΔE 

within two state proportional to the 

applied magnetic field B0. 

 

Figure 3.3: nuclear energetic separation 

levels (expressed as resonance frequency 

v0) in functions of magnetic field B0 (in 

Tesla)

 

For systems with I=1, the quantum mechanics treatment gives a result not expected by 

the classical physics. The magnetic quantum number mI can be -1, 0, +1 so that, only 

closer levels transition are allowed. For example, for I=1 three levels are possible with 

mI equal to -1, 0 and +1 respectively and the possible level transitions are mI= +1 ↔ 

mI=0 and mI=0 ↔ mI=-1; energy levels transitions within mI=+1 ↔ mI=-1 are not 

allowed (Fig. 3.4). 

 

Figure 3.4: on the left, separation in two energetic levels of a nucleus with spin quantum 

number I=1/2 in a magnetic field B0, on the right, separation in three energetic levels of 

a nucleus with I=1. 

 

 



3. Investigation Methods 

42 

 

From above considerations, the nuclear magnetic moment can be expressed as a function 

of the gyromagnetic ratio: 

𝛾 =
2𝜋𝜇

𝐼ℎ 
          (3.10) 

Moreover, it is possible to demonstrate, for a rotating spherical particle of mass M and 

charge e uniformly distributed on the surface, the generation of a magnetic moment 

defined as: 

𝜇 =
𝑒ℎ

4𝜋𝑀𝑐
          (3.11) 

Where c is the light speed. For the proton equation (3.11) became: 

𝜇𝑁 =
𝑒ℎ

4𝜋𝑀𝑐
=5,0505 x 10-27(J T-1)       (3.12) 

In reality, the value of the proton magnetic moment is about 2,79 times higher than the 

calculated by using this simplified model. Although a simplified model to explain or 

predict the nuclear magnetic moment does not exist, the calculated values represent a 

usefully starting point (μN is called magneton). For these reasons, the general equation for 

the nuclear magnetic moment reads: 

µ=gN 
𝑒ℎ𝐼

4𝜋𝑀𝑐
          (3.13) 

Equation (3.13) can be simplified by expressing μ in terms of units of magneton becoming 

𝜇 = 𝑔𝑁𝐼           (3.14) 

Where gN is the g nuclear factor, an empiric parameter. In Table 3.1, some nuclear 

magnetic moments expressed in magnetons are reported. 

Nucleus I 
μ 

(μNunits) 

γ 

(10-

8rad/T 

s) 

v0 

(MHz) 

(field 

1 T) 

Relative 

sensibility 

to 

constant 

field 

Isotopes 

naturally 

abundance 

(%) 

1H 1/2 2,79277 2,676 42,577 1,000 99,98 
2H 1 0,85735 0,411 6,536 0,009 0,0156 
10B 3 1,8007 0,288 4,575 0,02 18,83 
11B 3/2 2,6880 0,858 13,660 0,165 81,17 
13C 1/2 0,70216 0,673 10,705 0,016 1,108 
14N 1 0,40369 0,193 3,076 0,001 99,635 
15N 1/2 -0,28298 -0,271 4,315 0,001 0,365 
17O 5/2 -1,8930 -0,363 5,772 0,029 0,037 
19F 1/2 2,6273 2,517 40,055 0,834 100,0 
29Si 1/2 -0,55492 -0,531 8,460 0,079 4,70 
31P 1/2 1,1316 1,083 17,235 0,066 100,0 

Table 3.1: properties of some nuclei interesting for NMR spettroscopy [3]. 
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3.1.1.2 Energy absorption mechanism: the resonance 

The nuclei with I=1
2 ⁄ , as the protons 1H, are usually represented as magnetic bar but, 

because of their spin movement, their behavior is different from that of macroscopic 

magnetic bar. In a magnetic field, the rotating nucleus does not allaying its magnetic 

moment to the direction of the field. On the contrary, as a spinning top in the gravitational 

field, their spin axes assume a precession movement around the magnetic field direction 

(Fig. 3.5). The precession frequency corresponds to the Larmor frequency as seen in 

equation (3.8) and (3.9), and it could be expressed as  in (radiants sec-1) or v0 (Hz) [1-

3]. 

An increase in the intensity of the magnetic field, results in a faster precession but, it is 

possible to modify the orientation of magnetic moment μ by application of a rotating 

magnetic field (B1) perpendicular to B0. When B1 rotation frequency (νRF) has the same 

value of precession frequency ν0, resonance condition is established and the system 

absorbs energy with a variation of the angle θ within vector μ and the static magnetic field 

B0 (Fig. 3.6). The process occurs without variation of the precession frequency. 

Figure 3.5: as a spinner in the hearth 

gravitational field (a), the nuclear 

magnetic precess in a magnetic field (b). 

 

Figure 3.6: the application of arotating 

magnetic field B1 perpendicular to B0 

turn the nuclear magnetic moment  by 

the angle θ.

3.1.1.3 Macroscopic Magnetization 

During an NMR experiment, there is not only one nucleus under examination but a huge 

amount. Therefore, in order to describe the properties of nuclear magnetization (defined 

as magnetic moment per unit volume), it is possible to apply a simple treatment. The 

magnetization M is a vector that can be divided into three component in the x, y and z 

A

B0

B

B1

B0

q
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A 

directions. Mz, is conventionally aligned to the direction of B0 whereas Mx and My, are 

perpendicular. For a nucleus with I=1/2, all the magnetic moment precess at the same 

frequency and, because the direction x and y are equivalent, no phase coherence occurs 

on xy plane and Mxy=0. On the contrary, in the z direction, there is a small excess of nuclei 

parallel to the B0 direction because the Boltzmann distribution favors the lower energy 

state. The nuclei populations difference within parallel and antiparallel magnetization, 

generate a macroscopic net magnetization Mz (Fig. 3.7a and b). 

Mz= γh (N1- N2)         (3.15) 

 

The application of a radiofrequency (RF) field B1 rotating at the resonance frequency 

(ω0=γB0; equation 3.9), allows the spin resonance with a modification of the casual 

orientation in the xy plane and the appearing of a magnetization component Mxy≠0. Spin 

systems originating net component of the magnetization in the xy plane (Mxy) are in phase 

coherence (Fig. 3.7c). 

 

 

 

Figure 3.7: (a) Vectorial representation of magnetic moments of I= 1/2 nuclei, following 

a precess around the z axis (conventionally all vectors have a common origin) with overall 

magnetization Mz, no magnetization on xy plane Mxy. (b) Excess of nuclei with magnetic 

moment aligned with B0. (c) Spin system in phase coherence, Mxy≠0. 
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3.1.2 The NMR experiments 

During an NMR experiment, the sample is subjected to a highly homogeneous static 

magnetic field B0. To produce a phase coherence within spins, a rotating magnetic field 

(B1) is applied perpendicular to B0 by a tuned spire allowing the generation Mxy 

magnetization component with a ω0 precession frequency (resonance frequency) (Fig. 

3.8). When B1 is removed, a relaxation process causes the loss of phase coherency to the 

initial equilibrium situation with Mxy=0. The relaxation process consists in an exponential 

decay of Mxy with a time constant T2 (transversal relaxation time or spin-spin). The results 

of the relaxation is a transient signal, captured by a sensor on x axes, with ω0 frequency 

and decay speed of 1/T2 called Free Induction Decay (FID) (Fig. 3.9a) [4]. 

 

Figure 3.8: Schematic representation of 

the NMR spectroscope. The sample is 

positioned within the magnetic field B0 

generated by a magnet (N-S) and 

surrounded by a spire, tuned on the 

resonance frequency, that produce the B1 

pulse. 

 

Figure 3.9:  

(a) FID of two NMR signal. (b) the 

spectrum obtained applying the Fourier 

transform to the FID. 

 

The NMR spectral signals are produced by the small displacement of resonance frequency 

ω0 in the nuclei population under analysis caused by the physic-chemical environment. 

When different ω0 and, as consequence different 1/T2 are present, the resulting FID is a 

superimposition of all signals. The complex FID originated by multiple signals can be 

resolved using a mathematical processing known as Fourier Transformation (FT) that 

changes the transient signal in a normal spectrum (Fig. 3.9b). Whereas NMR spectrum is 

a diagram where intensity is a function of frequency, in FID, the intensity is a function of 

time. The time domain and frequency domain is linked by the Fourier Transformation [4]. 

B 

A 
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At this stage, it is important the definition of the applied magnetic field pulse B1 in terms 

of angle. Similar to the precession in the B0 field, the precession concept can be extended 

to B1 using the expedient of a rotating reference system so B1 became static. When B1 is 

applied, it occurs the situation in figure 3.10a where B1 is aligned to the rotating axes x 

and the equilibrium magnetization M0, aligned to z, precess around B1. The precession 

frequency of M0 is: 

𝝎𝟏 = 𝜸𝑩𝟏          (3.16) 

 

ω1 is an angular frequency (radius sec-1). The M0 rotation angle is: 

 

𝜃 = 𝛾𝐵1𝑡𝑝          (3.17) 

Where tp is the B1 pulse application time and γB1 is the pulse amplitude or power. After 

a pulse at 90° (or π/2 in radius), Mxy=M0 (Fig. 3.10b), while after 180° pulse (or π in 

radius) Mz=-M0 and Mxy=0 (Fig. 3.10c). 

 

Figure 3.10: effect of the rotating magnetic field B1 application on the magnetization M0 

(x’ and y’ belong to a reference system rotating with the same frequency of B1. (a) Time 

zero; (b) after a 90° pulse; (c) after 180° pulse. 

 

To evaluate the effect of a radiofrequency pulse on the nuclear levels populations, let’s 

consider a system of two state levels α and β containing N nuclei that could be in one state 

or in the other. For degenerate levels, there should be N/2 nuclei in each state but, because 

the α magnetic moment is oriented parallel to the B0 field, α has a lower energy compared 

to β (antiparallel magnetic moment). This energy difference causes a small excess of 

nuclei in the α state and, defining δ as the excess of nuclei, the number of nuclei in each 

population can be written as (N+δ)/2 or (N-δ)/2 respectively for α and for β (Fig. 3.11). 
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Figure 3.11: on the left, initial number of nuclei in α and β energetic levels population. 

On the right, the effect on a pulse that rotate the magnetization of an angle θ. 

 

In order to understand what happens to the nuclei populations when the macroscopic 

magnetization is deflected by an angle θ due to a radiofrequency pulse it is better focusing 

the attention to the Mz component. On the contrary considering the whole α and β nuclei 

population, it is better considering the deviation from N/2 defined as Pα=+δ/2 and Pβ=-

δ/2. 

In every moment, Mz is proportional to the difference within levels: 

 PPM z 
         (3.18) 

Or, it is possible to say that Moδ. Moreover, it is known that:
 

0  PP
          (3.19) 

After the radiofrequency pulse, the Mz magnetization component becomes 

qcosoz MM 
         (3.20) 

And, consequently 

q cos PP
         (3.21) 

That, combined with equation (3.19), allows to calculate the new population: 

2

cosq
 P

          (3.22) 

2

cosq



P

         (3.23) 

These equations allow correlating the change occurring to the magnetization for a π/2 and 

π pulse. For θ=π/2, cosθ=0 and no nuclei excess is present in any state and the 

radiofrequency pulse equals the populations. For θ=π, cosθ= -1 and the populations are 

inverted [4]. 
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Practically, a short, strong and repeated radiofrequency pulse is applied to the nuclei 

system allowing the simultaneous excitation of nuclei with a Larmor precession ν0 in an 

interval ∆ν (Fig. 3.12). 

 

Figure 3.12: (a) RF pulse sequence of v0, 

duration length tp, and repetition time tr. (b) 

the correspondent frequency component. 

 

Equation (3.17) relates the deflection angle θ caused by the pulse with the pulse amplitude 

(or intensity) γB1 and the pulse time tp. Both can be modified in order to obtain the desired 

deflection angle. One of the most important is θ=90° (or π/2) where all the magnetization 

is on the xy plane and the signal has the maximum intensity (Fig. 3.10b). Another is 

θ=180° (or π). In this case the magnetization is inverted and becomes antiparallel to the 

z axis (Fig. 3.10c). Summarizing, the RF pulse deflects the vector Mz (same direction of 

B0) with a certain angle θ generating the Mxy magnetization component. Mxy exponentially 

decay with the time constant T2 emitting a signal that was detected as an alternate voltage 

on a receiving spire on the x axis. The signal collected is called free induction decay 

(FID). Figure 3.13 illustrates in details the change of the magnetization during a pulsed 

NMR experiment in a rotating coordinate system. At the beginning the net magnetization 

Mo is aligned to the magnetic field B0 (Fig. 3.13a). After application of an RF pulse that 

rotates the magnetization of π/2 (90°), magnetization vector moves (Fig. 3.13b) and, for 

a pulse of sufficient duration, reaches the final position on the x’y’ plane, generating the 

Mxy magnetization component (Fig. 3.13c). At the end of RF pulse (B1=0), the relaxation 

process starts and the phase coherency is lost, causing decay of Mxy component (Fig. 

3.13d and e). This relaxation process is called transversal relaxation or spin-spin and it 
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proceeds with a constant time T2 by the energy transfer within high energy nuclei without 

loss of energy [1-2]. 

 

Figure 3.13:diagrams in the rotating coordinate system x’y’z’ showing the magnetization 

during an NMR experiment. (a) The net magnetization M0 is aligned to B0. (b) and (c) an 

RF B1 pulse is applied perpendiculat to B0; the pulse length is sufficient to rotate the 

magnetization by 90°. (d) and (e) after B1 ceasing, the spins start to relax by a spin-spin 

mechanism on the x’y’ plane (time constant T2) and by a spin-lattice mechanism on the z’ 

direction (time constant T1). (f) After sufficient time, the starting equilibrium 

magnetization M0 is re-established.
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During the transversal relaxation process, the Mxy component decay to 0 by the low 

2T

M

dt

dM xyxy


         (3.24) 

Or 

)/( 2Tt

0xy eMM



         (3.25) 

The relaxation time T2 is related to the width of the spectral peak at middle height (∆ν0,5) 

by the equation 

2

5.0

1

T
 

          (3.26) 

At the same time, it is possible to observe also the longitudinal component of 

magnetization Mz that, during relaxation, comes back to the initial equilibrium 

magnetization Mo (Fig. 3.13d, e and f). This type of relaxation process is known as 

longitudinal relaxation or spin-lattice and proceed with a time constant T1. 

1T

MM

dt

dM zoz 


         (3.27)

 

)(
/ 1Tt

0z e1MM 
         (3.28)
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3.1.3 Low Field NMR 

3.1.3.1 Introduction to the Low field NMR 

As T2 and T1 depend also on the chemical and physical environment embedding the 

particular nucleus, low field NMR can provide information on the structure of the matter. 

The technique can be easily applied to solid samples, liquid samples, suspension, gel 

systems or emulsion as it is not destructive and independent from the color or the surface 

on the sample. The field of application is between 10 and 65 MHz (corresponding to a 

magnetic field within 0.23 and 1.53 T) and a temperature varying within -10 and +70 °C 

[5]. 

The shape and amplitude of the resonance signal are related to the physical environment 

of the nucleus under examination. In particular, the amplitude is function of the nucleolus 

degrees of freedom movement in the specific physical environment, an useful information 

in polymer chemistry and solid state physics. From the qualitative side, the transversal 

relaxation time T2 depends on the nucleus mobility. In the solids there is a reduced 

mobility so that T2 is low (1-100 ms). In case of intermediate mobility, such as gel 

systems, the T2 is medium (200-800 ms) and finally, into liquids, nuclei mobility is higher 

and the T2 is slower (800-2500 ms). 

 

Figure 3.14: Typical example of 1H relaxation spectrum of a not homogeneous 

hydrogel.
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The low field NMR finds applications in many different areas: food science and 

technology, industrial analysis, pharmaceutics and cosmetics for a fast and non 

destructive analysis of protonic content in oil and fat, moisture and water content 

determination in different type of materials. One of the most recent applications is the 

quantitative analysis of a particular isotope by the integration of peak area under the 

absorbance signal. For hydrogels analysis, the time domain NMR spectrum (a 

mathematical elaboration of the NMR data also called relaxation spectrum) of the 1H 

proton allows to distinguish different sample phases such as the polymers protons, the 

water entrapped into the polymeric network and the water in small channel or fracture 

and the free water (Fig. 3.14) [5]. 

 

3.1.3.2  T2 measurements and analysis in low field NMR 

A typical instruments for low field NMR is a Bruker minispec mq20™, that operates at a 

frequency of 20 MHz (corresponding to ~0.47 T; in NMR, the B0 field applied by the 

instruments is commonly expressed as the correspondent 1H proton Larmor frequency) in 

controlled temperature conditions (Fig. 3.15).

 

 

Figure 3.15: the low field NMR 

spectrometer Bruker minispec mq20™. 

Figure 3.16: Exponential curve of the 

transversal relaxation time T2. 
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The typical sequence adopted is the Carr-Purcell-Meiboom-Gill sequence (CPMG): 

90° - τ - {[180° - 2τ - ]M 180° - τ - measurement - τ}N 

The sequence consists in the application of a first 90° pulse followed by a time interval τ. 

Then, a series of M 180° pulse applied at 2τ intervals are forwarded by the last 180° pulse 

after a τ interval. The sequence is repeated 8 times every 5 seconds. 

The exponential T2 relaxations curve obtained during the measurements (Fig. 3.16) can 

be represented by a sum of exponential decays [6]: 

 
 

  







 m

1i

i
2i

0

0
Tt

xy

xy
eAtI

tM

tM

       (3.29)

 

Where t is the time, and Ai are the pre-exponential factors (dimensionless) proportional 

to the number of protons relaxing with the relaxation time T2i. Obviously, eq. (3.29) holds 

also in the case of a mixture composed by n different liquids each one characterized by 

its own T2i. The determination of Ai, T2i and m is achieved by fitting eq. (3.29) to 

experimental I(t) values. The statistically most probable value of m is that minimizing the 

product 2*(2m), where 2 is the sum of the squared errors and 2m represents the number 

of fitting parameters of eq. (3.29) [7]. The m (Ai– T2i) couples represent the so called 

discrete relaxation times spectrum. In order to get the continuum relaxation time spectrum 

(m →∞), eq.(3.29) has to be written in integral form: 

     





max
2

min
2

2

22 d

T

T

Tt
TeTatI

        (3.30) 

Where T2
min - T2

max indicates the range of the T2 distribution and a(T2) is the unknown 

amplitude of the spectral component at relaxation time T2. a(T2) determination requires 

eq.(3.30) fitting to the experimental I(t) values. At this purpose, eq. (3.30) can be 

discretized according to the criterion of Whittal and MacKay [8]: 

              
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2
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2

2 d

   (3.31) 

Where the range of the T2 distribution (T2
min - T2

max) is logarithmically subdivided into N 

parts (≈ 200). Because of the noise disturbing the I(t)experimental data, fitting procedure 

must not minimize the 2 statistic, but a smoothed version ( 2

sχ ): 

 
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     (3.32) 
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Where i is ith datum standard deviation,  is the smoothing term weight (second 

summation in eq. (3.32)) proposed by Provencher [9]. Although different criteria can be 

followed for the  determination, the strategy adopted by Wang [10] can be considered. 

According to this approach, eq. (3.32) has to be repeatedly fitted to experimental data 

assuming increasing  values. As the function Ln(s) vs Ln() is linearly increasing up to 

a clear slope increase (curve heel), Wang suggests to take as optimal  value that 

occurring just after the heel. Alternatively, Whittal [8] suggests, lacking further 

information, to choose the  value ensuring that 2 ≈ N, where 2 is expressed by eq. 

(3.32) with  = 0. Indeed, in this case, each datum is misfit by about one standard 

deviation. 

 

3.1.3.3 Relation between the relaxation time and mesh diameter 

As anticipated in the previous paragraph, the interactions with the polymeric chains 

surface render the relaxation time of protons belonging to water molecules near the 

polymeric surface faster than that of bulk water protons [11]. Accordingly, in 

heterogeneous systems, the average relaxation time of protons will depend on the ratio 

between system volume and system solid surface, as demonstrated by Brownstein and 

Tarr [12] in the case of solid porous systems. These authors studied the problem assuming 

that the time (t) evolution of the magnetization density, (t), can be described by the 

following diffusion equation: 

θρρ2 



D

t


       tM ,ρt

V

r
   (3.33) 

Where D is the self-diffusion coefficient of water molecules, q is a parameter accounting 

for losses in magnetization density occurring in the bulk, M is the total magnetization of 

the sample (proportional to the NMR signal), r is the position vector, and V is the system 

volume. Eq.(3.33) is solved assuming that, initially the magnetization density (r,0) is 

uniform and equal to M(0)/V and, on the solid surfaces of the system (pores wall), the 

following boundary condition holds: 

  0ρρ 
S

D Mn
         (3.34) 
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Where n is the surface normal vector, S is the solid surface (pores wall) and M 

(length/time) is an empirical parameter (relaxivity) accounting for the effect of surface on 

proton relaxations. Chui [11] adapted this theoretical approach for gels, building up the 

so called “Fiber – Cell” model (Figure 3.17). 

 

Figure 3.17:Fiber – Cell model. The relaxation time of protons belonging to water 

molecules (light gray ensembles) near the polymeric chain surface (bound water) is lower 

than that competing to free water protons. Rf is the polymeric chain radius (dark gray 

spheres indicate rigid chain segments), is mesh size while Rc indicates the radial 

position where the magnetization gradient zeroes. 

 

In this theory, the polymeric network is considered as a unique long fiber, of radius Rf, 

surrounded by an annular region (defined the “pore”, in the terminology of Brownstein 

and Tarr [12]) of internal radius Rf and external radius Rc. 

Rc is defined as the distance from the fiber symmetry axis to the cylindrical surface where 

the gradient of the magnetization density zeroes ( 0ρ  ) (the cylinder of radius Rc is 

termed “Cell”). Accordingly, eq.(3.33) is solved applying the condition 0ρ   in Rc and 

the condition expressed by eq.(3.34) on the fiber (polymer chain) surface, i.e., in Rf. As 

polymer gels are diluted systems (polymer volume fraction  ≤ 0.1), it is supposed that 

the fiber content in the “Cell” coincides with . Accordingly, Rc can be expressed by: 
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       (3.35) 

Where L is the total fiber (= polymer chains) length. On the basis of this frame, the pore 

hydraulic radius (Rh) can be deduced: 
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      (3.36) 

Where Vp is pore volume. The relation between Rh and the polymeric network mesh size 

() can be found recalling the Scherer theory [13]. This author assumed that the polymeric 

network can be represented by as an ensemble of cylinders of radius Rf (i.e. polymeric 

chains) intersecting in a regular, cubic, array. Accordingly, he demonstrated that the 

hydraulic radius of the cubic cell depends on  according to the following relation: 

 
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

      (3.37) 

Where (Rf /) ≤ 0.5. Starting from eq.(3.37) it is possible deriving two simple expressions 

relating Rh to Rf and  to Rf. Indeed, defining  the ratio Rf /, according to Sherer, we 

have: 

32 28π3 xx           (3.38) 

 
  f32h

224-π6

1
2 R

xx
R




        (3.39) 

In the limit x →0 (i.e  →0), it is easy to see that the denominator appearing in eq.(3.39) 

can be approximated by 2: 

33232 2821662246 xxxxx       (3.40) 

 22166 32 xx         (3.41) 

Figure 3.18 shows the comparison between  and  for different x values. It can be seen 

that for x ≤ 0.1, the error involved in the substitution of  by 2 is lower than 8%. It can 

also be noted that x ≤ 0.1 corresponds to  ≤ 0.16. 
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Figure 3.18: Comparison between functions  (solid black line, eq.(3.40)) and 2 (open 

circles, eq.(3.38)). Gray solid line indicates the % relative error between  and  (see 

right hand vertical axis). 

 

Thus, eq.(3.37) can be approximated by: 

 
fh

1
RR






          (3.42) 

Now let’s focus the attention on the simplified relation between  and Rf. Assuming z = 

1/x and y = Rf /Rh, eq.(3.37) can be re-arranged to give: 

       0232862 223

h  yyyyzyzR      (3.43) 

In the limit y →0, the cubic equation contained in eq.(3.43) can be approximated by: 

     062 22  yyzz          (3.44) 

Apart from the trivial and un-physical solution z = 0, the only admissible solution of 

eq.(3.44) is: 

y
z


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3

          (3.45) 
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Figure 3.19 makes clear that eq. (3.45) is a good approximation of the only physically 

admissible solution of eq.(3.43) in the entire  range explored. 

 
Figure 3.19: Comparison between the exact solution of eq.(3.43) (solid black line) and 

the solution of eq.(3.44) (open circles, eq.(3.45)). Solid gray line indicates the % relative 

error between the two solutions (right hand vertical axis). 

 

Figure 3.19 is built by fixing y in the range 0.01 – 0.25, solving both eq.(3.43) and 

eq.(3.44) and calculating  according to eq.(3.38). Thus, eq. (3.37) can be approximated 

by: 
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       (3.46) 

The error involved in adopting this simplified expression in place of the exact one 

(eq.(3.37) or eq.(3.43)) is lower than 2.25% in the  range considered 0 ≤  ≤ 0.23. 

Eq.(3.42) and eq.(3.46) are fundamental for the practical application of the “Fiber-Cell” 

model. Indeed, Chui [11] demonstrated that when the mobility of the water molecules, 

identifiable with D, is high compared to the rate of magnetization loss (identifiable with 

MRc; fast-diffusion regime: MRc/D << 1), the following relation holds: 
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      (3.47) 

where <1/T2> is the average value of the inverse of the relaxation time of the protons 

belonging to the water molecules trapped within the polymeric network of the gel, T2H2O 
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is the relaxation time of the protons of the bulk water (i.e. protons of the free water, whose 

relaxation is not affected by the presence of the polymeric chains) and M is the M value 

averaged on the whole gel volume. In the case of a real polymeric network made up by 

cubic cells (polymeric mesh) of different dimensions (i), i.e. of different hydraulic radius 

Rhi, eq. (3.47) becomes: 

hi2Hhi

i

2H2i

2
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22
RTRTT OO

MM


       (3.48) 

where T2i and Mi are, respectively, the relaxation time and the M value of the water 

molecules protons trapped in cubic cells (polymeric mesh) of size i (or, hydraulic radius 

Rhi). Eq.(3.48) is based on the assumption that Mi does not depend on mesh size i and 

Mi = M  for every “i”. Thus, knowing Rh (eq.(3.42)), 
21 T  (determinable by eq.(3.30) 

or (3.31) data fitting)) and T2H2O, eq.(3.47) allows the determination of M . In addition, 

knowing M  and T2i (see eq.(3.30)), together with eq. (3.48), it is possible evaluating i 

for each class of cubic cells. Finally, relying on M  and a(T2) (eq.(3.31)) knowledge, it 

is possible determining the continuous  distribution a(). Indeed, the combination of eqs. 

(3.47) and (3.48) allows finding the relation between d and dT2: 
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Consequently, a() will be: 
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Thus, the probability P() of finding a mesh of size  inside the polymeric network, is: 

 
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         (3.51). 
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3.1.3.4 Water self diffusion coefficient DG measurement 

The nuclear magnetic resonance is a very powerful non-invasive technique that can 

determine the water self diffusion coefficient of a protoaned liquid. [14]. 

 

Figure 3.20: PGSE sequence. It is a Hahn Spin-echo sequence where two magnetic field 

gradients have been added.  is the gradients duration while  is the lag time between the 

two gradients. 

 

 

The measurable values of the self-diffusion coefficient span, approximately, between 10-

7m2s-2 and 10-14m2s-2 [14]. In order to perform the measurement of the self-diffusion 

coefficient the sequence PGSE "Pulsed Gradient Spin Echo" is used. This sequence was 

developed by Stejskal and Tanner [15] and, as it can be seen in Figure 3.20, it 

comprehends two the magnetic field gradients of duration δ, spaced by a time length . 

The gradients allow to generate a space-dependent magnetization that "label" the 

molecules of the protonated liquid. The observation of the magnetization and its evolution 

over time allows calculating the liquid molecules self-diffusion coefficient (as well as the 

generation of images in the medical field). As intensity of a magnetic field intensity is 

expressed in Tesla (T), the gradient of the magnetic field is expressed in Tesla on meter 

(T/m). The magnetization has no spatial dependence and can be considered only 

dependent on z (see Figure 3.21 A). 
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Figure 3.21: (A) Magnetization after a pulse of 90 ° (B) A spatial variation in the 

magnetization is impressed by the application of the gradient (C) The impulse to 180 ° 

reverses the pitch of the propeller. 

 

The gradient operates around the z axis, therefore its application imparts a specific 

rotation to signals that are on the xy plane. Three signals that just before the gradient share 

the same angle with respect to the y axis, but that occupy different positions within the 

sample, will experience a gradient of varying intensity that will rotate them of a different 

amount as shown in Figure 3.22. Consequently, the magnetization will change as 

depicted in Figure 3.21 B. The application of the 180° pulse will rotate the signals and it 

reverses the magnetization helix pitch as shown in Figure 3.23 and Figure 3.21 C. 

 

 

Figure 3.22: Rotation of signals around z axis depends on signals position in the sample 



3. Investigation Methods 

 

62 

 

 

Figure 3.23: Application of a pulse to 180° 

 

 

Figure 3.24: Application of the second gradient and re-alignment of the signals. 

 

The second gradient will reduce the helix pitch and it rotates the signals of the same 

amount imposed by the first gradient. Consequently, all signals will be re-aligned with 

the same angle from the axis y as if the gradients had not been applied and how it was 

applied only the impulse to 180 ° (Figure 3.24). Once aligned, the signals will close and 

will generate a signal as it happens in the Hahn Spin-echo sequence. This would be the 

fate of signals in the case of molecules that cannot move inside the sample. On the 

contrary, in the case of moving (diffusing) molecules, the situation will be different. In 

the time length  occurring between the two gradients, molecules will move and, 

consequently, the signals re-alignment is no longer possible. Accordingly, the final echo 

will be attenuated. The knowledge of the attenuation of the echo between a sequence 

without gradients (Hahn Spin-Echo) and the one with the gradients allow to calculate the 

self-diffusion coefficient according to the following relation [16]: 

  222

)0(

)(
ln GtD

A

A
d

G

tG
         (3.52) 



3. Investigation Methods 

 

63 

 

where AG(t) is the signal amplitude of the echo with the gradient applied and AG(0) is the 

signal amplitude of the echo without the application of gradients, γ is the gyromagnetic 

ratio of the atom studied, td is the diffusion time defined as Δ-1 / 3δ and G is the intensity 

of the gradient expressed in Tesla (T) on the meter. Since then all known parameters 

except D, it will be possible to obtain the value of the self-diffusion coefficient. 

3.1.3.5 Diffusion in confined systems 

So far it has been assumed that the molecules could freely diffuse within the sample. 

However, it is not always the case. For example, in the case of a porous matrix swollen 

by water (or another protonated liquid), as far as the diffusion time td << a2/D0 (where a 

is the pore dimension and D0 is the self-diffusion coefficient of the free water), the 

measurement of D will coincide with D0. When, on the contrary, td ≈ a2/D0, part of the 

water molecules will begin to suffer the effect (constraint) of the pore walls and the self-

diffusion coefficient will be reduced according to [14]: 
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      (3.53) 

where Dapp (td) is the apparent self-diffusion coefficient and S / V is the ratio of surface to 

volume reported to the pore size. If the diffusion time td increases up to td >> a2/D0, the 

maximum distance that molecules will travel by diffusion will be limited by the geometric 

boundaries of the system and the validity of equation 3.53 will decay. In this situation, 

the measured value of the diffusion coefficient will be td independent and it attains a 

constant value Dapp∞ [17] equal to D0/ where α is the tortuosity of the pores network 

[14]. Interestingly, when pores are not interconnected, Dapp∞ approaches zero (this 

condition corresponds to an infinite tortuosity). 

 

3.1.3.1 Relation between T2, D and the pores size distribution 

In the case of spherical pores, eq.(3.53) becomes [18]: 
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1tD 5.1         (3.54) 

Indeed, in this case, S/V = 6/. Eq.(3.54) allows determining the mean pores diameter () 

once Dapp(td) has been experimentally determined according to PGSE experiments. In 

order to get the (discrete) pores size distribution, it is necessary recalling the theory of 
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Brownstein and Tarr [12], suitable for mono-dispersed spherical pores, generalized for 

poly-dispersed spherical pores by Chui [11]. This approach leads to the conclusion that 

the signal intensity I(t), related to the decay of the transverse component of the 

magnetization vector (Mxy), is given by: 
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        (3.55) 

where t is time, Ai are the pre-exponential factors (dimensionless) proportional to the 

number of protons whose relaxation is ruled by the sum of exponentials of intensities Iij 

and relaxation times T2ij. Eq.(3.55) states that the relaxation of the protons belonging to 

the molecules of the liquid trapped in the pores of radius Ri is, in principle, described by 

an infinite number of relaxation times (T2ij). Iij and T2ij are expressed, respectively, by:
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where Xij are the positive roots of the following equation: 
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where M (length/time) is an empirical parameter (relaxation sink strength), independent 

on pore radius and accounting for the effect of the polymeric surface on proton 

relaxations. Eq.(3.57) solution needs a numerical approach such as the Newton method 

(tolerance to 10-6). As T2ij are not independent from each other (on the basis of eq.(3.56) 

it follows  2iji12i12ij XXTT  ), model unknown parameters are T2i1, Ai and MRDi 

(=MRi/DG) for a total of 3m parameters. Recalling eq.(3.47), in this case, it follows: 
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where T2H2O is the free water relaxation time (3694 ms at 37°C [19]),  is the average 

pores diameter and 
21 T  is the average of the inverse of the relaxation time of all 

protons. While eq.(3.58) holds on average for all pores, similar expressions can be written 

for pores of different size (i = 2Ri): 
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where 
2i1 T  is the average of the inverse of the relaxation time of protons entrapped in 

pores of diameter i. As 
21 T  can be calculated on the basis of eq.(3.55) fitting to 

relaxation data and T2H2O and  are known, eq.(3.58) allows the determination of M . 

Furthermore, by knowing M  and T2i (eq.(3.55) fitting to relaxation data), eq.(3.59) 

makes it possible the evaluation of i for each class of polymeric network meshes. The 

volumetric fraction of pores characterized by diameter i is given by Ai. 

 

3.1.3.2  Release Tests 

This approach relies on the reduced mobility of a probe molecule inside a polymeric 

network due to the hindering effect exerted by the chains [20]. Indeed, in the case of 

negligible convection, network swelling, erosion and probe molecule interaction with 

polymeric chains [21], probe molecule diffusion is essentially ruled by the chains 

presence. In particular, in the case of a polymeric network, mesh diameter plays the key 

role in ruling probe movements. Probe mobility is represented by its diffusion coefficient 

Dp (dimensionally an aerial velocity) that is sometimes referred to as Fickian diffusion 

coefficient as it is related to movements induced by the presence of a probe concentration 

gradient [22]. On the contrary, the tracer diffusion coefficient refers to the mobility of a 

probe molecule in an environment where no concentration gradient exists, i.e. probe 

movements are dictated only by Brownian motion. Indeed, if the probe molecule is 

present in traces, its concentration is almost vanishing as well as its concentration 

gradient. The tracer diffusion coefficient is also called self-diffusion coefficient as the 

absence of concentration gradient takes also place in a pure liquid where molecules 

movements are, again, due to only Brownian motion. In the case of diluted solution, the 

difference between the Fickian and the tracer diffusion coefficient becomes negligible 

[22].The relation between Dp and the mean mesh diameter  is given by the Peppas and 

Merryl model [23]: 
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Which combines the free volume theory [24] with the assumption that the probability of 

a solute of radius r passing through an opening of diameter eps is linearly dependent on 
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the ratio 2rs/. In eq.(3.60) D0 indicates the probe (Fickian) diffusion coefficient in the 

pure solvent,  is the polymer volume fraction in the gel and yp represents the ratio of the 

critical volume required for a successful translational movement of the probe molecule 

and the average free volume per molecule of the swelling medium. Although yp depends 

on many factors, the authors suggest that, when rs is expected to be much smaller than , 

it can be approximately assumed as equal to one. Thus, known D0, rs and , the 

experimental measurement of Dp allows the determination of  according to eq.(3.60). 

Although Dp can be measured by different methods such as the high field NMR [4], the 

most common way of proceeding is to experimentally record the release of a probe 

molecule from a gel matrix [21]. The release curve is then fitted by a mathematical model 

relying on Fick’law [21]: 
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where t is time, C is probe concentration in the generic position (X, Y, Z) of the releasing 

gel matrix of volume V, Vr and Cr are, respectively, the volume and the probe 

concentration of the release environment,   is the nabla operator and C0 is the initial, 

uniform, probe concentration in the gel matrix. While eq.(3.61) expresses a mass balance 

on the probe at the micro-scale, eq.(3.48) represents a mass balance on the probe at the 

macro-scale. Indeed, it states that at each time, the amount of probe in the release 

environment (VrCr) is equal to the difference between the initial amount of probe in the 

gel matrix (VC0) less the amount still present in the gel matrix. Eq.(3.61) has to be solved 

with the following initial and boundary conditions: 

initial conditions 

C(X, Y, Z)=0      (3.63) 

boundary conditions 

    C(gel surface)= kp Cr     (3.64) 

where kp is the probe partition coefficient between the gel and the environmental release 

fluid. Eq.(3.63) sets a uniform concentration in the gel at the beginning (t = 0) while 

eq.(3.64) assumes that at the gel-release environment interface, the equilibrium condition 

for what concerns probe concentration holds. In order to determine Dp, eq.(3.63) and 
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(3.64) have to be simultaneously solved (according to a numerical method [25]) and fitted 

to the experimental Cr trend, usually assuming kp = 1. 

 

3.2  Rheological Characterization  

Rheology is the science field dealing with the relation between stress (τ) and deformation 

(γ). In other words, its aim is to study, theoretically and experimentally, the effect 

(deformation state) of a stress imposed on a material (and vice versa). 

In this work the rheological characterizations is performed by a rotational rheometer 

HAAKE Rheostress RS-150™ (controlled stress) equipped with a set of different 

geometry sensors able to stress the samples with a shear strain. 

 The rheometer applies on the sample, a torque T (generated by a magnetic field) 

registering the displacement of the mobile portion of the measuring probe. The probes 

used are basically constituted by two parallel plates and the sample is placed in between 

filling all the volume that separate the two plates. 

 

Figure 3.25: Schematic representation of the parallel plates sensor: R is the plates 

radius and d, the gap between plates.
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3.2.1 The parallel plates measuring system geometry 

The parallel plates measuring geometry (Fig. 3.25) is widely used for measuring the non-

Newtonian fluids properties and for the characterization of viscoelastic materials. The 

reasons reside in some advantages: the easier sample loading, the possibility to modify 

the shear rate independently from the rotational speed Ω by simply changing the gap d 

between the plates. On the other side, the torque measuring systems, need a particular 

attention in order to avoid (or limit) systematic errors during the operative phase. The 

most common sources of errors are listed below. 

• Inertial effects: especially at high shear rate, toroidal secondary fluxes generated 

in the sample leads to an overestimation of the viscous properties and, as consequence, 

the torque moment results higher of that related only to the rheological properties. 

• Geometrical effects: if the fluid is loaded in excess, the free surface is not spherical 

and edge effects are generated; others error can be generated by wrong assets that results 

in acentricity, not alignment and vertical oscillations. 

• Instability effects: the materials does not preserve its shape in all the conditions 

so, at high speed, the sample separates in two parts and finally it is pulled out by the 

centrifugal forces (splitting). 

• Shear heating: due to energy dissipation, a not uniform temperature field can take 

place inside the gap. 

In particular, during this studies, was used the parallel plate sensor PP35 Ti96010 witch 

have diameter of 35 mm and milled surface in order to minimize the slippage phenomena 

(Fig.3.26). In order to ensure more consistent environmental conditions and to limit the 

evaporation, a glass bell (solvent trap) was used to cover the measuring device in all the 

experiments (Fig. 3.27). 
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Figure 3.26: the parallel plates sensor 

PP25 Ti96010. 

Figure 3.27: the PP25 Ti96010 sensor 

isolated by a solvent trap in order to limit 

the water evaporation from the systems. 

 

3.2.2  Stress sweep tests 

The stress sweep test (SS), serve for the identification of the linear viscoelastic region. 

Within the linear viscoelastic limits, the storage modulus G’ (also called elastic modulus) 

and the loss modulus G” (also called viscous modulus), are independent from the applied 

deformation and remain constant up the limit deformation γ0 (called critical deformation). 

For higher deformation, G’ and G” rapidly decrease. G’ give information related to the 

elastic energy accumulated by the materials during a deformation while, G” is related to 

the energy dissipated. The SS test is based on the sample solicitation by a sinusoidal stress 

of constant frequency f (1 Hz) and increasing amplitude. 

For a stress (or deformation) lower than the linear viscoelastic limit, the value of G’ and 

G” are independent from the applied stress and the system conditions, can be considered 

as equilibrium state because the material structure does not undergo significant alterations 

or disruption. Above the critical deformation γ0, the material structure collapses and both 

modulus values change, normally with a decreasing. Deformation γ, deformation speed 

0  and stress τ, are related by the following equations: 

 t0  sin
         (3.65) 
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where, 0  is the critical deformation speed, ω the angular frequency or pulsation (ω=2πf) 

and δ the loss angle between stress and deformation. 

The first term of the equation (3.67),  t0  sincos  , is related to the elastic component 

while, the second,  t0  cossin  , is related to the viscous component. In the two 

limiting cases of δ=0 or δ=π/2, the material behavior is totally elastic or totally viscous, 

respectively. Equation (3.67) can be also written as: 

   tGtG 00  cos"sin' 
       (3.68) 

Where, the storage modulus G’ is related to the component in phase with the applied 

deformation while, the dissipative loss modulus G”, is in square phase with it. 

The complex modulus G* is represented by the ratio within maximum stress and 

maximum applied deformation: 
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The loss angle δ is defined as: 
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          (3.70) 

 

3.2.3  Gap determination: short stress sweep tests 

The determination of the best sensor gap is a crucial point in the experimental procedure 

because the errors caused by inaccurate settings can be relevant due to possible wall 

slippage. The method used to determine the optimal gap and samples compression, 

consists in the applications of a series of short stress sweep test gradually reducing the 

plates gap. In order to avoid irreversible effects on the systems, the short SS were 

performed inside the linear viscoelastic field (shear stress τ around 1 Pa). Fixed the initial 

gap, the short SS was performed registering the G’ at 1 Hz. The test continues with others 

short SS reducing each time the plates gap till the detection of a plateau in the G’ trend 

(or a maximum value). The distance so determinate was identified as the optimal gap in 

order to minimize wall slippage effects and was applied in all the following rheological 

tests (Fig. 3.28 and 3.29) [26]. 



3. Investigation Methods 

 

71 

 

The advantages of this methodology consist in the capability to reproduce the same G’ 

characteristics without preparing the gel in situ within the rheometer plates and the 

possibility to perform the experiments without knowing the exact thickness of the gel 

system.

 

 

Figure 3.28: example of G’ trend as 

function of the plates gap during a short 

SS test; the gap applied when G’ reaches 

the plateau (1,15 mm) was considered 

the optimal plates distance for the 

sample. 

Figure 3.29: another example of G’ 

trend as function of the pleats gap during 

a short SS test; the gap applied when G’ 

reaches a maximum (1,2 mm) was 

considered the optimal plates distance 

for the sample. 

 

3.2.4  Frequency sweep tests 

The frequency sweep test (FS) is performed in order to obtain the89 mechanical spectrum 

of a material; this allows the characterization of structural properties under equilibrium. 

The test consists in the application of asinusoidal stress of constant amplitude but varying 

frequency f (ω=2πf ), usually in the range 0,01-100 Hz. Stress amplitude must belong to 

the linear viscoelastic field. An important parameter for the materials behavior 

classification, is the number of Deborah (De). This parameter, is the ratio within the 

characteristic relaxation time (λ) (referred to the mechanical prope8rties, not related to 

the relaxation time T2 in NMR spectroscopy) and the characteristic deformation process 

time Λ applied to the material: 

 De           (3.71) 

as 

1           (3.72) 
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we have 

De           (3.73) 

Elastic behavior implies De=∞, while liquid behavior implies De=0. A viscoelastic 

behavior happens for 0<De<∞ (typical De≈1 or 10). 

 

3.2.5 Correlation Models 

Among the different models that can be used for the interpretation of FS test, Maxwell 

model is one of the most popular. According to this model, the mechanical properties are 

represented by a dashpot and a spring in series (Fig. 3.30a). The equation describing the 

mechanical behavior of the Maxwell model is: 




 





tg          (3.74) 

where τ is stress, γ is deformation, t is time, η is the dashpot viscosity, g is the spring 

constant and λ= η/g is the relaxation time. The relaxation time λ represents the time 

necessary to the structure to relax the strain after the application of a constant 

deformation. In the frequency sweep tests, low values of De, correspond to a deformation 

applied in longer time than the material relaxation time therefore, the time frame for the 

material is enough to relax from the strain and respond as a viscous-like system. Opposite, 

for high values of De, the deformation is applied in a short time and the system does not 

relax completely; the behavior assumes the typical elastic response. 

The solution of equation (3.74), in the case of a sinusoidal deformation γ=γ0sen(ωt), leads 

to 

)cos(")(' tGtsenG 00  
       (3.75) 
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         (3.77) 

These equations of G’() and G”() can be plotted into a bi-logarithmic chart. The 

interception point represent ω=1/λ corresponding to a G” maximum and De=1. In general 

Maxwell model is not enough for a good description of properties. At this purpose it is 
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possible to combine in parallel n Maxwell elements (Fig. 3.30b). In this case equation 

(3.74) solution leads to: 
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        (3.79) 

where n is the number of Maxwell elements considered while Gi, i and I represent, 

respectively, the spring constant, the dashpot viscosity and the relaxation time of the ith 

Maxwell element. The simultaneous fitting of Equation (3.78) and (3.79) to experimental 

G’ and G’’ data was performed assuming that relaxation times (i) were scaled by a factor 

10. Hence, the parameters of the model are 1 + n (i.e. 1 plus Gi). Based on a statistical 

procedure, n was selected in order to minimize the product 2(1+n), where 2 is the sum 

of the squared errors. G’ and G’’data represent the average of three experiments. Flory’s 

theory enables the determination of polymeric network crosslink density x (defined as 

the moles of junctions between different polymeric chains per hydrogel unit volume): 

RTGxρ

          (3.80) 

where R is the universal gas constant, T is the temperature and G (shear modulus) can be 

computed as the sum of the elastic contributions (Gi) pertaining to each element of the 

generalized Maxwell model describing the hydrogel mechanical spectrum. Finally, the 

equivalent network theory allows evaluating the average network mesh size  : 

3
Axπρ6ξ N          (3.81) 

where NA is the Avogadro number. 
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Figure 3.30: a) schematic representation of a viscoelastic element in the Maxwell model 

constituted by a spring in series with a dashpot that represents the elastic and viscous 

component respectively. b) The generalized Maxwell model constituted by several 

viscoelastic elements in parallel (the spring on the left represent the pure elastic element). 

 

3.3 Cryoporosimetry 

3.3.1 An introduction 

Porous materials have many, different, important role in several industrial field such as 

chemicals and petrochemicals, papers, textile, constructions, leathers, etc. The extensive 

need for different characteristics stimulated intensive researches on porous materials. 

The porimetric techniques can be classified in direct methods and indirect methods. 

• Direct methods are based on the direct observation by the electronic microscopes, 

X ray diffraction crystallography techniques and others. Unfortunately, these methods, 

though allowing the direct observations, are not suitable for the mesoporosus materials 

study where the porus radius is between 2 and 50 nm. 

• Indirect methods are based on the analysis of the capillarity phenomena. The most 

used are the mercury porosimetry (for big pores) and the Gas porosimetry (for small 

pores). Substantially, the phase transitions of a substance filling a porous material, allows 

the internal structure characterization. 

Cryoporometry is a calorimetric methods that recently emerged among indirect methods 

for pores size determination [27]. Cryoporosimetry is based on the solid-liquid transition 

of a substance inside porous structure. Many authors observed that the melting 

temperature of a pure disperse substance depends on the curvature radius of the solid-

liquid interface. Inside a pore, the radius strictly depends on the pore dimension. 
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Therefore, the solidification/melting temperature vary for each pores of the material as 

function of the pore diameters [28]. In particular the smaller the curvature radius, the 

lower the melting temperature is. This means that a DSC analysis of a liquid filled porous 

material can provide its pore size distribution. 

For its biological, water is usually the election liquid in cryoporometric studies [29]. In 

addition, due to its high specific melting heat (∆h=334 J/gr, one order of magnitude higher 

than most of others organic solvents) DSC is increased. Main disadvantage of this method 

consists in the possibility of network corruption due to the liquid solidification. 

Cryoporosimetry is not a common methods, not diffused as nitrogen porimetry or 

mercury porimetry but, can be adopted for the pore size determinations when we know 

[30]: 

• liquid probe surface tension and heat of fusion 

• contact angle within sample material and liquid probe 

• liquid probe density 

• heat capacity dependence on temperature 

 

3.3.2  Cryoporosimetry Principles  

Cryoporosimetry relies on the triple point dependence on the dimension of the solid phase 

(ice crystal), as theoretically demonstrated by Brun and co-workers [31]. Brun theory 

assumes different mathematical forms depending on the ice crystals shape (dictated by 

the polymeric mesh geometry where water solidification takes place) and boundary 

conditions (water in excess with respect to nano-pores volume or not), as shown in Figure 

3.31: 

cylindrical mesh with water excess, spherical mesh: 

         (3.82) 

cylindrical mesh with no water excess: 

      (3.83) 

where T0 represents the melting temperature of an infinitely large ice crystal (0°C), TR 

and hR are, respectively, ice melting temperature and specific melting enthalpy for a 
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crystal characterized by a solid-liquid interface of curvature radius equal to Rsl; sl and lv 

are, the ice-water and water-vapor interface tensions while s and l are ice and water 

density, respectively. 

 

Figure 3.31: Ice crystals shape in relation to different polymeric mesh geometries (gray 

spheres indicate rigid chain segments). Rsl and Rlv indicate, respectively, the solid (ice) –

liquid (water) and the liquid (water) – vapor interface radius of curvature,  is mesh size 

and is the constant thickness of the not-freezable water layer adsorbed on the mesh wall. 

 

In order to simultaneously take into account both situations, Eqs. (3.82) - (3.83) can be 

rewritten as: 

    (3.84) 

Although empirical, this choice of weighing the contribute of eq.(3.82) and eq.(3.83) is 

coherent with a common approach adopted for the characterization of meshes that are 

neither spherical nor cylindrical [32]. Indeed, identifying the mesh shape factor, Z, as the 

power expressing the mesh volume dependence on mesh radius (3 for spherical meshes 

and 2 for cylindrical meshes), it is possible connecting Z to our weigh X according to the 

relation Z = 2*(1-X) + 3*X. For X = 1 and 0, spherical (Z = 3) and cylindrical (Z = 2) 

meshes can be found, respectively. For 0 < X < 1, Z varies between 2 and 3 and it 

represents meshes with geometrical characteristics in between those of cylinders and 

spheres. It is also important to point out that, due to the similar values of ice and water 

density (whatever temperature), the right hand side terms of Eq.(3.82) and (3.83) do not 

differ too much each other. The numerical solution of Eq. (3.84) requires the knowledge 
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of the hR dependence on melting temperature and curvature radius. For this purpose, a 

classical thermodynamic relation can be used [33]: 

      (3.85) 

where h is the specific ice melting enthalpy for an infinitely large crystal (the 

corresponding solid-liquid interface is flat; Rsl ≈ ∞; TR = 0°C), while cps and cpl are, 

respectively, the ice and water specific heat capacities. The s,l, cps and cpl temperature 

dependence can be expressed by: 

s(g/cm3) = 0.917*(1.032-1.170*T(K)*10-4)   (3.86) 

l(g/cm3) = -7.1114+0.0882*T(K)-3.1959*T2(K)*10-4 +3.8649*T3(K)*10-7    (3.87) 

cps(J/g°C) = 2.114*(1+373.7*T(°C)*10-5)    (3.88) 

cpl(J/g°C) = 4.222*(1-54*T(°C)*10-5)    (3.89) 

The sl, lv and sv dependence on Rsl can be described according to the Tolman approach 

[33]: 

         (3.90) 

where ∞ and  are, respectively, the surface tension competing to a flat surface (infinite 

curvature radius) and a surface of curvature radius r (now identifiable with Rsl), while  

is the Tolmann length whose order of magnitude corresponds to the effective water 

molecule diameter [34] dm and it is usually assumed [35] to be dm/3 (in the case of water, 

 ≈ 0.0681 nm). The numerical solution [35] of eqs. (3.84)-(3.90) allows determining the 

hR dependence on TR as well as the TR derivative with respect to Rsl (dTR/dRsl), 

fundamental functions for the determination of the mesh size distribution [22] dVm/dRm: 

     (3.91) 

where Vm is the meshes volume, Rm is the mesh radius (= /2), Vs is the volume of the ice 

nano-crystals trapped inside the meshes,  is the constant thickness of the not-freezable 

water layer adsorbed on the mesh wall [37], v is the differential scanning calorimeter 

(DSC) heating speed, Q° is the DSC signal (W) and Z is the mesh shape factor. It is 

important to underline that the presence of a layer of not-freezable water adhering to the 
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mesh walls makes the mesh volume (Vm) greater than the nanocrystals volume (Vs) and, 

at the same time, it makes the mesh radius (Rm) equal to the crystal radius (Rsl) plus the 

thickness  (being  radius independent, dRsl = dRm). On the basis of Eq. (3.91), it is 

possible determining the probability P of finding a mesh of diameter 2*Rm: 

       (3.92) 

where Rmin and Rmax are, respectively, the minimum and maximum values for Rm (= /2) 

(they indicate the distribution wideness). 

The determination of , essential for the P estimation, requires an iterative procedure [37, 

32]. This procedure relies on the evidence that the total amount of water constituting the 

hydrogel (Wt) is given by the sum of the water amount that can freeze inside the hydrogel 

(Wf), the amount that cannot freeze inside the hydrogel due to the interaction with mesh 

wall (Wnf) and the amount of water that is out of the polymeric network (bulk or excess 

water, We). While Wt can be estimated knowing the hydrogel mass and polymer 

concentration, Wf can be evaluated by measuring the amount of water melting below 0°C: 

         (3.93) 

In addition, we can be evaluated measuring the amount of water melting for T ≥ 0°C: 

         (3.94) 

Thus, the amount of non-freezable water (Wnf) can be calculated as: 

Wnf = Wt - Wf – We         (3.95) 

Consequently, mesh volume (Vm) can be calculated as the sum of freezable (Vf) and not-

freezable (Vnf) water: 
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Now, an iterative procedure is started assuming  = 0 and calculating the mesh volume 

Vmc as follows: 
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When the relative difference mmmc VVVV   is lower than a fixed tolerance , the 

assumed value for  is correct. Hence, the procedure is repeated increasing  of  up to 

convergence. As  is usually bigger than 0.5 nm [32], a prudential choice guaranteeing 

the convergence of the procedure consists in setting  = 0.01 nm [37]. This setting is 

usually compatible with the choice of  = 10-5. 
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3.4  Scanning Electron Microscopy 

A scanning Electron Microscope (SEM) is a powerful magnification tool that utilizes 

focused beams of electron to obtain topographical, morphological and compositional 

information. In addition, a Scanning Electron Microscope can detect and analyze surface 

fractures, provide information in microstructures, examine surface contaminations, reveal 

spatial variations in chemical compositions, provide qualitative chemical analyses and 

identify crystalline structures. SEMs can be as essential research tool in fields such as life 

science, biology, gemology, medical and forensic science, metallurgy. In addition, SEMs 

have practical industrial and technological applications such as semiconductor inspection, 

production line of miniscule products and assembly of microchips for computers [38]. 

 

Figure 3.32: Structure of SEM machine.
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A scanning electron microscope consist of the following components: 

 Electron Source 

 Thermionic Gun  

 Field Emission Gun  

 Electromagnetic and/or Electrostatic Lenses 

 Vacuum Chamber 

 Sample chamber and stage 

 Computer 

 Detectors (one or more) 

 Secondary Electron Detector (SED) 

 Backscatter Detector 

 Diffracted Backscatter Detector (EBSD) 

 X-ray Detector (EDS) 

In addition, SEMs require a stable power supply, vacuum and cooling system, vibration 

- free space and need to be housed in an area that isolates the instrument from ambient 

magnetic and electric fields. A SEM provides details surface information by tracing a 

sample in a raster pattern with an electron beam. The process begins with an electron gun 

generating a beam of energetic electrons down the column and onto a series of 

electromagnetic lenses. These lenses are tubes, wrapped in coil and referred to as 

solenoids. The coils are adjusted to focus the incident electron beam onto the sample; 

these adjustments cause fluctuations in the voltage, increasing/decreasing the speed in 

which the electrons come in contact with the specimen surface. Controlled via computer, 

the SEM operator can adjust the beam to control magnification as well as determine the 

surface area to be scanned. The beam is focused onto the stage, where a solid sample is 

placed. Most samples require some preparation before being placed in the vacuum 

chamber. Of the variety of different preparation processes, the two most commonly used 

prior to SEM analysis are sputter coating for non-conductive samples and dehydration of 

most biological specimens. In addition, all samples need to be able to handle the low 

pressure inside the vacuum chamber. The interaction between the incident electrons and 

the surface of the sample is determined by the acceleration rate of incident electrons, 

which carry significant amounts of kinetic energy before focused onto the sample. When 

the incident electrons come in contact with the sample, energetic electrons are released 
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from the surface of the sample. The scatter patterns made by the interaction yields 

information on size, shape, texture and composition of the sample. A variety of detectors 

are used to attract different types of scattered electrons, including secondary and 

backscattered electrons as well as X-rays. Backscatter electrons are incidental electrons 

reflected backwards; images provide composition data related to element and compound 

detection. Although topographic information can be obtained using a backscatter detector, 

it is not as accurate as an SED. Diffracted backscatter electrons determine crystalline 

structures as well as the orientation of minerals and micro-fabrics.X-rays, emitted from 

beneath the sample surface, can provide element and mineral information. Image 

magnification can be up to 10 nanometers and, although it is not as powerful as its TEM 

counterpart, the intense interactions that take place on the surface of the specimen provide 

a greater depth of view, higher-resolution and, ultimately, a more detailed surface picture. 

Advantages of a Scanning Electron Microscope include its wide-array of applications, the 

detailed three-dimensional and topographical imaging and the versatile information 

garnered from different detectors. SEMs are also easy to operate with the proper training 

and advances in computer technology and associated software make operation user-

friendly.This instrument works fast, often completing SEI, BSE and EDS analyses in less 

than five minutes. In addition, the technological advances in modern SEMs allow for the 

generation of data in digital form [38]. The disadvantages of a Scanning Electron 

Microscope start with the size and cost.SEMs are expensive, large and must be housed in 

an area free of any possible electric, magnetic or vibration interference. Maintenance 

involves keeping a steady voltage, currents to electromagnetic coils and circulation of 

cool water. Special training is required to operate an SEM as well as prepare samples. In 

addition, SEMs are limited to solid, inorganic samples small enough to fit inside the 

vacuum chamber that can handle moderate vacuum pressure. Finally, SEMs carry a small 

risk of radiation exposure associated with the electrons that scatter from beneath the 

sample surface. The sample chamber is designed to prevent any electrical and magnetic 

interference, which should eliminate the chance of radiation escaping the chamber. Even 

though the risk is minimal, SEM operators and researchers are advised to observe safety 

precautions. 

A high-resolution SEM image can show detail down to 25 Angstroms, or better. When 

used in conjunction with the closely-related technique of energy-dispersive X-ray 
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microanalysis (EDX, EDS, EDAX), the composition of individual crystals or features can 

be determined. A development of the normal high-vacuum scanning electron microscope 

is the ESEM, or Environmental SEM. The ESEM can operate with air in the specimen 

chamber - the pressure is lower than atmospheric pressure but higher that the high-

vacuum of a normal SEM. This has the advantage that wet specimens can be examined 

without them dehydrating and is especially useful for biological specimens and other 

specimens containing water, such as freshly-mixed cement paste. 
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3.5 Micro Computed Tomography 

Feldkamp et al. pioneered micro-CT when they developed an X-ray-based 

microtomographic system to analyze trabecular samples at a spatial resolution of 50 mm 

[39, 40]. Since then, micro-CT had been used extensively in the study of trabecular 

architecture [41] and there are increasing applications of it in other areas. Its popularity 

can be attributed to its ability to provide precise quantitative and qualitative information 

on the 3D morphology of the specimen. The interior of the specimen can be studied in 

great detail without resorting to physical sectioning and using toxic chemicals. Moreover, 

after scanning, the intact samples can be subjected to other tests, therefore resolving the 

problem of sample scarcity. As researchers began to recognize the potential of this 

radiographic technique, various biomedical applications are being explored which would 

include the assessment of scaffolds structure, tissue regeneration [42] and vasculature 

networks [43-45]. In micro-CT scanning, the specimen is computed as a series of 2D 

slices which are irradiated from the edges with X-rays. Upon transversing through the 

slice, the X-rays are attenuated and the emergent X-rays with reduced intensities are 

captured by the detector array. From the detector measurements, the X-ray paths are 

calculated and the attenuation coefficients are derived. A 2D pixel map is created from 

these computations and each pixel is denoted by a threshold value which corresponds to 

the attenuation coefficient measured at a similar location within the specimen. As the 

attenuation coefficient correlates to the material density, the resultant 2D maps reveal the 

material phases within the specimen. The quality of the 2D maps is dependent on the 

scanning resolution which ranges from 1 to 50 mm [39, 46]. At high resolutions, intricate 

details are imaged, however more time is required for high resolution scanning and the 

resultant large data set poses a challenge for data storage and processing. 3D modelling 

programs such as Image Pro Plus (Media Cybernetics) stacks the 2D maps to create 3D 

models. As computation is inherent in this technique, the selection of software and 

hardware facilities would influence the efficiency and effectiveness of this radiographical 

assessment. The recent use of μ-CT in scaffold research enabled morphological studies 

to be carried out, yielding comprehensive data sets. From the scan data, measurements of 

the scaffold material volume, surface area, trabecular width and pore sizes were taken. 
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Using threshold inversion, the pore network was visualized and the pore interconnectivity 

was studied [40] 

Mechanical tests are conducted so as to ascertain the mechanical properties of the 

scaffold, however most of these tests are destructive; hence, a non-destructive method is 

sought. Researchers have considered finite element modelling (FEM) as an alternative to 

mechanical testing as simulations can be carried out via computations. FEM requires the 

input of precise 3D structural and architectural information of scaffolds, which can be 

obtained from μ-CT scans [47]. Similarly, diffusion patterns in scaffolds can also be 

investigated through fluid flow studies which are simulated via FEM. Scaffolds with 

intricate interior structures can be scrutinized using μ-CT, as any spatial location of the 

architecture can be digitally isolated out. This is crucial for scaffolds that exhibit different 

geometric layouts at different spatial locations. Micro Computed Tomography possesses 

this key advantage over other techniques such as mercury and flow porosimetry. 

Within the digitally excised scaffold cube, scaffold material volume and surface area are 

measured, thus allowing the calculation of porosity and surface area to volume ratio. 

Three-dimensional imaging allows a close up view of any specific location, thus the 

observation of pore shape and the measurement of pore size and trabecular thickness can 

be conducted in these close ups. Scaffold anisotropy is evaluated via algorithms [48] and 

the cross-sectional area can be measured from the 2D slice images. By inverting the 

threshold, a negative image is created which captures only the scaffold pores. By 

measuring the total and the interconnected pore volumes, interconnectivity is derived 

[39]. In studying scaffold permeability, a suitable visualization program needs to be 

selected. As μ-CT employs penetrative X-rays, closed pores can be imaged. The 

flexibility of micro CT analysis allows the evaluation of foams, textiles and nanofiber 

scaffolds. There are associated concerns despite of the numerous advantages of using μ-

CT. Image thresholding is a crucial step that has to be executed prior to 3D modelling and 

it affects the subsequent analysis and visualization [48, 49]. In the conventional approach, 

the thresholding range is selected via histographics and visual estimation and the problem 

arises when the scaffold composes of multiple materials whose thresholding ranges 

overlap and this renders the digital separation of these materials a difficult task. Moreover, 

as polychromatic X-ray beams are used in micro CT, the lower energy rays would be 

readily attenuated by the sample resulting in a high exposure at the centre of the scaffold. 
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This effect is known as beam hardening and as a result thresholding is no longer 

dependent solely on radio-density but also on the specimen size [42]. Micro CT analysis 

is not suitable for scaffolds containing metals as X-rays are heavily attenuated by these 

metals. The presence of metals results in dark and bright grainy artifacts which obscure 

important details in the scan images [40]. As μ-CT is a relatively new technology, 

improved algorithms and setups are anticipated, thus resolving such imaging errors.
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4  Homogeneous Gels 

 

In this chapter, two different types of homogeneous gels are considered. The first one is 

represented by guar gum (GG) and guar gum borax (GGb), while the second is 

represented by alginate and pluronic F127. Both hydrogels types are characterized by 

means of rheology and low field nuclear magnetic resonance. In addition, while release 

tests are performed in the case of GGb hydrogels, TEM characterization is adopted for 

the alginate/pluronic F127 hydrogels. Basically, all these characterizations serve to 

estimate the mesh size (ξ) of the polymeric network. 

 

4.1 Guar Gum and Guar Gum borax Hydrogels 

4.1.1  Introduction 

Guar gum (GG) is a neutral galactomannan, extracted from the seeds of Cyamopsis 

tetragonoloba. It consists of a linear backbone of (1→4)-linked D-mannopyranose units 

(Man) and with the presence of randomly attached (1→6)-linked galactopyranose units 

(Gal) as side chains [1]. Due to the presence of these galactose units, the polymer is 

soluble in water [2]. The ratio of mannose to galactose units (M/G) depends on climate 

variations and ranges from 1.5:1 to 1.8:1. Because of its low cost and its ability to produce 

a highly viscous solution even at low concentrations, GG finds important applications in 

food [3], in oil recovery [4] and in personal care industries [5]. Other industrial 

applications of guar gum include the textile industry where guar gum's excellent 

thickening properties are used for textile sizing, finishing and printing. In the paper 

industry, guar is used as an additive as it gives denser surface to the paper used in printing. 

In the food, pharmaceutical and cosmetics industry guar gum is used as an effective 

binder, stabilizer, and thickener. In cosmetics, especially shampoos and toothpastes, guar 

gum is used primarily as a thickener and suspending agent. In beverages, it is used as 

stabilizer for preparing chocolate drinks and juices. 
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Figure 4.1: Left: the Cyamopsis tetragonoloba. Right: the chemical structure of the 

guar gum. 

 

The high viscosity of GG solutions arises from the high molecular weight of GG (up to 2 

million and further) [6] and from the presence of extensive intermolecular associations 

(entanglements) by means of hydrogen bonds. 

In aqueous solution GG assumes a flexible coil conformation as evidenced by the Mark-

Houwink-Sakurada exponent and by the relatively low value of its characteristic ratio and 

its persistence length [7]. GG, crosslinked with glutaraldehyde, was proposed for colon 

delivery [8], and it was also tested as a matrix for oral solid dosage forms [9]. 

Scleroglucan (SCLG), a water soluble polysaccharide produced by fungi of the genus 

Sclerotium, consists of a main chain of (1–3)-linked -D-glucopyranosyl units bearing, 

every third unit, a single -D-glucopyranosyl unit linked (1–6). It is known that SCLG 

assumes a triple-stranded helical conformation in aqueous solution and a single coiled 

disordered conformation in methylsulphoxide or at high pH values (NaOH >0.2 M) [10-

11]. Due to its peculiar properties, SCLG was extensively used for various commercial 

applications (secondary oil recovery, ceramic glazes, food, paints, cosmetics, etc.) [12] 

and it was also investigated for modified/sustained release formulations and ophthalmic 

preparations [13]. 

Actually, it is well known that borax is an efficient crosslinker for polymers bearing 

hydroxyl groups but the type of formed linkages is still debated and so far, two main 

models have been proposed. The most popular one implies the existence of pure chemical 

crosslinks between the polymeric chains and borax [14], and it was proposed for the 
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GG/borax interactions. According to the other model, the borax ions hold together the 

polymeric chains by means of mixed physical/chemical linkages. This model was firstly 

proposed for poly-(vinyl-alcohol) [15] and it was recently suggested also for SCLG [16, 

17]. The considerable effort devoted to the study of polymer-ion complexes is due to the 

wide range of application of these systems. In particular, the complex between GG and 

borate was previously studied by several authors [18, 19] that investigated the effect of 

polymer and borate concentration, temperature, environmental pH conditions and GG 

molecular weight on the peculiar rheological properties detected by the frequency 

dependence of relaxation spectra.  

It is interesting to note that both, GG and SCLG, interact with borax leading to a three-

dimensional network that, besides the intrinsic differences between the two polymers, 

(see below), shows a peculiar anisotropic elongation during swelling, when tablets of 

these two systems are prepared. In particular, GG and SCLG show important different 

characteristics: (a) GG dissolves in water as a random coil while SCLG exhibits a triple 

helix conformation in aqueous solution with a persistence length of about 200 nm [10, 

20]; (b) borax promotes a rapid gelation of GG [21] by means of crosslinks characterized 

by a lifetime of the order of seconds [22], leading to self-healing properties of the 

network. On the other side, SCLG requires several hours for gelation in the presence of 

borax and no self-healing occurs. Nevertheless, both, GG and SCLG, in the presence of 

borax, are capable to give self-sustaining gels [23]. Furthermore, also the interaction with 

borax takes place in a different way. In the case of SCLG the borax promotes mixed 

(chemical and physical) interactions between triplexes; on the other side, in the case of 

GG, the borax forms chemical bridges between chains by means of reversible linkages. 

In addition, molecular dynamics simulation and AFM images indicate that the borax 

groups increase the stiffness of GG making such system more similar to SCLG-borax. 

Upon swelling, the labile nature of the borax cross-links in the GG makes the inter-chains 

interactions able to undergo the needed rearrangement, similar to that of SCLG where full 

chemical bridges are not present. These similarities explain the quite unexpected parallel 

swelling behavior of GG and SCLG, in the presence of borax [16, 23]. However, in all 

these previous research works, no attention was specifically focused on the estimation of 

the mesh sizes of the networks, a very important parameter affecting the possible 

industrial and bio-pharmaceutical applications that these hydrogels may have.  
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4.1.2  Experimental Section 

4.1.2.1  Materials 

Guar Gum (GG) was provided by CarboMer (San Diego, USA). The ratio between 

mannose and galactose was estimated by means of 1H NMR (carried out at 70 °C with a 

Brucker AVANCE AQS 600 spectrometer, operating at 600.13 MHz) and an M/G value 

of 1.5 was found. The molecular weight (1.2•106) was estimated by means of 

viscosimetric measurements carried out at 25 °C. Scleroglucan (SCLG) was provided by 

Degussa (Germany). The molecular weight (1.1•106) was estimated by means of 

viscosimetric measurements carried out at 25 °C in 0.01 M NaOH. For the viscosity 

measurements, an automatic viscometer (Instrument Schott AVS 370, Lauda, Germany) 

with a water bath (Lauda 0.15 T) allowing the temperature control to 0.1 °C was used. 

An Ubbelohde capillary viscometer (Type No 531 01, with a capillary diameter = 0.54 

mm, Schott-Geräte) for dilution sequences was used. The GG solutions were prepared in 

distilled water while the SCLG solutions were prepared in 0.01 N NaOH (in order to 

break possible aggregates). Before measurements, the samples were filtered twice with 

1.2  Millipore filters. From the flux time of solvent and solutions the intrinsic viscosity, 

[] (cm3/g), was estimated for each polymer. According to the Mark-Houwink-Sakurada 

equation, the intrinsic viscosity is related to the molar mass of the sample: [] = KMw
a, 

where K and a are constants for each polymer-solvent system at a given temperature. 

From the value of K and a found in the literature for the GG [11] and for the SCLG [7] 

samples, the molecular weight of the two polymers were evaluated. 

Theophylline (TPH, molecular weight 198, radius of van der Waals = 3.7 Å) and borax 

were Carlo Erba products (Italy), Vitamin B12 (Vit B12, molecular weight 13,500) was 

purchased from Fluka (Germany). All other products and reagents were of analytical 

grade. Distilled water was always used. 

4.1.2.2  Purification Polymer 

A given amount of polymer (GG and SCLG) was dissolved in distilled water (polymer 

concentration, cp = 0.5% w/v). GG samples were kept under magnetic and mechanical 

stirring at 60° C for 24 h and then at room temperature for 24 additional hours [24]. SCLG 

samples were kept under magnetic and mechanical stirring for 24 h at room temperature. 
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The resulting solutions were exhaustively dialyzed at 7 °C against distilled water with 

dialysis membranes of a cut-off 12,000 – 14,000 and then freeze dried. The lyophilized 

products were stored in a desiccator until use. 

4.1.2.3  Hydrogels preparation 

A given amount of GG or SCLG (200 mg for the release experiments and 35 mg for the 

rheological analysis and for NMR measurements; cp = 0.7% w/v) was dissolved in water 

for 24 h. GG and SCLG crosslinking was carried out by addition of 0.1 M borax solution 

to the homogeneous polymer system in order to get a unitary value of the ratio between 

borax moles and moles of the repeating GG or SCLG units (r = 1). The resulting mixture 

was magnetically stirred for 5 min and then left for 2 days at 7 °C for gel setting. For the 

release experiments, a known amount of model drug was first dissolved in water before 

the addition of the polymer. 

4.1.2.4  Rheological characterization 

The rheological characterization, carried out at 25 and 37 °C, was performed by means 

of a controlled stress rheometer, Haake Rheo-Stress RS300 model, with a Thermo Haake 

DC50 water bath. Two geometries were used: a cone–plate device (C60/1 Ti with a cone 

diameter of 60 mm and a cone angle of 1° and a MP60 steel 8/800 plate with a diameter 

of 60 mm, Haake) for the GG and SCLG samples and a grained plate-plate device (Haake 

PP35/S: diameter = 35mm; gap between plates = 1mm) was used for the SCLGb and GGb 

samples in order to prevent wall slippage phenomena [25]. To perform the measurements 

on SCLGb and GGb, the hydrogels, obtained with a thickness of 1.0–3.0 mm, were 

removed with the aid of a small spatula from the beaker in which they had settled, and 

they were laid with care on the lower plate of the rheometer. The upper plate was then 

lowered until it reached the hydrogel surface. Gap-setting optimizations were undertaken 

according to a procedure described elsewhere [26]. When GG or SCLG were tested, an 

appropriate amount of the samples was spread onto the plate geometry to obtain a sample 

of the appropriate height. To avoid gel shrinking due to a possible solvent evaporation, 

the equipment was kept inside a glass bell with a constant moisture level. Rheological 

properties were studied by means of oscillatory tests. In particular, the hydrogel linear 

viscoelastic regions were assessed, at 1 Hz, by stress sweep experiments. Frequency 
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sweep tests were carried out in the frequency (f) range 0.01–100 Hz at constant 

deformations  = 0.01 (well inside the linear viscoelastic range for all the studied 

hydrogels). Each test was carried out in duplicate. 

4.1.2.5  LF-NMR characterization 

Low Field NMR (LF - NMR) characterization was performed, at 25 and 37 °C, by means 

of a Bruker Minispec mq20 (0.47 T, 20 MHz). Transverse relaxation time (T2) 

measurements were carried out according to the (Carr-Purcell-Meiboom-Gill; CPMG) 

sequence (number of scans = 4; delay = 5 s). In order to study water mobility inside the 

hydrogel network, Pulsed Gradient Spin Echo (PGSE) measurements were performed. 

The applied sequence consists in the classical echo sequence with two equal gradient 

pulses (of length  = 0.5 ms) occurring at x1 = 0.1 ms and x2 = 0.1 ms after the 90° and 

180° pulses, respectively. The time separation, indicated by  (≈ -x1-+x2), is related to 

the diffusion time, td, according to td = ( After an appropriate calibration 

procedure, based on the knowledge of the free water self-diffusion coefficient (DH2O), it 

is possible measuring the average water self-diffusion coefficient inside the hydrogel (D). 

The details of this calibration procedure can be found in the Bruker Manual, mq Gradient 

Unit Users Guide, version 1, January 2000, and it essentially replicates the standard 

procedures for the D determination used in high field NMR [27]. In the case of T2 

measurements, data are the average of 27 experiments (9 repetitions for three different 

samples), while in the case of PGSE measurements, data are the average of 15 

experiments (5 repetitions for three different samples). 

The combination of the information coming from the relaxation and PGSE experiments 

were used for the estimation of the mesh size distribution of our polymeric hydrogels. 
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4.1.2.6  Release  

The hydrogels, freshly prepared in a beaker (thus in their swollen form), assumed the 

cylindrical shape of the vessel (height = 1.0 cm, diameter = 2.2 cm) and they were tested 

for the release of the two model drugs TPH and Vit B12, at 37 °C. The gels were immersed 

in 200 ml (Vr) of distilled water (pH = 5.4), and they were kept at a certain height from 

the bottom of the container by a thin web. The medium was gently magnetically stirred 

and 3ml samples were withdrawn from the solution at appropriate time intervals and 

replaced with the same amount of fresh solvent (thus, experimental concentration data 

were corrected for dilution). The amount of the released model drug was 

spectrophotometrically detected (TPH at 272 nm, Vit. B12 at 361 nm), by means of a 

Perkin-Elmer (lambda 3a, UV–Vis) spectrometer using quartz cells with path-lengths of 

1.0 or 0.1 cm. All experiments were carried out in triplicate. The possible erosion of the 

gel, in terms of polymer dissolution in the medium during the release experiments, was 

quantitatively determined by a colorimetric method [28] using phenol in the presence of 

sulphuric acid. Obtained results indicate that such erosion, in the first 8 h, is almost 

negligible (≤ 4%). 

 

4.1.3 Results and Discussion 

Stress sweep tests, carried out at 25 and 37 °C, indicated that for all studied systems (GG, 

GGb, SCLG and SCLGb), the critical deformation c is always much higher than the 

constant one ( = 0.01) applied in frequency sweep tests. Figure 4.2 and 4.3 show the 

mechanical spectra referring to the four systems, studied at 25 and 37 °C, respectively. It 

can be noticed (see Figure 2a) that, at 25 °C, SCLG exhibits a gel behavior as the elastic 

modulus (G’) is always bigger than the viscous one (G’’) and both are, almost, pulsation 

() independent. On the other side, GG shows the typical solution behavior as G’’ 

prevails on G’ and both moduli depend on . Five and four Maxwell elements are, 

respectively, necessary for a statistically good description (see F test values in Figure 

4.2a caption) of the GG and SCLG mechanical spectra (see fitting parameters values in 

Table 4.1).  
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Figure 4.2: a) mechanical spectra (G’ elastic modulus, G’’ viscous modulus) referring to 

the Guar gum (GG) and Scleroglucan (SCLG) systems at 25 °C. Solid lines indicate the 

best fitting of the generalized Maxwell Model (F test always positive: FGG(5,32,0.95) < 

150, FSCLG(4,25,0.95) < 374). b) mechanical spectra (G’ elastic modulus, G’’ viscous 

modulus) referring to the Guar gum/borax (GGb) and Scleroglucan/borax (SCLGb) 

systems at 25 °C. Solid lines indicate the best fitting of the generalized Maxwell Model 

(eqs.(1), (2)) (F test always positive: FGGb(4,32,0.95) < 103.5, FSCLGb(5,24,0.95) < 251). 

 

 

Figure 4.2b clearly shows the different effect of borax addition to the GG and SCLG 

systems. In fact, while borax presence plays a marginal role in the case of SCLG (only a 

very small increase of the moduli can be noticed), for the GG system a relevant change 

occurs in the mechanical properties.  
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Figure 4.3: a) mechanical spectra (G’ elastic modulus, G’’ viscous modulus) referring to 

the Guar gum (GG) and Scleroglucan (SCLG) systems at 37 °C. Solid lines indicate the 

best fitting of the generalized Maxwell Model (F test always positive: FGG(5,10,0.95) < 

38.1, FSCLG(5,22,0.95) < 504.5). b) mechanical spectra (G’ elastic modulus, G’’ viscous 

modulus) referring to the Guar gum/borax (GGb) and Scleroglucan/borax (SCLGb) 

systems at 37 °C. Solid lines indicate the best fitting of the generalized Maxwell Model 

(F test always positive: FGGb(5,24,0.95) < 55.4, FSCLGb(5,32,0.95) < 2076). 
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Now, G’ prevails over G’’ in the whole experimental frequency window and the crossing 

point is around  = 0.01 rad/s. The dependence of G’ and G’’ witnesses the weak nature 

of the formed hydrogel. Also in this case, the generalized Maxwell model provides a 

statistically good fitting (see F test values in Figure 4.2b caption) adopting, respectively, 

four and five elements for the GGb and SCLGb systems. 

Temperature increase to 37 °C does not modify the gel and the solution nature of the 

SCLG and GG systems. Nevertheless G’ and G’’, for both systems, are reduced (see 

Figure 4.3a). Again, borax addition (Figure 4.3b) implies a moderate increase of the 

SCLGb moduli and a considerable modification of the GG characteristics.  

 

25 °C GG SCLG GGb SCLGb 

1 (s) (7.7 ± 3)∙10-3 (81.7 ± 11)∙10-3 (15.7 ± 4)∙10-3 (30.0 ± 5)∙10-3 

G1 (Pa) 20.3 ±4.4 7.0 ± 0.4 21.8 ± 6.1 9.7 ± 0.84 

G2 (Pa) 2.3 ± 1.1 6.2 ± 0.36 0 7.4 ± 0.5 

G3 (Pa) 0.12 ± 0.07 5.0 ± 0.37 36.5 ± 8.4 6.4 ± 0.5 

G4 (Pa) 0.014 ± 0.007 7.4 ± 0.53 61.6 ± 9.8 6.1 ± 0.76 

G5 (Pa) 0.012 ± 0.004 - 42.0 ± 13 4.0 ± 0.9 

G (Pa) 22.9 ± 4.5 25.6 ± 0.8 162 ± 19 33.6 ± 1.6 

x (mol/cm3) - (1.0 ± 0.03)∙10-8 (6.5 ± 0.79)∙10-8 (1.4 ± 0.06)∙10-8 

(nm) - 67.4 ± 0.8 36.5 ± 1.4 61.6 ± 1.0 

 

37 °C GG SCLG GGb SCLGb 

1 (s) (11.6 ± 2)∙10-3 (62.5 ± 6.6)∙10-3 (22.7 ± 6.4)∙10-3 (18.9 ± 2)∙10-3 

G1 (Pa) 7.6 ± 1.1 5.4 ± 0.23 7.9 ± 2.5 8.3 ± 0.32 

G2 (Pa) 0.40 ± 0.22 4.1 ± 0.16 10.0 ± 3.8 5.5 ± 0.27 

G3 (Pa) 0.049 ± 0.045 2.9 ± 0.15 36.1 ± 3.8 4.0 ± 0.2 

G4 (Pa) 0.04 ± 0.038 0 9.8 ± 2.9 3.5 ± 0.24 

G5 (Pa) 0.069 ± 0.043 1.8 ± 0.5 1.6 ± 0.6 1.5 ± 0.3 

G (Pa) 8.2 ± 1.1 14.2 ± 0.75 65.5 ± 6.6 22.9 ± 0.6 

x (mol/cm3) - (5.5 ± 0.3)∙10-9 (2.5 ± 0.25)∙10-8 (8.9 ± 0.2)∙10-9 

(nm) - 83.2 ± 1.5 49.9 ± 1.7 71.0 ± 0.6 

Table 4.1: Generalized Maxwell model (Equations (3.78), (3.79)) parameters (± standard 

deviation) deriving from the fitting of data shown in Figures 4.2 and 4.3. 1 is the first 

relaxation time, Gi represents the spring constant of the ith Maxwell element, G is the 

shear modulus (sum of all Gi), x is the crosslink density calculated according to Equation 

(3.80), while  is the average network mesh size calculated according to Equation (3.81). 

 

Indeed, not only G’ and G’’ are clearly increased (about one order of magnitude) but also 

the system behavior shifts from that of a solution (GG) to that of an incipient weak gel 

(GGb) as testified by the presence of the crossover point (detectable at  ≈ 0.2 rad/s) 
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where system elastic and viscous characteristics are equal. This means that the system is 

moving from a sol to a gel condition, i.e, it lies in a sort of transition zone. Generalized 

Maxwell model gives a statistically good fitting of data shown in Figure 4.3a and 4.3b 

(see F test values in the captions to this figures) assuming four or five Maxwell elements 

(see Table 4.1). In conclusion, rheological characterization evidences the marked effect 

of borax addition to the GG system and the weak effect exerted on the SCLG system at 

both temperatures. While SCLG always exhibits gel properties, GG system becomes a 

weak gel (or incipient weak gel) only in the presence of borax. On the basis of the 

crosslink density (x) evaluation (see Equation (3.80)), equivalent network theory (see 

Equation (3.81)) allows to estimate, for the gel systems, the average network mesh size 

. Table 4.1 shows that  spans from 36.5 nm (GGb, 25 °C) to 83.2 nm (SCLG, 37 °C). 

The high  values witness the low connectivity of all tested gels. 

T (°C)  T21 (ms) A1% T22 (ms) A2% 

25 

GG 2032 ± 92 100   

GGb 1527 ± 46 100   

SCLG 1359 ± 23 100   

SCLGb 343 ± 84 84.5 ± 23.5 173 ± 77 15.5 ± 7.8 

 water 3007 ± 20 100   

      

37 

GG 2466 ± 80 100   

GGb 1912 ± 94 100   

SCLG 1321 ± 46 100   

SCLGb 451 ± 74 100 - - 

 water 3694 ± 60 100   

Table 4.2: Relaxation times, T22 and T21 ± standard deviation, and % weight, A1% and 

A2% ± standard deviation, referring to GG, SCLG, GGb, SCLGb and distilled water, at 

25 and 37 °C.  21ii *100% AAAA  . 

 

LF NMR analysis indicates that, regardless of temperature, GG is characterized by only 

one relaxation time (T21) (see Table 4.2), as expected for aqueous solutions, while the 

relaxation of the protons belonging to the polymeric chains are not detectable, due to their 

very low amount (around 0.5%) in comparison with those of water. Thus, LF NMR and 

rheology analysis lead to the same conclusion: the GG system is an aqueous polymer 

solution at both temperatures. The addition of borax to the GG system induces a 

significant reduction of T21 at both temperatures. Since the addition of borax to distilled 

water does not substantially modify the water relaxation time T2H2O (data not shown), we 
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can assert that the observed reduction of T21, at both temperatures, cannot directly depend 

on the presence of borax. Thus, the T21 reduction is in agreement with the formation of a 

new, more compact, architecture of the polymeric chains (gel network) related to the 

addition of borax. It is interesting to point out that, in the case of a dextran system (cp = 

0.7% w/v)), the addition of borax (r = borax moles/dextran moles = 1; data not shown) 

does not modify T21, this being a clear indication that, in this case, the presence of borax 

does not lead to the formation of a polymeric network. It is also interesting to notice that 

the relative increase of T21 with temperature is similar for both GGb (25%) and GG (21%) 

systems (see Table 4.2). This result shows that the interactions among polymeric chains 

and water molecules are not so strong, as expected for a weak gel. Although the SCLG 

system shows, as GG, only one relaxation time at 25 °C and 37 °C, it cannot be considered 

a solution, because T21 is, essentially, temperature independent and this behavior should 

not occur in a polymeric solution at such low concentration (cp = 0.7% v/w). In addition, 

also the relatively small T21 value (recorded at both temperatures) with respect to that of 

water, T2H2O, is not compatible with such a low cp. Finally, Table 4.2 shows that the 

addition of borax to the SCLG system implies a drastic reduction of the average relaxation 

time
2T  at 25 °C (317 ms) and 37 °C (451 ms). Again, the essential 

2T  independence 

on temperature and its high reduction in comparison with water, (T2H2O), indicates the gel 

nature of the SCLGb system. The fact that, for this last system, two relaxation times were 

detected at 25 °C and only one at 37 °C can be explained by the formation, at 37 °C, of a 

more homogeneous polymeric network due to a higher mobility of borax ions in the initial 

polymer solution. In conclusion, as far as the macroscopic behavior is concerned, the 

relaxation analysis shows the same findings obtained from the rheological 

characterization of our polymeric systems. On the other side, some differences arose in 

the estimation of . Indeed, knowing that  = 4.35∙10-3 and Rf ≈ 2.15 nm for both GG and 

SCLG systems [29], the application of Equation (3.81) leads to  = 99.8 nm. The 

comparison between the values reported in Table 4.1 (25°C and 37°C) and Table 4.3 

shows that the  values from rheological approach are about 40% for GGb and about 75% 

for SCLG and SCLGb of those obtained by LF NMR theory. Nevertheless, taking into 

account the simplifications adopted in both approaches, we believe that these cannot be 

considered as significant differences. In order to estimate the continuous mesh size 

distribution of GGb, SCLG and SCLGb systems, Equation (3.47) was used for the 
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determination of parameter M  whose values are reported in Table 4.3. It can be seen 

that M  values, regardless of temperature, increase going from GGb to SCLG and 

SCLGb systems. This indicates a stronger and stronger effect of polymer chain surfaces 

on the relaxation of protons. The diffusion coefficient, D, was practically constant with 

the diffusion time td for all studied systems (see, for example, Figure 4.4), and therefore 

the check on the fast diffusion conditions (evaluation of the dimensionless parameter 

D

RcM
 ) was carried out taking into account the D value averaged on the measurements 

performed at all td. 

 

Figure 4.4: Experimental self diffusion coefficient of water (D) at 25 °C and 37 °C in 

GGb hydrogel. Vertical bars indicate datum standard error. 

 

Table 4.3 clearly shows that in all gel systems, 
D

RcM
 was much less than 1, i.e. fast 

diffusion conditions always apply. Accordingly, Equation (3.50) and (.51) can be used 

for the estimation of a(T2), a() and, finally of P(), as shown in Figure 4.5 (37 °C).  

Figure 4.5 shows that, for GGb, the mesh size distribution spans, approximately, from 10 

nm to 300 nm while it is slightly less wide for SCLG and SCLGb. As the  values 

estimated by means of rheology experiments fall inside these distributions and they are 

not too far from the distribution peaks, we may conclude that the two approaches do not 

lead to very different results (see Table 4.1). 
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T (°C)  T2a 

(ms) 


(nm) 

D*109 

(m2/s) 
M *103 

(nm/ms) D

RcM
*106 

25 °C 
GGb 1527 ± 46 99.8 2.2 ± 0.1 62 ± 6 1.2 

SCLG 1359 ± 23 99.8 2.2 ± 0.1 99 ± 3 1.5 

SCLGb 317 ± 23 109 ± 16 (84.5%) 

31 ± 9 (15.5%)  

2.3 ± 0.1    

 

693 ± 263 10.0 

 

37 °C 
GGb 1912 ± 94 99.8 2.9 ± 0.2 79 ± 5 0.7 

SCLG 1321 ± 46 99.8 2.8 ± 0.2 119 ± 6 1.4 

SCLGb 451 ± 74 99.8 2.9 ± 0.2 477 ± 89 5.4 

Table 4.3: Average relaxation time 
2T  ± standard deviation, water self-diffusion 

coefficient D ± standard deviation, average effect of surface on protons relaxation M  

± standard deviation, Rc = 32.6 nm (see Equation (3.35)) and mesh diameter , referring 

to SCLG, GGb and SCLGb systems at 25 and 37 °C. Proton relaxation times (T2H2O) at 

25 °C is 3007 ± 20 ms while at 37 °C it is 3694 ± 60 ms. 

 

 

 

Figure 4.5: Mesh size distribution, P(), of GGb (Guar gum/borax), SCLG 

(Scleroglucan) and SCLGb (Scleroglucan/borax) hydrogels at 37 °C. 
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Another approach to acquire some insight about polymeric network characteristics is the 

determination of model molecule diffusion coefficients. For this purpose, two model 

drugs, TPH and Vit B12, were considered. Figure 4.6 reports TPH and Vit B12 release 

from GGb at 37 °C. These two release kinetics are fitted by means of Equation (3.61) 

knowing that the release volume Vr = 200 cm3 and the initial drug concentration C0 in the 

gel is equal to 5.2 mg/cm3 for the two drugs. In both cases, the fitting is statistically good 

as proved by the F test (F TPH (1, 10, 0.95) < 75; FVit B12 (1, 10, 0.95) < 30627). In the case 

of TPH we have that the diffusion coefficient Dd = Ddi = (2.7 ± 0.5)∙10-10 m2/s while, for 

Vit B12, model fitting yields to Dd = (2.3 ± 0.1) 10-10 m2/s and Ddi = (3.0 ± 0.1) 10-11 m2/s 

(Ddi is the interfacial diffusion coefficient that can be different from the bulk one, Dd. Ddi 

accounts for possible interfacial mass transfer resistances).  

 

Figure 4.6:Theophylline (TPH; filled squares) and Vit B12 release (open squares) from 

GGb hydrogel at 37 °C (vertical bars indicate standard error). Ct and Cinf are, respectively, 

drug concentration at time t and after an infinite time. Solid lines indicate model best 

fitting (Equation (3.61)). 

 

These results indicate that the resistance due to the thin web, suspending the gel in the 

release environment, is negligible for TPH while it plays a significant role in the case of 

Vit B12. This seems reasonable if we consider the different model drug dimensions (TPH 

van der Waals radius r = 3.7 Å; Vit B12 van der Waals radius r = 8.5 Å) [30]. On the basis 

of the diffusion coefficients in water at 37 °C of TPH (Dd0 = 8.2•10-10 m2/s) and of Vit 

B12 (Dd0 = 3.8•10-10 m2/s) [45], Equation (3.81) allows estimating the polymeric network 
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mesh size () knowing that polymer volume fraction () in GGb hydrogel is equal to 

4.35•10-3. It turns out that  = (1.1 ± 0.1) and (4.3 ± 0.06) nm in the case of TPH and Vit 

B12, respectively. These values are much smaller than those estimated by means of 

rheology and LF NMR (49.9 nm, see Table 4.1, and 99.8 nm, see Table 4.3). Due to the 

low polymer concentration and crosslink density of GGb hydrogel, the  values estimated 

according to Equation (3.81) seem too small. The motivation for the Equation (3.81) 

failure should rely on the fact that GGb system, at 37 °C, represents an incipient hydrogel 

condition (as previously discussed, see also Figure 4.3b). Here, drug diffusion is not only 

affected by the presence of the structured polymeric network but also by the chains that, 

although bound to the network to one end, can freely fluctuate among meshes. These 

chains are elastically inactive but can hinder drug diffusion through a viscous drag, 

favored by weak van der Walls interactions with drug molecules. Tomic and co-workers 

[31] found that also very weak van der Waals interactions are sufficient to hinder drug 

molecule movements in the presence of a polymeric network with mesh size much larger 

than the drug molecular size. In addition, the rheological analysis suggests that the 

number of elastically inactive chains is high, as proved by the importance of the viscous 

contribution to the GGb mechanical behavior (see Figure 4.3b). On the contrary, in the 

case of a true hydrogel, such as SCLGb (where the viscous contribution is low), we found 

a good agreement between the estimation ofaccording to the rheological approach and 

Equation (3.81) was found [32]. 

 

4.2  Alginate Pluronic F127 Hydrogels 

4.2.1  Introduction 

Alginates family includes a broad variety of anionic polysaccharides of natural origin 

with an increasing numbers of applications in the biotechnological field. Since many 

years, these compounds were successfully used in the food industry as thickening agents, 

gelling agents and colloidal stabilizer for food and beverage. Their particular 

characteristics are ideal for the development of hydrogels matrices intended for controlled 

release or immobilization of biological agents such as living cells, proteins or active 

molecules in general. Indeed, alginate hydrogels have a relatively inert aqueous 

environment inside the matrix and the encapsulation processes can occur at room 
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temperature without the use of organic solvent allowing the prevention of activity loosing 

of biological agents. Moreover, the hydrogels structure can be easily modulated and the 

systems is biodegradable in the physiologic conditions [33]. 

Alginates commercially available mainly derive from three species of brown seaweeds: 

Laminaria hyperborea, Ascophyllum nodosum and Macrocystis pyrifera. Other minor 

sources include the species Laminaria japonica, Eclonia maxima, Lessonia nigrescens 

and the species of the genus Sargassum (Fig. 4.7). In all these species, the alginate is the 

principle polysaccharides in the seaweed matrix (up to 40% by weight of dry seaweed) 

[33-34]. 

 

Figure 4.7: seaweed used for alginates extraction. From left to right: Laminaria 

hyperborea, Ascophyllum nodosum, Macrocystis pyrifera and the genus Sargassum. 

 

The alginate chains are unbranched linear copolymers consisting of (1-4) linked β-D-

mannuronic acid (M) and α-D-guluronic acid (G) that are organized in different sequences 

or blocks. The monomers can appear in homopolymeric blocks of consecutive G-residues 

(G-blocks), consecutive M-residues (M-blocks), heteropolymeric blocks of regularly 

alternated M- and G-residues (MG-block), or randomly organized blocks (Fig. 4.8). The 

polymer characteristics are strongly influenced by the blocks sequences belonging to the 

polymeric chain. The alginates family have a high sequence variability that depends on 

the source organism, tissue, season and growth conditions [33-34]. 

 

High content of G are generally found in alginate prepared from old L. hyperborea plants 

whereas, alginate prepared from A. nodosum and M. pyrifera, are characterized by low 

G content and low gel strength. Recently, particular preparation of alginate with very high 



4. Homogeneous Gels 

 

109 

 

content of G or M (up to 100%) can be obtained from culturing of bacteria (Azotobacter 

vinalandii and the genus Pseudomonas are some natural producer), from particular algae 

tissue (outer cortex), or by enzymatic modification using mannuronan C-5 epimerase that 

converts M-units in G-units [34]. The units links difference in G-blocks and M-blocks, 

reflect a different conformations belong the polymeric chain: while the M-blocks are 

substantially linear and flat, the G-blocks assuming a buckled conformations (Fig. 4.8).  

 

Figure 4.8: alginate structure and monomers. a) structure of β-D-mannuronic acid (M) 

and α-D-guluronic acid (G). b) G-blocks region, the coordination with a Ca2+ ion is also 

showed c) M-blocks region d) MG-blocks region. e) examples of blocks distributions 

inside polymer chain. 

 

This difference influences chain flexibility. Indeed, M-blocks regions are more flexible 

than G-blocks regions because the carboxylic steric effect. In other words, the higher the 

mannuronic content the higher the M-blocks regions and more flexible is the alginate 

chain in solution [35]. The most important consequence of the monomers arrangement 
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consists in the capability of the alginates (especially of the sodium alginate) to form 

hydrogels in water solutions in presence of bivalent cations. The gelation is consequence 

of the ions exchange between the Na+ of the G monomers, with the bivalent cations. 

Contrarily to the monovalent cations, bivalent cations promoting the physical interaction 

between G-blocks regions belonging to different chains in a characteristic structure called 

egg-box. Each chain is able to interact with many other originating the gel networking 

(Fig. 4.9).  

 

Figure 4.9: Schematic rapresentation of the egg box structure in the alginate in presence 

of divalatent cations. 

 

The most used cation is the Ca2+ but also Ba2+ and Sr2+ are used because of their ability 

to produce stronger gelation than calcium. Pb2+, Cu2+, Cd2+, Co2+, Ni2+, Zn2+ and Mn2+ 

also results in a gelation but their use is limited because of potential toxicity problems. 

Mg2+ does not produce gelation. Alginates with a G contents equal or higher than 70% in 

weight and G-blocks longer than 15 units allow the production of hydrogels characterized 

by a low shrinkage, high mechanical resistance and high stability. These systems can be 

also distinguished for their rigidity and fragility while, in hydrogels with higher content 

of M, the elastic characters are prevalent [33].
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Gel preparation can be realized by two methodologies: the diffusional setting and the 

internal setting. In the first case, alginate solution is placed in contact with solution of 

bivalent cations that diffuse across the polymeric matrix and trigger gelation. On the 

contrary, in the internal setting technique, the bivalent cations are released into the 

polymeric solution exploiting a combination of alginate, bivalent ions source (normally a 

salt) and a chelating agent. The chelating agent sequesters the bivalent cations preventing 

the gelation during components mixing and formation. Cations release from the chelator 

agent is triggered by environment change such as temperature, pH or solubility and results 

in a uniform gelation of all the alginate solution. It is clear how the internal setting is 

particularly useful in the production of bulk gel, fibers or large objects. However, due to 

the limited amount of divalent cations that can be carried by the chelator agent, hydrogels 

prepared by internal settings results to be softer than those prepared by diffusional setting. 

For pharmaceutical applications, the biological agent can be incorporated in the 

preparation by simple mixing with the polymeric solution before gelation. The different 

structures resulting from gelation and the flexibility of the M-blocks and MG-blocks not 

interested by the physical interactions represent an important parameter for the diffusion 

control of the incorporated molecules. Molecules diffusion into the hydrogels matrix can 

be caused by two mechanisms: diffusion through the network meshes or the structure 

breakup. The electronic microscope analysis of the calcium alginate gels shows mesh 

variability in the range of 5 and 200 nm. A wide number of different compounds can be 

included in the alginate matrix: ionic or neutral, big or small (proteins, glucose, ethanol 

etc.). Possible molecules interactions with the polymeric network must be evaluated. High 

rigidity alginates (high content of G) produce an open and static structures and therefore 

are more permeable while, the presence of long, flexible M-blocks causes structure 

collapsing in an entanglements configuration [36]. Moreover, in general the diffusion 

inside the gels decreases with increasing of the alginate concentrations. The mesh of these 

systems can be significantly reduced by dehydrating the swollen materials. Depending on 

the starting hydrogel composition, different results can be achieved: a high G alginate, 

after dehydration, can be only partially re-swollen resulting in a more concentrated system 

at lower mesh [33]. Regarding the structural stability, because of the reversibility of the 

physical chain links, alginate hydrogels are affected by degradation processes. Alginates 

hydrogel dissolutions is promoted by the bivalent ions subtraction from a chelating agent 
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that destabilize the chains interactions causing the entrapped materials release and the 

polysaccharides dissolution. The same phenomena occurs when the system is exposed to 

high concentration of monovalent cations or Mg2+ that compete with the bivalent cations 

for the polymers interaction. In order to prevent the hydrogel dissolutions, it is possible 

to store the system in a bivalent cations containing environment (i.e. a Ca2+ solution) or 

complexing the alginate with polycations (i.e. chitosan), polypeptides (i.e. poly(L-lysine)) 

or synthetic polymers (i.e. poly(ethylenimine)). The complex stabilize the hydrogels, 

reduce the mesh size and it does not dissolve in presence of a chelator [33]. Alginate 

hydrogels are not toxic and immunologically inert hydrogel with a high level of 

biocompatibility and biodegradability. They can easily undergo gelation with divalent 

cations under the very mild condition suitable for incorporation of biomacromolecules 

and living cells, thus alginate and its hydrogels have been popularized for pharmaceutical 

applications like wound dressings, dental impression materials, in vitro cell culture and 

tissue engineering applications. Important applications of alginate hydrogel in tissue 

engineering include drug delivery applications, such as microencapsulation of pancreatic 

islet cells, creation of a supporting matrix for cells through encapsulation techniques, and 

alginate-based bioreactors for large-scale manufacture of biological products. 

Pluronic™ is the BASF commercial name of a class of block copolymers constituted by 

poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) also known as Poloxamer. 

The Pluronic™ is commercialized in more than fifty different types but the detailed 

description of all the family members is outside the purpose of this work. Here, it will be 

treated only the general aspects of the Pluronic™ systems with a particular regard to the 

Pluronic™ F127, used in this study. Normally, the different type of blocks in a copolymer, 

are mutually incompatible and the polymer has an amphiphile behavior: in water 

solutions, associative mechanisms cause the polymeric chain aggregation in structures. 

The Pluronics™ are not-ionic copolymers characterized by a three blocks structures of 

poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide), usually represented 

also by the abbreviations PEO-PPO-PEO or (EO)n(PO)m(EO)n), where the hydrophobic 

block PPO is embedded between two hydrophilic blocks of PEO (Fig. 4.10b). The 

possibility to change the copolymer composition (in terms of PPO/PEO ratio) and the 

molecular weight (in terms of blocks length) make this class of polymers versatile for 

several technological applications. In the biomedical fields, in particular, these products 
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can find many applications in virtue of being chemically inert with respect to tissues and 

organic fluids, good solvents and water solubility. All these characteristics correspond to 

the Pluronic™ polymers and therefore, it is justified the large usage, especially in the 

pharmaceutical field [37]. Pluronics™ synthesis is a two steps process. Firstly the 

hydrophobic central block is created by the polymerization of propylene oxide (PO) on 

the two sides of propylene glycol. In the second step, the ethylene oxide (EO) is 

introduced on the two sides of the PPO block polymerizing in the external PEO blocks. 

The reaction takes place in presence of an alkaline catalyst, generally sodium or 

potassium hydroxide (Fig 4.10a). Reaction tuning allows the production of polymer with 

the desiderate characteristics therefore, Pluronics™ are commercialized in a wide range 

of variety in terms of copolymers composition and molecular weight. Their classifications 

is based on a precise nomenclature where, each polymer is identified by a sign composed 

of one letter followed by two or three numbers. The letter specifies the physical form: “L” 

for liquid, “P” for paste and “F” for solid. The first number (or first two numbers in case 

of three numbers), multiplied by 300 gives the approximated molecular weight of the 

hydrophobic block (PPO). The last number, multiplied by 10, indicate the weight percent 

of PEO. For example, Pluronic™ F127 used in this work is commercialized as solid (F), 

the PPO block molecular weight is approximate 3600 Da (12x300) while the PEO weight 

fraction is about the 70% of the total mass. The wide range of Pluronics™ formulations 

is justified by their use not only as hydrogels but also in the preparation of emulsions, 

dispersions, detergents, foams and lubricant (indeed they are surfactants) [37]. 

 

Figure 4.10: Pluronics™ synthesis. a) formation of the central hydrophobic PPO block 

followed by the addition of the hydrophilic PEO side blocks (b). 
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At low temperatures and/or low concentrations, Pluronic™ copolymers, are present in 

water solution as single molecules also called unimers. As consequence of a temperature 

and/or concentration increase in solution, the formations of thermodynamically stable 

micelles occur. Therefore, Pluronics™ can be considered both thermotropic and liotropic 

(respectively temperature and concentration dependent) structures forming species [38]. 

Starting from the micelles solution, where micelles and unimers coexist, some 

copolymers of the Pluronics™ class (such as the Pluronic™ F127), are able to generate 

higher ordered structures that result in the formation of thermos-reversible gel systems. 

Several studies investigated the Pluronic™ copolymer gelation but, up till now, many 

aspects remain unclear. The accepted mechanism consists in a response to the temperature 

increase that brings to the increase of the micelles volume fraction. When this parameter, 

in solution, exceeds the critical values of 0.53, the micelles solution organize to form a 

crystalline-like structure that results in a physical networking and system gelation. In this 

structure, the micelles become hard spheres packed together and organized in cells that 

constitute the crystalline units [37-38]. In the case of Pluronic™ F127, by means of SANS 

measurements, some authors discovered that the geometry of the crystalline structural 

unit is a simple cubic cell. Accordingly, they excluded the formation of other geometries 

such as hexagonal cell, body centered cubic cell or face centered cubic cell [39-40]. 

 

4.2.2  Experimental section 

4.2.2.1  Materials 

The Alginate used in this work (molecular weight ≈ 106 Da), a kind gift from FMC 

Biopolymer LtD, UK, was characterized by a high G content (≈ 70% G and 30% M). 

Pluronic F127 was purchased from Sigma-Aldrich Chemie GmbH, Germany. Two model 

drugs were considered in this study to get information about gel structure. The first one 

was Theophylline (TPH), a small organic molecule (molecular weight 198 Da), purchased 

from Sigma-Aldrich Chemie GmbH, Germany. The second one, an oligonucleotide 51 nt 

long (DNA GT15H), was purchased by Eurofins MWG Operon, Ebersberg, Germany. 

All other chemicals were of analytical grade. 
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4.2.2.2  Gel preparation  

Three kinds of gels were prepared: the first one contained only alginate (2% w/w; A2) 

the second one contained only Pluronic PF127 (18% w/w; PF18) and the third contained 

alginate (2%w/w) and PF127 (18% w/w) (A2PF18). The polymeric blend A2PF18 was 

prepared using the so-called “cold method” proposed by Schmolka [41]. Briefly, a proper 

amount of alginate powder was slowly added to stirred distilled water contained in a 

beaker maintained at 7°C. Subsequently, the desired amount of pluronic flakes were 

slowly added to the alginate solution. The system was stirred until complete polymer 

dissolution and then kept at 4°C for 12 h before use. A proper amount of polymeric 

solution was then poured into a bottom flat beaker to get a film of thickness approximately 

equal to 1 mm (7°C). The solution was heated to 37°C to get the thermal gelation of 

pluronic (A2PF18 thermal gelation starts at 20°C and it is complete at 24°C) [42]. 

Subsequently, a CaCl2 water solution (Ca+2 concentration equal to 5 g/l) was rapidly 

sprayed on the gel surface to get alginate crosslinking. In order to prevent from the 

possible lack of Ca+2, the volume of the sprayed crosslinking solution was approximately 

equal to gel volume. After 5 minutes contact, the crosslinking solution was removed and 

the crosslinked film was immediately and gently cleaned by laboratory paper. The 

preparation of the PF18 gel was equal to that of the A2PF18 gel except for the addition 

of the alginate and the crosslinking solution (PF18 thermal gelation starts at 22°C and it 

is complete at 26°C) [42]. The preparation of the A2 gel was equal to that of the A2PF18 

gel except for the addition of pluronic PF127. The preparation of gels containing the 

model drug (theophylline or oligonucleotide) and devoted to the high field NMR analysis, 

implied polymers dissolution in a D2O solution containing the model drug at the desired 

concentration (10 mg/cm3 for theophylline and 1 mg/cm3 for oligonucleotide). Indeed, 

D2O presence was necessary to silence the water protons that would have otherwise 

hidden the presence of the model drug. 

4.2.2.3  Rheological characterization 

The rheological characterization, carried out at 37 °C, was performed by means of a 

controlled stress rheometer, Haake Rheo-Stress RS150 model equipped with a Thermo 

Haake C25 water bath and mounting a grained plate-plate device (Haake PP35Ti: 

diameter = 35mm). Due to the A2 and A2PF18 gels rigid nature, the gap-setting 
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optimization was undertaken according to a procedure described elsewhere [43]. In the 

PF18 case, on the contrary, gel softness allowed to fix the gap to 1 mm. To avoid gel 

shrinking due to a possible solvent evaporation, the equipment was kept inside a glass 

bell with a constant moisture level. Rheological properties were studied by means of 

oscillatory tests. In particular, the linear viscoelastic regions were assessed, at 1 Hz, by 

stress sweep experiments. Frequency sweep tests were carried out in the frequency (f) 

range 0.01–10 Hz at constant stress = 5 Pa (well inside the linear viscoelastic range for 

all the studied gels). Each test was carried out in triplicate. 

4.2.2.4  LF NMR characterization 

Low Field NMR (LF - NMR) characterization was performed, at 37 °C, by means of a 

Bruker Minispec mq20 (0.47 T, 20 MHz). Transverse relaxation time (T2) measurements 

were carried out according to the (Carr-Purcell-Meiboom-Gill; CPMG) sequence 

(number of scans = 4; delay = 5 s) adopting a 90° - 180° pulse separation times of 0.25 

ms.In order to study water mobility inside the gel network, Pulsed Gradient Spin Echo 

(PGSE) measurements were performed at 37°C. The applied sequence consisted in the 

classical CPMG sequence with two equal gradient pulses (of length  = 1 ms) occurring 

at x1 = 1 ms and x2 = 1 ms after the 90° and 180° pulses, respectively. The time 

separation, indicated by  (≈ -x1-+x2), is related to the water molecule diffusion time 

td according to td = (. The determination of the water self-diffusion coefficient was 

led fitting the following equation to experimental data [44]: 







p

1i

0i
wid

2 Dtq

t eAA   q = *g*  



p

1i

0i0 AA    (4.1) 

where At and A0 are, respectively, the measured amplitude of the signal at the echo with 

and without gradient applied,  is the proton gyromagnetic ratio, g is the known magnetic 

field gradient while A0i are the fractions of water molecules characterized by a self-

diffusion coefficient Dwi. In the case of a homogeneous system, of course, the summation 

limits to the first term (p = 1) as the water molecules are all characterized by the same 

self-diffusion coefficient. p was determined minimizing the product 2*2p where 2 is the 

sum of the squared errors and 2p represents the number of fitting parameters (A0i, Dwi) of 

eq.(4.1) [45]. Measurements were led in triplicate. 
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4.2.2.5 TEM characterization 

A2 and A2PF18 gels were dehydrated and embedded in Epoxy resin. Then, ultrathin 

sections were contrasted using Pb3(C6H5O7)2. Images were recorded by means of a Philips 

EM 208 (100 KV) Transmission Electron Microscope. 

4.2.2.6 High Field NMR 

Self-diffusion NMR measurements (PGSTE) were carried out at 37 °C on a Varian 500 

MHz NMR spectrometer (11.74 T) operating at 500 MHz for 1H, equipped with a model 

L650 Highland Technology pulsed field gradient (PFA) amplifier (10 A) and a standard 

5 mm indirect detection, PFG probe. The lock was made on D2O and solvent suppression 

was accomplished by pre-saturation. A one-shot sequence has been employed for 

theophylline gels diffusion measurements [46, 47], with 20 different z-gradient strengths, 

Gz , between 0.02 and 0.54 T/m, a pulsed gradient duration, δ, of 2 ms, and at different 

diffusion interval (). At each gradient strength, 64 transients have been accumulated 

employing a spectral width of 5,5 kHz (11 ppm) over 16K data points. Oligonucleotide 

samples have been analyzed thanks to an excitation sculpting PGSTE experiment [48]. 

PGSTE NMR spectra were processed using MestRenova and self-diffusion coefficients 

were determined by means of eq.(4.1). 

4.2.3 Results and discussion 

Stress sweep tests revealed (data not shown) that, for all the studied gels (A2, PF18 and 

A2PF18), the linear viscoelastic range holds for stresses well above the constant one ( = 

5 Pa) adopted in the execution of the frequency sweep tests. Figure 4.11 shows the 

comparison among the mechanical spectra referring to A2, A2PF18 and PF18 systems. 

G' (filled symbols) indicates the elastic or storage modulus while G'' (open symbols) 

indicates the viscous or loss modulus. It can be seen that for all the three systems, G’ and 

G’’ are quite independent of pulsation  (= 2f) and G’ is always neatly prevalent on G'', 

this being typical of strong gels. It is also clear that while A2 is the strongest gel, PF18 is 

the weakest one. Indeed, both G’ and G’’ decrease in the order A2, A2PF18, PF18. Thus, 

we have to conclude that pluronic presence hinders the alginate crosslinking process. 
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Figure 4.11: Mechanical spectra referring to alginate (A2), pluronic (PF18) and alginate-

pluronic (A2PF18) gels at 37°C. Close and open symbols represent, respectively, storage 

(G’) and loss (G’’) modulus while solid lines represent the best fitting of the generalized 

Maxwell model composed by 5 elements (eqs.(3.78) and (3.79)). Vertical bars indicate 

standard error. 

 

Five Maxwell elements (one purely elastic and four viscoelastic) are necessary for the 

statistically reliable fitting of the mechanical spectra reported in Figure 4.11 (see solid 

lines). Best fitting parameters values are reported in Table 4.4. 

 A2 A2PF18 PF18 

1(s) (2.5 ± 0.4)10-2 (3.6 ± 0.1)10-2 (2.4 ± 0.2)10-2 

Ge(Pa) = Gmin(Pa) 17259 ± 3853 10283 ± 772 3830 ± 925 

G1(Pa) 13761 ± 610 7781 ± 177 947 ± 13 

G2(Pa) 9123± 596 4863 ± 109 944 ± 36 

G3(Pa) 9883 ± 589 8848 ± 277 1393 ± 87 

G4(Pa) 17072 ± 908 8565 ± 633 4108 ± 342 

Gmax(Pa) 67099 ± 4092 40341 ± 1057 11223 ± 992 

x(mol/cm3) Gmax (18.6 ± 1.1)10-7 (11.1 ± 0.3)10-7 - 

x(mol/cm3) Gmin (4.8 ± 1.0)10-7 (2.8 ± 0.2)10-7 - 

 (nm) Gmax 12 ± 0.24 14 ± 0.12 - 

 (nm) Gmin 19 ± 1.40 22 ± 0.50 - 

F(5,30) < 27 413 138 

Table 4.4: Parameters relative to the eq.(3.78)-(3.79) best fitting to the experimental data 

(systems A2, A2PF18, PF18) shown in Figure 4.11. Ge, G1, G2, G3 and G4, are the spring 

constants of the generalized Maxwell model, 1 is the relaxation time of the first 

viscoelastic Maxwell element, Gmin (=Ge) and Gmax (=Ge + G1 + G2 + G3 +G4) indicate, 

respectively, the minimum and the maximum value of the shear modulus, x is the 

crosslink density,  is the mesh size of the polymeric network while F(5,30) indicate the 

F-test results about the statistical acceptability of data fitting. 
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Table 4.4 (see F-test) and Figure 4.11 reveal that the three fitting are statistically good 

and that the mesh size of the polymeric network should be comprised between 12 and 19 

nm for the A2 gel and between 14 and 22 nm for the A2PF18 gel. In the A2PF18 case, 

the evaluation of the mesh size according to the Flory [49] and Sherer [50] theories can 

be questionable as pluronic does not give origin to the network topology assumed by 

Flory and Scherer. Nevertheless, the  increase, with respect to the A2 case, is another 

way of quantifying the hindering action exerted by pluronic on alginate crosslinking 

process.  Low field NMR tests revealed that, for the PF18 gel, three relaxation times are 

necessary to describe the relaxation of the x-y component of the magnetization vector 

(Mxy). In the A2 and A2PF18 cases, on the contrary, four relaxation times are needed as 

reported in Table 4.5. Although it is never simple associating a relaxation time to a 

particular protons status, in the case of PF18 we can argue that the highest relaxation time 

(T21) essentially corresponds to “free” water protons, i.e. it corresponds to the water 

molecules that are weakly influenced by PF18 micelles and that pervade the micelles 

three-dimensional network. This hypothesis is supported by their abundance (A1% ≈ 

84%, see Table 4.5) and by the relatively high value of the relaxation time (T21 = 2280, 

see Table 4.5) in comparison to that of the bulk water that, at 37°C, is approximately 3700 

ms [51]. The last two relaxation times (T22, T23) could be attributed to the system made 

up by pluronic micelles and water molecules that are in deep contact with micelles 

hydrophilic tails (“bound” water) as observed by Lindmann [52]. This hypothesis is 

supported by the fact the sum of T22 and T23 abundance (16.3%) is slightly higher than 

that theoretically competing to pluronic protons (15.9%). In addition, the average T22 and 

T23 value (weighted on their relative abundance) (280 ms) is close to the relaxation time 

(224 ms) we measured for pluronic protons in the PF18-D2O gel (37°C). In the A2 case, 

the fastest relaxation times (T22, T23, T24,) should correspond to the protons of the water 

trapped inside the polymeric meshes as their values are very low in comparison to free 

water relaxation at 37°C (3700 ms [51]) and they represent about 80% of the relaxing 

protons. The first relaxation time (T21), on the contrary, is too high to be associated to 

water trapped in the polymeric meshes and it could be related to the water present on the 

film surface due to the unavoidable alginate shrinkage upon crosslinking as also found 

elsewhere [53]. Due to the low alginate concentration, the contribute of alginate protons 

is not detectable (≈ 0.64%). The A2PF18 gel shows a relaxation behavior similar to the 
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A2 one (see Table 4.5) the main difference occurring for the slowest relaxation time (T21). 

Indeed, the pluronic presence in the alginate network clearly reduces T21 value and weight 

(A1%) that becomes approximately one/third. This last evidence further supports the 

hypothesis that T21 is associated to surface water due to network shrinkage. Indeed, in the 

presence of pluronic, network shrinking is considerable reduced (data not shown) and it 

is also reasonable that the surface water is more “bound” due to the presence of pluronic. 

Due to the existence of two structures (that of alginate and that of pluronic) the physical 

interpretation of T22, T23 and T24 in the A2PF18 case is much more problematic. 

A2PF18 A2 PF18 

Ai% T2i(ms) Ai% T2i(ms) Ai% T2i(ms) 

7.8 ± 2.5 1312 ± 300 21.4 ± 5.7 1925 ± 310 83.7 ± 0.1 2280 ± 77 

13.2 ± 1.4 402 ± 92 9.1 ± 2.9 474 ± 173 9.8 ± 0.2 407 ± 8 

67.6 ± 8.5 124 ± 8.5 46.8 ± 8.4 126 ± 22 6.5 ± 0.2 88 ± 5 

11.4 ± 6.8 54 ± 17 22.7 ± 6.0 62 ± 14   

2T (ms) 
21 T (ms-1) 

2T (ms) 
21 T (ms-1) 

2T (ms) 
21 T (ms-1) 

246 7.92*10-3 529 7.62*10-3 1956 1.33*10-3 

Table 4.5: Relaxation times (T2i) and relative weights (Ai%) referring to the three gels 

considered (A2PF18, A2, PF18).The relative weights are evaluated as 





m

1i

iii% 100 AAA . The average inverse relaxation time is evaluated as 





m

1i

2ii%2 0101 TA.T . 

 

Anyway, their values are statistically equal to those competing to the A2 gel (see Table 

4.5) and differences arise for what concerns their relative abundance (see Table 4.5). 

Thus, we could conclude that pluronic presence does not qualitatively modify the 

structures present in the A2 gel, but it implies a variation of their relative abundance. 

Interestingly, A2PF18 is the gel characterized by the lowest average relaxation time 
2T  

among the three gels considered. In the A2 case, the theory shown in the Low field NMR 

(Chapter 3) can be considered for the determination of the polymeric network mesh size 

distribution. Indeed, knowing that polymer volume fraction () is 0.0114 and alginate 

fiber radius (Rf) is equal to 0.8 nm, eq.(3.46) returns  = 22.9 nm.  knowledge and 

eq.(3.47) allow to conclude that the relaxivity M  is equal to 3.24*10-7 m/s. This 

estimation was carried out calculating the average inverse relaxation time (= 9.6*10-3 

ms-1) on the basis of the three fastest relaxation times (T, T and T in Table 4.5) as 
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the first one was not attributed to water trapped in the polymeric network. Knowing that 

the free water diffusion coefficient D at 37°C in the A2 gel (see Figure 4.14) is around to 

3*10-9 m2/s [54] and that Rc = 69.4 nm, it turns out that 
M

 Rc/D = 8*10-7, i.e, << 1. 

Accordingly, fast conditions are met and eq.(3.48) can be adopted to estimate the mesh 

size (i) corresponding to relaxation times T22, T23 and T24: 2 = 114 nm (11%), 3 = 28 

nm (59%) and 4 = 13.6 nm (30%). It can be noticed that the  range, found according to 

rheology (12 – 19 nm; see Table 4.5), is not so far from the 3 - 4 range that represents, 

according to the low field NMR analysis, the 89% of the network meshes. The 

reasonability of both estimations is supported by the TEM image of A2 gel (Figure 4.12) 

showing the existence of few big meshes (≈ 100 nm) as well as much smaller and frequent 

meshes. 

 

Figure 4.12: TEM image referring to the alginate (A2) gel. 

 

Figure 4.12: Logarithmic decrease, Ln(At/A0), of the ratio between the measured 

amplitude of the signal at the echo with (At) and without (A0) gradient applied, versus q2 

(q = *g*, see eq.(4.1)) for the three gels studied (A2, PF18, and A2PF18) assuming a 

diffusion time td = 29.66 ms ( = 30 ms) (37°C). Symbols indicate the experimental data 

while solid line indicate eq.4.1) best fitting. Vertical bars indicate standard error. 
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In order to get some more insight about the structure of the A2PF18 gel, the determination 

of the water self-diffusion coefficient (D) according to PGSE experiments can be useful. 

As an example, Figure 4.13 shows the trend of Ln(At/A0) versus q2 (see eq.(4.1)) for the 

three gels studied (A2, PF18, and A2PF18) and considering  = 30 ms (i.e. td = 29.66 

ms). It is easy to see that in the A2 case only one of the p exponentials appearing in 

eq.(4.1) is necessary for a reliable data fitting. 

On the contrary, for PF18 and A2PF18 gels, two exponentials are needed. This means 

that in the A2 gel all the water molecules diffuse in the same way (obviously, the 

crosslinked alginate chains cannot diffuse), while in the other two systems two distinct 

diffusion modes are detectable. Figure 4.14 extends this finding for all the , or td, 

considered. For the A2 gel, the water self-diffusion coefficient (DwA2, see crosses) is 

independent on td, or its square root, this meaning that the A2 polymeric network is 

substantially homogeneous (interconnected mesh) as its hindering action on water 

molecules diffusion is the same whatever the td considered [55]. In addition, its hindering 

action is very limited as DwA2 is very close to the bulk water self-diffusion coefficient 

(37°C; 3.04*10-9 m2/s [54]). In the PF18 case, on the contrary, two diffusing species can 

be found. The first one, Dw1 P18, should be attributed to free water (water molecules that 

are weakly influenced by PF18) while the second one, Dw2 P18 should correspond to 

pluronic micelles and bound water. Indeed, not only Dw1 P18 is very close to bulk water 

self-diffusion coefficient at 37°C, but also eq.(4.1) data fitting reveals that, regardless of 

the diffusion time td, about 80% of the protons diffuse with self-diffusion coefficient equal 

to Dw1 P18 while the remaining 20% diffuses according to Dw2 P18. This finding is 

absolutely in accordance with what found in relaxation experiments (see Table 4.5). In 

addition, PGSE experiments carried out on the PF18-D2O gel, reveal that only one 

diffusing species can be found and its self-diffusion coefficient is, regardless of td, around 

2.7*10-11 m2/s, i.e. close to Dw2 P18. In the PF18A2 gel, again, two diffusion modes can 

be detected: Dw1 P18A2 and Dw2 P18A2. Their relative abundance (80%, 20%) is equal 

to that of the PF18 case while Dw2 P18A2 values are slightly smaller than those competing 

to Dw2 P18 (see Figure 4.14). In conclusion, also PGSE experiments reveal the 

homogeneous nature of A2 gel and the inhomogeneous nature of the PF18A2 gel. This 

conclusion is also supported by the high field NMR analysis devoted to study the self-

diffusion coefficient of theophylline (DTH) in our gel systems. 
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Figure 4.13: Diffusion time (td) dependence of the water self-diffusion coefficient in 

alginate (Dw A2), pluronic (Dw1 P18, Dw2 P18) and alginate-pluronic (Dw1 P18A2, Dw2 

P18A2) gels (37°C). While in the A2 gel only one diffusion mode can be seen, two 

diffusion modes are detectable for the P18 and P18A2 gels. Vertical bars indicate standard 

error. 

 

 

Figure 4.14: Diffusion time (td) dependence of the theophylline self-diffusion coefficient 

(DTH) in D2O (open circles), alginate (A2, open squares), pluronic (PF18, open triangles) 

and alginate-pluronic (PF18A2, black diamonds with dotted line) gels (37°C). Vertical 

bars indicate standard error. 
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Figure 4.15 shows the DTH dependence on the square root of the diffusion time, td, in a 

D2O-theophylline solution (10 mg/cm3, 37°C) and in the three gels prepared with the 

same D2O-theophylline solution. It can be seen that, in the D2O solution, DTH is 

independent on td and its value is a little bit smaller than that in H2O at the same 

temperature [56] (8.2*10-10 m2/s). This little difference can be explained by the higher 

viscosity of D2O with respect to that of H2O. In the A2 gel, again, DTH is independent on 

td and this is a clear indication of a homogeneous network that offers the same hindering 

action on theophylline diffusion whatever the distance explored in the diffusion time. In 

addition, DTH is slightly depressed by the presence of the polymeric network as its values 

is not so far from that in D2O. This means that theophylline diameter (0.78 nm) [56] has 

to be small in comparison to network meshes, this being in line with the estimations 

performed according to rheology (12 – 19 nm) and low field NMR (114 – 13 nm). In the 

PF18 gel, DTH is still constant but its reduction with respect to that in D2O is now 

considerable. Thus, this gel is homogeneous but its architecture is completely different 

from that of A2. As the PF18A2 gel is characterized by a td dependent DTH, we have to 

argue that this gel is not homogeneous. In other words, for small td, the theophylline 

mobility is almost un-affected by the gel structure (see Figure 4.15) while its mobility is 

considerably reduced when it is let to explore wider space portions (big td) where the 

probability of matching an obstacle is considerably increased. Interestingly, the DTH value 

corresponding to the highest td explored (see Figure 4.14) is lower than that competing 

to the PF18 system and this seems reasonable due to the simultaneous presence of alginate 

and pluronic in the PF18A2 gel. A final confirmation of the not homogeneous nature of 

the PF18A2 gel is given in Figure 4.16 that reports the comparison between the TEM 

picture of the A2 gel (that of Figure 4.12) and the PF18A2 gel. It is clear that the alginate 

chains (black traces; pluronic micelles are not visible) form wider meshes when pluronic 

is present (PF18A2 image in Figure 4.16). On the contrary, pluronic absence implies the 

formation of a more uniform structure characterized by smaller meshes (A2 image in 

Figure 4.16). On the basis of the results coming from the rheology, low and high filed 

NMR characterizations, we should conclude that structure of the PF18A2 gel is that 

reported in Figure 4.17. Figure 4.17 was built catching the alginate chains architecture 

from Figure 4.15 (PF18A2) and then inserting the cubic structures formed by pluronic 

micelles (stars of diameter ≈ 20 nm [57]; stars are in scale with mesh size). 
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Figure 4.15: Comparison between the TEM images referring to the alginate-pluronic 

(PF18A2) and the alginate (A2) gels. 

 

Depending on size, we can find meshes that can host the pluronic crystalline structure 

(ensemble of stars) and meshes that cannot in virtue of their small dimensions. Small 

meshes can host not structured micelles, or just water. Accordingly, our model drug 

(theophylline) can freely diffuse in smaller meshes (those without the crystalline pluronic 

structure) while its diffusion is hindered in large meshes where the pluronic crystalline 

structure can form. 

 

Figure 4.16: Schematic representation of the PF18A2 gel nanostructure as deduced by 

our characterization. 

 

Finally, high field NMR, allowed also to estimate the self-diffusion coefficient (D0) of 

our second model drug (oligonucleotide) in the PF18A2 gel. It turned out that, in the 
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explored diffusion time range (300 ms < td < 1800 ms), DO decreases from 2*10-11 m2/s 

to 3*10-12 m2/s (37°C). Thus, for small td, its diffusivity is about 1/3 of that measured in 

pure D2O (6.6*10-11 m2/s; 37°C) while this ratio falls to about 1/20 for longer td. Again, 

this behavior should be due to the inhomogeneous structure of the PF18A2 gel. 
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5  Porous Systems 

 

In this section, four different kinds of porous systems will be presented. The first one is 

constituted by spherical glass beads immersed in water, while the second one consists of 

green coffee seeds, kindly donated by Illycaffè (Trieste). Finally, the third and the fourth 

systems are represented by styrene-butadiene rubbers and by bacterial cellulose / acrylic 

acid hydrogels. In all these systems, Low Field NMR was adopted for the estimation of 

the pores size distribution. The main difference between these systems and those 

discussed in Chapter 4 consists in the dimension of the “pores”. Indeed, while in Chapter 

4 the systems were characterized by nano-sized pores (called, more properly, mesh), in 

this chapter the attention is focused on micro-pores systems. Accordingly, a different 

characterization strategy is needed. 

 

5.1  Spherical glass beads 

5.1.1 Experimental section 

5.1.1.1 Materials and Methods 

Laboratory glass beads with different diameter have been considered: 

 Glass beads with a medium diameter of 50 m (Sample A) 

 Glass beads with a medium diameter of 100 m (Sample B) 

 Glass beads with a medium diameter of 150 m (Sample C) 

 Glass beads with a medium diameter of 3 mm (Sample D). 
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A  B  C  

Diameter 
(μm) 

Cumulate % Diameter 
(μm) 

Cumulate % Diameter 
(μm) 

Cumulate % 

22.44 0.00 44.77 0.00 112.47 0.00 

25.18 0.06 50.24 0.11 126.19 0.08 

28.25 0.63 56.37 0.71 141.59 0.58 

31.70 2.58 63.25 3.35 158.87 3.44 

35.57 7.96 70.96 8.96 178.25 9.31 

39.91 16.64 79.62 18.77 200.00 20.47 

44.77 30.36 89.34 33.49 224.40 36.83 

50.24 47.20 100.24 50.53 251.79 55.31 

56.37 64.27 112.47 67.68 282.51 73.06 

63.25 79.36 126.19 82.08 316.98 86.80 

70.96 90.01 141.59 91.24 355.66 94.41 

79.62 95.95 158.87 97.08 399.05 98.76 

89.34 99.09 178.25 99.28 447.74 99.82 

100.24 99.85 200.00 99.93 502.38 100.00 

- - 224.40 100.00   

Table 5.1: Glass beads diameters (cumulate dates). 

 

 

Figure 5.1: Cumulative distributions (thick lines) and differential distributions (thin 

lines) of the sample A, B and C. 

 

In the first three samples, the diameters size distribution was determined by means of a 

laser (Malvern Mastersizer 2000E equipped by al Malvern Hydro 2000ME). Table 5.1 

and Figure 5.1 show the cumulative and differential distributions relative to our spheres.
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For each sample (A, B, C and D) a known beads amount was placed in the NMR tube. 

Subsequently, distilled water was added up to the top of the beads ensemble. Knowing 

the dry and wet weight of the glass beads, it was possible to have a preliminary date of 

porosity [density ρglass = 2.2g / cm3; ρH2O (25 °C) = 0.99707g / cm3]. The samples were 

then left to rest for 72 hours in order to give enough time to the glass beads to reach the 

maximum packing. 

 

 

Figure 5.2: Microscopy pictures of the glass beads (A and B). 

 

5.1.1.2 LF-NMR characterization 

Low Field NMR (LF-NMR) characterization was performed, at 37 °C, by means of a 

Bruker Minispec mq20 (0.47 T, 20 MHz). Transverse relaxation time (T2) measurements 

were carried out according to the (Carr-Purcell-Meiboom-Gill; CPMG) sequence 

(number of scans = 4; delay = 5 s). In order to study water mobility inside the glass beads, 

Pulsed Gradient Spin Echo (PGSE) measurements were performed. After an appropriate 
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calibration procedure, based on the knowledge of the free water self-diffusion coefficient 

(DH2O), it is possible measuring the average water self-diffusion coefficient inside the 

glass beads structure (D). 

 

5.1.2 Results and discussion 

5.1.2.1 Relaxation Time T2 measurement 

After a time of about 30 minutes, needed for the stabilization of the temperature, 9 tests 

were performed. τ = 0.5 ms was chosen for sample A, B and C while τ = 1 ms for set for 

sample D. Figure 5.3 shows the average intensity trend recorded for the different samples. 

 

 

Figure 5.3: Relaxation Times T2 trends of the samples A, B, C and D. 
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Tables 5.2 – 5.5 report the data obtained from the LF-NMR experiments. 

T21(ms) = 2363 ± 136 A1(%) = 8.1 ± 2.8 
T22(ms) = 226 ± 143 A2(%) = 9.0 ± 5.9 
T23(ms) = 80 ± 10 A3(%) = 73.1 ± 2.8 
T24(ms) = 19 ± 6 A4(%) = 9.8 ± 2.0 
Table 5.2: Relaxation Times T2 of the sample A (T= 25°C) 

 

T21(ms) = 2244 ± 111 A1(%) = 6.3 ± 3.1 
T22(ms) = 415 ± 236 A2(%) = 8.2 ± 11.7 
T23(ms) = 96 ± 18 A3(%) = 49.4 ± 1.4 
T24(ms) = 36 ± 11 A4(%) = 26.6 ± 8.3 
T25(ms) = 7.2 ± 2.2 A5(%) = 10.0 ± 1.6 
Table 5.3: Relaxation Times T2 of the sample B (T=25 °C) 

 

T21(ms) = 2207 ± 76 A1(%) = 7.0 ± 1.4 
T22(ms) = 399 ± 12 A2(%) = 23.0 ± 3.5 
T23(ms) = 169 ± 9 A3(%) = 43.2 ± 1.7 
T24(ms) = 54 ± 3 A4(%) = 19.2 ± 0.5 
T25(ms) = 9.2 ± 0.4 A5(%) = 7.6 ± 0.3 
Table 5.4: Relaxation Times T2 of the sample C (T= 25 °C) 

 

T21(ms) = 2516 ± 22 A1(%) = 90.1 ± 0.3 
T22(ms) = 891 ± 21 A2(%) = 9.9 ± 0.3 
Table 5.5: Relaxation Times T2 of the sample D (T= 25°C) 

 

 Measurement of the diffusion coefficient D and the average pores 

diameter 

The test parameters were as follows: x1 = x2 = 1 ms and δ = 1ms. The self-diffusion 

coefficients measured are shown in Figure 5.4 and in Tables 5.6-5.9. 
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Figure 5.4: water self- diffusion coefficient D relative to samples A, B, C and D.  

 

 

Δ(ms)  (td(s))0.5 D(m2/s) σi 

3.5 0.056 1.80E-09 1.04E-11 
3.75 0.058 1.72E-09 1.31E-11 

4 0.061 1.58E-09 3.63E-11 
4.5 0.065 1.56E-09 2.32E-11 
5 0.068 1.40E-09 1.10E-11 

5.5 0.072 1.43E-09 1.24E-11 
6 0.075 1.39E-09 1.21E-11 

6.5 0.079 1.37E-09 1.56E-11 
8 0.088 1.37E-09 1.08E-11 

10 0.098 1.41E-09 2.88E-11 
Table 5.6: water self-diffusion coefficient D relative to sample A (T= 25 °C, 15 

repetitions). 
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Δ(ms)  (td(s))0.5 D(m2/s) σi 

3.5 0.056 1.94E-09 1.06E-11 
3.75 0.058 1.87E-09 4.86E-11 

4 0.061 1.71E-09 2.72E-11 
4.5 0.065 3.83E-09 4.71E-09 
5 0.068 1.58E-09 2.01E-11 

5.5 0.072 1.63E-09 1.50E-11 
6 0.075 1.60E-09 1.31E-11 

6.5 0.079 1.56E-09 1.06E-11 
8 0.088 1.50E-09 1.43E-11 

10 0.098 1.44E-09 4.05E-11 
Table 5.7: water self-diffusion coefficient D relative to sample B (T=25 °C, 15 

repetitions). 

 

 

Δ(ms)  (td(s))0.5 D(m2/s) σi 

3.5 0.056 2.09E-09 1.72E-11 
3.75 0.058 2.10E-09 5.45E-11 

4 0.061 1.91E-09 5.91E-11 
4.5 0.065 2.00E-09 1.91E-11 
5 0.068 1.84E-09 9.87E-12 

5.5 0.072 1.93E-09 1.68E-11 
6 0.075 1.92E-09 1.26E-11 

6.5 0.079 1.92E-09 1.87E-11 
8 0.088 1.86E-09 3.74E-12 

10 0.098 1.71E-09 1.01E-11 
12 0.108 1.79E-09 1.03E-11 
14 0.117 1.80E-09 6.58E-11 
16 0.125 1.78E-09 3.96E-11 
18 0.133 1.64E-09 3.55E-11 

Table 5.8: water self-diffusion coefficient D relative to sample C (T= 25 °C, 15 

repetitions). 
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Δ(ms)  (td(s))0.5 D(m2/s) σi 

3.5 0.056 2.43E-09 1.44E-11 
3.75 0.058 2.42E-09 4.36E-11 

4 0.061 2.27E-09 8.09E-11 
4.5 0.065 2.32E-09 1.85E-11 
5 0.068 2.19E-09 1.75E-11 

5.5 0.072 2.30E-09 2.32E-11 
6 0.075 2.29E-09 1.24E-11 

6.5 0.079 2.31E-09 2.01E-11 
8 0.088 2.30E-09 1.92E-11 

10 0.098 2.16E-09 1.37E-11 
12 0.108 2.30E-09 1.39E-11 
14 0.117 2.35E-09 5.60E-11 
16 0.125 2.30E-09 1.06E-11 
20 0.140 2.17E-09 3.93E-12 
30 0.172 2.15E-09 5.56E-12 
40 0.199 2.09E-09 8.51E-12 
50 0.223 2.14E-09 2.85E-11 

Table 5.9: water self-diffusion coefficient D relative tosample D (T= 25° C, 15 

repetitions). 

 

 

Eq. 3.54 fitting to the above shown data yields to the following values of the average 

pores diameter  (pores generated by beads packing): 

 

Sample ξ (μm) 

A 14.8 ± 0.2 
B 18.5 ± 0.3 
C 32.4 ± 0.3 
D 196 ± 8 

Table 5.10: Average diameter ξ of samples A, B, C and D. 
 

On the basis of the average values of ξ and the relaxation times presented in tables 5.2-

5.5, eqs. 3.55-3.59 allow the evaluation of the distribution of the pores diameter formed 

by the beads packing in the case of the systems A, B, C and D: 
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ξ1(μm) = 993 ± 588 A1(%) = 8.1 ± 2.8 
ξ2(μm) = 12 ± 9 A2(%) = 9.0 ± 5.9 
ξ3(μm) = 4.1 ± 1.4 A3(%) = 73.1 ± 2.8 
ξ4(μm) = 1.0 ± 0.4 A4(%) = 9.8 ± 2.0 

Table 5.11: Sample A, pore size distribution 

 

ξ1(μm) = 1085 ± 533 A1(%) = 6.3 ± 3.1 
ξ2(μm) = 39 ± 30 A2(%) = 8.2 ± 11.7 
ξ3(μm) = 7.8 ± 3.4 A3(%) = 49.4 ± 1.4 
ξ4(μm) = 2.9 ± 1.4 A4(%) = 26.6 ± 8.3 
ξ5(μm) = 0.6 ± 0.3 A5(%) = 10.0 ± 1.6 

Table 5.12: Sample B, pore size distribution 

 

ξ1(μm) = 1075 ± 248 A1(%) = 7.0 ± 1.4 
ξ2(μm) = 40 ± 5 A2(%) = 23.0 ± 3.5 
ξ3(μm) = 15 ± 2 A3(%) = 43.2 ± 1.7 
ξ4(μm) = 4.7 ± 0.6 A4(%) = 19.2 ± 0.5 
ξ5(μm) = 0.8 ± 0.1 A5(%) = 7.6 ± 0.3 

Table 5.13: Sample C, pore size distribution 

 

ξ1(μm) = 416 ± 105 A1(%) = 90.1 ± 0.3 
ξ2(μm) = 13 ± 2 A2(%) = 9.9 ± 0.3 

Table 5.14: Sample D, pore size distribution 

 

In order to evaluate the reliability of the above results, an alternative approach was 

undertaken to evaluate the pores dimension competing to the beads packing considered. 

In particular, the attention was focused on the theory proposed by Mayer and Stowe [1]. 

According to this theory, the packing of glass beads can range between two extremes: the 

first, which has the highest porosity, occurs when the spheres are packed vertically (cubic 

cell, Fig. 5.5a), the second, which has the lowest porosity, occurs when the glass beads 

are in conditions of maximum packing (Fig. 5.5b). The porosity ε varies from a maximum 

of 47.64% to a minimum of 25.95%. 

As can be seen in Figure 5.5, the packing of the spheres can be described only by the 

angle σ, and the porosity of the packing described can be calculated by the following 

equation: 

  2

1
22 cos2cos31

6
1


 


        (5.1) 
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Knowing the porosity of the samples (evaluated on the basis of the water volume needed 

to fill the voids of the beads packing), equation 5.1 allows the determination of σ. Known 

σ, it is possible to derive the minimum, maximum, and average diameter (Fig. 5.5c) 

of the empty space of the pores by means of the following equations: 


















 1

2
2min


 sensfera         (5.2) 


















 1

2
cos2max


 sfera         (5.3) 

2

minmax 



          (5.4) 

where σ is in radians and sphere is the bead diameter. The results deriving from this 

theoretical approach are shown in Table 5.15. 

 Glass Bead A Glass Bead B Glass Bead C Glass Bead D 
ξmin(μm) 7.4 ± 2.5 13 ± 3 31 ± 6 851 ± 67 
ξmax(μm) 34 ±1.7 67 ± 2 164 ± 4 1601 ± 56 

ξ (μm) 21 ± 1 40 ± 1 97 ± 1 1226 ± 5 

Table 5.15: Pores diameters of the glass beads derived by theory. 

 

It can be observed that the NMR estimations underestimate the average theoretical data 

of the samples A, B and C, even if they remain in the range ξmin – ξmax range. This is no 

longer true for the glass beads D. This is probably due to the edge effects that in this case 

(D) should be considerable as beads diameter is about one half of the NMR tube diameter 

(Figure 5.6). Accordingly, a not homogeneous beads arrangement can be realized inside 

the NMR tube. 
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Figure 5.5: a. Condition of minimum packing (ε = 47.64%, σ = 90°) b. Condition of 

maximum packing (ε = 25.95%, σ = 60°), c. minimum and maximum diameter. 

 

 

Figure 5.6: Sample D in the NMR tube. 
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For samples A, B and C, the results obtained by means of LF-NMR are encouraging, 

because we must not forget that the theoretical measurements are based on mono-disperse 

beads. Accordingly, it seems correct that the LF-NMR gives values below the theoretical 

average and close to ξmin. The fact that the best results compete to sample A (the smallest), 

could be explained looking at beads size distribution. Indeed, sample A is that 

characterized by the narrowest size distribution (see Figure 5.4; note that a logarithmic 

scale is used). 

M 

5.2 Coffee beads 

5.2.1  Introduction 

Coffee is one of the most popular beverages in the world. Coffee plants are mainly grown 

in tropical and subtropical regions of central and South America, Africa and South East 

Asia, in temperate and humid climates at altitude between 600 and 2500 m. The genus 

coffee belongs to the botanical family of Rubiaceae and comprises more than 90 species. 

However, only C. Arabica, C. Canephora and C. Liberica are of commercial importance 

[2-3]. 

 
Figure 5.7:Coffee plant on the left and green coffee beans on the right. 

 

It is well known that coffee cannot be considered a “food” consumed for its nutritional 

values, but it represents a pleasure, a socio – cultural moment, an excuse to meet friends, 

a way to be ready and active for the daily jobs, and the quality must be the main requisite 

because it is directly related to positive moments in our lives. A good quality cup of coffee 

depends on many factors, such as the quality of green beans, the roasting conditions, the 

time since the bean are roasted and the type of water used for brewing [4]. The quality of 

green coffee represents the main condition for the production of a good end product at a 
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cup level. The overall quality and chemical composition of green coffee beans are 

affected by many factors, such as the composition of the soil and its fertilization, the 

altitude and weather of the plantation, the cultivation and the drying methods used for the 

beans. The knowledge of water content in green coffee is of great importance to produce 

a quality cup, especially when dealing with espresso coffee. Some undesired effects, such 

as mold growth, fermentation, development of mycotoxins and off-flavors, are found to 

be closely related to the water moisture level present in the raw beans. Generally, a water 

content ranging from 8% to 2.5% is considered adequate to avoid the issues mentioned 

above during transportation and storage. To estimate the water content in green coffee 

samples, a few ISO reference methods are available. Among them, those known as oven-

based methods are commonly used for commercial reasons, even though they generally 

suffer from common drawbacks, and the water content measured is influenced by the 

particular procedure adopted [5-6]. The reasons for the protocol dependence of the 

water/moisture is, on the one hand, that additional water can be produced as a result of 

the drying process, due to the decomposition of the material or due to chemical reactions, 

such as the Maillard reaction. On the other hand, the large variety of bonding states of 

water in a given raw bean may result in a not exhaustive dehydration. Moreover, volatile 

substances may contribute to the mass loss upon heating. In general, it is well known that 

the availability of water is governed by its interaction with the macromolecules nearby. 

Thus, a deep understanding of the distribution of water molecules and their interactions 

with the macromolecules of the solid green bean matrix could explain the inaccuracies of 

the standard methods of quantification and would help to build clear cut models to 

improve quality control. More works in literature deal with the role of water in roasted 

coffee bean, rather than in the native green beans [7-8]. 

5.2.2 Experimental section 

5.2.2.1 Materials 

Green coffee beans, from Brasil, was a kind gift by Illy Coffee, Trieste, Italy. All other 

reagents were of analytical grade. Distillate water was always used. 
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5.2.2.2 Samples preparation 

Coffee Arabica of the same commercial lot (Brasil) was used. 

In order to allow the hydration of the green coffee beans, a wetting procedure consisting 

in the direct addition of the desired amounts of distillate water on the surface of dried 

bean was performed. The hydration of samples treated in these conditions was monitored 

as a function of time. At the end of the hydration stage, a single coffee bean was accurately 

weighted and immediately transferred to LF-NMR tube just before the measurement. A 

hydration time of 24 h was found to be sufficient. 

5.2.2.3 LF-NMR characterization 

Low Field NMR (LF-NMR) characterization was performed, at 37 °C, by means of a 

Bruker Minispec mq20 (0.47 T, 20 MHz). Transverse relaxation time (T2) measurements 

were carried out according to the (Carr-Purcell-Meiboom-Gill; CPMG) sequence 

(number of scans = 4; delay = 5 s). In order to study water mobility inside the green coffee 

beans, Pulsed Gradient Spin Echo (PGSE) measurements were performed. After an 

appropriate calibration procedure, based on the knowledge of the free water self-diffusion 

coefficient (DH2O), it is possible measuring the average water self-diffusion coefficient 

inside the green coffee beans structure (D). In the case of T2 measurements, data were the 

average of 27 experiments (9 repetitions for three different samples), while in the case of 

PGSE measurements, data are the average of 15 experiments (5 repetitions for three 

different samples). Pulsed Gradient Spin Echo (PGSE) measurements were performed in 

triplicate. 

5.2.2.4 SEM characterization 

Coffee beads structure was analyzed using a Quanta250 SEM, FEI, Oregon, USA.The 

coffee beads were hydrated at room temperature for 48 hours and then visualized by 

electron microscope. 

5.2.3 Results and discussions 

After about 30 minutes after tube insertion into the magnetic field (time needed for 

temperature stabilization) 9 tests were performed and recorded for data processing. The 

chosen τ was equal to 0.25 ms. Relaxation curve are shown in Figure 5.8. The relaxation 
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times, reported in Table 5.16, were obtained by equation 3.55 fitting to experimental data 

of Figure 5.8. The number of relaxation times is chosen in order to minimize the product 

of the sum of squared errors, χ2, and the number of fitting parameters that is equal to twice 

the exponentials used in equation 3.55. 

 

T21(ms) = 347 A1(%) = 7 
T22(ms) = 102 A2(%) = 12 
T23(ms) = 29 A3(%) = 43 

T23 (ms) = 10 A4 (%)= 37 

Table 5.16: Relaxation times T2 of coffee beads. 

 

 

Figure 5.8: Relaxation curve relative to coffee beads 

 

 

The teory shown in chapter 3 can be considered for the determination of the polymeric 

network mesh size distribution. In particular, the average pores diameter a is determined 

by eq.(3.54) fitting to the first nine data (linear portion) shown in the Table 5.17 and 

Figure 5.9. Fitting is statistically sound (F(1, 9, 0.95) < 181) and it leads to a = 9.5 ± 

0.03. 
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Δ(ms)  (td(s))0.5 D(m2/s) σi 

2 0,042 1.99E-9 8.17E-11 
2.25 0,045 1.89E-9 8.58E-11 
2.5 0,048 1.74E-9 2.66E-12 

2.75 0,050 1.70E-9 8.58E-11 
3 0,053 1.57E-9 1.33E-11 

3.25 0,055 1.59E-9 8.58E-11 
3.5 0,057 1.41E-9 9.53E-11 

3.75 0,059 1.52E-9 8.58E-11 
4 0,061 1.41E-9 1.30E-11 

10 0,099 1.39E-9 9.17E-11 

20 0,140 1.26E-9 7.26E-11 

30 0,172 1.27E-9 6.15E-11 

40 0,199 1.31E-9 8.00E-11 

50 0,223 1.46E-9 8.58E-11 

Table 5.17: Self diffusion coefficient D relative to coffee seeds. 

 

 

Figure 5.9: Water self diffusion coefficient D and model fitting (eq.(3.54) black line) 

referring to coffee seeds. Vertical bars indicate datum standard error. 

 

 

It is interesting to underline that for the longest diffusion times, the water self diffusion 

coefficient (D) is almost constant. This indicates that coffee pores are interconnected. 
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Indeed, if it were not the case, we would have observed a continuous (linear) decreasing 

trend of D versus td
0.5. Knowing the average relaxation times (see Table 5.16) and the 

average pore diameter (9.5 m), eqs. 3.55-3.59 allow the conversion of relaxation times 

into pore size distribution (Table 5.18).  

 

ξ1(μm) = 196 A1(%) = 6 
ξ2(μm) = 52 A2(%) = 11 
ξ3(μm) = 19 A3(%) = 26 
ξ 4(μm) = 9 A4(%) = 42 
ξ 5(μm) = 3 A5(%) = 13 

Table 5.18: Pore size distribution referring to coffee seeds. 

 

Table 5.18 tells us that 6% of the pores have a diameter of 196 m, 11 % of the pores 

have a diameter of 52 m, 26% have a diameter of 19 m, 42% have a diameter of 9 m 

and 13% have a diameter of 3 m. 

As described in the section 5.2.2.4, the coffee beads after hydration for 48 hours were 

observed by electron microscope. This technique allows to find a wide variety of pores 

spanning from about 100 m to 10 m (see Figure 5.10). 

 

  

Figure 5.10: Structure of coffee beads by electron miscoscope 

 

The comparison between LF-NMR results and SEM picture tells us the LF-NMR results 

are reasonable even if the bigger estimated pores (around 200 m) seem to be attributable 

to water on the rough surface of coffee seeds (open pores). Indeed, SEM pictures do not 
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show so big pores. However, it has to be reminded that while LF-NMR considers all the 

seeds, SEM can focus the attention only on a small portion of just one seed. Accordingly 

numerous SEM picture, led on different seeds and in different positions, should be 

considered for a difficult statistical analysis. 

 

5.3 Styrene butadiene rubber 

5.3.1 Introduction 

Rubber can be found in nature and harvested as a latex (milky liquid) from several types 

of trees. Natural rubber coming from tree latex is essentially a polymer made from 

isoprene units with a small percentage of impurities in it. Synthetic rubber is artificial 

rubber, made from raw materials such as butadiene, styrene, isoprene, chloroprene, 

ethylene and propylene. More than half of the world synthetic rubber is styrene – 

butadiene rubber (SBR) made from styrene and butadiene monomers which are abundant 

in petroleum. Three quarters of all SBR made goes into tires production. The rest goes 

into products such as footwear, sponge and foamed products, waterproofed materials and 

adhesives. Styrene butadiene rubber resembles natura rubber in processing characteristics 

as well as finished products. It possesses high abrasion – resistance, high loadbearing 

capacity and resilience. On the other hand, it gets readily oxidized, especially in presence 

of traces of ozone present in the atmosphere. 

 

5.3.2 Experimental section 

5.3.2.1 Materials  

The styrene butadiene rubber samples were provided by ENI. In total, three samples were 

analyzed: 

 5570 

 5577 

 2430 
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Some physical characteristics of the samples are listed in the table 5.19: 

LATTICE 5570 5577 2430 
Solid %  65.5-67.5 65.5-67.5 66.5-68.5 

pH 10.0-11.2 10.0-11.2 10-11.2 
Viscosity (cPs) 400-800 500-900 1400max 

Bound styrene (%) 24-28 29-32 34-37 
Table 5.19: Physical characteristics of styrene – butadiene rubber. 

 

The meaning of the identification codes is not known as they are related to confidential 

data of the manufacturer (ENI). 

5.3.2.2 Samples preparation 

The sample preparation implies the following procedure [9]: at the concentrated latex 

(68% solids) a vulcanizing base (mixture of sulfur) was added. The viscosity of the 

mixture was corrected by the addition of a rheology modifier (usually polymers 

polyacrylates). In the next step the liquid foam was created: the latex is stirred in order to 

incorporate air inside. Subsequently, sodium hexafluorosilicate (Na2SiF6) was added. The 

mixture was poured into a mold and put in infrared heater at a temperature of 160-180 ° 

C for about a minute. Later on, the sample was transferred in an oven at 140 ° C for 20 

minutes to ensure complete drying of the product. The samples (Figure 5.11) looked all 

as flat disks, indistinguishable to the naked eye from each other. For the LF-NMR 

characterization, the samples were cut into strips of about 1mm x 1mm x 20 mm which 

were left to swell in distillate water for 72 hours at 37 ° C prior to the analysis. All tests 

were performed at 37°C. 

 

Figure 5.11: Styrene butadiene rubber before and after cutting for the LF-NMR 

characterization. 
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5.3.3 Results and discussion 

5.3.3.1 Sample SBR 5570 

5.3.3.1.1 Relaxation Time T2 measurement 

About 30 minutes after tube insertion into the magnetic field (time needed for temperature 

stabilization) 9 tests were performed and recorded for data processing. The chosen τ was 

equal to 0.5 ms. Relaxation curve are shown in Figure 5.12. The relaxation times, reported 

in Table 5.20, were obtained by equation 3.55 fitting to experimental data of Figure 5.12. 

The number of relaxation times is chosen in order to minimize the product of the sum of 

squared errors, χ2, and the number of fitting parameters that is equal to twice the 

exponentials used in equation 3.55. 

 

T21(ms) = 1506 ± 2 A1(%) = 66.2 ± 0.3 
T22(ms) = 657 ± 8 A2(%) = 21.5 ± 0.2 
T23(ms) = 133 ± 2 A3(%) = 12.3 ± 0.1 

Table 5.20: Relaxation times T2 relative to SBR 5570 sample (37°C). 

 

 

Figure 5.12: Relaxation curve relative to the SBR 5570 sample. 
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5.3.3.1.2 Measerement of the diffusion coefficient D and of the average pore 

diameter . 

The teory shown in chapter 3 can be considered for the determination of pores size 

distribution. The trend of the water self diffusion coefficient (D) versus the sqare root of 

the diffusion time td is shown in the Table 5.21. 

Δ(ms)  (td(s))0.5 D(m2/s) σi 

2 0.043 2.51E-09 2.07E-11 
8 0.089 2.38E-09 1.09E-11 

11 0.104 2.23E-09 9.79E-12 
14 0.118 2.08E-09 2.19E-11 
17 0.130 2.15E-09 2.25E-11 
20 0.141 2.02E-09 3.30E-11 
23 0.151 2.03E-09 7.60E-11 
26 0.161 1.95E-09 1.98E-11 

Table 5.21: Self- diffusion coefficient D relative to SBR 5570 sample (T=37°C and 5 

repetitions). 

 

For each diffusion time (td=Δ-δ/3), 5 repetitions were performed and the average was 

considered. The tests were performed assuming x1=x2=0.1 ms e δ=0.5 ms. Equation 3.53 

fitting to experimental data leads to ξ = 34 ± 0.4 μm [F test, F (1,8,0.95)<26]. 

 

Figure 5.13: water self diffusion coefficient (D) and model fitting (red line) referring to 

sample 5570. 

T = 37°C

1.00E-10

6.00E-10

1.10E-09

1.60E-09

2.10E-09

2.60E-09

3.10E-09

3.60E-09

0.000 0.050 0.100 0.150 0.200

td
0.5

(s
0.5

)

D
(m

2
/s

)

Experimental

Linear Model



5. Porous Systems 

 

154 

 

Knowing the average relaxation times (see Table 5.20) and the average pore diameter (34 

m), the equation 3.55-3.59 allow to conversion of the relaxation times into pore size 

distribution (Table 5.22).  

ξ1(μm) = 52.4 ± 1.1 A1(%) = 66.2 ± 0.3 
ξ2(μm) = 15.7 ± 0.4 A2(%) = 21.5 ± 0.2 
ξ3(μm) = 2.7 ± 0.1 A3(%) = 12.3 ± 0.1 

Table 5.22: Pores size distribution referring to SBR 5570 sample. 

 

Table 5.22 tells us that 66.2% of the pores have a diameter of 52.4 m, 21.5 % of the 

pores have a diameter of 15.7 m and 12.4% have a diameter of 2.7 m. 

 

5.3.3.2 Sample SBR 5577 

5.3.3.2.1 Relaxation Time T2 measurement 

The methods of the tests are quite similar to those described in section 5.3.3.1.1. Eq.(3.55) 

fitting to the experimental relaxation curve, shown in Figure 5.14, shows (see Table 5.23) 

the presence of three main relaxation times. The number of the relaxation times is chosen 

in order to minimize the product of the sum off squared errors, χ2, and the number of 

fitting parameters of eq. 3.55. 

 

Figure 5.14: Relaxation time curve relative to the SBR 5577sample. 
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The relaxation times obtained are reported in the Table 5.23. 

T21(ms) = 1572 ± 2 A1(%) = 74.5 ± 0.3 
T22(ms) = 693 ± 14 A2(%) = 14.0 ± 0.2 
T23(ms) = 143 ± 3 A3(%) = 11.5 ± 0.1 

Table 5.23: Relaxation times relative to the SBR 5577 sample (T= 37°C). 

 

 Measurement of the diffusion coefficient D and the average pores 

diameter 

The theory shown in chapter 3 can be considered for the determination pores size 

distribution. The trend of the water self-diffusion coefficient (D) versus the square root 

of the diffusion time td is shown in Table 5.24. 

Δ(ms)  (td(s))0.5 D(m2/s) σi 

8 0.089 2.47E-09 3.10E-11 
11 0.104 2.33E-09 3.58E-11 
14 0.118 2.27E-09 4.08E-11 
17 0.130 2.33E-09 1.97E-11 
20 0.141 2.18E-09 2.21E-11 
23 0.151 2.19E-09 4.20E-11 
26 0.161 2.16E-09 7.25E-12 
30 0.173 2.07E-09 2.15E-11 
34 0.184 2.04E-09 4.95E-11 
38 0.195 2.09E-09 2.77E-11 
42 0.205 2.02E-09 2.78E-11 
46 0.214 1.97E-09 3.08E-11 
50 0.223 2.01E-09 4.34E-11 

Table 5.24: Self diffusion coefficient D relative to the SBR 5577 sample (T=37°C and 

5 repetitions). 

 

Eq.3.54 fitting to the experimental data reported in Table 5.24 and Figure 5.15 leads to  

= 47 ± 0.3 μm [F test, F(1,13,0.95)<30]. 
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Figure 5.15: Self diffusion coefficient D and fitting (eq. 3.53) referring to SBR 5577 

sample. 

 

Knowing the average relaxation times (see Table 5.23) and the average pores diameter 

(47 m), the eqs. 3.55 - 3.59 allow the conversion of the relaxation times (Table 5.23) 

into pore size distribution. 

ξ1(μm) = 66.1 ± 1.2 A1(%) = 74.5 ± 0.3 
ξ2(μm) = 19.6 ± 0.6 A2(%) = 14.0 ± 0.2 
ξ3(μm) = 3.3 ± 0.1 A3(%) = 11.5 ± 0.1 

Table 5.25: Pores size distribution referring to the SBR 5577sample. 
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5.3.3.3 Sample SBR 2430 

5.3.3.3.1 Relaxation Time T2 measurements 

The methods of tests are those described in section 5.3.3.1.1. Eq(3.55) fitting to the 

experimental relaxation curve, shown in Figure 5.16, shows (see table 5.26) the presence 

of three main relaxation times. The number of relaxation times is chosen in order to 

minimize the product of the sum of squared errors, χ2, and the number of fitting 

parameters of eqs. 3.55. 

 

Figure 5.16: Relaxation curve relative to the SBR 2430 sample. 

 

 

The relaxation times obtained are reported in the Table 5.26. 

T21(ms) = 1543 ± 2 A1(%) = 74.2 ± 0.3 
T22(ms) = 662 ± 10 A2(%) = 17.5 ± 0.2 
T23(ms) = 132 ± 3 A3(%) = 8.3 ± 0.1 

Table 5.26: Relaxation times relative to the SBR 2430 sample. 
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5.3.3.3.2 Measurement of the diffusion coefficient D and average pores 

diameter  

The theory shown in chapter 3 can be considered for the determination of the pores mesh 

size distribution. The trend of the water self – diffusion coefficient (D) versus the square 

root of the diffusion time td is shown in Table 5.27. 

Δ(ms)  (td(s))0.5 D(m2/s) σi 

2 0.043 2.74E-09 4.01E-11 
8 0.089 2.64E-09 1.60E-11 

11 0.104 2.52E-09 1.65E-11 
14 0.118 2.45E-09 4.62E-12 
17 0.130 2.51E-09 1.17E-11 
20 0.141 2.38E-09 7.75E-12 
23 0.151 2.39E-09 5.93E-11 
26 0.161 2.38E-09 3.48E-11 
30 0.173 2.35E-09 4.99E-11 
34 0.184 2.29E-09 4.20E-11 

Table 5.27: Self diffusion coefficient D relative to the SBR 2430 sample (T= 37 °C and 

5 repetitions). 

 

Eq. 3.54 fitting to the experimental data reported in Table 5.27 and Figure 5.17 leads to 

ξ = 53 ± 0.4 μm [F test, F(1,10,0.95)<21]. 

 

Figure 5.17: Self diffusion coefficient D and fitting (eq. 3.54) referring to SBR 2430 

sample. 
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Knowing the average relaxation time T2 (see Table 5.26) and the average pores diameter 

(53 m), eqs. 3.55 – 3.59 allow the conversion of the relaxation times (Table 5.26) into 

pore size distribution as shown in Table 5.28. 

ξ1(μm) = 73.8 ± 1.4 A1(%) = 74.2 ± 0.3 
ξ2(μm) = 21.3 ± 0.5 A2(%) = 17.5 ± 0.2 
ξ3(μm) = 3.6 ± 0.1 A3(%) = 8.3 ± 0.1 

Table 5.28: Pores size distribution referring to the SBR 2430 sample. 

 

The results obtained on the latex samples SBR were really encouraging. Indeed, for all 

three samples, the evaluation of the pore size distribution is compatible with that 

determined by SEM as shown in the following pictures. 

 

 

Figure 5.18: sample 2430 
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Figure 5.19: sample 5570 

 

 

Figure 5.20: sample 5577 
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5.4 Bacterial cellulose/acrylic acid gels 

5.4.1 Introduction 

The use of synthetic fibers for the fabrication of polymer composites is decreasing due to 

various factors including the expensive cost of materials, the non-biodegradable nature 

of the synthetic fibers and the environment pollution connected to their synthesis. To 

minimize the above problems, scientists and engineers are focusing their attention on the 

use of natural fibers. In this regard, cellulose is very attractive as it is the most abundant 

and renewable biopolymer in nature. It is the main constituent of plant cell walls, fungi 

and some algae. Additionally, several bacteria have the ability to produce extra-cellular 

cellulose as their metabolites. Cellulose is typically obtained from higher plants where it 

resides as skeletal substance. In particular, cellulose is found in the plant xylem tissues 

where it is present as cellulosic microfibrils embedded in a matrix of amorphous non-

cellulosic polysaccharides (hemicelluloses) and lignin [10]. To obtain pure cellulose, 

solvent extraction is an important method to remove the extractable fraction from 

cellulosic fibers. However, this procedure may cause fiber damaging due to changes in 

the chemical composition of the fibers and the rearrangement or transformation of the 

crystalline structure which determines the switch from cellulose type I to cellulose type 

II [11]. This cellulose structural change affects the thermal degradation characteristic of 

the fiber. Due to this problem, cellulose obtained from bacteria is more convenient. 

Bacterial cellulose is produced by Acetobacter xylinum which utilizes a wide range of 

carbon and nitrogen in liquid medium and transforms them into cellulose in the form of 

floating pellicles [12]. The cellulose produced by this organism is of exceptionally high 

purity and resembles the same features of plants and algae cellulose in terms of crystalline 

unit structure and average microfibrillar width [13]. Therefore, pure cellulose can be 

easily obtained from this source without having the difficulties associated with the 

extraction from plants. The cellulose produced by bacteria aggregates to form sub-fibrils 

which have the width of approximately 1.5 nm thus representing the thinnest natural 

occurring fibers. Bacterial cellulose sub-fibrils are, then, crystallized into bundles and 

subsequently into ribbons [14]. The molecular configuration of cellulose fibrils, which 

are highly insoluble and inelastic, makes the tensile strength of cellulose comparable to 

that of steel thus providing mechanical support to the tissues where it resides [15]. Since 



5. Porous Systems 

 

162 

 

cellulose fibrils are natural polymers, the biocompatibility and bio-degradability are key 

features which are at the base of the vast applications of this amazing material. Cellulose 

macro- and nano-fibers are used as reinforcing materials which could enhance 

mechanical, thermal, and biodegradation properties of the composites. Cellulose, 

commonly fabricated into matrices, became particularly popular biomaterials for 

controlled-release dosage forms and extended release dosage forms [16-18]. 

Formulations are relatively flexible, and a well-designed system usually gives 

reproducible release profiles. The large surface area and the negative charge of cellulose 

nano-fibers are suggested to govern the binding of large amounts of drugs to the surface 

of this material also ensuring optimal loading and dosing. In addition, the abundance of 

hydroxyl groups on the outer part of the crystalline nano-cellulose fibers enables surface 

modification of the material with a range of chemical groups. The surface modification 

is used to modulate the loading and release of drugs, such as non-ionized and hydrophobic 

drugs [19]. This versatility may potentially allow in the future the development of 

delivery strategies devoted to different administration routes [20] and clinical applications 

such as drug delivery to the vessel [21] and to the liver [22, 23]. 

Hydrogels, that can expand and have great water absorption capacity and elasticity, 

demonstrate high capability to cater the release program needed in controlled release 

therapy [24]. However, in the hydrated state, hydrogels exhibit a remarkable poor 

mechanical strength. Previous studies have demonstrated that the incorporation of nano-

cellulose has great impact in improving mechanical properties of hydrogels. For example 

Millon and Wan [25] reported that nano-cellulose fibers of an average diameter of 50 nm 

are used in combination with polyvinyl alcohol (PVA) to form biocompatible nano-

composites which result in increased mechanical properties similar to that of 

cardiovascular tissues, such as aorta and heart valve leaflets. In addition, Cai and Kim 

[26] set up three different methods to prepare nano-cellulose / poly(ethylene glycol) 

(PEG) composite that can be used for soft tissue replacement devices. Since the favorable 

properties of hydrogels lie mainly in their hydrophilicity, the characterization of their 

water-sorption capabilities is very important [27]. In addition, also the hydrogel nano- 

and micro structure is of paramount importance for biomedical applications. In this 

section are reported the results of a rheological, low field Nuclear Magnetic Resonance 

(LF NMR), Environmental Scan Electron Microscopy (ESEM) and release study aimed 
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at understanding the macro-, micro- and nanoscopic characteristics of a hydrogel 

constituted by a mixture of bacterial cellulose and acrylic acid. Indeed, the joint use of 

these approaches can give important insight about the topology of this hydrogel that is 

made up by two interpenetrated continuous phases: the primary “pores phase” (PP) 

containing only water and the secondary “polymeric network phase” (PNP) constituted 

by the polymeric network swollen by the water. This complex topology can provide an 

important chance/challenge for the designing of controlled release systems. Indeed, for 

example, the presence of pores (or channels) can greatly improve the swelling process as 

solvent uptake can take place by convection (through pores) instead of by diffusion 

(through polymeric network meshes) as it takes place in homogeneous gels [28]. 

Consequently, pores presence reflects into a more rapid gel swelling that, in turn, implies 

faster drug release kinetics. In addition, it is well known that the average diffusion 

coefficient of a solute in a mixed structure (PNP plus PP), the so called effective diffusion 

coefficient [29], depends on both solute mobility in the PP and in the PNP [30]. Thus, 

depending on the dimension of the solute molecule, a careful tuning of the characteristics 

of PP (pores size distribution, pores connectivity, strictly related to structure tortuosity) 

and of PNP can yield to very different release kinetics. Consequently, this great 

potentiality requires the definition of proper strategies aimed at the characterization of the 

gel topological properties. This aspect becomes even more important when it is needed 

to evaluate the effect of different preparation parameters on the gel final structural 

characteristics. 

 

5.4.2 Experimental section 

5.4.2.1 Materials and methods 

Acrylic acid (ACC) and theophylline (TPH) were purchased from Sigma Aldrich Chemie 

GmbH Germany, while bacterial cellulose (extracted from Nata de coco – Dayawan 

Trading (M) Sdn. Bhd.) was purified according to the British Pharmacopoeia. All other 

reagents were purchased from R & M Chemical (Essex, UK) and were of analytical grade. 

Distilled water was always used. 
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5.4.2.2 Gel preparation 

The purified cellulose was dried and ground to obtain a powder composed of particles 

with sizes between 20 µm and 200 µm. The powder was dispersed in distilled water at a 

concentration of 1% (w/v). The acrylic acid was, then, added to the dispersion in a ratio 

20:80 (w/w) compared to cellulose. The mixture was poured into a plastic container (size 

12 X 12 X 1 cm) and then irradiated in air with an electron beam of 35 kGy intensity (5 

kGy per pass, EPS 3000, Japan). 

5.4.2.3 ESEM 

The freshly prepared gel was dried and then left to swell at 37°C in distilled water for 48 

h to reach the equilibrium swelling degree Sd (absorbed water weight/dry matrix weight; 

= 4.3 ± 0.4). A portion of the swollen gel (0.5 X 0.5 X 0.5 cm) was collected and analyzed 

(ESEM) for no longer than 30 s at 5°C to prevent drying due to electron bombardment. 

The images of the surface and the cross sections were obtained by Quanta200F SEM (FEI, 

USA). 

5.4.2.4 Image processing and analysis 

The ESEM images were processed using the software ImageJ [31]. The procedure used 

here comprised: i) a calibration step required to correlate the image dimensions in pixel 

to physical dimensions; ii) highlight the pores; and iii) analysis of the pore areas. From 

the pores' area and assuming the pores as spherical, was then possible to derive pores 

diameter and volume. 

5.4.2.5 Rheological characterization 

The rheological characterization was carried out at 37 °C by means of a Haake RS-150 

controlled stress rheometer mounting a parallel plate device with serrated surfaces 

(HPP20: diameter = 20mm) and equipped with a thermostat Haake F6/8. Due to the rigid 

nature of the gel, the gap setting (1~2 mm) was optimized as described elsewhere [32]. 

The measuring device was kept inside a glass bell at saturated humidity conditions to 

avoid evaporation effects. The rheological tests were performed under small amplitude 

oscillatory shear conditions. In particular, the linear viscoelastic region was assessed, at 

1 Hz, through stress sweep experiments. Frequency sweep tests were carried out in the 
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frequency (f) range 0.01–10 Hz at constant stress = 30 Pa (well within the linear 

viscoelastic range for the studied gel). All tests were performed in triplicate. 

5.4.2.6 Low field nuclear magnetic resonance 

Low Field NMR (LFNMR) characterization was performed by means of a Bruker 

Minispec mq20 (0.47 T, 20 MHz). In order to study the hydrogel structure, two kinds of 

experimental tests were performed: a) determination of the water diffusion coefficient 

inside the hydrogel polymeric structure (DG; also called water self-diffusion coefficient 

[33]; water is the only mobile species as polymeric chains cannot diffuse) b) 

determination of the water protons transverse relaxation time inside the hydrogel (T2). 

DG determination implied the execution of Pulsed Gradient Spin Echo (PGSE) 

measurements (performed in triplicate at 37°C). The measurements of the transverse 

relaxation time (T2) were carried out in triplicate at 20°C and 37°C according to the Carr-

Purcell-Meiboom-Gill sequence (number of scans = 4; delay = 5 s) adopting a 90° - 180° 

pulse separation time  of 0.25 ms.  

5.4.2.7 Release experiments 

Cylindrical gels were obtained by cutting the initial, wider, parallelepiped gel. The 

cylindrical shape was adopted in order to reduce the three-dimension release problem to 

a simpler two-dimension one. These experiments, led in triplicate, consisted in placing in 

the release environment (distilled water of volume Vr = 150 cm3, 37°C) a gel cylinder 

(diameter 2.1 cm, thickness 0.3 cm) that was in advanced swollen for 48 h in a 

theophylline aqueous solution to ensure a final concentration in the gel of 1400 ± 100 

g/cm3. A magnetic stirrer guaranteed proper solution mixing. In order to prevent the 

contact with the magnetic stirrer, the gel was suspended in the release environment by a 

thin web. Theophylline concentration in the release environment was measured by an 

optical fiber apparatus (HELLMA, Italy) connected to a spectrophotometer (ZEISS, 

Germany, wavelength 272 nm). The employment of the optical fiber prevented any 

perturbation of the release environment. As gel weight, shape and dimensions did not 

change at the end of the release test, we could conclude that the gel underwent neither 

erosion nor swelling. The proposed (see eq.(3.61)) model is characterized by only one 

fitting parameter (theophylline effective diffusion coefficient DTPH) as a partition 
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coefficient between the gel and the release environment, kp, was set equal to 1. Indeed, 

all the TPH contained in the gel was released at the end of the release test (see Results 

and Discussion section). The numerical solution was computed with the control volume 

method [34]. In order to ensure the reliability of the numerical solution, the computational 

domain was subdivided into 100 control volumes in the radial direction and 30 in the axial 

direction (for a total of 3*103 control volumes) while integration time step was set equal 

to 15 s. 

It is worth noting that the knowledge of DTPH allows evaluating an important 

characteristic of the gel pore phase (PP), i.e. its tortuosity. Indeed, assuming a unitary 

partition coefficient between the PP and the PNP (polymer network phase) phases (release 

tests proved this assumption) and excluding the possibility of a hindered diffusion (this 

happens when the radius of the diffusing probe molecule, TPH in our case, is comparable 

to pores radius and this was not our case) [30], the following relation holds: 

PP

PPPP

PNP

PNPPNP
TPH

εε

To

D

To

D
D          (5.5) 

where DPNP is the TPH diffusion coefficient in the polymer network phase, DPP is the TPH 

diffusion coefficient in the pore phase (i.e the TPH diffusion coefficient in water at 37°C, 

8.2*10-10 m2/s [35]), ToPNP and ToPP are, respectively, the tortuosity of the polymer 

network phase and the pore phase while PNP and PP are, respectively, the volume fraction 

of the polymer network phase and the pore phase. In the light of the Carman theory [36], 

ToPNP can be expressed by: 
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Inserting eq.(5.6) into eq.(5.5) and rearranging, we have: 
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The approximation introduced in eq.(5.7) holds when DPP and DTPH are of the same order 

of magnitude and DPNP is, at least, one order of magnitude smaller as it occurs in our case 

(see Results and discussion).  
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5.4.3 Results and discussion 

ESEM shows the complex structure of the hydrogel (Figure 5.21). Effectively, while its 

surface is characterized by small pores (mean diameter 2.9 m, from image analysis) 

(Figure 5.21 A), its cross section (Figure 5.21 B) shows the existence of bigger pores 

whose diameter spans from about 10 to 100 m. More precisely, the image analysis 

exhibits that the pores characterized by a diameter smaller than 30 m represent the 4% 

of the whole pores volume, those with a diameter comprised between 30 and 80 m are 

the 29% while the remaining 67% are pores characterized by a diameter spanning between 

80 and 120 m.  

Figure 5.21: ESEM picture of surface hydrogel (A) and cross section (B). 

 

In order to get more information about pore dimensions and its relative abundance, the 

hydrogel was studied according to the low field Nuclear Magnetic Resonance Pulsed 

Gradient Spin Echo (NMR-PGSE) experiments (as described in the section 5.4.2.6). 

Figure 5.22 reveals that the water self-diffusion coefficient in the hydrogel (DG) reduces 

with increasing td
0.5 up to approximately 0.066 s0.5 (4.3 ms). Then, it remains substantially 

constant with td
0.5. Eq.(3.54) best fitting, led on the first 6 data (0.066 s0.5) and knowing 

that the free water self diffusion coefficient at 37°C is equal to 3.04*10-9 m2/s [33], 

confirms the linear DG decrease with td
0.5 (F(1,5,0.95) < 20.3) and it yields to a mean 

pores diameter  = (14.7 ± 0.1) m. As  results bigger than the diameter of surface pores 

and smaller than that of bulk pores, this estimation seems reasonable in the light of the  

“average” nature. In addition, the DG constancy with td
0.5 for higher diffusion times 

A B 
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indicates that hydrogel pores are interconnected. Indeed, if it were not the case, DG would 

show a continuous decreasing trend with td
0.5 [37]. 

 

Figure 5.22: Dependence of the water self-diffusion coefficient in the hydrogel (DG) on 

the square root of the diffusion time td (37°C). Open circles indicate experimental data 

while solid line indicates eq.(3.54) best fitting on the first six experimental data. Vertical 

bars indicate standard error. 

 

Once the average pores diameter has been determined, further information (pores size 

distribution) can be found by eq.(3.55) fitting to relaxation data at 20°C and 37°C as 

reported in Figure 5.23. It can be seen that the fitting is always statistically very good 

(F20°C(12,45,0.95)< 8*106; F37°C(12,53,0.95) < 5*105) adopting four elements in the first 

eq.(3.55) summation (m = 4). Figure 5.23 correctly shows that temperature increase (from 

20°C to 37°C) implies a slower relaxation even if this phenomenon is not so marked. 

Indeed, as shown in Table 5.29, Ai are almost temperature insensitive while a small 

general increase of all T2i1 occurs when temperature is increased from 20°C to 37°C. 
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Figure 5.23: Decay of the normalized intensity, I(t), of the transverse component of the 

magnetization vector (Mxy) versus time t. Circles and squares indicate, respectively, the 

I(t) experimental trend at 37°C and 20°C while solid lines represent eq.(3.55) best fitting. 

Data standard error, not reported for the sake of clarity, is always lower than 1.5% of the 

measured value. 

 

37°C 

i Ai(-)% Ii1(-) T2i1(ms) MRDi(-) 
2i1 T (ms-1) 

1 38 ± 3.0 99.954 973 ± 29 (17 ± 1.2)*10-2 (1.06 ± 0.03)*10-3 

2 47 ± 3.0 99.994 410 ± 11 (6.2 ± 0.35)*10-2 (2.47 ± 0.06)*10-3 

3 9 ± 0.5 99.999 128 ± 0.5 (1.8 ± 0.15)*10-2 (7.83 ± 0.03)*10-3 

4 6 ± 0.3 100.000 20 ± 0.8 (0.3 ± 0.02)*10-2 (51 ± 2)*10-3 

20°C 

i Ai(-)% Ii1(-) T2i1(ms) MRDi(-) - 

1 37 ± 1.5 99.901 856 ± 20 (23 ± 1.6)*10-2 - 

2 51 ± 1.7 99.988 340 ± 6 (7.7 ± 0.6)*10-2 - 

3 7 ± 0.2 99.999 90 ± 4.5 (2 ± 0.3)*10-2 - 

4 5 ± 0.3 100.000 14 ± 0.5 (0.3 ± 0.02)*10-2 - 

 

Table 5.29: Eq.(3.55) fitting parameters (Ai, T2i1, MRDi) ± standard deviation relative to 

the protons relaxation in the gel at 20°C and 37°C. Ii1 is the first intensity appearing in 

the second summation of eq.(3.55) while 2i1 T
 is defined in eq.(10). The small MRDi 

values indicate that we are in fast diffusion conditions [39, 40].
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In addition, Table 5.29 makes clear that the first relaxation term (Ii1) in the second 

summation of eq.(3.55) is the most important one as it represents more than 99% for every 

i (1 - 4) whatever the temperature. Although, theoretically, polymer protons represent 

about 11% of all the hydrogel protons, due to the relatively high values of the smallest 

relaxation time, T241, at both temperatures (see Table 5.29), we can conclude that all the 

relaxation times T2i1 have to be referred to water protons. This conclusion is also 

supported by the fact that in the case of the gel realized by deuterated water (D2O) (37°C), 

any possible relaxation phenomenon (polymer protons relaxation) was too fast to be 

detected. In order to better understand the effect of temperature, it is useful calculating 

the % of the variation (T2i1) of each T2i1 with respect to the variation, Tw, of the 

relaxation time of free water protons in the same range (37°C – 20°C; Tw = 687 ms [38]). 

T2i1 results equal to 17%, 10%, 5.5% and 0.84% for i = 1, 2, 3 and 4 respectively. The 

small values of all T2i1 indicate that we are dealing with bound water, i.e. water inside 

the polymeric structure and not on its surface. In addition, the decrease of the T2i1 values 

implies the existence of a more and more bound water as it occurs in smaller and smaller 

pores [39, 40]. Interestingly, while the ratio T2i1/T2(i+1)1 is almost constant for i = 1 and 

2 (i = 1, T211/T221 = 1.7; i = 2 T221/T231 1.8) it considerably increases for i = 3 

(T231/T241 = 6.5). This means that the last relaxation time (T241) corresponds to water 

protons that are strongly bound to the polymer phase. 

On the basis of eq.(3.55) fitting to the relaxation data, it is possible to evaluate the average 

value of the inverse of the relaxation time 21 T  = (5.2 ± 0.25 s-1) (see eq.(3.58)). 

i Ai(-)% i(m) 

1 38 ± 3.0 91 ± 3 

2 47 ± 3.0 33 ± 1 

3 9 ± 0.5 9.6 ± 0.5 

4 6 ± 0.3 1.4 ± 0.02 

Table 5.30: Pores size (i) distribution of the studied hydrogel (37°C). 

 

Then, the knowledge of the mean pores diameter  (see PGSE experiment) allows the 

determination of M value resorting to eq.(3.58) (M = (1.21 ± 0.07)*10-5 m/s). As M does 

not only depend on the solid surface chemistry but it is also a function of the temperature, 
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the fluid and the magnetic field strength [41], the comparison of M values coming from 

different studies has to be carefully evaluated. For example, at room temperature and at 

20 MHz, Munn and co-workers [42] found that M order of magnitude ranges between 10-

6 -10-5 m/s for inorganic materials (alumina, silica and sand stones). Chui and co-workers 

[40], working with homogeneous hydrogels made up by agar, agarose and 

polyacrylamide (polymer concentration ranging between 1% and 5% w/w), determined 

10-10 m/s < M < 10-8 m/s at 40°C and 10 MHz. Brownstein and Tarr [39] determined, in 

physiological conditions for rat gastrocnemius muscle, M = 8*10-4 m/s. In low 

concentration scleroglucan-borax and guar gum-borax hydrogels (0.7% w/v), we found 

10-7 m/s < M < 10-6 m/s at 37°C and 20 MHz [38]. Finally, in a poly-L-lactic acid (PLLA) 

porous scaffold (25°C, 20 MHz) we found an M value (2.4*10-5 m/s) close to that found 

in this work. Thus, the M value here determined seems physically sound. Once M and 

2i1 T  (see Table 5.29) are known, eq.(3.59) allows to convert the relaxation times into 

pores diameter i as shown in Table 5.30. Interestingly, these results are, substantially, in 

agreement with the image analysis (Figure 5.21, right) according to which the majority 

of the pores (96%) are characterized by a diameter spanning between 30 and 120 m. The 

image analysis results and those shown in Table 5.29 become also closer if we assume 

that the pores belonging to the fourth class (i = 4,  = 1.4 m, T241 = 20 ms,) have not to 

be associated to water trapped in small pores but to water trapped in the polymeric 

meshes. Indeed, the inspection of Figure 5.21 would suggest that so small pores do not 

exist. In the light of this interpretation, only 6% (= A4) of the water volume present in the 

gel would fill the polymeric network while the remaining 94% (A1 + A2 + A3) would fill 

the pores. This would lead to a swelling degree of the polymeric meshes equal to 0.26 

which is absolutely compatible with that of pure cellulose that can range between 0.17 

and 0.36 [43]. Thus, our interpretation of the forth relaxation seems reliable. Interestingly, 

the physical meaning attributed to the forth relaxation time (water inside the polymeric 

meshes) allows the estimation of the hydrogel porosity PP (i.e. the pores phase PP volume 

fraction). Indeed, knowing that the mean polymer density (p) is 1370 kg/m3, that the 

water density at 37°C (H2O) is 992.98 kg/m3 and that system swelling degree Sd (= 

absorbed water weight/dry matrix weight) is equal to (4.3 ± 0.4), PP turns out to be: 



5. Porous Systems 

 

172 

 

 
 

81.0
ρρ1

01.0
ε

dpH2O

321
PP 






S

AAA

       (5.8) 

Consequently, the water filled polymeric network phase PNP occupies the remaining 0.19 

of the total volume (PNP = 1-PP). Interestingly, this pp value is close to what found, by 

means of another approach, by Karakutuz and Okay [44] who worked on porous 

organogels. In order to get further insights about hydrogel structure, a rheological 

characterization was performed.  

 

Figure 5.24: Hydrogel mechanical spectra. G’(filled circles) represents the elastic 

modulus, G’’ (open circles) is the viscous, or loss, modulus while  is the pulsation ( = 

2f). Solid lines indicates the best fitting of the generalized Maxwell model (eqs.(3.78) 

and (3.79)). Data standard error, not reported for the sake of clarity, is always lower than 

15% of the measured value. 

 

Stress sweep test revealed that the linear viscoelasticity regime is very broad extending 

up to a critical stress of about 400 Pa. Accordingly, the shear stress value (30 Pa) used in 

the frequency sweep test is well within the linear viscoelastic range. Figure 5.24 shows 

that our system behaves as a typical strong gel as the elastic modulus (G’) is more than 

ten times of the loss modulus (G’’) and both of them are substantially independent from 

pulsation  [45]. In addition, the high G’ and Ge values collocate our hydrogel in the 

family of mainly elastic materials. For a statistically good data fitting (F(13,5,0.95) < 

199), the use of one purely elastic Maxwell element (Ge) plus other four viscoelastic 

Maxwell elements is required (see Table 5.31) 
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1(s) (3.6 ± 0.6)*10-2  

Ge(Pa) 38548 ± 1889 

G1(Pa) 3158 ± 264 

G2(Pa) 1738 ± 264 

G3(Pa) 1458 ± 414 

G4(Pa) 6422 ± 1304 

G(Pa) 51326 ± 2363 

x(mol/cm3) (1.8 ± 0.1)10-5 

Table 5.31: Parameters relative to the eq.(3.78)-(3.79) best fitting to the experimental 

data shown in Figure 5.21. Ge, G1, G2, G3 and G4, are the elastic moduli of the generalized 

Maxwell model, 1 is the relaxation time of the first viscoelastic Maxwell element (lowest 

relaxation time), G ( 



4

1i

ie GG ) indicates the shear modulus and x is the crosslink 

density. 

 

The knowledge of the hydrogel shear modulus G allows the determination of the mean 

crosslink densityx (see Table 5.31) according to eq.(3.80). On the basis of the 

discussion performed in the last part of section 5.4.3, the crosslink density of the polymer 

network phase (PNP) is given by xr = x/PNP = (9.3 ± 0.5)*10-5 mol/cm3. This implies 

(see eq.(3.81)) an average mesh diameter a = (3.2 ± 0.05) nm, typical of highly cross-

linked network [46]. 

Finally, release tests allowed to complete the topological description of our hydrogel. 

Figure 5.25, reporting the theophylline (TPH) release kinetics (circles), shows that the 

model fitting (eq.(3.61) –(3.64), solid line) is good (F(1,122,0.95) < 3121). In addition, 

the only model fitting parameter, the effective TPH diffusion coefficient DTPH, turns out 

to be (2.8 ± 0.1)*10-10 m2/s. As all the TPH was released at the end of the experiment, its 

partition coefficient must be equal to 1. The DTPH and PP (0.81) knowledge allows the 

determination of the tortuosity ToPP of the pores phase. The simplified form of eq.(5.7) 

leads to the conclusion that ToPP = 2.3, this indicating a considerably tortuous architecture. 
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Figure 5.25: Theophylline (TPH) release kinetics (37°C). Cr is the time (t) dependent 

TPH concentration while Cinf is TPH concentration after an infinite time (equilibrium). 

Data standard error, not reported for the sake of clarity, is always lower than 5% of the 

measured value. 

 

This suggests that big pores are not directly connected to each other, but their connection 

is realized by a series of interconnected small pores that render the drug path tortuous 

(Figure 5.21, right, seems compatible with this interpretation) as shown in Figure 5.26. 

The use of the simplified version of eq.(5.7) is allowed by the small TPH diffusion 

coefficient in the polymeric network phase (PNP). Indeed, in the light of our hypothesis 

about the volume fraction competing to the PP and PNP phases, the polymer volume 

fraction (p) in the PNP phase is high: 
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       (5.9) 

In the presence of a so high a polymer volume fraction, all the molecular theories, devoted 

to the determination of the drug diffusion coefficient in a polymeric network, predict 

values around one tenth (or less) of the drug diffusion coefficient in pure water at the 

same temperature [47]. 
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Figure 5.26: Sketch of the hydrogel micro and nano- topology. 

 

Thus, DPNP has to be negligible in comparison to DPP and DTPH that, in this case, are of 

the same order of magnitude. 

  

Pores

phase
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6  Polymeric scaffolds 

 

In this chapter, two different polymeric scaffolds will considered. The first is composed 

by alginate hydroxyapatite, while the second is made up by Poly Left lactide Acid 

(PLLA). Both of them will be characterized by ESEM and LF-NMR. In addition, the 

viability of MG-63 osteosarcoma human cell line and NIH-3T3 mouse embryonic 

fibroblast will be assessed on alginate hydroxyapatite, PLLA, PLLA/Collagen and 

PLLA/Collagen/glycosamminoglycans by means of MTS assay. 

6.1  Alginate Hydroxyapatite scaffolds 

6.1.1 Introduction 

These scaffolds are constituted by a polymer of natural origin, alginate, and a support 

material, such as hydroxyapatite. Alginate (Alg), extensively described in the chapter 4.1, 

is a naturally derived polysaccharide that is abundant in cell walls of brown algae. As for 

agarose, it shows a high solubility in water. It is a polyanion composed of two repeating 

monomer units: β-D- mannuronate (M) and α-L-guluronate (G). Physical and mechanical 

properties of alginate are highly related to the guluronate block, in terms of chain length 

and proportions inside the polymer. Alginate as an electrolytic nature and it has the 

exclusive property of being able to form a gel in presence of certain divalent cations (for 

example calcium, barium, strontium etc.). 

Hydroxyapatite (Hap) is a ceramic material essentially composed of calcium and 

phosphorus. It is well known to be biocompatible, bioactive, osteoconductive, not toxic, 

not inflammatory and not immunogenic agent. For all these reasons, Hap became an 

essential compound of bone implants, cements and scaffolds. 

 



6. Polymeric Scaffolds 

182 

 

6.1.2  Experimental section 

6.1.2.1 Materials  

The sodium alginate isolated from Laminaria hyperborean were provided by FMC 

Biopolymer (Norway) (MW = 1.3 x 105, FG = 0.69, FGG = 0.56). Hap powder was from 

Fluka (USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), 

penicillin, streptomycin, trypsin/EDTA solution, phosphate – buffered saline (PBS), 

glutamine, D – Glucolonic acid δ-lactone (GDL) were purchased from Sigma (USA). All 

other chemicals were of analytical grade. 

6.1.2.2 Alginate hydroxyapatite scaffolds preparation 

Alg/Hap composite scaffolds were prepared by mixing alginate 2% (w/v) and Hap 3% in 

water using calcium release method. Hap powder was homogenously dispersed into a 

stirred solution of alginate in water, followed by the addition of GDL 60 mM to release 

calcium ions from Hap. Aliquots of this solution were then cured in 24-well tissue culture 

plates for 24 h at room temperature to allow complete gelation. The hydrogels in the 

tissue-culture plate were then stepwise cooled by immersion in a liquid cryostat. 

Temperature was decreased stepwise from 20°C to -20°C by 5°C steps with 30 min 

intervals for equilibration. Samples were then freeze dried for 24 hours to obtain porous 

scaffolds. 

6.1.2.3  LF-NMR characterization  

Low Field Nuclear Magnetic Resonance characterization was performed by means of a 

Bruker Minispec mq20 (0.47 T, 20MHz). The theory presented in the chapter 3 was 

followed to investigate the time evolution of the scaffold’s pore size distribution with and 

without cells. Basically, this implies the measurement of T2 and DG and the interpretation 

of these data according to the theory of Chui [1] that allows the determination of pores 

dimension and volumetric abundance. 

6.1.2.4  Scanning Electron Microscope characterization  

Scaffolds structure was analyzed using a Quanta250 SEM, FEI, Oregon, USA. Freeze-

casted samples were sectioned at various planes and directly visualized by electron 
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microscopy after sputter-coting with an ultrathin layer of gold. Scaffolds seeded with cells 

were rinsed with 10 mM HEPES pH=7.4 cointaining 10 mM CaCl2, 100 mM NaCl, 5 

mM glucose and then were fixed with 10% gluteraldehyde in PBS for 1h at room 

temperature. Samples were then washed three times with water, dehydrated by stepwise 

treatment with ethanol and finally dried with a critical point dryer, sputter-coated with 

gold and visualized by electron microscope. 

6.1.2.5 Micro – Computed Tomography Characterization  

Micro-CT of saples was obtained by means of a conebeam system called TOMOLAB 

(www.elettra.tirieste.it/Labs/TOMOLAB). The device is equipped with a sealed micro-

focus X-ray tube, which guaranteed a focal spot size of 5 microns, in an energy range 

from 40 kV up to 130 kV, and maximum current of 300 μA. As a detector was used a 

CCD digital camera with (49.9 X 33.2) mm2 field of view and a pixel size of (12.5 X 

12.5) μm2. 

6.1.2.6  Cell culture and seeding 

Osteosarcoma MG-63 (ATCC® Number: CRL- 1427TM) human cell line was cultured in 

DMEM supplemented with 10% FBS, 1% Penicillin-Streptomycin/ 1% L-glutamine at 

37°C and 5% pCO2. For cell seeding onto scaffolds, porous freeze-casted scaffolds 

produced under sterile conditions, were reswollen in 5 mM CaCl2 for 30 min under 

agitation and immersed in complete cell culture medium for 24 hours in 24-wells culture 

plates to ensure chemical equilibration. Osteosarcoma cells, suspended in 50 μl of 

medium, were loaded with a micropipette over the whole upper surface of the scaffolds. 

After 4 hours, the scaffolds were placed into fresh, sterile 24-wells culture plates and 1mL 

of complete medium was added. 

6.1.2.7  Cell proliferation and viability on Alg/Hap Scaffolds 

The viability and growth rate of MG-63 cell line on alginate hydroxyapatite scaffolds 

were assessed as a function of the time using the MTS assay according to the protocol 

provided by the manufacter (CellTiter Acqueous One solution cell proliferation Assay kit 

from Promega). A suspension of 50*103 cells was seeded on sterilized scaffolds, 

incubated at 37 °C and 5% of pCO2. MTS assay was performed in quadruplicate 1, 7, 14 

http://www.elettra.tirieste.it/Labs/TOMOLAB
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and 21 days from cell seeding. Briefly, after 4 hours of incubation with the MTS reagent 

in an incubator, the medium was collected from the scaffolds and the absorbance was 

measured on an ELISA plate reader at a wavelength of 490 nm. The absorbance obtained 

from an empty scaffold (blank) was subtracted from the samples values. 

6.1.3 Results and discussion 

One of the key requisites for tissue engineering scaffolds is to present a porous 

interconnected structure. The average pore size, the pore size distribution and the 

topology must be tailored to respond to specific application requirements as they strongly 

influence cell adhesion, proliferation and matrix deposition, as well as the formation of 

blood vessels within the scaffold to help tissue growth.  

In order to get more information about pore dimensions and their relative abundance, the 

scaffolds were studied according to the low field nuclear magnetic resonance Pulsed 

Gradient Spin Echo (NMR-PSGE). 

The analysis was peformed on two types of scaffolds:  

 scaffolds with cells 

 scaffolds without cells. 

The experiments, led in duplicate, were carried out for twenty days. The tests were 

performed on scaffolds with and without seeded cells (line MG - 63) maintaining them in 

an incubator at appropriate conditions (37 °C and 5% pCO2). Over the 20 days, different 

trend of the relaxation time T2 and the water sef diffusion coefficient DG were observed 

for cells seeded scaffolds and empty ones. Figure 6.1 shows that four classes of pores can 

be detected in both cells free and cell seeded scaffolds (i and Ai indicate, respectively, 

pores dimension and abundance of pores class "i").  

During the 20 days of the experiment, it is possible to observe that no substantial 

differences (for both the dimension, , and relative abundance A3,4) occur between cell 

seeded and cell free scaffolds for what concerns the dimension of small pores (classes 3 

and 4). This is probably due to the small pore diameter that hinders cells entering. 

Accordingly, the fate of small pores is similar for cell seeded and cell free scaffolds. 

Conversely, the fate of larger pores (classes 1 and 2) is different for what concerns cell 

seeded and cell free scaffolds (for both the dimension, , and relative abundance A1,2). 

This seems reasonable as MG-63 cells can grow and produce extracellular matrix only in 

sufficiently wide pores (> 100 m) in comparison to their diameter that is around 20 m. 
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Figure 6.1: LF – NMR characterization of scaffolds with and without cells 

 

Cell adhesion, proliferation and differentiation are the indicator of cellular compatibility 

towards a supporting material and they determine the suitability of the material for tissue 

engineering and regenerative medicine applications. The adhesion and growth of 

osteoblast-like cell lines on Alg/Hap scaffolds were assessed as a function of the time 

using a MTS assay according to the protocol tailored from the one provided by the 

manufacturer. Cells were seeded on the top of the scaffolds after reswelling of the 

structures at day 0 by means of DMEM medium. The assay was performed at days 1, 7, 

14 and 21 after seeding. The cultures in Alg/Hap scaffolds were analyzed after 10 and 21 

days using a scanning electron microscope (SEM). Figure 6.2 shows SEM micrographs 

Class 1 Class 2 

Class 3 Class 4 



6. Polymeric Scaffolds 

186 

 

of osteoblast like cells MG-63 on Alg/Hap composites after 10 and 21 days of culture 

(See Figure 6.2). 

The majority of cells displayed a rounded morphology rather than a flat one and they 

appeared gathered together to form clusters. The cells are well adherent to the pore walls 

with processes and multiple filopodia, surrounded by a network of fibrillar bundles of 

extracellular matrix particularly abundant after 21 days of culture. 

 

Figure 6.2: SEM micrographs of osteoblast like cells MG-63 seeded on Alg/Hap 

scaffolds after 10 days of culture. 

 

It is known that the adopted freeze drying technique can yield to pores diameters spanning 

from 100 m to 500 m depending on the cooling rate speed as witnessed by Figure 6.3. 

Interestingly, this range is substantially in agreement with found by means of LF-NMR. 

 

 

Figure 6.3: SEM micrographs showing the pore size distibution. 
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Micro-computed tomography is a not destructive technique that allows reconstruction of 

3-D images of the developed scaffolds. A quantitative characterization of the micro-

structure of the composite has been performed from a micro-CT reconstruction (Figure 

6.4). 

 

Figure 6.4: Three-dimensional reconstruction of the Alg/Hap scaffolds: from a Micro-

CT segmented data of a freeze casted scaffold evidencing the porosity and the 

interconnection of the pores. 

 

Quantification first requires a segmentation process, i.e the separation of voxels of the 

scaffold material, hereafter conventionally named as bone, from those as background. 

This is typically done by thresholding the grey levels of the image. Starting from a 

segmented image, Representative Elementary Volume (REV) needs to be extracted in 

order to have a small image (typically a regular cube) which is easy to handle with 

common computer hardware. As suggested by Bear [2], the REV size can be determined 

as the minimum value of the sub volume size- made progressively decrease- for which 

the calculated value of the porosity is essentially constant. The porosity can then be easily 

estimated by simply counting the number of pore (or background) voxels divided by the 

total number of REV voxels. Different methods have been proposed, especially within 

bone research, to get more refined parameters from micro-CT images. Micro-CT analysis 

revealed that the average pores dimension is around 200 m, in substantial agreement 

with what found by means of LF-NMR evaluation (181 m, see Figure 6.1, day zero). 
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6.2 Poly L-Lactide Acid Scaffolds  

6.2.1 Introduction 

The success of aliphatic polyesters in tissue engineering relies largely on their 

degradability and biocompatibility, as well as their good processability and their 

mechanical properties. Poly-lactic-acid (PLA) is biodegradable thermoplastic polyester 

that can be produced through ring-opening polymerization of lactic acid. Since lactic acid 

is a chiral molecule, it exists in two frms, Poly-L-Lactic acid (PLLA) and Poly-D-lactic-

acid (PDLA). It is known that the properties of PLA are highly affected by the stereo-

isomeric L/D ratio of the lactate units. In fact, PLLA and PDLA, consisting only of L- 

and D-lactate units, respectively, are highly crystalline with identical chemical and 

physical properties, while poly (DL-lactide) (PDLLA or simply PLA), consisting of 

racemic lactate units, is rather amorphous [3]. The involvement of D- and L- units in the 

sequences of PLLA and PDLA, respectively, exerts a profound effect on their thermal 

and mechanical crystallinity. For the aforementioned reasons, blending PLLA with 

PDLLA is an effective method for controlling the polymer cristallization, morphology 

and hydrolysis nature. PLA degrades by bulk hydrolysis and leads to the production of 

lactic acid. In the case of PLLA, degradation results in L (+) lactic acid, a substance that 

exists in the human body under natural circumstances as well, therefore PLLA is 

generally preferred over PDLA [4]. The body transports the produced L (+) lactic acid to 

the liver, converts it into pyruvic acid and upon entering the tricarboxylic acid cycle, 

secreting it as water and carbon dioxide. Despite the FDA approval of PLLA and the large 

number of clinical applications, a number of literature studies report inflammatory 

responses [5, 6]. During degradation, the produced lactic acid can lower the pH in the 

environment adjacent to the polymer. This local acidity can aversively affect cellular 

function and induce inflammatory response. Additionally, highly crystalline parts might 

stay behind which can cause an inflammatory response of the surrounding tissue. 

However, it was also noted that in case of relatively small material volume, no adverse 

biological responses occur. In addition, other literature reports that PLA does not leave 

significant amounts of accumulating degradation products behind in the body. The 

degradation of PLLA in vitro occurs in the order of years, whereas in vivo degradation 

takes approximately 8-10 months. Degradation of PDLLA is in the order of months. The 
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degradation rate of PLA scaffolds highly depends on amongst others molecular weight 

and polydispersity of the polymer, process parameters and scaffolds design. PLLA exhibit 

superior mechanical strength compared to PDLLA due to its semi‐crystalline nature (10‐

40 % crystallinity) and higher glass transition temperature (Tg ≈ 65 °C) with respect to 

that of PDLLA (Tg ≈ 54 °C). 

 

Collagen is the most abundant structural protein found in the body. There are more than 

twenty genetically distinct types of collagen molecules, all of which are triple helical 

molecules based on polypeptide chains of amino acids. Collagen type I is the most 

abundant collagen found in the human body. It is found in skin, ligaments, tendons and it 

is the main organic substance found in bone. The scaffolds used in this work are fabricated 

from collagen type I. 

 

6.5: Typical collagen structure. 

 

Collagen type I is a heterotrimer, i.e. it is a triple helix that consists of two α1 chains and 

one α2 chain. The α2 chain has a slightly different amino acid sequence compared to the 

α1 chains. Collagen type I triple helices are 300 nm long and contain approximately 3000 

amino acid residues. Each of the three α-chains within the molecule forms an extended 

left-handed helix with a pitch of 18 aminoacids per turn [7]. The three chains, staggered 

by one residue relative to each other, are supercoiled around a central axis in a right-
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handed manner to form the triple helix [8]. The polypeptide chains have a repeating unit 

[Gly-X-Y]n, with a glycine residue in every third position in the polypeptide chain. The 

plane of each peptide bond is positioned perpendicular to the axis of the helix so that the 

carbonyl groups are pointed in a direction where they form strong inter chain hydrogen 

bonds with other chains in the molecule. The triple helix is formed such that glycine, the 

smallest amino acid, is positioned at the centre of the helix and the more bulky side of 

other amino acids occupy the outer positions. This allows a close packing along the centre 

of the molecule as shown in Figure 6.6b [9]. The X and Y positions are most commonly 

occupied by the amino acids proline and hydroxyproline, respectively.  

 

Figure 6.6: (A) Collagen chain (B) Collagen molecule (C) Amino acid composition of 

type I collagen. 

 

A breakdown of the amino acid content of type I collagen is shown in Figure 6.6 C. The 

non-helical regions at the end of the collagen molecule are called telopeptides or 

tropocollagens and they are involved in the intermolecular crosslinking of collagen 

molecules. The pro-peptides are important in the formation of the collagen molecules. 

Once triple helices are formed, they group together to form collagen fibrils. These fibrils 

have a distinctive banded appearance, which is due the quarter-staggered alignment. 



6. Polymeric Scaffolds 

191 

 

Clinical applications of collagen scaffolds are highly relevant to otorhinolaryngological 

practice. These include the manufacture of sutures, haemostatic agents (powder, sponfe, 

fleece), blood vessels (extruded collagen tubes) tendons and ligaments, dermal 

regeneration for burn treatment and peripheral nerve regeneration (porous collagen-

GAGs copolymers). 

 

Glycosaminoglycans (GAGs) are linear, heterogeneous highly negatively charged, 

acidic polysaccharides, abundant in the extracellular matrix (ECM) and on the cell 

surface. GAGs are made of a basic disaccharide repeating unit composed of two, six 

member sugar rings, a hexosamine (D-glucosamine, GlcNAc, or D-galactosamine, 

GalNAc) linked to a uronic acid (D-glucuronic acid, GlcA, or L-iduronic acid, IdoA) [10, 

11]. Both sugars of the repeat unit can be variably N- and O-sulfated, resulting in 

complex, chemically versatile macromolecules. Apart from their structural importance to 

the integrity of the ECM, GAG chains serve as fundamental modulators of a wide variety 

of biological processes [12] The high negative charge associated with GAGs facilitates 

their interaction with a large array of extracellular proteins [13], while their linear 

structure promotes the sliding movement of bound proteins along the chains. In this 

manner, GAGs facilitate molecular encounters between proteins in the assembly of 

multicomponent complexes, reducing the three dimensional search problem to a one 

dimensional search [14]. GAGs are classified into four main classes based on their 

biosynthetic pathways and chemical composition: heparan sulfate (HS) and heparin, 

chondroitin sulfate (CS) and dermatan sulfate (DS), keratan Sulfate (KS) and hyaluronic 

Acid (HA). Two classes HS/heparin, and CS/DS are linked through a common 

tetrasaccharide (xylose-galactosegalactose-glucuronic acid) to serine residues of a protein 

core forming a proteoglycan. The third class, KS, is attached to the core protein through 

an Nacetylglucosamine by N-linkage to asparagine or O-linkage to serine [15]. The fourth 

class, HA is produced as a free GAG (no protein attachment) and forms high molecular 

weight assemblies in the ECM [14]. 
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Figure 6.7: Schematic representaion of the glycosaminoglycans. 

 

GAGs serve as key biological response modifiers by acting as stabilizers, cofactors, or 

co-receptors for growth factors, cytokines, and chemokines. GAGs regulate enzyme 

activities and signaling molecules in response to cellular damage, such as wounding, 

infection and tumorigenesis [16]. Through their properties and interactions, GAGs play 

important roles in intercellular communication of metazoan cells. GAGs are targets for 

bacterial, viral, and parasitic virulence factors for attachment, invasion, and immune 

system evasion. GAGs have appeared early in evolution and their prominent extracellular 

location have ensured their conserved roles throughout the animal kingdom.  

 

6.2.2 Experimental section 

6.2.2.1 Materials 

High crystalline poly-L-lactic- acid (PLLA, ResomerTN L209 S) was kindly supplied by 

Boehringer Ingelheim Pharma KG, 1,4 dioxane (Sigma) and double distilled water were 

utilized to prepare the ternary solution. Micro-fibrillary rat-tail type I collagen (BD 

Biosciences) and a mixture of purified GAGs from the porcine aorta and characterized 

for composition and structure as previously reported [17, 18], were used for the 

preparation of collagen-GAG matrix. 
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6.2.2.2 Poly-L-Lactic Acid scaffolds preparation 

PLLA scaffolds were prepared via Thermally Induced Phase Separation (TIPS).  

TIPS is a widely used technique to porous scaffolds and membranes for tissue 

engineering. It involves cooling a homogeneous polymeric solution to a temperature 

where the single phase system becomes thermodynamically unstable and spontaneously 

separates into a polymeric-rich and a polymeric-lean phase. The non-solvent is added to 

increase the free energy of mixing, thus promoting the phase separation. If one chooses 

the appropriate system composition, the polymer-lean phase will nucleate into a 

continuous polymer-rich phase. The polymer-lean phase, after solvent removal, leads to 

the pores (voids), whereas the polymeric-rich phase will form the "skeleton" of the porous 

structure.  

A homogeneous ternary solution composed by PLLA, dioxane and water was prepared, 

with a constant dioxane to water weight ratio of 87/13. The concentration of PLLA was 

chosen to be 4% wt/wt. The solution, initially kept at 60 °C, was hot poured into a 

cylindrical polyethylene sample - holder. The temperature was then suddenly lowered to 

a value within the unstable region for 45 minutes, by pool immersion of the sample holder 

into a thermostatic water bath (25°C, 30°C and 35°C). Thereafter, a quench by immersion 

in an ethyl alcohol bath at a temperature of -20 °C for 15 minutes was performed, in order 

to freeze the obtained structure. The obtained scaffolds were removed from the sample - 

holder and washed in deionized water for 24 hours to eliminate the residual dioxane. 

Finally, the sample were dried under vacuum at 30 °C for 24 hours [19]. Then, the 

scaffolds were sterilized in ethyl alcohol under vacuum for 1 h. Smaller samples (D= 10 

mm, thickness=1 mm) for the conjugation were obtained by cutting with a surgical blade 

the scaffold. The morphology of the foams obtained was analysed  by scanning electron 

microscopy (SEM) using a SEM-FEI QUANTA 200F on sample cross section fractured 

in liquid nitrogen and gold sputtered (Sputtering Scancoat Six, Edwards) for 40s under 

Argon atmosphere before imaging. SEM images were exported as 24-bit image files using 

the tagged image file format (tiff) for further analysis. 

6.2.2.3 Low Field-NMR characterization 

Low Field NMR characterization was performed by means of a Bruker Minispec mq20 

(0.47 T, 20 MHz). In order to study the scaffold structure, two kinds of experimental tests 
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were performed: (a) determination of the water protons transverse relaxation time (T2) 

and (b) determination of the water diffusion coefficient (DG) inside the scaffold. The T2 

measurement was made according to CMPG sequence with 90-180° pulse separation of 

ms while DG determination implied the execution of PSGE measurement. PLLA 

scaffolds, produced at three different temperatures (25-30-35°C) during the demixing 

phase, were analyzed.  

6.2.2.4 Scaffolds functionalization  

Three different types of scaffolds (pure PLLA, PLLA – collagene and PLLA – collagene 

– GAGs scaffolds) were prepared and characterized.  

The PLLA scaffolds were treated with type I collagen and left at room temperature over 

night. Later the composites were treated with an injection of 20 l of GAGs through an 

insulin syringe. The PLLA scaffolds with collagen- GAGs suspension were freeze-dried 

by placing them into a freeze dryer at -20°C for 60 minutes. The frozen scaffolds were 

then sublimated under vacuum (< 100 mTorr) for 3 hours at a temperature of 0 °C. The 

obtained scaffolds were dehydrothermally cross-linked in a vacuum hoven at a 

temperature of 105 °C for 24 hours and then sterilized in ethyl alcohol under vacuum for 

30 minutes [20]. 

6.2.2.5 Cell culture and seeding 

NIH-3T3 mouse embryonic fibroblast cells were cultured in standard tissue culture flasks 

using DMEM supplemented with 10% fetal bovine serum, 1% L-glutamine and 1% 

penicillin/streptomycin solution. The media was replaced every 2 days. Cells were 

removed from the flask using a trypsin - EDTA solution and cells number calculated using 

a Thoma chamber. The resulting cells solution was centrifuged for 5 minutes at 1000 rpm 

and re-suspended in fresh culture medium to obtain 106 cells/mL. Before seeding, the 

scaffolds were placed into wells of a 24 - well tissue culture plate and washed 3 times 

with PBS with Ca2+ and Mg2+. Finally 10 l of the cells suspension was pipetted onto the 

surface of the scaffold in order to have 104 cells per scaffold. The scaffold was then 

returned to the incubator for 30 minutes to allow for initial cell attachment. The wells 

with the seeded scaffold were then filled with 2 ml of supplemented DMEM and placed 

into a cell culture incubator and maintained at 37 °C with 5% CO2. 
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6.2.2.6  The viability of NIH-3T3 cells 

The viability and growth rate of NIH-3T3 cell line on PLLA, PLLA/collagen and 

PLLA/collagen/ GAGs scaffolds were assessed as a function of the time using the MTS 

assay according to the protocol provided by the manufacturer (Cell Counting Kit 8 from 

Sigma Aldrich). A suspension of 104 cells was seeded on sterilized scaffolds, incubated 

at 37 °C and 5% of pCO2. MTS assay was performed in triplicate after 24 hours,3, 5 and 7 

days from cell seeding. Briefly, after 2 hours of incubation with the MTS reagent in an 

incubator, the medium was collected from the scaffolds and the absorbance was measured 

on a spectrometer at a wavelength of 450 nm. The absorbance obtained from an empty 

scaffold (blank) was subtracted from the samples values. 

 

 

6.2.3 Results and discussion 

In order to get more information about pores dimensions and their relative abundance, the 

composite scaffolds were studied according to the low field Nuclear Magnetic Resonance 

Pulsed Gradient Spin Echo (NMR-PGSE) experiments. LF - NMR was led on nine types 

of scaffolds, plus a reference system, produced at three different temperatures (25 - 30 - 

35°C) during the demixing phase: 

 

 Reference system:30°C for 45 minutes (first production attempt) 

 25 °C for 30 minutes 

 25 °C for 45 minutes 

 25 °C for 60 minutes 

 30 °C for 30 minutes 

 30°C for 45 minutes  

 30 °C for 60 minutes 

 35 °C for 30 minutes  

 35 °C for 45 minutes 

 35 °C for 60 minutes. 

 

The experiments, led in duplicate, have taken place on PLLA composites maintaining 

them under vacuum for 30 minutes in absolute alcohol in order to eliminate the air inside 
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the scaffold and then in distillate water to favorite the entrance of water inside the 

scaffold. The theory shown in chapter 3 can be considered for the determination of the 

relaxation times and the polymeric network mesh size distribution. 

About 30 minutes after tube insertion into the magnetic field (time needed for temperature 

stabilization) 9 tests were performed and recorded for data processing. The chosen τ was 

equal to 0.25 ms. An example of relaxation curve is shown in Figure 6.8. The number of 

relaxation times is chosen in order to minimize the product of the sum of squared errors, 

χ 2, and the number of fitting parameters of eq. (3.55).  

 

Figure 6.8: Relaxation curve relative to PLLA scaffolds (reference system) 

 

Whatever the scaffold considered, two/three relaxation times are needed for a statistically 

reliable description of the relaxation time curve such as that depicted in Figure 6.8. 

Figure 6.9 summarizes eq.(3.55) fitting results, in terms of average relaxation times (T2av) 

and pores diameter (2av), for all the PLLA scaffolds studied. It can be seen that when the 

de-mixing phase lasts 30 or 45 minutes, an increase of the de-mixing phase temperature 

implies an increase of the average relaxation time. On the contrary, no significant 

variation of the average relaxation time occur in the case of 60 minutes. For what concerns 

the average pores dimension (av), av increases with the de-mixing temperature for 45 

and 60 minutes while it decreases for 30 min. In any case, av spans between about 50 
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and 80 m and these values are less than that pertaining to the reference system (Blue-

red dot in Figure 6.9). The values of the different av have been deduced by eq.(3.54) 

fitting to the experimental data shown in Figure 6.10 – 12. 

 

Figure 6.9: Average relaxation times T2av and pores diameter av for the studied PLLA 

scaffolds. Black-red dot and Blue-red dot indicate, respectively, the average relaxation 

time and pore diameter of the reference scaffold. While horizontal axis reports the de-

mixing phase temperature, legend reports the duration of the de-mixing step. In all cases, 

relaxivity M (the parameter accounting for the effect of surface on proton relaxations) is 

around 0.03 m/ms. 

 

Figure 6.10: Dependence of the apparent water self-diffusion coefficient in the hydrogel 

(Dapp) on the square root of the diffusion time td (37°C) for a de-mixing time of 30 and 

three different temperatures. 
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These figures report the dependence of the apparent water self-diffusion coefficient Dapp 

on the square root of the diffusion time td for the different PLLA scaffold considered.  

 

Figure 6.11: Dependence of the apparent water self-diffusion coefficient in the hydrogel 

(Dapp) on the square root of the diffusion time td (37°C) for a de-mixing time of 45 minutes 

and three different temperatures. 

 

 

Figure 6.12: Dependence of the apparent water self-diffusion coefficient in the hydrogel 

(Dapp) on the square root of the diffusion time td (37°C) for a de-mixing time of 60 minutes 

and two different temperatures. 
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Figures 6.10 – 6.12 make clear that the reference system is characterised by the highest 

values of Dapp, this being connected with the biggest average dimension of its pores. 

Once the average relaxation times and the average pores diameter (see Figure 6.9) are 

known, eqs. 3.55-3.59 allow the conversion of relaxation times into pores size distribution 

as shown, for the different scaffolds, in Figures 6.13 – 6.15.  

 

Figure 6.13: Pore size distribution referring to the scaffolds characterised by a 30 

minutes de-mixing and three temperatures (25 -30 – 35 °C). 

 

 

Figure 6.14: Pore size distribution referring to the scaffolds characterised by a 45 minutes 

de-mixing and three temperatures (25 -30 – 35 °C). 
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Figure 6.15: Pore size distribution referring to the scaffolds characterised by a 60 

minutes de-mixing and three temperatures (25 -30 – 35 °C). 

 

We can see that, in general, three different classes of pores are present in the studied 

PLLA scaffolds. It is worth to notice that, for a de-phasing step of 30 min (Figure 6.13), 

the main difference between the reference system and the systems at 25°C, 30°C and 

35°C consists in a considerable increase of the smallest pores that pass from about 10% 

in the reference system up to 40%-75% in the other scaffolds. Consequently, the biggest 

pores abundance decreases from 45% (reference system) down to 20%-30% in the other 

scaffolds. Thus, although the average pores diameter is not so different for the reference 

system and the other scaffolds (see Figure 6.9), the pore size distribution is considerable 

different and this can reflect on the cells growth and proliferation. On the contrary, when 

the de-mixing phase lasts 45 minutes, the difference between the reference system and 

the other scaffolds takes place mainly on the reduction of the dimension of the biggest 

pores (400 m, reference system). Indeed, the first two classes of pores (around, 

respectively, 20 and 90 m) remain similar. Finally, in the case of a de-mixing phase of 

60 min, the most important difference takes place for what concerns the biggest pores 

(around 350 m) whose abundance goes down to about 15%  when, instead, fo the 

reference system this class of pores represents about 45% of all pores. Again, this aspect 

can affect cells growth and proliferation inside the PLLA scaffold. 
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In order to produce a cross-linked collagen-GAGs matrix, a protocol found in literature, 

that allows the conjugation of the two biological molecules, was utilized. The protocol 

provides the combination of micro-fibrillar collagen type I solubilized in 0.02 N acetic 

acid and GAGs solubilized in distilled water in a volumetric ratio 90:10, followed by a 

process that allows to increase the number of covalent intra- and inter-molecular bonds 

between collagen and GAGs (cross- link). Once established the protocol for the matrix 

GC synthesis, a method for CG matrix formation within porous PLLA scaffolds was 

developed. The collagen was placed within the scaffolds by immersing them in a large 

volume of micro-fibrillar type I collagen, at a known concentration, solubilized in 0.02 N 

acetic acid for 24 hours, in order to allow the process of diffusion of the collagen into the 

scaffold. Then, the scaffold was freeze-dried and subjected to the process of thermal 

cross-link, preferred to chemical both for the absence of chemical reagents, and for the 

easiness of the technique. The presence of collagen within the PLLA scaffold was verified 

by comparing the scanning electron microscope micrographs of collagen treated and not 

treated scaffolds (Figure 6.16). 

 

  

Figure 6.16: SEM micrographs of the PLLA scaffold without (A) and with (B) the 

collagen matrix. 

 

Several attempts were carried out in order to identify a method that would allow a 

homogeneous diffusion of the GAG molecules into the scaffold and their subsequent 

crosslinking to the collagen matrix. The best result was attained through the injection into 

the scaffold of a solution of GAGs, at the same concentration of collagen, followed by a 

freeze-drying and a thermal cross-link. The SEM micrographs of the functionalized 

scaffolds in the latter way (Figure 6.17) show that also in this case the outer surface (A), 

A B 
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is completely covered forming a dense network of collagen. Also in the cross-sections 

(B), an abundant network formed by the matrix was detected. 

  

  

Figure 6.17: SEM micrographs of the PLLA-collagen-GAG. External surface (A); 

cross section (B); Collagen-GAGs matrix (C and D) 

 

Figure 6.17C and 6.17D show micrographs at high magnification of the micro-fibrils of 

the matrix embedded in the scaffold. It is possible to observe that, also in this case, the 

fibrils are covered by the GAGs particles, leading to suppose that the conjugation GAG-

collagen occurred also within the scaffold. 

In order to confirm the improvement (in terms of cellular adhesion and proliferation) of 

the PLLA-Collagen-GAGs scaffold, preliminary cell culture tests were carried out. The 

results, reported in Figure 6.18, confirmed a faster cell proliferation in CG scaffolds, 

especially in the early stages after the seeding. Specifically, the number of viable cells 

into the PLLA-collagen-GAG scaffold was, approximately, 1.5 that of pure PLLA and 

PLLA-collagen up to the third day of culture, thus indicating a better level of adhesion 

and consequently of the proliferation into the device. 

A B 

D C 
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Figure 6.18: Viability and growth of mouse embryonic fibroblasts into the PLLA-

collagen-GAG scaffolds. While horizontal axis reports the days elapsed from cells 

seeding, vertical axis report absorbance that is proportional to the number of viable cells. 
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7 Conclusions 

 

Tissue engineering (TE), involving the use of living cells and extracellular components 

from either synthetic and natural polymers, aims to regenerate tissues and restore or 

replace deteriorating or aging biological structures.  

The present PhD project focused its attention on the determination of some important 

micro and nano structural characteristics of polymeric matrices intended for biomedical 

applications. In particular, the attention was focused on the application of the Low-Field 

Nuclear Magnetic Resonance (LF-NMR), a fast and non destructive technology used in 

food and polymeric companies to study homogeneous (i.e. not porous) and porous 

polymeric matrices. In particular, the first part of this work was dedicated to the 

characterization of homogeneous gels such as guar gum/ guar gum borax and alginate 

pluronic F127 hydrogels.  

One of the most interesting homogeneous matrix studied was that composed by alginate 

and pluronic F127. The joint use of rheology, low and high field NMR allowed to 

understand the structural characteristics of this gel intended for the prevention of 

restenosis according to the endoluminal gel paving approach. This study revealed that 

pluronic micelles, organizing in cubic crystalline domains, impose, upon alginate 

crosslinking, the formation of meshes bigger than that occurring in the pluronic free 

alginate network. Nevertheless, there still exist smaller alginate meshes that can just host 

un-structured pluronic micelles and water. Accordingly, pluronic presence gives origin to 

an inhomogeneous structure formed by big meshes (filled by crystalline pluronic) where 

the diffusion of a solute is considerably hindered and smaller meshes where solute 

diffusion is faster. This aspect can be very interesting from the delivery point of view as 

it should roughly imply a two stages release kinetics: an initial fast stage followed by a 

slow one. The combination of the first stage, due to drug presence in the crystalline PF127 

filled meshes (big ones), and the second, due to the drug presence in the crystalline PF127 

pluronic free meshes (small ones), should guarantee an optimal balance between fast and 

slow release. Indeed, previous simulations indicated that the combination of a fast and a 

slow release stages is the desired release kinetics to get an almost constant drug 

concentration in the artery wall. 
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In the second part of the work, the attention shifted on porous systems, typically used as 

scaffolds for regenerative medicine and tissue engineering. Indeed, low field NMR 

provides interesting information about the size distribution of matrix pores, this being a 

key parameter for cells growth. It is well know that cells can grow on condition that pores 

are sufficiently wide (typically around 100 microns in diameters). In order to demonstrate 

the reliability of this technique, different systems were studied. One of the most 

interesting porous system studied was composed by coffee seeds. The knowledge of water 

content in green coffee is of great importance to produce a quality cup, especially when 

dealing with espresso coffee. Thus, a deep understanding of the distribution of water 

molecules and their interactions with the macromolecules of the solid green bean matrix 

could explain the inaccuracies of the standard methods of quantification. In addition, it 

would help to build clear protocols to improve quality control. In the case of the coffee 

seeds, the estimation of pores diameter according to low field NMR approach 

demonstrated that the coffee seeds pores are interconnected. The comparison between 

LF-NMR results and SEM picture tells us the LF-NMR results are reasonable even if the 

bigger estimated pores (around 200 m) seem to be attributable to water on the rough 

surface of coffee seeds (open pores). Another porous system studied was a strong gel 

composed by bacterial cellulose and acrylic acid gels. This hydrogel has good muco-

adhesive characteristics, an ideal requisite to deliver intestinal targeted drugs. In 

particular, we found that the majority of the hydrogel volume (81%) is represented by 

micrometric pores filled by water and only 19% of the hydrogel volume is represented by 

polymeric meshes swollen by water. While pores diameter spans from about 10 m to 

100 m and the majority of pores lies between 30 and 90 m, the mean polymer mesh 

size is around 3 nm. In addition, the estimation of pores phase tortuosity (~ 2.3) seems to 

indicate a complex architecture where big pores are not directly connected (in this case 

the tortuosity should be lower and not so far from 1), but communicate via a series of 

interconnected smaller pores. 

Finally, the last part of the research activity was dedicated to explore the possibility to 

use LF-NMR to study porous scaffolds. In particular, two different types of scaffolds 

were considered:  

 Alginate/Hydroxyapatite scaffolds 

 PLLA scaffolds. 
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Undoubtedly, one of the most important results reached in this research activity was 

connected to the characterization of alginate - hydroxyapatite scaffold intended for 

osteocytes growth in the bone regeneration frame. Indeed, it was possible observing the 

temporal evolution of the pore size distribution of the scaffold without and with seeded 

cells. Interestingly, it was observed that while the temporal evolution of pores size, for 

what concerns smaller pores (< 100 m), is similar for scaffolds hosting or not living 

cells, a different behavior was observed for bigger pores. Indeed, in this case, the presence 

of cells made the time evolution of the pores size different from what occurred in the 

scaffolds cells free. This seems reasonable as the effect of cell growth should be evident 

only in bigger pores while, in smaller pores, where cells access is more difficult, cells 

effect should be less evident if not negligible. 

In light of the tests performed and the considerations made, it can be stated that the LF - 

NMR is a powerful method for the structural characterization of both porous and 

homogeneous polymeric matrices. In addition, LF – NMR has the considerable advantage 

of being used also for the monitoring of structures containing living cells as it does not 

damage cells. On the contrary, other widely used and powerful techniques such as ESEM 

or micro – CT, cannot be used to follow the time evolution of cells containing structure 

as they would lead to cells death. 

Undoubtedly, for what concerns porous systems, the best results provided by LF – NMR 

can be obtained when the nature of the solid system component is clearly different from 

that of the swelling fluid. While this is the case of systems such as coffee seeds, it is not 

always true for polymeric systems characterized by wide pores. 


