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Abstract. A theorem by Bell and Meyer says that a stable and tran-

sitive Cantor set in the plane can be approximated by periodic points.

We prove that the periodic points can be chosen with index one. As a

consequence these Cantor sets are always persistent invariant sets.
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1. Introduction

Cantor sets often appear as invariant sets of planar homeomorphisms. Well

known examples are the Bernoulli shift in Smale’s horseshoe, Aubry-Mather

sets in non-integrable twist maps or adding machines obtained as sections of a

solenoid. Some concrete constructions can be found in [1, 3, 6]. In general we

will consider a homeomorphism h : R
2 −→ R

2 and a Cantor set Λ ⊂ R
2 with

h(Λ) = Λ.

In this paper homeomorphisms are understood as surjective maps, so that

h(R2) = R
2. Also, to avoid trivialities, it will be assumed that Λ is transitive.

This means that for some p ∈ Λ,

Lω(p, h) = Λ,

where Lω(p, h) is the corresponding ω-limit set. A Cantor set is a compact,

perfect and totally disconnected metric space. All Cantor sets are homeomor-

phic but they can support many different transitive dynamics. In the examples

mentioned above one can find chaos, Denjoy dynamics or almost-periodicity.
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An invariant set Λ ⊂ R
2 is stable (in the sense of Lyapunov) if each neighbor-

hood U of Λ contains another neighborhood V such that

hn(V ) ⊂ U for every n ≥ 1.

In [2], Bell and Meyer obtained a remarkable result: in the plane, stable Cantor

sets are never isolated, in fact they can be approximated by periodic points lying

outside Λ. The purpose of our paper is to prove that these periodic points have

non-zero index. Here we refer to the fixed point index that can be expressed in

terms of Brouwer’s degree. As a consequence we will prove that stable Cantor

sets are persistent as invariant sets. An invariant compact set Λ is persistent if,

given any positive ε > 0, there exists δ > 0 such that for any homeomorphism

h̃ : R
2 −→ R

2 with

‖h(x) − h̃(x)‖ ≤ δ

for each x ∈ R
2, there exists a compact set Λ̃ ⊂ R

2 such that

h̃(Λ̃) = Λ̃ and DH(Λ, Λ̃) ≤ ǫ.

The symbol DH refers to the Hausdorff distance between compact subsets of

the plane. In our result, Λ̃ will be composed by periodic points derived from

the properties of degree. Summing up we can say that stable Cantor sets in

the plane are simultaneously non-isolated and persistent. This is in contrast

with the properties enjoyed by stable finite sets. At the end of the paper

we will present an example of a fixed point that is stable and non-persistent.

The structure of the paper is as follows. The main theorem on index and a

corollary on persistence are stated in Section 2. The proofs of both results

are presented in Section 3. Finally, in Section 4 we discuss some connections

with the literature. To finish this introduction we notice that an example

constructed in [2] shows that our results do not admit a direct extension to

higher dimensions.

2. Main results

Given a Jordan curve Γ ⊂ R
2, the bounded component of R

2\Γ will be indicated

by Γ̂. Brouwer’s degree in the plane will be denoted by d[f,G, 0] where G ⊂ R
2

is a bounded and open set and f : cl(G) −→ R
2 is a continuous function defined

on the closure of G. We must also assume that f does not vanish on ∂G, the

boundary of G. We recall two properties of the degree that will be employed

later,

i) existence of zeros: the function f has at least one zero on G if d[f,G, 0] 6=0,
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ii) continuity of the degree: there exists η > 0, depending on f , such that

if g : cl(G) −→ R
2 is a continuous function with

‖f(x) − g(x)‖ ≤ η

for each x ∈ ∂G, then g does not vanish on ∂G and d[g,G, 0] = d[f,G, 0].

We refer to [10] for more information on degree theory. Given a continuous

function φ : cl(G) −→ R
2, the fixed point index is defined as the degree of

f = id − φ. The zeros of f are precisely the fixed points of φ.
We will prove that the existence of a stable Cantor set has strong consequences

on the fixed point index of the map hN = h ◦
(N)
· · · ◦h. Notice that the fixed

points of hN are the periodic points of h whose minimal period is a divisor

of N .

Theorem 2.1. Assume that h : R
2 −→ R

2 is a homeomorphism and Λ is

an invariant Cantor set that is stable and has a transitive point. Then for

every δ > 0 and p ∈ Λ there exist a Jordan curve Γ = Γ(δ, p) and an integer

N = N(δ, p) ≥ 1 such that the following properties hold,

DH(Γ, {p}) ≤ δ, hN (x) 6= x if x ∈ Γ, d[id − hN , Γ̂, 0] = 1.

The existence property of the degree implies that each region Γ̂(δ, p) contains

a periodic point. This implies that Λ can be obtained as a limit of periodic

points.

Theorem 2.2. (Bell and Meyer) In the assumptions of Theorem 2.1 and given

p ∈ Λ, there exist a sequence of points {xn} in R
2 and integers σ(n) ≥ 1 such

that

xn −→ p and hσ(n)(xn) = xn.

The persistence of Λ will be deduced from the continuity of the degree.

Corollary 2.3. In the assumptions of Theorem 2.1, the set Λ is persistent.

3. Proofs

The proof by Bell and Meyer in [2] is based on a well known fixed point theorem

due to Cartwright and Littlewood. This theorem deals with orientation pre-

serving homeomorphisms and it has been extended to the orientation reversing

case by Bell. We will employ a strategy similar to that in [2] but without

making use of this fixed point theorem. Instead we will use the following result

which is a consequence of Brouwer’s theory on translations arcs.
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Lemma 3.1. Assume that Ω ⊂ R
2 is an open and simply connected set and let

H : Ω −→ Ω be an orientation preserving embedding. In addition, assume that

H has a recurrent point that is not fixed. Then there exists a Jordan curve

Γ ⊂ Ω such that H(x) 6= x if x ∈ Γ and

d[id − H, Γ̂, 0] = 1.

Let us recall that an embedding is a continuous and one-to-one map. In

contrast to homeomorphisms, embeddings are not necessarily onto, that is

H(Ω) ⊂ Ω. For this reason, orbits are well defined for the future but not

necessarily for the past. The embedding is orientation-preserving if

d[H,B, y] = 1,

where y is any point in H(Ω) and B is an open ball centered at H−1(y).

Given any embedding H, the second power H2 = H ◦H is always orientation-

preserving. This is well known and follows from the properties of the degree of

a composition of maps, see for instance [10].

By a recurrent point x∗ ∈ Ω we mean a point such that Hσn(x∗) → x∗ for

some increasing sequence of positive integers {σn}. Notice that the sequence

{Hn(x∗)}n≥0 could be unbounded.

Proof of Lemma 3.1. This is a well known result and we refer to [4, 8, 9] for the

case of homeomorphisms. The proof for the case of embeddings is similar. We

sketch it. Since Ω is homeomorphic to R
2 we can restrict to the case Ω = R

2.

For this reduction we are using the invariance of the fixed point index under

topological conjugation. This is again a consequence of the properties of the

degree of a composition.

Let C be a connected component of R
2 \ Fix(H) containing the recurrent

point x∗. We can find a small and closed disk D centered at x∗ and such

that D ⊂ C and D ∩ H(D) = ∅. This is possible because x∗ is not fixed.

From [15, Chapter 3, Proposition 20] we know that H(D) is contained in C.

The recurrence of x∗ allows us to obtain an integer σ ≥ 2 such that y∗ = Hσ(x∗)

belongs to the interior of D. The points x∗ and y∗ lie on D and so it is possible

to apply [15, Chapter 3, Proposition 17] to deduce the existence of a translation

arc α containing x∗ and y∗. In consequence, y∗ belongs to α ∩ Hσ(α) and

Brouwer’s Arc Translation Lemma is applicable. An adaptation to embeddings

of the proof by Brown of this lemma can be found in [15].

We will also use the following result on minimal homeomorphisms.

Lemma 3.2. Assume that K is a compact metric space and φ : K −→ K is a

minimal homeomorphism. Then, for each integer N ≥ 1, the set

RN = {k ∈ K : k ∈ Lω(k, φN )}

is dense in K.
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We recall that φ is minimal if every point is transitive; that is, Lω(k, φ) = K
for each k ∈ K.

Proof. First of all we prove that RN is non-empty. The existence of minimal

sets for general homeomorphisms implies that there exists a non-empty compact

set M ⊂ K that is minimal for φN . This means that φN (M) = M and if N is

a compact subset of M with φN (N) = N then either N = ∅ or N = M . In

particular, the set Lω(m,φN ) has to coincide with M for each m ∈ M. This

implies that M is contained in RN . The second observation is that RN is

invariant under φ. This is easily checked and leads to the identity φ(cl(RN )) =

cl(RN ). The minimality of φ implies that cl(RN ) = K.

We need two more lemmas. The setting and the assumptions correspond

to those of the main theorem.

Lemma 3.3. The restricted homeomorphism hΛ : Λ −→ Λ is minimal.

Proof. This is a particular case of [5, Lemma 2] but we present the proof for

completeness. Assume by contradiction that h is not minimal on Λ. Then

there exists a point p ∈ Λ such that the limit set Lω(p, h) is a proper subset

of Λ. Let us fix another point q ∈ Λ \ Lω(p, h). The compact sets Lω(p, h)

and {q} can be separated by two open sets U and V of R
2. Since Λ is totally

disconnected they can be chosen so that

• Λ ⊂ U ∪ V ,

• cl(V ) ∩ cl(U) = ∅,

• Lω(p, h) ⊂ U ,

• q ∈ V .

Let V∗ be the connected component of V containing q. Notice that this is also

a component of the larger set U ∪ V . The stability of Λ implies the existence

of an open set W ⊂ R
2 satisfying that

Λ ⊂ W ⊂ U ∪ V, hn(W ) ⊂ U ∪ V

for each n ≥ 2. Let W∗ be the connected component of W containing p. By

assumption we know that Λ contains a transitive point. All the points in

the orbit will be transitive and therefore we know that transitive points are

dense in Λ. Let r ∈ Λ be a transitive point close enough to p in order to

guarantee that r ∈ W∗. Let (σn) be an increasing sequence of positive integers

with hσn(r) −→ q. This implies that hσn(r) belongs to V∗ for large n and so

hσn(W∗) ∩ V∗ 6= ∅. Since hσn(W∗) is a connected subset of U ∪ V we conclude

that it must be contained in one component. Hence hσn(W∗) ⊂ V∗. Finally, we
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observe that the iterates hσn(p) belong to hσn(W∗) ⊂ V∗ and therefore Lω(p, h)

has to contain a point in cl(V∗). This is a contradiction with the conditions

imposed on U and V .

The last lemma needs some preliminary remarks on the topology of R
2.

Given an open set G in R
2, the set Ĝ ⊂ R

2 is the smallest open and simply

connected set containing G. We refer to [14] for an elementary construction

of this set. In [2], this set Ĝ is called the topological hull of G. In fact its

construction is purely topological and this explains the property h(Ĝ) = ĥ(G).

Lemma 3.4. Given a point p ∈ Λ and a disk D centered at p, there exists an

integer N ≥ 1 and an open and simply connected domain Ω ⊂ R
2 satisfying

that

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Proof. Since Λ is totally disconnected it is possible to find open sets A and B
in R

2 satisfying that

p ∈ A ⊂ int(D),

Λ ⊂ A ∪ B,

cl(A) ∩ cl(B) = ∅.

The open set A∪B is a neighborhood of Λ and the stability of this set implies the

existence of another open set V ⊂ R
2 with Λ ⊂ V ⊂ A∪B and hn(V ) ⊂ A∪B

if n ≥ 1. Define W =
⋃

n≥0 hn(V ). This is also a neighborhood of Λ satisfying

Λ ⊂ W ⊂ A ∪ B and hn(W ) ⊂ W if n ≥ 1.

Let G be the connected component of W containing p. This component has to

be contained in A, and hence in D. In consequence Ĝ is also contained in D.

We know by Lemma 3.3 that the limit set Lω(p, h) is the whole Cantor set Λ.

From here we deduce that p ∈ Lω(p, h) and there exists an integer N ≥ 1

such that hN (p) belongs to G. This implies that G ∩ hN (G) 6= ∅. But hN (G)

is a connected set inside W and so it must be contained in one component

of W . This component is obviously G. From hN (G) ⊂ G we obtain that

hN (Ĝ) = ĥN (G) ⊂ Ĝ and the set Ĝ is the searched domain Ω.

Proof of Theorem 2.1. We fix p ∈ Λ and a disk D of radius δ > 0. From

Lemma 3.4 we obtain a simply connected domain Ω ⊂ R
2 and an integer

N ≥ 1 with

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Consider the orientation preserving embedding H = h2N : Ω −→ Ω. We know

from Lemmas 3.3 and 3.2 that the set

R2N = {q ∈ Λ : q ∈ Lω(q, h2N )}
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is dense in Λ. In consequence we can find a point lying in Ω∩R2N . This point

is recurrent for H and Lemma 3.1 applies.

Proof of Corollary 2.3. We fix ε > 0. The stability of Λ as an invariant set of

h guarantees the existence of δ∗ > 0 such that

dist(x,Λ) ≤ δ∗ =⇒ dist(hi(x), Λ) ≤
ε

2

for each i ≥ 0. In particular, δ∗ ≤ ε
2 . Since Λ is compact it can be covered

by a finite number of open balls B1, ..., Bk of radius δ∗ and centered at points

p1, ..., pk lying in Λ. Next we apply Theorem 2.1 at each pi to find Jordan curves

Γ1,...,Γk and integers N1, ..., Nk ≥ 1 such that Γj ⊂ Bj and d[id−hNj , Γ̂j , 0] =

1, j = 1, ..., k. Define K =
⋃k

j=1(Γj ∪ Γ̂j) and N = max{N1, ..., Nk}.

We consider the family F1 composed by homeomorphisms h̃ : R
2 −→ R

2

satisfying

‖h − h̃‖∞ := sup
x∈R2

‖h(x) − h̃(x)‖ ≤ 1.

We need some properties of the iterates of h̃ which are common to the whole

family F1.

Claim 1: There exists a compact set K∗ ⊂ R
2 such that

h̃i(K) ⊆ K∗

for all i = 0, 1, ..., N and for each h̃ ∈ F1.

Let C0 > 0 be a large number so that K is contained in the ball of radius C0

centered at the origin. By induction, we define

Ci+1 = 1 + max
‖x‖≤Ci

‖h(x)‖, i ≥ 0.

We claim that

‖h̃i(x)‖ ≤ Ci if x ∈ K.

Indeed, using the induction method,

‖h̃i+1(x)‖ ≤ ‖h̃(h̃i(x)) − h(h̃i(x))‖ + ‖h(h̃i(x))‖

≤ ‖h̃ − h‖∞ + max
‖x‖≤Ci

‖h(x)‖.

Claim 2: Given ∆ > 0 there exists δ2 > 0 such that h̃ ∈ F1 and ‖h− h̃‖∞ ≤ δ2

implies that ‖hi(x) − h̃i(x)‖ ≤ ∆ if x ∈ K, i = 1, ..., N.
In view of Claim 1 we can find a modulus of continuity for h on K∗. This

means a function ω : [0,∞[−→ R with limr→0+ ω(r) = 0 and

‖h(x) − h(y)‖ ≤ ω(‖x − y‖) if x, y ∈ K∗.
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Define Di = maxx∈K ‖h̃i(x) − hi(x)‖. Then, by induction, we prove that

Di+1 ≤ ‖h̃ − h‖∞ + ω(Di), i = 1, ..., N − 1

and the claim follows easily. Notice that

‖h̃i+1(x) − hi+1(x)‖ ≤ ‖h̃(h̃i(x)) − h(h̃i(x))‖ + ‖h(h̃i(x)) − h(hi(x))‖.

After these claims we are ready to prove the existence of Λ̃. First we apply the

continuity of the degree to find positive numbers η1, ..., ηk such that if

‖hNj (x) − h̃Nj (x)‖ ≤ ηj , x ∈ Γj ,

then

d[id − h̃Nj , Γ̂j , 0] = d[id − hNj , Γ̂j , 0] = 1.

Next we apply Claim 2 with ∆ = min{ ǫ
2 , η1, ..., ηk} and find δ2 ∈]0, δ∗[ such

that the conclusion of the claim holds if ‖h− h̃‖∞ ≤ δ2. The existence property

of the degree allows us to select points x̃j ∈ Γ̂j such that h̃Nj (x̃j) = x̃j . The

set

Λ̃ = {h̃i(x̃j) : j = 1, ..., k, 0 ≤ i < Nj}

is finite and invariant under h̃. It remains to prove that DH [Λ, Λ̃] ≤ ǫ. Assume

first that p is a point in Λ. Since Λ is covered by B1, ..., Bk we find an index j
such that p ∈ Bj . The ball Bj also contains the point x̃j . In consequence,

dist(p, Λ̃) ≤ ‖p − x̃j‖ ≤ 2δ∗ ≤ ǫ.

Consider now a point in Λ̃, say h̃i(x̃j). From

dist(x̃j , Λ) ≤ ‖x̃j − pj‖ ≤ δ∗,

we deduce that

dist(hi(x̃j), Λ) ≤
ǫ

2
.

Hence, using Claim 2 and this estimate, if ‖h − h̃‖∞ ≤ δ2,

dist(h̃i(x̃j), Λ)≤ ‖h̃i(x̃j) − hi(x̃j)‖ + dist(hi(x̃j), Λ)

≤
ǫ

2
+

ǫ

2
.
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4. Miscelaneous remarks

4.1. Invariant finite sets can be stable and non-persistent

A finite and invariant set Λ has to be composed by periodic points. We consider

the simple case of a singleton Λ = {p} and present an example of a stable fixed

point that is not persistent as invariant set.

Consider the map

h : C −→ C

h(z) = z exp

(
iy

1 + |z|2

)

with z = x + iy. We have expressed it in complex notation but for many

purposes it is more convenient the use of polar coordinates,

h :

{
θ1 = θ + r

1+r2 sin θ ,

r1 = r .

It is not hard to prove that h is a real analytic diffeomorphism of the plane.

We also observe that every disk of the type |z| ≤ constant is invariant under

h and so the fixed point z = 0 is stable. An useful property of h is that

V (z) = ℜe z = x is a Lyapunov function. This means that

V (h(z)) ≤ V (z)

for each z ∈ C. Let us now consider the perturbed map hε = Tε ◦ h where

Tε(z) = z − ε is a horizontal translation with ε > 0. Again V is a Lyapunov

function with

V (hε(z)) = V (h(z)) − ε ≤ V (z) − ε.

More generally, if n ≥ 1,

V (hn
ε (z)) ≤ V (z) − nε

and so all the orbits for hε are unbounded. This shows that hε has no compact

invariant sets. Since ‖h− hε‖∞ = ε, the maps h and hε are close and Λ = {0}
is not persistent.

Incidentally, we notice that the set of fixed points Fix(h) is the real axis and

so z = 0 is not an isolated fixed point. This is no surprise because stable

fixed points are persistent as soon as they are isolated in Fix(h). This is a

consequence of the main result in [7]: if h : R
2 −→ R

2 is an orientation-

preserving homeomorphism and p = h(p) is a stable fixed point which is isolated

in Fix(h), then

d[id − h, Γ̂, 0] = 1
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for each Jordan curve Γ ⊂ R
2 with Γ̂ ∩ Fix(h) = {p}, Γ ∩ Fix(h) = ∅. The

case of orientation-reversing homeomorphisms was treated by Ruiz del Portal

in [16].

4.2. Unstable Cantor sets can be isolated and

non-persistent

With the help of a Denjoy homeomorphism on S
1, it is possible to construct

homeomorphisms h : R
2 −→ R

2 having a unique fixed point p∗ and an invariant

Cantor set Λ. In addition, the limit set of any point x ∈ R
2 is either the fixed

point, Lω(x, h) = {p∗}, or the Cantor set, Lω(x, h) = Λ. In particular, Λ is

minimal. The details of the construction can be found in [11]. The map h has

not periodic points and this implies that

d[id − hN , Γ̂, 0] = 0

for any N ≥ 1 and any Jordan curve Γ ⊂ R
2 such that p∗ lies in the exterior,

that is, p∗ 6∈ Γ ∪ Γ̂. This example shows that the conclusion of Theorem 2.1

does not hold if we drop the stability assumption. In the example constructed

in [11], the fixed point was placed at the origin, p∗ = 0, and the Cantor set

was inside the unit circumference, Λ ⊂ S
1. Moreover the Euclidean norm

V (x) = ‖x‖ was a Lyapunov function satisfying

V (h(x)) < V (x)

if x ∈ R
2\(Λ∪{0}). Consider the perturbed homeomorphism hε = Dε ◦h, with

ε > 0 and

Dε(x) =





(1 − ε)x, if ‖x‖ ≤ 2 ;

(1 − 3ε + ε‖x‖)x, if 2 ≤ ‖x‖ ≤ 3 ;

x, if ‖x‖ ≥ 3 .

Then ‖hε − h‖∞ = 2ε and

V (hε(x)) < V (x)

if x ∈ R
2\{0}. La Salle’s invariance principle implies that the origin is a global

attractor for hε. This shows that Λ is not persistent.

The dynamics of hΛ in the preceding example is of Denjoy type, a case that

can be excluded if Λ is stable. The reason for this exclusion lies in a result

by Buescu and Stewart [5] implying that stable Cantor sets are conjugate to

adding machines. The family of adding machines is composed by certain ex-

plicit maps describing all possible almost periodic dynamics on a Cantor set.

Denjoy dynamics is presented in [13] as the prototype of minimal dynamics

that is not almost periodic and so it is not conjugate to an adding machine.
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4.3. Adding machines cannot be isolated

In [17], Thomas obtained a result on the dynamics of solenoids in 3D flows

that can be adapted to a 2D discrete setting for adding machines. Assume

now that h : R
2 −→ R

2 is a C1 diffeomorphism that is orientation-preserving

and has an invariant Cantor set Λ such that hΛ is almost periodic. Then it is

possible to construct a T -periodic differential equation in the plane such that

h is the Poincaré map. See [12] for an explicit construction. In this way, we

obtain a C1 flow on the manifold M = (R/TZ)×R
2 and the results in [17] are

applicable. The closure of the orbit starting at any point of Λ is a solenoid

S ⊂ M and [17, Theorem 3] implies that S is not isolated as an invariant set

of the flow. The invariant sets accumulating on S must intersect the global

section M0 = {0} × R
2 and so Λ cannot be isolated as an invariant set of h.

Notice that the result by Bell and Meyer does not follow from [5] and [17]

because in principle one could find invariant sets without periodic points. The

smoothness of h was needed in [17] to work with a smooth isolating block. At

the end of that paper it is mentioned that the smoothness hypotheses can be

weakened. It seems reasonable to expect that the previous discussion can be

extended to homeomorphisms. We do not know if the conclusion of Bell and

Meyer is also valid when the assumption of stability for Λ is replaced by almost

periodicity.
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