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Introduction

The thesis has been focused on the design and analysis of a novel semi-implicit and semi-
Lagrangian Discontinuous Galerkin method for the rotating shallow water equations
(SISLDG in the following), as a first step in the context of a more ambitious project
to develop a new generation, non-hydrostatic, DG based, dynamical core for regional
atmospheric modelling. More specifically, the resulting method should improve the
numerical discretizations presently employed in RegCM ( see Giorgi (1990) ).

The shallow water equations actually contain all of the horizontal operators required
in a three-dimensional atmospheric model and thus usually represent a necessary first
test for new numerical schemes. The techniques proposed here are non-standard in
the framework of Discontinuous Galerkin Methods (DG) methods for time dependent
problems. Indeed, DG based dynamical cores are very appealing for their accuracy and
flexibility, but a critical issue in their application to the numerical solution of CFD
problems at low Froude/Mach numbers is represented by the stability limitation on the
maximum allowable time step that can be used in practical computations. For example,
for Runge-Kutta-DG schemes, stability is proved in Cockburn and Shu (1989) provided
that the following CFL condition holds

|c|∆t
h
<

1
2k + 1

,

where k is the polynomial degree and c the celerity of the fastest propagating waves.
Therefore, in order to avoid that the choice of the maximum permissible time step is
governed by considerations of stability rather than accuracy, especially having in mind
high order approximations, it was decided not to follow the standard way of applying DG
to time dependent problems as proposed e.g. in several papers by Cockburn and Shu.
Instead, an approach was considered that has already been quite successfully exploited
in finite differences (for example in Robert (1982), or Casulli (1990)) and finite elements
(for example in Staniforth and Temperton (1986), or Miglio et al. (1999), or Le Roux
et al. (1999), or Giraldo (2005)) frameworks, but, up to now, not fully explored within
the DG context. The chosen and novel approach consists in coupling the spatial DG
discretization with a combination of Semi-Implicit (SI) and Semi-Lagrangian (SL) time
discretizations. This approach is justified by the encouraging results found by other
authors in attempts at coupling DG with either SI (for example Restelli and Giraldo
(2009)) or SL time discretizations (e.g. Restelli et al. (2006) ).

The main original results of this thesis work can be summarized as follows:

• the effects of different element choices for the velocity-pressure pairs on the stabil-
ity of the approximate solution have been investigated by numerical experiments,
showing that mixed orders Qk −Qk−1 velocity-pressure pairs (structured meshes
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of quadrilaterals are employed) work better then equal order ones, for which clear
instabilities arise. Benefits on the stability from the use of mixed order velocity-
pressure pair instead of Qk − Qk for DG were proved for the Stokes problem
(Toselli (2002), Schötzau et al. (2003)), but the fact that typical atmospheric flow
regimes are characterized by small Froude/Mach numbers suggested the exten-
sion of the same strategy to SWE too. Moreover, this mixed order choice for
the pressure-velocity pair can be regarded as the DG analogue of staggering in
the finite difference framework ( see e.g. Winninghoff (1968), Arakawa and Lamb
(1977) ).

• A simple p-adaptivity criterion has been employed, that allows to adjust dynam-
ically the number of local degrees of freedom employed to the local structure of
the solution. This goal has been achieved thanks to the flexibility of the DG
spatial discretization and of the orthogonality property of the Legendre polyno-
mial basis. As demonstrated by the one-dimensional and two-dimensional numer-
ical experiments, p-adaptivity strategy employed is quite effective in reducing the
computational cost, while being sufficiently simple and robust to be applied to
complete climate and NWP models, where the physical parametrizations present
in the source terms make it difficult to perform rigorous a posteriori error analysis.

• Thanks to the choice of ’stable’ mixed order velocity-pressure pairs, after stan-
dard L2 projection against test functions (chosen equal to the basis functions as
in Direct Characteristic Galerkin scheme, see Morton et al. (1988)), and after
integration by parts (where necessary), centred numerical fluxes were used to re-
place the (not-defined) traces of the solution at the inter-element boundaries, as in
Bassi and Rebay (1997b). Moreover, the size of the final fully discrete problem was
reduced by expressing the discrete velocity components in terms of the discrete
free surface elevation from the momentum equations and then substituting the
resulting expressions into the continuity equation, (as customary in SI methods,
see e.g. Casulli and Greenspan (1984), Staniforth and Temperton (1986), Tem-
perton and A.Staniforth (1987), Casulli and Cheng (1990), Casulli (1990), Casulli
and Cattani (1994) ), to obtain a single discrete Helmholtz equation in the free
surface elevation unknown only, which takes the form of sparse ( penta-diagonal
in one-dimension, trideca-diagonal in two dimensions) block non symmetric linear
system, which is solved via GMRES iteration.

• To fully exploit the power of semi-Lagrangian approach, the proposed SWE solver
has been coupled with a SLDG passive tracers advection scheme in flux form
(which is the extension of the scheme of Restelli et al. (2006)), whose properties
in terms of conservation of constants (C-property, see e.g. Gross et al. (2002)
) and compatibility with the continuity equation have been investigated . The
p-adaptive treatment has been extended in independent way for each different
passive tracer. As a result, the changes in the number of degrees of freedom
are totally independent for each species, thus allowing to increase the accuracy for
some specific variable without increasing the computational cost for other variables
that do not need refinement.

• The proposed approach has been implemented in a modular FORTRAN95 code.
The 1D implementation first developed has been used as template for the 2D
implementation on Cartesian meshes.
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The code has been used to perform a number of tests in order to analyse the stabil-
ity and accuracy properties of the novel SISLDG method. Numerical results in the
framework of one dimensional test cases prove that proposed the method captures
accurately and effectively the main features of linear gravity and inertial gravity
waves, as well as reproduces correct solutions in non-linear open channel flow tests
and in all rarefaction Riemann problem. The effectiveness of the SISLDG method
is also demonstrated by numerical results obtained at high Courant numbers and
with automatic choice of the local approximation degree.

Numerical results in the framework of two-dimensional test cases show the effec-
tiveness of the p-adaptivity strategy employed, as in the test of Smolarkiewicz, as
well as the ability of well capture gravity waves also in two dimensions. Moreover
the SLDG discretization for the advection has been already tested on a vector of
an arbitrary number of tracers.
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Chapter 1

The rotating shallow water
equations

In this chapter the basics of the physical model employed in this thesis
are summarized, namely the shallow water equations (SWE). SWE
contain all the horizontal operators required in an atmospheric model
and thus represent a good first test for newly proposed methods for
atmospheric models.

1.1 Model background

For this model consider a sheet of fluid with constant and uniform density ρ ( see
Pedlosky (1987)). The height of the surface of the fluid above the reference level z = 0
is η(x, y, t). We model the gravity body force as gη with atmosphere and ocean in
mind: g is a vector directed perpendicular to the z = 0 surface, or g can be said to
be anti-parallel to the vertical axis. The rotation axis of the fluid is the z−axis in
this model. In this case the Coriolis parameter is f = 2Ωsinϕ, ϕ being the latitude,
since Ω = Ωk. the rigid bottom is defined by the surface z = b(x, y). Hence the
total depth of the fluid is given by h(x, y, t) = η(x, y, t) − b(x, y), see fig. 1.1. The
velocity has components u, v, w in the x, y and z axis respectively. Though the pressure
of the fluid surface can be arbitrarily imposed, for this model it will be assumed to be
constant. Lastly the fluid is assumed inviscid, in other words, only the motions for
which viscosity is not important are considered. In this model, because the depth of
the fluid, h(x, y, t) = η(x, y, t)− b(x, y), varies over time or space, let H be the average

Figure 1.1: Notation for the shallow flow over a non-flat bottom.
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10 CHAPTER 1. THE ROTATING SHALLOW WATER EQUATIONS

depth of the fluid; H characterizes the vertical scale of the motion also. Let L be the
characteristic horizontal scale for the motion. Then a fundamental condition which will
characterize shallow water theory will be the thin sheet assumption

δ :=
H

L
� 1 (1.1)

which is also called hydrostatic approximation with long wavelengths (see Gill (1987))
.

The shallow water model contains several of the important dynamical features of the
atmosphere and ocean while being simple enough to be easily understood: therefore it
represents usually the starting point for the development of new dynamical cores.

The major physical difference between this model and the reality is the absence
of density stratification that is present in the real fluid such as earth’s atmosphere or
oceans. The hydrostatic approximation also allows ρ to vary with z, but we will consider
ρ constant for this model. Recalling the equation of motion for rotating fluids ( Haltiner
and Williams (1980)), we have:

du

dt
= −1

ρ
∇∇∇p− 2Ω× u+ g + F (1.2)

where d
dt is the Lagrangian derivative:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
=

∂

∂t
+ uH · ∇∇∇H ,

g is the sum of gravitational and centrifugal forces per unit mass, while F is the force (
per unit mass ) due to friction. In the shallow water model we will be neglecting both
g (except in the vertical direction) and F because under the assumption of shallow
water theory they are much smaller in magnitude than the Coriolis forces. Thus in our
assumptions, the momentum equation reduces to:

du

dt
= −1

ρ
∇∇∇p− 2Ω× u− gk (1.3)

1.2 The rotating shallow water equations in primitive
variables: advective form

There are several formulations in which the shallow water equations can be written:
primitive variable formulation, vorticity divergence formulation or formulations using
stream function and velocity potential (see, for example, Haltiner and Williams (1980)).

It is well known that straightforward finite-difference and finite-element discretiza-
tions of the shallow water equations, written in their primitive (u − v) form, can lead
to energy propagation in the wrong direction for the small scales ( Schoenstadt (1980),
Williams (1981), Coté et al. (1990)). This usually manifests itself as noise at the small-
est scales and reduced accuracy. Two solutions to this problem have been proposed in
the past literature. The first solution is to define the dependent variables on grids that
are staggered with respect to one other (Arakawa (1966)), while the second is to use the
governing equations in their differentiated (vorticity-divergence) form (Staniforth and
Mitchell (1977), Williams and Zienkiewicz (1981)).
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Figure 1.2: Local Cartesian coordinates. The x-axis is into the plane of the paper.

Since we are going to choose a semi-Lagrangian treatment of the advection together
with, moreover, a suitable mixed order discontinuous finite element formulation, we will
be able to use the primitive variable form of the shallow water governing equations,
without have problems of noise at smallest scales ( as showed in chap 6) . Therefore
in the following the derivation of shallow water equations in primitive variable form is
summarized.

There are different ways in which shallow water equations can be derived, for example
via asymptotic expansions (Stoker (1957)) or via depth integration (Gill (1987)). Now
we follow this second way.

We start by notice that the assumption of incompressibility and constant density
decouples the dynamics from the thermodynamics (see e.g. Pedlosky (1987)); moreover
the equation of mass conservation reduces to

∇∇∇ · u = 0.

Now before to pass to an estimate of the order of magnitude of various terms in
the governing equations let us expand it in component form, hence let us fix a frame of
reference .

Large-scale geophysical flow problems should be solved using spherical polar coordi-
nates. If, however, the horizontal length scales are much smaller than the radius of the
earth (6371km), then the curvature of the earth can be ignored, and the motion can be
studied by adopting a local Cartesian system on a tangent plane (see fig. 1.2).

On this plane we take an xyz coordinate system, with x increasing eastward, y
northward, and z upward. The corresponding velocity components are u (eastward), v
(northward), and w (upward).

Then in this coordinate system the continuity equation takes the form:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.4)
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Now the first two terms of this equation are of order U
L , where U can be considered

the characteristic scale for the horizontal velocity. It the follows that the scale for the
vertical velocity (W ) is smaller than or equal to the order δ · U . This represents an
upper bound for the vertical velocity, and it can be smaller than order δ · U if there
is cancellation between ∂u

∂x and ∂v
∂y . In conclusion, since by the thin sheet assumption

δ � 1, the continuity equation states:

W � U (1.5)

Regarding the momentum equation 1.3, we start by rewriting the Coriolis term. The
earth rotates at a rate

Ω = 2πrad/day = 0.73× 10−4s−1

around the polar axis, in an counterclockwise sense looking from above the north pole.
From fig, 1.2, the components of angular velocity of the earth Ω in the local Cartesian
system are:

Ωx = 0
Ωy = Ωcosθ
ωz = Ωsinθ

then the Coriolis force (per unit mass) takes the form:

2Ω× u = 2Ω [(wcosθ − vsinθ)i+ usinθj − ucosθk]

In the term multiplied by i we can use the condition wcosθ � vsinθ, that directly
follows from (1.5). Then the three components of the Coriolis force (per unit mass)
reduce to

(2Ω× u)x = −(2Ωsinθ)v = −fv
(2Ω× u)y = (2Ωsinθ)v = fu

(2Ω× u)z = −(2Ωcosθ)u

where we have defined the Coriolis parameter

f := 2Ωsinθ

The vertical component of the Coriolis force, namely 2Ωcosθ, is generally negligi-
ble compared to the dominant terms in the vertical equation of motion, therefore the
momentum equation (1.3), in component form, reduces to:

∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z - fv = − 1
ρ
∂p
∂x

U
T

U2

L
U2

L
UW
H fU P

ρL
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z - fv = − 1
ρ
∂p
∂y

U
T

U2

L
U2

L
UW
H fU P

ρL
∂w
∂t + u∂w∂x + v ∂w∂y + w ∂w

∂z = − 1
ρ
∂p
∂z −g

W
T

UW
L

UW
L

W 2

H
P
ρH g
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where each term has the order of magnitude written immediately below it in terms
of the characteristic scales where T is the characteristic scale for time and P is the
characteristic scale for the pressure field.

From this scale analysis and from the incompressibility condition (1.4), the last
equation reduces to the hydrostatic approximation

∂p

∂z
= −ρg +O(δ2)

from which follows that the pressure p can be written as :

p(x, y, z, t) = −ρgz + π(x, y, t)

or, in particular (see fig. 1.1)

p(x, y, z, t) = ρg(−z + η(x, y, t)) + p0,

( p0 being the uniform ambient pressure on the free surface) then the horizontal pressure
gradient is independent of z.

As a result, if the right hand side of the horizontal momentum equation is indepen-
dent of z, then the left hand side also must be independent of z, therefore:

∂u

∂z
=
∂v

∂z
= 0,

hence the horizontal momentum equations reduce to :

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
(1.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂η

∂y
(1.7)

Finally let us rewrite the continuity equation (1.4) as :

∂w

∂z
= −

(
∂u

∂x
+
∂v

∂y

)
then, integrating in dx from the bottom (z = −b(x, y)) up to the free surface (z =
η(x, y, t)), we have

w(η(x, y, t)) = w(b(x, y))−
(
∂u

∂x
+
∂v

∂y

)
(η − b)

. Finally the boundary conditions of no normal flow at the bottom and at the free
surface require:

w(x, y, η(x, y, t)) =
∂η

∂t
+ u

∂b

∂x
+ v

∂b

∂y
(1.8)

w(x, y, b(x, y)) = u
∂b

∂x
+ v

∂b

∂y
(1.9)
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that inserted in the previous equation gives:

∂η

∂t
+
∂(u(η − b))

∂x
+
∂(v(η − b))

∂y
= 0

In conclusion we derived the rotating shallow water equation system governing the
unknowns η, u, v :

∂η

∂t
+
∂(uh)
∂x

+
∂(vh)
∂y

= 0

Du

Dt
= −g ∂η

∂x
+ fv (1.10)

Dv

Dt
= −g ∂η

∂y
− fu

where D
Dt is the Lagrangian derivative

D

Dt
:=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y



Chapter 2

The discontinuous Galerkin
method

In this chapter we review the basic formulation of the Discontinuous
Galerkin (DG) method for the solution of partial differential equa-
tions. As prototype problem the solution of the Laplace equation is
considered. In sect. 2.1 a brief introduction to the key features of DG
methods is outlined, then in sect 2.2 the discontinuous finite element
spaces are defined, for which proper bases are illustrated in sects. 2.3,
2.4. Finally the DG technique is illustrated onto a test problem given
by the Laplace equation in section 2.5

2.1 Introduction

Discontinuous Galerkin methods are finite element methods based on completely dis-
continuous finite element spaces, i.e. allowing for discontinuous fields at the element
interfaces of the discretization. These methods combine different features commonly
associated to finite element and to finite volume methods. As in classical finite element
method, in fact, accuracy is obtained by means of high-order polynomial approximation
within an element rather than by wide stencils as in the case of finite volume schemes.
On the other hand DG methods rely on the introduction of suitable numerical fluxes ( to
approximate the traces of the functions on the inter-element interfaces of the discretiza-
tion ), like in finite volume schemes. In other words the order of discontinuous Galerkin
methods, applied to problems with regular solutions, depends on the degree of the ap-
proximating polynomials only, which can easily be increased, dramatically simplifying
the use of high order methods both on structured and unstructured meshes. Further-
more the stencil of most discontinuous Galerkin schemes is minimal, in the sense that
each element communicates only with its direct neighbours, this compactness property
of DG methods having clear advantages in parallelization, which does not require ad-
ditional element layers at partition boundaries. In addition to this, the communication
at element interfaces is identical for any order of the method which simplifies the use of
methods of differing orders in adjacent elements. This flexibility property of DG meth-
ods allows for the variation of the order the numerical scheme over the computational
domain, dramatically simplifying the implementation of p-adaptivity strategies.

15



16 CHAPTER 2. THE DISCONTINUOUS GALERKIN METHOD

We start the presentation of DG methods from the diffusion equation since its dis-
cretization represents the prototype for the SISLDG technique we will develop in chapter
(5.3) for the SWE (4.1). Even if it may appear surprising that we took advantage from
the discretization of an elliptic problem to study an hyperbolic one, this is not the case
since, at discrete level, the two problems share many aspects, especially if we consider
that, in order to reduce the computational effort, we have in mind to perform the sub-
stitution, again at discrete level, of velocity degree of freedom in terms of free surface
elevation into the continuity equation, to end up with a discrete Helmholtz equation in
the free surface elevation only.

2.2 Discontinuous finite element spaces

Equations (4.1) will be solved on a domain which is not an arbitrary open bounded
connected subset of R2, but has the form Ω = (a, b)× (c, d) with appropriate initial and
boundary conditions. The domain Ω is partitioned in N non overlapping quadrilateral
elements KI , I = 1, . . . , N whose width is denoted by (∆xI ,∆yI) and such that Ω =⋃N
I=1KI . We denote the domain partition as Th = {KI : I = 1, . . . , N} , where h =

maxI(diamKI). The center of the generic element KI is denoted by (xI , yI) while
(xI±1/2, yI±1/2) denote its corners. The four edges of the element KI are labelled as
e1,I , e2,I , e3,I , e4,I (see figure). It is immediate that each KI is the image of the master
element K = [−1, 1] × [−1, 1] via the affine local map FI , such that x = FI,1(ξ) =
ξ∆xI/2 + xI , y = FI,2(η) = η∆yI/2 + yI . For a non-negative integer p, we denote by
Qp the set of all polynomials of degree less or equal to p in each coordinate on K. We
will also define

Qp(KI) =
{
w : w = v ◦ F−1

I , v ∈ Qp
}

For each I, we denote by the non-negative integer pI the local polynomial degree
on KI and by the non-negative integer sI the local Sobolev index and we set p =
{pI : I = 1, . . . , N}, s = {sI : I = 1, . . . , N} and F = {FI : I = 1, . . . , N}, respectively.
We then consider the finite element space:

V DGh ≡ Sp(Ω, Th,F ) =
{
v ∈ L2(Ω) : v|KI ◦ F−1

I ∈ QpI I = 1, . . . , N
}

Given the partition Th, we associate to it the broken Sobolev space of composite index
s, defined by:

Hs(Ω, Th) :=
{
v ∈ L2(Ω) : v|KI ◦ F−1

I ∈ HsI (K) I = 1, . . . , N
}
,

equipped with the broken Sobolev norm

‖v‖s,Ih =
( N∑
I=1

‖v‖2HsI (KI)

) 1
2
.

When sI = s for all I = 1, . . . , N , we shall write

Hs(Ω, Th), ‖v‖s,Th .

We will denote by Eh the set of all element boundary edges, which is naturally decom-
posed as Eh = Eh,int ∩ Eb, where Eh,int denotes the element boundary edges that belong
to ( the interior of ) Ω and Eb = ∂(Ω). Functions in Hs(Ω, Th) are in general discon-
tinuous across element boundaries. Thus, it is convenient to define jump and average
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operators on each inter-element edge. For a given edge e ∈ Eh,int there exist two ele-
ments K,K ′ ∈ Th such that e = ∂K ∩ ∂K ′, hence for each point x ∈ e and vh ∈ V DGh ,
being n∂K,e the restriction of n∂K on the edge e ⊂ ∂K we can thus define

{{vh}} (x) =
1
2

(
vh|K(x) + vh|K′(x)

)
(2.1)

[[vh]] (x) = vh|K(x)ne,∂K + vh|K′(x)ne,∂K′ . (2.2)

Notice that these definitions, following Cockburn and Shu (1991) and Arnold et al.
(2002), in particular the definition of jumps, are symmetric with respect to the two
elements K,K ′sharing the boundary point at which the jump is defined .

While if e ∈ Eh,b then there exists a unique K ∈ Th such that e ∈ ∂K and hence we
set

{{vh}} (x) = vh|K(x) (2.3)
[[vh]] (x) = vh|K(x)ne,∂K . (2.4)

Finally we define mesh related (or broken) gradient and divergence operators. We
define broken operators by restrictions to each element κ ∈ Th as follows.

The broken gradient operator ∇h : H1(Th)→
[
L2(Th)

]2 is defined by:

(∇hv)|κ := ∇(v|κ), κ ∈ Th

for v ∈ H1(Th), where (∇v)i := ∂xiv, i = 1, 2.
The broken divergence operator ∇h· :

[
H1(Th)

]2 → L2(Th) is defined by:

(∇h · τ)|κ := ∇ · (τ |κ) κ ∈ Th

for τ ∈
[
H1(Th)

]2, where (∇ · τ) :=
∑

1≤i≤d ∂xiτi
As usual in finite element methods, the choice of the finite-dimensional subspaces

for the approximation of the velocity-pressure pair is a crucial issue. In our context, the
role of the pressure will be played by the free surface elevation. In that sense, we follow
results for incompressible flows (for example see Toselli (2002) and Schötzau et al. (2003)
for the Stokes problem) where has been proven that Qp−Qp−1 pairs are not only inf —
sup stable with respect to the mesh-size, but they are also uniformly stable with respect
to the polynomial degree p. We will denote the bases of the local polynomial spaces as
{ψI,l}(pI+1)2

l=1 . In principle, either Lagrangian or hierarchical bases could be employed.
We will work mostly with hierarchical bases because they provide a natural environment
for the implementation of a p−adaptation algorithm, see for example Zienkiewicz et al.
(1983).

2.3 Hierarchical bases vs. Lagrangian bases in one
dimension

In this section the concepts of modal and nodal polynomial expansions are introduced
and the associated hierarchical and Lagrangian bases illustrated. Following Karni-
adalis and Sherwin (2005), to illustrate the difference between a modal and a nodal
polynomial expansion we introduce three expansion sets denoted by ΦAk (x), ΦBk (x) and
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ΦCk (x), k = 0, . . . , p in the region Ωref = [−1, 1]. All of these sets are a basis for the set
of polynomials up to order p on Ωref and are defined as:

ΦAk (x) = xk, k = 0, . . . , p

ΦBk (x) =

∏p
i=0,i6=k(x− xi)∏p
i=0,i6=k(xk − xi)

, k = 0, . . . , p

ΦCk (x) = Lk(x), k = 0, . . . , p
where x0, . . . , xp are p+ 1 fixed nodes on Ωref and Lk(x) is the k−th Legendre polyno-
mial, defined recursively by the three-term recurrence relation:

Lk+1(x) =
2k + 1
k + 1

xLk(x)− k

k + 1
Lk−1(x), k = 1, 2, . . .

L0(x) = 1, L1(x) = x. (2.5)

The shape of these functions can be seen in fig 2.1-2.3.
The first basis simply increases the order of x in a monomial fashion and is called

hierarchical since the basis of cardinality p− 1 is contained within the basis of order p.
There is a notion of hierarchy in the sense that higher-order bases are built from the
lower order bases, i.e.

{ΦAk }
p−1
k=0 ⊂ {Φ

A
k }

p
k=0

The second polynomial basis {ΦBk }
p
k=0 is a Lagrange polynomial basis which is iden-

tified by p + 1 nodal points {xj}pj=0 which are chosen beforehand and could be, for
example, equispaced in the interval Ωref . The Lagrange polynomials {ΦBk }

p
k=0 build a

non-hierarchical bases for Qp(Ωref ) in the sense that

{ΦBk }
p−1
k=0 6⊂ {Φ

B
k }

p
k=0

because they are p+ 1 polynomials of order p, but instead they are called a nodal basis
in the sense that the expansion coefficients of a given function f ∈ Qp(Ωref ) over the
basis {ΦBk }

p
k=0 can be interpreted in terms of the approximate values of f at the nodes

{xj}pj=0. This follows directly from the property (consequence of the definition of ΦBk )
ΦBk (xj) = δk,j where δk,j represents the Kronecker delta:

f(xj) =
p∑
k=0

f̂kΦBk (xj) =
p∑
k=0

f̂kδkj = f̂j

Finally the Legendre polynomial basis {ΦCk }
p
k=0 is a hierarchical basis for Qp(Ωref )

that is also called modal since the expansion coefficients over such a basis have the
physical interpretation of frequency components of the function to be represented over
the φBk . Moreover the Legendre polynomial basis {ΦCk }

p
k=0, by definition, has another

important property that is the orthogonality (in the L2 inner product) :

(Lp, Lq)L2 :=
∫ 1

−1

Lp(x)Lq(x)dx =
2

2p+ 1
δpq.

Notice that this orthogonality property has important numerical implications for the
Galerkin method since not only makes diagonal all the mass matrices but also because
it gives in general improved conditioning of the discrete matrices (see Karniadalis and
Sherwin (2005) or Zienkiewicz et al. (1983) for details).

Other examples of hierarchical bases are given by the wavelets basis, where the
concept of hierarchy is naturally contained in the notion of Multi-Resolution-Analysis
on which rely all definitions of wavelets.
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Figure 2.1: Monomial bases functions ΦAk for k = 0, 1, 2, 3, 4.

Figure 2.2: Lagrange polynomial bases functions ΦBk for k = 0, 1, 2, 3, 4.

Figure 2.3: Legendre polynomial bases functions ΦCk for k = 0, 1, 2, 3, 4.



20 CHAPTER 2. THE DISCONTINUOUS GALERKIN METHOD

2.4 Tensor product bases

The extension to higher dimension within quadrilateral regions is relatively straightfor-
ward, if rather more involved than the one-dimensional case discussed in section 2.3. we
start by defining the two-dimensional reference element (on which each element KI ∈ Th
will be remapped):

Ωref = {−1 ≤ ξ1, ξ2 ≤ 1}.
Since this reference element is trivially defined by a standard Cartesian coordinate
system, the most natural and straightforward way to construct the two-dimensional
basis is by taking a product of the one-dimensional basis, which can be thought of
as one-dimensional tensors. Hence tensor basis in two dimensions we shall denote the
polynomial bases {ϕkl(ξ1, ξ2)}kl (where ξ1, ξ2 are the standard Cartesian coordinates)
that can be defined in terms of product of one-dimensional functions or tensor product,
for example :

ϕkl(ξ1, ξ2) = Φk(ξ1)Φl(ξ2)

Notice that this type of extension may be applied equally well to either the modal- or
nodal- type basis, indeed no distinction has been made between these two forms in this
section.

2.5 DG methods for the diffusion equation

Following Arnold et al. (2002) we consider the elliptic model problem:

−∆u = f in Ω, u = 0 on ∂Ω.

Departing from Arnold et al. (2002) we consider in this section periodic boundary condi-
tions only, in order to simplify the presentation. As a results if we call Γint = ∪e∈Einth

e,
we have that ∂Ω ⊂ Γint. The problem is rewritten as first order system trough the
introduction of the auxiliary variable σ:

σ = ∇u, −∇ · σ = f, u = 0 on ∂Ω.

Now assuming u ∈ H2(Th) and σ ∈ [H1(Th)]2 we multiply first and second equation
by test functions τ ∈ [H1(Th)]2 and v ∈ H1(Th), respectively, integrate over a element
κ ∈ Th, integrate by parts and finally sum over all elements κ ∈ Th. Thus we get the
system flux formulation:∫

Ω

σ · τdx = −
∫

Ω

u∇h · τdx+
∑
κ∈Th

∫
∂κ

ûτ · nds ∀τ ∈
[
H1(Th)

]2
, (2.6)∫

κ

σ ·∇hvdx =
∫
κ

fvdx+
∑
κ∈Th

∫
∂κ

σ̂ · nds ∀v ∈ H1(Th). (2.7)

where n is the unit outward normal vector to ∂κ. Notice that since u and σ may
be discontinuous across inter-element faces ∂κ ∈ E inth , they must be replaced by single
valued numerical flux functions û : H1(Th) → T (Th) and σ̂ : H2(Th) ×

[
H1(Th)

]2 →
[T (Th)]2, where T (Th) :=

∏
κ∈Th L

2(∂κ), which are approximations of u and σ on E inth .
Depending on the particular choice of the numerical flux functions û and σ̂, several

different DG discretizations can be derived, each with specific properties with respect
to stability and accuracy.
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Notice that equations (2.6)-(2.7) represent a first order system in u and σ with
3 as many unknowns as the original (scalar) problem in u. In order to reduce the
problem in size, the auxiliary variable σ is usually eliminated to gain the so called
primal formulation involving the primal variable u only (a second integration by parts
in (2.6) is required):

find u ∈ H2(Th) such that

B̂h(u, v) =
∫

Ω

fvdx ∀v ∈ H2(Th),

where the bilinear form B̂h(·, ·) : H2(Th)×H2(Th)→ R is defined by

B̂h(u, v) :=
∫

Ω

∇hu ·∇hvdx−
∑
κ∈Th

∫
∂κ

σ̂ · nds+
∑
κ∈Th

∫
∂κ

(û− u)n ·∇hvds. (2.8)

Notice that the bilinear form has been denoted by B̂h (and not by Bh) as it includes
the (still unspecified) numerical fluxes û and σ̂. Furthermore, B̂h includes - through
the specification of û and σ̂ on the boundary ∂Ω- all boundary data terms.

Finally note that B̂h in (2.8) is an element-based bilinear form, i.e. it is given in
terms of

∑
κ

∫
∂κ

. This means that each interior face e ∈ E inth occurs twice in the sum
over all elements κ, ( once in

∫
∂κ

and once in
∫
∂κ′

for κ′ 6= κ end e = ∂k ∩ ∂k′). Now
we transfer the element the element-based bilinear form into a face-based bilinear form,
i.e. we rewrite B̂h in terms of

∫
Γint

, where each interior face occurs only once. After
straightforward computations (see Hartmann (2008) for details ) we get the following
face-based primal form:

B̂h(u, v) =
∫

Ω

∇hu ·∇hvdx+
∫

Γint
([[û− u]] · {{∇hv}} − {{σ̂}} · [[v]])ds+

+
∫

Γint
({{û− u}}[[∇hv]]− [[σ̂]]{{v}})ds. (2.9)

Up to now the numerical fluxes û and σ̂ are still unspecified. Here some choices are
written, defining some DG methods, viz. SIPG (Symmetric Interior Penalty Galerkin),
NIPG (Non-symmetric Interior Penalty Galerkin) and BO(Baumann-Oden method):

SIPG : ûh = {{uh}}, σ̂ = {{∇huh}} − CIP
p2

h
[[uh]]

NIPG : ûh = {{uh}}+ nκ · [[uh]], σ̂ = {{∇huh}} − CIP
p2

h
[[uh]]

BO : ûh = {{uh}}+ nκ · [[uh]], σ̂ = {{∇huh}}

Following again Arnold et al. (2002), the discretizations derived above are written in
unified form as follows:

find uh ∈ Vh such that:

Bh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

where

Bh(u, v) =
∫

Ω

∇u ·∇vdx+∫
Γint

θ[[u]] · {{∇v}}+ (δ[[u]]− {{∇u}}) · [[v]]ds.
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and the constants θ and δ are given by:
SIPG: θ = −1, δ > 0
NIPG: θ = 1, δ > 0
BO: θ = 1, δ = 0

In the following we investigate the experimental order of convergence in the L2 norm
of the SIPG (θ = −1) and NIPG (θ = 1) discretizations, where we choose the constant
δ according the following (see Hartmann (2008)):

Theorem 1 (A priori error estimate) Let c ∈ Hp+1 be the exact solution to Poisson’s
equation in Ω with Dirichlet homogeneous B.C. Furthermore let ch ∈ V dh,p be the solution
to :

Bh(ch, vh) = Fh(vh) ∀vh ∈ V dh,p
where Bh(ch, vh) is given as in (2.10)with θ = −1 (SIPG) or θ = 1(NIPG) and δ =
CIP

p2

h , CIP > C0
IP (C0

IP = 0 for NIPG, C0
IP > 0 for SIPG)

then
‖c− ch‖L2(Ω) ≤ Chp+1|c|Hp+1(Ω) for SIPG

‖c− ch‖L2(Ω) ≤ Chp|c|Hp+1(Ω) for NIPG

As model problem we considered the Poisson equation in one dimension with Ω =
(a, b) and forcing function chosen so that the analytical solution is given by u(x) =
sin(2π x−ab−a ). We imposed periodic boundary conditions. Figure 2.4-2.5 plots the L2

norm of the error against the number of element used.

Figure 2.4: Order of convergence of SIPG in L2 norm
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Figure 2.5: Order of convergence of NIPG in L2 norm

Once we have computed the DG discretization of the diffusion operator, we used it
also to integrate its time-dependent counterpart given by the heat equation: after DG
space semidiscretization we get the following problem (matrix formulation):

M
dc

dt
(t) +Ac(t) = f(t)

where:

• M = mass matrix is diagonal

• A = stiffness matrix is block-tridiagonal

• c = vector of the modal coefficients of the approximate solution

A θ-method has implemented for the time integration:

M
ck+1 − ck

∆t
+A

(
θck+1 + (1− θ)ck

)
= θfk+1 + (1− θ)fk

where:

• θ = 0 = Explicit Euler (EE)

• θ = 1 = Implicit Euler (IE)

• θ = 0.5 = Crank-Nicolson (CN)
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Figure 2.6: Computed solution of the heat equation in one dimension (SIPG discretiza-
tion in space) at times t = 0, t = 5s, t = 30s.

Taking advantage from this well structured sparsity pattern of the DG space semidis-
cretization, two Krylov-family linear solver has been implemented where only the non-
zero blocks of the stiffness matrix are stored:

• PCG for implicit SIPG time-step

• PmGMRES for implicit NIPG time-step

Results of the implicit time integration of homogeneous heat equation (SIPG) with
Gaussian initial profile are collected in table 2.1 (where the exact solution has been
computed analytically via convolution with the heat kernel on R) for two different
time stepping, i.e. Implicit Euler (IE), and Crank-Nicolson (CN), while a plot of the
computed solution at successive times is given in figure 2.6.

∆t ‖error(t = 1)‖L2forIE ‖error(t = 1)‖L2forCN
4e-2 2.333e-4 9.047e-7
2e-2 1.173e-4 2.147e-7
1e-2 5.882e-5 4.780e-8
5e-3 2.945e-5 9.672e-9

Table 2.1: L2 norm of the final error for IE and CN time integration coupled with
high order SIPG space discretization with data: a = −100, b = 100, nelem = 400, t0 =
0, Ttot = 1.0, poldegree = 8



Chapter 3

The semi-Lagrangian time
discretization technique

Since in this work the semi-Lagrangian technique is used to treat ad-
vective terms of the dynamical equations in meteorology, the advection
equation only will be considered in this chapter. In particular in sec-
tion 3.2 and 3.3 the two key steps of any semi-Lagrangian scheme are
addressed, i.e. respectively, the foot of the trajectories computation
and the advected quantities interpolation at such a points . Then two
different forms of the advection equation are integrated in the context
of a DG space discretization i.e. the quasilinear form (sect. 3.4), which
will be used in our SISLDG method to discretize the advective terms
in SWE, and the flux form, that has been used to design a conservative
tracers advection scheme, which has been coupled with the SISLDG
SWE solver.

3.1 Introduction

The numerical modelling of the advection is an ubiquitous issue in atmospheric problems,
for a review see e.g. Rood (1987). The fundamental property of the advection equation
that makes it more difficult to model than parabolic or elliptic equations is that this
equation permits the formation and maintenance of fronts (shocks). The fact that
numerical mechanisms that cause shock fronts are similar to the mechanisms that cause
numerical instability makes it difficult to write absolutely stable advection schemes for
long-time integrations.

Discretization schemes based on semi-Lagrangian treatment of advection have ex-
cited considerable interest in the past three decades for the efficient integration of
weather forecast models, since they offer the promise of allowing larger time steps (with
no loss of accuracy) than Eulerian-based advection schemes (whose time-step length
is overly limited by considerations of stability ); for a review see Staniforth and Coté
(1991).

The key idea behind semi-Lagrangian time-integration is to combine the regular res-
olution property of Eulerian schemes and the enhanced stability property of Lagrangian
ones, by following (backward in time) different sets of particles at each time step: the

25
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sets of particles arriving exactly at the points of a regular Cartesian mesh at the end of
the time step are tracked backward in time (see fig 3.1).

Therefore, independently of the type of spatial discretization one has in mind, any
semi-Lagrangian method reduces the approximation of the advection equation to per-
forming the two following key steps:

1. at a given time level, compute for each mesh point x (that will be a grid node in
finite difference or a quadrature node or a element edge in Galerkin type methods)
the foot x∗ at time tn of the trajectory of the particle arriving in x at time tn+1;

2. evaluate the advected variable at time level tn at the point x∗ ,that in general does
not belong to the mesh, therefore interpolation is usually required at this stage.

In the following two sections, it will be discussed how the solution of each of these
steps can be implemented so as to achieve the greatest accuracy and efficiency in the
resulting numerical method.

Figure 3.1: Schematic for two time level semi-Lagrangian advection.

Before to continue the discussion, let us remember that most of semi-Lagrangian
schemes are based on discretizations over either two time levels (e.g. Bates and McDon-
ald (1977), McDonald and Bates (1987)) or three time levels(e.g. Robert (1981), Robert
(1982), Staniforth and Temperton (1986)). Two-time-level schemes have, in principle,
several virtues: they are simpler to code, make fewer demands on computer memory
(particularly important if we have in mind to combine them with a demanding space
discretization like DG) and have no time computational modes. Furthermore they are
potentially twice as efficient as three-time-level leapfrog based schemes, in fact these
last schemes require time-steps half the size of two-time level ones in order to achieve
the same level of time truncation error. Other advantages of two-time-level schemes
over three-time level ones are showed in Temperton and A.Staniforth (1987).Therefore
in the following we will concentrate on two-time-level semi-Lagrangian schemes.

3.2 Trajectory approximation techniques

Given a point x ∈ Ω, the problem of finding the point x∗ such that a fluid particle
placed in x∗ at time tn will be transported by the advective velocity field u : Ω ×
[0, T )→ R2 to arrive exactly at point x at time tn+1, is equivalent to find the solution
x∗ = X(tn; tn+1,x) of the following backward Cauchy problem for a vector ODE:
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{
d
dtX(t; tn+1,x) = u

(
X(t; tn+1,x), t

)
X(tn+1; tn+1,x) = x

. (3.1)

It is important to notice that the solution of (3.1) requires, in general, knowledge of
the velocity field u at points which do not belong to the space-time computational mesh.
For application to realistic models, this implies that some interpolation or in some cases,
as far as the time dependence is concerned, some extrapolations are necessary.

Traditionally, three main strategies have been proposed and implemented for the
approximation of the problem (3.1) of the particle trajectories computation:

• sub-stepping with explicit ODE solvers;

• fixed point iteration approach;

• Taylor expansion of the parametric representation for the trajectory.

The sub-stepping with explicit ODE solvers is perhaps the most natural way to tackle
the problem, being (3.1) a system of ordinary differential equations. This trajectory
method has been quite popular in the finite element and coastal modelling community,
see e.g. Pironneau (1982), Casulli (1990), Quarteroni and Valli (1994), Miglio et al.
(1999), although applications to atmospheric models have are also reported in the lit-
erature, see e.g. Bonaventura (2000), Giraldo (2000). Since in general trajectories are
not straight, a key issue for this family of methods is the choice of the time sub-step
∆τ = ∆t

N (where ∆t is the time we have to go back along the trajectory); furthermore,
whenever the Courant number is larger than one, in order to guarantee that the ap-
proximated trajectories do not cross each other, a shorter time sub step has to be used
in general for their approximation, (see e.g. for details Rosatti et al. (2005)) .

The simplest strategy one can imagine is to use a backward Euler scheme where,
since (3.1) is non-linear, we linearise it in time by using the velocity at time tn to
compute X(tn; tn+1); then (3.1) is discretized backward as:

x(k−1) = x(k) −∆τu(x(k), tn) k = N,N − 1, . . . , 1. (3.2)

An other possible option to go back along trajectories is given by more accurate
Runge-Kutta schemes. If we set sk := tn+1 − k∆τ , for example, for second order
accuracy one has to compute for k = N,N − 1, . . . , 1

x(k− 1
2 ) = x(k) −∆τu(x(k), sk)

x(k−1) = x(k) − ∆τ
2

[
u(x(k− 1

2 ), sk −∆τ) + u(x(k), sk)
]

(3.3)

or, for third order accuracy

x(k− 1
3 ) = x(k) − ∆τ

3
u(x(k), sk)

x(k− 2
3 ) = x(k) − 2∆τ

3
u

(
x(k− 1

3 ), sk − ∆τ
3

)
x(k−1) = x(k) − ∆τ

4

[
3u(x(k− 2

3 ), sk − 2∆τ
3

) + u(x(k), sk)
]

(3.4)

Notice that in all the methods (3.2)-(3.4) we start from x(N) = x, while the desired
approximate solution x∗ = X(tn; tn+1,x) of (3.1) is given by x(0).
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In practical applications of the semi-Lagrangian technique, the advective velocity
field is also the output of a numerical method ( in our case of the SISLDG solver for
SWE), and the flow field is assumed to be sufficiently smooth. In this case, velocities at
intermediate time levels, such as u(y, sk), can be replaced by consistent extrapolations
from the values at previous time-steps without degrading the formal accuracy of the
method. Taking s ∈ [tn, tn+1], the appropriate extrapolation formula for the second
order scheme is given by

u(y, s) =
(

1 +
s− tn

∆t

)
u(y, tn)−

(
s− tn

∆t

)
u(y, tn−1)

and for the third order scheme by

u(y, s) =

[
1 +

3
2

(
s− tn

∆t

)
+

1
2

(
s− tn

∆t

)2
]
u(y, tn) +

−

[
2
(
s− tn

∆t

)
+
(
s− tn

∆t

)2
]
u(y, tn−1) +

+

[
1
2

(
s− tn

∆t

)
+

1
2

(
s− tn

∆t

)2
]
u(y, tn−2).

Notice that in many atmospheric applications the advective velocity field can be also
taken constant in time over the interval [tn, tn+1] and equal to its extrapolated value at
time tn + ∆t

2 , without degrading the effective accuracy of the method.
Furthermore, for each time sub-step k an interpolation must be performed in order to

compute the velocity at x(k) and at the other intermediate points. In this sense bilinear
interpolation is usually recognised to be sufficiently accurate (see e.g. Staniforth and
Coté (1991)) and piecewise linear interpolation has also been used with good results in
Casulli (1990) and Casulli and Cheng (1992). Therefore, each of the N sub-steps can
be performed at a low computational cost.

Regarding the second family of methods for the trajectories computation, the fixed
point iteration technique was introduced in its best known form in Robert (1981), al-
though an iterative technique had also been used in Mathur (1970). It is quite widely (if
not almost exclusively) the technique of choice in atmospheric modelling. Let us define
αm := xm−X(tn; tn+1,xm) the displacement travelled by the fluid particles during ∆t
when following the approximated space-time trajectory AC ′.

Then determine the foot X(tn; tn+1,xm) is equivalent to determine αm. To deter-
mine αm note that u evaluated at point B of fig. 3.2 is just the inverse of the slope of
the straight line A′C, and this gives the following O(∆t2) approximation Robert (1981):

αm = ∆tu(xm −αm, tn)

that can be iteratively solved with a fixed point method, for example with Picard iter-
ation:

α(k+1)
m = ∆tu(xm −α(k)

m , tn)

Note that the time at which the velocity field has been frozen for the purposes of the
trajectory computation is tn only in a three time level scheme, while in the context of a
two time level scheme (we have in mind), one should choose to take the velocity frozen
at tn+ 1

2 , which leads to the need for a time extrapolation in case the velocity fields
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Figure 3.2: Schematic for the three time level advection. actual (solid) curve and
approximated (dashed line) trajectories that arrive at mesh point xm at time tn + ∆t.
Here αm is the distance the particle is displaced in x in time ∆t

are only known up to time tn. The advantage of the iterative technique is that it is
unconditionally stable and that the iterations can be proven to converge under conditions
that are relatively mild for atmospheric flows, see e.g.Pudykiewicz and Staniforth (1984),
Smolarkiewicz and Pudykiewicz (1992).

Finally, the Taylor expansion technique was introduced instead by McGregor (1993)
for Cartesian grids and extended in Giraldo (1999) to triangular finite element grids.
It is based on the Taylor expansion in time of X(tn; tn+1,x) and on an approximate
reconstruction of the time derivatives involved. The advantage over the previous tech-
niques is that no interpolations or extrapolations are required. On the other hand, the
approximated time derivative require extra storage and the derivation of the approxi-
mation is entirely heuristic and not generally valid for arbitrary flows. Another possible
approach is that proposed by Purser and Leslie in Purser and Leslie (1994b), which
employs forward in time trajectories.

3.3 Interpolation techniques

The other key ingredient in the implementation of a semi-Lagrangian method is the
interpolation procedure employed in each time-step to reconstruct the solution values
at the departure point of the streamline. Most of the work on evaluation of interpolation
algorithms has been done for Cartesian grids, due to the context in which the methods
were developed. Linear interpolation produces quite diffusive solutions, as it will be
shown in section 6. In the case of one dimensional flow with Courant numbers smaller
than one, it is easy to see that in fact the upwind method is recovered. Quadratic
interpolation was used in Bates and McDonald (1977). Cubic Lagrange interpolation
was used already in Sawyer (1963) and cubic spline was first applied in Purnell (1975).
Cubic Lagrange interpolation was also used in the fundamental work of Robert Robert
(1981) Robert (1982) and analysed in Pudykiewicz and Staniforth (1984). This is the
interpolation technique most widely used in atmospheric applications. In general, it was
shown by McCalpin in McCalpin (1988) that different properties are obtained depending
on whether odd or even order polynomials are used in the interpolation. The so called
cascade interpolation method was also proposed by R.J. Purser in Purser and Leslie
(1994a) and an improved cascade interpolation technique is presented in Nair et al.
(1999). However, successful attempts to achieve higher accuracy by means of kriging
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or radial basis function interpolators have been reported in Le Roux et al. (1997), Le
Roux et al. (1998), Behrens and Iske (2002). On unstructured meshes typical of finite
element models, the finite element interpolators are generally used.

Moreover in the context of our numerical experiments on structured Cartesian meshes
with the proposed SISLDG scheme we also used the the finite element high order inter-
polator, even if is well known that the maximum principle for the linear interpolation
case cannot be proven for higher order interpolators. This is similar to what happens
for many other numerical schemes for the advection equation, see e.g. LeVeque (1996),
Quarteroni and Valli (1994). The issue was considered in Williamson and Rasch (1989),
where various monotonic interpolation techniques based on Hermite interpolation were
compared. A general prescription to overcome the intrinsic lack of monotonicity of
all higher order interpolation and to monotonize a semi-Lagrangian method was given
Bonaventura (2000), along with a proof of the monotonicity of the resulting scheme.
This approach is also the most widely followed in operational implementations. In all
the tests performed in chap 6, smooth solutions were considered (for which undershoots
and overshoots are minimized) and no monotonization procedure was employed.

3.4 Advection equation in advective form

Let us consider the advection equation in quasilinear form:

∂c

∂t
+ u ·∇c = 0 (3.5)

We take into account the fact that ∂c
∂t +u ·∇c can be written as Dc

Dt , the total derivative
of c in the direction of the flow u. Then equation (3.5) reduces to:

Dc

Dt
= 0 (3.6)

which states that c is just transported without change along the fluid particle tra-
jectories. Therefore the solution of (3.7) is

c(x, tn+1) = c(x∗, tn) (3.7)

where x∗ = X(tn; tn+1,x) is the solution of (3.1).
We now discretize in space by taking the L2 projection against the test functions on

a given element KI . In particular, following Hasbani et al. (1982) or the Direct Char-
acteristic Galerkin method proposed in Morton et al. (1988), we use as test functions
the basis functions {ϕI,l(x)}(p+1)2

l=1 :∫
KI

c(x, tn+1)ϕI,k(x) dx =
∫
KI

c(x∗, tn)ϕI,k(x) dx k = 1, (p+ 1)2. (3.8)

Results of this algorithm are showed in fig 3.3 and 3.4 for the linear advection
equation at a Courant number equal to 3.75. The same strategy will be adopted in
section 5.3 for the discretization of the non-linear advective terms in the SWE. Finally,
using the the evolution operator E(tn,∆t) defined in (5.11), and extensively used in
section 5.3, eq(3.9) can be rewritten as follows:∫

KI

ϕI,k(x)c(x, tn+1) dx =
∫
KI

ϕI,k(x) [E(tn,∆t)cn] (x) dx k = 1, (p+ 1)2. (3.9)
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Figure 3.3: Gaussian profile solution of ∂c
∂t +U · ∇c = 0 with Periodic B.C., Courant =

3.75 after T = 4s, advected by a wind field U = 3m/s, V = 3m/s.

Figure 3.4: Gaussian initial profile,
px = 2, py = 2.

Figure 3.5: Gaussian profile after
T = 4s, advected by a wind field
U = 3m/s, V = 3m/s.

Other tests for the advection in two dimensions are showed in chapter 6, where results
about solid body rotation and deformational flow of Smolarkiewicz are presented in the
context of the p-adaptivity strategy presented in section 5.4.

Finally, to make the method robust also in the limit ∆t→ 0 Gauss-Legendre-Lobatto
(GLL) quadrature nodes could be used instead of Gauss-Legendre ones.

3.5 Advection equation in flux form

It has also been argued that by using the flux form it is easier to avoid the numerical
instabilities of the type reported by Phillips Phillips (1959).

Moreover the flux form of the advection equation guaranties the conservation prop-
erty and therefore has been chosen to model the passive tracers advection to be coupled
with our proposed SISLDG solver for SWE equations. In the following the SLDG algo-
rithm first proposed in Restelli et al. (2006) will be presented and commented.

Let us start from the (in general non-linear) scalar advection , written in flux form.
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Find u(x, t) s.t. :

∂c

∂t
+ u(c) · ∇c =

∂c

∂t
+∇ · F(c) = 0 in Rn ⊃ Ω× (0, T ) (3.10)

with suitable initial and boundary conditions. Here F : R→ Rn is an assigned smooth
flux vector function and u = F′ the corresponding characteristic velocity vector. Notice
that consider the flux form of the advection equation is essential in order to obtain a
discrete conservation property when the advection field is non-solenoidal. The weak
formulation is obtained initially along the usual lines of DG methods.

Find c(·, t) ∈ H1(Th) ∀t ∈ (0, T ) s.t.:

d

dt

∫
κ

vcdx = −
∫
κ

v∇ · F(c)dx ∀v ∈ H1(Th)

and integrating by parts

d

dt

∫
κ

vcdx =
∫
κ

∇v · F(c)dx−
∫
∂κ

v n · F(c) dy

Notice that the advective boundary term n·F(c) highlighted in the box does not have yet
a precise meaning, because c ∈ Th is a discontinuous function (in the sense of the traces)
across inter-element boundaries. In order to resolve this ambiguity the fluxes ĉ = {{c}}
are introduced (see Bassi and Rebay (1997a)) to replace c on each edge e ⊂ ∂κ. The
weak formulation of the original conservation law thus reads: Find c ∈ H1(Th) s.t.

d

dt

∫
κ

vcdx =
∫
κ

∇v · F(c)dx−
∑
e∈∂κ

∫
e

vn · F(ĉ)dy ∀v ∈ H1(Th)

At this point Restelli et al. (2006) departs from the usual DG technique and follows the
interpretation of characteristics-Galerkin methods (for evolutionary hyperbolic prob-
lems) as generalized Godunov methods as proposed and analysed in Morton (1998).
With this approach in mind let us integrate the equation in time between tn and
tn+1 := tn + ∆t (as usual in the application of a finite volume scheme to a conser-
vation law) to give:

∫
κ

v(x)c(x, tn+1)dx =
∫
κ

v(x)c(x, tn)dx

+
∫
κ

∇v(x) ·
∫ tn+1

tn
F( c(x, t) )dtdx+

−
∑
e∈∂κ

∫
e

v(y)n(y) ·
∫ tn+1

tn
F( ĉ(y, t) )dtdy ∀v ∈ H1(Th)

The solution c of (3.10) is constant along characteristics dx
dt = u(c), which are therefore

straight (this being true only for the scalar case, but migrating to systems of conserva-
tion laws, like shallow water equations, we have to face with curvilinear trajectories).
Therefore we are going to use this information to evaluate (at least in an approximated
way) the unknown quantity c(·, t), t > tn highlighted in the box at right and side.
This is the way in which Restelli et al. (2006) combines the characteristics method with
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the Galerkin approach, that is the fact that ∂c
∂t + u(c) · ∇c can be written as dc

dt , total
derivative in the direction of the flow, is exploited not directly in writing the equation
in advective form, but indirectly in the evaluation of the unknown function in the flux
terms arising when the equations are written in conservation formulation. It is clear now
that this approach rely an how well we are able to compute the trajectories (see section
3.2). For the moment let E(t0,∆t) denote the evolution operator defined in (5.11). In
terms of E(t0,∆t), the weak formulation reads:∫
κ

v(x)c(x, tn+1)dx =
∫
κ

v(x)c(x, tn)dx

+
∫
κ

∇v(x) ·
∫ ∆t

0

F
(

[E(tn, τ)cn] (x)
)
dτdx+

−
∑
e∈∂κ

∫
e

v(s)n(s) ·
∫ ∆t

0

F
(

[E(tn, τ)ĉn] (s)
)
dτds ∀v ∈ H1(Th)

Given the previous weak formulation, the SLDG numerical method for equation
(3.10) reads:

find ch ∈ V DGh such that:∫
κ

vh(x)ch(x, tn+1)dx =
∫
κ

vh(x)ch(x, tn)dx

+
∫
κ

∇vh(x) ·
∫ ∆t

0

F
(

[E(tn, τ)cnh] (x)
)
dτdx+

−
∑
e∈∂κ

∫
e

vh(s)n(s) ·
∫ ∆t

0

F
(

[E(tn, τ)ĉhn] (s)
)
dτds ∀vh ∈ V DGh

Now once the exact evolution operator E(tn, s) is replaced by its discrete counterpart
Ed(tn, s) defined in section 5.2 in terms of the two steps of the semi-Lagrangian tech-
nique, the unknown variable ch is expanded over a fixed orthogonal basis for Qk(κ),(see
section 2.4 for the notation), and as arbitrary test function vh a generic basis function
is taken, then the fully discrete problem is obtained.

In the following some numerical results of the implementation of this method in
one dimension with high order polynomials are reported, that show how this method
imposes no CFL restrictions on ∆t, without simultaneously penalizing the accuracy
of the method, making therefore it the ideal candidate to be coupled with the novel
SISLDG solver for SWE.

3.5.1 Linear advection

In particular the conservative SLDG method has been tested in one dimension consider-
ing equation (3.10) on the interval [−40, 40] of the real line and taking as initial datum a
C1, compactly supported, bell shaped function with a maximum value of 0.4. The time
step was taken to be ∆t = 1/10 and the spatial resolution was ∆x = 1/10. The ad-
vection velocity was increased from a value 1/2 up to value 8 with the Courant number
going from 1/2 up to 8. The results obtained with the SLDG method using polynomial
degree equal to 8 are shown in figure 3.6 (black line is used for the initial datum, red
line for the profile at the final time T = 1s ). The corresponding error in L2 norm are
collected in table 3.1. It should be remarked that in this linear test the exact value for
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Figure 3.6: SLDG solution of LAE at Courant number = 10.

u Cu = u∆t
h ‖error(t = 1)‖L2

0.5 0.5 6.36e-14
1 1 6.36e-14
2 2 3.67e-13
4 4 7.34e-13
8 8 1.46e-13

Table 3.1: L2 error norm for SLDG linear advection with polynomial degree = 8, ∆t =
0.1,∆x = 0.1 and different advection velocity values.

the trajectory departure point was used, since all basic integration schemes would have
given the exact solution results in this simple case of advective velocity constant in time
and space. This is not the case of the Burgers equation.

3.5.2 Non-linear advection

The inviscid Burgers equation ct + (c2/2)x = 0 is a special case of (3.10) with F (c) =
c2/2. The initial condition for this problem is set to c0(x) = sin(π2x), over a periodic
domain [0,2]. The domain is partitioned into 80 elements, and the SLDG scheme 3.11
employing cubic polynomials and 4 Gauss-Legendre quadrature points is used for the
simulation. The time step used was ∆t = 0.06 corresponding to a Courant number
C = 7.2. In figure 3.7 the numerical solution is shown for this problem at t = 0.3s
just before the formation of the shock. Remember (see for example LeVeque (1992))
that for this problem the time of formation of the shock can be computed as Tshock =
− 1
minc′0

' 0.318. The SLDG solution is marked in red where ball points, one value per
each element, represent the average on each element (i.e. the first modal coefficient),
while again black line is used for the initial datum. As time evolves the shock becomes
severe and will pollute the numerical solution, but SLDG method is not devised to
solve shock capturing problems. This test was only reported to show the good stability
properties of SLDG method even in the non-linear case.

Finally let us notice that similar results were obtained even using the SLDG in
advective form (not displayed here).
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Figure 3.7: SLDG solution of the Burgers equation with Courant number C = 7.2. Black
line represents the initial sinusoidal profile, while red line is the solution computed at
t = 0.3s i.e. near the shock formation time.
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Chapter 4

The semi-implicit time
discretization technique

In this chapter a presentation of the semi-implicit technique based on
an characteristic analysis of the governing equations is summarized.
In this context a pure Eulerian point of view is adopted, but the same
analysis will hold also when, in next chapters, the semi-implicit tech-
nique will be coupled with a semi-Lagrangian treatment of the advec-
tion .

4.1 Introduction

A fully implicit discretization of the governing equations would lead to a method which
is, of course, unconditionally stable; this procedure, however, involves the simultaneous
solution of a large number of coupled non-linear equations. For efficiency, then, only
some terms of the governing equations are discretized implicitly. Specifically, since in
subsonic flows the time scale of the speed of sound is faster than the time scale of
the flow, the semi-implicit method uses an implicit discretization only for those terms
which are related to the speed of sound. As a result unconditional stability is reached
with respect to the CFL condition for the speed of sound, which is the most restrictive
condition for fully explicit methods in subsonic flow calculations. However, how to
identify terms responsible for fast propagating gravity waves ? To answer this question
in this chapter we closely follow the approach of Casulli Casulli and Greenspan (1984),
Casulli and Cheng (1990) which starts from a characteristic analysis of the governing
equations to derive the semi-implicit time discretization of shallow water equations we
will use in the definition of our proposed SISLDG scheme.

37
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4.2 Characteristic analysis of the rotating shallow wa-
ter equations

Equations 4.1 form a quasilinear hyperbolic system of partial differential equations in
three independent variables. Closely following Casulli and Cheng (1990), in order to
determine the particular semi-implicit discretization whose stability is independent on
the celerity, we first analyze the characteristic cone of the governing equations. To this
purpose let us rewrite eqs. (4.1) in the equivalent form

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
+ v

∂u

∂y
= fv (4.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= −fu (4.2)

∂η

∂t
+ h

∂u

∂x
+ u

∂η

∂x
+ h

∂v

∂y
+ v

∂η

∂y
= u

∂b

∂x
+ v

∂b

∂y
(4.3)

or, in matrix notation,

∂w

∂t
+A(w)

∂w

∂x
+B(w)

∂w

∂y
= D(w) (4.4)

where w := (u, v, η)T , and

A =

u 0 g
0 u 0
h 0 u

 , B =

v 0 0
0 v g
0 h v

 , w :=

 fu
−fv

u ∂b∂x + v ∂b∂y

 .

If I denotes the identity matrix, then the characteristic equation of system (4.4) is
given by

det(qI + rA+ sB) = 0,

that is
(q + ru+ sv)

[
(q + ru+ sv)2 − gh(r2 + s2)

]
(4.5)

The triples (q, r, s) satisfying eq. (4.5) are then directions normal to the characteristic
cone at its vertex. Equation (4.5) decomposes into the two equations

q + ru+ sv = 0 (4.6)

and

(q + ru+ sv)2 − gh(r2 + s2) = 0 (4.7)

Hence, as shown in fig. 4.1, the local characteristic cone with vertex in (x0, y0, t0)
parallel to the vector (1, u, v)T and the cone whose equation is:

[(x− x0)− u(t− t0)]2 + [(y − y0)− v(t− t0)]2 − gh(t− t0)2 = 0, (4.8)

in fact, on the cone surface, the gradient of the left-hand side of eq. (4.8) satisfies
eq (4.7)

Now notice that, whereas the first part of the characteristic cone, defined by eq.
(4.6), depends only on the fluid velocity u, v, the second part of the characteristic cone,
defined by eq. (4.7), depends also upon the celerity

√
gh. Note also that the term gh
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in the characteristic equation (4.5) arises from the off-diagonal terms g and h in the
matrices A and B. These are the coefficient of ∂η/∂x in eq. (4.2), the coefficient of
∂η/∂y in eq. (4.3), and the coefficient of ∂u/∂x and ∂v/∂y in eq. (4.3). As a result
these terms in the shallow water equations must be discretized implicitly for a numerical
method to be unconditionally stable with respect to the celerity.

Figure 4.1: Characteristic cone through (0,0,1).

4.3 Semi-implicit time discretization

Based on the characteristic analysis of the governing equations reported in previous
section we write a time semi-discretization of (4.1) in which the gradient of the free sur-
face elevation in the momentum equations and the velocity divergence in the continuity
equation will be discretized implicitly:

ηn+1 − ηn

∆t
= −θ∇∇∇ ·

(
un+1hn

)
− (1− θ)∇∇∇ ·

(
unhn

)
un+1 − un

∆t
+ (un · ∇∇∇)un = −θg

[
∂η

∂x

]n+1

+ θfvn+1 − (1− θ)g
[
∂η

∂x

]n
+ (1− θ)fvn

vn+1 − vn

∆t
+ (un · ∇∇∇)vn = −θg

[
∂η

∂y

]n+1

− θfun+1 − (1− θ)g
[
∂η

∂y

]n
− (1− θ)fun

where θ ∈ [0, 1] is a fixed implicitness parameter.
Notice that in this context the pure semi-implicit technique has been considered,

therefore an Eulerian point of view was adopted in all this chapter. As a result no
evolution operators are involved in this pure semi-implicit (Eulerian) context. On the
other hand, in the next chapter this semi-implicit time discretization strategy will be
combined with a semi-Lagrangian treatment of the nonlinear advective terms to dis-
cretize in time the equations (4.1): in those context, instead, the introduction of an
evolution operator associated to the semi-Lagrangian technique will play a crucial role .

Finally notice that when the semi-implicit scheme is combined with a two-time-
level semi-Lagrangian treatment of the advective terms, it is customary to discretize
semi implicitly also the Coriolis terms, which from a pure characteristic analysis of the
equation, could be treated explicitly, indeed an explicit treatment of Coriolis terms in
the context of a two time-level scheme could be computationally unstable as noticed in
Temperton and A.Staniforth (1987).
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Chapter 5

The p-SISLDG method for the
SWE

In this chapter the semi-Lagrangian ( chap. 3 ) and the semi-implicit (
chap. 4 ) techniques are combined within a Discontinuous Galerkin for-
mulation ( chap. 2 ) to devise a novel discretization scheme for the ap-
proximation of the rotating shallow water equations, namely the Semi-
Implicit Semi-Lagrangian Discontinuous Galerkin method (SISLDG).
After an abstract reformulation of the SISL technique through the
introduction of a proper evolution operator E(tn,∆t) in section 5.2,
the SISLDG method is derived in section 5.3, then, to increase its
efficiency, a simple p−adaptivity criterion is illustrated in section 5.4 .

5.1 Introduction

To achieve the goal of making the maximum permissible time step governed by consider-
ations of stability rather than accuracy in the integration of NWP models, it is essential
to associate a semi-Lagrangian treatment of advection with a sufficiently stable treat-
ment of terms responsible for the propagation of gravitational oscillations. The powerful
of this idea has been demonstrated by Roberts in his seminal papers ( Robert (1981),
Robert (1982) ) where he combined a semi-Lagrangian (SL) treatment of advection with
a semi-implicit (SI) treatment of gravity oscillations terms, in the context of three-time-
level shallow-water finite-difference model in Cartesian geometry. From then on the
semi-implicit semi-Lagrangian technique has been quite successfully exploited both in
finite differences (for example Robert (1982), or Casulli (1990)) and finite elements (for
example Staniforth and Temperton (1986), or Miglio et al. (1999),or Le Roux et al.
(1999), or Giraldo (2005)) frameworks, but, up to now, not fully explored within the
DG context. In this chapter an attempt has been made to fill this gap, encouraged by
results found by other authors in attempts at coupling DG with either SI (for example
Restelli and Giraldo (2009)) or SL time discretizations Restelli et al. (2006).
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5.2 An abstract formulation of the semi-implicit semi-
Lagrangian technique

In this section we do not have the ambition to introduce a thorough treatment from
the continuum mechanics point of view ( for whose foundations see e.g. Gurtin (1981)
or Marsden and Hughes (1983) ), but we only want to fix a notation to define the
evolution operator E which will be massively used in the definition of the SISLDG
method presented in the next section.

Let us consider the following (possibly nonlinear) first order system of PDE’s

∂q

∂t
+ (u · ∇∇∇)q = F (q) (5.1)

where q = q(x, t) is the vector of the N unknown functions, F : RN → RN is a given
function, assumed to be sufficiently smooth, and u = u(x, t) is the velocity field.

Notice that in (5.1) the independent variables are the current position x and the
time t: this formulation is called Eulerian description in the fluid mechanics context or
spatial description in the continuum mechanics framework.

In order to derive the semi-Lagrangian semi-implicit time discretization of eq. (5.1),
the most natural way to proceed is to make a change of variables and to reformulate
our system using now a referential position X at a fixed reference time ( identifying
a fluid particle ) and the time t as independent variables: this choice takes the name
of Lagrangian description in fluid mechanics and the name of referential description in
continuum mechanics.

The link between the two equivalent formulations is given by the function:

x = x(X, t) (5.2)

whose value in (X, t) is the position at time t of the fluid particle 1 X, (see fig. 5.1),
or by its inverse

X = X(x, t) (5.3)

whose value in (x, t) identifies the particle X which is passing in x at time t .
Now using the two different descriptions, Eulerian or Lagrangian, the functional

dependence of the unknowns vector on the independent variables will be different and
therefore denoted with q in the Eulerian description and Q in the Lagrangian one:

q(x(X, t), t) = Q(X, t) (5.4)

where (5.2) has been used.
If we now derive eq. (5.4) with respect to t, then, applying the chain rule, we get:

∂q

∂t
+
[
∂

∂t
x(X, t)

]
· ∇∇∇q =

∂Q

∂t

but since x(X, t) has been defined as the the position at time t of the fluid particle
X, then it follows:

∂

∂t
x(X, t) = u(x(X, t), t) (5.5)

1With the expression fluid particle X we mean the fluid particle occupying the position X at the
fixed reference time.
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In other words we came to the well known expression of the Lagrangian time deriva-
tive in terms of Eulerian derivatives:

∂q

∂t
+ u · ∇∇∇q =

∂Q

∂t
(5.6)

Finally the original equation (5.1) can be re-casted in Lagrangian framework as :

∂Q

∂t
= F (Q) (5.7)

This equation now represents the starting point for the semi-Lagrangian semi-implicit
discretization. Let us integrate it in time between tn and tn+1:∫ tn+1

tn

∂Q

∂t
dt =

∫ tn+1

tn
F (Q)dt

Now the left hand side can be computed exactly via the fundamental theorem of
calculus, while the right hand side can be approximated using the trapezoidal rule:

Q(X, tn+1)−Q(X, tn) =
∆t
2
[
F (Q(X, tn+1) + F (Q(X, tn)

]
(5.8)

Notice that the integration in time and its numerical approximation through the trape-
zoidal rule (at right hand side) have been both carried out in terms ofQ keeping the fluid
particle X fixed: this means that we have integrated in time along the trajectories.

Notice that, up to now, the reference configuration was just fixed in an arbitrary
way. At this point the semi-Lagrangian technique consists in choosing the reference
configuration in a clever way, i.e. in taking tn+1 as reference time. As a result we have

x(X, tn+1) = X (5.9)

Now if eq. (5.9) together with eq. (5.4) is used, then eq. (5.8) becomes:

q(X, tn+1) = q(x(X, tn), tn) +
∆t
2
F
(
q(X, tn+1)

)
+

∆t
2
F (q(x(X, tn), tn)) (5.10)

At this point following evolution operator is introduced:

[E(tn,∆t)h] (·) = h(x(·, tn)) (5.11)

where h : Rd ⊃ Ω→ R is a real valued function of the space only. From an operational
point of view the action of the operator E(tn,∆t) onto the function h is a function of
the space only, whose value at a point X can be defined in two steps:

• first the point x(X, tn) i.e. the foot at time level tn of the trajectory arriving in
X at time tn+1 has to be calculated. To this end, considering that:

x(X, tn+1) = x(X, tn) +
∫ tn+1

tn

∂

∂t
x(X, t)dt
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and using eq. (5.9) together with eq. (5.5), we have:

x(X, tn) = X −
∫ tn+1

tn
u (x(X, t), t) dt.

Moreover, since in general the advective velocity field u in eq. (5.1) can be a
function of the unknown q too, ( as in the case of the nonlinear advective term of
the momentum equations ), the semi-Lagrangian approach consists in freezing the
advective velocity field at the old time tn, (that amounts into linearization in time
of the possibly nonlinear advective term at left hand side of eq. (5.1) ), therefore
previous equation in a semi-Lagrangian context is replaced by:

x(X, tn) = X −
∫ tn+1

tn
u (x(X, t), tn) dt.

• then the function qn(·) := q(·, tn) has to be evaluated at the foot computed in the
previous step, i.e. :

[E(tn,∆t)qn] (X) = qn

(
X −

∫ tn+1

tn
u (x(X, t), tn) dt

)

Let us notice that since in the first step of the definition of the semi-Lagrangian
evolution operator the advective velocity field has been frozen at time tn, then it follows
that a different semi-Lagrangian evolution operator will be associated to each different
time step, according to the different underlying advective field. This dependence from
tn has been underlined also in the notation E(tn,∆t).

Then, in terms of the evolution operator E, eq. (5.10) takes the form:

q(X, tn+1) = [E(tn,∆t)qn] (X) +

+
∆t
2
F
(
q(X, tn+1)

)
+

+
∆t
2
F ([E(tn,∆t)qn] (X)) (5.12)

where it is understood that qn(·) := q(·, tn).
At this point, if the previous two steps defining the ’exact’ semi-Lagrangian evolution

operator E(tn,∆t) are replaced by their discrete counterparts, then the ’discrete’ semi-
Lagrangian evolution operator Ed(tn,∆t) is defined in the sense that its action on a
function h of the space only is a function of the space only, whose value at a point X
can be defined in two steps:

• first the point x(X, tn) i.e. the foot at time level tn of the trajectory arriving in
X at time tn+1 is approximated, e.g. using one of the techniques presented in
section 3.2 ;

• then the function q(·, tn) has to be interpolated at the foot approximated in
previous step, e.g. by using one of the techniques presented in section 3.3.
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Figure 5.1: x = x(X, t) is the position at time t of the particle identified by its reference
position X .

5.3 The semi-implicit, semi-Lagrangian Discontinu-
ous Galerkin discretization

The problem of a semi-implicit, semi-Lagrangian Discontinuous Galerkin discretization
of (4.1) is now addressed.

Following the approach of Casulli and Greenspan (1984),Casulli and Cheng (1990),
Casulli (1990),Casulli and Cattani (1994), a semi-implicit, semi-Lagrangian (more pre-
cisely, Eulerian-Lagrangian) discretization of (4.1) can be written as

ηn+1 − ηn

∆t
= −θ∇ ·

(
un+1hn

)
− (1− θ)∇ ·

(
unhn

)
(5.13)

un+1 − E(tn,∆t)u
∆t

= −θg
[
∂η

∂x

]n+1

+ θfvn+1 + (5.14)

+(1− θ)gE(tn,∆t)
[
∂η

∂x

]n
+ (1− θ)fE(tn,∆t)vn

vn+1 − E(tn,∆t)v
∆t

= −θg
[
∂η

∂y

]n+1

− θfun+1 + (5.15)

+(1− θ)gE(tn,∆t)
[
∂η

∂y

]n
− (1− θ)fE(tn,∆t)un

where E is the evolution operator defined in (5.11), θ ∈ [0, 1] is a fixed implicitness
parameter (see chapter 4), and finally the notation fn(x) := f(x, tn) has been used.

Notice that the continuity equation is considered in its original (Eulerian) flux form
Casulli (1990) in order to endow the proposed scheme with the mass conservation prop-
erty, while the momentum equations are written in advective form in order to replace
the nonlinear advection operator with the Lagrangian derivative, this making sense since
the momentum is not a conserved variable and since we are not interested in describe
shocks.

Regarding the semi-implicit discretization, note that the determination of this spe-
cific form (5.13)-(5.16) follows directly from the characteristic analysis of the SWE
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equations, see e.g. Casulli and Greenspan (1984) for details (also reported in section
4.2) ; in particular notice that after this characteristic analysis of SWE one find that in
the divergence term of the continuity equation only the velocity derivatives need to be
discretized implicitly, while the total water depth h := η− b can be taken explicitly, re-
sulting in this way to a linearization in time of the divergence term. Finally the Coriolis
terms are treated implicitly, since an explicit treatment of these terms in the context
of a two time-level scheme could be computationally unstable as noticed in Temperton
and A.Staniforth (1987).

We now discretize in space by taking the L2 projection against the test functions on
a given element KI . In particular, following Hasbani et al. (1982) or the Direct Char-
acteristic Galerkin method proposed in Morton et al. (1988), we use as test functions

the basis functions {ϕI,l(x)}(p
η
I+1)2

l=1 and {ψI,m(x)}(p
u
I+1)2

m=1 .
Notice that in the DG formulation of the SWE system, we are led to consider the

gradient of the free surface elevation η, which is a piece-wise polynomial function with
no global continuity constraints. To this end, we follow the standard local discontinuous
Galerkin method and define the discrete gradient operator DDDhη as follows. Given η ∈
Qpη , its discrete gradient DDDhη is the unique element of (Qpη )2 such that∫

KI

DDDhη ·w dx = −
∫
KI

η∇∇∇ ·w dx+
∫
∂KI

η̂w · n ds ∀w ∈ (Qpη )2.

Notice that, by integration by parts, we also have∫
KI

DDDhη ·w dx =
∫
KI

∇∇∇η ·w dx+
∫
∂KI

(η̂ − η)w · n ds ∀w ∈ (Qpη )2.

Hence, as observed also in Bassi and Rebay (1997a), it is possible to recast the discrete
gradient operator as the sum of two contributions, of which the first one takes into
account the element-wise gradient of η while the second one takes into account its
jumps (across the element interfaces).

In the same way the discrete partial derivatives of η are defined:

∫
KI

Dxhη ψI,m dx = −
∫
KI

η
∂ψI,m
∂x

dx+
∫
∂KI

η̂ψI,mi · n ds (5.16)

=
∫
KI

∂η

∂x
ψI,m dx+

∫
∂KI

(η̂ − η)ψI,mi · n ds, m = 1, . . . (pηI + 1)2.

and∫
KI

Dyhη ψI,m dy = −
∫
KI

η
∂ψI,m
∂y

dx+
∫
∂KI

η̂ψI,mj · n ds (5.17)

=
∫
KI

∂η

∂y
ψI,m dx+

∫
∂KI

(η̂ − η)ψI,mj · n ds, m = 1, . . . (pηI + 1)2.

where i, j are the unit vectors along the coordinate axes, while n is the unit normal
vector outward from ∂KI .

Finally notice that in our approach, the coefficients of these discrete partial deriva-
tives of η over the fixed basis are computed trough the solution of (5.16) and (5.17),
which is very cheap, since if orthogonal hierarchical bases {ψI,m}m are used, only diag-
onal local mass matrix are to be inverted, that is trivial.
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Thus, we obtain for each element KI , I = 1, . . . , N :

∫
KI

ϕI,l(x)ηn+1(x)dx =
∫
KI

ϕI,l(x)ηn(x)dx+

−θ∆t
∫
KI

ϕI,l(x)∇ ·
(
un+1(x)hn(x)

)
dx+

−(1− θ)∆t
∫
KI

ϕI,l(x)∇ ·
(
un(x)hn(x)

)
dx

∫
KI

ψI,m(x)un+1(x)dx = −θ∆tg
∫
KI

ψI,m(x) [Dxhη]n+1 (x)dx+

+θ∆tfI
∫
KI

ψI,m(x)vn+1(x)dx+

+
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx+

−g(1− θ)∆t
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dxhη]n

]
(x)dx+

+(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx

∫
KI

ψI,m(x)vn+1(x)dx = −θ∆tg
∫
KI

ψI,m(x) [Dyhη]n+1 (x)dx+

−θ∆tfI
∫
KI

ψI,m(x)un+1(x)dx+

+
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx+

−(1− θ)∆tg
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dyhη]n

]
(x)dx+

−(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx

where an approximation has been made consisting into take the Coriolis parameter
constant f = fI within a given element KI , as suggested by the high resolution of the
mesh we have in mind.

Then after integration by parts in the continuity equation, and after use of definitions
(5.16) and (5.17) in the momentum equations we have:
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∫
KI

ϕI,l(x)ηn+1(x)dx+ (5.18)

−θ∆t
∫
KI

∇ϕI,l(x) · un+1(x)hn(x)dx+

+θ∆t
∫
∂KI

ϕI,l(s)ûn+1(s) · n(s)ĥn(s)ds =

=
∫
KI

ϕI,l(x)ηn(x)dx

+(1− θ)∆t
∫
KI

∇ϕI,l(x) · un(x)hn(x)dx+

−(1− θ)∆t
∫
∂KI

ϕI,l(s)ûn(s) · n(s)ĥn(s)ds,

∫
KI

ψI,m(x)un+1(x)dx+ (5.19)

−θ∆tg
∫
KI

∂ψI,m
∂x

(x)ηn+1(x)dx+

+θ∆tg
∫
∂KI

ψI,m(s)η̂n+1(s)i · n(s)ds+

−θ∆tfI
∫
KI

ψI,m(x)vn+1(x)dx =

=
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx+

−(1− θ)∆tg
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dxhη]n

]
(x)dx+

+(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx,

∫
KI

ψI,m(x)vn+1(x)dx+ (5.20)

−θ∆tg
∫
KI

∂ψI,m
∂y

(x)ηn+1(x)dx+

+θ∆tg
∫
∂KI

ψI,m(s)η̂n+1(s)j · n(s)ds+

+θ∆tfI
∫
KI

ψI,m(x)un+1(x)dx =

=
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx+

−(1− θ)∆tg
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dyhη]n

]
(x)dx+

−(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx,
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where i, j are the unit vectors along the coordinate axes, while n is the unit normal
vector outward from ∂KI .

Notice that elements of V DG are not defined on the elements of Eh,int: therefore
terms with hat in the equations are not well defined and must be replaced by appropriate
numerical fluxes that depend on both interface states and which introduce a coupling
between the unknowns of neighboring elements which would be otherwise completely
missing. In fact the hallmark of the DG method is that the solution is allowed to
be discontinuous over the elemental boundaries and that the elements are coupled by
numerical fluxes only, as in the finite volume method.

In this context we will use centered fluxes as in Bassi and Rebay (1997a), i.e. for
each dependent variable d ∈ V DGh we define:

d̂
∣∣
e

= {{d}} , ∀e ∈ Eh,int, (5.21)

( see def (2.2) ).
Expanding the dependent variables in terms of the basis functions one has

ηn(x)
∣∣
KI

=
(pηI+1)2∑
r=1

ϕI,r(x)ηnI,r, un(x)
∣∣
KI

=
(puI+1)2∑
r=1

ψI,r(x)unI,r. (5.22)

A central issue in finite element formulations for fluid problems is the choice of the
approximation space for the velocity and pressure variables (in the context of SWE the
role of the pressure is played by the free surface elevation). In fact an inconsistent choice
of the two approximation spaces may result in a solution which is polluted by spurious
modes (see for example Walters (1983) or Walters and Carey (1983) for the SWE or,
for general reference, Quarteroni and Valli (1994) ). We have not tried to address this
issue from a theoretical point of view. Instead the effects of different element choices
for the velocity-pressure pairs on the stability of the approximate solution have been
investigated by numerical experiments, showing that mixed orders Qk −Qk−1 velocity-
pressure pairs (structured meshes of quadrilaterals are employed) work better then equal
order ones, for which clear instabilities arise (see section 6.1). Therefore in this work
we will assume:

puI = pηI + 1, I = 1, . . . , N (5.23)

This choice is not surprising, a similar arrangement having been successfully used, in-
vestigated and analyzed in the context of continuous Galerkin discretization of SWE in
Williams and Zienkiewicz (1981) in the case of low polynomial degrees. Up to now bene-
fits on the stability from the use of mixed order velocity-pressure pair instead of Qk−Qk
for DG discretizations were proved for the Stokes problem (Toselli (2002), Schötzau et al.
(2003)) only, but the fact that typical atmospheric flow regimes are characterized by
small Froude/Mach numbers suggested the extension of the same strategy to SWE too.
In fact, as well underlined in Le Roux et al. (1998), in the absence of much in the way
of theoretical results for compressible flows, the general conclusion that can be drawn
from the finite-element literature is that one should employ a finite-element pair that is
suitable for the incompressible case, that is, that satisfies the LBB condition. After all,
it seems reasonable to ask that a good element pair for compressible flow should also
perform acceptably well for the special case of incompressible flow. Finally notice that
this mixed order choice for the pressure-velocity pair can be regarded as the analog for
hierarchical basis oriented schemes of staggering in the nodal basis oriented finite ele-
ments or in finite difference framework Winninghoff (1968), Arakawa and Lamb (1977) .
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In fact the phenomenon of the presence of spurious solutions due to small-scale artifacts
introduced by the spatial discretization scheme, can occur in both finite-element and
finite-difference formulations Arakawa (1966).

A second key point to be discussed at this stage of the description of SISLDG however
concerns the efficiency of the proposed method. Using a constant high polynomial degree
of the basis functions in the whole computational domain can lead to an unreasonably
high CPU effort. Hence to increase computational efficiency of the SISLDG method
the choice has been done ( as evident from (5.22) ) to make the polynomial degrees
pηI and puI local i.e. dependent on the element KI , in order to dynamically adjust the
number of local degrees of freedom employed to the local structure of the solution .
So at this point the question is how to choose the pηI and puI automatically for each
element KI ? This issue is addressed in section 5.4 where a simple but effective (see 6.1)
p-adaptivity criterion is employed, which massively takes advantage from the flexibility
of DG discretization and from the orthogonality property of the hierarchical basis used.

Substituting expressions (5.22), into the numerical fluxes definitions (5.21) and then
also into equations (5.18)-(5.20), one obtains the full space and time discretization of
system (4.1), that can be conveniently presented employing a vector notation.

We denote by

ηnI = (ηnI,j)
(pηI+1)2

j=1 , unI = (unI,j)
(puI+1)2

j=1 , vnI = (vnI,j)
(puI+1)2

j=1

the vectors collecting all the discrete degrees of freedom associated to element KI .

Furthermore, we introduce the mass matrices of η, u, v, denoted by Mη
I ,M

u
I ,M

v
I

respectively. These matrices are diagonal if orthogonal (hierarchical) basis functions are
used and their entries are given by

(Mη
I )l,r =

∫
KI

ϕI,l(x)ϕI,r(x)dx, (Mu
I )l,r = (Mv

I )l,r =
∫
KI

ψI,l(x)ψI,r(x)dx, (5.24)

were obviously one has l, r = 1, . . . , (pηI + 1)2 for η and l, r = 1, . . . , (puI + 1)2 for u, v.
If we consider the partition ∂KI = eS,I ∪eE,I ∪eN,I ∪eW,I , I = 1, . . . , N according

to the convention of figure 5.2, we also set (for the continuity equation) :

(LηuI )l,r = −1
2

∫
eW,I

ϕI,lĥ
nψIW ,rdy, (LηvI )l,r = −1

2

∫
eS,I

ϕI,lĥ
nψIS ,rdx, (5.25)

(Dηu
I )l,r =

∫
KI

∂ϕI,l
∂x

hnψI,rdx−
1
2

∫
eW,I

ϕI,lĥ
nψI,rdy +

1
2

∫
eE,I

ϕI,lĥ
nψI,rdy,

(Dηv
I )l,r =

∫
KI

∂ϕI,l
∂y

hnψI,rdx−
1
2

∫
eS,I

ϕI,lĥ
nψI,rdx+

1
2

∫
eN,I

ϕI,lĥ
nψI,rdx,

(UηuI )l,r =
1
2

∫
eE,I

ϕI,lĥ
nψIE ,rdy, (UηvI )l,r =

1
2

∫
eN,I

ϕI,lĥ
nψIN ,rdx,

and (for the momentum equation along x):

(LuηI )l,r = −1
2

∫
eW,I

ψI,lϕIW ,rdy, (UuηI )l,r =
1
2

∫
eE,I

ψI,lϕIE ,rdy, (5.26)

(Duη
I )l,r =

∫
KI

∂ψI,l
∂y

ϕI,rdx−
1
2

∫
eS,I

ψI,lϕI,rdx+
1
2

∫
eN,I

ψI,lϕI,rdx,
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(UnI )l =
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx+ (5.27)

−(1− θ)∆tg
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dxhη]n

]
(x)dx+

+(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx,

and (for the momentum equation along y):

(LvηI )l,r = −1
2

∫
eS,I

ψI,lϕIS ,rdx, (UvηI )l,r =
1
2

∫
eN,I

ψI,lϕIN ,rdx, (5.28)

(Duη
I )l,r =

∫
KI

∂ψI,l
∂x

ϕI,rdx−
1
2

∫
eW,I

ψI,lϕI,rdy +
1
2

∫
eE,I

ψI,lϕI,rdy,

(VnI )l =
∫
KI

ψI,m(x)
[
E(tn,∆t)vn

]
(x)dx+ (5.29)

−(1− θ)∆tg
∫
KI

ψI,m(x)
[
E(tn,∆t) [Dyhη]n

]
(x)dx+

−(1− θ)∆tfI
∫
KI

ψI,m(x)
[
E(tn,∆t)un

]
(x)dx.

Figure 5.2: The geometry of the mapping on the reference element [−1, 1]2 and the
associated metric information.

Notice that all the matrices whose entries are defined in (5.25), (5.26) and (5.28) are
in general rectangular, of dimensions (pηI +1)2× (puJ +1)2, where J ∈ {I, IS , IE , IN , IW }
for matrices defined in (5.25), while of dimension (puI + 1)2 × (pηJ + 1)2, where J ∈
{I, IS , IE , IN , IW } for the matrices defined in (5.26) and (5.28).

Furthermore, all the matrices whose entries are defined in (5.26) and (5.28) are time-
independent and therefore they can be computed once for all at the beginning of the
computation. This allows a saving of computational effort and hence gives a motivation
of the matrix approach here introduced.

After the definitions (5.25)-(5.29), the equations (5.18)-(5.20) defining the SISLDG
method for the system (4.1) read in vector form:
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Mη
I η

n+1
I + (5.30)

−θ∆t
(
LηuI u

n+1
IW

+Dηu
I u

n+1
I + UηuI u

n+1
IE

+

+LηvI v
n+1
IS

+Dηv
I v

n+1
I + UηvI v

n+1
IN

)
=

= Mη
I η

n
I +

−(1− θ)∆t
(
LηuI u

n
IW +Dηu

I u
n
I + UηuI u

n
IE +

+LηvI v
n
IS +Dηv

I v
n
I + UηvI v

n
IN

)
,

Mu
I u

n+1 − θ∆tg
(
LuηI η

n+1
IW

+Duη
I η

n+1
I + UuηI η

n+1
IE

)
− θ∆fIMv

I v
n+1
I = Un

I , (5.31)

Mv
I v

n+1 − θ∆tg
(
LvηI η

n+1
IS

+Dvη
I η

n+1
I + UvηI η

n+1
IN

)
+ θ∆fIMu

I u
n+1
I = Vn

I . (5.32)

As customary in semi-implicit methods, see e.g. Staniforth and Temperton (1986),
Temperton and A.Staniforth (1987),Casulli and Cheng (1990), Casulli (1990),Casulli
and Cattani (1994), and in the pressure methods Casulli and Greenspan (1984), un+1

and vn+1 are expressed in terms of ηn+1 and the resulting expressions substituted into
the continuity equation (5.30), in order to obtain a discrete (vector) Helmholtz equation
in the ηn+1 unknown only. Notice that this substitution is performed at the discrete
level following closer Casulli and Greenspan (1984),Casulli and Cheng (1990), Casulli
(1990),Casulli and Cattani (1994), than Staniforth and Temperton (1986), Temperton
and A.Staniforth (1987) where it is performed at continuous level. If the elements
surrounding KI are labeled according to figure 5.3, this equation can be rewritten as
follows:

KWW
I ηn+1

IWW
+ (5.33)

+KSW
I ηn+1

ISW
+KW

I η
n+1
IW

+ KNW
I ηn+1

INW
+

+KSS
I ηn+1

ISS
+ KS

I η
n+1
IS

+KIη
n+1
I + KN

I η
n+1
IN

+KNNηn+1
INN

+

+KSE
I ηn+1

ISE
+KE

I η
n+1
IE

+ KNE
I ηn+1

INE
+

+ KEE
I ηn+1

IEE
=

= N n
I ,

where, if

cI = θ∆tfI , c1,I =
− (θ∆t)2

g

1 + (θ∆tfI)2
, c2,I = cIc1,I ,

c3,I =
1

1 + (θ∆tfI)2
, c4,I =

− (θ∆t) g
1 + (θ∆tfI)2

, c5,I = cIc4,I ,
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Figure 5.3: The computational stencil for the semi-implicit step of SISLDG and the
names of the elements surrounding the elements KI .

we have set (from ’west’ to ’east’ and from ’south’ to ’north’):

KWW
I = c1,IL

ηu
I (Mu

IW )−1LuηIW ,

KSW
I = c2,IL

ηu
I (Mu

IW )−1LvηIW − c2,ISL
ηv
I (Mu

IS )−1LuηIS ,

KW
I = c1,I

[
LηuI (Mu

IW )−1
(
Duη
IW

+ cID
vη
IW

)
+ (Dηu

I − cID
ηv
I ) (Mu

I )−1LuηI
]
,

KNW
I = c2,IL

ηu
I (Mu

IW )−1UvηIW − c2,INU
ηv
I (Mu

IN )−1LuηIN ,

KSS
I = c1,ISL

ηv
I (Mv

IS )−1LvηIS ,

KS
I = c1,I (cID

ηu
I +Dηv

I ) (Mu
I )−1LvηI + c1,ISL

ηv
I (Mu

IS )−1(−cISD
uη
IS

+Dvη
IS

),
KI = Mη

I +
+c1,IsL

ηv
I (Mv

IS )−1UvηIS +

+c1,I [L
ηu
I (Mu

IW )−1UuηIW +

+(Dηu
I − cID

ηv
I )(Mu

I )−1Duη
I +

+(cID
ηu
I +Dηv

I )(Mu
I )−1Dvη

I +
+UηuI (Mu

IE )−1LuηIE ] +

+c1,INU
ηv
I (Mv

IN )−1LvηIN ,

KN
I = c1,I(cID

ηu
I +Dηv

I )(Mu
I )−1UvηI + c1,INU

ηv
I (Mu

IN )−1(−cIND
uη
IN

+Dvη
IN

),

KNN
I = c1,INU

ηv
I (Mv

IN )−1UvηIN ,

KSE
I = c2,IU

ηu
I (Mu

IE )−1LvηIE − c2,ISL
ηv
I (Mu

IS )−1UuηIS ,

KE
I = c1,I

[
(Dηu

I − cID
ηv
I )(Mu

I )−1UuηI + UηuI (Mu
IE )−1

(
Duη
IE

+ cIED
vη
IE

)]
,

KNE
I = c2,IU

ηu
I (Mu

IE )−1UvηIE − c2,INU
ηv
I (Mu

IN )−1UuηIN ,

KEE
I = c1,IU

ηu
I (Mu

IE )−1UuηIE ,
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and finally, as regards the right hand side:

N I = ηnI +
−∆tLηuI

[
θc3,IW (Mu

IW )−1
(
Un
IW + cIWVn

IW

)
+ (1− θ)unIW

]
+

−∆tDηu
I

[
θc3,I(Mu

I )−1 (Un
I + cIVn

I ) + (1− θ)unI
]

+

−∆tUηuI
[
θc3,IE (Mu

IE )−1
(
Un
IE + cIEVn

IE

)
+ (1− θ)unIE

]
+

−∆tLηvI
[
θc3,IS (Mu

IS )−1
(
−cISUn

IS + Vn
IS

)
+ (1− θ)vnIS

]
+

−∆tDηv
I

[
θc3,I(Mu

I )−1 (−cIUn
I + Vn

I ) + (1− θ)vnI
]

+

−∆tUηvI
[
θc3,IN (Mu

IN )−1
(
−cINUn

IN + Vn
IN

)
+ (1− θ)vnIN

]
.

The non-symmetric linear system (5.33) is solved using the GMRES method ( Saad
and Schultz (1986) ). Once ηn+1 is known, un+1 and vn+1 can be recovered by substi-
tuting ηn+1 back into equations (5.31) and (5.32) respectively.

As final remark, notice that our SISLDG method does not rely on operator splitting.

5.3.1 Implementation details

All the integrals appearing in the elemental equations are evaluated by means of Gaus-
sian numerical quadrature formulae with a number of quadrature nodes consistent with
the local polynomial degree used. In particular notice that integrals containing functions
which are the image through the evolution operator E defined in (5.11) (i.e. functions
evaluated at the foot of the trajectories arriving in the quadrature nodes) cannot be
computed exactly (see e.g. Morton et al. (1988), Priestley (1994) ), except the special
case of linear advection equation, since such functions are not polynomials, therefore a
careful approximation of these integrals is needed.

Secondly, the computation of terms (UnI )l and (VnI )l defined in eqs.(5.27) and (5.29)
contains the evaluation at quadrature nodes xq of each element KI of the action of the
evolution operator E(tn,∆t) on u, v,Dxh,D

y
h, but notice that the first step of the evalua-

tion of
[
E(tn,∆t)u

]
(xq),

[
E(tn,∆t)v

]
(xq),

[
E(tn,∆t) [Dxhη]

]
(xq),

[
E(tn,∆t) [Dyhη]

]
(xq)

i.e. the computation of the foot of the trajectory arriving at (xq) at tn+1 is exactly the
same for u, v,Dxh,D

y
h, and therefore can be carried only once for each xq . Moreover also

in the interpolation step saving of computational effort can be obtained if hierarchical
bases are used since in that case, the basis functions to be evaluated at the foot of the
trajectory are the same for u, v,Dxh,D

y
h.

Finally remember that the presence of matrices (Mu
I )−1 in previous formulae does

not constitute a computational problem since, taking advantage from the flexibility
of the discontinuous Galerkin spatial semi-discretization, orthogonal bases can be em-
ployed in a simple way in order to make local mass matrices diagonal and therefore
invertible without cost. Moreover if orthonormal bases are used, then mass matrices
reduce to the identity, so they completely disappear from previous formulae. The use
of normalized bases (w.r.t. L2 norm) gives benefits also from the point of view of the
conditioning of previous matrices.

All these remarks show how feasibility of the proposed method can be reached
through a proper implementation, but the most powerful way to improve the efficiency
of the proposed SISLDG method is represented by the introduction of an adaptivity
strategy, one simple example of which is presented in next section.
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5.4 A simple p-adaptivity criterion

The numerical method described in section 5.3 can be run in principle (and has been run
effectively for several numerical tests, as shown in section 6.1) taking a constant value
for the degree of the polynomials defining the local basis on each element. However, our
aim is to exploit the great flexibility of the DG spatial discretization by providing our
method with an automatic criterion to adapt the local number of degrees of freedom
to the nature of the numerical solution. This approach to adaptivity is not only quite
convenient from the computational viewpoint, but has in our opinion some specific
advantages for realistic environmental applications. Indeed, in NWP, climate or ocean
models, h−adaptivity approaches (that is, local mesh coarsening or refinement in which
the size of some elements changes in time) can be cumbersome in practice, since a
great amount of information that is necessary to carry out realistic simulations, such
as orography/bathymetry profiles, data on land use and soil type, land-sea masks and
very many others, is (as a rule, painfully) reconstructed on the computational mesh
and has to be re-interpolated each time the mesh is changed. Furthermore, many
physical parametrizations are highly sensitive to the mesh size. Although devising better
parametrizations that require less mesh-dependent tuning is an important research goal,
it is quite obvious that more conventional parametrizations will still be in use for quite
some time. As a consequence, it would be useful to be able to improve the accuracy
locally by adding supplementary degrees of freedom where necessary, without having to
change the underlying computational mesh. This is exactly what p−adaptivity does.
Furthermore, if simulations with a large number of reacting species are envisaged, as
increasingly common in environmental applications, h−adaptivity approaches may lead
to mesh refinement for all species due to the necessity of greater accuracy for just a few
of them. In p−adaptive approaches, on the other hand, the increase in the number of
degrees of freedom is totally independent for each species, thus allowing for increasing
the accuracy for some specific variable without increasing the computational cost for
other variables that do not need refinement.

Various approaches for p−adaptivity have been proposed in the literature, see e.g.
Flaherty and Moore (1995), Remacle et al. (2003), Houston and Süli (2005), Eskilsson
(2010). The technique we employ is extremely simple and relies on the use of orthogonal
hierarchical tensor-product basis functions.

Consider the local ( to the element KI ) representation of some dependent variable
α(x):

α(x)
∣∣
KI

=
(pαI +1)2∑
j=1

aI,jψI,j(x) =
pαI +1∑
k=1

pαI +1∑
l=1

αI,k,lψIx,k(x)ψIy,l(y). (5.34)

where (remember the construction of tensor product basis in chapter 2) I = (Ix, Iy)
is a suitable multi-index relabelling the two-dimensional elements in terms of the one-
dimensional ones and j = (k, l) is a suitable multi-index relabelling the two-dimensional
degrees of freedom in terms of the one-dimensional ones, such that aI,j = αI,k,l and
ψI,j(x) = ψIx,k(x)ψIy,l(y).

Notice that pαI will have different values for each different dependent variable α.
Due to the finite element spaces chosen for the SISLDG discretization, one will have
puI = pηI+1, while the local degree of the polynomials used for the tracers can in principle
be chosen independently for each different tracer.

If a normalized orthogonal hierarchical basis is employed, due to the orthonormality
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of the chosen basis it is well known (Parseval identity) that

Etot = ‖Pα‖2 =
(pαI +1)2∑
j=1

a2
I,j =

pαI +1∑
k,l=1

α2
I,k,l (5.35)

where P is the L2 projector onto the local polynomial subspace.
Now combining (5.35) with the hierarchical property of the basis, for any integer

r = 1, . . . , pα + 1 we can define the ”energy” contained in the r−th modal components
of α

∣∣
KI

for a given element KI ∈ Th as:

Er :=
∑

max(k,l)=r

α2
I,k,l (5.36)

In other words Er−1 will contain the ’energy’ associated to the region highlighted in
figure 5.4 in the plane px − py.

Therefore, for any integer r = 1, . . . , pαI + 1, the quantity

wr =

√
Er
Etot

will measure the relative weight of the r−th modal components of α with respect to the
best approximation available for the L2 norm of α. Assuming that α denotes a generic
model variable at the beginning of the computation of a generic time step, the proposed
adaptation criterion simply consists in the following algorithm:

Given an error tolerance εI > 0 for all I = 1, . . . , N, :

1) compute wpI

2.1) if wpI ≥ εI , then

2.1.1) set pI(α) := pI(α) + 1

2.1.2) set αI,pI = 0, exit the loop and go the next element

2.2) if instead wpI < εI , then

2.2.1) compute wpI−1

2.2.2) if wpI−1 ≥ εI , exit the loop and go the next element

2.2.3) else if wpI−1 < εI , set pI(α) := pI(α)− 1 and go back to 2.2.1.

Once the values of pI have been updated, in order to avoid too abrupt variation of
the local polynomial degree and to ensure that the values employed do not go beyond
a maximum and minimum allowed values pmax, pmin, respectively, for each element we
set

pI := min
{

max
{
pI ,

pIS
2
,
pIE
2
,
pIN
2
,
pIW

2
, pmin

}
, pmax

}
.

At the beginning of the simulation, all the variables are initialized with the maximum
possible number of local degrees of freedom. The adaptation algorithm then runs pre-
liminary to any computation in each new time step, including the first.
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As a result, from the first time step only the degrees of freedom up to the local
maximum value are updated. In our simulations, the tolerance has been kept fixed for
all elements and variables, but the method could be refined by choosing different values
for particular purposes. Although one dimensional tests are definitely not sufficient
to assess the efficiency improvement coming from the proposed approach, preliminary
testing reported in section 6.1 seems to show that the presented p−adaptivity criterion
effectively does work.

Figure 5.4: The region on the px − py plane of the degree of freedom which contributes
to Er−1.
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Chapter 6

Numerical validation

In this chapter a numerical validation of the novel SISLDG discretiza-
tion of the rotating shallow water equations is presented with two main
purposes: asses the stability and accuracy properties of the proposed
numerical scheme and analyse the impact of the p-adaptivity criterion
on the computed solution. Stability is studied considering the size of
the maximum allowable Courant number.

Introduction

The numerical method introduced in section 5.3 has been implemented and tested on
a number of classical benchmarks. Due to the nature of semi-Lagrangian method,
strong unstationary shocks cannot be approximated properly. Indeed, it is well known
that an accurate computation of the shock wave speed can only be achieved if the
numerical method is based on the conservative form of the momentum equation, while
the non conservative formulation is used in the present approach. Therefore, it is to be
expected that discontinuous solutions such as those arising in the ’dam break’ Riemann
problem will be reproduced with incorrect propagation speed, which indeed happens also
with our method. On the other hand, as highlighted in the introduction, the present
kind of numerical technique is aimed at achieving high computational efficiency for low
Mach/Froude number problems, as those encountered in many typical environmental
applications. Moreover, since we have focused on low Mach/Froude number flows, where
the typical velocity is much smaller than that of the fastest propagating waves (this
being also the motivation for the use of semi-implicit methods), in the following we will
distinguish between the maximum Courant number based on the velocity Cvel := u∆t

∆x/p

and the the maximum Courant number based on the celerity Ccel := (u+
√
gh)∆t

∆x/p . In all
the test cases with analytic solution, the relative errors in the L1, L2 and L∞ at time T
are defined, for a generic variable ζ, as

Eζ1 =
‖ζ(·, T )− ζex(·, T )‖L1

‖ζex(·, T )‖L1

, Eζ2 =
‖ζ(·, T )− ζex(·, T )‖L2

‖ζex(·, T )‖L2

, Eζ∞ =
‖ζ(·, T )− ζex(·, T )‖L∞
‖ζex(·, T )‖L∞

where ζex denotes the analytic solution and the integral norms are computed by appro-
priate numerical quadrature rules.

59
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6.1 One dimensional tests

The performance of the proposed numerical method for the integration of (4.1) is first
assessed in the one-dimensional case, both linearised and fully non-linear. While such
analysis does not completely cover the general problem, it gives necessary conditions for
stability, and anyway an important measure of performance ( as underlined in Purnell
(1975) ). A more general discussion is given in S.A.Orszag (1971).

6.1.1 Accuracy assessment on non-linear solutions

A first test has been carried out in order to check that the spatial discretization is
indeed implemented correctly. To do this on a non trivial benchmark, we considered
an all rarefaction wave solution of the Riemann problem for equations (4.1) with f = 0

and h(x, 0) = h0, u(x, 0) =


ul, if x < 0

ur, if x ≥ 0
whose exact solution is given by:

(
h(x, t)
u(x, t)

)
=



(
h0
ul

)
, if x ≤ (ul −

√
gh0)t( 1

9g (ul+2
√
gh0−x/t)2

1
3 (ul+2

√
gh0+2x/t)

)
, if (ul −

√
gh0)t ≤ x ≤ ( 1

4ul + 3
4ur −

√
gh0)t( 1

16g (ul−ur+4
√
gh0)2

ul+ur
2

)
, if ( 1

4ul + 3
4ur −

√
gh0)t ≤ x ≤ ( 3

4ul + 1
4ur +

√
gh0)t( 1

9g (−ur+2
√
gh0+x/t)2

1
3 (ur−2

√
gh0+2x/t)

)
, if ( 3

4ul + 1
4ur +

√
gh0)t ≤ x ≤ (ur +

√
gh0)t(

h0
ur

)
, if x ≥ (ur +

√
gh0)t

In all the computed solutions, θ = 0.6. A plot of the solution is displayed in figure 6.1.

Figure 6.1: Solution of all rarefaction wave Riemann problem for at T = 16.0 s.

Firstly, a convergence test for the spatial discretization was performed, assuming a
small and fixed value ∆t, taking pη = 1 and increasing the number of elements. Results
are reported in table 6.1.

Another convergence test was performed at fixed small Courant number Ccel. Results
are reported in table 6.2.
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Nel Cvel Ccel Eη2 Eeta1 Eη∞
6 6.43e-3 4.68e-2 0.203 0.15 0.37
13 1.26e-2 9.14e-2 7.56e-2 5.78e-2 0.11
25 2.32e-2 0.17 2.90e-2 2.12e-2 7.15e-2
50 4.56e-2 0.33 1.26e-2 7.14e-3 4.18e-2
100 9.02e-2 0.65 4.21e-3 1.98e-3 2.07e-2

Table 6.1: Relative errors on the free surface elevation in L2, L1, L∞ norms, pη = 1 and
increasing number of elements at fixed ∆t.

Nel ∆t Ntstep Eη2 Eη1 Eη∞
6 0.125 8 0.203 0.15 0.37
13 0.0625 16 7.56e-2 5.77e-2 0.11
25 0.0312 32 2.88e-2 2.11e-2 7.29e-2
50 0.0156 64 1.27e-2 7.40e-3 4.02e-2
100 0.0078 128 4.47e-3 2.38e-3 2.09e-2

Table 6.2: Relative errors on the free surface elevation in L2, L1, L∞ norms, pη = 1 and
increasing number of elements at fixed small Ccel.

Finally, the same test was run keeping mesh size and time step constant, while
increasing the degree of the polynomial spaces, see tab. 6.3.

pη pu Eη2 Eη1 Eη∞
0 1 3.89e-2 1.90e-2 1.50e-1
1 2 4.27e-3 1.55e-3 2.48e-2
2 3 3.18e-4 1.36e-4 2.39e-3

Table 6.3: Relative errors on the free surface elevation in L2, L1, L∞ norms of when the
the polynomial degree is increased and ∆x, ∆t are kept constant.

6.1.2 Gravity wave propagation and geostrophic adjustment

For environmental applications, correct reproduction of gravity wave solutions of (4.1)
is essential, both in the rotating and non rotating case.

Gravity waves propagation with no rotation

The one dimensional linear and non-linear shallow water equations (4.1) have been
solved using the scheme presented in section 5.3. In order to simulate propagation of
gravity waves on geophysical scales, we considered first the non rotating case f = 0 on
a domain with length L = 1.8×104 km and a reference height H = 2 km. The solutions
computed by discretizing the linear and non-linear equations are shown in figures 6.2
and 6.3a, respectively, as computed using ∆x = 180 km, θ = 0.54 and a value of the
Courant number C � 1. . The computed solutions are in good agreement with the
theory and the deformation of the initial profile due to the non-linear effects is clearly
displayed in figure 6.3a. Moreover figure 6.3a should be compared with 6.3b where, for
equal order pressure-velocity pair, clear instabilities arise.
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Figure 6.2: Numerical solution for the free surface elevation field for the linear one-
dimensional SWE. Dashed curve: initial condition. Solid curve: solution at T = 10 h.
Circles denote nodal values.

For a more quantitative assessment of the spatial accuracy of the method, the er-
rors with respect to the analytic solution available in the linear case are reported in
table 6.4. Again, a small and fixed Courant number is chosen, in order to let the spa-
tial discretization error be the dominant error component, while employing different
polynomial orders for the local representation of the solution.

pη pu Eη∞ Eη2 Eη1
1 2 0.44 0.48 0.67
2 3 1.62× 10−2 2.21× 10−2 2.12× 10−2

3 4 5.05× 10−4 7.34× 10−4 6.56× 10−4

4 5 3.07× 10−5 4.70× 10−5 4.31× 10−5

Table 6.4: Relative errors in L∞, L2, L1 norm for linearised non-rotating SWE at fixed
Courant number C � 1, θ = 0.501.

On the other hand, in order to assess the accuracy and robustness of the time
discretization, the same test was run with reference height H = 1 km, ∆x = 18 km and
pη = 3, pu = 4 using different values for the time step ∆t. The results are summarized
in table 6.5. A more comprehensive set of results in the same test case is also shown in
table 6.6.

∆t Ccel Eη2 Eη1 Eη∞
500 4.47 8.40× 10−2 9.37× 10−2 8.79× 10−2

250 2.23 2.17× 10−2 2.40× 10−2 2.19× 10−2

125 1.14 5.51× 10−3 6.07× 10−3 5.79× 10−3

62.5 0.57 1.42× 10−3 1.55× 10−3 1.56× 10−3

31.25 0.28 3.90× 10−4 4.23× 10−4 4.49× 10−4

Table 6.5: Relative errors in L∞, L2, L1 norm for linearised non-rotating SWE at fixed
spatial resolution when the time step ∆t is decreased.
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(a) Solid curve: Q4 − Q5 solution at T = 10 hours. The dashed curve indicates the initial
condition.

(b) Q4 −Q5 solution at T � 10 hours.

Figure 6.3: Numerical solution of non-linear one-dimensional SWE (f = 0) for the free
surface elevation field.

The effectiveness of the proposed p-adaptivity criterion has also been analysed in
the context of gravity wave propagation. To this end the same test as described above
was run up to T = 15 h with automatic choice of the local polynomial degree up to
a maximum value of pη = 3. A cut-off tolerance of ε = 2 × 10−3 was employed in the
adaptivity criterion. The computed solution is shown in figure 6.4a, while the local
polynomial degrees pη are shown in figure 6.4b, displaying clearly how the adaptivity
criterion is able to track adequately the two travelling waves.
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(a) free surface elevation (black), u-velocity (green), local pη (red).

(b) local polynomial degree pη for the free surface elevation.

Figure 6.4: p-adaptive gravity wave solution for the nonlinear SWE: Cut-off tolerance
ε = 2× 10−3, H = 2km, T = 15hours.

Geostrophic equilibrium

In the rotating case f 6= 0, geostrophic equilibrium is one of the exact solutions of the
nonlinear shallow water equations. In order to assess the effectiveness of the proposed
spatial discretization in representing accurately this very important component of the
solution on geophysical scales, an initial datum in geostrophic equilibrium was chosen
on the same spatial domain considered in section 6.1.2 and departures from geostrophic
equilibrium and stationarity were measured by the error norms
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p|η pu Cvel Ccel Eη∞ Eη2 Eη1 Eu∞ Eu2 Eu1
∆t = 60.0 s

0 1 1.17e-3 0.47 6.18e-2 4.03e-2 4.26e-2 8.68e-2 4.90e-2 4.82e-2
2 3 3.50e-3 1.40 3.90e-3 3.63e-3 3.99e-3 3.93e-3 3.63e-3 3.99e-3
6 7 8.17e-3 3.28 3.90e-3 3.63e-3 3.99e-3 3.90e-3 3.63e-3 3.99e-3

∆t = 600.0 s
0 1 1.0e-2 4.68 0.29 0.26 0.32 0.31 0.26 0.32
2 3 3.23e-2 14.05 0.29 0.29 0.36 0.29 0.29 0.36
6 7 7.55e-2 32.8 0.29 0.29 0.36 0.29 0.29 0.36

∆t = 3600.0 s
0 1 3.38e-2 28.0 0.71 1.07 2.38 0.71 1.07 2.38
2 3 0.1 84.0 0.71 1.07 2.38 0.71 1.07 2.38
6 7 0.24 196 0.71 1.07 2.38 0.71 1.07 2.38

∆t = 6.0 s
0 1 1.17e-4 4.70e-2 6.59e-2 4.36e-2 4.64e-2 9.10e-2 5.19e-2 5.14e-2
2 3 3.5e-4 0.14 1.0e-4 8.09e-5 8.86e-5 1.23e-4 8.19e-5 8.95e-5
6 7 8.17e-4 0.33 9.47e-5 8.08e-5 8.85e-5 9.47e-5 8.08e-5 8.85e-5

∆t = 1.0 s
0 1 1.95e-5 7.80e-3 6.59e-2 4.36e-2 4.64e-2 9.10e-2 5.19e-2 5.14e-2
2 3 5.84e-5 2.34e-2 2.09e-5 1.28e-5 1.42e-5 4.23e-5 1.82e-5 1.96e-5
6 7 1.36e-4 5.47e-2 1.40e-5 1.21e-5 1.35e-5 1.40e-5 1.21e-5 1.35e-5

Table 6.6: Relative errors in L∞, L2, L1 norm for linearised non rotating SWE.

Egeo1 :=
1

β − α

∫ β

α

∣∣∣∣g ∂η∂x − fv
∣∣∣∣ dx (6.1)

Estd2 =

∥∥ηn+1 − ηn
∥∥
L2

‖ηn+1‖L2

.

The values of these indicators at approximately T = 150 h are displayed in table 6.7, as
computed for a simulation with H = 1 km, ∆x = 36 km, ∆t = 500 s, θ = 0.54. Fixed
polynomial degrees were considered in this case.

pη pu Ccel
√
gH/f

∆x/p Egeo1 Estd2

2 3 4.2 82.5 4.48× 10−7 1.56× 10−10

4 5 7.0 137 3.26× 10−10 5.32× 10−14

6 7 9.9 192 1.42× 10−13 1.53× 10−17

Table 6.7: Departures from geostrophic equilibrium and stationarity in solutions of the
nonlinear SWE.

Here, the values α, β in definition 6.1 were assumed to coincide with the boundaries
of the 1D domain. A plot of the solution in a similar test is also shown in figure 6.5a,
clearly displaying the absence of any spurious oscillation.

It is interesting to observe that, if equal polynomial orders are chosen, the dis-
cretization is instead unable to maintain geostrophic equilibrium. A plot of the solution
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(a) Numerical solution of the non-linear SWE initialized with a profile in geostrophic equilib-
rium, computed with Q3−Q4 at Ccel = 11.3 (∆x = 18km, ∆t = 500s). The solid curves show
the solutions ( black for the free surface elevation η, red for u, blue for v ) at T = 2.5× 105s .

(b) Numerical solution of the non-linear SWE with rotation (f = 10−4)computed with Q2−Q2

elements. solution at T = 2500s. The solid curves show the solutions ( black for the free surface
elevation η, red for u ) at T = 1 rmhs.

Figure 6.5

computed in the same test at approximately T = 1 rmh and taking pη = pu = 2 is
shown in figure 6.5b. This justifies the choice of different polynomial orders for the ap-
proximation of the free surface and velocity variables, respectively, that was motivated
in section 5.3 based on theoretical results available in the stationary, incompressible
case.
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Geostrophic adjustment

If the non rotating case is considered with unbalanced initial data, the solutions will
present both gravity wave components, representing the geostrophic adjustment process,
and a geostrophically balanced component. The numerical solution computed at T =
10 h with θ = 0.51, H = 2 km, ∆x = 180 km, pη = 4, pu = 5 is shown in figure 6.6a.

Also in this case, when equal order finite element spaces Qk −Qk are employed, the
numerical solution is entirely disrupted by spurious oscillations, as apparent in figure
6.6b for the case pη = 2, pu = 2.

(a) Numerical solution for the free surface elevation field for the nonlinear rotating
one-dimensional SWE. Dashed curve: initial condition. Solid curves (black for η,
red for u, blue for v): solution at T = 10 h.

(b) Numerical solution of the nonlinear one-dimensional SWE with rotation computed
with pη = 2, pu = 2. Black line: free surface elevation, red line: u component of velocity
at T = 2× 102 s.

Figure 6.6: p-adaptive gravity wave solution for the nonlinear SWE: Cut-off tolerance
ε = 2× 10−3, H = 2km, T = 15hours.
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Also in this case, departures from geostrophic equilibrium have been computed for
the geostrophic component, choosing α and β in 6.1 in order to exclude the two travelling
gravity waves. Results are summarized in table 6.8 for different values of the Rossby
deformation radius.

pη pu Ccel
√
gH/f

∆x/p Egeo1

0 1 0.8 7.78 4.5× 10−5

2 3 2.4 23.3 2.6× 10−6

6 7 5.5 54.0 2.5× 10−6

Table 6.8: Departures from geostrophic equilibrium in the solution of nonlinear SWE
at T = 5× 104 s. Solution computed for ∆t = 100 s, ‖η0‖L∞ = 50.

While in the previous test the Rossby deformation was always well resolved on
the computational mesh considered, it is also of interest to check how the geostrophic
adjustment process is reproduced when the Rossby deformation radius is poorly resolved.
Encouraging results in this case are collected in table 6.9.

pη pu Ccel
√
gH/f

∆x/p Egeo1

0 1 0.01 0.87 2.15× 10−6

2 3 0.02 2.6 6.22× 10−7

6 7 0.06 6 5.22× 10−7

Table 6.9: Departures from geostrophic equilibrium in the solution of nonlinear SWE
at T = 5× 105 s. Solution computed for H = 100 m, ∆t = 100 s, ‖η0‖L∞ = 0.5.

6.1.3 Free surface open channel flows with non constant bathymetry

In order to check the performance of the nonlinear model in a case with non con-
stant bathymetry where an analytic solution is available, some of the river hydraulics
benchmarks considered in Rosatti et al. (2011) and Vazquez-Cendon (1999) have been
considered. In particular, inviscid open channel flow was considered in a 25 m long
channel with a parabolic obstacle placed in the middle. Nel = 100 elements of degrees
pη = 3, pu = 4 were employed in all tests and the solutions were computed in general
at T = 800 s.

Firstly, the canonical still water test case has been successfully performed over very
long integration times. As discussed in Rosatti et al. (2011), methods employing the
non conservative formulation of the momentum equation satisfy automatically the so
called C-property and are naturally well balanced, so that no problems arise due to the
variable bathymetry in the still water case.

A steady state test in sub-critical regime was then considered, for which the reference
depth us H = 2.0 m,, the (constant) exact value of discharge is Qex = hexuex =
4.42 m3/s and the obstacle maximum height is hd = 2.0m. The relative errors for the
computed discharge are for this case E∞Q = 8.07×10−4, E2

Q = 4.68×10−5, respectively,
and a plot of the free surface elevation is shown in figure 6.7.

Finally, a steady state test in transcritical regime was considered, for which the
reference depth is H = 0.66 m,, the (constant) exact value of discharge is Qex =
hexuex = 1.53 m3/s and the obstacle maximum height is hd = 2.0m. The relative errors
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Figure 6.7: Steady flow over a parabolic bump, free surface elevation in sub-critical case,
Cvel = 2.09, Ccel = 5.67.

for the computed discharge are for this case E∞Q = 1.559 × 10−3, E2
Q = 5.68 × 10−5,

respectively, and a plot of the free surface elevation is shown in figure 6.8.

Figure 6.8: Steady flow over a parabolic bump, free surface elevation in transcritical
case, Cvel = 0.62, Ccel = 1.13.

6.1.4 Coupling with tracers advection

To fully exploit the power of semi-Lagrangian approach, the proposed SISLDG solver
for SWE has been coupled with a SLDG passive tracers advection scheme in flux form
(see section 3.5), which is the extension of the scheme of Restelli et al. (2006), whose
properties in terms of conservation of constants (C-property, see e.g. Gross et al. (2002)
) and compatibility with the continuity equation have been investigated .

As well underlined in Gross et al. (2002), a minimal monotonicity requirement, which
is, however, desirable of any numerical scheme for a tracers advection equation , is that
an initially uniform scalar field remains uniform in the absence of sources and sinks.
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This condition has been called the constancy condition in Leonard et al. (1996), where
it is also shown that instability can arise in methods in which it is violated.

It has to be noticed that in general this property does not always follow for con-
servative discretizations of a passive tracers advection equation coupled to free-surface
flows. In fact, this property is granted if the conservative scheme employed for the
tracers advection is consistent with the discretization of the continuity equation. The
concept of consistency with continuity has been discussed by various authors (see for
example LeVeque (1996) or Lin and Rood (1996)), especially in connection with the
links of conservative schemes to their respective advective versions. In Lin and Rood
(1996) a discretization of the advection equation is defined consistent with continuity
if, given a spatially uniform scalar field as an initial datum, and a general flow field, the
discretized scalar advection equation reduces to the discretized continuity equation.

The purpose of this section is to verify the consistency of the semi-implicit discretiza-
tion of the continuity equation proposed in section 5.3 with the SLDG discretization
approach for the scalar transport equation presented in section 3.5.

First the tracer profile was initialized with a constant and check was made that
the profile remained constant even after long time. To take into account a situation
where the nonlinear terms play an important role, the steady state flow of section 6.1.3
was considered: for such a flow , going on with the simulation even after reaching the
steady state, we found that the error in L∞ norm on the (constant) tracer concentration
remains of the order of the machine precision, ‖c− cex‖∞ = 4.6× 10−15, see fig. 6.9 .

Figure 6.9: Tracer advection by the steady flow over a parabolic bump considered in
section 6.1.3 ( bathymetry in black, free surface in green, velocity in red), Cvel = 0.45..
Starting at t = 0 with a concentration c = 1, the tracer concentration c (in blue) is
shown after ∆t = 5× 104s: at this time ‖c− cex‖∞ = 4.6× 10−15.

Moreover the effect of the passage of a gravity wave on a localized concentration of
tracer was considered: in figure 6.10 the initial datum is shown for the elevation and
the tracer concentration, while in figure 6.11, 6.12 the solution after 12 hours is shown
in linearised and nonlinear case respectively, for Ccel = 1.19. It can be recognized how
the tracer profile remains unaffected by the passage of the gravity wave.
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Figure 6.10: Initial datum for the free surface elevation (black) and the tracer concen-
tration (blue).

Figure 6.11: Tracer concentration (blue) at t = 12h, when the gravity wave has been
passed. Linearised SWE, Ccel = 1.19.

Figure 6.12: Tracer concentration (blue) at t = 12h, when the gravity wave has been
passed. Nonlinear SWE, Ccel = 1.19.
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6.2 Two dimensional tests

6.2.1 p-adaptivity on the advective part: solid body rotation

As a first test of the two-dimensional implementation, we consider two-dimensional
passive tracer advection, in order to achieve a first assessment of the effectiveness of the
multidimensional p-adaptivity strategy.

First the most basic test case was considered, namely solid body rotation. For this
test, a stationary velocity field is considered, representing a rotating flow with frequency
ω = 2π/300 s−1 around the center of the square domain Ω = [0, 20]× [0, 20]. The initial
datum is a continuous and compactly supported function with the shape of a cosine hill
centred in (7.5, 10). Results of the non conservative, p−adaptive SL advection after 4
revolutions at maximum C = 0.5 are shown in figure 6.13, while in figure 6.14 the values
of the local polynomial degrees actually used are displayed, showing how the proposed
adaptation algorithm is able to follow correctly the main solution features.

6.2.2 p-adaptivity on the advective part: deformational flow
test

Finally the well known test proposed in Smolarkiewicz (1982) has been considered. The
number of elements is Nel = 2500 and the maximum polynomial degree used is fixed to
four. As pointed out in Staniforth et al. (1986), where an analytic solution for this test
has been described, there are two flow regimes for which different evaluation criteria are
appropriate. On a time scale of the order of the characteristic period of the flow, accurate
numerical methods are assumed to reproduce the analytic solution correctly. On the
other hand, on a much longer time scale, it can only be expected that only the average
behaviour of the analytic solution is recovered. The computed solution at time T = 30 s,
corresponding to 3/4 of the characteristic period of the flow, is displayed in figure 6.15.
This result compares well with the plots of the analytic solution presented in Staniforth
et al. (1986). In figure 6.16, on the other hand, the values of the local polynomial degrees
actually used are displayed, showing again that the proposed adaptation algorithm is
able to follow correctly the main solution features.

On the longer time scale, the results of the advective form of SLDG scheme are
similar to large scale average of the analytic solution, as displayed in figures

6.17 and 6.18. Notice that all these computations on the Smolarkiewicz test case
have been carried out using a mesh of 2500, a time step corresponding to a Courant
number C ≈ 4, while the tolerance for the adaptivity criterion has been chosen ε = 10−2.

6.2.3 Gravity waves propagation

After in previous section the correctness of the semi-Lagrangian part of the code in two
dimensions was checked through different advection tests, now the the correctness of the
semi-implicit part in two dimensions is investigated first considering the gravity waves
propagation (exactly as first done in the one-dimensional case ) .

In order to simulate propagation of gravity waves on geophysical scales, nonlinear
shallow water equations (4.1) have been solved using the scheme presented in section
5.3 first in the non rotating case f = 0, on a rectangular domain [−L,L]2 with length
L = 7000km and a reference height H = 2 km. The solution after 18750s computed by
discretizing the nonlinear equations with an initial datum given by zero velocity and a
Gaussian perturbation of the free surface placed in the center of the domain is shown in
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figure 6.19 and 6.20, where polynomial degrees pη = 4, pu = 5, 2500 elements, a value
of the Courant number C ≈ 1, and θ = 0.52 were used.

The computed solutions are in good agreement with the theory as the propagation
velocity of the gravity wave given by

√
gH is well reproduced.

Figure 6.13: Solid body rotation: contour lines of solution after 4 revolutions at C = 0.5.

Figure 6.14: Distribution of the local polynomial degrees for the solid body rotation
test case.
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Figure 6.15: Contour lines of the computed solution for the Smolarkiewicz test at T =
30s. The maximum Courant is C ≈ 4, while the tolerance for the adaptivity criterion
has been chosen ε = 10−2.
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Figure 6.16: Contour lines of the automatically chosen polynomial degree for the com-
puted solution of the Smolarkiewicz test at T = 30s. The maximum Courant is C ≈ 4,
while the tolerance for the adaptivity criterion has been chosen ε = 10−2.
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Figure 6.17: Contour lines of the computed solution for the Smolarkiewicz test at T =
900s. The maximum Courant is C ≈ 4, while the tolerance for the adaptivity criterion
has been chosen ε = 10−2.

Figure 6.18: Contour lines of the automatically chosen polynomial degree for the com-
puted solution of the Smolarkiewicz test at T = 900s. The maximum Courant is C ≈ 4,
while the tolerance for the adaptivity criterion has been chosen ε = 10−2.
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Figure 6.19: Solution of the nonlinear shallow water equations representing the propa-
gation of a gravity wave after 18750s sec. The maximum Courant is C ≈ 1.

Figure 6.20: Contour lines of the solution of the nonlinear shallow water equations
representing the propagation of a gravity wave after 18750s sec. The maximum Courant
is C ≈ 1.



Chapter 7

Conclusions and future
perspectives

The main purpose of the present thesis has been the design and analysis of a novel semi-
implicit and semi-Lagrangian Discontinuous Galerkin method for the rotating shallow
water equations (SISLDG), as a first step in the context of a more ambitious project
to develop a new generation, non-hydrostatic, DG based, dynamical core for regional
atmospheric modelling.

The main original results of this thesis work can be summarized as follows:

• the effects of different element choices for the velocity-pressure pairs on the stabil-
ity of the approximate solution have been investigated by numerical experiments,
showing that mixed orders Qk −Qk−1 velocity-pressure pairs (structured meshes
of quadrilaterals are employed) work better then equal order ones, for which clear
instabilities arise. Benefits on the stability from the use of mixed order velocity-
pressure pair instead of Qk − Qk for DG were proved for the Stokes problem
(Toselli (2002), Schötzau et al. (2003)), but the fact that typical atmospheric flow
regimes are characterized by small Froude/Mach numbers suggested the exten-
sion of the same strategy to SWE too. Moreover, this mixed order choice for
the pressure-velocity pair can be regarded as the DG analogue of staggering in
the finite difference framework ( see e.g. Winninghoff (1968), Arakawa and Lamb
(1977) ).

• A simple p-adaptivity criterion has been employed, that allows to adjust dynam-
ically the number of local degrees of freedom employed to the local structure of
the solution. This goal has been achieved thanks to the flexibility of the DG
spatial discretization and of the orthogonality property of the Legendre polyno-
mial basis. As demonstrated by the one-dimensional and two-dimensional numer-
ical experiments, p-adaptivity strategy employed is quite effective in reducing the
computational cost, while being sufficiently simple and robust to be applied to
complete climate and NWP models, where the physical parametrizations present
in the source terms make it difficult to perform rigorous a posteriori error analysis.

• Thanks to the choice of ’stable’ mixed order velocity-pressure pairs, after stan-
dard L2 projection against test functions (chosen equal to the basis functions as
in Direct Characteristic Galerkin scheme, see Morton et al. (1988)), and after

77
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integration by parts (where necessary), centred numerical fluxes were used to re-
place the (not-defined) traces of the solution at the inter-element boundaries, as in
Bassi and Rebay (1997b). Moreover, the size of the final fully discrete problem was
reduced by expressing the discrete velocity components in terms of the discrete
free surface elevation from the momentum equations and then substituting the
resulting expressions into the continuity equation, (as customary in SI methods,
see e.g. Casulli and Greenspan (1984), Staniforth and Temperton (1986), Tem-
perton and A.Staniforth (1987), Casulli and Cheng (1990), Casulli (1990), Casulli
and Cattani (1994) ), to obtain a single discrete Helmholtz equation in the free
surface elevation unknown only, which takes the form of sparse ( penta-diagonal
in one-dimension, trideca-diagonal in two dimensions) block non symmetric linear
system, which is solved via GMRES iteration.

• To fully exploit the power of semi-Lagrangian approach, the proposed SWE solver
has been coupled with a SLDG passive tracers advection scheme in flux form
(which is the extension of the scheme of Restelli et al. (2006)), whose properties
in terms of conservation of constants (C-property, see e.g. Gross et al. (2002)
) and compatibility with the continuity equation have been investigated . The
p-adaptive treatment has been extended in independent way for each different
passive tracer. As a result, the changes in the number of degrees of freedom
are totally independent for each species, thus allowing to increase the accuracy for
some specific variable without increasing the computational cost for other variables
that do not need refinement.

• The proposed approach has been implemented in a modular FORTRAN95 code.
The 1D implementation first developed has been used as template for the 2D
implementation on Cartesian meshes.

The code has been used to perform a number of tests in order to analyse the stabil-
ity and accuracy properties of the novel SISLDG method. Numerical results in the
framework of one dimensional test cases prove that proposed the method captures
accurately and effectively the main features of linear gravity and inertial gravity
waves, as well as reproduces correct solutions in nonlinear open channel flow tests
and in all rarefaction Riemann problem. The effectiveness of the SISLDG method
is also demonstrated by numerical results obtained at high Courant numbers and
with automatic choice of the local approximation degree.

Numerical results in the framework of two-dimensional test cases show the effec-
tiveness of the p-adaptivity strategy employed, as in the test of Smolarkiewicz, as
well as the ability of well capture gravity waves also in two dimensions. Moreover
the SLDG discretization for the advection has been already tested on a vector of
an arbitrary number of tracers.

Future extensions of the numerical methodologies proposed in this thesis may include
the development of a dispersion and stability analysis of the proposed method, the
design of optimal solvers for the semi-implicit step (with adequate preconditioning), the
comparison with other time integration techniques ( e.g. exponential integrators ).

Moreover, future applications of this work and its extensions will include switching
to lat-lon coordinates ( through the introduction of suitable metric terms) in order to
perform numerical tests on the sphere and finally, ( last but not least ) the use of the
same numerical technique (SISLDG) to develop a non-hydrostatic model for regional
atmospheric simulations: more specifically, the resulting method should be used to
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improve the numerical discretizations presently employed in RegCM, see Giorgi (1990)
.
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