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Unknotting Numbers are not

Realized in Minimal Projections

for a Class of Rational Knots

Dennis J. Garity (∗)

Summary. - In previous results, Bleiler and Nakanishi produced an

example of a knot where the unknotting number was not realized

in a minimal projection of the knot. Bernhard generalied this

example to an infinite class of examples with Conway notation

(2j + 1, 1, 2j) with j ≥ 2. In this paper we examine the entire

class of knots given in Conway notation by (2j + 1, 2k + 1, 2j)
where j ≥ 1 and k ≥ 0 and we determine that a large class of

knots of this form have the unknotting number not realized in

a minimal projection. We also produce an infinite class of two

component links with unknotting number gap arbitrarily large.

1. Introduction

In the early 1980s, Bleiler [3] and Nakanishi [10] independently pro-
duced an example of a knot whose unknotting number was not re-
alized in a minimal projection. The example was the knot (5, 1, 4)
in Conway notation [4]. Bleiler’s method of proof involved show-
ing that the ten crossing projection given by the Conway notation
(5, 1, 4) was the minimal projection and had unknotting number 3,
whereas the alternate projection with 14 crossings given by the Con-
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way notation (2, −2, 2, −2, 2, 4) has unknotting number 2. Nakan-
ishi’s method of proof involved showing that the minimal projection
had unknotting number three, whereas an alternate projection with
twelve crossings had unknotting number two.

Bernhard [2] generalized Nakanishi’s approach to produce an in-
finite class of alternating knots for which the unknotting number was
not realized in a minimal projection. Specifically, he showed that the
knots (2k + 1, 1, 2k) for k ≥ 2 have this property.

More recent results make it easier to determine when a given pro-
jection of a knot or link is the minimal projection, and thus make
it easier to analyze when gaps between the unknotting number of a
minimal projection of a knot or link and the actual unknotting num-
ber of the knot or link occur. The needed definitions and background
material are presented in the next section.

In this paper, we examine the unknotting number for knots given
in Conway notation by (a, b, c) where a, b, and c are positive. We are
able to show that for a large class of these knots, namely the knots
of the form (2j +1, 2k +1, 2j), for j ≥ 1 and k ≥ 0, the unknotting
number of the minimal projection is 2j if j ≤ k + 1 and is j + k + 1
if j ≥ k + 2. In addition, if j ≥ k + 2, the knot (2j + 1, 2k + 1, 2j)
has a nonminimal projection with unknotting number ≤ j + k. As a
consequence, any knot of the form (2j +1, 2k+1, 2j) with j ≥ k+2
has unknotting gap at least 1.

We are also able to show that the unknotting number of the two
component links of the form (2j, 1, 2k), for j ≥ k ≥ 2 is k + j − 1.
These links have a nonminimal projection with unknotting number
less than or equal to j. As a consequence, the unknotting gap of
these links is at least k − 1.

Work on the results in this paper started during summer pro-
grams at Oregon State University. James Bernhard, Cassandra Mc-
Gee and Eva Wailes participated in these programs and contributed
to the results. Some of the results appear in preliminary form in
unpublished proceedings from these programs[5], [6].
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2. Definitions and Background

We use the word link to represent a knot or link in R3. The unknot-
ting number of a specific projection of a link is the minimal number of
simultaneous crossing changes necessary in that projection to change
the link into the trivial link. The unknotting number of a link is the
minimum, taken over all projections of the link, of the unknotting
number of the projections of that link.

We use Conway notation [4] to represent projections of rational
knots and links. The continued fraction associated with a link given
by Conway notation (a1, a2, . . . , an) is the continued fraction:

an +
1

an−1 +
1

· · · +
1

a2 +
1

a1

A main result from [4] is the following.

Proposition 2.1. If the continued fractions associated with two links

given in Conway notation are the same, then the links are equivalent.

Figure 1 shows the knot given by Conway notation (a, b, c) where
a, b, and c are positive. This is not the standard way of showing this
knot, but is equivalent to the standard picture. For more information
on Conway notation, consult Adams’ text [1].

A projection is alternating if the sequence of crossings alternates
between overcrossings and undercrossings as the knot is traversed
with respect to a specific orientation. A projection is reduced alter-
nating if it is alternating and if no crossing is reached twice succes-
sively as the knot is traversed with respect to a specific orientation.
Figure 2 below shows a non reduced alternating projection. The part
of the projection inside the dotted rectangle is not shown.

The following result of Kauffman, Thistlethwaite, and Murasugi
[8] makes it easier to check for minimal projections.

Proposition 2.2. Any reduced alternating projection of a link is a

minimal projection.
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Figure 1: Knot given by Conway notation

Figure 2: Unreduced alternating projection

It is easy to check that any link given in Conway notation by a
sequence of length at least two of all positive, or all negative inte-
gers, is reduced alternating, and thus the corresponding projection
is minimal and the link is nontrivial.

A flype is an ambient isotopy that results in changing a projection
from the situation at the top of Figure 3 below to the situation at
the bottom of the figure. The region of the projection inside the
dotted rectangle is rotated to remove the crossing at the right and
introduce the crossing at the left. Note that if two projections differ
by a flype, then the unknotting number of the two projections is the
same.
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Figure 3: Flype

The following result of Menasco and Thistlethwaite [9]makes it
possible to just check the unknotting number of a single reduced
alternating projection of a link to find the unknotting number of
minimal projections of that link.

Proposition 2.3. Any two reduced alternating projections of a link

differ by a series of flypes, and so have the same unknotting number.

Finally, the unknotting gap of a link is the difference between the
unknotting number of a minimal projection of the link and the actual
unknotting number of the link. The strategy for finding rational links
with positive unknotting gap should now be clear. One analyzes the
unknotting number of projections of links given in Conway notation
by a sequence of all positive or all negative numbers. The associated
projection is necessarily minimal, and the result of changes in various
positions can be analyzed. If a sequence of changes results in a link
that has an alternate Conway expression involving all positive or all
negative integers, then that particular sequence of changes does not
result in the trivial link. Analyzing all possible changes gives the
unknotting number of the minimal projection of the link. Finally,
one must determine if there are alternate projections that have a
smaller unknotting number. If one can find such a projection, then
one has a proof that the given link has a positive unknotting gap.

Much of the work involves finding a systematic procedure for
analyzing all possible changes, and finding a method for producing
alternate projections with possibly lower unknotting numbers.
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3. Main Results

We first focus on knots given in Conway notation by (a, b, c) where
a, b, and c are all positive or all negative and obtain some prelim-
inary information about unknotting numbers of the corresponding
projections. The projection of the link in this case is reduced al-
ternating and so is minimal. The knot given by Conway notation
(a, b, c) where a, b, and c are all positive is shown in Figure 1. Be-
cause of the symmetry shown in this figure, to consider all knots
with notation (a, b, c), we need only consider knots with one of the
patterns

(odd, even even), (odd, odd, odd), or (odd, odd, even).

Consider a knot of the form (a, b, c) where a, b, and c are all positive.
We refer to the crossings as left, middle, or right crossings depending
on where they occur in the diagram. (See Figure 1.) Changing k, j,

and m crossings on the left, middle and right respectively results in
a knot with Conway notation (a − 2k, b − 2j, c − 2m). We denote
such a change in crossings by [[k, j,m]]. The Bleiler, Nakanishi and
Bernhard results all fit into the (2j + 1, 1, 2j) case. We generalize
this by considering knots of the form (2j + 1, 2k + 1, 2j).

3.1. The (2j + 1, 2k + 1, 2j) case.

Our knot is of the form (2j + 1, 2k + 1, 2j) with k greater than
or equal to 0 and j greater than or equal to 1. First note that ap-
plying the crossing change [[j, 0, j]] to this knot results in a knot
with Conway notation (1, 2k + 1, 0) By considering the associated
continued fraction, one sees that this knot is equivalent to the knot
(2k + 2, 0) which is trivial. So the unknotting number of the pro-
jection (2j + 1, 2k + 1, 2l) is less than or equal to 2j. Next note
that applying the crossing change [[j, k + 1, 0]] to this knot results
in a knot with Conway notation (1, −1, 2j) which can be seen to
be trivial by examining Figure 1. So the unknotting number of the
projection (2j + 1, 2k + 1, 2l) is less than or equal to j + k + 1. The
following theorem shows that one of the two crossing changes just
considered is in fact minimal.
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Theorem 3.1. The unknotting number of the knot projection given

by (2j + 1, 2k + 1, 2j), for j + k ≥ 2 is the minimum of 2j and

j + k + 1. The unknotting number of the projection (3, 1, 2) is 1.

The proof will refer to the following table of knots.

k = 0 k = 1 k = 2 k = 3 · · ·

j = 1 (3, 1, 2) (3, 3, 2) (3, 5, 2) (3, 7, 2) · · ·

j = 2 (5,1,4) (5, 3, 4) (5, 5, 4) (5, 7, 4) · · ·

j = 3 (7, 1, 6) (7,3,6) (7, 5, 6) (7, 7, 6) · · ·

j = 4 (9, 1, 8) (9, 3, 8) (9,5,8) (9, 7, 8) · · ·

...
...

...
...

. . .
. . .

Table 1:

Proof. For the exceptional case, one can check directly that applying
the crossing change [[0, 1, 0]] to (3, 1, 2), results in the unknot.

Consider the table of knots above, parameterized by j and k.

First row and first column:

Bernhard [2] established that the unknotting number of the pro-
jection given by (2j + 1, 1, 2j) is j + 1, for j ≥ 2. These knots, with
the addition of (3, 1, 2), are the knots in the first column of the table.

We next establish that the theorem holds for knots in the first
row of the table with k ≥ 1. By the discussion in the paragraph
above the theorem, the unknotting number of a knot projection (3,
2k + 1,2) is less than or equal to 2. Consider the result of applying a
single crossing change to a knot of this form. If the crossing change
is of the form [[1, 0, 0]], the resulting knot is (1, 2k + 1, 2) which
is reduced alternating, and therefore not equivalent to the unknot.
If the crossing change is of the form [[0, 0, 1]] the resulting knot is
(3, 2k+1, 0). By examining Figure 1, one can see that this equivalent
to the trefoil knot, and so is nontrivial. If the crossing change is of
the form [[0, 1, 0]], the resulting knot is (3, 2k − 1, 2). Since k ≥ 1,
this is also reduced alternating and thus nontrivial.
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The inductive step

We have established that the theorem holds for knots in the first
row and first column of the table. We now proceed by induction.
Consider a specific knot (2j + 1, 2k + 1, 2j) with k > 0, and j > 1.
Assume inductively that for all knots in columns to the left of this
knot, and for all knots in the same column as this knot, but above
it, the theorem holds. There are two cases to consider.

(Case 1):

If j ≤ k + 1, k > 0, and j > 1, then the knot (2j + 1, 2k + 1,
2j) is a knot above the diagonal in the table that starts at the knot
(5, 1, 4). We need to show that the unknotting number of this knot
is 2j. So we need to show that changing fewer than 2j crossings does
not result in the trivial knot.

We proceed by considering crossing changes of the form [[α, β, γ]]
where α + β + γ < 2j.

Case 1a. α ≥ 1 and γ ≥ 1.

In this case, the resulting knot obtained after making the crossing
changes is the same as one that can be obtained from the knot (2j−1,
2k+1, 2j−2), the knot in the same column of the table directly above
the knot under consideration, by making fewer than 2j − 2 changes.
By the inductive assumption, the resulting knot is nontrivial.

Case 1b. α = 0 and β = 0.

In this case, all of the crossing changes occur on the right. After
making the crossing changes, the resulting knot is (2j+1, 2k+1, 2j−
2γ).

If γ < j, the Conway notation consists of all positive integers and
so the resulting knot is reduced alternating and nontrivial.

If γ = j, we have the knot (2j+1, 2k+1, 0) which is equivalent to
a reduced alternating knot with 2j +1 crossings and so is nontrivial.

If γ > j, we have a knot of the form (a, b,−c) where a, b, and
c are positive. By checking the associated continued fractions, one
sees that this knot is equivalent to a knot with Conway notation

(−a,−b,−1,−(c − 1))

which is reduced alternating since all the terms are negative. So this
knot is nontrivial.
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Case 1c. γ = 0 and β = 0.

In this case, all of the crossing changes occur on the left. After
making the crossing changes, the resulting knot is (2j + 1− 2α, 2k +
1, 2j).

If α ≤ j, the Conway notation consists of all positive integers,
and so the resulting knot is nontrivial.

If α = j + 1, the resulting knot has Conway notation (−1, 2k +
1, 2j) which can be seen to be equivalent to the knot with Conway
notation (2k, 2j) which is reduced alternating and nontrivial since
k > 0 and j > 1.

If α > j+1, the resulting knot is of the form (−a, b, c) with a > 1
and b = 2k + 1, and c = 2j. This can be seen to be equivalent to
the knot with Conway notation (a − 1, 1, b − 1, c) which is reduced
alternating and nontrivial.

Case 1d. 1 ≤ β ≤ 2j − 1.

Since j ≤ k + 1, this implies that β ≤ 2k − 1. So applying
the crossing change [[α, β, γ]] to (2j + 1, 2k + 1, 2j) results in the
same knot as applying the crossing change [[α, β − 1, γ]] to the knot
(2j +1, 2k−1, 2j) which is immediately to the left of the knot under
consideration in the table.

But the knot to the immediate left in the table, by the inductive
assumption, either has unknotting number 2j or 2j − 1. Since the
sum of α, β − 1, and γ is less than 2j − 1, the resulting knot is
nontrivial.

(Case 2):

Having completed case 1, assume the knot (2j+1, 2k+1, 2j) has
j > k + 1. This is a knot on or below the diagonal in the table that
starts at the knot (5, 1, 4). We need to show that the unknotting
number of this knot is j + k + 1. So we need to show that making
j + k or fewer crossings does not result in the trivial knot.

Again we proceed by considering crossing changes of the form
[[α, β, γ]] where α + β + γ < j + k + 1. Note that j + k + 1 is less
than 2j.

Case 2a.1 ≤ β ≤ 2k.

If 1 ≤ β ≤ 2k, applying the crossing change [[α, β, γ]] to (2j + 1,
2k + 1, 2j) results in the same knot as applying the crossing change
[[α, β − 1, γ]] to the knot (2j +1, 2k− 1, 2j) which is immediately to
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the left of the knot under consideration in the table. But the knot
to the immediate left in the table, by the inductive assumption, has
unknotting number j + k. Since the sum of α, β − 1, and γ is less
than j + k the resulting knot is nontrivial.

Case 2b.β = 2k + 1.

If β = 2k + 1, applying the crossing change [[α, β, γ]] to (2j + 1,
2k + 1, 2j) results in the knot (2j + 1 − 2α,−2k − 1, 2j − 2γ).

Since we were making at most j + k crossing changes altogether,
since j > k +1, and since 2k +1 of the crossing changes are made on
the middle section, at most (j + k)− (2k + 1) = j − (k + 1) changes
can be made on the left and right portions of the knot. So the
resulting knot is of the form (a,−2k−1, c) with a and c greater than
1. But this knot is equivalent to the knot with Conway notation
(a− 1, 1, 2k − 1, 1, c− 1) which is reduced alternating and nontrivial.

Case 2c. β = 0, α ≥ 1 and γ ≥ 1.

Applying the crossing change [[α, 0, γ]] to (2j + 1, 2k + 1, 2j)
results in the same knot as applying the crossing change [[α−1, 0, γ−
1]] to the knot (2j − 1, 2k + 1, 2j − 2) which is immediately above
the knot under consideration in the table. The unknotting number
of the knot (2j − 1, 2k + 1, 2j − 2) is 2j − 2 if j = k + 2, and is j + k

if j > k + 2. But α − 1 + γ − 1 < j + k − 1. So in either case, the
resulting knot is not the trivial knot.

Case 2d: β = 0, α = 0.

Applying the crossing change [[0, 0, γ]] to (2j + 1, 2k + 1, 2j)
results in the knot with Conway notation (2j + 1, 2k + 1, 2j − 2γ).
If γ is less than j, this knot is reduced alternating and nontrivial.
If γ = j, the knot is (2j + 1, 2k + 1, 0) which is equivalent to a
reduced alternating knot with 2j + 1 crossings and so is nontrivial.
If γ > j, we have a knot of the form (a, b,−c) where a, b, and c

are positive. By checking the associated continued fractions, one
sees that this knot is equivalent to a knot with Conway notation
continued fraction associated with this knot is

(−a,−b,−1,−(c − 1))

which is reduced alternating since all the terms are negative. So this
knot is nontrivial.

Case 2e: β = 0, γ = 0.
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Applying the crossing change [[α, 0, 0]] to (2j + 1, 2k + 1, 2j)
results in the knot with Conway notation (2j + 1 − 2α, 2k + 1, 2j).

If α ≤ j, the Conway notation consists of all positive integers,
and so the resulting knot is nontrivial.

If α = j + 1, the resulting knot has Conway notation (−1, 2k +
1, 2j) which can be seen to be equivalent to the knot with Conway
notation (2k, 2j) which is reduced alternating and nontrivial since
k > 0 and j > 1.

If α > j+1, the resulting knot is of the form (−a, b, c) with a > 1
and b = 2k + 1, and c = 2j. This can be seen to be equivalent to
the knot with Conway notation (a − 1, 1, b − 1, c) which is reduced
alternating and nontrivial.

This completes the second case of the inductive step and the
proof of the theorem.

Next, we show that for all knots on or below the diagonal referred
to in the previous proof, there is a different projection of the knot
with a smaller unknotting number than the unknotting number that
occurs in the minimal projection.

Figure 4: K ′

Theorem 3.2. For knots (2j +1, 2k+1, 2j) with j > k+1, there is

a projection that has unknotting number j + k, whereas the minimal

projection has unknotting number j + k + 1.
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Proof. Let K represent the knot projection given by (2j + 1, 2k + 1,
2j). Create a new projection K ′ of this knot with 2(j − 1) more
crossings by dragging j − 1 strands along the right hand side under
the adjacent vertical strand as indicated in Figure 4. By changing k

of the middle crossings, one obtains a knot projection K ′′ that can
be obtained from the knot with Conway notation (2j + 1, 1, 2j) by
dragging the corresponding j−1 strands under the adjacent vertical
strand. This knot projection K ′′ is shown in Figure 5. Bernhard [2]
shows that this knot projection K ′′has unknotting number ≤ j and
so the knot projection that we described, K ′ has unknotting number
≤ k + j.

Figure 5: K ′′

3.2. Links with arbitrary unknotting gap.

Consider links of the form (2j, 1, 2k) with j ≥ k ≥ 2. See the follow-
ing table.
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k = 2 k = 3 k = 4 k = 5 · · ·

j = 2 (4, 1, 4) · · ·

j = 3 (6, 1, 4) (6, 1, 6) · · ·

j = 4 (8, 1, 4) (8, 1, 6) (8, 1, 8) · · ·

j = 5 (10, 1, 4) (10, 1, 6) (10, 1, 6) (10, 1, 10) · · ·

...
...

...
...

. . .
. . .

Table 2:

Using techniques similar to that used in the proof of theorems
one and two, one can obtain the following result.

Theorem 3.3. For a links of the form (2j, 1, 2k) with j ≥ k ≥ 2,
the unknotting number of the minimal projection is k + j − 1. These

links have alternate projections with unknotting number ≤ j. Thus,

for the link (2j, 1, 2k), the unknotting gap is at least k − 1.

4. Questions

A number of questions and problems remain concerning knots given
by Conway notation.

1. Analyze all knots and links given in Conway notation (a, b, c)
where a, b, and c are all positive or all negative to determine
which knots have an unknotting gap.

2. Develop a criterion for determining when a knot or link given
in Conway notation (a1, a2, · · · , an) with each ai positive or
each ai negative has an unknotting gap and develop a method
for determining what the unknotting gap is.

3. Find classes of prime knots with arbitrarily large unknotting
gap.

Regarding the third question, it is easy to form non prime knots
with large unknotting gaps by taking connected sums of knots with
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unknotting gap one. The author and Peterson [7] have in prepara-
tion a paper giving prime knots of the form (a, b, c, d, e) in Conway
notation with arbitrarily large unknotting gap.
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