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ABSTRACT 

 

MOLECULAR MODELING OF  
MULTIFUNCTIONAL NANOSTRUCTURED 

MATERIALS AND COATINGS 
 

by 
 

Francesca Santese 
 
 

 
Nanostructured materials and coatings have the potential to change 

materials science significantly, as well as to provide a new generation of 
materials with a quantum improvement in properties. In this regard 
computational materials science becomes a powerful tool. It is able to 
rapidly reduce the time from concept to end product. Molecular 
simulation enables the prediction of properties of these new materials 
before preparation, processing, and experimental characterization, as well 
as a better understanding of the physical phenomena at the nanoscale 
level. 

In this thesis we present several study cases in which we propose 
different computational recipes to deal with different important topics 
such as surface wettability, effect of nanoparticles size and shape and 
nanoparticles aggregation/dispersion. 

In this context, we demonstrate the broad applicability of the 
molecular modelling and we ascertain that molecular simulation 
represent a powerful tool to understand and control the nanomaterials 
properties thus opening avenues for the in silico design of new materials. 

 
Materiali e rivestimenti nanostrutturati possono potenzialmente 

apportare significativi cambiante nel campo della nanoscienze, nonché 
offrire una nuova generazione di materiali con caratteristiche e 
performance migliori. A questo proposito le tecniche computazionali 
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diventano uno strumento fondamentale, in grado di ridurre notevolmente 
i tempi che vanno dall’idea iniziale al prodotto finito. La simulazione 
molecolare permette infatti la previsione delle proprietà macroscopiche 
prima che i materiali vengano preparati e caratterizzati sperimentalmente; 
consente inoltre una migliore comprensione dei fenomeni fisici su scala 
nanometrica. 

In questo lavoro di tesi sono presentati alcuni casi studio in cui 
vengono proposte diverse procedure computazionali per affrontare 
importanti aspetti come la bagnabilità della superficie, l’effetto della 
dimensione e della forma delle nanoparticelle e i loro meccanismi di 
aggregazione/dispersione. 

In questo contesto, si è dimostrata la vasta applicabilità della 
modellazione molecolare evidenziando quindi come questa rappresenti 
un potente strumento per comprendere e controllare le proprietà finali di 
materiali nanostrutturati, aprendo così la strada ad una progettazione in 
silico di nuovi materiali. 
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1  
1 Introduction 

1.1 Motivation and relevance 
Nanostructured materials have the potential to change materials 

science significantly, as well as to provide a new generation of materials 
with a quantum improvement in properties. The variety of nanomaterials 
is great, and their range of properties and possible applications appear to 
be enormous, from extraordinarily tiny electronic devices, including 
miniature batteries, to biomedical uses, and as packaging films, 
superabsorbants, and parts of automobiles. Hundreds of products 
containing nanomaterials are already in use and the number of products 
produced by nanotechnology or containing nanomaterials entering the 
market is increasing. Current applications include healthcare (in targeted 
drug delivery, regenerative medicine, and diagnostics), electronics, 
cosmetics, textiles, information technology and environmental protection.  

Over the past decade, nanomaterials, notable for their extremely 
small feature size, have been the subject of enormous interest. As a result 

http://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials/en/glossary/mno/nanotechnology.htm�
http://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials/en/glossary/mno/nanomaterial.htm�
http://www.csa.com/discoveryguides/nano/gloss.php#nam�
http://www.csa.com/discoveryguides/nano/gloss.php#fea�
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of recent improvement in technologies to see and manipulate these 
materials, the nanomaterials field has seen a huge increase in funding 
from private enterprises and government, and academic researchers 
within the field have formed many partnerships. 

Although widespread interest in nanomaterials is recent, the 
concept was raised over 50 years ago. Physicist Richard Feynman 
delivered a talk in 1959 entitled "There's Plenty of Room at the Bottom", in 
which he commented that there were no fundamental physical reasons 
that materials could not be fabricated by maneuvering individual 
atoms. Nanotechnology advanced rapidly in the 1980s with the invention 
of  Scanning Tunneling Microscope (STM) and Atomic Force Microscope 
(AFM) which allows us to study nanoparticles which are not visible in the 
conventional microscopes otherwise. Within the last 20 years, many 
research institutions have recognized the need for a more systematic 
approach to new materials development, in order to predicted the 
properties of new materials before preparation, processing, and 
experimental characterization. This approach was one that would 
combine interdisciplinary research, new advances in computational 
modeling and simulation, and critical laboratory experiments to rapidly 
reduce the time from concept to end product. 

In this regard computational materials science becomes a powerful 
tool since it involves and enables the visualization of concepts and 
materials processes which are otherwise difficult to describe or even 
imagine. Among other things, this field allows materials to be designed 
and tested efficiently. Computational materials science draws from 
physics and chemistry, but focuses on constitutive descriptions of 
materials that are useful in formulating macroscopic models of material 
performance. The benefits of the computational materials science 
approach are threefold. First, it encourages a reduced reliance on costly 
trial and error of the traditional approach to materials research. Second, it 
increases the confidence that new materials will possess the desired 
properties when scaled up from the laboratory level, so that lead-time for 
the introduction of new technologies is reduced. Third, the computational 
materials science approach lowers the likelihood of conservative or 
compromised designs that might have resulted from reliance on less-than-
perfect materials. 

http://www.zyvex.com/nanotech/feynman.html�
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Molecular modeling and simulation combines methods that cover a 
range of size scales in order to study material systems. These range from 
the sub-atomic scales of quantum mechanics(QM), to the atomistic level of 
molecular mechanics (MM),molecular dynamics (MD), to the micrometer 
focus of mesoscale modeling, to continuum scale with finite element 
methods  (FEM). 

In the last decades virtual experiments based on 
quantum/molecular mechanics theories (MQ/MM) and on molecular 
dynamic (MD) techniques have opened avenues in the calculation and 
prediction of structural, thermodynamic and transport properties of 
different kind of molecules ranging from small molecules up to synthetic 
and natural macromolecules. The big advantages of these microscopic 
level based techniques can be summarized as (a) a better comprehension 
and interpretation of the experimental results, (b) an a priori semi-
quantitative prediction of the experimental results and, last but not least, 
(c) the possibility of interpolating and extrapolating experimental data in 
regions in which experiment are difficult or even impossible to carry out. 

Mesoscale models represent solid materials, fluids, and gases using 
larger fundamental units than molecular models. Computer simulation 
determines the structure, properties and dynamics of these models. 
Mesoscale methods are applicable to larger systems over far longer length 
and time scales than molecular simulation. They permit to study complex 
liquids, polymer blends, and structured materials on the nanometer to 
micron scale. The possibility of predicting the nanostructure at mesoscale 
level opens up the design of the material ‘in silico’ by modifying the 
composition and the interactions in the system thus performing a ‘what if’ 
analysis that is the basis of the design procedure of the material.  

 Finite element methods allows to calculate structural, thermal, 
mechanical and transport properties of materials at macroscopic level, 
outputs needed for the material designer. 

Multiscale simulation can be defined as the enabling technology of 
science and engineering that links phenomena, models, and information 
between various scales of complex systems. The idea of multiscale 
modeling is straightforward: one computes information at a smaller 
(finer) scale and passes it to a model at a larger (coarser) scale by leaving 
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out, degrees of freedom. Multiscale molecular modeling poses formidable 
challenges thanks to the huge range of length and time scales involved. 

In the present work we tackle several study cases in which we 
propose different computational recipes, according to the particularly of 
the system of interest, based on molecular modeling techniques. Our aim 
is to demonstrate that molecular simulation represent a powerful tool to 
understand and control the nanomaterials properties and to study 
important topics such as surface wettability, effect of nanoparticles size 
and shape and nanoparticles aggregation/dispersion, thus opening 
avenues for the in silico design of new materials. 

1.2 Outline 
The present Chapter represents a brief introduction of the work 

,motivations and objectives of the thesis are presented here. Chapter 2 
consist in a review of the current research in the field of nanomaterials, 
stressing on the importance of the interface phenomena in this field, and 
in an explanation of the different molecular modeling techniques used in 
the present work. The core of this work is reported in the following 
chapters where we analyze different aspects of a variety of polymeric 
systems, in order to demonstrate the broad applicability of the molecular 
modeling. In Chapter 3 we will presenta multiscale computational 
approach to characterize a different set of polymer-based nanocomposites 
(PNCs) obtained with full/partial dispersion of different nanofillers with 
different size and shape in different polymeric matrices. In Chapter 4a 
molecular dynamics (MD) based recipe will proposed to investigate the 
wetting behavior of different polymeric solid surfaces, with different 
degree of hydrophobicity/hydrophilicity, in the presence of different 
solvent nanodroplets, as water, oil and a mixture of water and surfactants. 
In Chapter we study the dispersion/aggregation mechanism of 
nanocomposites made of polystyrene grafted-silica nanoparticles mixed 
with free chains of the same polymer using a combination of scattering 
(SAXS), imaging (TEM), and multiscale molecular simulation techniques. 
Finally, in Chapter 6conclusions and future perspectives will exposed. 
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2  
2 Modeling 

nanomaterials 

2.1 Nanomatrerials 
The field of nanoscience and nanotechnology which deals with 

materials and structures having dimensions that measure up to billionth 
of a meter (nanometer) extended the applications of physics, chemistry, 
biology, engineering and technology into infinitesimal length scales. Now, 
at nanoscale one enters a world where physics and chemistry meet and 
develop novel properties of matter. The leading advantage of this size 
regime is the large surface area/volume ratio exhibited by nanomaterials. 
Accordingly, this translates to a very high surface reactivity with the 
surrounding surface, ideal for catalysis or sensor applications. Further, 
since biological systems feature the systematic organization of nanoscale 
materials (e.g., proteins are 1–20 nm in size, the diameter of DNA is ca. 2.2 
nm), being able to fabricate materials in this size regime holds promise for 
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artificial components within cells to diagnose/fight diseases, illnesses, 
viruses. Another key benefit for nanomaterials is the ability of varying 
their fundamental properties (e.g., magnetization, optical properties, 
color, melting point, hardness, etc.), relative to bulk materials without a 
change in chemical composition. Although bulk properties such as 
melting point and hardness are related to the enhanced surface 
interactions among nanoparticulates, the size-tunable electronic 
properties are due to quantum confinement effects. The so-
called quantum size effect describes the physics of electron properties in 
solids with great reductions in particle size. This effect does not come into 
play by going from macro to micro dimensions. However, it becomes 
dominant when the nanometer size range is reached. Quantum effects can 
begin to dominate the behavior of matter at the nanoscale - particularly at 
the lower end (single digit and low tens of nanometers) - affecting the 
optical, electrical and magnetic behavior of materials. The bulk properties 
of any material are merely the average of all the quantum forces affecting 
all the atoms that make up the material. As you make things smaller and 
smaller, you eventually reach a point where the averaging no longer 
works and you have to deal with the specific behavior of individual atoms 
or molecules - behavior that can be very different to when these atoms are 
aggregated into a bulk material. 

Surfaces and interfaces are also important in explaining 
nanomaterial behavior. In bulk materials, only a relatively small 
percentage of atoms will be at or near a surface or interface (like a crystal 
grain boundary). In nanomaterials, the small feature size ensures that 
many atoms, perhaps half or more in some cases, will be near interfaces. 
Surface properties such as energy levels, electronic structure, and 
reactivity can be quite different from interior states, and give rise to quite 
different material properties. 

Not only in academia, but also in industries, the impact of the 
nanomaterials field is significantly increasing such as in ceramics, 
chemical polishing agents, scratch-resistant coatings, stain-resistant 
trousers, cosmetics, sunscreens, etc. Increased strength and hardness 
combined with engineering levels of ductility and toughness could 
provide a new generation of structural materials and coatings. Ceramic 
coatings with reduced thermal conductivity, elastic modulus, and higher 

http://www.csa.com/discoveryguides/nano/gloss.php#cry�
http://www.csa.com/discoveryguides/nano/gloss.php#cry�
http://www.csa.com/discoveryguides/nano/gloss.php#cry�
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thermal expansion coefficient would make attractive thermal barrier 
coatings.[1]Thus, synthesis of various nanoscale structures/particles has 
gained the interest for developing new nanomaterials and devices. 

2.1.1 Polymer Nanocomposite 
The idea behind is to use building blocks with dimensions in the 

nanometer range to design and crate new materials with unprecedented 
flexibility and improvements in their physical properties. When designing 
the nanocomposite, scientists can chose constituents with different 
structures and composition and hence properties, so that materials built 
from them can be multifunctional. As a general definition a 
nanocomposite is an inorganic or organic matrix reinforced by nanoscale 
particles or nanostructures which are dispersed through the bulk 
material. In general nanocomposite materials can demonstrate different 
mechanical, electrical, optical, electrochemical, catalytic, and structural 
properties which are different from that of the individual components. 
Apart from the properties of the individual components, interfaces in a 
nanocomposite play an important role in determining the overall 
properties of the material. Due to the high surface area of nanostructures , 
nanocomposites present many interfaces between the intermixed phases, 
and often the special properties of the nanocomposite are a consequence 
of the interaction of its phases at the interface. In comparison, the interface 
in conventional composites constitute a much smaller volume fraction of 
the bulk material.   

Since polymeric materials are rapidly replacing more traditional 
inorganic materials, such as metals, polymer nanocomposites, in last few 
decades, have become worldwide research interest for developing 
polymeric materials with improved/desired properties. Therefore 
polymer nanocomposites are a new class of composites that are particle-
filled polymers for which at least one dimension of the dispersed particles 
is in the nanometer range. Nanoscale fillers include: 
a) Nanoparticles: When the three dimensions of particulates are in the 

order of nanometers, they are referred as equi-axed (isodimensional) 
nanoparticles or nanogranules or nanocrystals. Example silica. 

b) Nanotubes: When two dimensions are in the nanometer scale and the 
third is larger, forming an elongated structure, they are generally 
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referred as nanotubes or nanofibers/nanowhiskers/nanorods. Example, 
carbon nanotubes (CNTs), cellulose nanowhiskers. 

c) Nanolayers: The particulates which are characterized by only one 
dimension in nanometer scale are nanolayers/ nanosheets. These 
particulate is present in the form of sheets of one to a few nanometer 
thick to hundreds to thousands nanometers long. Clay (layered 
silicates), layered double hydroxides (LDHs). 

Polymer nanocomposites offer the possibility of substantial 
improvements in material properties such as shear and bulk modulus, 
yield strength, toughness, film scratch resistance, optical properties, 
electrical conductivity, gas and solvent transport, among many  with only 
very small amounts of nanoparticles (NPs) dispersed in the polymer 
matrix. The dramatically larger chain-particle interfacea rea in the case of 
nanocomposites compared to microcomposites makes effects appearing 
negligible in microcomposites very prominent in nanocomposites [2].The 
state of the dispersion of NPs in the polymeric matrix often has a large 
impact on the properties of polymeric materials. Additionally, the NPs 
geometry can also have a large impact on property changes, since it can 
affect both surface energetics and surface to volume ratio [3-6]. From a 
rheological point of view, a direct consequence of incorporation of fillers 
in molten polymers is a significant change in their steady shear viscosity 
behavior and the viscoelastic properties [7,8]. 

However, despite the large volume of literature published on the 
relationships between the nano-scale structural variables and macroscale 
physical and mechanical properties of polymer nanocomposites over the 
last 20 years, the understanding of the basic physical origin of these large 
property changes remains in its infancy. Moreover, since the polymer-
nanocomposites are the staple of modern polymer industry, the ability to 
predict their mechanical properties is indispensable for future design and 
commercial use of these materials. 

2.1.2 Nanocomposite and nanostrutured coatings 
As coating are integral to virtually any imaginable product or 

structure, nanomaterials are having a great impact in this field. Today’s 
nanotechnology coating include polymer-nanoparticle and sol-gel 
composite coatings for improving scratch and UV resistance, IR reflection, 
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anti-microbial and self-cleaning activity, corrosion resistance, gas barrier 
properties and superhydrophobic characteristics. Nanotechnology 
application in coatings have shown remarkable growth in recent years. 
This is a result of two main factors: 1) increased availability of nano-scale 
materials such as various types of nanoparticles, and 2) advancement in 
processes that can control coating structure at the nanoscale. Another 
important reason for this growth is the potential of nanotechnology to 
address many performance challenges presented by the vast range of 
products and structures that coatings are an integral part of. Applications 
of coatings include interior and exterior house paints, interior furnishings, 
glass and facade coating for high-rise buildings, all types of transportation 
vehicles and structures (automobiles, airplanes, bridges, road markings, 
marine vessels, spacecrafts, etc.), and a wide variety of industrial and non-
industrial maintenance coatings. At a much smaller scale, coatings are 
used in numerous electronic products and biomedical coatings. Coating 
layer thickness can vary from hundreds of micrometers (e.g. anti-skid 
coating on the deck of an aircraft carrier) to less than 100 nm (e.g. 
insulating coatings in microchips). Coatings play one or more of three key 
roles in these applications: 1) improve product’s esthetic appeal, 2) protect 
the substrate from a wide range of abuses (e.g. damage due to scratches or 
impact, corrosion and long term weathering), and 3) provide specialized 
functionality to the product (e.g. conductivity, insulation, water 
repellency, and heat reflatcion).[9] 

All of the coatings contain nanoscale structural features, and as 
such, are defined nanostructured. Incorporation of nanoscale inorganic 
materials to organic coatings has become one of the most prevalent 
approaches leading to nanocomposite coating products. Dispersing 
nanoparticles, instead of larger particles allows a coating formulator to 
increase the interfacial material content significantly. As we already said, 
the properties of the interfacial material at the interface between two 
materials are different from the bulk properties of each material. If the 
interfacial material has better properties that are not offered by individual 
materials of the composite, this approach would maximize such benefits. 

The major challenges facing continued growth of nanocomposite 
based materials can be divided into three main categories: 1) dispersion, 
2) characterization, 3) material cost.  
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The material cost has come down in recent years with increasing 
number of nanoparticles suppliers, improved manufacturing methods, 
and increased sales volumes.  

Nanoscale dispersion is critical for realizing the potential benefits of 
incorporating nanoparticles in coatings. The high surface area of 
dispersed nanoparticles can significantly increase the dispersant demand. 
High viscosity caused by finely dispersed nanoparticles is another 
problem that needs to be addressed. The large surface area can increase 
viscosities due to the increase in interfacial forces and limit the amount of 
nanoparticles that can be incorporated. Adding the right surface 
functionality to address dispersibility and viscosity is another approach to 
address dispersion issue. In addition to promoting dispersion, 
functionalizing the particle surface enables the nanoparticle to be 
covalently linked to the organic resin matrix. The dispersion matter is one 
of the topic discussed in the present work; in chapter 5 it will be treated 
for a particular polymer-based nanocomposite system. 

Surface characterizations requires also experimental advanced 
techniques such as Scanning Probe Microscopy (SPM) (e.g. Atomic Force 
Microscopy) and Scanning Electron Microscopy (SEM). Film cross-
sectional analysis requires techniques such as Transmission Electron 
Microscopy (TEM), SEM, X-ray and neutron scattering. In more than one 
study case presented in this thesis it will be shown also the validation of 
our procedures through the comparison between simulation results and 
experimental results. 

2.1.3 Design of new nanomaterials 
The preparation of these nanomaterials is still largely empirical, 

and there isn’t yet a good degree of control of their final properties. 
Optimizing of the processing conditions, designing of the new structures 
with the required properties as well as better understanding of the 
physical phenomena in polymers imply extensive trial-and-error 
experimental studies which can be both expensive and time-consuming. 
In order to reduce the experimental efforts in synthesis and optimization 
of material properties, computer simulations of the systems of interest can 
be very useful. Such simulations allow systematic variation of structural 
or physical parameters of the materials and can significantly lower 
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experimental costsin predicting the properties of new materials. These 
approaches may eventually allow for screening of a greater breadth of 
potential material chemistries than those that can be tried by experimental 
testing alone. 

2.2 Molecular modeling 
In the recent years, modeling and computer simulation have 

increasingly become fundamental tools in many branches of science and 
engineering. These techniques are generally intended for investigating the 
inner molecular arrangements of nanostructured materials as well as for 
predicting macroscopic properties of new materials before their synthesis. 
This approach can be very useful especially for those materials which 
present nanoscale features, as long as experimental characterization and 
manipulation at this scale represent an extremely difficult task. 

There are many level at which modeling can be useful, since in the 
computational material field have been developed different techniques for 
spanning both the length and time scales associated with analyses that 
describe material behavior. The starting point is a quantum description of 
materials; this is carried forward to an atomistic scale for initial model 
development. Models at this scale are based on molecular mechanics or 
molecular dynamics. At the next scale, the models can incorporate micro-
scale features and simplified constitutive relationships. Further progress 
up the scale leads to the meso level that rely on combinations of 
micromechanics and well-establishedt heories such as elasticity. The last 
step towards engineering-level performance is to move from mechanics of 
materials to structural mechanics by using methods that rely on empirical 
data, constitutive models, and fundamental mechanics.[10] 

However it is necessary to ensure that these methods can be 
applied routinely and successfully. Thus of primary importance are the 
validity and usability of each method on its own, followed by their 
interoperability in a common and efficient user environment. Of equal 
importance is the integration of the simulation methods with experiment. 
In modern materials research and development, one needs to be able to 
move from experimental knowledge to simulation and back again, 
requiring multiple input-output relationships at a range of materials 
length and time scales.The validation of methods across the complete 
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range of length and time scales requires advances in measurement 
sciences as well as advances in theory and models, coupled with 
integrated, interdisciplinary research. In Figure2.1is reported the 
comparison between simulation and measurement methods through 
length and time scales.   

 
Figure 2.1: comparison between simulation and measurement methods through length and 
time scale. 

Microscopy has consistently been a primary source of information 
on the fundamental structure of materials. Prior to the 1940s, microscopy 
was limited in resolution by the wavelength of visible light 
(approximately 10-6-10-7 m). The discovery of the Transmission Electron 
Microscope(TEM) occurred in the early 1940s and the first commercial 
electron microscopes became available around 1965. The Scanning 
Electron Microscope(SEM) is a microscope that uses electrons rather than 
light to form an image by scanning the beam across the specimen. 
Beginning with the scanning tunneling microscope (STM) in 1981, 
experimentalists developed new techniques and devices for discerning 
the most basic unit of materials, the atom. Instruments that use variations 
of the principles of the STM are often called scanning probe microscopes 
(SPM). All of these microscopes work by measuring a local property – 
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such as height, optical absorption, or magnetism – with a probe or ‘‘tip’’ 
placed very close to the sample. A successor to the STM, atomic force 
microscopy (AFM), works by measuring attractive or repulsive forces 
between the tip and the sample, and converting the basic displacement 
information of this tip into pictures of atoms on or in surfaces. Electron 
microscopes are strictly imaging devices, while the probe microscopes 
have some utility as imaging devices and in manipulation or 
characterization of materials. However, to date, the accuracy and 
repeatability of basic force/displacement measurements taken using probe 
microscopy has been as ubject of debate. Because of this uncertainty, it 
appears that accurate, quantitative material testing is currently limited to 
devices that resolve only down to the microscale. Nanoindentors are 
commercial devices, built by using micro-electro-mechanical-systems, that 
operate at this resolution and they can be constructed with a high degree 
of repeatability and will operate under a range of environmental 
conditions. The nanoindentor is a high-precision instrument for the 
determination of the localized mechanical properties of thin films, 
coatings and substrates.[10] 

 
Figure2.2: In order to bridge the gap between the discontinuous nano-scale tructure and 
continuum macroscale models, it is recognized that physics-based bridging laws are needed. 
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In order to apply modeling and computer simulation to enhance 
the development of nanostructured materials systems, it is necessary to 
consider the structure–property relationships. These relationships relate 
the intrinsic structure of the material to the desired engineering-level 
property or performance. To this purpose it is necessary to resort to 
multiscale simulation method in order to move from one length scale to 
another and from one model to another. Multiscale modeling and 
simulation aims at linking the different length and time scales, bridging 
different models and computational methods in order to predict 
macroscopic properties and behavior from fundamental molecular 
processes [11,12,13]. The intent is to assist the material developer by 
providing a rational approach to material development and concurrently 
assist the structural designer by providing an integrated analysis tool that 
incorporates fundamental material behavior. 

The problem here is that the method of coarsening the description 
from atomistic to mesoscale or mesoscale to continuum is not trivial. In 
order to bridge the gap between the discontinuous nano-scale structure 
and continuum macroscale models, it is recognized that physics-based 
bridging laws are needed (Figure 2.2). But classical continuum mechanics 
cannot be applied when the length scale of heterogeneity is below 20 nm 
[14,15]. On the other hand, molecular dynamics (MD) simulations are 
limited to nano-scale and cannot deal with the micro-scale sized bodies. 
Moreover the coarsening from QM to MD relies on basic principles and 
can be easily generalized in a method and in a procedure, while the 
coarsening at higher scales is system dependent. 

Scale integration can be done using two different approaches: 
sequential and concurrent. The former is based on a hierarchical 
combination of different methods relevant to each scale, in which 
quantities calculated at one level are used as parameters for models with 
different characteristic dimensions. The latter, on the contrary, combines 
several computational methods in a general model in which events at 
different scales are considered simultaneously and interacts with each 
other [16]. In Chapter2.3.4we will illustrate our multiscale procedure  that 
can be regarded as a sequential parameter – passing process. 
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2.3 Simulation methods 
Several methods suitable for particular length and time scales are 

available to treat aspects of materials phenomena that operate only over 
those scales. In this Chapter, we will present a summary of the main 
simulation methods we principally employed in this thesis.  

2.3.1 Atomistic methods 
The modeling and simulation methods at molecular level usually 

employ atoms or small atom clusters (in coarse-grain approaches) as the 
basic units considered. These models aim at investigating 
thermodynamics and kinetics of the formation, molecular structure and 
interactions.  

Beyond Quantum Mechanical (QM) methods, which incorporate 
quantum effects and are applicable only to very small systems due to their 
computational cost, the most popular methods include molecular 
mechanics (MM), Molecular Dynamics (MD) and Monte Carlo (MC).  

MM methods can establish the minimum-energy structure statically 
and molecular dynamics can resolve the nanosecond-scale evolution of a 
molecule or molecular assembly. These approaches can model both 
bonded and nonbonded forces (e.g., Van derWaals and electrostatic). 

MC methods, conversely, generate configurations of a system by 
making random changes to the positions of its elements, using a special 
set of criteria to decide whether or not to accept each new configuration. 
Amongst the different MC algorithms which have been developed, the 
Rotational Isomeric State (RIS) method[17] represents one of the most 
common for the generation of polymer chains configurations. 

2.3.1.1 Molecular Dynamic (MD) 
MD is a computer simulation technique that allows one to predict 

the time evolution of a system of interacting particles (e.g., atoms, 
molecules) and estimate the relevant physical properties. The information 
generated from MD simulations are atomic positions, velocities and forces 
from. The conversion of this information to macroscopic observables such 
as pressure, energy, heat capacities, etc., can be obtained by means of 
statistical mechanics. Molecular dynamics simulation techniques are also 
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widely used to help interpret experimental results from X-ray 
crystallography and nuclear magnetic resonance spectroscopy. 

In classical MD, the particle movement in the simulation is driven 
by the forces on each particle which is described by a set of functions, the 
force field, used to describe how the particles interact. By using Newton’s 
second law to calculate a trajectory, one only needs the initial positions of 
the atoms, an initial distribution of velocities and the acceleration, which 
is determined by the gradient of the potential energy function. In a 
molecular dynamics simulation, the time dependent behaviour of the 
molecular system is obtained by integrating Newton’s equations of 
motion: 

2

2

)(
dt

rd
mtF i

ii =  (2.1) 

Where Fi is the force acting on the ith atom or particle at time t 
which is obtained as the negative gradient of the interaction potential U, 
mi is the atomic mass and ri the atomic position. A physical simulation 
involves the proper selection of interaction potentials, numerical 
integration, periodic boundary conditions, and the control of pressure and 
temperature to mimic physically meaningful thermodynamic ensembles. 

The interaction potentials together with their parameters, i.e., the 
so-called force field, describe in detail how the particles in a system interact 
with each other, i.e., how the potential energy of a system depends on the 
particle coordinates. Such a forcefield may be obtained by quantum 
methods, empirical methods or quantum-empirical method. The criteria 
for selecting a forcefield include the accuracy, transferability and 
computational speed. 

A typical interaction potential U may consist of a number of 
bonded and nonbonded interaction terms, which can be calculated for 
each of the N particles.  

ticelectrostavdwinversiontorsionanglebondN UUUUUUrrrU +++++=),....,( 21  (2.2) 

The first four terms represent bonded interactions, i.e., bond 
stretching Ubond, bond-angle bend Uangle, dihedral angle torsion Utorsion and 
inversion interaction Uinversion, while the last two terms are non bonded 
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interactions, i.e., van der Waals energy Uvdw and electrostatic energy 
Uelectrostatic. 

Usually, equations of motion are integrated applying one of the 
many algorithms using finite difference methods.  

MD simulations can be performed in many different ensembles, 
such as microcanonical (NVE), canonical (NVT) and isothermal–isobaric 
(NPT). The constant temperature and pressure can be controlled by 
adding an appropriate thermostat and barostat. [16] 

The result of the simulation is a time series of conformations or the 
path followed by each atom.  

2.3.2 Mesoscale methods 
Coarse-graining the MD simulation increases the time scale 

accessible by about two orders of magnitude. Although molecular 
dynamics methods provide the kind of detail necessary to resolve 
molecular structure and localized interactions, this fidelity comes with a 
price: both the size and time scales of the model are limited by numerical 
and computational boundaries. To help overcome these limitations, 
coarse-grained methods are available that represent molecular chains as 
simpler models. Although the coarse-grain models lack the atomistic 
detail of MD, they do preserve many of the important aspects of the 
chemical structure and allow for simulation of material behavior above 
the nano-scale[18,19], characteristic dimensions range from hundreds of 
nanometers to microns. 

Mesoscale methods aim at linking microscale methods, i.e. atom 
based simulations, with macroscale methods based on continuum models. 
Various simulation methods have been proposed to study the mesoscale 
structures, most common being Brownian Dynamics (BD), Dissipative 
Particle Dynamics (DPD), Lattice Boltzmann (LB), time–dependent 
Ginsburg–Landau (TDGL) theory, and Dynamic Density Functional 
Theory (DDFT).In these methods, a molecule is usually treated with a 
field description or microscopic particles that incorporate molecular 
details implicitly. Therefore, they are able to simulate the phenomena on 
length and time scales currently inaccessible by the classical MD methods. 

DPD has been chosen for mesoscale modelling in this work and 
will be treated in more detail below. 
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2.3.2.1 Dissaptive Particle Dynamic (DPD) 
DPD was originally developed by Hoogerbrugge and 

Koelman.[20,21]It can simulate both Newtonian and non-Newtonian fluids, 
including polymer melts and blends, on microscopic length and time 
scales. Similar to molecular dynamics (MD), DPD is a particle based 
method. However, its elementary unit is not a single atom, but groups of 
atoms or molecules, referred to as beads, whose movement is determined 
by forces resulting from mutual direct interactions and dissipative and 
random contributes. 

The DPD interaction is mesoscopic since the internal degrees of 
freedom of the fluid elements are ignored and only their center of mass 
motion is resolved. If the mass of all particles is set equal to unity, the 
time evolution of the positions (ri(t)) and momenta (pi(t)) is governed by 
Newton’s equations: 
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where the mass of each particle i is set to unity, and ri, vi, and fi are 
the position vector, velocity, and total force, respectively, acting on 
particle i. 

The force acting on the particles, which is pairwise additive, can be 
decomposed into three elements: a conservative (FijC), a dissipative (FijD), 
and a random (FijR) force. Accordingly, the effective force fi acting on a 
particle i is given by: 
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where the sum extends over all particles within a given distance rc 
from the ith particle. This distance practically constitutes the only length 
scale in the entire system.  

The conservative force is a soft repulsion, given by: 
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where aij is the maximum repulsion between particles i and j, rij is 
the magnitude of the particle-particle vector rij = ri – rj, and r̂ijis the unit 
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vector joining particles i and j. The other two forces, FijD and FijR, are both 
responsible for the conservation of the total momentum in the system, 
and incorporate the Brownian motion into the larger length scale. They 
are given by the following expressions: 
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where vij = vi –vj, ωD and ωR are r-dependent weight functions 
tending to zero for r = rc, and θij is a randomly fluctuating variable with 
zero mean and unit variance. It has been shown that one of the two 
weight functions in Equation 2.6 can be chosen arbitrarily, thereby fixing 
the other weight function. However, the weight function and constants 
should obey: 
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where kB is the Boltzmann constant. 
Further incorporation of chain molecules simply requires the 

addition of a harmonic spring force between the beads allowing them to 
interconnect to highly complex topologies: 

)( eqrK ij

spring

ij −= rF  (2.8) 

where K is the spring constant and req is the equilibrium spring 
length. Many different formulations of the DPD method have been 
proposed, i.e. with inclusion of angle potentials and electrostatics.[22,23] 

2.3.3 Macroscale methods 
Macroscale methods are those simulation techniques in which 

models can be regarded as representative of the average structure and 
properties of the whole material and simulations can be performed 
regardless of the molecular processes occurring at the microscale. 
Macroscale methods allow the calculation of some specific macroscopic 
property (i.e. Young’s modulus, electrical conductivity, gas permeability, 
…) of a material by considering a continuous distribution of its 
components throughout its volume, ignoring discrete atomic and 
molecular structures and their influence on system behaviour. These 
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methods aim at representing an heterogeneous material as an equivalent 
homogeneous one. 

Such a description could be as well suited for the definition of 
micromechanics according to some authors,[16] for which micromechanics 
model provides a transition from the microscale to the macroscale, 
bridging and determining relationship between microstructures and 
macroscopic (mechanical) properties. Micromechanics assumes small-
deformation continuum mechanics; continuum mechanics, in general, 
assumes uniform material properties within the boundaries of the 
problem. At the microscale, this assumption of uniformity may not hold 
and hence the micromechanics method is used to express the continuum 
quantities associated with an infinitesimal material element in terms of 
the parameters that characterize the structure and properties of the micro-
constituents of the element.[24] 

A central theme of micromechanics models is the development of a 
representative volume element(RVE) that is a statistical representation of 
the local continuum properties. The RVE is constructed to ensure that the 
length scale is consistent with the smallest constituent that has a first-
order effect on the macroscopic behavior.[25] The RVE is then used in a 
repeating or periodic nature in the full-scale model. Defining RVE and its 
minimum dimensions is obviously a non trivial task and amenable of 
different interpretations. Besides setting the RVE, macroscale methods 
usually involve the definition of appropriate constituent laws and 
implementation of relationships between structural features and 
macroscopic properties.  

Possible macroscale modeling strategies can be grouped into 
methods: analytical models, which directly calculate overall properties 
from system parameters, like the well known Halpin-Tsai or Mori-Tanaka 
models of composite materials, and computational methods, the best 
known of which is the Finite Element (FE) method. Since for our 
multiscale procedure we chose a particular calculation technique based on 
this method, we will report more details on this approach in the next 
Section. 
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2.3.3.1 Finite Element Methods (FEM) 
The FEM goal is to provide a numerical, approximate solution to 

initial-value and boundary-value problems including time-dependent 
processes. The method uses a variational technique for solving the 
differential equations wherein the continuous problem described by the 
differential equation is cast into the equivalent variation form and the 
solution is found to be a linear combination of approximation 
functions.[26,27] 

In this approach the region of interest is covered with a mesh 
determined by contiguous components called ‘elements’ and the solution 
of the differential equation is discretized on the mesh points, called nodes, 
and interpolated within the elements. A partial (ordinary) differential 
equation is thereby replaced by a set of coupled ordinary (algebraic) 
equations and solved numerically at the nodal points. The energy in FE 
method is taken from the theory of linear elasticity and thus the input 
parameters are simply the elastic moduli and the density of the material. 

In the following we will referred only to the specific form of the 
method based on the work of Gusev[28,29]and its implementation in the 
software Mesoprop and Palmyra by Matsim GmbH.[30] 

This FEM approach consists in a constant-strain-tetrahedra 
displacement-based technique with an iterative solver. An adaptative 
(Palmyra)/fixed (Mesoprop) mesh is built using specific criteria to model 
particle – matrix interface effectively in the RVE. For calculation of 
thermo-mechanical properties, six different infinitesimally small 
deformations are applied to the composite mesh and the total strain 
energy for each of these deformations is minimized using the conjugate 
gradient method in order to calculate the elastic composite properties. To 
calculate thermal expansion of the composite a seventh “deformation” (an 
increase of temperature by 1 Kelvin) is applied in order to obtain the 
linear thermal expansion coefficients. For other physical properties such 
as conductivities, dielectric constants, and transport properties a Laplace 
solver is used, that applies a field in the three main directions to the finite 
element mesh and minimizes the energy of the composite. 
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2.3.4 Multiscale molecular modeling 
The linking of the atomistic to the macroscopic scale through the 

mesoscale is probably the greatest challenge to develop reliable method 
for practical materials’ design applications. Only by establishing this 
connection from microscale to mesoscale it is possible to build first 
principles method for describing the properties of new materials. 

The main problem here is that the method of coarsening the 
description from atomistic to mesoscale or mesoscale to continuum is 
notas obvious as it is going from electrons to atoms.[31]In other words, as 
already mentioned the coarsening from QM to MD relies on basic 
principles and can be easily generalized in a method and in a procedure, 
while the coarsening at higher scales is system specific. For example, the 
strategy for polymers seems quite differentthan for metals, which seem 
different from ceramics or semiconductors. 

In DPD chemical interactions are described via a conservative force 
Fc. This conservative force between two particle si and j, as mentioned 
previously in this Chapter, is a soft repulsion acting along the line of the 
particle centers, and is given in absolute value and within the cut-off 
radium rc by the Equation 2.5. 

 The interaction parameter aij has been linked to the χ-parameter in 
a Flory-Huggins type model by Groot and Warren[23], or with the bead 
size by Maiti and McGroother.[32]In this work, we use an alternative 
approach, developed by Scocchi et al.[33], in which the interaction 
repulsive DPD parameters are coupled to the energies values resulting 
from the atomistic molecular dynamics simulations. Accordingly, the 
derivation of the conservative repulsion form a lower scale (i.e. atomistic) 
modeling constitutes a bottom-up multiscale approach to the simulation 
of complex systems. Further, the proposed strategy is not system 
dependent and can be applied in principle to polymer, polymer solution, 
systems including solid inclusions.  

The proposed multiscale simulation procedure is based on the 
following steps:  
• Fully atomistic molecular dynamics simulations are perform to retrieve 

fundamental structural and energetical information at the molecular 
level; molecular dynamics energies among each mesoscale specie are 
calculated. Considering a system made up of single particles i and j, 
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the total energy of the system is given, in the hypothesis of neglecting 
the ternary contribution to interaction, by: 

jijijijjjjjiiii
tot
system EnEinEnEnE +++=  (2.9) 
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is the number of contacts between the ni particles of type i, and  
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is the number of contacts between ni particles of type i and nj 
particles of type j. Since the mixed energy terms (Eij and Eji) and the 
number of contacts (nij and nji) are the same, the expression for the total 
system energy becomes 

jjjjjjiiii
tot
system EiniEnEnE 2++=  (2.12) 

The values of the self-interaction energies (Eii and Ejj) are easily 
obtainable dividing the corresponding molecular value by the 
appropriate number of contacts, while the value of the system total 
energy is derived straightforwardly from MD. 

• Map the atomistic model to the mesoscale model reproducing 
thermodynamic or structural properties, like stiffness (i.e. through 
Kuhn segment), geometrical quantities, which can be intramolecular 
(distance between two adjacent super-atoms, angles between three 
subsequent super-atoms, dihedral angles between four subsequent 
super-atoms, principal values of radius of gyration tensor, and so 
forth)  or intermolecular (distances between super-atoms belonging to 
different chains, distances between the centers of mass of different 
chains or chains fragment, and so on).[34,35] Which one actually being 
used depends on the intended purpose of the coarse-grained 
model.Then, select two reference DPD interactions. Having fixed these 
two parameters, their values are associated with the corresponding 
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values of the DPD energies rescaled from MD simulations. All the 
remaining  
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Figure 2.3: General schema of the multiscale simulation protocol adopted in this work. 

DPD interaction parameters are derived using this reference 
relationship.  
The primary output of mesoscale modelling are phase morphologies 
with size up to the micron level. These morphologies are of interest per 
se, although little prediction of the material properties is available with 
the mesoscale tools. 
An internal consistency is established by comparing the density fields 
obtained from DPD and MD on the same system using the obtained 
interaction parameters. 

• Export density fields of each mesoscale specie to FE calculation, 
choosing fixed and variable grid according to the complexity and the 
morphology of the system. 
Palmyra and Mesoprop software have been developed to be able to 
perform FEM analysis also on the density fields generated using the 
mesoscale techniques. Importing the morphology of the composite as 
obtained from mesoscale simulation in form of 3-D density 
distribution of each constituent, FE calculation is performed, so 
realizing a complete multiscale approach to the prediction of 
macroscopic properties of nanomaterials. 

Figure2.3 presents our multiscale simulation protocol, which can be 
used as template for calculation of macroscopic property of different 
nanoscale systems. 
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3  
3 Polymer 

nanocomposites with 
different nanoparticles shape 

In this chapter we presenta multiscale computational approach to 
characterize a different set of polymer-based nanocomposites (PNCs) 
obtained with full/partial dispersion of different nanofillers in different 
polymeric matrices. This approach relies on a step-by step message-
passing technique from atomistic to mesoscale to finite element level, and 
the calculated results are compared to available experimental evidences. 
In details, 13 PNC systems have been studied by different molecular 
modelling methods, such as atomistic Molecular Mechanics and 
Molecular Dynamics, mesoscale Dissipative Particles Dynamics, and 
macroscale Finite Element Methods, and their mechanical, thermal and 
barrier properties have been predicted in agreement with the available 
experimental data. 
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This work is published in Toth, R.; Santese, F.; Pereira, S. P.; Nieto, 
D. R.; Pricl, S.; Fermeglia, M.; Posocco, P., J. Mater. Chem., 2012,22, 5398-
5409. 

3.1 Introduction 
Manufacturers and producers add nanoparticles to polymers in 

order to improve the stiffness and the toughness of the materials, to 
amend their barrier properties, to enhance their resistance to fire and 
ignition or, simply, to reduce costs. These nanofillers come in the form of 
different shape, such as spheres,1 tubes,2 platelets and discs,3-5 or fibres.6,7 
Both scientific and industrial interest in this new class of materials has 
skyrocketed in the last decades; however, the production of these 
nanomaterials still includes various accustomed techniques, their 
preparation is still largely empirical, and a finer degree of control of their 
ultimate properties cannot be achieved so far. Thus, from an experimental 
point of view, at least two grand challenges remain: i) the structural 
characterization and ii) the precise manipulation of the fabrication of 
these hybrid nanostructure materials. As the final properties of PNCs 
commonly depend on their structure, a detailed knowledge of the 
morphology of each PNC system is of paramount importance. To this 
purpose, the development of theories and the application of computer 
simulation techniques have opened avenues for the design of these 
materials, and the a priori prediction/optimization of their structures and 
properties.11 

As documented by Feynman over half century ago13: “Atoms on a 
small scale behave like nothing on a large scale, for they satisfy the laws 
of quantum mechanics. So, as we go down and fiddle around with the 
atoms down there, we are working with different laws and we can aspect 
different things”. In other words, as we already said, as the size scale of 
matter becomes smaller, down to the nanoscale, the material behaviour 
can be understood on the basis of intermolecular forces (e.g., van der 
Waals and hydrogen bonding, electrostatic attractions and repulsions, or 
steric repulsions). Since all of these forces have a limited distance of 
influence, ranging from a few angstroms to a few nanometres, proper 
tools and techniques need to be involved in characterization process in 
order to provide detailed information about behavior, structural 
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morphology, and final properties of such nanomaterials. A multiscale 
molecular modelling approach which bridges the macroscale properties 
of matter to its atomistic nature via its mesoscopic morphology can be one 
of those techniques, as its field of operation covers levels ranging from 
angstroms to micrometres. 

 Multiscale molecular modelling (MsM) of polymer-based 
nanocomposite materials poses formidable challenges due to the huge 
range of length and time scales involved, influencing their structures and 
physical properties.14 These challenges can only be met through the 
development of suitable hierarchical analysis and simulation strategies 
encompassing many interconnected levels, where each level addresses a 
phenomenon over a specific window of length and time. 

In a previous works of our group26it has been developed MsM tools 
that model polymer-based nanocomposite systems from the molecular to 
the continuum scale. Although each tool performs independent 
calculations by using only one method at a time, the output from one 
method can be used directly as input for another, allowing an off-line 
bridging between the different scales. Further, our recent efforts in the 
field of molecular modelling also consisted of atomistic calculations 
concerned with binding energy evaluations for well-characterized 
systems26a-d using molecular mechanics and molecular dynamics 
(MM/MD) methods. At the same time, part of our activities was focused 
on the development and application of mesoscale simulation (MS) tools to 
polymer blends and nanocomposites morphology investigations, and on 
the integration of these tools with both atomistic26e-h,m,n and macroscale 
approaches through finite element method calculations.26i,j,l 

In this work we used our wealth of knowledge for a thorough 
characterization of a set of different PNCs of industrial interest. In detail, 
we studied the behaviour of different nanofillers (pristine or modified by 
the addition of, e.g., a compatibilizer) in different polymer matrices (see 
Table3.1) by using a multiscale molecular modelling protocol. This, with 
the final aim of i) predicting some fundamental macroscopic properties of 
existing nanocomposite materials, ii) compare them with the available 
experimental data and, iii) ascertain the robustness and validity of this in 
silico approach as a valuable, less-expensive, and time-saving tool for the 
design of new PNCs with desired performances. 
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System Matrix Filler Surface modifier 

PP/C10Aa PP MMT (H3C)2N(C18H37)(C2H4Ph) 
PP/C15Aa PP MMT (H3C)2N(C18H37)2* 
PP/C20Aa PP MMT (H3C)2N(C18H37)2* 
PP/C30Ba PP MMT (H3C)N(C18H37)(C2H4OH)2 
PP/ODA PP MMT H3N(C18H37) 
PA6/C20Aa PA6 MMT (H3C)2N(C18H37)2 
PA6/C30Ba PA6 MMT (H3C)N(C18H37)(C2H4OH)2 
PA6/M3C18 PA6 MMT (H3C)3N(C18H37) 
TPUb/C30B TPU MMT (H3C)N(C18H37)(C2H4OH)2 
PP/HTc/FA PP HT C16-C18 fatty acids  
PP/SEPd PP SEP no surfactant 
PP/BOEe PP BOE no surfactant 
PP/TiO2 PP TiO2 no surfactant 

Table3.1: Names and compositions of polymer-based nanostructured systems studied in this 
work.Abbreviations: PP = poly(propylene); PA6 = poly(amide) 6; TPU = thermoplastic 
poly(urethane); MMT = montmorillonite (platelets); HT = hydrotalcite (platelets); SEP = 
sepiolite (fibres); BOE = boehmite (spheres); TiO2 = titania (spheres).aCloisite C10A, C15A, 
C20A, and C30B, Southern Clay, USA. bElastollan 1185A, BASF, Germany. cF100, Akzo 
Nobel, The Netherlands.; dCD1, Tolsa, Spain.eDisperal, Sasol, Germany.*Cloisites C15A and 
C20A have the same surface modifier but differ in cation exchange capacity (CEC): 125 and 
95 mequiv/100 g clay, respectively. 

3.2 Simulation procedure 
The proposed multiscale simulation procedure is fully described in 

chapter 2.3.4. Briefly, it is based on the following ansatz: 1) fully atomistic 
molecular dynamics simulations are perform to retrieve fundamental 
structural and energetical information at the molecular level; 2) the data 
gathered at point 1) are mapped into the corresponding structural and 
energetical information necessary to run coarse-grained simulations at a 
mesoscopic level; 3) the main output of point 2), i.e., the system 
mesoscopic morphologies and density distributions finally constitute the 
input for finite element calculations and macroscopic properties 
predictions. The core step in the entire computational recipe is 
undoubtedly constituted by point 2), or the mesoscale level simulations. 
In mesoscale modelling, the familiar atomistic description of the 
molecules is coarse-grained, leading to beads of material (representing the 
collective degree of freedom of many atoms). These beads interact 
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through pair-potentials which capture the underlying interactions of the 
constituent atoms. The primary output of mesoscale modelling are phase 
morphologies with size up to the micron level. These morphologies are of 
interest per se, although little prediction of the material properties is 
available with the mesoscale tools. Finite element modelling then comes 
into play, and the material properties of interest can be calculated 
accordingly by mapping the material structures formed at the nanometre 
scale onto the finite element grid and coupling this information with the 
properties of the pure components that comprise the complex system. 
Using standard solvers the finite element code can then calculate the 
properties of the realistic structured material. 

3.2.1 Atomistic molecular dynamics (MD) simulations 
As mentioned above, atomistic MD simulations constitute the first 

MsM step, necessary to gather basic structural and energetical 
information of each PNC system at the molecular level. In particular, the 
interaction energies among all system components are of paramount 
importance, as they will, after proper remapping, constitute the major 
input parameter for performing mesoscale simulations. Hence, the choice 
of a reliable force field for the description of inter- and intra- molecular 
interactions in atomistic MD simulations is a critical issue in the entire 
protocol. Our previous experience,26 coupled with a thorough literature 
survey,15,27 led us to the adoption of the Compass force field (FF).28,29 

The optimized montmorillonite (MMT) model was taken from our 
previous work.26c,k Starting from the crystal coordinates of Mg/Al 
hydrotalcite as determined by Bellotto et al.,30 the 3D model of 
hydrotalcite (HT) was built and optimized by adapting the procedure 
adopted for MMT.26c,k The unit cells of sepiolite (SEP), boehmite (BOE), 
and titanium dioxide (rutile form, TiO2) were optimized starting from the 
original structures available in the Materials Studio (v.5.5, Accelrys, USA) 
structure database. To generate a mineral surface apt for simulation, the 
lattice constant c of each mineral cell was extended to 150 Å,26c,d while the 
lateral dimensions of the cell were increased to the point where the total 
number of atoms in each model was approximately equal. 

 The model structures of the MMT and HT surface modifiers (i.e., 
quaternary ammonium salts and C16-C18 fatty acids, respectively) were 
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built and subjected to an initial energy minimization process followed by 
a thorough conformational search. The generation of accurate model 
amorphous structures for polymers was conducted as follows. First, the 
constitutive repeating unit (CRU) of each polymer was built and its 
geometry optimized by energy minimization again using Compass[28,29]. 
Hence, each CRU was polymerized to a conventional degree of 
polymerization (DP) equal to 53 for PP, 25 for Nylon and 12 for TPU. 
Polymers of similar lengths have been already successfully employed by 
us in similar studies[26]. Explicit hydrogens were used in all model 
systems. The Rotational Isomeric State (RIS) algorithm[62] as modified by 
Theodorou and Suter[63] was used to create the initial polymer 
conformation at T = 298 K. Each resulting polymer structure was then 
extensively relaxed to minimize energy and avoid atom overlaps. 
Subsequently, an NVT MD with temperature increasing to 373 K during 
200 ps followed by an NVT MD at 373 K for 500 ps, and a cooling to 298 K 
over 200 ps was performed on each polymer sample. 

 After each component was modelled, the overall PNC systems 
were built, and production molecular dynamics simulations in the 
canonical (NVT) ensemble were run at T = 298 K. Each MD run consisted 
of an equilibration phase of 50 ps, followed by a data collection phase 
extended up to 0.5 ns. The Berendsen thermostat was used to control 
temperature, while an atom-based cutoff and the Ewald summation 
technique[64] were employed to treat dispersion and electrostatic 
nonbonded interactions, respectively. From the equilibrated part of the 
MD trajectory of each PNC, the interactions energies among all system 
components were extracted according to a well-validated 
procedure.[26]Since, by definition, the binding energy (Ebind) between each 
generic pair of PNC components A and B is the negative of the 
corresponding interaction energy, each Ebind term can be simply obtained 
from the corresponding interaction energies as: 

BABABAbind EEEE /)/( −+=  (3.1) 

In the case of modified nanoparticles (i.e., MMT and HT), starting 
from an equilibrated NVT MD snapshot further MD simulations in the 
isothermal-isobaric (NPT) ensemble were performed to estimate the 
interlayer (basal) spacing d among the mineral layers.26c,k.i In this case, 



Polymer nanocomposites with different nanoparticles shape 

 

39 
 

during each MD both mineral layers were treated as rigid bodies by fixing 
all cell dimensions except for c, and all atoms in the interlayer space 
(including ions and counterions) were allow to move without any 
constraint. 

3.2.2 Mesoscale (MS) simulations 
In order to simulate the morphology of the nanocomposite systems 

at a mesoscopic level, we used the Dissipative Particle Dynamics 
(DPD)[32]simulation tool as implemented in the Materials Studio DPD 
modelling suite. In DPD, a group of atoms is coarse-grained into a bead, 
thereby substantially reducing the number of particles to be simulated. 
Further, rather than interact through Lennard-Jones forces, each bead 
feels a simple soft pair-wise conservative potential which embodies the 
essential chemistry of the system. This force is of short range, and has a 
simple analytical form, which results in fast computation per time step 
and, hence, provides the opportunity to expand the simulation from 
nanoseconds to real time periods. In the framework of our multiscale 
approach to PNCs simulation, the interaction parameters needed as input 
for the mesoscale level DPD calculations have been obtained by a 
mapping procedure of the binding energy values between different 
species obtained from simulations at a lower (atomistic) scale.26e,i The 
complex procedure for mesoscale simulation of our PNC systems consists 
of several steps: i) choice the bead size, ii) determination of system 
dimension and bead numbers, and iii) definition of bead-bead interaction 
parameters. In the case of surface-modified nanocomposites, according to 
the fundamental DPD concept that different DPD bead types should have 
equal roughly volumes, and starting with the surface modifier molecules 
(which consist of a strongly polar head and one/two almost apolar tails) 
we considered them as made up by two different type of beads H and T, 
respectively. The corresponding mesoscopic polymer chains were chosen 
to be constituted of 100 beads of type P. To represent the filler surface, a 
repulsive wall in the simulation box perpendicular to the z-axis at the 
origin was employed. Further, we introduced a bead type M with no 
connectivity and no repulsion towards the wall, in order to fill the space 
between the two wall surfaces, thus representing a nanofiller layer. A 
parallel approach and utterly similar concepts were used to build all 
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remaining PNCs. In the case of unmodified nanoparticle-based PNCs, 
however, the corresponding mesoscopic cells contained only two type of 
beads; indeed, beads of the type M were again used to represent the filler 
(i.e., SEP, BOE, and TiO2), and beads of the type P were still employed for 
the polymers. 

The next, important issue in DPD simulations is to capture the 
essential intra-and intermolecular interactions taking place among all 
molecular actors of the mesoscopic simulations as expressed by the values 
of the conservative parameter aij. This quantity accounts for the 
underlying chemistry of the system considered. In this work, we 
employed a well-validated strategy that correlates the interaction energies 
estimated from a lower scale (atomistic MD) simulations to the mesoscale 
aij parameter values. Following this computational recipe, the interaction 
energies among all PNC system components estimated from MD 
simulations were rescaled onto the corresponding mesoscale segments 
adapting the procedure described in detail in[26e.i]The bead-bead 
interaction parameter for the polymer beads P was set equal to aPP = 25, in 
agreement with the value of DPD density ρ = 3[32]. The value of the 
polymer-filler interaction (i.e., aPM) was chosen to reflect the 
corresponding atomistic energy value[26]. Once these two parameters were 
assigned, all the remaining bead-bead interaction parameters required for 
the DPD simulations were easily obtained, starting from the relevant 
atomistic interaction energies values. The entire set of DPD interaction 
parameters are summarized in Table3.2. 

aij P T H M W 
PP/C10A      

P 25 31 30.9 32 320 
T 31 31.3 35.3 30.4 304 
H 30.9 35.3 55.5 5.2 52 
M 32 30.4 5.2 15 1 

PP/C15A P T H M W 
P 25 29.5 33.6 34 340 
T 29.5 32.2 35 30.7 307 
H 33.6 35 62.2 3.5 35 
M 34 30.7 3.5 15 1 

PP/C20A P T H M W 
P 25 32.7 32.6 33 330 
T 32.7 32.8 36 30.7 307 
H 32.6 36 64.2 4 50 
M 33 30.7 4 15 1 
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PP/C30B P T H M W 
P 25 31.1 31 31 310 
T 31.1 30.3 32.9 30.1 301 
H 31 32.9 54.1 4.7 47 
M 31 30.1 4.7 15 1 

PP/ODA P T H M W 
P 25 31 30.9 32 320 
T 31 31.3 35.3 30.4 304 
H 30.9 35.3 55.5 5.2 52 
M 32 30.4 5.2 15 1 

PA6/C20A P T H M W 
P 25 33.6 34.1 33.1 331 
T 33.6 32.11 33.1 30.7 307 
H 34.1 33.1 62.4 4.1 41 
M 33.1 30.7 4.1 15 1 

PA6/C30B P T H M W 
P 25 32 30 29 290 
T 32 30.2 32.7 30.1 301 
H 30 32.7 54.3 4.7 47 
M 29 30.1 4.7 15 1 

PA6/M3C
18 P T H M 

W 

P 25 31.5 31.1 31.8 318 
T 31.5 31.8 30.9 30.6 306 
H 31.1 30.9 55.1 5.2 52 
M 31.8 30.6 5.2 15 1 

TPU/C30B P T H M W 
P 25 32.5 33.3 31 310 
T 32.5 31.1 35.8 30.8 308 
H 33.3 35.8 55.2 4 40 
M 31 30.8 4 15 1 

PP/HT/FA P T H M W 
P 25 23.3 28.2 24 240 
T 23.3 31 24.5 22 220 
H 28.2 24.5 57 3 30 
M 24 22 3 15 1 

PP/SEP P T H M W 
P 25 - - 30.4 304 
M 30.4 - - 15 1 

PP/BOE P T H M W 
P 25 - - 29 290 
M 29 - - 15 1 

PP/TiO2 P T H M W 
P 25 - - 30.4 304 
M 30.4 - - 15 1 

Table3.2: Bead-bead interaction parameter aij values used in the DPD simulations. 
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3.2.3 Finite elements (FEM) calculations 
The last step of the proposed MsM procedure is constituted by the 

prediction of a set of important macroscopic properties for the considered 
polymer nanocomposites as a function of filler loading. To this purpose, 
finite element (FE) calculations were performed using the software 
Palmyra (v. 2.5, MatSim, Zürich, CH). FE calculations were applied in 
order to analyse both platelet stacks and overall nanocomposite 
properties, using fixed (i.e., MesoProptechnique)36 and variable grid, 
respectively. In particular, the Young modulus E, the thermal 
conductivity κ, and the gas permeability P were the macroscopic 
properties of election, since not only these quantities are of primary 
industrial interest but, perhaps more importantly, direct comparison with 
the corresponding experimental data could be made. 

MesoProp technique[36]is a method based on finite elements for 
estimating properties of a complex material starting from the density 
distribution at mesoscale. The method used the results of a mesoscale 
simulation under the form of three dimensional density maps and 
transforms such information into a fixed grid that is used for the 
integration of the equations for determining macroscopical properties. 
MesoProp[36] uses a numerical method to determine the overall properties 
of composites, with arbitrary morphologies from the properties of the 
components based on small homogeneous grid elements. The 
morphology is defined by a number of phases in a periodically continued 
base cell of cubic or orthorhombic shape, where the phases may consist of 
any material. Accordingly, the resolution depends solely on the number 
of grid elements used. 

Following a previous work,26i.k MMT and HT particles (both single 
particles and stacks) were modelled as disks with a toroidal rim. Each 
platelet thickness was defined by the height of the corresponding 
symmetry axis h and diameter D, thus being characterized by an aspect 
ratio of a = D/h. By setting D = 120 nm and h = 1 nm for each single 
particle, the aspect ratio a was equal to 120, a value in agreement with 
common literature data for layer silicates. Orientation to the platelets was 
imparted by assigning a value of 0.06 to the eigenvalues 1 and 2. 
Accordingly a value of 0.88 was automatically assigned to the eigenvalue 
3. A highly exfoliated system was defined as having 32 platelets with an 
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aspect ratio of 120 and 8 stacks of two platelets each. Such a system 
corresponds to 66.7% exfoliated platelets. The aspect ratio of the stacks 
ranged from 10 to 13, according to the different basal spacing obtained 
from the corresponding MD simulations. To simulate a weight fraction Φw 
of 4.6% w/w for all MMT and HT PNCs, a volume fraction Φv of 1.5% v/v 
was used in the case of PP-based PNCs, while a value of Φv = 1.9% v/v 
was employed for TPU- and PA6-based systems, respectively.TiO2 
particles were considered as spheres with diameter φTiO2 = 20 nm. A 
volume fraction of 1.07% v/v was used, resulting in a corresponding 
weight fraction of 4.6% w/w. Boehmite is generally synthesized in 
crystallites of a platelet or rod shape. The widely employed commercial 
sample Disperal, however, consists of small crystallites agglomerated. 
During processing, the agglomerates decrease in size, but still the 
complete dispersion of the crystallites cannot be achieved.38Accordingly, 
this system was defined considering spherical agglomerates of BOE with 
an average ϕ of 140 nm.39 A volume fraction of 1.43% v/v was used, 
corresponding to a system with a weight fraction of 4.6% w/w. Finally, the 
commercial CD1 sepiolite fibers were assumed to have a length L = 200 
nm and a diameter φSEP = 10 nm. A Φv = 2.1% v/v was considered, 
corresponding to a system with Φw = 4.6% w/w. 

Interfacial interactions, however, invariably develop in composite 
systems based on untreated nanofillers, due to the ever-existing van der 
Waals or electrostatic forces among the particles and the polymer chains. 
These lead to the formation of a non-negligible interface which, in turn, 
may considerably influence the macroscopic properties of the relevant 
PNC. To account for the presence of this interphase layer in the BOE, SEP, 
and TiO2 systems, as determined from mesoscale simulations, we resorted 
to a pseudo “core-shell” model particles at the FEM level. These models 
consist in spherical (for BOE and TiO2) and spherocylindrical (for SEP) 
particles with radius equal to the sum of the pristine nanoparticle radius 
(constituting the “core” part of the particle) and the interface thickness 
(making up the “shell”). The overall, main thermophysical properties of 
these particles were then estimated by mediating each corresponding 
property of the nanoparticle core (i.e., the pure nanoparticle property) and 
of the interphase (as obtained by running fixed-grid calculations using the 
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mesoscopic density distribution as input information) by the 
corresponding volumetric fractions. 

 As mentioned previously, the density profiles of each component 
obtained from mesoscale simulations were used as an input for 
macroscopic property calculation of the stacks for intercalated systems 
according to the MsM procedure. 

 Finally, the bulk properties of each pure component of the diverse 
PNCs listed in Table3.3constituted the last information necessary to run 
FEM calculations. All listed data were obtained from literature.40 Thermal 
conductivities of MMT, BOE, SEP and HT were assumed to be the same 
and equal to the value found for bentonite clay.40i As each nanofiller itself 
was considered to be impermeable to gases, a very low permeability value 
(i.e., P = 0.0001 barrer) was selected. 

 
 PP PA6 TPU MMT 

E 1.5540a 2.8040e 0.0240g 17840h 
ν 0.3640b 0.3540b 0.4540b 0.240h 
κ 0.2540c 0.2840f 0.2040f 1.1440i 

PO2 9.640d 4.740d 2.140d 10-4 
 TiO2 SEP BOE HT 

E 23040j 20040l 25340m 13940n 
ν 0.2540j 0.240l 0.2040m 0.3040n 
κ 11.740k 1.1440i 1.1440i 1.1440i 

PO2 10-4 10-4 10-4 10-4 
Table3.3: Macroscopic properties of all PNC pure components: Young Modulus (E, GPa), 
Poisson ratio (ν), thermal conductivity (κ, W/MK), and gas permeability (P, barrer). 

3.3 Results and discussion 

3.3.1 Atomistic MD simulations 

Interaction energies, basal spacing values d for intercalated PNCs, and 
density profiles are all major information gathered from atomistic MD 
simulations and necessary for running next-level simulations, as 
mentioned above.Table3.4 presents the binding energies between the 
individual PNC components obtained from the corresponding NVT MD 
simulations. As somewhat expected, the presence of a modifier on the 
nanoparticle surface always results in a decrease of the interaction energy 
between the polymer and nanofillers itself. Indeed, the values ENF/P for the 
systems devoid of surface modifiers are all above 100 kcal/mol, while 
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substantially lower values are estimated for those PNC with surface-
modified nanoparticles. The binding energy between a polymer/surface-
modified nanofillers couple strongly depends upon the volume of organic 
modifier and the eventual presence of polar groups in its chains (see last 
column of Table 3.4). A significant exception is constituted by the system 
PP/ODA, a finding easily rationalized considering the substantially apolar 
nature and small dimension of ODA which, in turn, exert a low influence 
on the interactions between the polymer and the filler. 

System ENF/Pa ENF/SMb EP/SMc Vd (Å3) 

PP/C10A 75 394 94 483 
PP/C15A 25 854 131 735 
PP/C20A 47 440 99 735 
PP/C30B 85 418 99 470 
PP/ODA 120 293 66 345 
PA6/C20A 6 475 155 735 
PA6/C30B 27 433 156 470 
PA6/M3C18 33 444 163 383 
TPU/C30B 95 384 143 470 
PP/HT/FA 52 1925 100 314 (C16) 346 (C18) 
PP/SEP 102 - - - 
PP/BOE 172 - - - 
PP/TiO2 102 - - - 

Table3.4: Binding energies between the individual PNC components obtained from 
atomistic MD simulations. All energies are in kcal/mol.aENF/P = interaction energy between 
the nanofillers and the polymer. bENF/SM = interaction energy between the nanofillers and the 
surface modifier. cEP/SH = interaction energy between the polymer and the surface modifier. 
dV = molecular volume of the surface modifier. 

In the case of PP/MMT-based PNCs, we also found that the mineral 
CEC exerts a significant effect on the energetics of the corresponding 
systems. In fact, when the MMT CEC is higher (i.e., system PP/C15A), the 
binding energy values clearly reveal stronger interactions between 
polymer and organic modifiers, and MMT and organic modifiers, 
respectively, while the interactions between the nanofillers and the 
polymer are hindered due to the crowding of the organics on the MMT 
surface which leave less free space for polymer/filler favorable contacts. 

The nature of the bonds between the surface modifiers and the 
nanofillers for all PP/MMT, PP/HT, PA6/MMT, and TPU/MMT systems 
analyzed is ionic. Thus, it is not surprising that for all these PNCs the 
binding energies ENF/SM are significantly higher than the values of ENF/P 
and EP/SM, respectively. Also, since HT is characterized by a high charge 
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density in the interlayer space, this last property can be invoked to 
support the evidence that the binding energy ENF/SM for the system PP/HT 
is quite higher (1925 kcal/mol) than the corresponding MMT-based 
systems. 

Interestingly, no major differences were observed in those systems 
containing pristine nanofillers. In all these cases, since the interactions 
between the nanoparticles and the polymeric chains are mainly 
determined by van der Waals interactions, the corresponding values of 
ENF/P are comparable, the one for the PP/BOE system being slightly higher 
than the other two PNCs (PP/TiO2 and PP/SEP, respectively). 

Table 3.5lists the predicted interlayer distance values d for all 
intercalated PNCs considered, as obtained from the corresponding 
atomistic NPT MD simulations. Intuitively, organic surface modifier 
characterized by larger molecular dimensions (see last column of Table 
3.4) induce a larger inter-gallery distance in the corresponding modified 
mineral. More importantly, perhaps, is the good agreement of the in silicod 
values with the corresponding experimental results26e,37,42,43 (shown in 
parenthesis in Table 3.5 for comparison), since this quantity constitutes a 
direct input parameter for the successive, i.e., mesoscopic, set of 
simulations. 

Stack Interlayer spacing [nm] 

PP/C10A 3.73 (3.7142) 
PP/C15A 4.90 
PP/C20A 4.10 
PP/C30B 3.68 
PP/ODA 3.73 
PA6/C20A 4.22 (4.2243) 
PA6/M3C18 4.00 
PA6/C30B 4.22 
TPU/C30B 4.22 
PP/HT/FA 4.10 (4.137) 

Table 3.5:Basal spacing of stacks in intercalated PNCs 
calculated by MD simulations. Available experimental data 
are reported in parenthesis, for comparison. 

Figure 3.1 presents a selected example of the atomistic models 
employed in the MD simulations for the calculation of the interaction 
energies (NVT MD) and, specifically for layered nanoinclusions, the 
estimation of the interlayer d spacing (NPT MD), respectively. 
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Figure 3.1:(Left) Equilibrated molecular model system used in atomistic NVT MD simulations 
for binding energy calculations in PNC systems with surface modifier. (Right) Equilibrated 
molecular model systems used in atomistic NPT MD simulations for interlayer spacing 
determination in PNC with surface modifier. The system PP/HT/FA is shown as an example. 

3.3.2 Mesoscale simulations 
The application of computer-based simulation techniques at the 

mesoscale level aims both at filling the gap between detailed atomistic 
and coarse continuum level, and to avoid their shortcomings. In the 
specific field of PNCs, mesoscale simulations are employed to study the 
structural evolution, the microphase structure and the phase separation of 
these systems. Figure 3.2 shows an illustration of the equilibrated model 
obtained from DPD simulations of the PP/HT/FA PNC system as an 
example. 

In order to validate our mesoscale calculations, performed using 
parameters generated via a mapping procedure based on the information 
stemming from the lower scale MD simulations, we chose to compare the 
number density profiles calculated from MD trajectories with those 
obtained by analysis of the DPD runs. The density profiles capture the 
arrangement of the total organic matter (polymer and surface modifiers) 
in the mineral galleries, through a plane normal to the galleries (z-
direction). In the case of polymer-intercalated clay stacks, there is general 
agreement amongst researchers about the arrangement of organic species 
within the gallery systems:26e,i,44,45intercalated species usually exhibit high 
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and low density layers alternating from the clay surface, rapidly reaching 
bulk polymer density in the centre of the gallery. This arrangement 
indeed confirmed by the distribution of the organic density obtained from 
both MD and DPD simulations, as shown in Figure 3.3again for the 
system PP/HT/FA as an example.  

Figure 3.2:Front (top) and side (bottom) view of the equilibrated 
mesoscopic model obtained from DPD simulations of the PP/HT/FA PNC 
system. Colour code: gray, HT; purple, FA; light blue, PP. In the bottom 
panel, the PP beads are replaced by a light blue field, to highlight the 
distribution of the FA molecules within the HT layers. 

Figure 3.3:Comparison between interlayer densities of organic species 
(surface modifiers and polymer) in the gallery space of the PP/HT/FA PCN 
as obtained from MD (continuous line) and DPD (dotted line) simulations, 
respectively. 

As we can see from Figure 3.3, the system organizes into layers 
inside the clay gallery. This layering effect is well-known for confined 
liquids,46-48 and arises mainly from solvation forces. The rough and 
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irregular shape of the profile obtained for confined macromolecules – if 
compared, for instance, to the smooth and regular one exhibited by low 
molecular weight confined fluids – is due to the additional constraints to 
which the polymer atoms are subjected, as being connected along chains 
that run across many adjacent organic layers. However, Figure 3.3 clearly 
shows that the peaks have different heights and widths, depending on 
their location within the gallery. The highest density peaks are those 
closer to the clay layers; their height is indicative of the strong affinity 
between the adsorbed organic/polymer chains and the clay surface. The 
adjacent peaks are lower, as a consequence of the adsorption of the first 
layer that partially shields the attractive potential of the clay surface. In 
the centre of the gallery, practically only polymer chains are found. Since 
the overall arrangement and, in particular, the presence of high density 
peaks next to the clay surface is in agreement with the current literature 
on similar systems,51-53 these evidences constitute a further confirmation 
that the adopted atomistic/mesoscopic mapping procedure correctly 
reproduces density distributions of polymer chains and surface modifier 
molecules within inorganic layers. 

For the PNCs with pristine nanofillers, the arrangement of the DPD 
polymer beads near the different inorganic surfaces reflects the trends 
determined by atomistic MD calculations as well. Interestingly, the partial 
adsorption of the polymer molecules onto the filler surface results in the 
development of a polymer layer, as evidenced by the corresponding 
density maps (see Figure 3.4) which, in principle, might have properties 
different from those of the bulk polymer matrix.54 The thickness of this 
interphase, as expected, depends on the type and strength of the 
interaction between the nanoparticle surface and the polymer, being 
usually generated by secondary van der Waals or electrostatic forces. 
Thus, values from 1 nm to several microns have been reported in 
literature for the most diverse PNCs.55 As can be inferred from Figure 3.4, 
the interphase thickness obtained from our mesoscopic simulations for 
the BOE, SEP and TiO2 PNCs are similar, the one for the TiO2-based 
system (∼1.7 nm) being slightly larger than that estimated for the BOE and 
SEP PNCs (1.1-1.2 nm). Interestingly, these values are in line with 
experimental evidences available on similar systems.55 
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Figure 3.4:Mesoscopic density maps obtained for TiO2- (top), 
BOE- (centre), and SEP- (bottom) based systems. 

3.3.3 MicroFEM calculations of stack properties for 
intercalated PNCs 

To calculate a set of macroscopic properties of a PNC stack (see 
Figure 3.5), we resorted to finite-elementfixed-grid (MesoProp) 
calculations. In particular, the Young modulus E, the thermal conductivity 
κ, and the gas permeability P were the macroscopic properties of election, 
since not only these quantities are of primary industrial interest but, 
perhaps more importantly, direct comparison with the corresponding 
experimental data could be made.37 

Figure 3.5: Example of the intercalated stack model for the PP/HT/FA 
PNC system used in the FE. 

Aside pure component properties, the mesoscopic density matrices 
obtained from DPD simulations for each PNC systems were used as input 
information as well. We must note here that, for permeability, a value of P 
= 0.0001 barrer was chosen for the MMT and HT platelets, as the stacks 
were reasonably assumed to be non-permeable to gases. All relevant 
results are presented in Table 3.6. Each property is expressed as an 
average value in the x and y direction with respect to the orientation of 
the platelets. 
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Stack E (GPa) κ (W/mK) PO2 (barrer) 

PP/C10A 70.06 (0.19) 1.070 (0.076) 1.69×10-3 (1.1×10-4) 

PP/C15A 75.44 (0.43) 1.092 (0.079) 1.93×10-3 (1.3×10-4) 

PP/C20A 72.36 (0.70) 1.078 (0.078) 1.84×10-3 (1.1×10-4) 

PP/C30B 70.34 (0.57) 1.070 (0.075) 1.74×10-3 (1.2×10-4) 

PP/ODA 88.22 (0.46) 1.186 (0.090) 1.32×10-3 (1.1×10-4) 

PA6/C20A 110.30 (0.07) 1.298 (0.080) 9.00×10-4 (0.95×10-4) 

PA6/M3C18 110.39 (0.15) 1.295 (0.083) 8.20×10-4 (0.89×10-4) 

PA6/C30B 110.30 (0.12) 1.295 (0.082) 8.60×10-4 (0.91×10-4) 

TPU/C30B 100.05 (0.11) 1.088 (0.112) 4.02×10-4 (0.44×10-4) 

PP/HT/FA 104.22 (0.15) 1.283 (0.080) 5.64×10-3 (1.3×10-4) 
Table 3.6:Properties of intercalated PNC stacks estimated using fixed-grid calculations 
performed exploiting the density profiles of each system derived from mesoscale 
simulations. Symbols: E = young modulus; κ = thermal conductivity; P = permeability. 
Standard deviations are given in parenthesis. 

3.3.4 MicroFEM calculations of the properties for 
unmodified PNCs with interfaces 

As briefly mentioned above, non-treated filler have high energy 
surfaces. Accordingly, during the most common PNC preparation process 
(i.e., melt mixing), intermolecular forces lead to a partial adsorption of 
polymer chains onto the filler surfaces. The thickness and the properties 
of the resulting interphase have not be indisputably unveiled so far. 
Indeed, if the formation of a softer interphase was claimed by some 
authors, other, more frequent reports reveal the presence of a stiffer 
interface which, in turn, contributes to the overall increase of the PNC 
stiffness. In order to account for the existence of this interphase in our 
surface-pristine PNCs, we performed MesoProp fixed-grid calculations 
using the corresponding DPD density maps (see Figure 3.4) as input.  
 

PNC E (GPa) κ (W/mK) P(O2) (barrer) 

PP/BOE 241.89 (0.22) 1.130 (0.08) 0.97 (0.11) 

PP/SEP 152.07 (0.30) 1.070 (0.06) 4.93 (0.61) 

PP/TiO2 172.75 (0.26) 8.94 (0.45) 4.73 (0.62) 
Table 3.7:Properties of nanoparticles with interfaces estimated using the 
interface thickness and properties inferred from mesoscale and fixed-grid 
simulations. Standard deviations are given in parenthesis. 
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With these information at hand, we then estimated the properties of 
the corresponding pseudo “core-shell” model nanoparticles as listed in 
Table 3.7. Finally, these values were employed in the last FEM 
calculations, yielding the overall macroscopic properties of each 
corresponding PNCs. 

3.3.5 Macroscopic properties of all nanocomposite systems 
The prediction of the macroscopic properties of the entire polymer 

nanocomposite systems was achieved with FEM calculations using a 
variable-grid approach.56 In the case of surface-modified nanoparticle 
PNCs, a cell was created and objects as single platelets and stacks were 
added until the required volume fraction was achieved. Figure 3.6 shows 
the FEM model adopted for the PP/HT/FA PNC system as an example. 

Figure 3.6:Global model configuration (left) and relative meshed volume (right) used in the 
FE calculations for the PP/HT/FA PNC system. 

The properties of pure components (polymers, MMT and HT) were 
inserted in materials database together with the properties of the stacks as 
obtained using the fixed-grid (MesoProp) calculations described above. On 
the other hand, in the case of system without organic modifiers the cell 
was generated using the pseudo “core-shell” filler models, and assigning 
to these the corresponding values listed in Table 3.7. 

The set of properties and their values calculated for all the different 
nanocomposite systems are shown in Figure 3.7in terms of enhancement 
factor Ef = Pc/Pm, i.e., the ratio between a given property value for the 
nanocomposite (Pc) and the corresponding value for the pristine polymer 
matrix (Pm). 
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In the intercalated systemIn the s,in general, an increase of 60% on 
mechanical properties is observed when a 4.6 % w/w of MMT is added to 
PP or PA6 matrices. Since the elastic modulus of neat PP is lower than 
that of PA6, FEM calculations show that the elastic modulus of the 
PA6/MMT nanocomposites is also slightly higher than that of PP/MMT 
systems (see Figure 3.7), which can be further attributed to the higher 
mechanical properties of PA6/MMT stacks with respect to the 
corresponding PP/MMT counterparts (Table 3.6).  

Figure 3.7:Predicted enhancement factor Ef = Pc/Pm of the 
macroscopic properties of different nanocomposite systems. 

According to fixed-grid calculations, substituting MMT with HT in 
PP-based PNCs results in PP/HT stacks with higher elastic modulus than 
the PP/MMT stacks (see Table 3.6). This enhancement can be due to the 
high affinity between PP chains and HT platelets, as testified by the low 
value of the DPD interaction parameter aM/P for the PP/HT system (see 
Table 3.2). Notwithstanding, a moderate increase in mechanical property 
is predicted in the case of PP/HT PNC, as a result of the low elastic 
modulus of pristine hydrotalcite. It is well known that intercalation of HT 
is linked with difficulties due to the high charge interlayer density, which 
leads to strong electrostatic interactions between the sheets. Experimental 
trials to produce this kind of nanocomposite showed that HT particles of 
10 µm tend to de-agglomerated into smaller, disk-like aggregates with 
diameters ranging from 200 to 500 nm and consisting of 3-4 layers of 
layered double hydroxides.57 De-agglomeration, poor dispersion and 
different aspect ratios are usually invoked to explain the high range of 
variability in the enhancement factor of the Young modulus of these 
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nanocomposites (e.g. from 1.07 for 10 % w/w of HT37 to 1.28 for 3 % w/w 
of HT58). Taking all these aspects into account, our estimated value of Ef = 
1.29 for the 4.6 %w/w proves the predictive character of our multiscale 
approach. 

Neat TPU has an elastic modulus significantly lower than the other 
polymers considered (Table 3.3). Interestingly, reinforcing this low-
modulus matrix with nanofillers has the highest beneficial effect which, in 
turn, reflects in the highest increase in the Young modulus of the relevant 
TPU/MMT PNC with respect to all other intercalated PNCs (Figure 3.7). 

Concerning the other macroscopic properties considered, an 
increase of about 10% in thermal conductivity and a decrease of ~ 25% 
(PP) and 36% (PA6) in permeability is predicted by our MsM approach. 
The gas permeability in a PNC depends mainly on orientation, aspect 
ratio and volume fraction of the filler in the matrix. A rationale for the fact 
that the PA6/MMT nanocomposite systems offer a higher barrier to the 
diffusion of gas with respect to the PP-based nanocomposites can be 
based on the fact that i) both the volume fraction of MMT in the PA6 
matrix is higher, and ii) the density of PA6 polymer is higher than that of 
PP. Other differences might be noted depending on the surface modifiers 
used which, in turn, stem from the diverse stack properties and dissimilar 
aspect ratios. 

A series of different measurements and morphological 
characterizations were reported by Forneset al.59 in a complex study 
where sodium montmorillonite was modified with a series of organic 
amine salts. Interestingly, a good agreement is found between the 
experimental data of Fornes and the present results in a direct comparison 
for PA6-based nanocomposite systems with Φw = 4.5 % w/w. Indeed, the 
experimental enhancement factors Ef of 1.57, 1.62 and 1.69 for the Young 
modulus E of the systems PA6/C20A, PA6/C30B, and PA6/M3C18 quite 
nicely correspond to our calculated values of 1.61, 1.57, and 1.60, 
respectively. In the case of the PA6/C30B and PA6/M3C18 systems, the 
calculated Ef values are somewhat lower than those obtained by 
simulation. These small discrepancies can be justified by considering the 
very high level of exfoliation and dispersion of the MMT platelets in the 
experimental samples.59 However, it is clear that the system with M3C18 as 
clay modifier yields a greater enhancement in Young modulus than the 
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C30B composite according to both simulated and experimental results. On 
the other hand, our simulations show that PA6/C20A offers the highest 
increase of the Young modulus, which is not supported by experiments 
due to the partial intercalation that takes place by using this kind of 
surfactant.59 

In the case of TPU-based nanocomposites, a good agreement of the 
predicted Young modulus is found with the experimental results,46 since 
an Ef value of 2.96 for TPU loaded with 5 % w/w of C30B well compares 
with the in silico value of 2.76. For the same system, also the experimental 
Ef = 1.18 for thermal conductivity40f quite nicely matches the predicted 
value of 1.14. It is important to note here that a substantially higher 
increase in the conductivity value along the x and y directions with 
respect to the z direction was observed, which was due to the alignment 
of the platelets on those directions. 

Lastly, given the small difference between calculated and 
experimental κ values (approximately 3.5%), we can state that the 
predictive power of the multiscale procedure is validated also for this 
property. 

Nowwe will discuss the results concerning the PNC systems 
without surface modifiers. Recently, in the framework of the jointed 
European integrated project (IP) Multihybrids, Tabuani et al.37 
experimentally evaluated the mechanical properties of the same series of 
pristine PNCs based on SEP, BOE, MMT, and HT. In the case of PP/SEP 
nanocomposite, our calculated enhancement factor for the Young 
modulus Ef = 1.47 is in an excellent agreement with the experimental 
values of 1.4637 and 1.50.60Figure 3.8 illustrates the FE model used for the 
prediction of the mechanical properties of the PP/SEP PNC. 

 
 
 
 
 

Due to the incomplete dispersion/agglomeration of the filler which 
takes place during processing, the PP/BOE system was defined 

Figure 3.8: (Left) FEM PP/SEP model and (right) the corresponding FEM mesh. 
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considering agglomerates of spherical shape.Figure 3.9 shows a 
comparison between the TEM images of the PP/BOE PNC agglomerates61 
and our simulated system. The corresponding, predicted Young modulus 
(Ef = 1.05) is slightly lower than the available experimental values (Ef = 
1.1149 and 1.1837), due to a) the definition of the filler as a spherical object 
in a trial approximation of the real shape of the aggregates (see Figure 
3.9), and b) the somewhat different volume fraction employed in the real 
PNC (5 vs. 4.6 %w/w). Notwithstanding the degree of approximation, our 
computational predictions and the relevant experimental results can be 
considered in very good agreement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3.9: (Top. left) SEM image of PP/BOE PNC agglomerates studied in this work. 
(Top. right) FEM PP/BOE model and (bottom) the corresponding FEM mesh. 

 
The lowest increase in elastic modulus E for the entire set of PNCs 

considered in this work was observed for those systems loaded with 
spherical fillers, as exemplified by the modest 4% increase of the Young 
modulus E for the PP/TiO2 system (see Figure 3.7 and Figure 3.10). 
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 An experimental characterization of the dimensions of titania 
nanoparticles performed again in the Multihybrids IP framework39 
revealed quite a broad distribution 10-100 nm, with a marked peak 
centered around 20 nm. Although no experimental Ef values are available 
for this system, the MsM procedure predicts a reliable increase of ~ 3.4% 
in the thermal conductivity κ and a concomitant decrease of 2% in the 
oxygen permeability PO2. Based on the results obtained for the PP/TiO2 
and PP/BOE PNCs we can conclude that, as intuitively expected by virtue 
of the low aspect ratio, spherical nanofillers exert a limited influence on 
the thermophysical properties of the corresponding polymer 
nanocomposites. 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.10: (Top, left) TEM image of the PP/TiO2 PNC studied in this work.39(Top, 
right) FEM PP/TiO2 model and (bottom) then corresponding FEM model mesh. 

From a general perspective, our calculations confirm and 
substantiate the general assumption that aspect ratio and/or shape of the 
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filler significantly influence the mechanical properties of polymer-based 
nanocomposites. In our comprehensive study, fibres (i.e., sepiolite) and 
platelets in the system TPU/C30B significantly offer the highest Ef in terms 
of mechanical behaviour (see Figure 3.7). In the first case, this increment is 
clearly induced by the shape and aspect ratio of the filler, while in the 
second case it is the very low Young modulus of the pristine TPU 
polymer that plays a fundamental role in the enhancement of the value of 
E(Table 3.3). On the other hand, the lowest increase (<10%) in the 
mechanical properties is observed for those systems with spherical fillers 
(PP/BOE and PP/TiO2), while platelet-based PNCs show a considerable 
increase up to 60% for MMT-based PNCs. Also, the presence and the 
different nature of small organics as surface modifiers may ultimately 
contribute – although to a more limited extent – to the overall 
improvement of the PNC mechanical performances. 

Concerning thermal conductivity, even if no substantial differences 
were predicted among the different PNCs considered, some global 
conclusions can be presented. Even if the thermal conductivity of TiO2 is 
quite high with respect to the other fillers (see Table 3.3), no significant 
increase in the κ value for the corresponding PP/TiO2 PNC is observed. A 
similar value of Ef for thermal conductivity is predicted for another 
system with spherical filler (PP/BOE), even if the thermal conductivity of 
Boehmite is significantly lower than that of TiO2 (Table 3.3). Coupled 
together, these evidences allow to conclude that spherical fillers exert an 
overall negligible effect also on the thermal conductivity of the respective 
PNCs. 

Lastly, as oxygen permeability is concerned, a pronounced decrease 
in P is observed in the case of intercalated nanocomposites (see Figure 3.7) 
with respect to all other PNCs (SEP, BOE, and TiO2), which are more or 
less dispersed. A decrease of 25% and 36% in permeability is predicted for 
intercalated systems with PP and PA6, respectively, while the effect is 
confined to less than 3% in all other cases. Based on these results it is 
evident that permeability strongly depends on the internal morphology 
and alignment of the fillers in the polymer matrix, more ordered 
(intercalated) arrangement of filler featuring the higher decrease in 
permeability. 
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3.4 Conclusion 
In this work we presented the development and application of a 

multiscale molecular modelling (MsM) procedure for the prediction of the 
macroscopic properties of polymer-based nanocomposites. The results 
obtained from this in silico approach are very encouraging, as the 
predicted values for a selected set of thermophysical quantities are in 
outstanding agreement with the corresponding experimental 
counterparts. Moreover, the analysis of the entire panel of results allowed 
us to draw some general conclusions regarding the role of the single 
components with respect to the overall performance of the different 
PNCs. First, the presence of modifiers on the surface of the nanoparticles 
has a significant effect on the interactions between the polymeric matrix 
and the nanofiller which may reflect in a great influence on the 
intercalation/exfoliation process during the preparation of PNC. This, in 
turn, affects the overall structure of the nanocomposite and, ultimately, its 
macroscopic property. However, once a specific morphology is generated 
at the nanoscale level, the chemical/physical characteristics of the different 
surface modifiers are smeared out, and their individual contribution to 
the PNC macroscopic properties become negligible. On the other hand, 
the size and shape of the filler as well as the properties of the pure 
nanocomposite components are all aspects that have a big impact on 
overall material properties. 

 Spherical fillers affect mechanical and other thermal properties to 
a minimum extent, independently on nanoparticle dimensions. On the 
opposite, the impact of high aspect ratio nanoparticles such as fibres is 
significantly higher, and it can be further influenced by the change in fibre 
length or orientation within the polymeric matrix. In the case of clay, the 
aspect ratio of the platelets plays a key role in determining the ultimate 
properties of the relevant nanocomposites, as also confirmed by our 
previous studies in which we examined the effect of the different degree 
of exfoliation in polymer/MMT nanocomposites.26kQuite intuitively, the 
best exfoliated structures result in the most enhanced mechanical 
properties. 

 Within the framework of our current material science and 
engineering research, we can conclude that a complete integration of all 
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available simulation scales (i.e., from atomistic molecular simulations via 
mesoscopic dynamics to finite element calculations) in a hierarchical 
procedure such as that proposed in the present work can be a very useful 
tool for the morphological investigation of polymer-based nanocomposite 
and the a priori prediction of the ultimate properties of these fascinating 
materials. Undoubtedly, further work is necessary to achieve a more 
refined multiscale integration for these materials; however, the simple  
approach proposed in this paper represents, at least in our opinion, the 
best compromise between the overall computational time required to 
carry out the entire multiscale molecular modeling procedure and the 
great quality of the results predicted. 
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4  
4 In silico estimation of 

polymer surface 
wettability 

In this work, molecular dynamics (MD) simulations were 
performed to investigate the wetting behavior of solid surfaces in the 
presence of model solvents. Four kinds of solid substrates were 
considered with different degree of hydrophobicity/hydrophilicity: 
polypropylene (PP), polystyrene (PS), polyamide 6 (PA6), and cellulose. 
Water, oil and a mixture of water and surfactants were selected as 
reference fluids to investigate the wetting ability. Additionally, we refined 
our methodology to discriminate the properties of seven different 
aromatic fluoropolymers in contact with a water nanodroplet. Two 
computational recipes were developed and compared to quickly and 
accurately provide direct microscopic evidence for the effect of fluids on 
the wettability of a solid substrate. Contact angle, interfacial tension, work 
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of adhesion, binding energies were predicted and provided a 
comprehensive understanding of the involved interfacial phenomena. 

Part of this work is published in Nieto, D.R.; Santese, F.; Toth, R.; 
Posocco, P.; Pricl, S.; Fermeglia, M. ACS Appl. Mater. Interfaces2012, 4, 
2855−2859 and F. Santese; D. R. Nieto; P. Posocco; R. Toth; S. Pricl; M. 
Fermeglia;ACS Appl. Mater. Interfaces, 2013submitted. 

4.1 Introduction 
Nowadays there is an increasing demand for surfaces with new 

functional properties in almost all industrial branches. During the next 
few years, research input will be required for the development of coatings 
exhibiting an easy-to-clean or self-cleaning ability, switchability so that 
they can act as sensors/actuators, and defined tribological/mechanical 
properties and long-term stability. To achieve such behavior, the 
development of new advanced functional coatings that exhibit the proper 
chemistry and surface structure is necessary. Accordingly, preparation 
and characterization of materials with tailored hydrophilic or 
hydrophobic surfaces have been extensively investigated. In addition to 
the scientific curiosity to understand the critical chemical and physical 
factors and/or parameters leading to the formation of such surfaces, 
potential technological applications of these materials in various fields, 
such as biomaterials, micro-electronics, micro-fluidics, coatings, textiles, 
and so forth, have been the major driving forces behind these studies. 
Moreover, the knowledge and control of interfacial wettability of 
hydrophilic (e.g., water) and hydrophobic (oil) substances on polymeric 
surfaces is one of the main issues in current practical surface science and 
interfacial engineering. For example, highly hydrophobic surfaces are 
designed to avoid the adhesion of snow and raindrops on car 
windshields, or in order to form self-cleaning surfaces on kitchen 
furniture tops. On the contrary, hydrophilic surfaces are sought in 
biomedical applications, e.g., tissue engineering and drug delivery. 
Therefore, investigating the structure and behavior of common fluids, 
such as water, oil, and mixtures of surfactant/water, with polymer of 
different chemical nature is of great, practical importance. 

It is well-documented that wetting behavior of a substrate is mainly 
controlled by its chemical nature and surface topography or roughness. 
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Therefore, manipulating the hydrophobicity/hydrophilicity of a given 
surface necessarily requires understanding of the microscale principles 
that, in turn, control the macroscale surface wetting behavior.  

A realistic modeling of the solid-liquid interface is complicated by 
the fact that solid surfaces are typically far from ideal and are 
characterized by a large set of (often unknown) parameters. This is in the 
first place the surface shape, which often contains variable amounts of 
roughness on different length scales. In the case of a hydrophilic surface, 
the density of polar surface groups, their spatial distribution on the 
surface, and the orientation of dipoles are largely unknown, and the same 
is true for charged surface groups. Likewise, the strength of the non-
electrostatic interactions between surface groups and water molecules, 
which are typically subsumed under the heading of dispersion or van der 
Waals interactions, is not known. It is the sum of these effects that 
determines the effective interfacial tension (and thus the contact angle), 
and understandably, it is difficult to disentangle the influence of the 
separate parameters on the resulting macroscopic interfacial behavior. 

In the past few years, substantial progress has been achieved in 
understanding wetting phenomena from both the experimental and 
theoretical fronts.1 In particular, as an alternative to experimental 
campaigns, molecular simulations have been widely applied to the study 
of solid surfaces/liquid interactions, with especial focus on water 
spreading on both hydrophobic and hydrophilic material surfaces. 
Nonetheless, most of the work published so far was based on ideal 
surfaces, i.e., surfaces with regular, periodic conformation such as crystals 
and crystalline polymers. On the contrary, computational studies dealing 
with liquid spreading onto amorphous polymer surfaces are quite scarce, 
and this paucity may be ascribed to the fact that constructing a well-
defined model for amorphous polymer surfaces and simulating systems 
having interfacial regions with unconfined roughness requires notable 
computational time and resources. 

The wetting of a surface is essentially determined by molecular 
interactions between the surface and the liquid, contact angle (θ), surface 
tension (γ), and work of adhesion (Wadh) being the most popular physical 
parameters used to quantify these phenomena. Thus, approaches based 
on atomistic molecular simulations should, in principle, yield vital 
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insights on these interactions and constitute ideal tools to estimate the 
related technological parameter values. Nonetheless, accurate information 
for these solid/liquid interactions at an atomistic level have been scarcely 
achieved so far due to many factors, including the lack of well-defined 
amorphous polymer surface models. Also, the spread of experimental 
values for both θ and Wadh in the current literature highlights the technical 
difficulties inherent in this research field. For instance, deducing an actual 
value of the Wadh in a given system is a daunting task as most of the 
mechanical adhesion tests employed provide largely overestimated 
values of Wadh due to the large energy dissipation originating in the test 
samples during measurements.[2] 

In the present work we performed atomistic molecular dynamics 
(MD)calculation of different fluids (water, oil, and a mixture of 
surfactants/water) with various chemically heterogeneous ideal surfaces 
(PS, PP, PA6, and cellulose) varying their properties in a systematic way 
(i.e., from hydrophobic to hydrophilic) and explicitly calculated contact 
angles, interfacial tension, work of adhesion, as well as interaction 
energies. The correlation between the microscopic and macroscopic 
properties allowed us to characterize the interfacial/wetting behavior in a 
stringent fashion.  

Amorphous polypropylene (PP) and polystyrene (PS) are two of 
the most generally produced plastics, with a variety of applications in 
different fields such as coatings, packaging, insulation, drug delivery, and 
biosensors.[3] Polyamide 6 (PA6) is one of the most widely used 
engineering thermoplastics, with in-between hydrophilicity. Amorphous 
model cellulose films have been recently developed, and their molecular 
structure has been studied in many experimental efforts. [4]  Water and oil 
were chosen as representative wetting fluids; furthermore, we decided to 
investigate the effect of additives (i.e. soaps) in water droplets on surfaces, 
due to their industrial relevance. 

Two computational recipes were developed and compared to 
quickly and accurately provide direct microscopic evidence for the effect 
of solvent on the wettability of a solid substrate. Contact angle (θ), 
interfacial tension(γ), work of adhesion (Wadh), binding energies were 
predicted and provided a comprehensive understanding of the involved 
interfacial phenomena.The results stemming from the accuracy of the 
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force field employed and the computational recipes adopted in the two 
simulation pathways not only yielded values comparable to each other 
but, perhaps more importantly, in excellent agreement with the 
corresponding experimental data. 

Furthermore, the procedure thus validated has been applied to the 
study of different aromatic fluoropolymers. Fluoropolymers have many 
interesting properties not found in their hydrocarbon analogues[5] thanks 
to their chemical structure. The strong C-F bonds and weak polarity of 
fluoropolymers imparts a unique set of properties to these types of 
polymers, such as low surface tension, low coefficient of friction, 
piezoelectric and pyroelectric properties high thermal stability, low 
permeability, and strong chemical resistance.[6] 

These properties make these polymers ideal candidates for many 
high performance applications such as aerospace, aeronautics, optics, 
microelectronics, paints and coatings, engineering and biomaterials, etc. 
Most commercially available fluoroalkenes are PTFE (Polytetra-
fluoroethylene), FEP (Fluorinated ethylene propylene), PFA 
(Perfluoroalkoxyethylene), ETFE (Ethylenetetra-fluoroethylene), ECTFE 
(Ethylenchlorotri-fluoroethylene), PCTFE (Polychlorotri-fluoroethylene), 
PVDF (Polyvinyledenefluoride). The properties vary between different 
fluoropolymers. The fully fluorinated polymers, such as PTFE, FEP and 
PFA, have better thermal (higher use temperature) and chemical 
resistance properties than their partially fluorinated counterparts like 
PVDFE and ECTFE. However, partially fluorinated resins possess better 
mechanical properties, such as tensile strength, toughness, abrasion and 
cut-through resistance at ambient temperatures. The wettability of a 
surface can be strongly influenced by the distribution of acidic groups 
and/or surface dipoles across the interface. In contrast to fully fluorinated 
polymers, partially fluorinated resins possess enhanced acidity and 
increased polarity due to the differing electronegativities of carbon, 
fluorine, and hydrogen.  The existence of polarity in the partially 
fluorinated polymers strongly influences the interfacial properties, which 
leads to an enhanced wettability toward contacting liquids as a function 
of the degree of polarity.[7] The acidity of the monomers can be enhanced 
by the presence of the aromatic groups, so, among fluoropolymers, 
fluorinated aromatic polymers represent a new and interesting 
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generation[8] and in the present work we want to provide a complete 
characterization of some of this type of polymers. The introduction of 
fluorine substituent or groups containing fluorine atoms into the aromatic 
polymers is regarded as effective ways to obtain increased solubility, glass 
transition temperature (Tg) and thermal stability, and also to achieve a 
decreased moisture absorption and dielectric constant[9]. Currently, the 
most widespread applications of the aromatic fluoropolymers are films 
and coatings microelectronics devices[10]. It is important to combine or 
enhance these basic characteristics of fluoropolymers in order to develop 
new materials. Thus, an atomistic understanding of the atomistic origin of 
many of these surface properties is essential for understanding adhesion 
and wettability[11]. MD simulation has already been successfully used to 
study some aliphatic fluoropolymers[12-13]. However, to our knowledge, 
aromatic fluoropolymers have not been investigated by computer 
simulation so far. In this work we present a study of the wettability 
phenomena of seven different aromatic fluoropolymers predicting some 
important surface properties, as surface tension, work of adhesion and 
contact angle and comparing these values with the corresponding 
experimental data.  

4.2 Computational details and simulation 
methodology 

In this work we employed two different computational protocols based 
on molecular dynamics (MD) simulations to quantify θ and Wadhand 
described the interfacial phenomena (see Figure4.1).  

Figure 4.1:Diagram of the two simulation pathways adopted in this work. 



In silico estimation of polymer surface wettability 

 

69 
 

4.2.1 Pathway 1 (P1) 
Water droplet model. 

In order to achieve a good compromise between accuracy and 
computational time, 500 SPC/E water molecules[14] were employed in the 
construction of the water droplet model.[15-18] The starting water cluster 
corresponded to a cubic liquid water configuration with side length 2.46 
nm and density d = 1 g/cm3, energetically optimized using the Compass 
force field[19] (FF) via a combination of conjugate gradient/Newton-
Raphson iterations using a convergence criterion of 10−3 kcal/(mol Å). The 
particle mesh Ewald (PME) method[18] and an atom-based cutoff of 12.5 Å 
were used to treat electrostatic and van der Waals interactions, 
respectively. Subsequently, the cubic lattice was removed and 100 ps of 
molecular dynamics (MD) simulations in the canonical (NVT) ensemble 
were performed at T = 298 K using the Forcite engine of Materials Studio (v. 
5.1, Accelrys Inc., San Diego, CA, USA). These and all subsequent MD 
simulations were run in parallel using 8 CPUs of our MOSE20 cluster. 
Temperature control was carried out with the Berendsen thermostat[20], 
while the equations of motion were integrated using the Verlet algorithm 
with a step size of 2 fs. Long-range non-bonded interactions were again 
treated using the PME technique and the atom-based cutoff. After a few 
picoseconds of MD simulation, the water cluster evolved into a smooth 
drop-like profile, showing that the initial cubic configuration does not 
influence the final liquid droplet shape. 

Oil and surfactant/water droplet model. 

Octadecanoic (stearic) acid was selected as a prototypical 
representative of a fatty acid. The corresponding molecular model was 
energy minimized using the Compass FF and the same criteria adopted for 
the water droplet. 30 molecules of stearic acid were then placed in a cubic 
cell of side length 2.47 nm and d = 0.94 g/cm3. After system minimization, 
500 ps of NVT MD simulations at T = 298 K were applied to relax the 
system. Also in this case, a spherical oil droplet was formed as the final 
MD configuration. The same modeling procedure described above was 
applied to model a droplet of surfactant/water mixture. Sodium laurate 
was selected as representative of a common surfactant. 500 molecules of 
water were placed together with 12 laurate ions and 12 Na+ in a cubic cell 
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of side length 2.56 nm and d = 1.01 g/cm3 and subjected to the MD 
simulation  protocol until the droplet formation. 

Polymer surface. 

The generation of an accurate model of amorphous PP, PS, PA6, 
and cellulose was conducted as follows. First, three small PP chains each 
with a degree of polymerization (DP) equal to 5 were generated and 
subjected to energy relaxation using Compass. It is important to note here 
that, although such small oligomers would hardly capture a genuine 
response of the behavior of a real polymer chain, it has been shown that 
all typical features of the fast segmental dynamics of interfacial polymer 
chains can be explored indeed using much shorter molecules.[21] The 
conformational search was carried out using our combined molecular 
mechanics/molecular dynamics simulated annealing (MDSA) protocol,[22] 
according to which the relaxed structure were subjected to five repeated 
temperature cycles (from 298 to 600K and back) using NVT MD 
conditions. At the end of each annealing cycle, each structure was again 
energy minimized to converge below 10−4 kcal/(mol Å), and only those 
structures corresponding to the minimum energy were used for further 
modeling. Then, a cubic box was generated starting with the optimized a-
PP chains using the Theodorou and Suter version of the Rotational 
Isomeric State (RIS) method[23]at T = 298K and d = 0.93 g/cm3 (and 0.96 
g/cm3 for PS, 1.08 g/cm3for PA6, and 1.5 g/cm3 for cellulose). The energy of 
the system was relaxed using Compass and, in order to generate a surface 
with appropriate dimensions for the droplet spreading simulations, the 
periodic cell was replicated in x and y directions to yield a final cell with 
dimensions 7.31 nm × 7.31 × 1.04 nm (6.82nm x 6.82 nm x 1.71 nm for PS, 
6.95nm x6.95 nm x 1.74 nm for PA6, and 6.96 nm x6.96 nm x 1.39 nm for 
cellulose). 

Water, oil, and surfactant/water droplets on the polymer surface. 

After each component was modeled, the overall systems (i.e., 
water/oil/surfactant&water droplet and PP surface) were built. As a first 
step, to avoid interference of neighboring images in the vertical direction, 
the z-dimension of the polymer cell was extended to 15 nm. Then, the 
equilibrated water/oil/surfactant&water droplet was placed centered on 
top of the polymer surface at an initial distance of about 3 Å, and the 
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resulting system was relaxed and subsequently subjected to 500 ps of 
NVT MD simulations at T = 298 K. In this case, the Ewald method was 
applied for treating all nonbonded interactions. The Berendsen thermostat 
with a decay constant of 0.1 ps was adopted for temperature control and 1 
fs was chosen as the Verlet integration time step. The first 50 ps of the MD 
simulation were required to reach the equilibrium state (monitored by the 
large and rapid decay of the average internal energy of the system 
followed by a steady plateau). Following that, the remaining 450 ps of 
equilibrated MD trajectory were used for data harvesting and analysis. 

Contact angle calculation. 

The contact angle θ for water, oil, surfactant/water onto the 
amorphous surfaces was determined following the method proposed by 
Fan and Cagin.[24]Briefly, according to this methodology, the θ value of a 
spherical liquid droplet on a given (e.g., polymeric) surface can be 
obtained as: 

cosθ = 1 – h/R (4.1) 

where h is the height of the liquid droplet relative to the polymer surface 
and R is the radius of the spherical droplet. R in turn can be calculated as: 

R = h/2 + S/(2π h) (4.2) 

in which S is the droplet interfacial area given by: 

S = π Rs2   (4.3) 

Rs being the radius of the droplet interfacial area S. 

 
Figura4.2:Geometrical parameters for the calculation of the contact angle θ 

For asymmetrical droplets spreading on a surface, however, the 
RDD cannot provide the value of the contact angle directly. Therefore, 
equation (4.1) was employed to obtain the information of the droplet 
shape.[24] In the case of a nanoscopic irregular and asymmetric droplet, 
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radial density distribution in the z-direction (i.e., perpendicular to the 
surface) achieved by time-average statistics on the equilibrated MD 
conformation was employed to estimate the height h of the droplet, and 
the droplet shape was obtained applying the eq. (4.4): 

 
(4.4) 

In eq. (4.1), r is the radius of the contact surface formed, ρ is the 
fluid density, and Δm/Δz is the weight distribution along the z-axis. Once 
h and r values are known, the corresponding value of θ can be finally 
estimated. 

We note that, occasionally, spontaneous evaporation from the 
droplet into the vacuum took place. However, very few water molecules 
escaped from the drop and the evaporated molecules eventually returned 
to the main body of the droplet, so that, ultimately, the volume of the 
cluster remained effectively constant. 

Binding energies 

From the equilibrated part of the MD trajectory of each 
droplet/polymer system, the interactions energies and, hence, the binding 
energies (Ebind) among all system components were extracted according 
to the procedure described in detail in [25], [26]. By definition, the binding 
energy Ebind is the negative of the interaction energy. As an example, the 
binary binding energy term Ebind(PP/H2O) is simply obtained from the 
following equation: 

Ebind(PP/H2O) = EPP + EH2O – EPP/H2O (4.5) 

where EPP, EH2O, and EPP/H20 are the potential energies for PP, water, and 
PP/H2O systems. After deleting the water molecules, leaving the PP 
chains alone, we calculated the energy of the PP molecule, EPP; similarly, 
we deleted the PP molecules from the PP/H2O system, and calculated the 
energy term EH2O.Ebind(PP/oil) and Ebind(PP/surfactant_H2O) can be 
calculated in an utterly analogous fashion from the corresponding energy 
components: 

z
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Ebind(PP/oil) = EPP + Eoil – EPP/oil  (4.6) 

Ebind(PP/surfactant_H2O) = EPP + Esurfactant_H2O – EPP/surfactant_H2O (4.7) 

4.2.2 Pathway 2 (P2) 
The second simulation protocol (P2 in Figure 4.1) was based on the 

adoption of the so-called Dupré equation[27] to estimate the work of 
adhesion between a liquid droplet and a polymeric surface as follows: 

Wadh = γp + γl – γi  (4.8) 

whereγp and γl are the surface tension of the polymeric surface and of the 
spreading liquid, respectively, while γi is the interface tension between the 
two condensed phases. To this purpose, an alternative MD protocols 
based on bulk (3D) and thin-film (2D) cell simulations was developed 
according to which the values of γp, γλ, and γi could be evaluated using 
Equations (4.9) and (4.10): 

A
UU 3D2D −

=γ  
(4.9) 
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i
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UUU pli +−
=γ  

(4.10) 

In Equation (4.9), 〈U2D〉and 〈U3D〉represent the MD-averaged 
potential energies of the thin film and bulk phase simulations, 
respectively, and A is the corresponding value of the solvent-accessible 
surface area. In Equation (4.10), 〈Ui〉is the average potential energy of the 
interface, 〈Ul〉and 〈Up〉are the energy of the liquid and polymer thin film 
models, and Ai is the solvent-accessible interface area. 

Water, oil, and surfactant/water droplet model. 
To obtain equilibrated bulk models of the fluid, the approach 

originally proposed by Rigby[16] was adopted. Thus, a cubic periodic cell 
with 500 water molecule at density d close to 1 g/cm3 at T = 298 K were 
placed in a cubic cell of side length2.28 nm. For oil, again a cubic cell (2.47 
nm) was built at the same temperature, using 30 molecules of stearic acid 
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at a density d close to 0.94 g/cm3; moreover, 500 water molecules, 12 
laurate ions, and 12 Na+ were place in a cubic cell of length 2.56 nm at a 
density d close to 1.01 g/cm3. After an initial energy minimization, the 
simulation cell was subjected to 0.05 ns of NVT MD simulation, using 
velocity scaling to quickly establish the temperature for the first 0.01 ns, 
followed by 0.04 ns using the Andersen thermostat.[28] Density 
equilibration was then achieved by performing further 1 ns of constant 
pressure-constant temperature (NPT) MD simulations again using the 
Andersen thermostat and the Berendsen barostat[20] to maintain pressure. 
Compass was again the force field of choice, since it has been demonstrate 
to be able to predict with high accuracy the densities of a number of 
liquids and liquid mixtures at different state points.[16] The atom-based 
method with a cutoff of 9.5 Å was used to treated both electrostatic and 
Van der Waals interactions. All MD runs were performed with the 
Discover engine of Materials Studio (v. 5.1, Accerys Inc., San Diego, CA, 
USA) using 24 CPUs of our MOSE20 cluster. The final side lengths of the 
water, oil, and surfactants/water boxes obtained were 2.29 nm, 2.48 nm 
and 2.37 nm, respectively. 

Polymer model. 

A cell with a size length close that of the fluid box was built for 
each polymer. The same procedure described for the polymer 
construction in pathway 1 was employed. The corresponding amorphous 
cell was then equilibrated at the required density by the same sequences 
of NVT and NPT MD simulations described above. 

Generation of thin films. 

Thin films of liquid and polymer were subsequently generated 
from the corresponding bulk model cells by elongating one of the periodic 
boundary conditions until the parent chains no longer interact with their 
images along that coordinate. Thus, each cell was extended to 15 nm in 
the z-direction. 

Surface tension calculation. 

The surface tension γ is one of the most important properties for 
characterizing a surface, which is related to the disruption of molecular 
interactions when new interfaces are created. For free surfaces, γ can be 
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calculated as the excess energy at the surface of a material compared to 
the bulk, i.e., the Gibbs definition, which can be adapted to the case of 
polymer films as follows. According to Mansfield and Theodorou,[29] the 
fundamental equation for the film phase in energy representation is: 

dadndVPdSTdU γµ ++−=  (4.11) 

where T, S, V, µ, n, γ and a stand for temperature, entropy, volume, 
chemical potential, number of moles, total surface area (both sides), and 
surface tension, respectively. If the Helmoltz free energy A is introduced 
as the first Legendre transform of the internal energy U with respect to 
entropy S, then: 

dadndVPdTSdA γµ ++−−=  (4.12) 

Accordingly, the surface tension γ can be expressed as: 
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Furthermore, by a Maxwell relation on Eq. (4.12), the entropic 
contribution to γ, γS, can be shown to be equal to: 
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so that a rearrangement of Eq. (4.13), combined with Eq. (4.14), yields: 
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Mansfield and Theodorou also demonstrated that very 
accurate  values can be obtained by calculating the internal energy 
difference between a thin film model and a bulk liquid model with the 
same number of molecule at the same temperature.[29] According to their 
approach, for such a configuration these values can be calculated using 
the following expression: 
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in which 2LxLy denotes the total surface area of the two surfaces created on 
both sides of the bulk cell, Lx and Ly being the dimensions of the film in 
the x and y direction, respectively (whereas Lz is the direction normal to 
the film surface). 〈U2D〉 and 〈U3D〉represent the average internal energy of 
the model system in the film and bulk states and, as such, can be 
calculated from the corresponding molecular dynamics simulations under 
the same NVT conditions. 

Thus, each equilibrated bulk model and thin film cells obtained as 
described above was subjected to 400 ps of NVT MD simulation at 298 K. 
Of the entire trajectory, only the last 200 ps were used in the subsequent 
analysis. Under the perspective of the theory presented above, the 
internal energy contribution to the surface tension γU of each system was 
then calculated from the corresponding difference in the MD average 
energy between the thin film and the MD average energy of the 
corresponding bulk cell, divided by the surface area, as given by Eq. 
(4.17): 

γγ ≈
−

=
A

UU 3D2DU  
(4.17) 

where〈U2D〉 and 〈U3D〉represent the average potential energy of each model 
system in the thin film and bulk states, respectively. These quantities were 
obtained directly from the equilibrated portions of the corresponding MD 
simulations. 

In the present work, however, we reasoned that the use of a flat 
area (i.e., 2LxLy in Eq. (4.16)) for the calculation of γU was not appropriate 
for the thin film model as the surface of such model is rough. Thus, in 
order to properly account for amorphous polymer surface roughness, we 
replaced the flat area term 2LxLy with the corresponding value of the 
solvent accessible surface area A[30],as shown in Eq. (4.17). According to its 
concept,[31] the solvent accessible surface area A of a given molecule is 
generated by the center of a solvent molecule probe, modeled as a rigid 
sphere, when it is being rolled over the van der Waals surface of the 
compound molecular model; obviously, different surface areas would be 
obtained using probes with different radii. In the present work, the van 
der Waals radius of one molecule of water (1.4 Å) was chosen as the probe 
radius for water. In the case of oil and surfactants/water, however, a series 
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of probes with different radii were tested by averaging the corresponding 
A values over 20 snapshots extracted from the oil equilibrated 300 ps MD 
trajectory. The value of the probe radius for which the corresponding 
value of A yielded a total volume equal to the volume of the 3D periodic 
simulation cell from which the thin film model was generated – 0.54 Å - 
was then selected. This criterion has already been successfully employed 
for normal alkanes and methyl methacrylate oligomers models.[32] 
Finally we note that, strictly speaking, the right-hand side of Eq. (4.15) is 
experimentally measurable. That means that, according to the present 
formulation, the entropic contribution to γ (i.e., ) is 
neglected as we assume γ≈γU (Eq. (4.17)).  

Importantly, however, in their seminal works Mansfield and 
Theodorou[29] clearly demonstrated that for polymer surfaces the MD 
predicted values of γU are within 7% of the corresponding experimental γ 
values. Also, in a series of related computational studies[33]Mattice et al. 
found that reasonable predictions of surface tensions of different 
polymers could be obtained by ignoring the entropic term in Eq. (4.15). To 
provide further confirmation to the validity of the underlying γ≈γU, the 
rationale proposed by Heinz[34] can be adopted. Thus, in the case of water 
for instance, the entropic contribution to γ may arise from the first layer of 
partially immobilized, superficial water molecules. Now, the 
experimental melting enthalpy of ice is 6.01 kJ/mol at 273.15 K,[35] and this 
corresponds to an entropy of freezing ∆S = -22 J/(mol K). Thus, the 
calculated contribution of γS to γ for water in our case is equal to 0.53 
mJ/m2 which, compared to the corresponding γ (≈γU) value of 62.3 ± 1.4 is 
clearly negligible. 
The values of〈U2D〉, 〈U3D〉, A, and the corresponding γ values obtained for 
amorphous polymer systems are listed in Table 4.1. 

System [mJ] [mJ] A [m2] 
PP -6.13E-15 ± 2.23E-17 -7.97E-15 ± 1.97E-17 6.04E-17 
PS -1.50 E-15 ±1.61E-17 -3.35E-15± 1.60E-17 4.14E-17 

PA6 -3.34E-14 ± 1.65E-17 -3.66E-14 ±1.86E-17 7.01E-17 
cellulose 2.16E-14±2.67E-17 1.92E-14±2.20E-17 4.11E-17 

    

water -2.15E-14 ± 2.08E-17 -2.28E-14 ± 1.95E-17 2.01E-17 
oil -2.29E-14 ± 2.06E-17 -2.45E-14 ± 1.95E-17 4.31E-17 

soap/water -4.33 E-14 ±2.39E-17 -4.49E-14±2.28E-17 5.47E-17 
Table 4.1:Values of the parameters〈U2D〉, 〈U3D〉, and A obtained for the systems by 
the MD-based procedure employed in this work. 
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Interface tension calculation. 

The models required to estimate interface tension values were prepared 
by placing the corresponding 3D liquid and polymer models in close 
vicinity but carefully avoiding overlaps[36] with the aid of the Layer Builder 
modulus of Materials Studio. Thus, starting from the equilibrated 3D 
models of polymer and each liquid, after an initial minimization the 
resulting systems were subjected to 500 ps of NVT MD simulation at 298 
K. In this case, the atom-based method with a cutoff of 15.5 Å was used to 
treat both electrostatic and van der Waals interactions. The last 100 ps of 
the equilibrated MD trajectories were exploited to calculate the interface 
energy and, by means of Equation (4.13), the interfacial tension could 
ultimately be estimated as: 

( )
i

i A
UUU pli +−

=γ  
(4.18) 

Where〈Ui〉 is the average potential energy of the interface, 〈Ul〉and 
〈Up〉are the energy of the liquid and polymer thin film models, 
respectively, and Ai is the interface area. Table 4.2 reports the values of all 
parameters in Eq. (4.18) as obtained for the systems investigated. 

System 〈Ui〉[mJ] 〈Ul〉[mJ] 〈Up〉[mJ] Ai [m2] 
PP/water -3.04E-14 ± 3.07E-17 -2.15E-14 ± 2.08E-17 -6.13E-15 ± 2.23E-17 6.04E-17 
PS/water -2,17E-14± 2.84E-17 -2,15E-14± 2.08E-17 -1.50 E-15 ±1.61E-17 4.14E-17 
CELL/water -4,82E-16± 3.43E-17 -2,15E-14± 2.08E-17 2.16E-14±2.67E-17 7.01E-17 
PA6/water -5,38E-14± 3.28E-17 -2,15E-14± 2.08E-17 -3.34E-14 ± 1.65E-17 4.11E-17 
     

PP/oil -2,67E-14± 2.46E-17 -2.29E-14 ± 2.06E-17 -6.13E-15 ± 2.23E-17 6.04E-17 
PS/oil -2,31E-14± 2.43E-17 -2.29E-14 ± 2.06E-17 -1.50 E-15 ±1.61E-17 4.14E-17 
CELL/oil 4,62E-16± 2.48E-17 -2.29E-14 ± 2.06E-17 2.16E-14±2.67E-17 7.01E-17 
PA6/oil -5,20E-14± 5.51E-17 -2.29E-14 ± 2.06E-17 -3.34E-14 ± 1.65E-17 4.11E-17 
     

PP/surfactant&water -4,69E-14± 3.12E-17 -4.33 E-14 ±2.39E-17 -6.13E-15 ± 2.23E-17 6.04E-17 
PS/surfactant&water -4,30E-14± 324E-17 -4.33 E-14 ±2.39E-17 -1.50 E-15 ±1.61E-17 4.14E-17 
CELL/surfactant&water -2,05E-14± 3.97E-17 -4.33 E-14 ±2.39E-17 2.16E-14±2.67E-17 7.01E-17 
PA6/surfactant&water -7,44E-14± 4.52E-17 -4.33 E-14 ±2.39E-17 -3.34E-14 ± 1.65E-17 4.11E-17 

Table 4.2: Values of the parameters 〈Ui〉, 〈Ul〉, 〈Up〉, and Ai obtained for all the systems by the 
MD-based procedure employed in this work. 

Work of adhesion calculation via P1 and P2. 

Exploiting all information retrieved from both simulation pathways P1 
and P2 presented in this work, the values of the work of adhesion Wadh 
between each polymer/fluid system was estimated using two, alternative 
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procedures. According to route 1, the values of the work of adhesion 
between a fluid and a polymer were calculated by substituting the 
appropriate contact angle value θand inserting the surface tension values 
obtained via P2 simulation in the Young-Dupré equation[27]: 

)cos1(1 θγ += liqadhW  (4.19) 

Following the route 2, the values of work of adhesion were estimating as 
using the appropriate values of surface tension and interfacial tension 
obtained via P2 simulation in the Equation (4.8). 

4.3 Effect of surface nature on wetting 
behavior of amorphous polymers 

4.3.1 Result from path 1 
The hydrophilic/hydrophobic nature of surfaces determines to 

what extent they are wetted by liquids. The wetting property of a given 
surface is commonly characterized through a measurement of the contact 
angle that a droplet makes with the surface of the substrate. In this study, 
contact angles were determined from the equilibrium shape that a water 
droplet assumed when it was deposited on an amorphous surface. The 
equilibrium shape of the droplet corresponds to the situation where the 
center of mass of the droplet remains a constant distance from the 
substrate as a function of time. 

Figures4.3,  4.4, 4.5 and 4.6 shows MD snapshot views from the top 
and the side of the dynamics course of a typical droplet of pure water (left 
panels), oil (middle panels), and surfactants/water (left panels) spreading 
on polymer surface obtained from the application of protocol P1, while 
the corresponding radial density distribution (RDD) profiles obtained 
from the relevant equilibrated MD trajectories are shown in Figure4.7. The 
relevant values of the contact angle θ  estimated are listed inTable 4.3. 
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Figure 4.3: Snapshots (top and side views) of the dynamics course of water (light blue, left 
panels), oil (orange, middle panel) and surfactants/water(yellow and light blue, respectively) 
spreading on the PP surface (gray) at a simulation time of 0 ps, 250 ps, and 500 ps. 

 
 

 
Figure 4.4: Snapshots (top and side views) of the dynamics course of water (light blue, left 
panels), oil (orange, middle panel) and surfactants/water(yellow and light blue, respectively) 
spreading on the PS surface (gray) at a simulation time of 0 ps, 250 ps, and 500 ps. 
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Figure4.5: Snapshots (top and side views) of the dynamics course of water (light blue, left 
panels), oil (orange, middle panel) and surfactants/water(yellow and light blue, respectively) 
spreading on the PA6 surface (gray/red/blue) at a simulation time of 0 ps, 250 ps, and 500 ps. 

 
 
 

 

Figure 4.6: Snapshots (top and side views) of the dynamics course of water (light blue, left 
panels), oil (orange, middle panel) and surfactants/water(yellow and light blue, respectively) 
spreading on the cellulose surface (gray/red) at a simulation time of 0 ps, 250 ps, and 500 ps. 
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Figure4.7:Radial density distribution profiles for a water (blue), oil (orange), and 
surfactant/water (pink) droplet spreading on the PP (top lef),  PS (top right), PA6 (bottom 
left) and cellulose (bottom right). 
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System θ Wadh 

PP/water 109 ± 6 (108)[26] 43.0±8.4 
PS/water 91.1± 5.6(91)[27] 61.0 ± 7.7 
PA6/water 72.7 ± 4.4(71)[28] 80.8 ± 6.4 
cellulose/water 27.8 ± 6.8 (30)[29] 117.4 ± 5.4 
   

PP/oil 103.2 ± 2.5 27.1 ± 3.9 
PS/oil 80.8 ± 5.4 40.7 ± 7.4 
PA6/oil 111.0 ± 2.9 22.5 ± 3.8 
cellulose/oil 81.3 ± 1.5 40.4 ± 5.1 
   

PP/surfactant&water 111.2 ± 4.0 19.3 ± 6.3 
PS/ surfactant&water 101.5 ± 2.0 24.2 ± 8.4 
PA6/ surfactant&water 73.0 ±.4.9 39.1 ± 10.8 
cellulose/surfactant&water 54.9.± 3.2 47.7 ± 12.4 

Table 4.3:Contact angle θ (°) and work of adhesion Wadh (mN/m) according to Pathway 1 for 
the systems studied in this work. Available experimental values are shown in parenthesis for 
comparison. 

Further evidences of the wetting behavior on different substrates 
can be retrieved from the binding energies of each polymer/fluid system 
reported in Table 4.4. 

System 
Binding 
energies 

[kcal/mol] 

non bond 
tot 

[kcal/mol] 

vdW 
[kcal/mol] 

Coulomb 
[kcal/mol] 

PP/water -32.92 -50.64 -31.82 -18.82 
PS/water -208.41 -208.41 -99.89 -108.53 
PA6/water -1953.78 -1953.78 -196.73 -1757.05 
cellulose/water -2131.69 -2131.69 19.73 -2151.41 
     

PP/oil -170.43 -170.43 -169.85 -0.85 
PS/oil -261.12 -261.12 -246.20 -14.92 
PA6/oil -431.76 -431.76 -337.39 -94.37 
cellulose/oil -227.69 -447.69 -280.76 -166.93 
     

PP/surfactant&water -137.39 -137.39 -136.59 -0.79 
PS/ surfactant&water -327.02 -327.04 -202.31 -124.73 
PA6/ surfactant&water -1898.66 -1905.55 -430.66 -1474.89 
cellulose/surfactant&water -1922.55 -1925.01 -83.31 -1841.70 

Table 4.4: MD calculated non bond contribution to the binding energies of each 
polymer/fluid system studied. 

As indicated in Table 4.4, the interaction energy between water and 
PP is mostly comprised of van der Waals interactions; there is very little 
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electrostatic energy and no hydrogen bonding because PP does not have 
any polar groups or H-bond donors/acceptors. On the contrary, the 
interaction energy with cellulose is comprised mostly of electrostatic and 
hydrogen bonding energies, with the latter being the most important and 
explained by the interactions between water and the hydroxyl groups of 
cellulose. The van der Waals energy makes a small contribution to the 
total energy with a value on the same order as that for water and PP. 

As highlighted in the results reported above, the contact angle of a 
water nanodroplet results larger than 90° for PP and PS, which indicates 
that they are hydrophobic surfaces; on the contrary, contact angles 
smaller than 90° indicate a hydrophilic surface, as in the cases of PA6 and 
cellulose. These is in agreement with experimental data.  

In the presence of an oil nanodroplet PP and PS surfaces show a 
decrease in the contact angle with respect to water systems; on the 
contrary, PA6 and cellulose show an increase in the contact angels, this is 
due to the polar nature of the polymers which contrast the polar head of 
the oil chains. 

Surfactants molecule, as we already said, are made up of a water 
soluble (hydrophilic) and a water insoluble (hydrophobic) component. In 
fact we can see the hydrophilic head (Na+ ions) of the surfactant is 
orientated toward the water molecules  and the hydrocarbon hydrophobic 
tail toward the polymeric surface, increasing the intermolecular 
interactions. We have found that the presence of surfactant molecules in 
the water nanodroplet increases  the contact angle in all systems studied 
with respect to pure water. This confirms that surfactant plays an 
important role in the wettability process: increasing the contact angle with 
respect to water and decrease the work adhesion (see Table 4.3). 

4.3.1.1 Results from Pathway 2 

Figura4.8 shows the 3D and 2D models developed for PP and PA6, and 
the interface model for water/PP and water/PA6 systems employed in the 
calculation of the surface and interfacial tensions according to the second 
computational approach adopted (P2). 
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Figure 4.8: 3D model of PP (top left), zoomed view of the 2D model of PP (top right) shown 
in full in the bottom left panel, and interface model (bottom right) for the water/PP system. 

Sysetm γcalc γexp 
PP 30.5±5.0 32.0[30] 
PS 45.3 ± 2.8 43.0[31] 
PA6 46.2 ± 5.0 48.0[28] 
cellulose 58.7 ± 3.2 57.7[32] 
water 62.3 ± 1.4 71.7[33] 
oil 35.1 ± 3.0 32.8[34] 
surfactant/water 30.3 ± 3.0 <30[34] 

Table 4.5: Liquid surface tensionγcalc(mJ/m2) predicted according to the pathway 
2. The corresponding experimental value γexp is reported in the last column 

Further, Table 4.5 and Table 4.6 show liquid surface tension γcalc, the 
polymer/liquid interfacial tensionγi, the work adhesion Wadh, and the 



In silico estimation of polymer surface wettability 

 

86 
 

spread coefficient S values obtained for each corresponding system as 
computed by path 2. 

 
System γi Wadh S 
PP/water 44.4 ± 7.3 48.3 ± 8.9 -76.2 
PS/water 33.1 ± 9.4 74.5 ± 11.0 -50.1 
PA6_H2O 15.2 ± 6.7 93.3 ± 8.5 -31.3 
cellulose/water -11.9 ± 10.6 132.9 ± 12.5 8.3 
PP/oil 40.3 ± 6.6 25.3 ± 8.8 -44.9 
PS/oil 31.7 ± 8.7 48.7 ± 10.8 -21.5 
PA6/oil 62.0 ± 9.3 19.4 ± 10.9 -50.9 
cellulose/water 45.3 ± 8.9 48.6 ± 11.5 -21.7 
PP/surfactant&water 42.1 ± 7.6 18.7 ± 10.9 -41.9 
PS/ surfactant&water 43.9 ± 10.6 31.7 ± 13.5 -28.9 
PA6/ surfactant&water 32.4 ± 8.2 44.1 ± 11.4 -16.5 
cellulose/ surfactant&water 29.9 ± 12.0 59.2 ± 15.0 -1.5 

Table 4.6: Polymer/liquid interfacial tensionγI (mJ/m2), work of adhesion Wadh (mN/m), and 
spread coefficient S (-) for the systems studied in this work. 

The spreading coefficient S is defined as S = γp-γl-γI; as such, positive 
values of S indicate that the liquid polymer will spread onto the polymer 
surface, while negative values imply that water tends to contract, and a 
value of zero means the liquid has no propensity to wet the solid surface. 

The γl values for both water and oil estimated according to P2 are 
listed in the first column of Table 4.5, and are found to be in good 
agreement with the corresponding experimental counterparts. In the case 
of water, it is important to observe that the simple and relatively fast way 
proposed in the present work to predict the water γl is in excellent 
agreement with the values obtained from more sophisticated approaches 
such as the virial method (γl= 63.7 mJ/m2) and the test area method (γl= 
63.5 mJ/m2).[44, 46] Notably, also the value of γp obtained for PP (30.5 ± 1.2 
mJ/m2) matches the most common value reported in literature of 32 
mJ/m2.[41] The corresponding values of the interfacial tensions γi are 
reported in the first column of Table 4.6. 

The second column of Table 4.6show the value of Wadh estimated for 
each fluid/polymer system via P2 using Equation (4.8). As can be inferred 
from these data, the Wadh value obtained in the case of water and PP is 
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higher than that estimated for oil on the same polymeric surface, as 
expected. 

To further verify the reliability of both computational pathways in 
predicting consistent and reliable values of θ, γl, and Wadh for the systems 
considered, we finally exploited the θ values for water, oil, and 
surfactant/water obtained via P1 and the γl values obtained by P2 in the 
alternative Wadh expression given by Equation (4.8), obtaining the values 
reported in Table 4.6. Pleasingly, the two sets of Wadh values estimated by 
the two different MD simulation protocols adopted in the present work 
are in good agreement with each other, thus confirming the reliability of 
the computational recipes in predicting the values of fundamental 
quantities characterizing the spreading of water and oil onto an 
amorphous polymeric surface (see Figure 4.9) 

 
Figure 4.9: Comparison of Wadh values obtained via path1 and via path 2 for all system 
studied 

4.3.2 Wettability analysis of fluorinated amorphous 
surfaces 

We employed the computational protocols proposed in the 
previous paragraphs to analyze the wettability of seven different aromatic 
fluoropolymers (Figura4.10). MD simulations of these polymer in contact 
with water nanodroplet were performed using Material Studio (v. 5.0, 
Accelrys Inc., San Diego, CA, USA) and employing the COMPASS force 
field to describe the potential of the systems. COMPASS force field has 
been demonstrated to be able to predict with high accuracy the densities 
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of a number of liquids at different state points [28]. Moreover, the 
accuracy of COMPASS to treat fluoropolymers has been already 
demonstrated in other works.[47] 

 
Figura4.10: Structures of Amorphous aromatic fluoropolymers and acronyms. (1a) = 
Trifluoroacetone with benzene (CF3_74); (2a) = 2,2,2 - Trifluoroacetophenone with biphenyl 
(CF3_194); (2b) = Aminobenzaphenone with biphenyl (CF3_137); (3a) = 
Pentafluoroacetophenone with therphenyl (CF3_138); (3b) =Trifluoroacetone with 4,4 
Diphenoxybenzophenone (CF3_140); (3c) = Trifluoroacetophenone with biphenyl  and 
therphenyl (CF3_277); (3d) = Trifluoroacetophenone with therphenyl (CF3_279). 

4.3.2.1 Computational recipe 
We quantify contact angle (θ), surface tension (γ) and work of 

adhesion (Wadh) of a polymeric surface in contact with water using a 
combination of the two different computational recipes described before: 
the first one to calculate γ (Eq.4.9 and 4.10) and the second one to 
compute θ (Eq. 4.1, 4.2, 4.3, and 4.4). Finally we combine the θ and γ 
values resulting from the two simulation pathways to obtain the 
corresponding values of Wadh using the Young- Dupré equation (Eq. 4.19).  

In addition we evaluate other two parameter. The first one is the 
surface roughness, which plays a significant role in influencing the 
surface properties; and the other one is the partition coefficient, that is a 
measure of the hydrophobicity of a substance. 

Surface roughness  

Another fundamental feature of surfaces is the texture, or 
roughness, of polymer surfaces, and its role in molecular interactions. 
Surface roughness is, in fact, an important parameter to be considered 
since it plays a significant role in influencing the surface properties and 
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hence the performance of materials. The surface and interfacial properties 
depend critically upon details of the molecular structures at the polymer 
surface or interface. It has been well-established that the wettability of a 
solid surface is governed by both the surface chemical composition and 
the surface geometrical microstructures. The chemical compositions[48] 
determine the surface free energy and thus have great influence on 
wettability. However, it has certain limitation. For example, the -CF3- 
terminated surface was reported to possess the lowest free energy and the 
best hydrophobicity, while on flat surfaces, the maximum contact angle 
could only reach about 120°[49].  

The surface topographic nanostructure is also an important factor 
that influences the wettability. The irregularity of a surface may be 
described[50] through the measurement of the fractal dimension df of the 
surface. According to a known, validated procedure,[51-54]the value of df, 
usually interpreted as the fractal dimension of the surface available to 
adsorption, may be obtained from the slope of the log(AC) - log(rp) curve 
as follows: 

)log(
)log(

2
P

C
f rd

Ad
d =−  

(4.16) 

AC is the contact component of the Connolly molecular surface[55-57] 

and rp is the probe radius. According to this definition, the molecular 
surface consists of the van der Waals surface of the atoms that can be 
touched by a solvent-sized probe sphere (thus called contact surface), 
connected by a network of concave and saddle surfaces (globally called 
reentrant surface). Thus, AC accounts for the superficial contacts between 
different macromolecules. Consequently, df gives information concerning 
the surface roughness and accessibility of macromolecules. Indeed, 
according to its definition, as a molecular surface becomes more irregular, 
the corresponding fractal dimension increases, starting from its lower 
value df = 2, equivalent to an entirely smooth surface, up to an extreme, 
volumelike irregularity (df = 3).[58] 

Partition Coefficient 

Hydrophobicity, can be also measured experimentally using 1-
octanol to water partition coefficients, P, i.e. the ratio of the concentration 
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of the compound in the oil phase divided by its concentration in water. 
Because of the order of magnitude variation in P, log(P) is considered; the 
larger log(P), the more hydrophobic is the molecule. The partition 
coefficient (log P) of small molecules can be calculated as the sum of the 
contributions of each of the atoms in the molecules. So the value of log(P) 
can also now be estimated quite accurately from the chemical formula 
based on previous correlations between molecular structure and 
experimental log(P) data. We have calculated log(P) using the ALOGP 
method, which is among the most prominent methods of predicting log P 
and it is implemented in Material Studio package. ALOGP is the atomic 
contribution method developed by Ghose and Crippen[59,60] and later 
refined by Ghose and co-workers.[61-63] This method is based on an 
additive scheme of atomic lipophilicity constants, it assigns to the 
individual atoms in the molecule additive contributions to molecular log 
P. This is accomplished by classifying atoms into chemically distinct types 
and fitting the contributions on a data set of experimentally determined 
log P values. 

4.3.2.2 Results and discussion 
The adhesion of water on a polymer surface is determined by the 

intermolecular forces such as electrostatic interactions, Van der Waals 
forces and chemical interactions, (ionic and covalent bonding). The effects 
of molecular and chemical interactions at material interfaces are not 
accounted in many analytical models and are difficult to ascertain 
experimentally. MD simulation can provide information on interfacial 
strength at a more fundamental level. 

The wetting of a surface is essentially determined by molecular 
interactions between the surface and the liquid, contact angle (θ), surface 
tension (γ), and work of adhesion (Wadh) being the most popular physical 
parameters used to quantify these phenomena. Thus, approaches based 
on atomistic molecular simulations should, in principle, yield vital 
insights on these interactions and constitute ideal tools to estimate the 
related technological parameter values.  

The contact angle is the interaction between the liquid and solid in 
the geometric form, while the surface tension is an intrinsic property of 
the polymer that means, the force that needed for break tension of the 
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area. However in order to get a better understanding of the wetting 
phenomenon the work of adhesion needs it.  

Through these efforts, we wished to develop a greater 
understanding of the relationships between the structure and the 
interfacial properties of aromatic fluoropolymer surfaces. Importantly, the 
observed trends in wettability are evaluated here for the first time in the 
context of surface properties of aromatic fluoropolymers. Manipulating 
the hydrophobicity/hydrophilicity of a given surface necessarily requires 
understanding the micro-scale principles that, in turn, control the macro-
scale surface wetting behavior. Therefore, understanding the structure 
and behavior of common fluid such as water at the interface with 
aromatic fluoropolymers is of great practical importance. On the contrary, 
computational studies dealing with water spreading onto amorphous 
polymer surfaces are quite scarce, and this paucity may be ascribed to the 
fact that constructing a well-defined model for amorphous polymer 
surfaces and simulating systems having interfacial regions with 
unconfined roughness requires notable computational time and resources. 

To the best of our knowledge, this is the first attempt to study the 
behavior of water molecules on aromatic fluoropolymer surfaces, 
estimating Contact angle, Work adhesion and surface tension by 
molecular dynamic simulation. Figura4.10 shows some MD snapshot of a 
pure water droplet spreading on three of the fluoropolymers surface 
studied. It is represented the fluoropolymer with the smaller hydrophobic 
character (CF3_74), the polymer with the bigger hydrophobic character 
(CF3_279), and CF3_137 which has an intermediate behavior. The values 
obtained from the simulations and experimental data of contact angle, 
surface tension, work of adhesion spread coefficient and interface surface 
tension are listed in Tables 4.7 and 4.8. The instantaneous contact angle is 
calculated for the last 100 frames of the MD trajectory of each system. As 
can be inferred from these values, the application of our computational 
protocol yielded a θ value for water in contact with aromatic 
fluoropolymers in astoundingly good agreement with the corresponding 
experimental evidence. Weaker attractions between liquid and solid 
molecules result in higher contact angles and lower work of adhesion. The 
smaller angle (θ) indicates a surface that is more wettable and therefore 
would allow a more effective bond to be achieved. Generally, if the water 
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contact angle is larger than 90°, the solid surface is considered 
hydrophobic. Highly hydrophobic surfaces made of low surface energy. 

 

Figure 4.11: Snapshots of the MD simulations of water droplet on aromatic fluoropolymer 
surfaces. In panel A it is reported CF3_74, in panel B CF3_137 and in panel C CF3_138. 

 

System 
θ γ (mJ/m2) Wadh (mJ/m2) 

Exp. Sim. Exp. Sim. Exp. Sim. 
CF3_74 85,0 ± 2,0 88,7 ±4,3 15,3 ± 0,3 16,8 ± 5,5 67,6 ± 3,8 63,8 ± 4,5 

CF3_140 94,6 ± 2,3 96,6 ± 3,1 23,4 ± 0,5 22,8 ± 6,5 57,3 ± 3,9 55,2 ± 4,7 
CF3_194 90,5 ± 1,4 92,2 ± 3,3 24,4 ± 0,6 21,8 ± 6,8 61,7 ± 2,9 59,9 ±4,9 
CF3_277 94,5 ± 2,3 96,5 ± 3,2 14,9 ± 1,6 18,4 ± 5,4 57,4 ± 3,8 55,3 ± 4,8 
CF3_279 94,9 ± 2,0 97,2 ± 2,7 19,9 ± 0,8 21,4 ± 6,1 57,0 ± 3,5 54,4 ± 4,2 
CF3_137 90,8 ± 3,0 92,7 ± 3,5 24,8 ± 0,8 22,1 ± 6,8 61,4 ± 4,8 59,4 ± 4,7 
CF3_138 93,2 ± 2,8 95,5 ± 5,2 20,9 ± 1,4 22,9 ± 5,2 58,8 ± 4,4 56,3 ± 6,9 

Table 4.7: Wettability surfaces properties: Contact angle θ, Surface tension γ, Work of 
adhesion Wadh, in the simulation and experimental way. 

 
 
 



In silico estimation of polymer surface wettability 

 

93 
 

System S γi 
(mJ/m2) %Fsurf 

CF3_74 -60,8 15,3 22 
CF3_140 -69,4 29,9 17 
CF3_194 -64,7 24,4 16 
CF3_277 -69,3 25,1 31 
CF3_279 -70,1 29,2 19 
CF3_137 -65,3 25,1 7 
CF3_138 -68,3 28,9 18 

Table 4.8: Spread coefficient S, the Interface tension γi and 
the percentage of fluorine atoms on surface respect to all 
fluorine atoms in the simulation cell. 

Figura4.12 show that, not only the contact angle values, but also 
data of surface tension and work of adhesion resulting from the 
simulations are in excellent agreement with experimental data from 
Zolutikhin et al. and demonstrate the accuracy of our model also for 
complex systems like aromatic fluorocarbons. 

  

 
Figura4.12: Comparison between simulated (solid triangle) and experimental values (solid 
circle) of contact angle, surface tension and work of adhesion. 

The contribution of fluorine atoms drastically affects the surface 
tension, due to the strong C-F bonds; moreover, it is also important taking 



In silico estimation of polymer surface wettability 

 

94 
 

into account the contribution of number of aromatic rings in the polymer 
chain. CF3_74 and CF3_277 have the lowest surface tension (15.3 and 14.9 
respectively) and it is because they have 22% and 31% of the total fluorine 
atoms on the surface. Instead in the case of CF3_137 the bigger value of 
surface tension corresponds to the lower presence of C-F bond on the 
surface. 

In order to understand the behavior of the work of adhesion, we 
apply the descriptor of the contribution of the polar and a-polar 
functional groups. We use a simple and fast QSAR descriptor, 
implemented in Material Studio package, of the Total A-polar Surface 
Area (TASA) and Total Polar Sure Area (TPSA) and secondly the Relative 
A-polar surface area (RPSA) and Relative A-polar Surface Area 
(RASA)(see Tabella4.9). TPSA is the sum of solvent-accessible surface 
areas of all polar atoms and TASA is the sum of solvent-accessible surface 
areas of all apolar atoms; RPSA and RASA are the total polar surface area 
or the apolar surface area respectively divided by the total solvent-
accessible surface area. Forces within liquids and solids and across their 
interfaces include: polar interactions (Van der Waals), Ion-ion, Ion-dipole 
(H-bond), Dipole-dipole, Dipole-induced dipole and a-polar interactions 
(Hydrophobic dispersion, coulomb forces); the first are represented by 
TPSA and the second from TASA. 

System Bindingenergie
s Vdw Q TPSA 

(Å) RPSA TASA 
(Å) 

RAS
A 

Alog
P 

CF3_74 -91.98 -48.07 -43.90 46.60 0.16 239.07 0.84 6.24 
CF3_140 -26.03 -8.34 -17.68 85.28 0.17 411.38 0.83 8.63 
CF3_194 -26.58 -14.62 -11.95 43.56 0.13 293.13 0.87 7.45 
CF3_277 -16.20 -9.08 -7.13 89.56 0.13 615.50 0.87 15.3 
CF3_279 -37.90 -25.23 -12.67 47.09 0.11 377.46 0.89 9.45 
CF3_137 -29.70 -11.84 -17.86 51.10 0.13 347.40 0.87 7.73 
CF3_138 -30.49 -14.90 -15.59 126.16 0.28 321.81 0.72 9.84 

Table 4.9:Binding Energies, van der Waals interactions and electrostatic interactions of all 
polymer/water systems studied. Total polar surface area (TPSA), Total a-polar surface area 
(TASA), Relative Polar Surface Area(RPSA), Relative A-polar Surface Area (RASA) and 
AlogP of aromatic fluoropolymers 

Hydrophobicity can be also measured experimentally using 1-
octanol to water partition coefficients, P, i.e. the ratio of the concentration 
of the compound in the oil phase divided by its concentration in water. 
Because of the order of magnitude variation in P, log(P) is considered; the 
larger log(P), the more hydrophobic is the molecule. The partition 
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coefficient (log P) of small molecules can be calculated as the sum of the 
contributions of each of the atoms in the molecules. Accordingly, the 
value of log(P) can also now be estimated quite accurately from the 
chemical formula based on previous correlations between molecular 
structure and experimental log(P) data. We  calculated log(P) using the 
ALOGP method, which is among the most prominent methods of 
predicting log P and it is implemented in Material Studio package. 
ALOGP is the atomic contribution method developed by Ghose and 
Crippen[64,65] and later refined by Ghose and co-workers[66-68]. This method 
is based on an additively scheme of atomic lipophilicity constants, it 
assigns to the individual atoms in the molecule additive contributions to 
molecular log P. This is accomplished by classifying atoms into 
chemically distinct types and fitting the contributions on a data set of 
experimentally determined log P values. 

The trifluoroacetone with benzene (CF3_74) has the smallest 
contact angle of all fluoropolymers, 85.02°; this is due to its higher polar 
surface area (RPSA=0.16), which increases the interaction at the interface 
with the polar water molecules. In fact, more the values of RPSA are large, 
greater the charge difference and greater the dipole moment of the 
molecule Consequently its hydrophobic character is the lowest of all the 
fluoropolymers, as confirmed also by the values of the highest spread 
coefficient, -60.8, and of the lower partition coefficient, 6.24 (see Table 4.9). 
To characterize the interfacial behavior more fully, we calculated the 
binding energies, which are defined as is the negative of the interaction 
energy. In Table 4.9 we can see that the binding energy of the 
trifluoroacetone with benzene is the more negative value (-91.98 kcal/mol) 
and it has the stronger van der Waals interaction at the interface. 

The CF3_279 exhibit the maximum contact angle of all 
fluoropolymers, 97.2°, this is due to its  lower relative polar surface area 
RPSA of 0.11, which decreases the interaction with the water molecules ; 
consequently, the hydrophobic character of the structure of this polymer 
is also one of the highest of all the polymers (9.45). Its behavior is 
confirmed also by the low binding energy (-37.90 kcal/mol). 

CF3_140 has a high contact angle of 96.6°, even if the contribution 
of the polar surface area (RPSA=0.17) is one of the maximum; however the 
polymer structure consists of four polar groups (trifluoromethyl, carbonyl 
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and ethers groups) alternated with nucleophilic aromatic rings, and this 
results in a neutralization of the global charge. We can confirm the 
hydrophobic character of the CF3_140 with the very low value of binding 
energy (-26.03 kcal/mol). 

Polymer of the Trifluoroacetophenone with biphenyl (CF3_194), with 
a contact angle of 92.2°, represent an intermediated behavior. In fact the 
value of the corresponding RPSA is 0.13 and therefore the interaction with 
the molecules of water are greater than CF3_279, but they are less than 
CF3_74, consequently these fluoropolymer has an intermediate 
hydrophobic character, as represented by the AlogP value of 7.45. 

The co-polymer Trifluoroacetophenone with biphenyl and therphenyl 
(CF3_277) exhibit one of the highest contact angle of all fluoropolymers, 
96.5°, because it forms a small polar surface area (RPSA=0.13) and thus the 
interaction in the interface with the polar molecules of water decrease, 
this hydrophobic character is also reflected in the highest value of AlogP 
(15.3) and in the lower value of binding energy (-16.2 kcal/mol). The 
surface tension of CF3_277 (γ = 18.4 mN/m) is one of the lower and this 
because it has the major number of fluorine atoms on the surface (31%). 

The aminatedtrifluoroacetophenone with biphenyl group 
(CF3_137), whose contact angle is 92.7°, represents an intermediate 
behavior, similar to that of CF3_194. The RPSA is the same of that of 
CF3_194 and it is low since the polar amine group can balance the polar 
trifluoromethyl group, neutralizing the charge of the molecule; that 
means that the dipole moment of the molecule is reduced and 
consequently can increase the interaction with the molecules of water. 
Therefore, also the AlogP value is one of the less of all the polymers (7.73), 
similar to CF3_194. The surface tension of CF3_137 is the one of the 
highest between the simulation results (γ = 22.1 mN/m), the highest 
among the experimental data (γ = 24.8 mN/m), because it has the lower 
percentage of fluorine atoms on the surface (7%). 

The fluorinated trifluoroacetophenone with terphenyl (CF3_138) 
has a contact angle of 95.5°, even though its relative polar surface is the 
highest (0.28), due to the fluorine atoms on the aromatic ring that increase 
the electronegativity of the molecule. However, the hydrophobic 
character of the structure is confirmed also by the high AlogP (9.84) and 
the low binding energy (-30.49 kcal/mol). As a consequence, the 



In silico estimation of polymer surface wettability 

 

97 
 

fluorinated aromatic rings may arrange themselves inside, exposing to the 
interface only the trifluoromethyl groups. 

It is worth to note that for CF3_140, CF3_137, CF3_138 the 
predominant forces in the binding energies are the Coulomb forces, due 
to the presence of the polar groups  as carbonyl, amine and 
pentafluoroacetophenone groups. On the other hand, in the CF3_74, 
CF3_140, CF3_277and CF3_279, the predominant forces in the binding 
energies are the van der Waals forces. 

4.4 Conclusions 
In this work we developed two, alternative atomistic MD 

simulation-based computational protocols to estimate the contact angle θ, 
the surface and interface tensions γ, and the work of adhesion Wadh for 
water, oil, and mixtures of fluids (i.e., surfactant/water solution) in contact 
with amorphous polymer surface of different nature. Both methodologies 
yielded reliable values of the contact angles and surface tensions, in 
agreement with available experimental data. Moreover, reasonable and 
comparable values of Wadh (a quantity affected by large errors during 
experimental determination), were also obtained using both 
computational recipes, thus confirming the internal consistency in the 
presented methodologies. Currently, further and highly encouraging 
work is in progress to expand this computer-based ansatz to the study of 
liquid spreading onto surfaces of different nature (e.g., crystalline and 
non-polymeric), and to the inclusion of different effects such as 
temperature, droplet size, and surface roughness. 
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5  
5 Characterization of 

polymer-grafted silica-based 
polymer nanocomposites 

 
Spherical nanoparticles (NPs) with polymer brush surfaces in a 

melt of homopolymer chains not only are an important system for 
technical applications, but also provide a very important model system in 
the field of soft colloidal particles. To yield the desired superior 
performances, however, these polymer-grafted NPs must be well 
dispersed in the polymer matrix, and it is therefore unfortunate that long 
melt chains have the general tendency of destabilizing the colloidal 
dispersions. This phenomenon is strongly related to the wetting 
autophobicity of a polymer melt on top of a chemically identical, polymer 
brush. So far, a systematic investigation of the wetting behavior of 
melt/grafted-NP brush systems, in which experimental observations are 
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paralleled and tightly coupled to multiscale molecular simulations, and 
paying attention to all key variables such as NP grafting density, grafting 
chain length, and volume fraction, has not been carried out.  

Thus in this work we want to study the dispersion/aggregation 
mechanism of nanocomposites made of well-defined polymer 
(polystyrene) grafted-NPs (silica) mixed with free chains of the same 
polymer using a combination of scattering (SAXS and SANS), imaging 
(TEM), and multiscale molecular simulation techniques.  

Part of this work is published in P. Posocco, F. Santese M. Meyer, E. 
Hübner, O. Pravaz, J.W. Handgraaf, W. Pyckhout-Hintzen, D. Richter, M. 
Fermeglia, and Sabrina Pricl RSC Advances, 2013 submitted. 

5.1 Introduction 
In our days, colloidal filler material in polymers have a great 

tradition and applied in many fields of our daily life. The addition of 
inorganic particles can generate an almost infinite variety of materials 
with unique physical properties. The best known example is the 
application of micron-sized carbon black or silica particles (SiO2) for a 
reinforcement in tires. These effects of classical micro-composites were 
studied on macroscopic as well as microscopic length scales within the 
last decades and are well understood by now[1]. 

In recent years, the further development in chemistry allowed the 
synthesis of now nanometer-sized particles, which lead to a new class of 
nanocomposites. These nanocomposites are characterized by an 
enormous increase of the particle-polymer interface, i.e. surface-to-
volume ratio of the fillers, which is supposed to alter the polymeric 
properties in a similarly enormous way. However, several experimental 
observations are contradictory to the behavior predicted for classical 
composites. Tuteja et al.[2], for example, showed an unexpected decrease 
in the viscosity of polystyrene in op position to the Stokes-Einstein 
relation. The origin of this and other discrepancies between conventional 
and nano-composites is of highest scientific, but also industrial, interest 
and still not known. 

The colloidal distribution of nanoparticles in the melt is not trivial, 
since weak forces, such as van-der-Waals, play a significant role on the 
spatial distribution of nano-sized objects[3]. A special class of nano-fillers 
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are surface modified nanoparticles, which are grafted with polymers. 
These polymer chains are covalently bond onto the surface of the 
particles, mediating an interaction between the blend and the particles. 
The so-formed inter-phase between the tethered and matrix polymers is 
important for an optimal compatibility of filler and blend material[4]. 

The focus of this work is the structural characterization of the 
polymeric corona formed by atactic polystyrene tethered onto the surface 
of silica nanoparticles. The influence of the grafting density, i.e. the 
number of chains per particle, as well as of the molecular weight of the 
graft on the microscopic structure is investigated. Small angle neutron 
scattering (SANS) offers the possibility to study the static properties of 
these grafted nanoparticles and is combined with other complementary 
methods like transmission electron microscopy (TEM) and small angle X-
ray scattering (SAXS). 

Within this project, multi-scale simulation and experimental 
techniques were combined to investigate the relation between the 
macroscopic properties and the microscopic structure of nanocomposites, 
basing on model systems of polystyrene grafted nanoparticles dispersed 
in a polystyrene melt. The microscopic information on the conformation 
of matrix and grafted polymer chains evaluated in this thesis were 
provided to the partners for the important verification and validation of 
the various simulations methods. 

5.2 Materials and methods 
Silica nanoparticles (NPs) (D = 10-15 nm, manufacture’s data) were 

obtained as 30 wt % solution in n-butyl acetate (NBAc-St) from Nissan 
Chemical Industries and used as received. To achieve an high grafting 
density, in this work a new “grafting to” technique proposed by Hübner 
et al.[5] was employed for the functionalization of silica nanoparticles 
using anionic polymerization. Briefly, it is based on a two steps method. 
First, the silica particles were modified with dimethylchlorosilanes. This 
procedure replaces the original Si-OH surface groups by Si-Cl 
functionalities (see Figure 5.1). Then, previously anionically synthesized 
PS polymer chains were linked to the nanoparticle. After synthesis, the 
free polymer was separated from the functionalized NPs by fractionation 
with toluene/methanol. The upper concentration limit for an optimal 
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separation was found at a concentration of 0.4% wt of the crude mixture 
in toluene. Subsequent addition of methanol until precipitation starts at 
temperature of 36-37°C and slow cooling of the solution lead to 
precipitation of the nanoparticles while the free polymer remains in 
solution. 

 
Figure 5.1: Functionalization of silica with a linking group for living anionic polymer. 

The polymer content of the synthesized particles was determined 
by elemental analysis (EA) and corrected for remaining fractions of 
ungrafted polymer and free solvent in the samples, determined by size 
exclusion chromatography (SEC), small angle light scattering (SALS), and 
nuclear magnetic resonance (NMR). The average number of grafted 
chains per particle, <f>, was derived using the molecular weight of the 
polymer, known from SEC. Table 5.1 summarizes the grafted particles 
synthesized and reports selected properties, such as number average 
molecular weight Mn, polydispersity index PDI, and number of grafted 
chains <f>. 

System Mn (KDa) PDI (Mw/Mn) <f> (-) 
A 2.00 1.08 356 ± 32 
B 9.77 1.02 279 ± 24 
C 9.99 1.02 389 ± 34 
D 20.61 1.07 224 ± 20 
E 20.67 1.11 632 ± 67 
F 103.5 1.02 370 ± 34 

Table 5.1: List of the synthesized grafted nanoparticles with selected 
properties.  

A summary of the nanocomposites prepared and investigated in 
this work is reported in Table 5.2. All nanoparticles were dispersed in a 
PS matrix of approximately 94 kDa molecular weight. 
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System NPa Mn (KDa) σ (chains/nm2) cb (% vol) P/Nc 

1 A 2.00 0.51 ± 0.03 0.25 4.7 
2 B 9.77 0.40 ± 0.03 0.25 9.6 
3 C 9.99 0.55 ± 0.05 0.25 9.4 
4 D 20.61 0.32 ± 0.03 0.25 4.6 
5 E 20.67 0.90 ± 0.10 0.25 4.5 
6 D 20.61 0.32 ± 0.03 5.0 4.6 
7 E 20.67 0.90 ± 0.10 5.0 4.5 
8 F 103.5 0.53 ± 0.05 0.25 0.9 

Table 5.2: Nanocomposites studied in this work. aType of nanoparticle, labelling 
according to Table 5.1; bNanoparticle concentration (volume percent of NP); 
cMolecular weight ratio, where  P and N are the free and graft molecular weights, 
respectively.   

5.2.1 SANS experiments 
Small angle neutron scattering (SANS) measurements were carried 

out at the instruments KWS-1 and KWS-2 at the research reactor FRM II, 
Julich Centre for Neutron Science @ Garching, Germany. The neutron 
wavelength was λ = 7 Å with a wavelength resolution of ∆λ/λ = 0.1 for 
KWS-1 and λ = 4.5 Å with ∆λ/λ = 0.2 for KWS -2 respectively. Scattering 
intensities were measured over a scattering range from 0.002 to 0.2 Å-1 
(0.008 to 0.3 Å-1, KWS-2) using sample-to-detector distances of L = 2 m, 8 
m and 20 m (L = 2 m and 8m, KWS-2). Accordingly, size determinations of 
approx. 5 to 500 Å (1/q) are allowed. For L = 2 m and 8 m a collimation 
length of l = 8 m was used, whereas for L = 20 m the collimation length 
was l = 20 m. Measurements were carried out at 25 °C. Scattering from the 
samples was corrected for sensitivity and dark current of the detector and 
empty beam. The scattered intensities were calibrated to absolute unit 
(cm-1) using a PMMA secondary standard. 

5.2.2 SAXS experiments 
Small-angle X-ray scattering (SAXS) measurements were performed 

at the Swiss Light Source (Paul Scherrer Institute, Villingen, Switzerland) 
on the cSAXS beamline with 11.2 keV X-rays (corresponding to a 
wavelength of λ = 0.111 nm) and a sample-detector distance of 8 meters. 
Nanocomposites were cast in thin films and PS matrix film was measured 
separately and subtracted from the data. Two-dimensional SAXS patterns 
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were radially averaged and the resulting scattering curves were fitted 
using the software SASFIT.[6] 

5.2.3 Transmission electronic microscopy 
Polymeric samples were ultramicrotomed at room temperature 

using a Diatome diamond knife on a Reichert-Jung UltraCut E Microtome 
to give 80 nm thick sections, which are then transferred onto 600-mesh 
copper grids for transmission electron microscopy (TEM) imagining. TEM 
was performed on a Philips CM100-Biotwin operated at 80 keV. 

5.2.4 Computational details 
In this work we proposed a multiscale modeling approach to 

predict aggregation/dispersion behavior of PS-grafted silica nanoparticles. 
This procedure couples atomistic and mesoscale simulations through 
three distinctive steps: i) 3D atomistic simulation of representative planar 
PS-modified silica/PS interfaces are employed to derived interaction 
energies among each system component; ii) mesoscale simulation of the 
planar silica/polymer interface, as a function of grafting density and 
length of the grafted chains, are performed to predict mesoscale 
interaction parameters (namely, first level of coarse-graining); iii) each 
grafted chain was then lumped in a simplified icosahedral nanosphere,  
and nanoparticles were embedded in the polymer melt at different 
loadings (second level of coarse- graining) to investigate 
dispersion/aggregation mechanisms. 

5.2.4.1 Atomistic simulation 

Silica surface model 

The amorphous bulk silica (30.1Å x 30.1Å x 30.1Å) with a density of 
2.2 g/cm3 was obtained by a well-established melt-quench molecular 
dynamics (MD) simulation technique[7,8,9] starting from a crystalline α-
quartz model[10]. The procedure consisted in:[11] i) MD heating of the 
crystalline model at 8000 K to melt the sample and remove crystal 
memory; ii) 100 ps of MD equilibration at a density of 2.2 g/cm3; iii) 
continuous MD cooling to 300 K in 1540 ps (cooling rate = 5 K/ps) under 
NVT periodic boundary conditions; iv) final 350 ps MD equilibration at 
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300 K (Nosé-Hoover thermostat with τt  = 0.1 ps) using the leapfrog Verlet 
integration algorithm with integration step ∆t = 2 fs. The COMPASS force 
field,[12] which has been previously employed successfully to model 
polymer and organic-inorganic systems, including silica-organic interface 
properties,[13,14,15] was chosen to model the energy of all systems, including 
silica. The Ewald summation method was used for treating both van der 
Waals and electrostatic interactions. 

The surface model of amorphous silica was then obtained from the 
bulk model by: i) slicing the amorphous SiO2 bulk model in the Y-
direction and taking the lower part of the bulk taken as the surface; 
eventual uncoordinated Si atoms were saturated with O atoms. All 
surface oxygen atoms were saturated with hydrogen; ii) inserting 50Å 
vacuum gap at the top in the Y-direction; iii) relaxing the system at 2000K 
with 20ps NVT MD and 80 ps NVE MD; iv) cooling to 300K in 340 ps 
(cooling rate = 5 K/ps) and equilibrating the system for 20 ps. The 
resulting slab had a thickness of 19 Å.  

Polymer model 

A representative PS chain with a polymerization degree of 96 was 
considered to model the atactic and amorphous PS matrix at the atomistic 
level. The initial conformations of the PS molecule at T= 448K were 
obtained using the rotational isomeric state (RIS) algorithm, as modified 
by Theodorou and Suter,[16] and following our well-validated combined 
molecular mechanics/molecular dynamics simulated annealing (MDSA) 
protocol.[17,18,19] In order to obtain a reasonable sampling of the polymer 
conformational space, we built and energy minimized 5 different PS 
configurations.  

 To validate the molecular models of the PS chains and the use of 
the COMPASS FF, we simulated the PVT behavior of the DP=96 PS 
systems and compared the results with the available experimental data. 
The employed molecular dynamics (MD) procedure to obtain the PVT 
behavior was the following: i) each simulation cell was built at 527 K. 5 
conformations for each PS chain were prepared to have enough data for 
statistical significance; ii) each cell was equilibrated at 527 K and 10 MPa 
for 10-20 ns using NPT MD, using the leapfrog Verlet integration 
algorithm (Δt = 4fs) and the Berendsen thermostat (τT= 0.5 ps, τp = 1 ps); iii) 
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after equilibration, the pressure value P was adjusted to reproduce the 
actual density value; iv) after compression, P was fixed and more MD 
equilibration steps were performed (5-10 ns); v) each systems was then 
cooled down in almost-stationary stepwise procedure (T = 20K) (cooling 

rate = 50 K/ns). All results were expressed as average values of the 5 
system conformations. 

 
Figure 5.2: Simulated (red) and experimental (blue) specific volume for PS 10kDa at 5 MPa 
(top row) and 30 MPa (bottom row). The corresponding Tg were estimated from the point of 
inflection in the PVT curves. 

 
 

P (MPa) Tgcalc(°C) Tgexp (°C) 
5 87.5 87.9 
10 88.8 89.2 
15 91.2 90.7 
20 93.9 92.7 



Characterization of polymer-grafted silica-based polymer nanocomposites 

 

108 
 

25 95.8 104.2 
30 102.2 101.0 

 
P (MPa) Tgcalc(°C) 

1 85.9 
0.5 85.7 
0.1 85.6 

Figure 5.3: Simulated glass temperature Tgas a function of pressure P 
for PS (graph) and comparison with experimental values (tables). 

Grafted PS model 

We first modeled the silane moiety which connects the bare SiO2 
surface to the PS grafted chains. After being sketched, the geometry of the 
silane molecule was optimized using the COMPASS force field. The 
molecule conformational search was carried out using a 
MDSA[17,18,19]protocol, in which the relaxed molecular structure was 
subjected to five repeated temperature cycles using NVT MD conditions. 
At the end of each annealing cycle, the structure was again energy 
minimized, and only the structure corresponding to the minimum energy 
was used for further modeling. The electrostatic charges for the 
geometrically optimized silane molecule was finally obtained by 
restrained electrostatic potential fitting, and electrostatic potentials were 
produced by single-point quantum mechanical calculations at the 
Hartree–Fock level with a 6-31 G* basis set.  

 A suitable number of silane molecules were then randomly placed 
onto the SiO2 surface to reproduce an average grafting density of 0.32 
chains/nm2 and reacted with the correct number of O atoms. A PS chain of 
a representative length of 19 monomers obtained through the 
MDS[17,18,19]protocol was then chemically linked to each silane linker. 

Ternary model system 

Once the modified silica surface models were constructed, a free PS 
polymer chain was added copying one of the 5 configurations extracted 
from the corresponding equilibrated MD simulations in 5 different cells, 
thus obtaining 5different model systems. 

Resorting to atomistic MD simulations in the NVT ensemble allows 
retrieving important information on the interaction and binding energy 
values between the different components of a multicomponent system,[18-
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23] such as PS-grafted SiO2 nanoparticle immersed in a PS matrix. The 
technique we developed to this purpose basically consists in simulating 
the interface between the modified nanoparticle and the polymer by 
building a cell that is “stretched” along the c-direction (up to 150 Å); in 
this way, even if the model is still 3-D periodic, there are no interactions 
between the periodic images in the c-direction, ultimately resulting in a 
pseudo 2-D periodic system, from which the binding energies between all 
system components can be calculated.  

Minimization and NVT simulations were then performed using the 
Compass FF. During each MD, the SiO2 atoms were treated as rigid bodies 
by fixing all cell dimensions. All other atoms were allowed to move 
without any constraint. Each NVT simulation was run at 448K for 100ns, 
applying the Ewald summation method for treating both van der Waals 
and electrostatic interactions. An integration time step of 1fs, and the 
Nosé thermostat (Q ratio = 1) were also adopted. 

 From the equilibrated part of the MD trajectory of each system, 
the interaction energies among all system components were extracted 
according to a well-validated procedure.[17-20,24,25] Since, by definition, the 
binding energy (Ebind) between each generic pair of components A and B is 
the negative of the corresponding interaction energy, each Ebind term can 
be simply obtained from the corresponding interaction energies as:[17-

20,24,25] 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝐴𝐴/𝐵𝐵 = 𝐸𝐸𝐴𝐴 + 𝐸𝐸𝐵𝐵 − 𝐸𝐸𝐴𝐴/𝐵𝐵 (5.1) 

Data collected have then been averaged over the 5different model 
systems to ensue statistical meaning of the values. 

All atomistic simulations were run using Materials Studio package. 

5.2.4.2 Mesoscale simulation 

First level of coarse-graining (CG-I) 

In order to simulate the morphology of the silica-based 
nanocomposite systems at a mesoscopic level, we employed the 
dissipative particle dynamics (DPD)[26] simulation tool as implemented in 
the Culgi[27] modelling suite. In the framework of a multiscale approach, 
the interaction parameters needed as input for the mesoscale level DPD 
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calculations have been obtained by a mapping procedure of the binding 
energy values between different species obtained from simulations at a 
lower (atomistic) scale using our procedure.[17-19,28] The DPD 
nanocomposite model contains four species of different beads or 
mesoscale units: one for the free polymer chain (PM) and two for the 
grafted PS chain-linker moiety (one for the linker silane moiety (L), and 
one for the PS tail (PL)). The last one is for the silica surface (S). 

Starting mesoscale model generation with the free polymer chain, 
we mapped the real polymer chain onto a chain consisting of Kuhn 
segments. Consequently, each DPD bead represents a statistically 
correlated unit or Kuhn segment of the polymer. A DPD chain should, 
therefore, be made up of NDPD beads, where NDPD=Nmon/C∞ and Nmon is 
equal to the degree of polymerization of the molecular chain and C∞ is its 
characteristic ratio. If so, the mesoscale simulations should capture in a 
reliable way two essential features of a given polymer chain, namely its 
dimension (given by Nmon) and flexibility (given by C∞). C∞ is an intrinsic 
property of the chain, and in the developed recipe was estimated using a 
molecular dynamics procedure based on the RIS method. According to 
our recipe,[29]  a given number of different chain configurations at a fixed 
number of monomers Nmon – say C1, C2, C3 – are generated via rotational 
isomeric state (RIS) algorithm[16]. Each Ci then undergoes independent 
cycles of molecular mechanics minimization and simulated annealing 
procedures before running productive constant volume-constant 
temperature (NVT) MD simulations. After the simulation is done, the 
end-to-end distance of the chains is estimated, and the C∞ is calculated. 
The procedure is repeated, for each configuration at different chain length 
Nmon, until a constant value of C∞ is obtained. The final value of C∞ is 
estimated by averaging over all the configurations considered. Figure 
5.2below illustrates the procedure described above to calculate the C∞ 
value for PS as applied to PS chains of molecular mass from 0.5 to 60 kDa. 
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Figure 5.4: Illustration of the RIS-based procedure to obtain the value of C∞for a PS 
chain.<R2> is the average square end-to end distance of the chain, N is the degree of 
polymerization of the chain, and ℓ is the monomer length. 

Following this methodology, a value of 7.3 was predicted for a PS 
of 100 kDa, as corrected for its temperature dependence. Accordingly, our 
PS free chain is constituted by a number of 131 NDPD. 

The modeling of the silica surface in the context of DPD has been 
addressed by freezing locally the particles representing the silica solid 
boundaries. These particles behave as fluid particles but maintain a fixed 
position and possess zero velocity. Therefore, they interact with each bead 
in the system with a potential of the same form as the bead-bead 
conservative force.[19] 

System Mn 
[kg/mol] 

f NLa NPLb tcalcavc 
[Å] 

texpavd 

[Å] 
A 2.00 57 1 4 46±8 - 
B 9.77 45 1 12 66 ± 8 76 ± 7 
C 9.99 62 1 12 85 ± 6 99 ± 10 
D 20.61 36 1 25 108±4 109 ± 13 
E 20.67 101 1 22 158± 8 170 ± 17 
F 103.5 60 1 133 336 ± 11 347 ± 34 

Table 5.3: CG-I model of each grafted chain studied in this work. aNumber of beads of type 
L; bNumber of beads of type PL; cAverage brush height calculated from DPD simulation; 
dAverage brush height as derived from our SANS experiments. 

Each PS grafted chain mesoscale model was derived matching the 
DPD average brush height with the average brush height predicted by 
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SANS experiments. An initial guess of groups of atoms that should 
encompass the soft-core beads was made for each grafted length 
considered in this work. Then, a suitable number of chains were 
randomly placed on the top of a silica slab of approximately 10.6 nm in 
order to reproduce the same grafted density as reported in Table 5.1 for 
each system. Also in this case, the interface between the modified silica 
surface and the polymer was simulated by building a cell that is 
“stretched” along the c-direction (up to 150 Å). The average brush height 
was calculated after 5x106steps (adimensional time step Δt = 0.01) of DPD 
dynamics and compared to the value extracted from SANS analysis. If 
they do not match, we varied the bead number (i.e. the number of beads S 
and PL) of the chain. In the final step we went back to the assignment of 
the atoms to the molecular fragments and optimized these as well by 
swapping, if needed, atoms between the molecular fragments. In this way 
we found that intramolecular size of an atomistically detailed model of a 
grafted PS molecule has an optimal mapping if its coarse-grained chain 
model has the structure reported in Table 5.3. 

The bead-bead interaction parameter for the matrix PS-matrix PS 
interaction was set equal to aPMPM  =19.6 taking into account the PS 
compressibility [26c,30,31] and in the hypothesis of an adimensional density 
value ρ = 3[26c]. For the pair S/L the parameter aij was set it to the value of 5 
in order to reproduce the covalent S/L interaction. Having fixed these two 
parameters, their values were then associated to the corresponding values 
of the DPD energies rescaled from MD simulations. All the remaining 
DPD interaction parameters aij could then easily be derived following this 
criterion.[17-19,28] In the case of silica/silica interaction, since no energy 
values could be extracted from the MD simulations, we set aSS = 15. The 
final sets of DPD parameters, obtained from the scaling procedure 
starting from atomistic MD simulation energies are listed in Table 5.4. 

We adopted in all simulations the standard DPD units, where rc is a 
unit of length, kBT is a unit of energy and bead mass is a unit of mass. A 
value of the spring constant of 4kBT was used for all the chains. 
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A S L PL PM  B S L PL PM 
S 15     S 15    
L 5 24.8    L 5 24.8   
PL 30.9 30.6 25.6   PL 31.3 31.2 28.9  
PM 28.3 28.1 26.2 19.6  PM 29.4 29.2 27.4 19.6 
           
C S L PL PM  D S L PL PM 
S 15     S 15    
L 5 24.9    L 5 25.0   
PL 31.3 31.4 29.1   PL 33.6 32.3 30.3  
PM 29.6 29.4 27.2 19.6  PM 30.6 30.2 28.6 19.6 
           
E S L PL PM  F S L PL PM 
S 15     S 15    
L 5 24.9    L 5 24.9   
PL 33.1 32.4 31.8   PL 37.2 35.4 32.9  
PM 31.9 31.5 29.3 19.6  PM 32.6 32.8 31.2 19.6 

Table 5.4: DPD-CG-I parameters for the PS-linker-modified silica/PS matrix nanocomposites 
as obtained from the developed multiscale molecular model. 

Second level of coarse-graining (CG-II) 

Dispersion/aggregation of nanoparticles in polymer melts at both 
low and high filler contents involves dozen of nanoparticles. The last step 
of our multiscale procedure consists in a further coarse-graining step, 
involving the lumping of the solid nanoparticle and its relevant grafted 
chains into one single nano-object. To this purpose, we adopted the 
following methodology. Each DPD grafted silica nanoparticle is modeled 
by a rigid icosahedral structure,[29,32] devised as being constituted by a 
central DPD bead, connected to 12 other DPD beads on each vertex of the 
icosahedrons. Each vertex of the icosahedron represents either a bare 
silica portion or a lumped PS-L grafted chain. According to this model, 
different length of the grafted PS-L chains can be modulated by averaging 
the contribution of the corresponding aij parameters of all beads making 
up the PS-L chain in a new, hybrid bead H. At the same time, different 
degrees of grafting can be simulated (from 0 to 100%) by considering the 
12 beads of the icosahedral particle as representing bare silica or the 
grafted chains, respectively. As in CG-I simulations, the free PS chain is 
modelled as a string of PM beads of 131NDPD. 

All simulations were performed using DPD method with periodic 
boundary conditions imposed in the three directions in a 35rc x 35rc x 35 
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rc cubic box. Overall adimensional density was set to ρ = 3. More than 7-
10 × 106DPD steps were carried out in each DPD simulation using a time 
step of ∆t = 0.04, depending on the system concerned. All simulations 
were performed with an in-house developed code.[33] 

5.3 Results and discussion 
As we already described before, we started mesoscale model 

generation with the free polymer chain, we mapped the real polymer 
chain onto a chain consisting of Kuhn segments. Consequently, each DPD 
bead represents a statistically correlated unit or Kuhn segment of the 
polymer. A DPD chain should, therefore, be made up of NDPD beads, 
where NDPD=Nmon/C∞ and Nmon is equal to the degree of polymerization of 
the molecular chain and C∞ is its characteristic ratio and it has been 
obtained by the RIS-based procedure described in the previous 
paragraph. Figure 5.3shows an example of the obtainment of Nb for a PS 
of 2 kDa from the corresponding value, as corrected for its temperature 
dependence. 

 
Figure5.5: Mapping of a real 2 kDa PS chain onto the corresponding DPD chain via the 
corresponding temperature corrected value of C∞ obtained as described above and 
illustrated in Figure 5.1. 

The DPD nanocomposite model contains four species of different 
beads: one for the polymer chain (PM) and two for the grafted PS chain-
linker moiety (one for the linker head (L), and one for the PS tail (PL)). The 
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lastone is for the silica surface (S). This is schematically illustrated in 
Figure 5.4. 

 

 
Figure5.6: Mapping of the atomistic nanocomposite silica/linker-PS grafted chains/PS matrix 
chains model system onto the corresponding DPD model. 

The interaction parameters needed as input for the mesoscale level 
DPD calculations have been obtained using a combinatorial approach to 
rescale the binding energies derived from the MD simulations. The bead-
bead interaction parameter for the matrix PS-matrix PS interaction was set 
equal to aPMPM = 25 in agreement with the correct value for a density value 
ρ =3. In the case of silica/silica interaction, since no energy values could be 
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extracted from the MD simulations, we set aSS = 15. Having fixed these 
two parameters, their values were then associated to the corresponding 
values of the DPD energies rescaled from MD simulations. All the 
remaining DPD interaction parameters aij could then easily be derived 
following this criterion. Finally, for the pair S/L the parameter aij was not 
calculated using the scaling law, but we set it to the value of 5, because of 
its strong negative value of the rescaled energy. The final set of DPD 
parameters, obtained from the scaling procedure starting from atomistic 
MD simulation energies are listed in Table 5.4. 

The last step, enabling the running of DPD simulations consists in a 
further coarse-graining step, involving the lumping of the solid 
nanoparticle and its relevant grafted chains into one single nano-object. 
To this purpose, we adopted the following methodology. Each DPD 
grafted silica nanoparticle is modeled by an icosahedral structure, devised 
as being constituted by a central DPD bead, connected to 12 other DPD 
beads on each vertex of the icosahedrons, as shown in Figure 5.5. Each 
vertex of the icosahedron represents either a bare silica portion or a 
lumped PS-L grafted chain. The average diameter of the icosahedral 
nanoparticle is 15 nm. 

  
Figure 5.7: Icosahedral nanoparticle model representing the PS-linker grafted silica 
nanoparticle in our DPD simulations. Each vertex of the icosahedron represents a lumped 
PS-L grafted chain. 

According to this model, different length of the grafted PS-L 
chains can be modulated by averaging the contribution of the 
corresponding aij parameters of all beads making up the PS-L chain. At 
the same time, different degrees of grafting can be simulated (from 0 to 
100%) by considering the 12 beads of the icosahedral particle as 
representing bare silica or the grafted chains, respectively. Thus, taking 
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the PS-L of molecular mass equal to 2 kDa as an example, the DPD 
parameter of Table 5.4 were rescaled and set to the values shown in Table 
5.5. 

aij H PM 
H 25.4 26.6 
PM 26.6 19.6 

Table 5.5: DPD parameter set used to perform DPD simulations for a system in 
which the silica nanoparticles and the 2 kDa grafted PS-L chains are represented by 
icosahedral particles. In this case the surface coverage was considered equal to 
100%. 

5.3.1 Aggregation vs dispersion 
Figure 5.8 presents the DPD snapshots and the corresponding TEM 

images for all  systems studied as listed in Table 5.2. 

 

 

 
 

System 1: 0.25 % wt, 2.00 kDa and 0.51 chains/nm2 

 

 

System 2: 0.25 % wt, 9.77 kDa and 0.40 chains/nm2 
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System 3: 0.25 % wt, 9.99 kDa and 0.55 chains/nm2 

 

 

System 4: 0.25% wt, 10.61 kDa and 0.32 chains/nm2 

 

 

System 5: 0.25% wt, 20.67 kDa and 0.90 chains/nm2 
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System 6: 5.0 % wt, 20.61 kDa and 0.32 chains/nm2 

 

 

System 7: 5.0 % wt, 20.67 kDa and 0.90 chains/nm2 

 

 

System 8: 0.25 % wt, 103.5 kDa and 0.53 chains/nm2 

Figure 5.8: PS-silica NP (orange) dispersion/aggregation in PS matrix (grey) as obtained from 
the second level coarse-grained DPD simulation of all systems studied and the 
corresponding TEM images. 
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Pictures show that increasing grafted chains density leads from 
well dispersed NPs to aggregation. Contrariwise, increasing NP 
concentration from 0.25% wt to 5% does not alter dispersion. Moreover, 
increasing grafted chain length favors uniform distribution of NP in the 
matrix.  

 
Figure 5.9: SAXS curves for system 4with0.25% wt and 0.32 
chains/nm2(black line) and for system 6with5.0% wt and 0.32 
chains/nm2 (red line). 

  

 
Figure 5.10: SAXS curves for system 5 with 0.25% wt and 0.90 
chains/nm2(red line) and for system 7with5.0% wt and 0.90 
chains/nm2 (black line). 

Figure 5.9 and Figure 5.10 report the SAXS results for the systems 4, 
5, 6 and 7. 
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Comparing system 4 and 6 we can see that the scattered intensity 
I(q) flattens as the magnitude of the scattering vector q approaches low 
values. This scattering behavior is characteristic of non interacting and 
uniformly dispersed NPs, from which the primary particle size R=6.6±1.8 
nm has be extracted through fitting a spherical form factor at high q-
values. These observations are consistent with TEM evidences. Further, 
the surface roughness of the primary particle can be extracted from their 
Porod slope, Itot(q->∞)~q4,thus corresponding to a smooth surface NP. 

In the cases of system 5 and 7 the I(q) shows a strong upturn in the 
low q region, the slope of which is indicative of aggregate structure. The 
similar shape of the scattering curves indicates minor effects of the filler 
concentration on the NP dispersion quality and allows the application of 
the same fitting model for both systems. Our fitting model considers the 
scattering of NPs partly under dilute conditions (S(q)=1), and partly in a 
high volume fraction phase. The concentrated phase corresponds to 
aggregates in which NPs are highly structured, as visible from the 
enhanced forward scattering and the development of a NP-NP correlation 
peak. Both NPs and aggregates are considered to behave as homogeneous 
spheres with log-normal size distributions for the fitting. From the fitting 
parameters and for both systems, we find a mean radius for spherical 
filler of R=6.6±2.5 nm. At high-q values, curve follows a q-4 decay 
characteristic for smooth NP interfaces. The peaks at q~0.02 Å-1 originate 
from hard sphere structure factor of NPs in a high volume fraction phase. 
The mean center-to-center distance between neighboring NPs in the dense 
phase is about 28 nm with a volume fraction of 0.325. These dense phases 
are visible in the increase of the forward scattering and are assimilated to 
aggregates. No correlation between aggregates is observed (S(q)=1). An 
additional scattering contribution from diluted NPs is necessary to 
correctly fit the flat region between q~0.007 Å-1 and q~ 0.017 Å-1. In system 
5, the contribution of these well dispersed single NPs is found significant 
(nNPsingle/nNPaggr~25%). In contrary, in system 7 basically all NPs are 
involved in aggregation (nNPsingle=0).   

Analyzing SANS results, we obtain consistent information. An 
example of evolution of the SANS signal as a function of the grafting 
density is presented in the Figure 5.11. We can see that at high q, the 
scattering intensity decreases as q-4. At low q, a remarkable point of these 
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two systems is the presence of a substantial upturn in intensity in the case 
of system 5 for q tending to 0. This suggests the presence of aggregates, as 
confirmed by SAXS and by TEM (see above).  

 

 
Figure 5.11: SANS curves for system 4 with0.25% wt, 20.61 kDa and 0.32 chains/nm2 (top) 
and for system 5 with 0.25% wt, 20.67 kDa and 0.90 chains/nm2 (bottom). 

A qualitative analysis of the data reveals for all samples an slight 
upturn at low q deviating from the expected flat scattering at q tending to 
0.  However for system 8, with a molecular weight of the grafted chain of 
103.5 kDa, the deviation is less pronounced (Figure 5.12). This confirm 
that also the length of polymer grafted chains play a crucial role in the 
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aggregation/dispersion mechanisms. If we compare three systems with a 
similar grafted chain density but with very different molecular weight of 
polymer grafted chains, i.e. system 1 with NP of 2.0 kDa, system 4 with 
NP of 20.6 kDa and system 8 with NP of 103.5 kDa, we can observe that 
increasing grafted chain length favors uniform distribution of NP in the 
matrix (see Figure 5.8). 

 
Figure 5.12: SANS curve for system 8 with0.25% wt, 103.5 kDa and 0.53 chains/nm2. 

By coupling the experimental and computational evidences on the 
systems studied, we conclude that one of the key parameters controlling 
the aggregation/dispersion state of the silica/polystyrene nanocomposites 
is the density of the polystyrene chains grafted onto the silica 
nanoparticles ρ.Indeed, a minimum threshold value for chain length 
exists below which the interparticle interactions are no longer screened 
and the overall nanocomposite morphology presents extensive 
aggregation. However, independently of ρ, if the grafted chains are long 
enough the morphologies of the systems are predicted to be well- 
dispersed in the entire range of nanoparticle concentration considered. 

5.3.2 Conclusions 
The influence of several parameters (i.e. grafting chain length, 

grafting chain density, nanoparticle concentration) on the morphology of 
several nanocomposites were evaluated. Our computational procedure 
has been validated by scattering and imaging techniques. Thus the 
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structure-property relationships obtained constitute a rational for an 
optimal design of these systems; further, the knowledge of the 
fundamental phenomena stemming from this simulation-experimental 
combined approach could be applied to other nanostructured materials. 
Moreover we were able to characterize polymer grafted chains 
nanoparticles with very high grating density, in a range that has not been 
investigated so far. 

In the next future, the proposed procedure could be employed to 
predict aggregation behavior and macroscopic properties of alternative 
systems of industrial interest, featuring different type of nanoparticle, 
grafting chain length and density, nanoparticle concentration, and 
polymer matrix. 
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6  
6 Conclusions 

The development of new multifunctional materials necessitates a 
comprehensive understanding of the phenomena at different time and 
length scales. In the past decade or so, this need has significantly 
stimulated the development of computer modeling and simulation, either 
as a complementary or alternative technique to experimentation. In this 
connection, many traditional simulation techniques(e.g., MC, MD, BD, LB, 
Ginzburg–Landau theory, micromechanics and FEM) have been 
employed, and some novel simulation techniques (e.g., DPD, equivalent-
continuum and self-similar approaches)have been developed to study 
polymer nanocomposites. These techniques indeed represent approaches 
at various time and length scales from molecular scale, to and then to 
macroscale, and have shown success to various degrees in addressing 
many aspects of polymer nanocomposites. 

In recent years, the advent of ever more powerful, massively 
parallel computers, coupled with spectacular advances in the theoretical 
framework that describes materials, has enabled the development of new 
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concepts and algorithms for the computational modeling of materials. As 
the field of computational materials science develops and matures, the 
notion is taking hold in the community that modeling efforts should be an 
integral part of interdisciplinary materials research and must include 
experimental validation. 

The simulation techniques developed so far have different 
strengths and weaknesses, depending on the need of research. For 
example, molecular simulations can be used to investigate molecular 
interactions and structure on the scale of 0.1–10 nm. The resulting 
information is very useful to understanding the interaction strength at 
nanoparticle–polymer interfaces and the molecular origin of mechanical 
improvement. However, molecular simulations are computationally very 
demanding, thus not so applicable to the prediction of mesoscopic 
structure and properties defined on the scale of 0.1–10 mm, forexample, 
the dispersion of nanoparticles in polymer matrix and the morphology of 
polymer nanocomposites. To explore the morphology on these scales, 
mesoscopic simulations such as coarse-grained methods, DPD and 
dynamic mean field theory are more effective. On the other hand, the 
macroscopic properties of materials are usually studied by the use of 
mesoscale or macroscale techniques such as micromechanics and FEM. 
But these techniques may have limitations when applied to polymer 
nanocomposites because of the difficulty to deal with the interfacial 
nanoparticle–polymer interaction and the morphology, which are 
considered crucial to the mechanical improvement of nanoparticle-filled 
polymer nanocomposites. 

In recent years, the advent of ever more powerful, massively 
parallel computers, coupled with spectacular advances in the theoretical 
framework that describes materials, has enabled the development of new 
concepts and algorithms for the computational modeling of materials. As 
the field of computational materials science develops and matures, the 
notion is taking hold in the community that modeling efforts should be an 
integral part of interdisciplinary materials research and must include 
experimental validation. 

Therefore, despite the progress over the past years, there are a 
number of challenges in computer modeling and simulation. In general, 
these challenges represent the work in two directions. First, there is a 
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need to develop new and improved simulation techniques at individual 
time and length scales. Secondly, it is important to integrate the 
developed methods at wider range of time and length scales, spanning 
from quantum mechanical domain to molecular domain, to mesoscopic 
domain, and finally to macroscopic domain, to form a useful tool for 
exploring the structural, dynamic, and mechanical properties, as well as 
optimizing design and processing control f polymer nanocomposites. 

Several examples have been reported in this work showing 
different methodologies and describing different simulation protocols to 
study various aspects of polymer nanocomposite materials and coatings. 
A general good agreement in the comparison with experimental data of 
the results is obtained, thus showing that the molecular simulation 
modeling is a mature tool that may be used in the design and 
development of new coatings. Advances in computational materials 
science in general will continue to facilitate the understanding of 
materials and materials processing, the prediction of properties and 
behavior, and the design of new materials and new materials phases, thus 
facilitating the application of process system engineering to more 
sophisticated and innovative processes. 
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