
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

Deep Understanding of Technical Documents : Automated Deep Understanding of Technical Documents : Automated

Generation of Pseudocode from Digital Diagrams & Analysis/Generation of Pseudocode from Digital Diagrams & Analysis/

Synthesis of Mathematical Formulas Synthesis of Mathematical Formulas

Nikolaos Gkorgkolis
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Gkorgkolis, Nikolaos, "Deep Understanding of Technical Documents : Automated Generation of
Pseudocode from Digital Diagrams & Analysis/Synthesis of Mathematical Formulas" (2022). Browse all
Theses and Dissertations. 2667.
https://corescholar.libraries.wright.edu/etd_all/2667

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2667?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

DEEP UNDERSTANDING OF TECHNICAL DOCUMENTS: AUTOMATED
GENERATION OF PSEUDOCODE FROM DIGITAL DIAGRAMS &

ANALYSIS/SYNTHESIS OF MATHEMATICAL FORMULAS

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

by

NIKOLAOS GKORGKOLIS

Master of Computer Science and Technology, University of Patras, Greece, 2019

Bachelor of Science in Mathematics, University of Patras, Greece, 2016

2022

Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL
November 30, 2022

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY
SUPERVISION BY Nikolaos Gkorgkolis ENTITLED Deep Understanding of Technical
Documents: Automated Generation of Pseudocode from Digital Diagrams &
Analysis/Synthesis of Mathematical Formulas BE ACCEPTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of
Philosophy.

Nikolaos G. Bourbakis, Ph.D.
Dissertation Director

Thomas Wischgoll, Ph.D.
Program Director, Ph.D. in

Computer Science and
Engineering

Shu Schiller, Ph.D.
Interim Dean of the Graduate

School
Committee on Final Examination:

Nikolaos G. Bourbakis, Ph.D.

Soon M. Chung, Ph.D.

Bin Wang, Ph.D.

Maria Virvou, Ph.D.

Ioannis Hatzilygeroudis, Ph.D.

iii

ABSTRACT

Gkorgkolis, Nikolaos. Ph.D., Department of Computer Science and Engineering, Wright
State University, 2022. Deep understanding of technical documents: Automated
generation of pseudocode from digital diagrams & Analysis/synthesis of mathematical
formulas.

The technical document is an entity that consists of several essential and

interconnected parts, often referred to as modalities. Despite the extensive attention that

certain parts have already received, per say the textual information, there are several

aspects that severely under researched. Two such modalities are the utility of diagram

images and the deep automated understanding of mathematical formulas.

Inspired by existing holistic approaches to the deep understanding of technical

documents, we develop a novel formal scheme for the modelling of digital diagram images.

This extends to a generative framework that allows for the creation of artificial images and

their annotation. We contribute on the field with the creation of a novel synthetic dataset

and its generation mechanism. We propose the conversion of the pseudocode generation

problem to an image captioning task and provide a family of techniques based on adaptive

image partitioning.

We address the mathematical formulas’ semantic understanding by conducting an

evaluating survey on the field, published in May 2021. We then propose a formal synthesis

framework that utilized formula graphs as metadata, reaching for novel valuable formulas.

The synthesis framework is validated by a deep geometric learning mechanism, that

outsources formula data to simulate the missing a priori knowledge. We close with the

proof of concept, the description of the overall pipeline and our future aims.

iv

Table of Contents

1. Introduction .. 1

1.1 Motivation and Outline ... 2

2. Literature Overview .. 10

2.1 Understanding of Mathematical Expressions in Technical Documents.................. 11

2.1.1 Overview ... 11

2.1.2 Field Publications .. 13

2.1.3 Estimation of Maturity ... 22

2.1.4 Survey Conclusion ... 32

2.2 Pseudocode Generation from Digital Diagram Images ... 33

3. Pseudocode Generation from Digital Diagram Images .. 36

3.1 Display of the previous work ... 38

3.2 A Revisit to the Pseudocode Generation Process ... 39

3.3 Block Utility ... 41

3.3.1 Formal Representation ... 41

3.3.2 Function Knowledge Base .. 45

3.4 Dataset Generation ... 47

3.4.1 Automatic Random Generation ... 47

v

3.4.2 Data Augmentation .. 50

3.4.3 Graphical Representation of Diagram DataFrames.. 52

3.4.4 Generative Framework Summary .. 55

3.5 Inference through Image Captioning .. 56

3.5.1 Model Architecture .. 56

3.5.2 Results ... 57

3.6 Hierarchy of Digital Circuit Elements & Automated Pseudocode Extraction 58

3.6.1 Classification ... 59

3.6.2 Scanning Patterns ... 64

3.7 Conclusion ... 91

4. Analysis & Synthesis of Mathematical Formulas .. 93

4.1 Introduction ... 94

4.2 Synthesis Methodology ... 95

4.2.1 Formal Modelling of Synthesis Framework .. 95

4.2.2 Syntactic Perspective .. 98

4.2.3 Semantic Perspective ... 99

vi

4.2.4 Synthesis Formulation .. 100

4.2.5 Indeterminacy Checks & Imposed Conditions.. 101

4.2.6 Termination Criteria ... 105

4.2.7 Space Complexity.. 106

4.2.8 Hierarchy of Calculations .. 109

4.2.9 Methodology .. 110

4.2.10 Intra-level Synthesis ... 114

4.2.11 Framework’s Proof of Concept ... 115

4.3 A-Priori-Knowledge Acquisition .. 121

4.3.1 Knowledge Outsourcing ... 121

4.3.2 Dataset .. 123

4.3.3 Differentiation from Symbolic Regression ... 124

4.3.4 Graph Representation of Formulas .. 125

4.3.5 Description of the Graph Neural Network model (Graph Prediction) 127

4.3.6 Synthesis Prediction on Disjoint Graphs... 128

4.3.7 Results & Discussion ... 129

4.3.8 Self-evaluation through Validity Classification ... 131

4.4 Conclusion ... 136

5. Epilogue ... 139

vii

Publications ... 143

References .. 144

Appendix ... 158

A.3.1 Pseudocode LaTeX Customize Templates .. 159

A.3.2 Example Internal Representations ... 160

A.3.3 Data Augmentation Methods... 162

A.3.4 Application on Newtonian Motion ... 167

A.3.5 Application on Newtonian Motion ... 169

A.3.6 List of Composite Elements .. 169

A.3.7 Block Hierarchy ... 170

A.3.8 Detailed Grid Partitioning Example .. 170

A.3.9 Ensemble Configuration Changes .. 172

A.4.1 Application on Newtonian Motion ... 173

A.4.2 Paths to valid expressions for inner and outer vector product as binding

operators. .. 181

viii

List of Figures

Figure 1: Submission rates in arXiv per year, arXiv submission rate statistics | arXiv e-

print repository .. 3

Figure 2: Monthly submissions in arXiv (August 1st, 1991 – May 4th, 2022) Monthly

Submissions (arxiv.org) .. 3

Figure 3: taken from [14], the core methodology (left) the technical document’s hierarchy

of modalities (right) .. 6

Figure 4: maturity scores (left) & feature distribution (right) ... 31

Figure 5: description of the methodology followed in [49] .. 38

Figure 6: description of the Diagram →Function algorithm .. 40

Figure 7: step visualization of the block-to-expression conversion through SymPy........ 46

Figure 8: random generation stages .. 48

Figure 9: experimental setup (4) – Loss & Accuracy, SchemDraw, 50e 58

Figure 10: Example of gates-based and box-based graphical representation 60

Figure 11: classification label and caption sample ... 60

Figure 12: Classification train & validation accuracy .. 63

Figure 13: Image captioning train & validation monitoring ... 64

Figure 14: General scanning patterns methodology ... 64

Figure 15: Grid Image Partitioning ... 66

Figure 16: Center discovery methods ... 67

Figure 17: Hough-based random kernels algorithm ... 69

Figure 18: Application of random kernels and final partitions ... 69

ix

Figure 19: Prediction probabilities majority vote. Classifies to full-adder and predicts

caption < 𝒔𝒕𝒂𝒓𝒕 > 𝒖𝒏𝒌𝟑, 𝒖𝒏𝒌𝟒 = 𝒇𝒖𝒍𝒍_𝒂𝒅𝒅𝒆𝒓 (𝒗 , 𝒐) < 𝒆𝒏𝒅 > 70

Figure 20: Exclusion of covered centers ... 70

Figure 21: Hough-based expanding kernels algorithm ... 72

Figure 22: expanding kernels and block hierarchy ... 72

Figure 23: majority vote of most prominent partition .. 73

Figure 24: initial, valid 7 most prominent partitions .. 73

Figure 25: Genetic algorithm flowchart .. 75

Figure 26: Creation & filtering of random partitions.. 76

Figure 27: Intersection-based filtering .. 77

Figure 28: Next generation composition ... 78

Figure 29: Crossover scheme .. 79

Figure 30: Monitoring of the fittest individual per generation, in a 15-generation run 80

Figure 31: Ensemble method partitioning... 82

Figure 32: result after intersection filtering .. 83

Figure 33: Formal modeling and production of mathematical formulas 99

Figure 34: Example of minimal G-res graph .. 100

Figure 35: G-res with (right) and without (left) intra-level synthesis 103

Figure 36: Pseudocode describing the synthesis methodology....................................... 112

Figure 37: Flowchart of the main process ... 113

Figure 38: Intra-level synthesis ... 115

Figure 39: Occurrences of F relation after substitution in the 3rd level of synthesis 118

Figure 40: Level-2 outcome of binding operation (*) with multiple arguments 118

x

Figure 41: Tracing graphs of complex unclassified nodes ... 120

Figure 42: Validation Scheme .. 121

Figure 43: Tree representation of x/(y-λ). ... 126

Figure 44: Graph attribute details ... 127

Figure 45: Extraction of disjoint graph and label ... 129

Figure 46: Formulas derived from the synthesis framework & their predicted class

probabilities... 131

Figure 47: GNN train and test accuracy on the constructed dataset 134

Figure 48: Training, inference & self-evaluation pipeline .. 136

Figure 49: Vector space projections of mathematical tokens ... 138

Figure 50: LaTeX Custom Template (1) .. 159

Figure 51: LaTeX Custom Template (2) .. 160

Figure 52: Example Internal Representations ... 162

Figure 53: Data Augmentation Methods – Composition .. 164

Figure 54: Data Augmentation Methods – Merging ... 166

Figure 55: Data Augmentation Methods – Rotation ... 167

Figure 56: GraphViz Visualization Example .. 168

Figure 57: SchemDraw Visualization Example .. 168

Figure 58: Image Captioning model architecture ... 169

Figure 59: Grid partitioning Example ... 172

Figure 60: Level-1 byproducts .. 176

Figure 61: Confirmed semantically valid byproducts .. 177

Figure 62: Pair synthesis (1) ... 179

xi

Figure 63: Pair synthesis (2) ... 180

Figure 64: Combined G-res .. 180

Figure 65: Synthesis Methodology Example .. 181

xii

List of Tables

Table 1: weights per feature .. 26

Table 2: feature values assignment ... 30

Table 3: simple diagram creation & hierarchy levels ... 45

Table 4: example of distinguishing non-labeled elements .. 54

Table 5: block class distribution ... 62

Table 6: caption-based filtering .. 76

Table 7: Number of partitions and stride size relation .. 84

Table 8: Single-entities dataset experimental results .. 85

Table 9: Results on complex samples ... 87

Table 10: Comparative experimental results .. 89

Table 11: conversion to formal representation ... 90

Table 12: Running time per method .. 90

Table 13: Example of invalidity occurrence ... 104

Table 14: Imbalanced class distribution & predictions analytics 130

Table 15: Confidence score through GNN logits ... 130

Table 16: Composite elements .. 170

Table 17: Composite Elements ... 170

Table 18: Ensemble Configuration Changes .. 173

Table 19: Level-0 Augmented Subjects .. 175

xiii

Table 20: Level-0 analysis of multiplication .. 176

Table 21: Pair synthesis (1)... 178

Table 22: Pair synthesis (2)... 179

xiv

Acknowledgement

First of all, I would like to express my gratitude to my advisor, Dr. Nikolaos Bourbakis, for the

opportunity he gave me through his research projects, his valuable advice and guidance

throughout these past two years, and for providing his research funding and making it possible for

me to pursue my graduate studies. Dr. Bourbakis literally helped me shape up my future and I am

deeply grateful for that.

I would also like to thank the committee members, Dr. Chung, Dr. Wan, Dr. Virvou and Dr.

Hatziligeroudis, for dedicating their time and interest in this defense. Specifically, I extend my

thanks towards Dr. Hatziligeroudis, for being my Master program advisor and for cooperating

with me for the past four years.

Last but not least, I am more than grateful to my family, to my partner, Marianna, and to Mike,

Andrea, Irina, Andrey, Andrew and Themis for always being there, either literally or

metaphorically.

1

1. Introduction

2

1.1 Motivation and Outline

Starting from two decades ago, every computational field has been overflown with

the vast development of machine learning approaches. The overcoming of persistent

bottlenecks like the vanishing/exploding gradients (Hochreiter et al, 2001) [1], the

increasing amount of available data, the use of high impact computational resources, like

graphic card units, for the efficient parallel training of otherwise prohibitively-expensive

techniques (Raina et al, 2009) [2] (Krizhevsky et al, 2012) [3], as well as the interest and

demand due to the highly efficient approaches and the impressive results has established

machine learning as the dominant way in numerous scientific fields, with the most tense

activity observed in computer vision and natural language processing and understanding.

In almost any category of sub-problems in these two enormous families of problems, with

a quick overview in the relative literature one can easily spot astonishing results and

substantial progress yearly, if not in shorter terms. The research activity is blooming in an

incremental manner, to the point where related public searches [4] showcase a nearly

exponential increase of submissions per year related to machine learning, reaching

approximately 100 research papers per day submitted in 2018 just in one single, popular

repository [5]. Official statistics from the same repository [6] [7] justify these claims to a

greater extent. The rates involve all the categories of the arXiv repository.

3

Figure 1: Submission rates in arXiv per year, arXiv submission rate statistics | arXiv e-print repository

Figure 2: Monthly submissions in arXiv (August 1st, 1991 – May 4th, 2022) Monthly Submissions (arxiv.org)

4

This increased production of publications results in a plethora of needs that are yet

to be sufficiently addressed, at least to our knowledge. For instance:

- In a publication’s acceptance through the peer review method, there is an

expanding disproportion between the produced publications and the available

reviewers. This becomes even more profound after considering the manual labor, in

terms of expertise, time and energy, that is demanded to properly review a research

article.

- There is an increasing number of articles that are heavily based on past

publications and increment on them. While there is still contribution, this generates

redundancy, and due to the volume of articles it is hard for it to be spotted and dealt

with. Subsequently, it results to noisy data that shadows other publications.

Despite these developments on the publications’ late rates and the provoked

concerns, the flourishing movement of machine learning has not yet shown a great interest

into automatically analyzing and understanding technical documents. It would be unfair to

say that there has been no interest at all, but the majority of efforts is either outdated or

omits the semantic part of the analysis and focuses on quite important but also quite specific

areas, e.g., optical character recognition on the article, or extraction of the articles

modalities (Ahmed & Dandekar, 2015) [8], or others are restricted to a-priori knowledge

dependence (Antoine et al, 1992) [9] or restrict a certain type of document (Caldas &

Soibelman, 2003) [11]. There are also instances of modern publications with state-of-the-

art results that also refer to the same concerns that were stated above (Aristodemou &

Tietze, 2018) [12], but are mostly limited to specific tasks, like road-mapping of

5

Intellectual Property Analytics (IPA) in [12] and do not cover the full scope of a technical

document in its general form.

A step further would be to see the technical document as a whole entity and identify

the correlation between its components, often referred to as modalities. There is a limited

number of publications that incorporate such a holistic approach. One of the first works

spotted is the one in (Shrihari et al, 1992) [50], which address the importance of different

representations of the technical document and the identification of modalities. The article

then focuses on the format of the document. It is quite crucial though that the creators

mention the significance of understanding a document through its seemingly independent

components.

In a quite recent effort such as (Zhang et al, 2021) [10], the authors capitalize on

the text, the images, and the IPA of a document by computing latent representations

through well-known deep-learning architectures and subsequently fusing them to perform

a multi-modal hierarchical classification. Yet the result is restricted to the classification

output, therefore no additional knowledge extraction from each modality occurs.

Furthermore, the incorporated textual information is limited to the title and the abstract of

each document. This may help in the classification task, but discards the most crucial part

of a document, that being the main content, the methodology description, and the results.

The goal of a literature overview may be the actual use of a technique or a specific

modification, the preprocessing and such, information which ideally should not be omitted.

Another effort of joined modalities can be seen in (Bourbakis et al, 2016) [13],

where the authors make use of main textual content of the document and the images, by

utilizing a more traditional approach of a Natural Language Understanding (NLU) and

6

Diagram Image Modelling (DIM) to convert the available information into a Generalized

Stochastic Petri-Net (GSPN) representation. In this case, while a promising approach, the

results are not as clearly shown, while the robustness is questionable as the authors do not

incorporate into their evaluation a challenging dataset similar to [10].

The same first author proposes a complete holistic approach to the automated

understanding of technical documents in (Bourbakis & Mertoguno, 2020) [14],

complemented by a series of independed works, examples of which are (Bourbakis et al,

1999) [15] and (N. Bourbakis, 2017) [16]. As seen in [14], the authors suggest a synergistic

analysis of the main modalities of the technical document (and occasionally their

derivatives) for an automated but deep understanding of its content. They propose a

synergistic approach that decomposes a technical document into crucial components,

where each component is part of the abstracted properties of the document and

characterizes its functionality and purpose (see Figure 3 & 4). Each component is analyzed,

correlated, and modelled through an GSPN representation; the document is then

reconstructed by synthesizing the GSPNs.

Figure 3: taken from [14], the core methodology (left) the technical document’s hierarchy of modalities (right)

7

Our work follows on these efforts. Inspired by the aforementioned endeavors, it

aims to provide a novel and efficient step further into the automated deep understanding of

a technical document, by contributing to the analysis of two of its major modalities: the

automated generation of pseudocode from diagram images, and the modelling of

mathematical expressions.

Concerning the understanding of pseudocode generation, the task set can be loosely

defined as the generation of a sequence of commands or instructions, that result in an

executable description of the diagram image at hand. During this specific effort, we focus

on the situation where the only available resource is the diagram image itself and no

complementary elements are provided, but once an inference has been established, we

suggest ways of incorporating additional info from other modalities of the document, that

potentially improves the efficiency. To limit the vastness of the diagram image types, we

chose to operate the on-going research on the subset of digital diagram images, mainly for

two reasons: firstly, we believe they offer an appropriate benchmark in terms of complexity

and variety, while secondly, their structural features allow for an approximate

reconstruction of instances, which is crucial in our approach. The majority of the

methodologies used involves around the idea of modelling the components of a digital

diagram image through a custom-specified formal grammar and enable a controllable

instantiation of an image through the production rules set. Based on the formal modelling,

we build a generative framework for the stochastic creation of digital diagram images.

Capitalizing once again on the formal modelling, we create 1-1 mappings from the

production rules to desired annotations, which results in the creation of a labeled dataset

and unlocks the potential of incorporating conventional supervised learning methods. This

8

concept can be applied for multiple different annotations and provide a variety of inference

options.

The approach of formal modelling and instantiated samples is also followed during

the analysis of mathematical expressions. We set up a context-free formal language that is

able to express and create mathematical expressions. As the domain of mathematical

expressions is also vast, we again limit the scope to a certain set of operations, which aims

in encapsulating the domain of Newtonian motion; the subject is thoroughly discussed in

Chapter IV. Our main contribution lies in the proposed synthesis framework, a

methodology that treats state-of-the-art mathematical formulas as metadata and aims to

discover novel and valid synthetic formulas for the interpretation of scientific subjects. We

complement our framework with contemporary geometric learning models, that aim to fill

the absence of a priori knowledge, by outsourcing and leveraging relevant existing

information.

Through the aforementioned research efforts, we have already reached substantial

results in the automated pseudocode generation, while we openly introduced the

mathematical formula synthesis task and successfully achieved its proof of concept. Our

aspiration is that this work will contribute into highlighting the importance and the

potential of the automated technical document analysis, while hopefully inspire others to

engage in these emerging topics.

The rest of the document continues on chapter 2, with an overview on the literature

of the two subjects, as a detailed expansion of what has already been discussed above. Next

follows chapter 3, with a detailed description of the methodologies applied on the

pseudocode generation from digital diagram images. In chapter 4, we present our on-going

9

effort on the modelling and understanding of mathematical formulas synthesis. The

dissertation ends in chapter 5 by reflecting on the presented work, our ambitions, and our

aspirations for future development. Achieved publications, references and the Appendix

sections follow exactly after the end of the report.

10

2. Literature Overview

11

2.1 Understanding of Mathematical Expressions in

Technical Documents

We begin chapter II with a bibliographic survey of mathematical expressions in

technical documents. The discussion below is derived from our survey publication in

ICTAI 2021 on the same subject.

2.1.1 Overview

In terms of their deep, automated understanding, the mathematical formula is a

modality that is surrounded by unique conditions. It can be either interpreted as textual or

image data. When in an image format, the usual approach is to try to recognize the formula,

separate it from its context and parse it into a string format. Hopefully, there is a lot of past

and ongoing research on the subjects of recognition and retrieval, with quite successful

results. The approaches used range from traditional OCR (Berman & Fateman, 1994) [18]

and bottom-up (Chen et al, 2000) [19] (Toyota et al, 2006) [20] or top-down (Guo et al,

2007) [21] tree parsing techniques, to SVMs (Lin et al, 2012) [22] and advanced

segmentation techniques (Nazemi et al, 2014) [23]. There is a plethora of high- quality

articles on mathematical formulas retrieval, an active section that is still blooming

(Mahdavi et al, 2019) [24] and will not get covered here. Some representative survey

articles on the areas of retrieval and paring of mathematical equations in technical

documents are the following: (Zanibbi & Blostein, 2012) [25] (Kostalia et al, 2020) [26].

The current work skips these steps and focuses on the deep understanding of the

mathematical formulas. As deep understanding is referred the process of analyzing every

possible feature of a formula, e.g., structural, syntactic, or spatial, and its correlation with

12

elements of other modalities, e.g., contextual text, to produce a semantic outcome for the

formula itself. This level of understanding on the mathematical formulas of a technical

document could complement in several ways the technical document analysis. To name a

few, an obvious use is the archiving and the matching of documents with similar

mathematical equation. Another application is in the identification of sub-formulas and the

immediate labeling, which could contribute both in educational purposes as a helping

utility, and in research for the creation of structured labeled datasets for the use of

supervised techniques. Compared to the retrieval and parsing sections, the literature found

on understanding of mathematical formulas is quite more restricted. Thankfully, the radical

accomplishments of the past decade have ignited the interest on the subject, by offering

new approaches.

For the sake of this study, approximately (30) papers on the subject of mathematical

formulas understanding where investigated. The approaches and the techniques used varied

greatly per article, while the vast majority had other primary goals. To achieve a certain

level of coherence, we focus on a subset of (9) representative articles, each of them utilizing

a different approach on the subject of mathematical formulas understanding. In the next

sections, the papers are presented in a timeline fashion, focusing on their philosophy and

the techniques that they incorporate. Then, we try to evaluate the level of completeness

each work offers on the understanding of the formulas. To achieve that, we define an

approximation scheme based on custom features, which function as criteria for the

completeness of the approach. Finally, a comparison of the works at hand is present and

the study concludes with a discussion on future ideas.

13

2.1.2 Field Publications

By searching the relative literature, various articles were chosen as a representative

sample of the work on the understanding of mathematical formulas in technical documents.

A realization made after researching the literature is that the approaches used vary greatly

and the main goals of each work differ, with the articles end up having only a few aspects

in common. Based on this observation, we chose to organize the presentation of the related

work based on the approach used to deal with the mathematical formulas, as any other

matching between them appears impractical. Although overlapping and correlations occur

frequently, the most distinguished paths followed are the approaches based formal

modeling and theory provers, those that utilize contextual information and the those based

on artificial neural models. Later on, they are also organized as neural and non-neural

approaches. The selection of articles is based on the novelty of the introduced approach

and the correlation it may have with other articles, without considering any of the included

works lesser or greater than others.

A. Formal Modeling & Theory Provers

Probably one of the most interesting approaches met, yet not focused on our main

subject, is the one used by Kaliszyk, Urban and Viskocil in (Kaliszyk et al, 2017) [27].

Based on a series of works (Kaliszyk et al) [28][29][30][31][32], on the same or related

projects, the authors aim in automating the formalization of mathematical formulas,

contributing greatly to the effort on machine understanding of mathematical formulas.

Their approach is based on utilizing the HOL Light theorem assistant system as an

evaluation scheme and formalized data provided by the Flyspeck Project (Hales et al, 2017)

14

[33][34], to develop automated techniques that aim at the inform-to-formal translation task,

as described in [27][31][32]. The main techniques used are:

(1) modeling of the parse trees through a context-free formal grammar,

(2) a probabilistic context-free grammar parser (PCFG), specifically a

modified version of the CYK bottom-up parsing technique, for the parsing of

formal/informal sentences from the prereferred formulas corpus,

(3) semantic checks as a workaround to ambiguity,

(4) the use of probabilities of deeper subtrees and their incorporation into

the grammar as production rules to overcome limitations of the context-free

grammar modeling, and finally,

(5) the use of discrimination and AVL trees for the efficient implementation

of their system.

The article concludes with its main contribution, which is the introduction of an

efficient context-based learning and parsing through the aforementioned techniques, as

well as a major improvement (64%) in the informal-to-formal translation task. Although

the goal of the specific translation task differs from the overall understanding of the

mathematical formulas in technical documents, and despite the article residing on the

domain of theorem provers, it still constitutes a great example on how to approximate

formulas understanding, thanks to its well-explained ideas and the smart utilization of the

introduced techniques. As authors point out in the introduction, their hope is that by

gradually improving the computer understanding on how humans manipulate the

mathematical vocabulary to express semantics, could benefit the NLP field.

15

B. Formulas Context

Another approach on the understanding of mathematical formulas, found in several

articles across the literature, is the exploitation of the surrounding textual (or other) context

of the formulas to help extract semantic features.

A representative example of such approaches, with a novel and interesting

application, can be found in (Jiang et al, 2018) [35], an article that introduces a math

assistant for PDF reading for educational purposes, mainly aiming in assisting graduate

students in understanding mathematical expressions found in technical documents.

Initially, the authors showcase the need of special handling of mathematical formulas, by

highlighting the differences between natural language text and mathematical expressions,

referring to the ambiguity of symbols, the recursiveness and the special structure /

formatting (specifically stating LaTeX, MathML). Another contribution of the article is

that they state the hierarchical nature of mathematics and the deep, gradual interconnection

of aspects that translate into sub-formulas of an original, complex formula.

In an educational fashion, the authors address the issues stated above through a two-

scope solution:

(1) Offline, they introduce a Formula Evolution Map (FEM), that is based

on a knowledgebase of more than 4 million documents of associated articles and

OER in general associated to the formulas and aims at encapsulating the

evolutionary information the formulas include, over time. The implementation of

FEM in essence is a weighted directed graph 𝐺 = (𝐹, 𝑅, 𝜏), where F is the formula

16

vertex set and 𝑅 = 𝐹 × 𝐹 is the directed evolution relation set. Wikipedia constitutes

the main source of the knowledgebase. The graph is determined using two

procedures, described in detail in the article:

a. Formula Evolution Relation Generation

b. Formula Evolution Direction Determination

Both of the above procedures are mainly based on the context of the

formulas found in each Wikipedia page. All the formulas encountered are initially

in a LaTeX format, then converted into Presentation MathML and parsed by a

semantic tree-based approach, presented in (Lin et al, 2014) [36]. Terms are then

extracted in a hierarchical manner, through a proposed algorithm. Details on the

extraction algorithm, as well as the rest of the procedures used, can be found in

[35].

(2) Online, they associate the context and the layout of the formulas with

FEM, in order to solve the Mathematical Content Understanding (MCU) problem

at hand through appropriate suggestions of explanatory articles.

Together with the above, they introduce a novel reading environment

(PRMA), which consists of a PDF Reader with a Math-Assistant, something that

resides outside of our scope.

As before, although the primary focus of the paper is not on the

understanding of the formulas itself, several novelties and methodologies are

introduced, that contribute to the progress of automated understanding.

17

Another representative work on the understanding of mathematical expressions

based on their context is found in (Grigore et al, 2009) [37]. The main goal of the article is

the assignment of a concept to a given mathematical formula, while focusing on dealing

with the disambiguation of the symbols or terms found in the formulas, a common problem

in the mathematical notation, based on the surrounding context. The authors focus on

disambiguating a certain subset of expressions that have the following linguistic format:

𝑛𝑜𝑢𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 → 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑚𝑎𝑡ℎ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

, where they use the offered context on the left side of the formula for the

disambiguation.

To achieve the disambiguation, the work leverages several Term Clusters, which

are created based on a large, annotated corpora provided by Open Math Content

Dictionaries (J. Davenport, 2000) [38]. Using co-occurrence statistics on the Term clusters

and the textual context of the formula, they are able to assign a properly established concept

to the formula at hand. Three similarity metrics where investigated:

(1) Dice,

(2) Pointwise Mutual Information (PMI),

(3) z-score,

in accordance with custom scoring functions and other. Details can be found in

[37].

The experiments are performed based on two custom baselines, one being the

random concept assignment and the other the use of limited contextual information, The

18

results are quite promising, outperforming the baselines by far with all three similarity

metrics, on Recall, Precision, F0.5 and Mean Reciprocal Rank.

C. Hybrid & Neural Models

There are numerous works that make use of the relatively recent advances in

machine learning and are based on the use of neural or hybrid models. A representative

example of such approaches is a series of articles from Minh-Quoc Nghiem et al (Nghiem

et al, 2012) [39] (Nghiem et al, 2013) [40]. As the title of [37] denotes, the authors model

the problem of automated understanding of mathematical formulas as the translation from

Presentation MathML Markups to Content MathML Markups. Math ML (Ausbrooks et al,

2014) [41] stands for Mathematical Markup Language and constitutes one of the main ways

of transcribing a mathematical formula in a digital document in the web. In short, the

Presentation MathML Markup represents the notational structure of a formula, while the

Content MathML Markup represents the mathematical structure of a formula. Considering

the benefits of the Markup representation and the wealth of relative data on the web, the

authors in [39] try to approach formula understanding by building a successful,

generalizing mapping function from Presentation to Content Markup.

To overcome the limitations of past, rule-based systems, they make use of statistical

machine translation models, for the task of translating from Presentation Markup to

Content Markup. The translation rules are automatically derived using a separate heuristic

rule set, defined as Fragment Rules, that break the original Presentation parsed tree into

sub-trees. Each small subtree constitutes a sub-expression, which is subsequently translated

into Content MathML Markup format, by using an enhanced translation rule set. More

details are offered in [39]. The evaluation of the system is performed on datasets taken

19

from the Wolfram Function Site, with the results being quite satisfactory. The authors

contribute further by defining a custom metric Tree Edit Distance Rate (TEDR) for their

specific task, which is a combination of Tree Edit Distance and Translation Error Rate.

As a continuation of the work presented in [39], the authors develop a new hybrid

model on the same task [40]. The new model incorporates an extra processing step, in

between the procedures of statistical-based rule extraction and translation. The new

addition contains a specific Support Vector Machine model that deals with the

disambiguation of identifiers, by assigning to potentially ambiguous terms their correct

content.

The training and test datasets for the SVM disambiguation models both consists of

several aligned and ambiguous Presentation and Content MathML Markup pairs. The

features provided to the model are derived from both the formula Presentation Markup and

the surrounding text, which characterizes the overall model as a hybrid approach. The

experimental results improve the overall score on the initial dataset, while on a newly

introduced corpus, the new approach unexpectedly fails to provide improvements. The

authors justify the result to the insufficient amount of surrounding text.

One of the most recent works on the subject of mathematical formulas

understanding, following a very interesting and unique approach, is the one found in

(Saxton et al, 2019) [17]. The article parleys on the ability of neural models to capture and

represent mathematical reasoning as humans do. It begins with a discussion on the unique

characteristics of mathematical reasoning, how we perceive it, and the challenges this

brings for neural models and other machine learning techniques.

20

Based on these observations, the authors proceed in developing a dataset as part of

an evaluation scheme on the machine understanding of the aspects of mathematical

reasoning. The dataset consists of school-level mathematics problems of different type (i.e.,

Algebra, Calculus, Probability etc.) and their compositions, following a sequence-to-

sequence string format of question and answers. It encapsulates the hierarchy and

interconnections that characterize mathematics, the need for generalization and problem-

solving, while it still possess all the aforementioned characteristics of mathematical

formulas understanding, e.g., ambiguation. The dataset is also complemented by both

interpolation and extrapolation test sets, that contribute to the determination of the

reasoning abilities of the neural models. It is synthetically generated, instead of crowd-

sourced, as it offers modular structure benefits. The authors genuinely provide profound

reasons on choosing freeform text format instead of a parsed tree or graph structures, as, in

between others, it is a more flexible and expressive format that can generalize in more

question types, more natural and closer to real mathematical formulations, while parsing is

controversial. This modular structure of the freeform sequence-to-sequence formatting also

allows for compositionality of questions and enrichment of the dataset. Another notable

characteristic is the question generation procedure: they are generated per category in a

reverse engineering approach, when first the answer is sampled, then the question is

constructed. Per category, the dataset offers 2 × 10ହ training instances and 10଺ testing

instances.

Each utilized model is evaluated by comparing the model answer with the label

answer. For each character same as the original answer, the model is either awarded 1,

otherwise 0. The performance metric is then determined by the average for each category.

21

The models that are evaluated are neural nets, as they are by construction the less

biased or domain specific. Two different architectures are addressed: LSTM Neural

Networks (Hochreiter & Schmidhuber, 1997) [42] with attention and

Attention/Transformer Networks (Vaswani et al, 2017) [43]. The experimental results are

more than promising, with the Attention-Transformer model to achieve 0.76 interpolation

accuracy and 0.5 extrapolation accuracy. The authors then proceed in offering and

extensive presentation of the experimental setup, the established baselines, and the

reasoning evaluation method. Overall, it is an innovative work that contributes greatly to

the understanding of mathematical formulas and opens the path for extensive research on

similar approaches.

Finally, in (Allamanis et al, 2017) [44] Allamanis et al present another

breakthrough work on the continuous representation of mathematical expressions. They

introduce a newly created neural architecture called Neural Equivalence Networks

(EQNET), which models both the syntactic and semantic properties of an expression, and

result in its enriched continuous representation. Together with the EQNETs, they also

propose a new training method called subexpression autoencoding, which correctly

clusters the equivalence classes. Their work is partially based on the TreeNN architecture

or recursive neural networks, proposed in a series of articles by Socher et al (Socher et al,

2012-2013) [45][46]. During the experiments phase, they evaluate their novel model on

two datasets, one on Boolean expressions and another one on polynomial expressions.

More details on the datasets as well as the techniques themselves and the evaluation

scheme, can be found in [45]. In the end, the authors manage to show that EQNETS

outperform every previous approach (e.g., TreeNN, tf-idf, RNN) on well-established

22

semantic calculations task, noting at the end that variable-sized representations could prove

beneficial.

Many other works can be found in the literature, that approach the understanding

of mathematical formulas through neural models. Several of them are either similar to the

presented articles, or predecessors, so there they are omitted. As a last, notable reference

we state the work of Zaremba & Sutskever in (Zaremba & Sutskever, 2015) [48], that train

an LSTM network to map small code programs to their output, and (Zaremba et al, 2014)

[47] by Zaremba et al, that build a neural model to discover mathematical identities given

mathematical expressions by building symbolic trees and developing search strategies

through machine learning approaches.

2.1.3 Estimation of Maturity

At the previous section we presented a representative sample of our inspection of

the scientific literature on the subject of mathematical formulas understanding. In this

section, we try to take this discussion a step further, by introducing a set of features that

evaluate different aspects of

understanding of mathematical formulas. We focus our evaluation setup in

capturing the desired characteristics that we believe an approach on mathematical formulas

understanding should have.

We also want to make clear that with this effort, the goal is not to compare different

works from one another. This would be inaccurate in various levels, as the presented

articles may deal with the subject of understanding, but each one follows a different

philosophy with a different end goal. On the contrary, we regard all the pre-referenced

23

publications as equal, each one of them contributing to the ultimate goal of mathematical

formulas understanding in each own, unique way. Our objective through the following

evaluation scheme is to assess every presented work on the ends that should be met by an

ideal approach on mathematical formulas understanding. Therefore, each approach is

evaluated based on the “maturity” it exhibits towards the understanding, independently

from one another. With that being said, we proceed to the presentation of the evaluation

scheme.

A. Features

We express the aforementioned “maturity” by calculating an overall score for each

work, which is factored by a set of custom features. Through these features, we try to

represent the desired characteristics that should be existent in an approach on mathematical

formulas understanding. They are introduced below:

• Awareness (𝑓ଵ): a metric that tries to encapsulate the sphericity of the sources used

to understand or interpret a mathematical formula, e.g., context, or external databases.

• Adaptiveness (𝑓ଶ): measures the potential of the approach to be applied on a

different setup, or how broad its current setup is.

• Accuracy (𝑓ଷ): states the efficiency of the subject model on the given task, as

reported by the authors of the article.

• Robustness (𝑓ସ): evaluates the performance of the application when applied in a

different setup but similar to the initial one.

24

• Scalability (𝑓ହ): determines the ability of the approach to scale on a dataset of

different size, while still remaining efficient and robust.

• Complexity (𝑓଺): refers to potential restrictions to the approach’s use or evolution,

due to complicated structure.

• Novelty (𝑓଻): an estimation on the degree of novelty the current work expresses,

in relation to other works in the field.

• Association (𝑓): how relative the end goal of the article is to the subject of

mathematical formulas’ understanding.

We incorporate awareness to estimate the roundness of the means an approach uses

to understand a mathematical formula. This can refer to the context of the formula that is

taken under consideration, the format of the elements that are considered, or the

introduction of external material, e.g., relative labeled datasets. Typically, more high-

quality, relative elements contribute to a deeper understanding of the formula. We also

consider adaptiveness, as to complement works that are developed independently of any

specific dataset or setup, rendering them more adaptive. Accuracy is as well included, as

stated in the experimental section of each article. As usual, robustness refers to the

performance of the approach on a new test dataset which is similar to the training set. When

provided, we evaluate robustness by comparing the training and testing performances. If

such info is not provided, we are unable to self-perform such evaluations, so we base our

outcomes on associating the detailed description of the articles and the estimated

adaptiveness. Scalability is also an important aspect in an approach, so we take it into

consideration based on the described techniques used and the insight that is provided. With

25

complexity we refer to the structure of the approach and how it may affect its compatibility,

or potential future improvements. Being a negative aspect, low complexity score implies

high unwanted complexity in the approach. Obviously, we could not omit novelty, as it

determines the unique contributions and introduction of new approaches in terms of

mathematical formulas understanding, opening new paths to explore. Finally, we also

incorporate the association of each work with respect to the understanding of formulas, as

we have already state that the main subject of each work varies.

B. Score

After estimating the aforementioned features’ values for each work, we continue

with the calculation of the maturity score. We follow an approach similar to [26], where

each feature is multiplied by a certain weight. We then use the weighted average of these

values to assign a unique score to each work, which expresses its estimated level of

maturity towards the understanding of mathematical formulas. Let 𝑓௜ denote the feature

value assigned to an article, here 𝑖 ∈ 𝐹, and 𝐹 = {1, 2, 3, 4, 5, 6, 7, 8} is an index set

corresponding to the set of the six pre-referred features. Each 𝑓௜ is multiplied by a

specifically determined weight 𝑤௜, depending on the importance of the feature to the

maturity calculation. As our task is an abstract estimation, the weights are not subject to

any fine-tuning procedure, but are subjectively chosen, based on our beliefs and reflections,

as stated in this article.

 Value Normalized Feature

𝒘𝟏 1.2 0.21 Awareness

𝒘𝟐 0.9 0.16 Adaptiveness

26

𝒘𝟑 0.7 0.12 Accuracy

𝒘𝟒 0.5 0.07 Robustness

𝒘𝟓 0.3 0.05 Scalability

𝒘𝟔 0.3 0.05 Complexity

𝒘𝟕 0.8 0.14 Novelty

𝒘𝟖 1.1 0.19 Association

Table 1: weights per feature

With 𝑚௞ we denote the maturity score per article, where 𝑘 ∈ 𝐾 and 𝐾 is an index

set corresponding to the list of articles. As we already stated, it is specified by the weighted

average of features:

𝑚௞ =
∑ 𝑤௜𝑓௜௜∈ி

∑ 𝑤௜௜∈ி

(2.1)

The main difference between [26] and our implementation resides in omitting the

user’s perspective, focusing only on the understanding of the formulas. We believe that

currently, the understanding of mathematical formulas is not in a tool state (e.g., parsing),

but rather in a developing phase, therefore ease of use or user friendly nature should not be

taken under consideration. Additionally, we restrict the features around the aspect of

understanding and performance, aiming for a purer estimation of maturity towards the

subject.

C. Maturity evaluation

Based on the aforementioned and the authors’ detailed description of each

approach, we try to evaluate in what degree each work satisfies each feature. The articles

27

that we include are the ones that were briefly analyzed in section II. The assignments

overall can be seen in Table 2.2.

In [27] the authors incorporate 22,000 informal/formal pairs of Flyspeck theorems.

While it is a large number of instances for a training dataset, it is restricted to HOL Light

material and informal-to-formal parsing, without generalizing to the regular form of a

technical document’s mathematical formula. This also determines the adaptiveness and the

association of the work. The context aware approach increases both the awareness and

robustness of their previous efforts, while offering novelty. Scalability is not clear but is

assumed according to the tree-based and formal grammar-based techniques used. The

structure of work is also quite complex. By observing the accuracy on all the ATP

experiment variations, we mainly lean on the Theorem metric. Considering the nature of

the problem, the results are satisfying.

In [35] we can see a greater adaptiveness and awareness, as the work deals with

regular mathematical content and its context. Scalability and robustness are assigned

according to the described techniques, although they are not clear due to high complexity.

The end goal of the work also differs from understanding mathematical formulas, having

a more educational purpose, therefore association is not at its higher. Complexity is

estimated to be reasonable, offering utility and space for improvement. As for the accuracy,

while depended on human feedback, it achieves satisfying results. Novelty is quite present,

especially through the introduction of concept hierarchy and the Formula Evolution Map

approach.

In [37], the authors are focused on the disambiguation of mathematical formulas,

that offers decent association to the topic of understanding, but do not expand any further.

28

The dataset used is comprised of various technical documents, which, in combination with

the created TCNs, contribute to an ideal setup. The strategy of simply using the left-part

context seems restricting. In terms of scalability, co-occurrence term frequencies and minor

textual processes seem promising. The complexity of the structure is acceptable. Accuracy

for δ=0.9 is more than satisfying. Robustness is apparent, especially for POS-PMI metric.

The authors of [39] incorporate statistical machine translation, and a MathML

dataset form the Wolfram Function Site, with the goal of formula semantic enrichment. Its

awareness and adaptivity are relatively limited, due to the restricted setup. Robustness and

scalability are both benefited by the machine translation approach. Accuracy is satisfying,

at least compared to the presented standard SnuggleTeX. Complexity seems to be

acceptable. The TEDR metric in combination with the machine translation approach offers

novelty elements. The goal is clearly associated to some extend with the topic of

understanding.

The same authors as in [39] offer an improved version of their work in [40]. As

described briefly in chapter II and thoroughly in [40], a new processing step based on

SVMs is incorporated. Accuracy (in most cases), scalability and robustness are benefited.

Novelty is now increased significantly, and the same awareness and adaptivity limitations

remain. Association is increased, as disambiguation is now included. This addition is

seamlessly performed, without increasing the complexity.

Maybe the most innovative approach can be found in the recent work of [17]. The

authors contribute with a new philosophy of approaching mathematical content, by creating

a uniquely structured dataset of mathematical problems and evaluating advanced neural

language models on the task of recreating the answer. The models learn to distinguish and

29

classify between different types of problems based on simple, textual format. Awareness

and adaptivity are high, as the work includes a well-defined dataset generation mechanism

that can be openly modified. Association is debatable, as understanding is eminent but due

to neural networks nature it does not provide insights and understanding’s metadata on a

certain formula. Scalability is ensured due to the techniques used. Accuracy, especially for

the transformer’s interpolation, is fulfilling, while robustness as extrapolation falls of in

general. Due to the nature of the problem evaluations are promising but not competitive.

Surprisingly, complexity is not a restrictive factor, as the dataset generation is extremely

well defined, and the neural techniques used are standard.

In [44] a new graph neural networks’ architecture and a corresponding learning

paradigm are presented. Novelty contributions are again eminent. Awareness is also high,

due to the approach used. Adaptivity is restricted by the fact the authors use custom datasets

with Boolean and polynomial cases. In association, we again encounter the black-box

nature of neural systems, but it is simultaneously favored by the algebraic features of the

produced embeddings. For scalability, we follow the same as in [17]. Both accuracy and

robustness, are impressive, compared both to baselines like tf-idf and more complex

approaches. Complexity is acceptable, as the approach poses a complicated structure but is

well defined and leaves space for improvements.

In [47] have one of the first approaches to successfully incorporate neural

techniques on specific mathematical symbolic structures. Both novelty and association are

up. Awareness is remarkable, as the formal presentation of the formula used incorporates

all the elements. But it ignores general context. We consider adaptivity limited, as the

datasets are specifically structured, address solely polynomials and the created grammar is

30

hard-coded. Same elements characterize its complexity. Both accuracy and robustness are

impressive. Scalability is not clear.

We conclude with [48], a work that could be considered as a predecessor of [17].

Novelty is up due to its application and the incorporation of curriculum learning, although

sequential analysis and reconstruction of an answer through a neural language model can

be found. Association is low, as the work does not have as its goal the understanding of

formulas, nor it provides relative metadata. On the other hand, adaptivity is promising.

Accuracy and robustness are humble but promising, while scalability is high, due to the

RNNs used. Awareness is also satisfying, as it incorporates a whole corpus of coding, with

every element included. There no major complexity issues.

The feature assignments can be seen in Table 2.2. Based on these, we calculate the

overall maturity score for each article, according to our described evaluation scheme, as

seen below. Finally, we provide an illustration of the maturity scores in Graph 2.3.

 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 𝒇𝟖 𝒎𝒌

[10] 6 4 6 7 6 5 7 6 5.93

[18] 8 8 7 5 6 8 8 7 7.44

[20] 8 7 8 6 8 8 7 7 7.26

[22] 6 5 6 7 7 7 7 7 6.40

[23] 6 5 8 8 8 7 4 8 6.21

[25] 9 9 8 6 9 9 9 6 8.02

[28] 8 7 9 9 9 7 8 9 8.00

[31] 7 6 9 9 7 6 9 8 7.35

[32] 7 9 7 7 9 9 7 4 6.65

Table 2: feature values assignment

31

Figure 4: maturity scores (left) & feature distribution (right)

D. Discussion

 In the evaluation scheme we set, the approaches could be distinguished in two

major categories: those that are based on tree parsing techniques and utilization of context

and formal modelling, and those that depend on neural approaches. By examining the

feature values assigned on each category (Table 3.2), it can be observed that per category

a slightly different pattern is followed.

The approaches based on neural models tend to receive a more varied set of feature

values, with more lows and highs. On the other hand, the non-neural approaches stick to a

gaussian-like distribution, with a mean close to 7.00. Although our sample space is limited,

we believe that this behavior holds in general. The main reason for this is that neural models

tend to deal with a single, generic type of data format (e.g., textual) and demand more

volumes of data to successfully find potential relations. This provides them with more

awareness and adaptivity, and the recent advances on the field result in breakthrough

scalability and robustness. For the same reason, they instantly lose some awareness as the

incorporation of external data, or data of different format, requires hybrid approaches,

32

where the advantage of robustness and scalability is questioned. Their inability of

providing understanding’s interpretation and the lack of insights makes a poor combination

for our main purpose, therefore association is usually lower. In the meantime, non-neural

approaches, while less aware or robust, are able to provide more understandings metadata,

like the hierarchy of formula terms or a formal modeling scheme, which makes them more

relevant. As a result, the average case ends up receiving a less varied distribution of feature

values.

2.1.4 Survey Conclusion

In this sub-chapter, we investigated all the broad scientific literature on the topic of

mathematical formulas understanding, as they are found in technical documents. Based on

the point they were introduced and the novelty of the approach they are introducing, we

selected a representative sample of articles and analyzed their philosophy, structure, and

contribution in section II. In section III, we created an evaluation scheme, where for each

selected article a maturity score was estimated, based on a custom set of features that

according to our beliefs should be potent in an approach on mathematical formulas

understanding. We conclude by detecting the major differences between the selected

approaches and interpreting our results. We hope that the work above will prove capable

of acting as a starting point of future efforts in the investigating and expansion of the field

of mathematical formulas understanding.

33

2.2 Pseudocode Generation from Digital Diagram

Images

In contrast to the thorough examination of the literature on the subject of

mathematical expressions’ understanding, we limit the search on the pseudocode

generation only on the last four years past, meaning the timeframe from 2018 to May 2022.

We do so, as the work we focus on is a revisiting of a previous work of the C.A.R.T. lab,

seen at (Rematska et al, 2018) [49], which also dealt with the same subject, therefore the

related work has already been addressed. Due to the narrowness of the subject, the

following citations are not necessarily tied to the exact task, but rather provide ideas and

methodologies that could inspire an adaptation on pseudocode generation from diagram

images.

Although it does not address the pseudocode generation process from a technical

document, a quite interesting work can be seen in (Luo et al, 2021) [51]. The authors

propose a hybrid model architecture on the task of chart understanding, combining

reasoning solutions for the extraction of the key-points and the chart type, and a deep neural

model (hourglass) for the inference. The article gives insight on the challenges that occur

in analyzing chart images with a neural model, due to the various types of charts and the

different reasoning that stands per type. Additionally, it showcases the importance of

combining rule-based systems with contemporary learning models, to overcome several

bottlenecks, generalization, or efficiency, that may occur for both sides. They also

contribute with a novel benchmark dataset on Excel chart images. The pursue of the

publication at hand for data extraction may differ from our end call, but the problem it

34

presents still possesses several similarities with the automated pseudocode generation from

diagram images.

Another recent work on the subject of pseudocode generation is presented by

Sunitha E. V. and Philip Samuel in (S. E. V. and P. Samuel, 2019) [52]. In this article, the

generation aims to actual source code from UML charts, by utilizing a rule-based approach

with involves the use of state machines. As an evolution from previous similar approaches,

the authors introduce a design pattern-based state machine that supports concurrent and

history states, resulting in promising results. The idea of the implementation is quite

inspirational. Yet the scope is quite limited for the purpose of technical document’s

understanding, due to the fact that UML charts are provided only with a restricted number

of publications, as opposed to digital diagram images or diagram images in general.

As it was stated above, our stronger inspiration comes from the work presented in

[49]. The authors address the exact same task that we set during the introduction (see

chapter 1), by proposing a methodology for the extraction of pseudocode of a certain

diagram, using a DIM analysis on the diagram and complementing the outcome with the

surrounding text document, which is also analyzed by a set of NLU actions. Each outcome

is represented through a common formal grammar, specifically designed for the task. The

synthesis of the corresponding formal words is mapped to a Stochastic Petr-Net, which is

in turn mapped to the pseudocode. While the methodology looks quite promising, the end

results exhibit a lack of robustness and validation in general. The authors mainly state the

approach as an idea, present a couple of representative examples, but do not continue to a

solid evaluation on an extensive dataset. Additionally, the implementation is heavily

depended on a static knowledge base that is responsible for the interpretation of each

35

identified block through either the diagram or the corresponding text. This also poses a

flaw, as it renders the generalization of the approach to different types difficult. It is also

worth to mention that contextual information is not always available.

Below, we analyze how we adapt the modelling idea to a different setup, which

allows for robustness and clarity. We also introduce a mechanism for the creation of an

annotated dataset, that enables the incorporation of established supervised learning

methods and can contribute also to the evaluation of the overall approach.

36

3. Pseudocode Generation from
Digital Diagram Images

37

The technical document is an entity that consists of several essential and

interconnected parts. These parts, often called modalities, allow us the ability to process

them in depth separately and derive crucial technical and semantic information for the

document itself, as well as for other related modalities. Despite the extensive attention that

certain parts have already received, per say the textual information, there are several

aspects that rarely get referenced throughout the bibliography. The diagram images found

in technical documents constitute such a modality. It can provide crucial information about

the functionality and the technical details of both the document and related modalities.

Driven by the above, and the previous efforts [49] that were discussed during the scientific

literature chapter, in this section we limit our scope to the subset of digital diagram images,

to focus on the task of automated extraction of the pseudocode describing the functionality

of a given diagram. We propose a complete methodology of modelling based on formal

representation, introduce three new novel annotated datasets, suggest several predictive

setups based on mapping the initial problem to an image captioning task, analyze the

inference capabilities, and discuss the future potential of the approach. The rest of the

chapter is structured in seven sub-sections, that discuss in detail the continuation of the

work and the results that have been achieved until now. In 3.1, we refer to the proposed

methodology of the main previous effort. We continue with our differentiation and the

main methodology. In 3.3 we present a detailed description of a novel formal modelling

scheme. In 3.4 we create the internal representations of the diagram’s elements and a

generative framework for their manipulation. In 3.5, we introduce a novel dataset of

pseudocode-annotated images, incorporate an image captioning pipeline, and discuss in

depth our progress. In 3.6, we propose a novel partitioning methodology as an alternative

38

to the obstacles found in 3.5, introducing another two novel annotated datasets. We

conclude in 3.7 with a summary of our progress, our concerns and future steps.

3.1 Display of the previous work

The previous works on the pseudocode extraction process from digital diagrams

was thoroughly presented during section 2. It was observed that the pseudocode extraction

process of [49] is closely related to our effort as we begin with the same setup. We are

providing its followed philosophy and main methodology, in order to showcase its

workflow and of course highlight our motives for differentiation.

The main idea introduced in [49] is to act based on a given diagram and its natural

language context. Using a sequential analysis of the two inputs, the process was able to

extract the main meaning of each block in the diagram, complement it through the

corresponding text and then use formal modelling to structure the pseudocode and produce

it. The process that was followed is loosely depicted in the next flow chart:

Figure 5: description of the methodology followed in [49]

Extraction of the NL text
related to the block

diagram.

Partition into
subsentences and

extraction of the basic
meaning though an NLU

unit.

Each subsentence is
classified to a certain

category.

Transform a diagram
image to a graph form

through a DIM unit.

Formal modeling of all
the above though

Synergy (custom formal
grammar).

Synergy sentence
mapped to an enriched

SPN graph.

39

The end product is a text part of pseudocode, similar to the one provided below,

that corresponds to the accompanying diagram. The functionality of each element of the

diagram is derived from an external static knowledge base. The relation between the static

knowledge base and the diagram is created based on the extracted keywords and its textual

context.

3.2 A Revisit to the Pseudocode Generation Process

The main drawback we encountered with the past approach is the difficulty of

generalizing. The information extraction process, concerning both the diagram and the

textual content, is heavily depended on the static knowledge base, covering only a limited

number of specific types and instances, while being hard-coded and difficult to enrich. In

response to that, we are now recreating the information extraction steps, making them

broader and less dependent on the static knowledge base. Although we have come to

consider that it is unlikely to create a knowledge base – free approach, we believe we can

render the knowledge base more dynamic and prone to change, by focusing more on the

data at hand, remodeling the representation of the provided elements, and incorporating

learning techniques, amongst others.

Specifically, during the presented methodology, we ignored the textual information

and focus solely on the diagram. We also modified the structural steps of the pseudocode.

Briefly describing, each diagram block is translated into a well-documented function in the

pseudocode. These functions, their inputs and outputs and the flow of the diagram help

then define the functionality of the whole diagram through a main function. The steps

40

followed, as well as an example of the current results on the previous sample diagram are

provided below:

Figure 6: description of the Diagram →Function algorithm

∗ : Record 𝑖𝑠 𝑎 𝑠𝑡𝑟𝑢𝑐𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑡𝑜 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑙𝑜𝑐𝑘ᇱ𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∗∗ : 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑏𝑎𝑠𝑒

***: 𝐼, 𝑂 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

****: 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

For representation purposes only, we also allow for the modelling of the semantic

results of the above steps through custom LaTeX (Leslie Lamport, 1984) [56] templates.

The first template builds separate algorithms for the main and the complementary

functions. The complementary functions correspond to each individual block, while the

main function, as it is customary, aims to describe the overall functionality of the diagram.

A second template is also developed, that builds subroutines for each individual block,

41

while being confined to a single algorithm. Both of the templates can be seen in the

Appendix, section A.3.1.

3.3 Block Utility

Next, we address the specification of each function’s (i.e., block’s) semantic

description, where we are experimenting with vectorization of the diagram’s elements,

forms of formal representation, and the gradual incorporation of the textual information.

3.3.1 Formal Representation

We model the semantics of the elements, the blocks, and the overall diagram

through a dynamic formal language, derived subsequently from a formal grammar. The

main intuition of this choice is the strong mathematical foundations it sets; formal

modellings offer structural support, while an appropriate set of production rules allows for

the dynamic manipulation of the formal tokens. This approach helps in countering

problematic circumstances, like ambiguity, as well as managing metadata.

We create the formal grammar, by adopting a one-to-one, bidirectional mapping

between a diagram’s elements and the terminal symbols of the formal grammar. The

elements of the diagram are categorized to inputs, outputs, and block names. The set of

production rules is then applied on the non-terminal symbols to create words in the formal

language, i.e., words that consist of terminal symbols. Each word corresponds to the

description of a certain block in the diagram.

The non-terminal set consists of any string that is encapsulated in between capital

“N” symbols. It turns out quite convenient to represent such a set using a regular

42

expression, as it allows for a minimal but precise form. The definition of the set can be

seen in (3.3.1). In response, the terminal set incorporates every string that does not belong

to the non-terminal set, which is also expressed as a regular expression in (3.3.2). The

starting symbol is set to be as "NSN", a seen in (3.3.3), which obviously belongs to 𝑁.

The final set 𝑃 in (3.3.4) consists of four basic production rules that manipulate the

terminal symbols to create the formal description of a block. 𝑃௕௟௢௖௞ (3.3.5) works as a

template, setting the structure of the block’s formal word and positioning accordingly non-

terminal symbols for the block’s name, inputs, description, and outputs. Specifically, it

incorporates the format “𝑛𝑎𝑚𝑒: 𝐼𝑁(𝑖𝑛𝑝𝑢𝑡𝑠)|𝐷𝑆(𝑑𝑒𝑠𝑐)|𝑂𝑈𝑇(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)", where

𝑛𝑎𝑚𝑒, 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 are non-terminal elements, that are consecutively mapped to the

pre-defined terminal symbols through the trivial production rule 𝑃௦௘௧. The latter, found in

(3.3.6), simply replaces a non-terminal symbol with a terminal one.

Likewise, 𝑃௜௡௜௧௎ (3.3.8) is used to initialize a temporary dynamic set as 𝑈 =

{(,), |, : , 𝐼𝑁, 𝐷𝑆, 𝑂𝑈𝑇}, which includes the keywords and punctuation used by 𝑃௕௟௢௖௞.

Followingly, every terminal symbol created is registered in 𝑈, with every element of 𝑈

mapped to a certain element of the diagram. In essence, 𝑈 results in a subset of 𝑇 and

corresponds to the vocabulary of the formal language that models the diagram.

Finally, 𝑃௖௢௠௣௢௦௘ (3.3.7) connects two given strings with a right-oriented arrow

and is used to interconnect diagrams. The connecting configuration followed is discussed

further in the data augmentation chapter.

Definition 3.1. The pseudocode’s framework formal grammar is defined as:

43

𝑮 = {𝑵, 𝑻, 𝑺, 𝑷}

where:

𝑵 = {x| x ∈ re(.∗ N. N.∗)} (3.3.1)

𝑻 = {x| x ∈ re൫(? !.∗ N. N.∗).∗൯} (3.3.2)

𝑺 = {NSN} (3.3.3)

𝑷 = {Pୠ୪୭ୡ୩, Pୱୣ୲, Pୡ୭୫୮, P୧୬୧୲୙} (3.3.4)

𝑷𝒃𝒍𝒐𝒄𝒌: NSN←NnN:IN(NiN)|DS(NdN)|OUT(NoN),

(3.3.5)

𝑷𝒔𝒆𝒕: y ← x ,

(3.3.6)

𝑷𝒄𝒐𝒎𝒑𝒐𝒔𝒆: 𝑤𝑜𝑟𝑑௫ → 𝑤𝑜𝑟𝑑௬ , (3.3.7)

𝑷𝒊𝒏𝒊𝒕𝑼: 𝑈 ← {(,), : , |, IN, DS, OUT} (3.3.8)

∎

We provide an example of creation an ADD block with two input elements {𝑋ଵ, 𝑋ଶ}

and an output element 𝑆𝑀:

ADD: IN(X1, X2)|DS(None)|OUT(SM) (3.3.9)

U = {: , |, (,), IN, DS, OUT, ADD, X1, X2, SM, MUL} (3.3.10)

Inductively, a collection of the occurring words form a sentence in the language

that corresponds to the description of the diagram. We define the syntax of the language,

equivalent to the order of the words in the sentence, by considering the intersections and

disjunctive unions of the inputs and outputs of each block, as well as the overall inputs,

44

outputs, interconnections, and inner byproducts of the diagram. It naturally occurs for

certain blocks to be independent of byproducts of other blocks in the diagram, therefore

these blocks are classified as independent, and their functions are called first in the main

method that recreates the diagram. This methodology results in the formation of a block

hierarchy, with the group of these blocks forming its first level. Any block that receives as

input the output produced by a first level block belongs to the second level of hierarchy.

Subsequently, the rest of the levels are created. The hierarchy is completed by the blocks

whose outputs contain at least one element that is not connected to any other block.

As an example, in the following simple setup can be found three given blocks:

ADD, SUB and MUL. The first two are independent of any inner byproduct, therefore they

are considered to be in the bottom of the constructed hierarchy and can be called first,

regardless their order. MUL is connected to both of the former through their outputs,

therefore MUL constitutes the second layer of the hierarchy. Lastly, MUL is also the only

block whose output is not connected to any other block, therefore MUL constitutes the

final output layer of the diagram.

The application of the production rule 𝑷𝒄𝒐𝒎𝒑 is:

ADD: IN(X1, X2)|DS(None)|OUT(SM)

→ MUL: IN(SM, SB)|DS(None)|OUT(M)
(3.3.11)

SUB: IN(X3, X4)|DS(None)|OUT(SB)

→ MUL: IN(SM, SB)|DS(None)|OUT(M)
(3.3.12)

It can also follow the notation:

45

൤
ADD: IN(X1, X2)|DS(None)|OUT(SM),
SUB: IN(X3, X4)|DS(None)|OUT(SB)

൨

→ MUL: IN(SM, SB)|DS(None)|OUT(M)
(3.3.13)

The above formal sentence represents the call order of each block’s subroutine, so

that the initial diagram is recreated by the pseudocode. The approach generalizes well to

other inputs, while it also comes with the structural benefits of the formal representation.

In the next chapter, we make use of the latter to define the blocks’ description.

Level 1 Level 2
ADD
SUB

MUL

Table 3: simple diagram creation & hierarchy levels

3.3.2 Function Knowledge Base

We exploit this formal setup in order to address the major missing component of a

block’s representation, which is the description of their functionality. The core idea of the

approach lies in the repetition and commonality of the blocks found in digital diagrams,

and the available knowledge on their functionality. Ideally, we desire to specify each block

through symbolic mathematical expressions, which will comprise the body of the block’s

subroutine. To access such information, we explore available sets of open-source libraries

related to mathematical operations and digital circuits under our framework, searching for

any correlation with our existing examples. We mainly consider SymPy (Meurer et al.,

2017) [53], a Python module for symbolic calculations of mathematical expressions that

resembles the serviceability of Computer Algebra Systems (CAS), like Mathematica

46

(Wolfram-Research, 2019) [54] or Maple (MathWorks, 2019) [55]. The followed process

is described below.

Firstly, each element of the core directory of the module is compared with the name

and number of arguments of the subject block, derived from the formal representation. In

case of a perfect match, inputs of the block get converted into the symbolic representation

of SymPy and are given as arguments to the matched function. The resulting expression is

supplied to the pseudocode as the subroutine’s core command. If a perfect match is not

found, the Levenshtein distance metric is used to find sufficiently similar names of

functions, filtered by a high metric threshold, to minimize false relations. The distance

metric is expressed in the interval [0,1] for clarity, while the threshold currently used is

0.9. A step by step visual example can be seen underneath:

Formal Representation Formal Name & Arguments

ADD: IN(X1, X2)|DS(None)|OUT(SM) ADD, {X1, X2}, {SM}

SymPy Function & Arguments Expression

sympy.core.add.Add, * SM = X1 + X2

Figure 7: step visualization of the block-to-expression conversion through SymPy

While the task is mainly resolved through outsourcing, we also incorporate a

complementary, manually created static knowledge base, to address cases that elude the

outsourced knowledge bases – e.g., division, subtraction, etc., SymPy’s documentation

offers an article dedicated to the adopted notation system.

47

3.4 Dataset Generation

We now utilize the benefits of formal modelling, in an effort to create a set of

randomly constructed diagrams. Such a source of samples, produced in a completely

unbiased and stochastic manner, constitutes the main means of evaluating the robustness

of the presented pseudocode extraction methodology.

3.4.1 Automatic Random Generation

Inspired by the formal grammar that structures the representation, and its

resemblance to natural language, we approach the sample generation similarly to the

regular text structure. Part of this has already been described during the definition of the

formal language. The terminal symbols of the grammar correspond to the letters of a natural

language like English, in the sense that they are used to form words that grammatically

stand in the language. The words are formed using the two presented production rules,

𝑷𝒃𝒍𝒐𝒄𝒌 and 𝑷𝒔𝒆𝒕.

An addition to the formal grammar is the introduction of a new production rule,

𝑷𝒇𝒖𝒏𝒄. Its domain is restricted to the available functions, while it returns an adapted version

of the block template – see 𝑷𝒃𝒍𝒐𝒄𝒌 in (3.3.5) – where the length of inputs and outputs is set

to the number of inputs and outputs of the respective function, using non-terminal symbols

as placeholders.

The non-terminal symbols that result from the application of rule 𝑷𝒇𝒖𝒏𝒄 are then set

to terminal symbols through 𝑷𝒔𝒆𝒕 to produce the formal word. This discussion indicates a

priority of rule application for the successful creation of a random formal word describing

a block:

48

𝑷𝒃𝒍𝒐𝒄𝒌 → 𝑷𝒇𝒖𝒏𝒄 → 𝑷𝒔𝒆𝒕

or: (3.4.1)

𝑷𝒔𝒆𝒕൫𝑷𝒇𝒖𝒏𝒄൫𝑷𝒃𝒍𝒐𝒄𝒌(𝑺)൯ ൯

, which summarizes the steps followed to randomly generate blocks.

At this point, a random sampling is performed in the uniformly distributed [0,1]

space for each fixed input of the created block. If the sampling exceeds a certain threshold,

then a recursion call is performed to expand the existing diagram by creating a new block,

interconnected with the existing one. The connection is achieved by randomly setting one

of the outputs of the recursive call as the fixed input of the primary block under inspection.

The initial block’s name is also retained. This results in a top-down construction of the

diagram. A detailed example of the random generation is analyzed underneath:

Random Generation Stages – Block 1
Template NoVN: IN(NRWN)|DS(NgIN)|OUT(NUVN)
Intermediate stage INV: IN(NdqN)|DS(negates a single input)|OUT(NhHN)
Terminal stage INV: IN(tu)|DS(negates a single input)|OUT(hq)

Random Generation Stages – Block 2
Template NklN: IN(NnwN)|DS(NaDN)|OUT(NclN)
Intermediate stage AND: IN(NrUN, NNN)|DS(an AND clause of inputs)|OUT(NcYN)
Terminal stage AND: IN(jo, er)|DS(an AND clause of inputs)|OUT(tu)

Figure 8: random generation stages

The tables above correspond to the outputs of the random generation sample call.

The process begins with the assumption of the starting symbol, “NSN”. The first stage

involves the application of the 𝑷𝒃𝒍𝒐𝒄𝒌 production rule on the starting symbol, which

produces the template of the block, as discussed previously. During the intermediate stage,

49

the template becomes subject to the 𝑷𝒇𝒖𝒏𝒄 rule, where the name if the block is set, while

the non-terminal symbols corresponding to the inputs and outputs of the block are

substituted by other terminal symbols, now corresponding to the number of inputs and

outputs of the knowledge base function. In the case of Block 1, this translates to the INV

function, with three inputs and one output. At the terminal stage, the 𝑷𝒔𝒆𝒕 rule is utilized to

randomly replace the remaining non-terminal symbols with terminal ones, thus producing

the formal word:

INV: IN(tu)|DS(negates a single input)|OUT(hq) (3.4.2)

As a last step of the process, a random sampling from a uniform distribution [0,1]

is compared to the defined threshold, for each input of the INV block. In our example, the

threshold is exceeded for the input (tu), therefore a recursive call is performed on the

random generation process, now also providing as additional arguments the input of the

initial call and the block’s name, (tu, INV) in our case. The input variable (tu) is used as

one of the outputs of the new block, while the block name is used for the connection

between the two blocks, and it is the only information not incorporated into the formal

representation. Should the outputs be more than one, the selection between them is random

and equiprobable. To avoid disambiguation, the names of blocks and inputs are maintained

and omitted during the random sampling. Aside the predefined single output and the

monitoring of variable names, the rest of the process stays the same. In the case of Block

2, the output is:

AND: IN(jo, er)|DS(an AND clause of inputs)|OUT(tu) (3.4.3)

50

∎

The recursion call is optional and can be omitted in case a single block output is

desired. In the same spirit, it is possible to increase the spanning potential of the process

by simply lowering the threshold. The threshold value used for this example, as well as the

default option, is 0.8, as it was observed that it results in controllable results in average.

The inclusion of the described random generation process renders the presented

pseudocode extraction framework available of producing unbiased and independent

diagram examples. Repeated calls of random generation with varying recursion thresholds

result in a set of diagrams of diverse complexity and elements. Extended examples can be

seen in the Appendix, section A.3.2.

The main benefit of this effort lies in the compatibility of the samples with the

pseudocode extraction process in (3.3). Although a seemingly blunt and plain dataset of

diagrams, without any deeper insight, the produced formal token set can become subject to

the proposed framework, and therefore get converted to a labelled dataset of images and

pseudocode as text description. This creates the opportunity to utilize state-of-the-art

classification methods and other learning techniques that can boost and improve the

introduced until now rule-based approach of pseudocode extraction.

3.4.2 Data Augmentation

3.4.2.1 Diagram Composition

The quality of annotated datasets is heavily considered based on its size, diversity,

and objectiveness, in between other metrics. In an effort to enhance the variety of diagram

creation in our own framework, we add to the top-down approach the ability to compose

51

two separate diagrams into one. In a nutshell, the composition is performed by

distinguishing two given diagrams as inbound and recipient. The connection between the

two distinguished diagrams is achieved by selecting an output element of the last level in

the block hierarchy of the inbound diagram, as well as an input element of the first level in

the block hierarchy of the recipient diagram. Both selections are random and unbiased. An

intersection check is also performed to find common elements. In case of any finding, the

recipient’s elements are appropriately changed to avoid any ambiguity. The two diagrams

are then connected through an edge between the selected elements.

The connection is performed through the intermediate formal representation of the

diagrams. Both the diagram image (see 3.4.2) and corresponding pseudocode are

automatically reproduced for the composed outcome. Annotated examples for the three

augmentation techniques used can be seen in Appendix, section A.3.3.

3.4.2.2 Diagram Merging

In the same spirit as in composition, we incorporate the option of merging two

separate diagrams, but without building any connection between them. Here, the only

processing required is the intersection check between the two diagrams’ sets of elements.

3.4.2.3 Diagram Rotation

Inspired by the data augmentation techniques used in image processing, we also

apply rotation of various degrees to randomly selected diagram images, while keeping the

pseudocode annotation unchanged. We chose to apply rotation in a way similar to how the

mutation operation is performed in genetic algorithms, being an unbiased and stochastic

approach, proven to be efficient. Each of the generated diagram images is subject to a

52

uniform sampling in [0,1]. If the sample exceeds a certain rate threshold, the image is

rotated to a randomly chosen angle in between [0, 360] degrees; otherwise, the diagram

image stays intact. The rotation rate threshold used here is 0.1.

3.4.3 Graphical Representation of Diagram DataFrames

The following section presents a deterministic, automatic approach on mapping any

given DataFrame of a diagram to its actual graphical representation. It involves around the

fact that each element in the formal representation has a 1-1 correspondence with the

elements of the to-be-produced graph. Therefore, the elements are identified accordingly

as blocks and edges, then are utilized by a custom tailored mechanism based on GraphViz

(Ellson et al, 2003) [57], a popular diagram creation framework, to create the graphical

representation. Complementary modification and enrichment takes place, so as to make

this utilization possible. More specifically:

1. The blocks and edges included in the formal representation are

identified and stored separately.

2. For each element, basic graphic objects (GraphViz – .dot format)

are created. Blocks are represented by an elliptic shape, while edges through a

single, usually labelled, graph edge.

3. Inductively, the edges of the graph are constructed based on the

entries of initial data. To create a clear 1-1 correspondence, it was found that the

entries should be clustered into two categories. The first corresponds to the entries

whose input simultaneously belongs to the outputs collection, have an existing

connection, and produce an existing output (according to the format the initial data

are following these usually are the first entries for each block). For each of such

53

entries, a tuple (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 , 𝑙𝑎𝑏𝑒𝑙) is created that defines the graphical

representation of the edge, where 𝑠𝑡𝑎𝑟𝑡 corresponds to the entry’s block, 𝑒𝑛𝑑 to

the entry’s connection and 𝑙𝑎𝑏𝑒𝑙 to the entry’s output. The entries without outputs

are covered inductively. Essentially, the created tuples aim to create the internal

edges of the diagram, i.e., the interconnections between blocks.

4. The second cluster aims at creating the external edges of the

diagram. It addresses the entries who satisfy at least one of the following

conditions: either the entry’s block is not included in the overall connections, or the

entry’s input is not included in the overall outputs. Here, tuples follow the same

format, but 𝑠𝑡𝑎𝑟𝑡 corresponds to the entry’s input, 𝑒𝑛𝑑 to the entry’s block and

𝑙𝑎𝑏𝑒𝑙 to the entry’s input again. This process helps define the GraphViz arguments

of each edge, as they vary depending on the category each edge falls into.

5. As a final processing step, we distinguish the elements of the

diagram which belong exclusively to either the overall input or the overall outputs,

in respect to the two sets. This is done for representation purposes only, so as the

far left or right terminals of the external edges are not represented as elliptic nodes.

6. As described in the first step, each of these tuples, together with the

blocks, instantiate GraphViz objects. Distinguished elements are represented by

null-shaped nodes, while blocks with elliptic shapes. Edges with missing values in

the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 features are omitted.

𝐄𝐝𝐠𝐞 𝐓𝐮𝐩𝐥𝐞
(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑙𝑎𝑏𝑒𝑙) 𝐂𝐥𝐮𝐬𝐭𝐞𝐫𝐬

('ADD','MUL','SM') 1st

('b','COPY-2', 'b') 2nd

54

Table 4: example of distinguishing non-labeled elements

We summarize the visualization process through the following algorithm:

Algorithm 2. Graph Visualization

1: define formal representation

__

2: extract blocks

3: extract edges

4: for each block in blocks do:

5: create block dot object

6: for each block in blocks𝐝𝐨𝐭 do:

7: if (block ∈ 𝑖𝑛𝑝𝑢𝑡𝑠) and (block ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑠) and (block𝐜 ≠ ∅) do:

8: Connect(block, block𝐜)

9: if (block𝐢 ∉ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠) or (block𝐜 ∉ 𝑜𝑢𝑡𝑝𝑢𝑡𝑠) do:

10: Connect(block𝐢, block)

11: return visualization

∎

The presented graphical representation function successfully produces the diagram

image for each randomly generated formal word or sentence. For a more descriptive and

accurate representation of the digital gates, the identical methodology is followed using as

backend the framework 𝑺𝒄𝒉𝒆𝒎𝑫𝒓𝒂𝒘 (Collin J. Delker, 2022) [6], a Python-built module

provided by C. J. Delker. Both options were widely considered during experimentation,

with similar results. Detailed examples of both can be found in the Appendix, section A.3.4.

55

3.4.4 Generative Framework Summary

Combining the data augmentation techniques with the diagram random generation

methodology described above, we end up with a novel and spherical framework for the

generation of annotated datasets on the task of automated pseudocode extraction process

of digital diagram images. Based the details of the presented techniques, the generation

framework is characterized by the following hyperparameters:

- recursion threshold, with a default value of 0.7

- maximum number of recursion occurrences, to control the span of

the diagrams, with a default value of 10

- terminal symbol subset 𝑇௥௔௡ௗ௢௠, defaulting to the union of Latin

lowercase letters and their length-of-two combinations

- the size of the overall diagrams (in all formats) produced

- the number of composed diagrams, in proportion to the overall size,

defaulting to 13.5%

- the number of merged diagrams, in proportion to the overall size,

defaulting to 13.5%

- the rotation rate, i.e., the chance of an image to be rotated, defaulting

to 0.1

- the stochastic-ness and degrees of rotation domain, defaulting to

uniform sampling in [0,360]

Finally, although restricted to digital diagrams of logical gates for the time being,

we want to note the ability of the framework to extend to other types of diagrams by two

56

diodes: either enriching and expanding the self-defined knowledge base, or incorporating

external mathematical systems, like SymPy, that include the desired information on block

functions.

3.5 Inference through Image Captioning

Due to the formal modelling that took place in (3.3), for each generated block, and

subsequently a diagram image, we already have a pseudocode describing it. Therefore, we

can now convert our initial problem from a deterministic production of the pseudocode of

a diagram to an image captioning task. Below, we analyze the two main branches of our

effort to produce inference through image captioning and the results achieved to date.

3.5.1 Model Architecture

As of November 2022, the established approach on image captioning considers

attention-based encoder-decoder models [43] (Xu et al, 2015)[59]. As this is not the main

concept of the presented work, we will not provide a detailed survey of the works in the

field but will suffice to state that other architectures with the CNN-LSTM (Soh, Moses,

2016)[60] were also considered but, in our case, the results were more satisfying with the

encoder-decoder in [59].

In a nutshell, the model consists of two parts: the encoder and the decoder. The

encoder is usually a deep convolutional layer that is trained in an image classification task.

By omitting its inference layer, usually a Softmax classification layer, we are able to

receive the latent representation of an image through its last hidden layer. This latent

representation can then be used as the vectorized input for the decoder part, which in the

case of image captioning is an attention-based classifier that generates words according to

57

an already provided (and usually preprocessed) vocabulary. Seen as a trend since 2018, it

is considered more efficient to use publicly available pre-trained convolutional models as

the encoder, whose weights during the training of the encoder-decoder model remain

constant (frozen). This means that only the decoder in trained on the provided training

dataset. In our current effort, we are using a pretrained EfficientNetB0 (Tan & Le,

2020)[62] model as the encoder, accessed through TensorFlow [61] archives. Following

the established procedures in attention-based Transformers, the CNN Encoder is succeeded

by an attention-based Encoder with one multi-head attention layer and a Layer

Normalization (Ba et al, 2016)[63]. Finally, we also incorporate the positional embeddings

as they are required for capturing positional information during attention. The architecture

of the model used, as well as its configuration, is provided in the Appendix, A.3.5.

3.5.2 Results

In this section we present the details of the image captioning dataset. We

investigated different combinations of sizes of the dataset with unique formats of the

annotations and ended up using a dataset of approximately 30𝑘 images. Each image is

encoded in dimensions of (299,299,3). We also tried both visualizing frameworks (see

3.4.3); they exhibit minimal differences, with SchemDraw ’s specific gate representation

benefiting the model by approximately 0.2 better accuracy score. The annotation format of

each image is also simplified extensively; we use a one-line format, where every command

of the original pseudocode is separated by a semi-column, similar to the C / C++ paradigm.

The training-evaluation split of the dataset is also kept constant to an 80/20 ratio. Finally,

we also incorporate typical image augmentation techniques: horizontal flipping, rotation

by 0.2 (fraction of 2π), contrasting by 0.3 (i.e., chosen randomly in range of [1.0 −

58

 0.3, 1.0 + 0.3]). Training is carried out for 50 epochs. Figure 9 contain the loss &

accuracy monitoring graphs.

Figure 9: experimental setup (4) – Loss & Accuracy, SchemDraw, 50e

3.6 Hierarchy of Digital Circuit Elements &

Automated Pseudocode Extraction

In the previous chapters we presented in detail the formal modelling of the digital

diagram images, the creation of a complete, generative framework for the generation of

annotated datasets of the digital diagram images, as well as the mapping of the pseudocode

extraction task to an image captioning problem, accompanied by a detailed analysis of the

models used, the setup and the improvement steps taken. During that effort, the achieved

accuracy was rooted around seventy percent, with the main identified cause being the static

dimensions of the pre-processed images in the encoder step causing a resolution drop for

complex diagram of three or more blocks. In response to this, we propose a different

methodology, based on a family of scanning techniques that isolate different partitions of

the original image and thus overcome the resolution drop. The main parts of the

methodology are the following:

59

i. The construction of a classification dataset with images of single

elements frequently found digital diagram images, and a classification model that

infer on such images.

ii. The adaptation of both the image captioning dataset and model on

an extended collection of single elements.

iii. The incorporation of three different scanning techniques for the

encapsulation of digital diagram elements and the reconstruction of pseudocode

after the application of the two supervised learning models on the created partitions.

In the next sub-chapters, we analyze in depth the three main parts in the same order

and discuss the suggested workflow.

3.6.1 Classification

3.6.1.1 Modifications

The classification setup is based on the generative framework that was introduced

during the previous chapters, with several significant modifications. We deactivate the

possibility of recursive element addition, to restrict each image to one single element.

Additionally, we extend the list of supported elements in the framework with (18)

composite elements frequently found in digital diagram images, to enrich the framework’s

inclusiveness. The comprehensive list of these elements can be found in the Appendix,

section A.3.6.

These composite elements are incorporated both in their complex form of

composed digital gates, as well as labeled simple box blocks. The latter representation is

also utilized for the seven basic gates.

60

Figure 10: Example of gates-based and box-based graphical representation

To allow for a classification task, we also create, in parallel to the pseudocode

captioning, a classification label for each image. This is derived with ease from the formal

language representation that was previously introduced in 3.2. For composite elements of

the same family, the specific type of the element is omitted, and the general family of

elements is used. E.g., a 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑆𝑙𝑎𝑣𝑒 𝐹𝑙𝑖𝑝 − 𝐹𝑙𝑜𝑝 and a 𝐷 − 𝑡𝑦𝑝𝑒 𝐹𝑙𝑖𝑝 − 𝐹𝑙𝑜𝑝 will

be both labeled and classified as plain 𝐹𝑙𝑖𝑝 − 𝐹𝑙𝑜𝑝.

Lastly, to emulate the conditions during the scanning of a complex image, the

ability of depicting an element without its input(s) and output(s) labels is also introduced,

which is used in a stochastic manner during generation. In that case, the generated

pseudocode caption uses incremental 𝑢𝑘𝑛_{𝑖} elements to represent these attributes.

Classification: 𝑛𝑎𝑛𝑑

Caption: 𝑓 = 𝑛𝑎𝑛𝑑(𝑑, 𝑖)

Classification: 𝑛𝑎𝑛𝑑

Caption:
𝑢𝑘𝑛3
= ℎ𝑎𝑙𝑓𝑎𝑑𝑑𝑒𝑟(𝑢𝑘𝑛1, 𝑢𝑘𝑛2)

Figure 11: classification label and caption sample

61

3.6.1.2 False Class

Ideally, the classification task should also be able to perceive when an image

correctly depicts an element and when it does not, to provide the means for an appropriate

partition of a complex image into. One workaround would be to use the predicted

probabilities per class for the Softmax layer of out classification model (described below),

but this would require the specification of a threshold for the accepted predictions and

further fine-tuning. Instead, we choose to introduce noise into the dataset by arbitrarily and

independently cropping the four sides of the generated images by a certain percentage.

Images that are cropped by a percentage of 10% to fifty 40% of the original dimension, are

classified to a distinct False class. This introduction allows the model to identify and accept

partitions including complete elements, and in the meantime, decline partitions that cut off

essential segments. The lower threshold of 10% cropping results from the default behavior

of the visual frameworks used ((Ellson et al, 2003) [57], (Collin J. Delker, 2022) [58]), as

for the smaller percentage no essential information is removed. The upper threshold of 40%

is set to avoid dimensional indeterminacy.

The chances for a False class instance during the generative process is equivalent

to each other class, following a uniform distribution. The overall size of the dataset rises to

7000 samples, following a (70% training – 10% evaluation – 20% testing) split. The

percentage of each class in each split of the actual dataset can be seen in Figure 3.44 below.

Training –

Samples
Training –
Percentage

Validation –
Samples

Validation –
Percentage

Testing –
Samples

Testing –
Percentage

and 195 0.039796 4 0.005714 15 0.010714

False 410 0.083673 630 0.900000 960 0.685714

62

flip-flop 1344 0.274286 21 0.030000 144 0.102857

full-adder 431 0.087959 11 0.015714 45 0.032143

half-adder 679 0.138571 16 0.022857 63 0.045000

multiplexer 371 0.075714 2 0.002857 38 0.027143

nand 203 0.041429 3 0.004286 18 0.012857

nor 210 0.042857 1 0.001429 22 0.015714

not 460 0.093878 5 0.007143 35 0.025000

or 174 0.035510 2 0.002857 21 0.015000

xnor 211 0.043061 3 0.004286 18 0.012857

xor 212 0.043265 2 0.002857 21 0.015000
Table 5: block class distribution

3.6.1.3 Classifier

Two different models were tested for the classification task. The first model is a

standard CNN architecture structured and trained from scratch, including three pairs of

Convolutional and Max-Pooling layers and two dense layers, resulting in 5,075,611

parameters, all of them trainable. The second model is a pre-trained Tensorflow VGG19

(Karen & Zisserman, 2014)[68], including 20,880,459 parameters, but only 856,075

trainable, which correspond to the final Softmax layer.

The pre-trained VGG19 model achieves 100% testing accuracy, outperforming by

far the standard CNN, so this is what we ended up incorporating into our pipeline. For

clarity, we display the training and validation accuracy on the constructed dataset.

Validation stands higher initially due to dropout.

63

Figure 12: Classification train & validation accuracy

3.6.1.4 Single-element Image Captioning

The main mean of inference continues to be the image captioning model. We use

the same encoder-decoder transformer architecture, as described previously in the chapter

of image captioning, but retrained on an adjusted version of the image captioning dataset.

Apart from the cropped images, every other restriction and enhancement mentioned in the

classification dataset (i.e.: singular elements, dual representation, extended classes) is also

incorporated for the image captioning task. Training and validation accuracy and loss are

provided below:

64

Figure 13: Image captioning train & validation monitoring

3.6.2 Scanning Patterns

To improve the efficiency of the overall framework, we propose the use of scanning

mechanisms of the digital diagram image to create partitions of the image. The core idea

relies on the assumption that the partitions include the essential information of the diagram

but present a less challenging case for the image captioning task, thus guarantee a higher

accuracy.

Figure 14: General scanning patterns methodology

The suggested workflow consists of an optimal partitioning of the image into

segments, the filtering of the segments through the introduced classification framework,

the pseudocode captioning of each image through the introduced captioning framework

and finally the assembling of the individual pseudocodes to reconstruct the overall

pseudocode that describes the image at hand.

65

We have already setup the classification and image captioning task through the

previously introduced individual frameworks. Therefore, the most challenging part of the

presented workflow is finding the optimal partitioning of the image, so that its segments’

captioning provides unambiguously the pseudocode of the diagram. Below, we elaborate

on four separate approaches to the problem and discuss the advantages and disadvantages

the present.

3.6.2.1 Grid Search

The first approach utilizes a grid-like pattern using a pre-specified kernel of

rectangle shape to create a set of partitions. Each partition is then filtered through the

classification framework, omitting those that classify as False (see 𝐹𝑎𝑙𝑠𝑒 class in 3.6.1.2).

The valid partitions are then forwarded to the image captioning framework, obtaining thus

the pseudocode caption for each partition. The generated captions are then assembled to

form the overall pseudocode description of the diagram.

To provide the most promising order of actions and avoid ambiguity or

indeterminacy, the scanning is performed from the upper part of the image to the lower and

from left to right, following hence the flow of the diagram.

The main drawback of the grid search is its dependency on the kernel shape and the

stride size. Its simplicity and straightforwardness allows it to be quite efficient for an ideal

configuration but fails otherwise. Additionally, complex diagrams with a variety of

elements tend to require a more dynamic set of kernels; the static nature of grid search in

its simple form overlook essential information. A workaround to these observations is the

specification of the kernel shape as a percentage of the image’s resolution. Starting with a

66

large size, we initially scan the image using a kernel size of 70% of its width and 40% of

its height, an empirical estimation that aims in generality but can adapt accordingly.

According to the return results, we can choose to either reduce or expand the kernel’s size

in any direction and repeat the process, with the default behavior to be its reduction by 10%

and 5% respectively. If no improved results are provided after two iterations, the process

stops, but this can also be tweaked by providing the necessary arguments. As for the stride,

a lower size is always more effective but increases the runtime significantly. By default, it

is set to 15 both vertically and horizontally.

To disambiguate results of overlapping partitions, a hierarchy of classes is set,

which is displayed in the Appendix, section A.3.7, together with a detailed case of grid

partitioning in section A.3.8. The higher hierarchy level prevails.

Figure 15: Grid Image Partitioning

3.6.2.2 Hough Circle Transformation

As we saw, grid-based approach due to its static nature may require multiple

iterations to be sufficient, which rises the time complexity significantly. We address this

drawback by exploiting the image’s structural features to points of reference for the kernels

67

to be created at. The presented approach is based on a combination of the Hough Circle

Transformation and a contour area scanning to identify both circular and rectangular

elements and use their center coordinates as the center of dynamically created partitions of

rectangular shape. This rids the approach of stride usage, as the image is scanned in

neighborhoods, while covering elements of diverse sizes through the application of either

random or expanding kernels, which characterizes the two modes of the approach.

Given a specific image, the application for Hough Circle Transformation help

locate the circular centers.

In aid to the discovery of rectangular elements that Hough Circle Transformation

does not cover, the calculation of contour areas helps to identify potential blocks, which

then leads to the derivation of the valid contours’ centers and the inclusion of the newly

found center points to the Hough Circle Transformation centers.

(𝑎) 𝐻𝑜𝑢𝑔ℎ 𝐶𝑖𝑟𝑐𝑙𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑏) 𝐶𝑜𝑛𝑡𝑜𝑢𝑟 𝐴𝑟𝑒𝑎 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠

Figure 16: Center discovery methods

During the rectangle discovery, the most crucial parameters are the acceptance

limits of the calculated contour areas. Based on the noticed ratios of gates and blocks

size to image resolution, we empirically set the limits of an accepted contour area upper

68

limit as 60% and the lower limit as 2.5% of the total image area. In figure 3.55, 138 contour

areas were computed out of which seven were valid.

We incorporate the inclusion of these points in both the random and expanding

modes, resulting in more accurate and inclusive results.

The discovered centers act then as centers for the creation of rectangular partitions

of the image. We test two different modes of creating partitions, one where each partition

is created completely at random, and another one where the kernel that define the partition

gradually expands. The first mode tested involves the random creation of partitions and is

presented below:

A. Random Kernels

Algorithm 3. Hough Circle Transformation – Random Kernels

12: define image

13: define centers

14: define internal iterations

15: define out-of-bounds restrictions according to the position of the identified circle

__

16: while (centers ≠ ∅) do

17: for every iteration in internal iterations do

18: randomly define a partition according to the restrictions

19: classify the partition

20: if partition classifies against the False class do

21: save the partition

69

22: cast a majority vote on the partition’s predicted classes according to

accumulated probability

23: remove circle centers included in the partition according to their distance

from its contours

24: predict caption for each chosen partition

25: assemble the overall pseudocode

26: return pseudocode

Figure 17: Hough-based random kernels algorithm

Figures 3.57 displays the initial to final states. Figures 3.58 and 3.59 show the

prediction probability majority vote and the center exclusion mechanism respectively.

Figure 18: Application of random kernels and final partitions

70

Figure 19: Prediction probabilities majority vote. Classifies to full-adder and predicts caption
< 𝒔𝒕𝒂𝒓𝒕 > 𝒖𝒏𝒌𝟑, 𝒖𝒏𝒌𝟒 = 𝒇𝒖𝒍𝒍_𝒂𝒅𝒅𝒆𝒓 (𝒗 , 𝒐) < 𝒆𝒏𝒅 >

Figure 20: Exclusion of covered centers

The main drawback of this approach is that randomness is not always beneficial, as

it fails to capture certain elements. Additionally, we cannot ignore that this is an iterative

stochastic system – it depends heavily on the number experiments performed per found

center. More iterations tend to produce more accurate results – mainly due to the nature of

the problem and the hierarchical filtering – but render the method more expensive.

B. Expanding Kernels

As a way to minimize randomness and produce more stable results, we alter the

randomly chosen kernels to an expanding set of kernels, but in exchange, four expansion

71

steps, one per kernel side, are required to be set. The kernel spirals out until it reaches the

set bounds of the image and no more incremental steps can be performed. For multiple

observations, prioritize elements with higher hierarchy in the form of weighted

probability accumulation per class, as due to small kernels, single gates are more

frequent. The rest of the method remains the same.

Algorithm 4. Hough Circle Transformation – Expanding Kernels

1: define image

2: define centers

3: define expansion steps

4: define kernels of predefined shape per center

5: define out-of-bounds restrictions according to the position of the identified circle

__

6: while (centers ≠ ∅) do

7: if a kernel can be expanded in-bounds do

8: expand kernel according to steps

9: classify the partition

10: if partition classifies against the False class do

11: save the partition

12: cast a weighted majority vote on the partition’s predicted classes

according to classification accumulated probability and the class hierarchies

13: remove circle centers included in the partition according to their distance

from its contours

72

14: predict caption for each chosen partition

15: assemble the overall pseudocode

16: return pseudocode

Figure 21: Hough-based expanding kernels algorithm

Figure 22 displays the hierarchical priority. Figure 23 shows the weighted majority

vote and caption prediction. Figure 24 shows the most prominent partition in rectangle

shapes.

Figure 22: expanding kernels and block hierarchy

73

Figure 23: majority vote of most prominent partition

Figure 24: initial, valid 7 most prominent partitions

3.6.2.3 Genetic Algorithm

The main drawback of the random and expanding kernel approaches lies in their

dependency on the Hough Circle Transformation and contour area calculation techniques

for the discover of point of interest. To overcome potential failure on the discovery of such

centers, we propose an alternative take on the scanning patterns by reducing to a global

optimization problem. Considering the partitions of the original image as they were

previously introduced, we construct an objective function for the potential solutions, that

is proportional to the hierarchy of suggested partitions and inversely proportional to the

74

number of suggested partitions. We also consider the density of non-background pixels per

partition as a regularization term to avoid vague partitions with high hierarchy. The

resulting optimization task is:

𝑎𝑟𝑔𝑚𝑎𝑥௟ ෍ ℎ(𝑖)

௜∈௣(௟)

− 𝑤௡ ∗ 𝑛(𝑙) − 𝑤ௗ ∗ 𝑑(𝑖) (3.6.1)

Where 𝑙 is the potential solution, 𝑝(𝑙) are the partitions in 𝑙, 𝑛(𝑙) number of

partitions in 𝑙, 𝑑(𝑖) is the pixel density of partition 𝑖, while ℎ(𝑖) is the hierarchy of the

partition 𝑖. The weight 𝑤௡ on the number of partitions acts as hyperparameter to our system

to monitor the importance of the number of partitions. Same stands for each partition’s

non-background pixel density. It correlates with the use of partition filtering mechanisms

and is discussed further below.

To solve the task, we utilize an optimization scheme inspired by genetic algorithms,

that acts by encoding for each potential solution the partitions and their number as genes.

75

Figure 25: Genetic algorithm flowchart

Below, we present each of genetic operators and the stages followed during the

genetic algorithm.

A. Initial Population

Each individual comprises a set of partitions of the original image and represents a

potential solution for the partitioning problem. The genes consist of a) the number of

partitions contained, and b) the partitions themselves. The partitions can be performed with

each of the three methodologies that have been already shown, i.e., variant-shaped grid

partitioning, random & expanding kernels on the Hough Transformation-based and

contour-based discovered centers. To address the dependencies observation made at the

start, we experimented with the creation of partitions through a rectangle kernel of random

size and position, not driven by any a priory knowledge. Each created partition holds an

invalid label, unless it is successfully classified to a non-False class through the

classification framework that was introduced in 3.6.1, similarly to the three previous

approaches. For the experiments that follow, each individual is created through 1000

random partitions, while the size of the initial population is set to 50 individuals.

76

Figure 26: Creation & filtering of random partitions

B. Evaluation

Due to the repetitive creation process, it is possible that certain partitions will

overlap, introducing redundancy. To avoid such circumstances, we interchangeably use

two filtering methods.

During the first one, each valid partition is passed to the image captioning

framework and its caption is compared to the others, under one individual’s scope. In case

of identical results or extreme similarity based on their Levenshtein distance the partition

is discarded.

Prediction Target Levenshtein
𝑝 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑔 , 𝑔) ℎ , 𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒) 0.6582278481012658

ℎ , 𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒) 𝑝 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑔 , 𝑔) 0.5316455696202531
𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒 , 𝑔) 𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒 , 𝑒) 0.975
𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒 , 𝑒) 𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒 , 𝑔) 0.975

Table 6: caption-based filtering

The second filtering method uses the kernel contours to search for intersections in

between two partitions. In the event of an intersection larger than 50% of the partition’s

77

overall area, the partition is omitted. In case both partitions are covered by 50% from the

intersection, the one with the least area in total is omitted. The accepted percentage for the

discard is an introduced hyperparameter, which for now is used as 50%, as it seems to

cover most of the cases where redundancy occurs.

Figure 27: Intersection-based filtering

After removing any potentially redundant partitions, the objective function

expressed in (3.6.2.3) is used to calculate the fitness score for each individual.

C. Survival

We follow an explicit survival phase, where the fittest 40% of the initial population

(50% for each consecutive generation) survives to the next generation. To add

stochasticity, we also incorporate 10% of the remaining population as randomly selected

individuals, without advising any fitness criteria.

This creates the first fragment of the new generation, which corresponds to 50% of

the initial population. The rest consists of offspring created during the crossover operation.

78

Figure 28: Next generation composition

D. Crossover

The crossover process involves the use of two parental individuals, uniformly

sampled without replacement from the surviving population. Each gene is then selected

equiprobably between each parent chromosome. The first gene that is defined is the number

of partitions of the offspring. Afterwards, each partition is uniformly sampled from the set

of the collected partitions of the two parents, until the selected number of partitions is met.

Crossover takes place until the number of individuals created reaches 40% of the initial

population.

79

Figure 29: Crossover scheme

E. Mutation

Mutation takes place during the creation of each offspring. Two different forms of

mutation are used, one for each encoding of genes we incorporate, while the mutation rate

remains for both as 10%. During the number of partitions selection, a uniform sampling is

performed in the real interval [0,1]. If mutation rate exceeds the sampling, the number of

partitions is randomly increased or decreased 1. The second form of mutation involves

around the selected partitions. Again, the same uniform sampling is carried out. If it falls

behind the mutation rate, the partition at hand is replaced by a random valid partition that

is generated on the fly. Both of these operations provide randomness to the method,

increasing its search space significantly.

F. Termination

Crossover and mutation are followed by a re-evaluation of the whole generation to

charter the crossover byproducts. This step concludes the creation of the next generation.

80

The terminal criteria of the algorithm is the completion of a certain number of generations.

The fittest individual during the last generation constitutes the proposed solution to the

optimization problem stated in 3.6.2.3.

Figure 30: Monitoring of the fittest individual per generation, in a 15-generation run

3.6.2.4 Modified Ensemble Method

In sections 3.6.2.1 – 3.6.2.3, we proposed three different families of methods for

the solution of the automated pseudocode generation problem through image partitioning

and analyzed their advantages and potential weaknesses. In this section, we explore the

merging of these approaches and the effect it has in the overall inference. Inspired by the

stacking paradigm of ensemble methods, we assume the three introduced approaches as

classifiers and utilize the genetic algorithm in 3.6.2.3 as a level-1 meta-classifier for the

overall inference. A similar use case of the genetic algorithm as classifier can be seen in

(Sicora & Al-laymoun, 2014) [67].

Each involved partitioning method’s outcomes are considered as classification

outcomes and correspond to a pre-defined fraction of the initial population. E.g., 30%

81

percent of the initial population may be derived from a grid partitioning with various

kernels, 30% percent from Hough circles and contour centers with expanding kernels, 20%

with random kernels and the final 20% with the completely random partitions. The splitting

proportion itself constitutes a hyperparameter for ensemble method and requires

experimentation / fine-tuning. We propose the presented setup as it includes but restrains

highly abstract partitioning, while it mainly leans on more data driven choices, like the

expanding kernels and grid-like scans.

In the same manner, the ensemble method may consist of more controlled level-0

predictors and meta-classifiers. Below, we consider the case where the classifiers comprise

predictions solely from grid scans using varying kernels. Both the kernel and the two-

dimensional stride are specified on fractions of the width and height of the original image.

Empirically, the stride is set in between 5 − 10% of the corresponding dimensions to avoid

extended running times and frame appropriately the diagram’s elements. The example

below performs a grid scan on the percentage space [0.35, 0.45, 0.55, 0.65, 0.75] for both

dimensions. We present samples of the 25 predictions. The overlap and caption filters

introduced during the genetic algorithm are also incorporated.

P
ar

ti
ti

on
in

g
1

Partitions Labels

1. 𝑢𝑘𝑛3 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑐 , 𝑎)
2. 𝑜 = 𝑓𝑙𝑖𝑝 − 𝑓𝑙𝑜𝑝(𝑜 , 𝑦)
3. 𝑝 = 𝑥𝑜𝑟 (𝑝 , 𝑦)

82

P
ar

ti
ti

on
in

g
2

Partitions Labels

1. 𝑐 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑐 , 𝑑)
2. 𝑛 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , 𝑦)
3. 𝑎 = 𝑥𝑜𝑟 (𝑎 , 𝑔)
4. 𝑓 = 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑣 , 𝑒)

Figure 31: Ensemble method partitioning

Three of the 25 partition sets are able to capture all the diagram elements and

produce the core pseudocode. The first spotted error concerns the variable names of the

input and output elements of each block. As the partitions are rarely ideal, the model may

be led to misclassify variable names that are missing or of similar silhouette, as seen in

figure 3.75 (3). We resolve such occasions by comparing with other partitions captioned

with the same block name, and use the majority of occurrences, whenever this is possible.

There are also other post-processing solutions that involve approaches we do not

incorporate yet in our framework, e.g., the use of simple rules to identify the

misclassification, like the same input and output variable name, and the use of OCR

methods to limit the scope of acceptable variable names.

The second issue spotted is the ambiguity created by the varying kernel scans. E.g.,

for the same region shown in figures 3.75 (1) and (2) , a smaller partition is identified as a

“𝑥𝑜𝑟” gate, while a larger partition capture the composite element “𝑓𝑙𝑖𝑝 − 𝑓𝑙𝑜𝑝”. We sort

this issue out by re-applying the overlapping filter introduced in the genetic algorithm, now

to the collection of prediction sets, instead of applying it on each prediction set separately.

In our previous example, it limits the number of partitions from 25 to 3.

83

𝑓 = 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑣 , 𝑒)

𝑟 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑝 , 𝑝)

𝑦 , 𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑎 , 𝑒)

Figure 32: result after intersection filtering

The post-processing techniques introduced here, as the ones discussed above, are

able to fine-tune the results of the ensemble approaches to a sufficient extent, therefore

provide a solid approximation of the diagram’s pseudocode. The automation and

generalization properties of the approach are obvious, but some of the processing layers

set new hyperparameters that require fine-tuning and cause the complexity of the system

to rise. In our current setup of the grid ensemble method with various kernels, the parameter

that remains to be fine-tuned is the stride of the kernels (see figure 3.77). Different stride

sizes result in a different number of overall accepted partitions, and this can be

controversial. There is always the solution of a set of values according to the dimensions

of the image, but this would increase drastically the time complexity. The use of Hough

Transformations or other contour discovery methods also do not seem appropriate, as they

fail to perceive the complex elements of a diagram as entities. The situation resembles of

unsupervised methods, similar to how the number of neighbors should be declared in KNN.

We leave this parameter under discussion, while we set a default of 5% of the image’s

corresponding dimension.

Image Dimensions
(234, 300)

Stride Size Partitions Final Partitions
(5, 5) 43 3

84

(15,15) 32 3
(45, 45) 22 3
(70, 70) 16 2

Table 7: Number of partitions and stride size relation

Lastly, the processed predictions can either be presented in this state, or they can

be forwarded to a meta-classifier, completing the ensemble method. At this point of our

research, we were not able to expand the scope of our experiments towards this direction,

as the lack of an annotated dataset on complex digital diagrams prohibits the use of

supervised-learning classifiers. The generative framework introduced earlier in 3.6 is

strictly restrained to single elements, while the generative framework introduced in 3.4 is

capable of generating complex diagram images but is again restrained solely on digital

gates; thus, neither can generate an appropriate annotated dataset for our purpose. We plan

though to address the matter in future research efforts.

3.6.2.4 Experimental Results

We test the efficacy of the four presented approaches based on two scaling

experimental phases, using default configuration of hyperparameters. We conclude by

mentioning the uniqueness of each method and the importance parameter fine-tuning per

case.

A. Single Entities’ Samples

The first experimental phase consists of consecutive runs on the single entities’

caption dataset, described in 5.1. For roundness, we incorporate two string metrics for

evaluation of the results. We use the Levenshtein distance (Vladimir I. Levenshtein, 1965)

[69] as the main metric to compare the generated captions with the ground truth, while we

complement the analysis with the Sørensen-Dice coefficient (Lee R. Dice, 1945) [70] to

85

counterbalance the unwanted edit penalty that is occasionally applied by the Levenshtein

distance. Each metric is used for different sample collections.

We slightly adapt the procedure followed for each method, so that it corresponds

to its specifics. The method based on Hough circle transformation and contour areas with

random kernels, presented in 3.6.2.2 (A) and abbreviated as HTCR, is applied on 20

random samples, performing 5 iterations on each sample, returning an average of the 100

performed predictions. The variation with the expanding kernels, seen in 3.6.2.2 (B) and

abbreviated as HTCE, omits the 5 repetitions per sample, returning the average of the 20

single runs. Despite its non-deterministic nature , the genetic algorithm-based method with

random kernels from 3.6.2.3, abbreviated as GAR, runs without repetitions on the same

sample; instead, it eliminates occasional unpredicted behavior through large initial

population sizes (50). Both GAR and the ensemble-based method (EGP) from 3.6.2.4 are

tested on a smaller subset (5) due to their exorbitant requirement of building individual

cases. Figure 5.6 contains the experimental results for each method.

 𝐺𝐴𝑅 𝐻𝑇𝐶𝑅 𝐻𝑇𝐶𝐸 𝐸𝐺𝑃

𝐸𝑑𝑖𝑡 0.3866 0.9187 0.6682 0.2646

𝐷𝑖𝑐𝑒 0.5556 0.8552 0.600 0.2941

Table 8: Single-entities dataset experimental results

We observe that, on the single entities’ task, GAR and EGP score low, mainly due

to their inability to capture an appropriate partition, as the global optimization approach

used may get stuck at local optima. Most of the inaccuracies occur when the partition

partially captures is falsely placed yet classified and retained. The overlapping filtering

method also contributes to this phenomenon, as occasionally larger but misplaced

86

partitions overcome others, smaller but ideally placed. Thus, the content of a box block

may be falsely interpreted, or the gate of single composite element captured in a relatively

large partition may keep the method from obtaining the bigger image. Capturing multiple

items that do not belong to an existing entity simultaneously also causes the model to fail,

as it is trained on single entities; this includes one of our future goals but requires the

creation of generative framework anew. These observations apply also to the HCTE, but

on a lower frequency. We obtain the best results for HTCR at 0.9187 Levenshtein score

and 0.8552 Dice coefficient, as it rely mainly on the filters, is not prone to local optima and

its plain mechanics allows it for a great number of random partitions without a severe

efficiency penalty.

B. Complex Samples

During the second experimental phase, we test the four approaches on individual

complex images, containing multiple, interconnected entities. The images are manually

designed through the proposed graphical framework in 3.4, cover both representations, and

exhibit varying complexity.

It was also observed that, while blocks and elements where frequently predicted

accurately, the Dice and Edit metrics applied a penalty due to the character order mismatch

from the provided label. While this is in general a desired property, it does not reflect in

our instances, as the commands can be reorder with ease, according to the presence of

variables. To overcome this, we complementary include as third metric a fuzzy variation

of the Edit distance, as described in [71]. In a nutshell, each string outcome is tokenized

and then alphabetically ordered and reassembled. The remaining setup follows as in the

single entities’ task. The results can be seen in figure 3.80.

87

 𝑮𝑨𝑹 𝑯𝑻𝑪𝑹 𝑯𝑻𝑪𝑬 𝑬𝑮𝑷

𝐸𝑑𝑖𝑡 0.333 0.6423 0.7532 0.3451

𝐷𝑖𝑐𝑒 0.4351 0.3156 0.3684 0.2526

𝐹𝑢𝑧𝑧𝑦 0.5870 0.6360 0.6800 0.7000

 𝑮𝑨𝑹 𝑯𝑻𝑪𝑹 𝑯𝑻𝑪𝑬 𝑬𝑮𝑷

𝐸𝑑𝑖𝑡 0.3106 0.4298 0.3476 0.4127

𝐷𝑖𝑐𝑒 0.4351 0.2263 0.1913 0.2286

𝐹𝑢𝑧𝑧𝑦 0.4700 0.4580 0.5100 0.4700

 𝑮𝑨𝑹 𝑯𝑻𝑪𝑹 𝑯𝑻𝑪𝑬 𝑬𝑮𝑷

𝐸𝑑𝑖𝑡 0.2059 0.6078 0.5059 0.5481

𝐷𝑖𝑐𝑒 0.3478 0.3728 0.4286 0.3913

𝐹𝑢𝑧𝑧𝑦 0.4923 0.4820 0.5600 0.4000

Table 9: Results on complex samples

While HTCR and HTCE are now ill-performing around the values of ~0.2 for both

Levenshtein distance and Dice coefficient, GAR and EGP are able to maintain their

performance. In essence, the methods continue to exhibit the same behavior, thus the

complex diagram structure allows GAR and EGP to discover multiple elements and

differentiate between the partitions in a more sophisticated manner. Instead HTCR and

HTCE seem to discard overlapped findings due to the straightforward partitioning,

therefore lacking in performance compared to the other two in context of complex

diagrams.

C. Parameter Configuration

In every experiment performed, we utilized the models using the default

configuration of parameters, as described in their respective sections above. We already

proved that the methods work sufficiently well in a single entities setup and provide

promising leads in case of complex diagrams. Still, the parameters play a crucial role in

88

every method’s case. E.g., using medium to small kernels with small strides in the modified

ensemble method significantly help to identify multiple blocks in complex images, while

the setup prohibits the discovery of large single entities, especially in case of box

representation. See section A.3.9 in the Appendix for a detailed instance. In addition,

parameters like the kernel sizes and the stride set correlate with the intersection threshold

used during the overlap filtering method from 3.6.2.3 (B), both in EGP and HTCE.

Considering all the above, although we showcase the default behavior of methods, we

suggest the studying of an extended search space of parameters and their combination per

method, for a rounded set of results.

We conclude with a side-to-side comparison of the four proposed methodologies

on their predictions on the image from figure 3.65. We use the default configuration for

each method, while the GAP is run for 20 generations. Results can be seen in figure 3.85

below.

89

Label EGP
𝑢𝑛𝑘1 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑐 , 𝑑)

𝑢𝑛𝑘2 = ℎ𝑎𝑙𝑓 − 𝑎𝑑𝑑𝑒𝑟 (𝑎 , 𝑏)

𝑞 = 𝑓𝑙𝑖𝑝 − 𝑓𝑙𝑜𝑝 (𝑢𝑛𝑘1 , 𝑢𝑛𝑘2)

𝑓 = 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑢𝑛𝑘3 , 𝑒)

𝑘 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑝 , 𝑔)

𝑑 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑐 , 𝑑)

𝑔 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , 𝑦)

𝑎 = 𝑥𝑜𝑟 (𝑎 , 𝑔)

HCRE HCRR
𝑖 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑚 , 𝑤)

𝑏 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑚 , 𝑣)

𝑑 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , ℎ)

𝑚 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑚 , 𝑔)

𝑒 = ℎ𝑎𝑙𝑓_𝑎𝑑𝑑𝑒𝑟 (𝑒 , 𝑔)

𝑗 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑗 , 𝑞)

𝑜 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑗 , ℎ)

𝑞 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , 𝑞)

𝑎 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑎 , 𝑎)

𝑒 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑜 , 𝑜)

GAR20 GPH
𝑔 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑝 , 𝑥) 𝑐 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑐 , 𝑑)

𝑏 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , 𝑔)

𝑛 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑦 , 𝑦)

𝑞 = 𝑥𝑜𝑟 (𝑎 , 𝑎)

𝑞 = 𝑓𝑙𝑖𝑝_𝑓𝑙𝑜𝑝 (𝑎 , 𝑔)

𝑞 = 𝑥𝑜𝑟 (𝑎 , 𝑗)

𝑝 = 𝑥𝑜𝑟 (𝑎 , 𝑔)

𝑎 = 𝑥𝑜𝑟 (𝑎 , 𝑔)

𝑓 = 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑣 , 𝑒)
Table 10: Comparative experimental results

In general, we get the most accurate and controlled predictions with EGP. HCRE

also follows on well but the luck of a final overall filtering makes it vulnerable to

ambiguity. GPH is also promising but its simplicity leads it to “local minima” situations,

stuck to several XOR gates and ignoring the outer complex element. HCRR and GAR are

the only purely randomized methods, which we can see that the post-processing filters do

not really benefit. They actually discover most of the diagram’s elements, but small sized

partitions or cut-off input-output variable names prompts the intersection and caption filters

to remove them. Their results can be extensively improved with more iterations per

chromosome or center respectively, but then the time complexity rises. Similarly, more

post-processing actions like popularity votes in the candidates or the those stated

90

previously may also prove beneficial for the rest of methods, but we preferred to present

the raw outcomes as is.

As a final touch, we take advantage of the formal scheme presented in 3.3 to convert

the predictions to their formal representation. This enables several utilities that were

presented during this section, e.g., the 𝐿𝑎𝑇𝑒𝑋 templatings for a better visual representation.

An example of the HCRE results in formal representations can be seen in table 11:

HCRE

multiplexer: IN(𝑚, w)|DS(None)|OUT(i)

flip − flop: IN(𝑚, v)|DS(None)|OUT(𝑏)

flip − flop: IN(𝑦, h)|DS(None)|OUT(𝑑)

half − adder: IN(𝑚, g)|DS(None)|OUT(𝑚)

half − adder: IN(𝑒, g)|DS(None)|OUT(𝑒)
Table 11: conversion to formal representation

As it is accustomed, we display for reference the average of running time in seconds

for each method. GAR appears specifically time consuming as we also include the creation

of chromosomes, but this action can be performed separately, thus minimize the required

time to approximately four minutes. The experiments were performed in a system using 16

GB RAM, and an Intel Core i7-10750H CPU at 2.60GHz, 2592 MHz with 6 Cores and 12

Logical Processors, while the two neural models run through Tensorflow CUDA

compatibility on a NVIDIA GeForce RTX 2060.

 𝑮𝑨𝑹 𝑯𝑻𝑪𝑹 𝑯𝑻𝑪𝑬 𝑬𝑮𝑷

𝑠𝑒𝑐 2700/240 480 580 155

Table 12: Running time per method

91

3.7 Conclusion

In section 3, we addressed the problem of automated pseudocode generation from

digital diagram images as found in technical documents and proposed a complete and

thorough methodology for the automated generation of a pseudocode under certain

conditions, without any a priory or contextual knowledge. We began in section 3.1 by

defining the conditions and the objectives and by referring to the previous efforts on the

subject. In 3.2 we revisited the philosophy of the existing efforts and proposed a new

methodology that is based on the functional modelling of the diagram blocks. Following

the revisiting proposition, in 3.3 we introduced in detail the functional modelling scheme

of the diagram bocks and produced pseudocode, based on a specifically designed context-

free formal grammar. Through the formal modelling scheme, we created a generative

framework that allows for the creation of pseudocode-annotated diagram images from

scratch and showcased the internal representations and mechanisms. In 3.4 we utilize the

framework to create the annotated dataset and therefore map the initial problem into the

well-known supervised learning task of image captioning. We then present analytically in

3.5 all the followed steps and progress insights, reaching an initial accuracy of ~70%. Due

to the image resolution restraints and other bottlenecks found in the image captioning task,

we propose in 3.6 a workaround involving recursive and non-recursive scanning patterns

and their analysis, a modified version of the generative framework and two novel image

classification and image captioning datasets on digital diagram images. Additionally, we

expand the existing scope to a more dynamic setup and propose a varying family of

approaches. These efforts results in promising experimental results and sets the path to a

new family of approaches on the field of automated pseudocode generation.

92

In our future steps on the subject, we aim to improve on both the complex-case

image captioning effort and image partitioning approach. We already work on introducing

external tools for the correct disambiguation of the produced partitions in the ensemble

approach in 3.6.2.4, as well incorporating the wider scope in the complex image captioning

scheme of 3.4, something we are aspired it will benefit the overall efficiency.

93

4. Analysis & Synthesis of
Mathematical Formulas

94

4.1 Introduction

The following section comprises the second branch of a unified effort on the

automated, deep, and semantic understanding of technical documents and their

components. Presented as a subtask of the automated document analysis, which as a

domain of artificial intelligence and data mining has been receiving increasing attention

over the late years, this branch’s main aim involves around the modality of mathematical

formulas, as they are found in technical documents. Mathematical formulas constitute a

multifaceted module, being the subject of various tasks that have received from plenty to

the minimum of attention over the literature, with one of the most popular tasks being their

discovery in a document (Zanibbi et al, 2002) [90] and their successful parsing (Fateman

et al, 1996) [89].

Within the section that follows, we focus our efforts on the semantic understanding

of the mathematical formulas. Being an abstract notion, by semantic understanding we

mean any substantial information that can be extracted on the utility and the validity of a

given mathematical formula. Of course, given a mathematical formula from a technical

document, there is openly available, a priori mathematical knowledge that can be utilized,

using common reasoning tools or existing frameworks. What is not always so obvious or

easy to get, is how the given formula synergizes with other mathematical entities; in other

words, how can we use a given valid mathematical expression, describing a certain

phenomenon, to expand our knowledge or our inference capabilities on the topic at hand

or its extensions. Striving to take the subject a step further, the presented methodology

utilizes any given mathematical formula as an object with structural features and aims in

extracting any potentially valid metaknowledge that could prove beneficial. Specifically,

95

we combine existing common knowledge and techniques with our own contributions, in

order to create a modelling and managing framework for given mathematical formulas,

under the veil of context-free formal grammars. The created managing framework allows

for the composition and decomposition of the mathematical formulas, resulting in new

synthetic mathematical objects, derivatives of designated plausible formulas but of

unknown validity and utility. Our aspiration is that, through the processes of elimination

or contradiction, these synthetic elements may contribute to the acquisition of useful

metaknowledge on several scientific subjects, obtained in a sound manner by using

common mathematical knowledge and existing formulas that describe state-of-the-art

results. The sub-sections that follow in 4.2 describe the context-free formal grammar that

constitutes our modelling framework and the main analyzing methodology for a given

mathematical formula. Through the process, we highlight the restrictions that arise, while

in 4.3 we offer outsourcing solutions and deep learning adaptations that counter several

limitations. We conclude by performing an extended proof of concept on the overall

synthesis framework in 4.2.11 and 4.3.5 and a discussion on the introduction of task and

its future in 4.4.

4.2 Synthesis Methodology

4.2.1 Formal Modelling of Synthesis Framework

Before introducing the methodology of formulas’ synthesis, we establish a formal

mathematical modelling of the subject formulas based on a context-free formal grammar.

Apart from providing coherence and structure to the subjects of the framework, the basic

sets of the grammar, and specifically the production rules, introduce the basic principles

96

and the core mechanisms of the framework, while its broad and dynamic form offers

expandability and adaptiveness.

The context-free grammar adopts the standard form of formal grammars (Chomsky,

1956)[72] (Chomsky, 1957)[73]:

𝐺 = {𝑁, 𝑇, 𝑆, 𝑃} (4.2.1)

Aiming to model any mathematical term that could be employed by the synthesis

methodology, the fundamental sets of the grammar are defined in a dynamic and broad

setup:

- 𝑇: includes all the mathematical symbols and terms representing

variables, constants, operators and special notation of punctuation, and their valid

combinations, whose implementation is supported by 𝐿𝑎𝑇𝑒𝑋 (Lamport, 1986)[56].

A detailed list that surpasses the mathematical scope can be seen in the work of

(Pakin, 2021)[74]. Excludes only the terms that may by chance be identical to a

term belonging to the non-terminal set 𝑁. It results to an infinite but enumerable

set, as there exist 1-1 mapping to the set of natural numbers ℕ.

- N: based on identification by regular expressions, it consists of all

the elements of the terminal set, attached with the prefix “𝑛𝑡𝑠_”, with its definition

displayed below. Although it would be ignorant to make such a claim, the goal of

the notation is to avoid any overlapping with existing mathematical terms, so that

no restrictions are imposed on the terminal set T, and inductively to the analysis

framework. Derived by 𝑇, 𝑁 is infinite but enumerable.

97

𝑁 = {𝑛𝑡𝑠_}. 𝑇 = {𝑧: 𝑧 = 𝑥𝑦|𝑥 ∈ {𝑛𝑡𝑠_}; 𝑦 ∈ 𝑇} (4.2.2)

- 𝑃: conceptually similar to 𝑇, it includes all the mathematical

operations whose implementation is supported by 𝐿𝑎𝑇𝑒𝑋. The operations are

occasionally discretized into unary and multi-parametric, as two different

implementation methods are offered, discussed further in the methodology’s

presentation.

- 𝑆: defined as the prefix of the non-terminal symbols. 𝑆 is a subset of

𝑁, as {𝑛𝑡𝑠_} = {𝑛𝑡𝑠_}. {𝜀} and by definition {𝜀} ∈ 𝑇.

𝑆 = {𝑛𝑡𝑠_}

The context-free formal grammar constitutes the foundation of the analysis’

framework and defines its dynamic boundaries. During each application of the framework,

a formal language derived from the grammar is used, that narrows the scope of the

framework on the task at hand. Examples of the framework’s implementation and

adaptiveness are given in detail in the following sub-section. Notations are simplified to

avoid redundancy. Binding operators correspond to the production rules 𝑃௟ of the language

that are used for the formulas’ synthesis, while the subjects belong to the language’s

terminal set 𝑇௟. The schema below is given as an example to display the relations between

the assumed formal language and the framework’s operating sets. The set 𝐵𝑂 corresponds

to the binding functions, while the set 𝑆𝐵 corresponds to the subjects of the framework. As

a clarification, the multiplication symbol ∗ in 𝐵𝑂 is a simplification of the multiplication

98

operation and implemented as a function, while the same symbol in 𝑆𝐵 represents the

symbol itself as a character. Same stands for the operation
ௗ

ௗ௧
.

𝑆𝐵 = {𝑚, 𝑣, 𝑥} ⊂ 𝑇௟ = ൜𝑚, 𝑣, 𝑥, 𝑑, 𝑡,∗,/,
𝑑𝑚

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
,
𝑑𝑥

𝑑𝑡
,
𝑑𝑡

𝑑𝑡
ൠ ⊂ 𝑇 (4.2.3)

𝐵𝑂 = ൜∗,
𝑑

𝑑𝑡
ൠ ⊂ 𝑃௟ = ൜∗,/,

𝑑

𝑑𝑡
ൠ ⊂ 𝑃 (4.2.4)

4.2.2 Syntactic Perspective

The proposed methodology is comprised of two separate analytical perspectives for

each formula: the syntactic analysis and the semantic analysis. Under the syntactic

perspective, we adopt the common mathematical notion of viewing every mathematical

formula as a structured entity, belonging to the presented formal grammar. Adopting the

grammar’s general form, the composing elements for each formula consist of every

mathematical symbol that represents a variable or a constant, bound by the mathematical

and relational operators, all of which are included in the grammar’s terminal set. As it is

accustomed, the manipulation of the terminal symbols is performed through the predefined

production rules, discussed above, which also the main mean of ensuring that the

grammar’s syntactic rules are kept true. As for the final representation, expanding or

simplifying computations are supported through the presented framework.

Target

𝐻(𝐹) = − ෍ 𝑃(𝑥௜) log 𝑃(𝑥௜)

௡

௜ୀଵ

Expression

99

𝑆 ⇒ 𝐺 − 𝐶 ⇒ 0 − 𝐶 ⇒ − ෍ 𝐹

஼

௜ୀீ

⇒ − ෍ 𝐹

஼

௜ୀଵ

⇒ − ෍ 𝐹

௡

௜ୀଵ

⇒

⇒ − ෍ 𝐺 ∗ 𝑉

௡

௜ୀଵ

⇒ − ෍ 𝑃(𝑥௜)𝑉

௡

௜ୀଵ

⇒ − ෍ 𝑃(𝑥௜) log 𝐺

௡

௜ୀଵ

⇒ − ෍ 𝑃(𝑥௜) log 𝑃(𝑥௜)

௡

௜ୀଵ

Sequence of applied production rules

𝑆 ⇒ (52) ⇒ (1) ⇒ (70) ⇒ (2) ⇒ (24) ⇒ (63) ⇒ (26) ⇒ (75) ⇒ (26)

Figure 33: Formal modeling and production of mathematical formulas

4.2.3 Semantic Perspective

While the syntactic perspective is strict and specific, based on common

mathematical reasoning, the semantic part of the analysis is quite abstract. A formula

generated through the above production rules is by default of unknown significance or

validity; in most of the cases, it might be syntactically sound, but its semantics and meaning

are unvalidated. In contrast, a mathematical formula found in a technical document is

usually accompanied by complementing textual information on its utility and its

characteristics. Quite often, it is linked to visual elements, e.g., figures and graphs, that also

contribute to its semantic knowledge. Even in the unlikely event where no complementary

information is provided, the operations found in the formula or its normalized

representation can help define its semantic features, based on a priori knowledge, i.e., the

sum of multiple terms in decreasing or increasing grade order most likely signifies a

polynomial.

100

Based on these observations, the methodology presented below takes advantage of

an a priori knowledge on existing, validated mathematical formulas, in order to seek

metaknowledge that could potentially prove useful at understanding or describing

phenomena. Although in our experiments we mainly focus on structured physics domains,

like the Newtonian laws of motion and their derivatives, the methodology is domain-

agnostic and could be adapted on any topic, provided the corresponding setup preparation.

Essentially, the formal grammar is utilized as a generative framework to create new

mathematical formulas, based on two extracted subsets from the terminal set and

production rules set respectively. This results on an expanding layered graph 𝑮𝒓𝒆𝒔 plotting

the interactions between formulas through common mathematical operations, where the

nodes represent mathematical expressions, while the edges correspond to mathematical

operations.

Figure 34: Example of minimal G-res graph

4.2.4 Synthesis Formulation

Definition 4.1. Given a set of binding operations, 𝑶, and a set of subject formulas,

𝑺, the operation of mathematical formula synthesis is defined as:

101

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠(𝑶, 𝑺) ≔ ൜
𝑏(𝑠଴, 𝑠ଵ, … , 𝑠௞) | 𝑠ଵ,…,௞ ∈ 𝑺, 𝑏 ∈ 𝑶, 𝑘 ∈ {0,1, … , 𝑚௕}

and 𝑘 ≤ |𝑺|
ൠ

(4.2.5)

where:

𝑚௕ ∈ ℕ: maximum number of accepted arguments for operation 𝑏

∎

Domain definition is omitted, as it depends on the undefined set of binding

operations, 𝑂.

Synthesis, as defined above, acts as the main operation in the synthesis framework,

by constructing each level in the 𝐺௥௘௦ graph. In the next subsections, we dive into a

discussion, where we try to capture any risen issue or incompatibility than may occur.

4.2.5 Indeterminacy Checks & Imposed Conditions

The validity of each byproduct, i.e., each node above the first level, is unknown,

but can partially be validated by performing deterministic mathematical checks that seek

common indeterminacies. We tie out the potential indeterminable cases according to the

mathematical operations that bind the formulas and may pose restrictions – e.g., during a

division 𝒂/𝒃, the denominator b should always satisfy the relation 𝒃 ≠ 𝟎; during a matrix

multiplication 𝑨 × 𝑩 of matrices 𝑨𝒎𝟏×𝒏𝟏
 and 𝑩𝒎𝟐×𝒏𝟐

, the relation 𝒏𝟏 = 𝒎𝟐 should always

hold. These restrictions are checked and then generated as complementary conditions for a

formula to be valid. Thus, we end up characterizing each unknown formula with validity –

a categorical feature, which responds to three values: valid, conditional, and invalid. The

latter case of invalidity corresponds to the occasion where at least one of the generated

102

conditional relations cannot be satisfied. During the creation of a new formula, each

preexisting condition of the operand formulas is inherited by the byproduct, alongside with

any newly emerged condition.

In addition to the restrictions imposed by the utilized mathematical operations, we

also consider any restriction that might be forced or assumed by the operating environment.

E.g., consider the Newtonian laws of motion, which can also be considered as the

foundation for classical mechanics. Omitting the analysis of rotational movement, the

dominant variables met are those of time (𝑡), mass (𝑚), position and movement (𝑥),

velocity (𝑣), acceleration (𝑎), momentum (𝑝), work (𝑊) and kinetic energy (𝐸). One of

the main restrictions imposed by the operating environment is the distinction between

scalars and vectors. Newtonian physics define 𝑥, 𝑣, 𝑎 and 𝑝 as vector entities, usually

denotated as 𝑥⃗, 𝑥ො or 𝒙, and the entities of 𝑡, 𝑚, 𝑊 and 𝐸 as scalars. Consequently, strict

vector or scalar operators (e.g., outer product, see also hierarchy of calculations) are unable

to be applied on entities differently distinct. Another common source of imposed

restrictions is the defined domain of values for each entity. Under the presented scope, 𝑡

and 𝑚 are always non-negative, a fact that also leads to 𝐸 =
ଵ

ଶ
𝑚𝑣ଶ being strictly non-

negative, as 𝑣ଶ follows the same behavior. This generates the conditions:

[𝑚 ≥ 0, 𝑡 ≥ 0, 𝐸 ≥ 0] (4.2.6)

103

Typically, the Newtonian analysis of motion is performed under the scope of ℝ,

therefore complex or imaginary elements are not considered, resulting in expressions

similar to √−𝑚 being rejected as invalid.

Another imposed condition specific to the current domain, which falls in a unique

category on its own, is the law of inertia; it states that a body of mass 𝑚 remains at rest or

in a uniform motion unless a force is applied upon it. Furthermore, the mass 𝑚 of a body

is considered constant to time. The outcomes of operations that are non-variable (e.g.,
ௗ௠

ௗ௧
=

0) are not considered during the next level synthesis, as they were observed not to

propagate any meaningful information.

Figure 35: G-res with (right) and without (left) intra-level synthesis

Based on the discussion above, we provide the following definition of byproduct

invalidity.

Definition 4.2. A synthesis byproduct, 𝑦, is considered invalid if at least one of the

following statements holds:

(i) 𝑦 ∈ 𝚽, where 𝚽 is the set of constants

(ii) 𝑦 is accompanied by contradicting conditions

104

(iii)The synthesis operation of 𝑦 and its arguments are incompatible,

due to strict domain of operation.

∎

To provide an analytical example of invalid expression, we consider the following

setup:

Subject

1. 𝑦 = √10 − 𝑥

2. 𝑧 = √𝑥 − 10

Binding operators

1. Division (/)

(0): 𝑦 = √10 − 𝑥, (1): 𝑧 = √𝑥 − 10

 R1 R2 Synthesis Validity Conditions

Division 𝑦 = √10 − 𝑥 𝑧 = √𝑥 − 10
𝑦

𝑧
=

√𝑥 − 10

√10 − 𝑥
 Invalid

[𝑑𝑡 ≠ 0,
10 − 𝑥 ≥ 0,
𝑥 − 10 ≤ 0]

(0): 𝑧 = √𝑥 − 10, (1): 𝑦 = √10 − 𝑥

 R1 R2 Synthesis Validity Conditions

Division 𝑧 = √𝑥 − 10 𝑦 = √10 − 𝑥
𝑧

𝑦
=

√10 − 𝑥

√𝑥 − 10
 Invalid

[𝑑𝑡 ≠ 0,
10 − 𝑥 ≥ 0,
𝑥 − 10 ≤ 0]

Table 13: Example of invalidity occurrence

Due to the contradicting conditions that are imposed by the square root function

(while performing the corresponding indeterminacy check, we omit the complex space 𝐶

105

and its derivatives), the synthesis result produced by division is rendered invalid.

Invalidity was immediately spotted as this is an artificial setup constructed for this

purpose. In our chosen setup, invalidity tends to be uncommon, occuring deeper in the

analysis graph 𝑮𝒓𝒆𝒔. More examples can be found below, in the Hierarchy of

Calculations chapter.

4.2.6 Termination Criteria

Finally, we address the issue of termination criteria. While the synthesis process is

by definition deterministic, its termination occurs only if there are contradicting conditional

relations for all formula leaves of the latest tree level, rendering them invalid. This

dependency on the binding operators in many cases may result in infinite iterations. Thus,

we use a form of early stopping, terminating the iterations if, per say, for two subsequent

levels, there are no findings valid or semantically meaningful in the current setup.

Definition 4.3. The synthesis process terminates when one of the following cases

are satisfied:

(i) A predefined depth of synthesis layers has been reached.

(ii) No semantically valid synthesis byproduct has been formed in two

subsequent levels.

∎

106

4.2.7 Space Complexity

Below, we provide a basic theorem and derived corollaries on the space complexity

of each level of the synthesis analysis.

As the general case, we consider intra-level operations in 𝐺௥௘௦ available, and the

binding operators are not assumed to satisfy the commutative property. In the case where

all the available non-unary binding operators are commutative, the number of byproducts

is computed through the combination of subjects, ൫௡
௞

൯ =
௡!

௞!(௡ି௞)!
, instead of using their

number of permutations, 𝑃(𝑛, 𝑘) =
௡!

(௡ି௞)!
 .

Theorem 4.1. Let 𝑆 be the set of initial subjects, with 𝑚଴ = |𝑆|. Let also 𝑶௧ ⊆ 𝑶

be the set of operators accepting 𝑡 arguments, with 𝑏௧ = |𝑶௧| and 𝑡 ∈ {1,2, … , 𝑘} ⊂ ℕ,

𝑘 ≤ 𝑚଴. The number of synthesis outcomes that are constructed through the synthesis

operation in (4.2.5) is equal to:

𝑚ଵ = ෍ 𝑏௧ ∗ 𝑃(𝑚଴, 1)

௞

௧ୀଵ

− 𝑟ଵ
(4.2.7)

Where:

𝑃(𝑛, 𝑘) =
𝑛!

(𝑛 − 𝑘)!

(4.2.8)

Is the set of permutations per 𝑘 in a set of 𝑛 elements. The term 𝑟ଵ corresponds to

a regularization term towards towards redundant byproducts; either due to the

107

commutative property being effective, constant byproduct, or incompatibility between

binding operator and subjects.

Proof 4.1. For each 𝑜 ∈ 𝑂௧, the number of argument permutations 𝑜 can operate on

is be definition:

𝑃(𝑚଴, 𝑡) =
𝑚௢!

(𝑚଴ − 𝑡)!
 (4.2.9)

As there are 𝑏௧ such operators, the total number of buproducts will be:

𝑏௧ ∗ 𝑃(𝑚଴, 𝑡) = 𝑏௧ ∗
𝑚௢!

(𝑚଴ − 𝑡)!
 (4.2.10)

The sizes of available argument sets is in the worst case: {1,2, … , 𝑘} ⊂ ℕ, with 𝑘 ≤

𝑚଴. Therefore, the overall byproducts incorporate the outcomes of each operator and

arguments combination, minus the redundant or declined elements, whose number is

expressed as 𝑟ଵ. Thereafter, the final enumeration of byproducts at level-1 of 𝐺௥௘௦ is:

𝑚ଵ = ൫𝑏ଵ ∗ 𝑃(𝑚଴, 1) + ⋯ + 𝑏௞ ∗ 𝑃(𝑚଴, 𝑘)൯ − 𝑟ଵ

= ෍ 𝑏௧ ∗ 𝑃(𝑚଴, 𝑡)

௞

௧ୀଵ

− 𝑟ଵ
(4.2.11)

∎

Corollary 4.1.1. The space complexity of 𝑚ଵ is bounded by:

𝑂 ൭෍ 𝑏௧ ∗ 𝑃(𝑚଴, 𝑡)

௞

௧ୀଵ

൱ (4.2.12)

108

Proof 4.1.1. Emerges naturally as the worst case scenario for number of nodes in

level-1 of 𝐺௥௘௦ occurs when 𝑟ଵ = 0.

∎

Corollary 4.1.2. The number of nodes in the i-th level of 𝐺௥௘௦ is:

𝑚௜ = ෍ 𝑏௧ ∗ 𝑃 ቌ෍ 𝑚௝

௜ିଵ

௝ୀ଴

, 1ቍ

௞

௧ୀଵ

− ෍ 𝑚௝

௜ିଵ

௝ୀଵ

− 𝑟௜ (4.2.13)

Proof 4.1.2. The proof reasoning is identical to the one in in Theorem 4.1. In the

general case, where intra-level operations are enabled, the available synthesis subjects

include the nodes of every level of 𝐺௥௘௦ prior to level−𝑖, which sum up to: 𝑚଴ + ⋯ 𝑚௜ିଵ.

To avoid redundant nodes, elements that exist in previous levels are omitted.

Therefore, the regularization term becomes: 𝑚଴ + ⋯ 𝑚௜ିଵ + 𝑟௜. The term 𝑟௜ corrensponds

to 𝑟ଵ mentioned above, for the level−𝑖. The indicator 𝑘 also adapts to be: 𝑘 ≤ 𝑚଴ +

⋯ 𝑚௜ିଵ

The overall enumeration of elements in level−𝑖 becomes:

109

𝑚௜ = ෍ 𝑏௧ ∗ 𝑃(𝑚଴ + ⋯ 𝑚௜ିଵ, 1)

௞

௧ୀଵ

− (𝑚଴ + ⋯ 𝑚௜ିଵ + 𝑟௜) =

= ෍ 𝑏௧ ∗ 𝑃 ቌ෍ 𝑚௝

௜ିଵ

௝ୀ଴

, 1ቍ

௞

௧ୀଵ

− ෍ 𝑚௝

௜ିଵ

௝ୀଵ

− 𝑟௜

(4.2.14)

∎

Corollary 4.1.3. The space complexity of 𝑚௜ is bounded by:

𝑂 ቌ෍ 𝑏௧ ∗ 𝑃 ቌ෍ 𝑚௝

௜ିଵ

௝ୀ଴

, 1ቍ

௞

௧ୀଵ

ቍ (4.2.15)

Proof 4.1.3. Identical to Corollary 1.2.

∎

4.2.8 Hierarchy of Calculations

A problem that arises with the chained operations is the incompatibility of

arguments when applying operations that do not satisfy the assumed properties. A

representative example is matrix multiplication. As seen in the sematic perspective’s

introduction, for 𝑨 × 𝑩 of matrices 𝑨𝒎𝟏×𝒏𝟏
 and 𝑩𝒎𝟐×𝒏𝟐

, the relation 𝒏𝟏 = 𝒎𝟐 should hold

by definition. In the event that the relation holds, 𝑩 × 𝑨 cannot be valid unless 𝒏𝟐 = 𝒎𝟏,

i.e., the commutative property does not hold, both under the validity’s perspective, as well

as the calculation’s result. In our current setup, the application of such an operation imposes

another restriction, but given fixed dimensionality of matrices, this would result in

incompatibility.

110

Another common case is found in operations that map the result to a different plane.

E.g., in the vector domain, the common operations of inner product (𝒂 ⋅ 𝒃 | ⟨𝒂, 𝒃⟩) and

outer product (𝒂  𝒃) both receive vector arguments, but the former outputs to R, while

the later outputs to the vector space. Depending on the other components of the synthesis

expansion, the order of execution when using such binding operators may greatly affect

the emerging cases of invalidity; e.g., ൻ𝒂ሬሬ⃗ , 𝒃ሬሬ⃗ ൿ outputs a scalar and its further synthesis using

inner or outer product results results in invalidity.

That above cases highlight that, in a partial search of potential valid expressions,

the order of calculations that results to the longest path should be carefully selected, so as

to develop the synthesis to its full potential. Usually, this corresponds to the longest path

in the corresponding knowledge graph, from roots to leaf. This is not a case that arises in

the proposed method though, as every desired combination of expressions is considered

due to its grid-search base. The main reason we adopt such an exhaustive mentality derives

from the need to inspect any possible byproduct of synthesis, as no other validity signs or

semantic indications are used.

An explanatory graph that showcases the completeness of the methodology can be

seen in the Appendix, section A.4.2

4.2.9 Methodology

Combined together, the presented notions structure the methodology for the

exploratory synthesis of mathematical formulas, which can be seen in figure 36 in the form

of pseudocode and in figure 37 as a flowchart.

111

Algorithm 5 Formula Synthesis Algorithm

27: define subject formulas 𝑆

28: define binding operators 𝐵

29: define Indeterminacy Checks (𝐼𝐶) derived from the binding operators

30: define the maximum number of analysis levels 𝑚𝑙

__

31: 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ← {∅}

32: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ← {∅}

33: 𝑠𝑡𝑎𝑡𝑢𝑠 ← {∅}

34: 𝑙𝑒𝑣𝑒𝑙 ← 1

35: for every subject 𝑠 in 𝑆 do

36: 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝐼𝐶(𝑠)

37: append restrictions into conditions

38: append 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 into 𝑠𝑡𝑎𝑡𝑢𝑠

39: while (∃𝑥: 𝑥 ∈ 𝑠𝑡𝑎𝑡𝑢𝑠 ∧ 𝑥 ≠ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑) ∧ (𝑙𝑒𝑣𝑒𝑙 < 𝑚𝑙) do

40: 𝑠𝑡𝑎𝑡𝑢𝑠 ← {∅}

41: 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠௟௘௩௘௟ ← {∅}

42: for every binding operator 𝑜𝑝 in 𝐵 do

43: for every permutation 𝑝௔௥௚ of subjects of a permissible argument list

length do

44: 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 ← 𝑜𝑝(∗ 𝑎𝑟𝑔𝑠)

45: 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝐼𝐶(𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

112

46: append 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 into 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠௟௘௩௘௟

47: append 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 into 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

48: append 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 into 𝑠𝑡𝑎𝑡𝑢𝑠

49: append 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠௟௘௩௘௟ into 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

50: 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1

51: return 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑡𝑎𝑡𝑢𝑠

Figure 36: Pseudocode describing the synthesis methodology

113

Figure 37: Flowchart of the main process

The methodology requires the definition of the described setup, which sums up to

the set of subjects 𝑆, the set of binding operators 𝐵, the indeterminacy checks’ mechanism

𝐼𝐶, and the maximum number of analysis levels, 𝑚𝑙. The latter works as a termination

criterion, but the methodology is always subject to early termination, in case all the leaf

114

nodes on the latest level of analysis are synactically or semantically invalid. Both cases are

captured by the condition in line 13 of the pseudocode, and the corresponding conditional

block in the flowchart. Concerning the terms used in the flowchart, 𝑃௢௣ symbolizes the set

of every permutation 𝑝௔௥௚ of permissible argument list length per synthesis operator, 𝑜𝑝 ∈

𝐵. Similarily, 𝑠 corresponds to the product of the synthesis operation, while 𝑣௦ and 𝑟௦ are

the outcomes of 𝐼𝐶, regarding the validity and the restrictions of 𝑠.

4.2.10 Intra-level Synthesis

A method implemented as described in figures 36 and 37 utilizes only the leaf nodes

of each analysis level. This is done to confer more clarity and explainability to the provided

visual examples. The incorporation of non-leaf nodes during the synthesis can easily be

achieved by enriching the subjects per analysis level right before the synthesis. For a global

perspective, the enrichment should include all unique previous byproducts and the initial

subjects. For a partial analysis, the enrichment could also be confined to certain levels. The

set examined during the termination criterion should still be kept as the leaf nodes.

115

Figure 38: Intra-level synthesis

4.2.11 Framework’s Proof of Concept

To establish its efficacy, the methodology is applied on the set of subjects {𝑚, 𝑥},

utilizing multiplication as a binary synthesis operator, as well as two unary synthesis

operators, differentiation through time and indefinite integration through time. Based on

Sympy’s infrastructure (Meurer et al, 2017)[53], 𝑥 is expressed as function of time (𝑡),

while the 𝑚 remains a symbol, invarying to time.

Binding Functions:

1. Multiplication (∗)

2. Differentiation through time ቀ
ௗ

ௗ௧
ቁ

3. Integration through time (∫ 𝑑𝑡)

Subjects / Level 0:

116

{𝑚, 𝑥(𝑡)}

The level 0 of the synthesis analysis is identical to the set of subjects. The level 1

and level 2 outcomes, together with the 𝐺௥௘௦ graph, are provided below:

Level 1

൜
𝑑

𝑑𝑡
𝑚,

𝑑

𝑑𝑡
𝑥(𝑡), න 𝑚𝑑𝑡 , න 𝑥(𝑡)𝑑𝑡 , 𝑚𝑥(𝑡)ൠ

Level 2

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑ଶ

𝑑𝑡ଶ
𝑥(𝑡),

𝑑

𝑑𝑡
𝑚𝑥(𝑡), න 𝑚

𝑑

𝑑𝑡
𝑥(𝑡)𝑑𝑡 , න න 𝑚 𝑑𝑡𝑑𝑡 , න න 𝑥(𝑡) 𝑑𝑡𝑑𝑡 , න 𝑚𝑥(𝑡)𝑑𝑡 , 𝑚 න 𝑚𝑑𝑡 ,

𝑚ଶ𝑥(𝑡), 𝑥(𝑡)
𝑑

𝑑𝑡
𝑥(𝑡), 𝑥(𝑡) න 𝑚 𝑑𝑡, 𝑥(𝑡) න 𝑥(𝑡) 𝑑𝑡, 𝑚𝑥ଶ(𝑡),

𝑑

𝑑𝑡
𝑥(𝑡) න 𝑚 𝑑𝑡,

𝑑

𝑑𝑡
𝑥(𝑡) න 𝑥(𝑡) 𝑑𝑡, 𝑚𝑥(𝑡)

𝑑

𝑑𝑡
𝑥(𝑡), ൬න 𝑚𝑑𝑡൰ න 𝑥(𝑡)𝑑𝑡, 𝑚𝑥(𝑡) න 𝑚𝑑𝑡 , 𝑚𝑥(𝑡) න 𝑥(𝑡)𝑑𝑡

⎭
⎪⎪
⎬

⎪⎪
⎫

Resulting Graph

At this point, it is possible to incorporate a form of the aforementioned a priori

knowledge, and identify matchings with the outcomes of each level. Specifically, given the

a priori knowledge 𝐴𝑃𝐾, while keeping the synthesis outcomes unoptimized, we get the

following matchings:

117

𝐴𝑃𝐾 = ቊ𝑥: 𝑥(𝑡); 𝑣:
𝑑

𝑑𝑡
𝑥(𝑡); 𝑝: 𝑚𝑣; 𝑎:

𝑑ଶ

𝑑𝑡ଶ
𝑥(𝑡); 𝑎:

𝑑

𝑑𝑡
𝑣; 𝐸:

𝑚𝑣ଶ

2
; ቋ

Level 1 / Substitutions

൜
𝑑

𝑑𝑡
𝑚, 𝒗, න 𝑚𝑑𝑡 , න 𝑥(𝑡)𝑑𝑡 , 𝑚𝑥(𝑡)ൠ

Level 2 / Substitutions

⎩
⎪
⎨

⎪
⎧𝒂, න 𝑣𝑑𝑡 , න න 𝑚 𝑑𝑡𝑑𝑡 , න න 𝑥 𝑑𝑡𝑑𝑡 , න 𝑚𝑥𝑑𝑡 , 𝒑, 𝑚 න 𝑚𝑑𝑡 ,

𝑚ଶ𝑥, 𝑣𝑥, 𝑥 න 𝑚 𝑑𝑡, 𝑥 න 𝑥 𝑑𝑡, 𝑚𝑥ଶ, 𝑣 න 𝑚 𝑑𝑡, 𝑣 න 𝑥(𝑡) 𝑑𝑡,

𝑝𝑥, ൬න 𝑚𝑑𝑡൰ න 𝑥𝑑𝑡, 𝑚𝑥 න 𝑚𝑑𝑡 , 𝑚𝑥 න 𝑥(𝑡)𝑑𝑡
⎭
⎪
⎬

⎪
⎫

It is noticeable that, in two levels of analysis, the expressions of acceleration,

velocity and momentum are identified; either standalone, or nested into an expression.

Synthesizing a level deeper, we also get occurences of the accumulated force’s expression

(𝐹). As the number of synthesis instances grows, it is hard to be universallly displayed,

neither as a set nor in the 𝐺௥௘௦. Therefore, we simply exhibit the leaf to root paths that

contributed to the synthesis of the expression, in figure 39. Finally, we expand to the use

of binding operators with multile argument, as shown in figure 40.

118

Figure 39: Occurrences of F relation after substitution in the 3rd level of synthesis

Figure 40: Level-2 outcome of binding operation (*) with multiple arguments

We conclude the proof of concept walkthrough by discussing on the transition to

realistic cases of mathematical formulas synthesis. One of the first obstructions met in a

realistic example is the selection of binding operators. While there is provided a substantial

arsenal of synthesis operations in mathematics or generally scientific domains, due to the

volume of redundant outcomes and the computation cost, the use of semi-random large sets

of operators is prohibited. Therefore, the question that arises is which operations indicate

119

the potential for a fruitful synthesis. Prior, the assumed setup consisted of two simplistic

main subjects, {𝑚, 𝑥(𝑡)}, binded by one binary (multiple) and two unary synthesis

operators {
ௗ

ௗ௧
, ∫ 𝑑𝑡 ,∗}. In the case of Newtonian Motion, it is common knowledge that

derivation and integration though time, in addition to multiplication of physical quantities,

derive the majority of the established expressions. It could be observed through the patterns

of the subject expressions, but for such actions to be universally applied, justification and

formal establishing are required.

 Another bottleneck met is the dependency on the a priori knowledge used to

validate the synthesis results. When using subjects that fall into the state-of-the-art

category, we hypothetically get closer to the creation of an expression describing an

unstudied phenomenon, but have no explicit means of proving so. The use of a priori

knowledge in the presented examples was sufficient for the proof of concept, but it was

intentionally and manually selected, therefore it offers no means of generalization.

We believe that both of these issues can be approached by leveraging the modern

robustness of probabilistic inference and the increasing amount of openly available data,

and therefore concerning ideas and implementations are discussed and analyzed in related

sections that follow through the rest of the dissertation. Tracing graphs of such synthetic

cases are offered below, where the synthesis levels of analysis is designed using simply the

formulas of kinetic energy and accumulated force in Newtonian motion.

120

Figure 41: Tracing graphs of complex unclassified nodes

This walkthrough of the synthesis methodology, as presented above, manifests the

proof of concept on the core idea introduced by the current work: the assumption that the

systematic synthesis of mathematical expressions describing aspects, actions, behaviors or

phenomena in a certain scientific field, may result in novel formulas that partially or

completely describe phenomena derived or related to the ones assumed. Up to this point,

we introduced the motives that drive this research effort, established a formal modelling

scheme as our main framework, as well as described and displayed a complete synthesis

methodology. With the last complete example on the field of Newtonian Motion – see also

appendix section A.4.1 – , using a collection of a priori established expressions, we

performed the proof of concept of the initiate, and concluded with a discussion on the

bottlenecks that such a task imposes to the general case of state-of-the-art formuals

subjects. In the next part, we address the synthesis outcome manipulation without assuming

any domain-specific a priori knowledge, based on reasoning and probabilistic inference.

121

4.3 A-Priori-Knowledge Acquisition

4.3.1 Knowledge Outsourcing

Figure 42: Validation Scheme

According to the aforementioned synthesis framework, the outcome of the

synthesis process is a set of expressions, each of which falling to one of the following three

categories: syntactically or semantically invalid, syntactically and semantically valid, and

syntactically valid but semantically unclassified. The details of the syntactic evaluation of

each expression is based on the definition of the existing setup and the imposed

indeterminacy checks; its prcedures can be automated, and its details were thouroughly

presented in the previous section. The challenging aspect of the evaluation is rather the

semantic meaning of each formula. While it was also discussed following the syntactic

analysis, semantic interpretation of a formula was stated as completely dependent on the

൜
𝑑

𝑑𝑡
𝑚ൠ ൜න 𝑚𝑑𝑡 , න 𝑥𝑑𝑡 , 𝑚𝑥ൠ {𝑣}

൜
𝑑

𝑑𝑡
𝑚, 𝑣, න 𝑚𝑑𝑡 , න 𝑥𝑑𝑡 , 𝑚𝑥ൠ

Discarding Rules A priori knowledge

Syntactically or
semantically invalid

Syntactically Valid,
Semantically Unclassified

Syntactically &
Semantically Valid

122

knowledge database, which comprises the available a priori knowledge on the specific

subject. E.g., it is the existing knowledge of the definition of stable velocity in Newtonian

motion, 𝑣 =
ௗ௫

ௗ௧
, that indicates its classification to the valid subset. Naturally, an a priori

knowledge base is not provided for unseen expressions, thus, it is trivially non-existent in

the case of state of the art subject expressions, the de facto case during a scientific

document’s analysis.

To address the absence of a priori knowledge, we turn towards existing collections

of expressions and search for features or patterns that will indicate probabilistically the

validity of a synthetic outcome. More specifically, the methodology takes advantage of

well-established and organized datasets of mathematical formulas on a specific field (in

this instance, Classical Mechanics & Newtonian Motion) to obtain the means of

disambiguating the semantic validity of the sythesis outcomes. Ultimately, by leveraging

outsourced mathematical formula data, we convert the problem at hand into an

extrapolation of a machine learning; the reasoning and the techniques used are thoroughly

presented in the next subsections. The process is by default uncertain and may resemble

“guessing based on observations”, but it is an inevitable flaw, as by definition the

descripted task cannot provide labeling or any form of validation of the results.

As a convention, the probabilistic values assigned on each outcome will represent

from now on a confidence score, indicating its potential to be semantically valid.

123

4.3.2 Dataset

Dealing with a newly defined and specific task, there exist no predefined

benchmark datasets that could be explicitly utilized; thus, a brief survey was performed on

fields and tasks that deal with typed mathematical formulas. We chose to proceed with the

Feynman Symbolic Regression Database dataset (Max Tegmark, MIT) [76], also cited and

introduced by (Udrescu & Tegmark) [75]. The Feynman dataset consists of 120 labeled

pairs for symbolic regression, where the input corresponds to samples from the value

domain of 120 functions, while the label corresponds to the symbolic representation of the

function itself. The functions constitute established formulas from various fields of physics

and are derived from the Feynman Lectures on Physics collection (Feynman et al, 1963)

[7][8][9]. As the task at hand does not involve any means of symbolic regression but rather

deals explicitly with the symbolic formula, only the labels where extracted and used.

Another notable candidate dataset is the im2latex-100k (Kanervisto, 2016) [80],

introduced in the work of (Deng, Kanervisto et al, 2016) [81]. It comprises 100 thousand

pairs of images and LaTeX formulas, aiming at the task of identifying and producing the

LaTeX string representation of formulas using their image format. Similarily to

aforementioned dataset, only the labels are taken into consideration. We should also

highlight that the use of content outside of the classical mechanics’ domain is crucial, as it

helps analyze the behavior of the methodology, when trained on a different subject than

the one at hand, i.e., during the case of subject extrapolation (partial or complete).

124

4.3.3 Differentiation from Symbolic Regression

At this point we should note the similarities as well as the differentiations of the

symbolic regression task and the proposed methodology. In the general case of symbolic

regression, given a set of elements, (𝑥ଵ, … , 𝑥௡, 𝑦), paired with the observed resulting value

𝑦 if these elements where provided to a hypothesized function, we assume this function as

𝑓, i.e., 𝑓(𝑥ଵ, … , 𝑥௡) = 𝑦; then, examine a usually vast, but carefully restrained set of

symbolic terms through regression inspired techniques, aiming to reconstruct the symbolic

representation of function 𝑓. Examples of symbolic regression approaches that follow this,

or similar assignment, can be seen in the highly aclaimed works of (Udrescu & Tegmark)

[75], (Schmidt & Lipson, 2009) [82] and (Petersen et al, 2020) [83], among others. A

symbolic regression benchmark database containing benchmarked approaches and datasets

is maintained by William La Cava and the Computation Health Informatics Program at

Harvard Medical School, found in [84].

In contrast, the synthesis technique used in this dissertation does not search a

predefined space of symbolic terms. Our search space is dynamically created, by applying

synthesis operations on the chosen subjects, which are usually minimal, accounting from

two to five. Additionally, the current methodology does not leverage any labeled data, but

rather focuses on finding patterns of the a priori knowledge elements, specifically on the

synthesis operator usage. The end result is also different in nature, as the output of our

system is a score assignment to each synthesis outcome, expressing their estimated

“potential” value. The main differentiation though can be spotted on the desired outcome;

symbolic regression, in its general form, seeks the symbolic representation of a function

whose domain field, value range and semantics are partially known, while in our case, we

125

deal with symbolic representations whose semantic meaning is unknown and strive to

discover their potential in being valid. Despite the differences, the common ground of

utilizing symbolic representation of mathematical formulas and the search for an optimal

synthesis of terms is indisputable; most likely, our task can get complemented by symbolic

regression-inspired ideas, a case which we are currently examining.

4.3.4 Graph Representation of Formulas

Being SymPy objects, the outcomes of the synthesis methodology display a

sympolic representation. This implies a textual form of operators and arguments – refered

as func and args in SymPy’s documentation -, following a particular set of unrestrictive

conventions – e.g., the expression
௫

௬ିఒ
 is encoded as

𝑀𝑢𝑙 ቀ𝑥, 𝑃𝑜𝑤൫𝐴𝑑𝑑൫𝑦, 𝑀𝑢𝑙(−1, 𝜆)൯, −1൯ቁ; assuming 𝑥, 𝑦, 𝜆 are registered as symbols and

-1 as an integer, division is expressed as multiplication by a term at the power of -1 and

subtraction as the addition with a term multiplied by -1. We can easily convert to a string,

LaTeX or MathML (Ausbrooks et al, 2014) [41], but the expression directly corresponds

to a tree graph:

126

Figure 43: Tree representation of x/(y-λ).

The tree as a representation provides a hierarchical structure that lifts the need of

parentheses met in symbolic string formats and constitutes to a richer dimensionality input

to learning techniques. A similar discussion can be found in the acclaimed work of (Lample

& Scharton) [85], where the authors genuinely resort in expressing the tree structure as a

sequence in prefix notation, e.g., [∗ 𝑥^ + 𝑦 ∗ −1 𝜆 − 1], which also avoids parentheses and

is shorter in length, then use Attention-based Transformers as their inference techniques

on their described task of reasoning on the calculations of the symbolic expressions.

In the presented methodology, we adopt the graph representation as is, and utilize

modern architectures of Graph Neural Networks as our inference technique. To do so, for

each formula in the acquired datasets we extract the set of nodes, the set of edges and the

adjacency list of edges, encapsulating the connectivity and the topology of the graph, as

well as rendering the data into a format compatible with conventional graph neural network

architectures. For the time being, we keep the connectivity of the nodes unbiased, therefore

no edge weights are used. Our default setup includes one node feature, which is the type

127

of the outer operation of the formula – e.g., the feature of the node representing

𝑀𝑢𝑙 ቀ𝑥, 𝑃𝑜𝑤൫𝐴𝑑𝑑൫𝑦, 𝑀𝑢𝑙(−1, 𝜆)൯, −1൯ቁ would correspond to [𝑀𝑢𝑙], the feature of the

node representing 𝑃𝑜𝑤൫𝐴𝑑𝑑൫𝑦, 𝑀𝑢𝑙(−1, 𝜆)൯, −1൯ would correspond to [𝑃𝑜𝑤], etc. (see

SymPy’s symbolic representation). The only graph feature incorporated is the type of the

outermost operation of the symbolic representation of the whole formula. – e.g., the feature

of the graph representing the formula 𝑀𝑢𝑙 ቀ𝑥, 𝑃𝑜𝑤൫𝐴𝑑𝑑൫𝑦, 𝑀𝑢𝑙(−1, 𝜆)൯, −1൯ቁ would

correspond to [𝑀𝑢𝑙].

Figure 44: Graph attribute details

4.3.5 Description of the Graph Neural Network model

(Graph Prediction)

Operating on formula graphs as a whole, we utilize a graph neural network

architecture containing a readout layer for a unified graph embedding, as seen in the work

of (Xu et al, 2019) [86], also followed by the PyTorch Geometric related article on the

128

graph classification task through GNNs (Fey & Lenssen, 2019) [87]. The netork comprises

three graph-adapted convolutional layers, inspired by (Kipf & Welling, 2017) [88],

enriched with skip-connections, and relu activation. The convolutions are followed by the

averaging readout layer and a dropout normalization, ending in a dense layer that produces

the predicted logits.

The number of classes is equal to the unique binding operators identified in the

provided data, which for the Feynman dataset accounts for 10 classes. Batch size is 32.

Node, edge and graph features, together with the edge weights are described in the Formula

Graph Representation subsection above. Training is performed through the typical Adam

variation of Gradient Descent (Kingma and Ba, 2014)[64], on regular cross-entropy loss.

4.3.6 Synthesis Prediction on Disjoint Graphs

In subsection (X.), we stated our objective to be the assignment of a confidence

score on the potential of all the synthesis results. To achieve this, firstly we make the

process of confidence assignent more manageable, by addressing the task of confidence

score assignment to every available binding operator, for a given set of formulas. Secondly,

we utilize the described preprocessing scheme and GNN model on the Feynman dataset,

which results in a robust classifier on the task.

The main idea involves around the decomposition of a given formula into its

outermost binding operation and its respective arguments, which is a straight implication

of reversing the SymPy’s symbolic representation. The formulas’ graphs that result from

the decomposition are included into a single, disjoint graph, while the original outermost

129

binding operation is used as the graph’s feature and label, similarly to the description of

the Formula Graph Representation section.

Figure 45: Extraction of disjoint graph and label

4.3.7 Results & Discussion

The GNN model was trained on the disjoint adaptation of the Feynman dataset,

configured as described in the previous subsection, and trained for 200 epochs with early

stoping. Specifically, 10 classes are derived from the Feynman dataset, the last of which

bears the name Function and includes miscellaneous or non-major types of functions – e.g.,

arcsin() etc. It is a straight normalization task, with the only abnormality observed being

the imbalance class distribution, as it can be seen in table 14, which the model seems to

overcome successfully (excluding the 𝐴𝑑𝑑 class, which tends to be interpreted as 𝑀𝑢𝑙).

130

Train Accuracy Test Accuracy
0.9531 0.9063
 Ground

Truth
Predictions Ground

Truth
Predictions

Mul 56 56 Mul 28 31
Pow 3 6 Pow 3 1
Add 3 _ Add 1 _
Function 2 2 _ _ _

Table 14: Imbalanced class distribution & predictions analytics

To reach an estimation of confidence, predicted logits are normalized through a

min-max normalization scheme to provide a value in the [0,1] domain for each class. An

example of the estimated confidence for a random sample from the test set is provided in

table 15:

CLASS PROBABILITIES

Add 0.7782861590385437 Exp 0.05868188664317131

Atom 0.08954363316297531 Log 0.07360976189374924

Mul 1.0 Sin 0.05607523396611214

Pow 0.5108705759048462 Tanh 0.09291713684797287

Cos 0.07826695591211319 Function 0.0

Table 15: Confidence score through GNN logits

We get a 5-fold cross-validation accuracy of 0.9368 on the Feynman dataset.

We conclude the results section by providing a sample on the synthesis framework

experimentation. Using the unsimplified expressions:
௔మ∗௠య∗௩మ(∫ ௔∗௠ௗ௧) ∫

೘

మ
ௗ௧

ଶ
 and

௔మ∗௠ర∗௩ర

ସ
,

we get an initial confidence score for each of the binding operation classes in our model.

131

Figure 46: Formulas derived from the synthesis framework & their predicted class probabilities

As seen, the confidence scores are assigned to the binding operators’ set of the

dataset, not of the framework. This observation implies that extrapolation might prove

unfeasible for unrelated scientific domains. For closely related data though – e.g., the

Feynman dataset and our framework’s proof of concept – extrapolation may be

successfully achieved, despite the use of different operations. The main cause of this

compatibility is the expressiveness we encounter in the mathematical domain, as

mathematical operators tend to form derivation trees (we are all familiar with the abstract

but generally true statement that all mathematical operations are derived by the 4 basic

ones).

4.3.8 Self-evaluation through Validity Classification

One of the most prominent concerns of the presented framework is the absence of

an evalutation mechanism. The absence is derived by the nature of the data used, as we

ideally try to predict the most promising direction during the construction of new

132

mathematical terms, describing new scientific phenomena; therefore, it is implied by

definition that there are no ways of evaluating the resulting syntheses. To address this

fundamental issue, we devise an approach that is also centered on the acquired a priori

knowledge, but aims in reassuring the validity of given formula graphs, which in this

instance correspond to the graphs sythesized according to the disjoint graph classification

output.

Similarily to the disjoint classification task, the validity reassurance is achieved

through deep geometric learning techniques. The architecture of the refered graph neural

network is slightly different to the aforementioned – see also [17][18] – but shares the same

core of graph convolutional layers, based on [19]. It differentiates itself through two

distinct modifications: firstly, is uses entire consistent graphs of single mathematical

formulas, labeled as either valid or invalid, while, secondly, the output layer of the model

is also modified to perform a binary classification task. Thus, instead of assigning

confidence scores to the available binding operators, it aims to predict the validity of its

input.

The formula graphs and the corresponing labels used for this task are obtained from

both the elements of the Feynman dataset and their synthesis derivatives. Specifically, each

of the dataset formulas is broken into subgraphs for each node that shares a connection

with the root (which in the disjoint graph constituted the ground-truth synthesis operator).

The formulas described by these subgraphs act as the subject terms of the synthesis

framework. The binding functions, both unary or of multiple arguments, are set by default

as the operations found in the original formula. From this point and onwards, we define

and follow the upcoming conjecture concerning the synthesis derivatives:

133

Conjecture 1. The result of a semantically valid formula with an altered root

binding operator is considered a semantically invalid formula.

∎

There are two reasons that drive us to the this conjecture. The first is the statistical

observations on the resulting formulas during the proof of concept. We notice that, in the

general case, a subset of synthetic results derived from the same subject terms, contains at

most one formula that belongs to the a priori knowledge. However, we are in no position

to guarantee that no false negatives will occur, as we possess neither an a priori knowledge,

nor an unbiased validation mechanism to verify. What we can assume, though, based on

the same statistical observations, is that the number of hypothesized false negatives is

insignificant to the training process and will not bias the inference capabilities of the model.

Following the space complexity definitions from 4.2.7, the synthesis process

outputs are monitored by the following relation:

𝑚ଵ = ෍ 𝑏௧ ∗ 𝑃(𝑚଴, 𝑡)

௞

௧ୀଵ

− 𝑟ଵ (4.3.1)

Where 𝑚ଵ corresponds to the number of formulas produced, 𝑡 to the number of

arguments per binding operator, 𝑘 to any set of arguments cap (otherwise set to the number

of initial subjects 𝑚଴), 𝑏௧ to the binding operators compatible with 𝑡 arguments and 𝑚଴ to

the number of intial subjects. The term 𝑟ଵ is a regularization term that removes redundant

elements due to commutativity or constants. Through repeating efforts, it is observed that

the disproportionality of classes reaches the levels of 9% for positive instances, compared

134

to 91% for negative instances. This class imbalance was noticed to suppress the

effectiveness of the graph convolutional model, a phenomenon regularily spotted with

modern GNNs and instances of real-world problems as discussed in (Zhao et al, 2021) [21],

where the vast majority exhibits imbalanced classes. We counter the disproportionality by

regulating the amount of invalid instances while keeping stable the valid instances to 96

samples and maximizing the total size; the synthetic nature of the data, together with the

task formulation, allow for such tweaks in the data distribution, without corrupting the

nature of our task (as it may have happened with a real-world dataset, or task). Best results

were recorded for a 75% - 25% split, where our graph convolutional model reached a mean

test accuracy of ~0.98 on a 4-fold cross-validation.

Figure 47: GNN train and test accuracy on the constructed dataset

135

The self-evaluation procedure concludes with the application of the GNN inference

model on the most confident result of the disjoint graph classification outputs.

Mathematically, the self evaluation task could be described as:

𝑁𝑁௩௔௟ ቀ𝑎𝑟𝑔𝑚𝑎𝑥 ቀ𝐺𝑁𝑁௢௣(𝐺ௗ)ቁ (𝐺ௗ)ቁ (4.3.2)

Where 𝐺𝑁𝑁௩௔௟ refers to the validation graph convolutional model, 𝐺𝑁𝑁௢௣ refers

to the synthesis operator graph convolutional model, and 𝐺ௗ is the disjoint graph of the

terms under inspection. Its practical use can be seen in cases where the highest predicted

confidence scores by 𝐺𝑁𝑁௢௣ are close, and the 𝐺𝑁𝑁௩௔௟ classifies highest scoring operator

as invalid but the second in order operator as valid. This adds the acceptance margin for

such a distinction as another hyperparameter to our method, which we tend to consider in

case the confidence scores differ less than 10%, and is set as such intuitively. The overall

pipeline of training, inference and self-evaluation can be seen in the workflow diagram in

figure 48.

136

Figure 48: Training, inference & self-evaluation pipeline

4.4 Conclusion

In this chapter, we introduce the ambitious task of directed mathematical formula

synthesis. We hypothesize the mathematical formulas found in technical documents as

metadata, and explore ways of extracting meaningful knowledge on their potential as

synthetic components, instead of synthesis byrpoducts. To do so, we introduce a complete

synthesis framework, based on the graph representation of mathematical formulas, that

allows for the systematic creation of syntactically correct but semantically unclassified

formulas. During the framework introduction, we discuss the limitations that arise, the

imposed restrictions, and the dependency on the subject domain’s a priori knowledge. In

response to this, we propose a simplistic graph alteration that creates GNN-based graph

clasification instances, and therefore allows for the use of robust deep learning methods to

fill the a priori knowledge gap in the state-of-the-art level. Motivated by the absence of

137

ground-truth labels, we also develop a self-evaluation mechanism, by leveraging the

introduced synthesis framework to create valid and invalid instances. We then train a graph

convolutional model identical to the aforementioned on the synthetic instances, that acts as

a validity indicator on our initial predictions. We conclude with an extended proof of

concept on both the synthesis framework and the graph classification task on the Feynamn

physics dataset.

Our main motivation is to ignite the interest on the subject and open the path for its

development as a distinct task. The presented work is but a mere introduction on the

directed formula synthesis. A promising aspect that we have not covered is the

intepretability of valid synthesis byproducts. The semantics of the byproduct’s components

are already known, therefore, the confidence scores could provide an association between

the components’ sentiment and the implication of the predicted operation to describe the

byproduct’s interpretetion. Additionally, there are numerous other approaches that could

be used to provide a confidence score for the validity of synthetic formulas, as well as

numerous issues that have not been addressed. Cross-domain synthesis, selection of

binding operators, extrapolation and a clean form of evaluation comprise some of the

upcoming challenges, to name a few. We are currently working on the development of task

mappings and the effect of only partially correlated a priori knowledge bases. We are also

experimenting with types of representation beyond the symbolic. During the proposal

defense, we exhibited results of projecting symbolic mathematical objects to vector spaces

and using unsupervised learning to capture basic mathematical properties. We believe that

such an effort can both augment the existing framework’s capabilities and offer a path to

interpretability. We display our initial in token and expression level results underneath.

138

(a) (b)

(c)

Figure 49: Vector space projections of mathematical tokens

139

5. Epilogue

140

5.1 Conclusion

We began our effort in chapter 1, by realizing the necessity of the automated

understanding of technical documents and distinguishing two under-researched but

beneficial modalities, the automated comprehension of mathematical formulas and the

automated pseudocode extraction. We then proceed in chapter 2 to a thorough investigation

of the related literature on both topics.

Based on literature overview observations, we begin our research activity on the

automated pseudocode extraction task in chapter 3, by setting the basis of a functional

modelling infrastructure for digital diagrams images found in technical documents. We

identified the existing flaws and suggested a novel and complete framework that addresses

the task. The core functionalities of our methodology are summed up to the decomposition

and re-composition of digital circuits under a formal language perspective, generative

capabilities on digital circuit images, the annotation mechanism, the graphical

representation functions and the specialized data augmentation. Our main contributions on

the subject are stated through the following achievements:

i. mapping of the original task to the image captioning domain,

ii. creation of two distinct novel datasets of digital circuit images, one

on image captioning and one on type classification, as well as their generation

mechanisms

iii. a thorough analysis on the impact of the dataset’s characteristics on

the image captioning efficacy

141

iv. realization of existing challenges and four distinct novel methods

for their overcoming, based on image partitioning

In parallel, we explore the topic of automated deep understanding of mathematical

formulas in chapter 4. We focus on capturing the semantics of mathematical expressions

and perform an evaluating survey on the subject’s existing literature, which was published

in 2021. We then introduce the task of analyzing state-of-the-art mathematical formulas as

metadata, specifically by synthesizing existing elements and capitalizing on a priori

knowledge. We begin similarly to the pseudocode extraction process, by defining a formal

modelling scheme and creating a synthesis framework. We then proceed into using the

graph representation of existing established formulas to discover novel mathematical

expressions with the highest potential of describing domain aspects. The highlights of our

work on mathematical formula synthesis and analysis are the following:

i. creation of a formal modelling scheme,

ii. address inconsistencies and adapting to basic mathematical

reasoning,

iii. robust generation of synthetic formula instances based on graph

representation of expressions

iv. simulation of a priori mathematical knowledge and synthesis

operation confidence assignment through geometric learning

v. proof of concept on the Newtonian motion domain

vi. self-evaluation scheme

In both subjects, the presented methodologies combine traditional reasoning and

modern learning, to achieve successful modelling, robust inference capabilities and

142

knowledge discovery. A bottleneck in both cases appears to be the absence of structured

data. During the pseudocode extraction task, we create out of necessity our own synthetic

data through the generative framework, but we cannot do the same with established

mathematical formulas. The Feynman dataset is a great tool for the proof of concept, but

for more scaled experiments, larger resources are needed. Our next immediate step is the

creation of structured datasets from real and established mathematical resources, on

multiple subjects. Apart from improving the inference capabilities of our existing models

and expanding the a priori knowledge base in general, this will allow for experiments on

cross-domain ablation studies. Finally, we embrace our discussion on synergistic

approaches, by experimenting with cooperative methods between the two fields.

Specifically, we are investigating the construction of a digital circuit inspired setup for the

synthesis framework, the conversion of the predicted pseudocode of chapter 3 to strict

mathematical terms, and its use as input to the synthesis framework.

In conclusion, our greatest aspiration through this work, is to encourage other

researchers to engage with the deep understanding of technical documents and contribute

with their own work on the several interesting aspects that arise on this domain. The

pseudocode extraction task can be expanded from digital circuits to numerous other

applications and provide practical and scalable solutions. The mathematical formula

synthesis, on the other hand, exhibits an intriguing and ambitious initiate, with tremendous

potential for new, directed discoveries. We believe that the presented methodologies can

constitute the foundation for further development, both on their respective subjects, as well

as other modalities on the deep technical document understanding.

143

Publications

Nikolaos Gorgolis, Nikolaos Bourbakis; “Evaluating Methodologies on Deep

Understanding of Mathematical Formulas in Technical Documents” in 2021 IEEE 33rd

International Conference on Tools with Artificial Intelligence (ICTAI), November 2021,

doi: 10.1109/ICTAI52525.2021.00148

Michail S. Alexiou, Nikolaos Gorgolis, Sukarno Mertoguno, Nikolaos G.

Bourbakis; “Deep Understanding of Technical Documents: An Enhancement on Diagrams

Understanding”, August 2021International Journal of Artificial Intelligence Tools

30(05):2150027, doi: 10.1142/S0218213021500275

Nikolaos Gorgolis, Nikolaos Bourbakis; “Approaching Pseudocode Captioning of

Digital Diagram Images in Technical Documents”, submitted in International Journal of

Artificial Intelligence Tools, 2022

Nikolaos Gorgolis, Nikolaos Bourbakis; “Mathematical Formulas as Metadata: A

Synthesis Framework ”, to be submitted

144

References

[1] Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. (2001). "Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies". In Kremer, S. C.; Kolen,

J. F. (eds.). A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press. ISBN 0-

7803-5369-2.

[2] Rajat Raina; Anand Madhavan; Andrew Y. Ng (2009). “Large Scale Deep

Unsupervised Learning using Graphics Processors”, Computer Science Department,

Stanford University, Stanford CA 94305 USA, ICML '09: Proceedings of the 26th Annual

International Conference on Machine Learning, June 2009, pp. 873–880,

https://doi.org/10.1145/1553374.1553486

[3] Alex Krizhevsky; Ilya Sutskever; Geoffrey E. Hinton; “ImageNet Classification with

Deep Convolutional Neural Networks”, Advances in Neural Information Processing

Systems 25 (NIPS 2012), pp. 1097-1105

[4] https://research.google/people/jeff/

[5] arXiv research repository, arXiv.org e-Print archive

[6] arXiv submission rate statistic, arXiv submission rate statistics | arXiv e-print repository

[7] arXiv monthly submissions, Monthly Submissions (arxiv.org)

145

[8] Zeeshan Ahmed & Thomas Dandekar; “MSL: Facilitating automatic and physical

analysis of published scientific literature in PDF format”, 2015, DOI:

10.12688/f1000research.7329.3

[9] Dominique Antoine; Suzanne Collin; Karl Tombre; “Analysis of Technical Documents:

The REDRAW System”, in Structured Document Image Analysis, 1992, pp. 385-402, DOI:

10.1007/978-3-642-77281-8_18

[10] S. Jiang, J. Hu, C. L. Magee and J. Luo, "Deep Learning for Technical Document

Classification" in IEEE Transactions on Engineering Management, 2021, doi:

10.1109/TEM.2022.3152216

[11] Carlos H. Caldas; Lucio Soibelman; “Automating hierarchical document classification

for construction management information systems”, Automation in Construction 12 (2003)

395 – 406, doi:10.1016/S0926-5805(03)00004-9

[12] L. Aristodemou and F. Tietze, “The state-of-the-art on Intellectual Property Analytics

(IPA): A literature review on artificial intelligence, machine learning and deep learning

methods for analyzing intellectual property (IP) data,” World Pat. Inf., vol. 55, pp. 37–51,

2018.

[13] N. Bourbakis, A. Psarologou, G. Rematska and A. Esposito, "A Human-Like SPN

Methodology for Deep Understanding of Technical Documents," 2016 IEEE 28th

146

International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA,

2016, pp. 772-778, doi: 10.1109/ICTAI.2016.0121.

[14] N. Bourbakis & S. Mertoguno; “A Holistic Approach for Automatic Deep

Understanding and Protection of Technical Documents”, in International Journal on

Artificial Intelligence Tools, Vol. 29, No. 6 (2020) 2050007 (39 pages), DOI:

10.1142/S0218213020500074

[15] N. Bourbakis; W. Meng, C. Zhang, Z. Wu, N. J. Salerno; S. Borek; “Retrieval of

Multimedia Web Documents and Removal of Redundant Information”, International

Journal on Artificial Intelligence Tools, Vol.8, No.1 (1999)

[16] N. Bourbakis; “Converting Diagrams, Formulas, Tables, Graphics, and Pictures into

SPN and NL-text Sentences for Automatic Deep Understanding of Technical Documents”,

2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI),

2017, pp. 247-254, doi: 10.1109/ICTAI.2017.00047

[17] D. Saxton; E. Grefenstette; F. Hill; P. Kohli; “Analyzing Mathematical Reasoning

Abilities of Neural Models” in International Conference on Learning Representations,

2019, doi: https://doi.org/10.48550/arXiv.1904.01557

[18] B. Berman & R. J. Fateman; “Optical Character Recognition for Typeset

Mathematics” in International Symposium of Symbolic and Algebraic Computation,

August 1994, pp. 348–353, doi: https://doi.org/10.1145/190347.190438

[19] Y. Chen; T. Shimizu; K. Yamauchi; M. Okada; "Ambiguous problem investigation in

off-line mathematical expression understanding," SMC 2000 conference proceedings,

IEEE International Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving

147

to Systems, Humans, Organizations, and their Complex Interactions', cat. no.0, 2000, pp.

2917-2922 vol.4, doi: 10.1109/ICSMC.2000.884443.

[20] S. Toyota; S. Uchida; M. Suzuki; “Structural Analysis of Mathematical Formulas with

Verification based on Formula Description Grammar”, DAS'06: Proceedings of the 7th

international conference on Document Analysis Systems, February 2006, pp. 153–163, doi:

https://doi.org/10.1007/11669487_14

[21] Y. Guo, L. Huang, C. Liu and X. Jiang, "An Automatic Mathematical Expression

Understanding System," Ninth International Conference on Document Analysis and

Recognition (ICDAR 2007), 2007, pp. 719-723, doi: 10.1109/ICDAR.2007.4377009

[22] X. Lin; L. Gao; Z. Tang; X. Hu; X. Lin; “Identification of Embedded Mathematical

Formulas in PDF Documents Using SVM”, Proceedings of SPIE - The International

Society for Optical Engineering, January 2012, pp. 8297:31 -, doi: 10.1117/12.912445

[23] A. Nazemi; I. Murray; D. McMeekin; “Mathematical Information Retrieval (MIR)

from Scanned PDF Documents and MathML Conversion”, December 2014 IPSJ

Transactions on Computer Vision and Applications 6, pp.132-142, DOI:

10.2197/ipsjtcva.6.132

[24] M. Mahdavi; M. Condon; K. Davila; R. Zanibbi; "LPGA: Line-of-Sight Parsing with

Graph-Based Attention for Math Formula Recognition," 2019 International Conference on

Document Analysis and Recognition (ICDAR), 2019, pp. 647-654, doi:

10.1109/ICDAR.2019.00109.

148

[25] Zanibbi, R.; Blostein, D.; “Recognition and retrieval of mathematical expressions”,

International Journal on Document Analysis and Recognition (IJDAR), 331–357 (2012).

https://doi.org/10.1007/s10032-011-0174-4

[26] E. E. Kostalia, E. G. M. Petrakis and N. Bourbakis, "Evaluating Methods for the

Parsing and Understanding of Mathematical Formulas in Technical Documents," 2020

IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020,

pp. 407-412, doi: 10.1109/ICTAI50040.2020.00070

[27] Kaliszyk, C.; Urban, J.; Vyskočil, J.; “Automating Formalization by Statistical and

Semantic Parsing of Mathematics”. In: Ayala-Rincón, M., Muñoz, C. (eds) Interactive

Theorem Proving; ITP 2017; Lecture Notes in Computer Science, vol 10499. Springer,

Cham. https://doi.org/10.1007/978-3-319-66107-0_2

[28] Kaliszyk, C.; Urban, J.; “Learning-Assisted Automated Reasoning with Flyspeck”, in

Journal of Automated Reasoning 53, pp. 173–213 (2014), doi:

https://doi.org/10.1007/s10817-014-9303-3

[29] C. Kaliszyk, J. Urban and J. Vyskocil, "System Description: Statistical Parsing of

Informalized Mizar Formulas," in 19th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2017, pp. 169-172, doi:

10.1109/SYNASC.2017.00036.

[30] C. Kaliszyk, J. Urban and J. Vyskocil, “Efficient Semantic Features for Automated

Reasoning Over Large Theories”, IJCAI'15: Proceedings of the 24th International

Conference on Artificial Intelligence, July 2015, pp: 3084–3090

149

[31] Kaliszyk, C., Urban, J., Vyskočil, J. (2015). “Learning to Parse on Aligned Corpora

(Rough Diamond)”. In: Urban, C., Zhang, X. (eds), Interactive Theorem Proving. ITP

2015. Lecture Notes in Computer Science, vol 9236. Springer, Cham. Doi:

https://doi.org/10.1007/978-3-319-22102-1_15

[32] Kaliszyk, C., Urban, J., Vyskocil, J., & Geuvers, J. H. (2014). “Developing corpus-

based translation methods between informal and formal mathematics: project description”.

In S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, & J. Urban (Eds.), Intelligent

Computer Mathematics (International Conference, CICM 2014, Coimbra, Portugal, July

7-11, 2014. Proceedings) (pp. 435-439). (Lecture Notes in Computer Science; Vol. 8543).

Springer. https://doi.org/10.1007/978-3-319-08434-3_34

[33] HOL Light Theorem official homepage, https://www.cl.cam.ac.uk/~jrh13/hol-light/

[34] HALES, T., ADAMS, M., BAUER, G., DANG, T., HARRISON, J., HOANG, L., . .

. ZUMKELLER, R. (2017). “A FORMAL PROOF OF THE KEPLER CONJECTURE”,

in Forum of Mathematics, Pi, 5, E2. doi:10.1017/fmp.2017.1

[35] Jiang, Z., Gao, L., Yuan, K., Gao, Z., Tang, Z., & Liu, X. (2018, October).

“Mathematics content understanding for cyberlearning via formula evolution map”. In

Proceedings of the 27th ACM International Conference on Information and Knowledge

Management, (pp. 37-46).

[36] X. Lin; L. Gao; X. Hu; Z. Tang; Y. Xiao; X. Liu; “A Mathematical Retrieval System

for Formulas in Layout Presentations”, SIGIR '14: Proceedings of the 37th international

ACM SIGIR conference on Research & development in information retrieval, July 2014,

pp. 697–706, doi: https://doi.org/10.1145/2600428.2609611

150

[37] M. Grigore; M. Wolska; M. Kohlhase; “Towards Context-based Disambiguation of

Mathematical Expressions”, in The Joint Conference of ASCM 2009 and MACIS 2009:

Asian Symposium on Computer Mathematics and Mathematical Aspects of Computer and

Information Sciences, December 2009

[38] J. Davenport; “On Writing OpenMath Content Dictionaries”, in ACM Special Interest

Group on Symbolic & Algebraic Manipulation, Bulletin Volume 34 Issue 2, June 2000, pp

12–15, doi: https://doi.org/10.1145/362001.362012

[39] M. Q. Nghiem; G. Yoko; Y. Matsubayashi; “Automatic Approach to Understanding

Mathematical Expressions Using MathML Parallel Markup Corpora” (International

Organized Session on Application Oriented Principles of Machine Learning and Data

Mining) (2012), doi: https://doi.org/10.11517/pjsai.JSAI2012.0_1K2IOS1b6

[40] Nghiem, M. Q., Kristianto, G.Y., Topić, G., Aizawa, A. (2013). A Hybrid Approach

for Semantic Enrichment of MathML Mathematical Expressions. In: Carette, J., Aspinall,

D., Lange, C., Sojka, P., Windsteiger, W. (eds) Intelligent Computer Mathematics. CICM

2013. Lecture Notes in Computer Science, vol 7961. Springer, Berlin, Heidelberg, doi:

https://doi.org/10.1007/978-3-642-39320-4_18

[41] Ausbrooks et al, “Mathematical Markup Language (MathML)”, Version 3.0 (Second

Edition), W3C, 2014

[42] Sepp Hochreiter, Jürgen Schmidhuber; “Long Short-Term Memory”, in Neural

Computation, 1997; 9 (8), pp: 1735–1780. doi: https://doi.org/10.1162/neco.1997.9.8.1735

[43] Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. ArXiv, abs/1706.03762.

151

[44] M. Allamanis; P. Chanthirasegaran; P. Kohli; X. Sutton; “Learning Continuous

Semantic Representations of Symbolic Expressions”, ICML'17: Proceedings of the 34th

International Conference on Machine Learning - Volume 70 August 2017, pp. 80–88,

arXiv:1611.01423

[45] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012.

“Semantic Compositionality through Recursive Matrix-Vector Spaces”. In Proceedings of

the 2012 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, pp. 1201–1211, Jeju Island, Korea.

Association for Computational Linguistics, https://aclanthology.org/D12-1110

[46] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. 2013. “Recursive Deep Models for Semantic

Compositionality Over a Sentiment Treebank”. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing, pp. 1631–1642, Seattle, Washington,

USA. Association for Computational Linguistics, https://aclanthology.org/D13-1170

[47] Wojciech Zaremba, Karol Kurach, and Rob Fergus. 2014. “Learning to discover

efficient mathematical identities”. In Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 1 (NIPS'14). MIT Press, Cambridge,

MA, USA, 1278–1286.

[48] Zaremba & Sutskever, “Learning-to-Execute”, in International Conference on

Learning Representations, 2015, arXiv:1410.4615

152

[49] G. Rematska; N. Bourbakis; “A Stochastic Petri Net Reverse Engineering

Methodology for Deep Understanding of Technical Documents”, Doctorate Dissertation,

2018, core-scholar: https://corescholar.libraries.wright.edu/etd_all/1946/

[50] S. Shrihari; S. Lam; V. Govindaraju; R. Srihari; J. Hull; “Document Understanding:

Research Directions”, 1992, Corpus ID: 60828228

[51] Luo, J., Li, Z., Wang, J., & Lin, C. (2021). ChartOCR: Data Extraction from Charts

Images via a Deep Hybrid Framework. 2021 IEEE Winter Conference on Applications of

Computer Vision (WACV), 1916-1924.

[52] S. E. V. and P. Samuel, "Automatic Code Generation from UML State Chart

Diagrams," in IEEE Access, vol. 7, pp. 8591-8608, 2019, doi:

10.1109/ACCESS.2018.2890791.

[53] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondrej Certik, Sergey B.

Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,

Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi,

Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy

R. Terrel, Stepan Roucka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert

Cimrman, and Anthony Scopatz. SymPy: symbolic computing in python. PeerJ Computer

Science, 3:e103, January 2017. ISSN 2376-5992. doi: 10.7717/peerj-cs.103. URL

https://doi.org/10.7717/peerj-cs.103.

[54] Wolfram-Research. Mathematica, version 12.0, 2019. Champaign, IL, 2019

[55] MathWorks. MATLAB optimization toolbox (r2019a), 2019. The MathWorks,

Natick, MA, USA

153

[56] The LaTeX Project, Leslie Lamport, 2022, https://www.latex-project.org/latex3/

[57] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, Gordon

Woodhull. GraphViz and dynagraph – static and dynamic graph drawing tools, GRAPH

DRAWING SOFTWARE, 2003, pp. 127-148

[58] Collin J. Delker, SchemDraw, 2022, https://schemdraw.readthedocs.io/en/latest/

[59] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhutdinov, Richard Zemel, Yoshua Bengio; “Show, Attend and Tell: Neural Image

Caption Generation with Visual Attention”, arXiv:1502.03044v3, doi:

https://doi.org/10.48550/arXiv.1502.03044

[60] Soh, Moses. “Learning Cnn Lstm Architectures for Image Caption Generation.”

(2016).

[61] Tensorflow documentation of the EfficientNet architectures,

https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/

[62] Mingxing Tan & Quoc V. Le, EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks, Proceedings of the 36th International Conference on

Machine Learning, Long Beach, California, PMLR 97, 2019, Revised 2020,

https://arxiv.org/pdf/1905.11946.pdf

[63] Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, Layer Normalization,

published in arXiv-preprint arXiv:1607.06450, 2016, https://arxiv.org/pdf/1607.06450.pdf

[64] Diederik P. Kingma, Jimmy Ba; “Adam: A Method for Stochastic Optimization”,

2014, arXiv:1412.6980, doi: https://doi.org/10.48550/arXiv.1412.6980

154

[65] Keras image captioning model, https://keras.io/examples/vision/image_captioning/

[66] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan

Salakhutdinov; “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”,

in Journal of Machine Learning Research 2014, 15(56):1929−1958, 2014

[67] Riyaz Sikora & O'la Hmoud Al-laymoun; “A Modified Stacking Ensemble Machine

Learning Algorithm Using Genetic Algorithms”, Journal of International Technology and

Information Management, Volume 23, 2014, p.1-12, ISSN: 1941-6679

[68] Simonyan, Karen, and Andrew Zisserman; "Very deep convolutional networks for

large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[69] В. И. Левенштейн (1965). Двоичные коды с исправлением выпадений, вставок

и замещений символов [Binary codes capable of correcting deletions, insertions, and

reversals]. Доклады Академии Наук СССР (in Russian). 163 (4): 845–848. Appeared in

English as: Levenshtein, Vladimir I. (February 1966). "Binary codes capable of

correcting deletions, insertions, and reversals". Soviet Physics Doklady. 10 (8): 707–710.

Bibcode:1966SPhD...10.707L

[70] Dice, Lee R. (1945). "Measures of the Amount of Ecologic Association Between

Species". Ecology. 26 (3): 297–302. doi:10.2307/1932409. JSTOR 1932409.

[71] https://github.com/seatgeek/fuzzywuzzy

[72] Chomsky, Noam (1956). Three models for the description of language. IRE

Transactions on Information Theory. 2 (3): 113–124. doi:10.1109/TIT.1956.1056813.

155

[73] Chomsky, Noam (1957). Syntactic Structures, The Hague/Paris: Mouton, ISBN 978-

3-11-021832-9

[74] Pakin, Scott (2021). The Comprehensive LATEX Symbol List, http://www.ctan.org/

[75] Udrescu SM, Tegmark M. AI Feynman: A physics-inspired method for symbolic

regression. Sci Adv. 2020 Apr 15;6(16):eaay2631. doi: 10.1126/sciadv.aay2631. PMID:

32426452; PMCID: PMC7159912

[76] Max Tegmark, Feynman Symbolic Regression Database, Department of Physics,

MIT, https://space.mit.edu/home/tegmark/aifeynman.html

[77] R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics: The New

Millennium Edition: Mainly Mechanics, Radiation, and Heat, vol. 1 (Basic Books, 1963);

https://books.google.com/books?id=d76DBQAAQBAJ.

[78] R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 2 in The

Feynman Lectures on Physics (Pearson/Addison-Wesley, 1963b);

https://books.google.com/books?id=AbruAAAAMAAJ.

[79] R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 3 in The

Feynman Lectures on Physics (Pearson/Addison-Wesley, 1963);

https://books.google.com/books?id=_6XvAAAAMAAJ.

[80] Kanervisto, Anssi. (2016). im2latex-100k , arXiv:1609.04938 Zenodo.

https://doi.org/10.5281/zenodo.56198

[81] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. 2017. Image-

to-markup generation with coarse-to-fine attention. In Proceedings of the 34th

156

International Conference on Machine Learning - Volume 70 (ICML'17). JMLR.org, 980–

989.

[82] Schmidt M, Lipson H. Distilling free-form natural laws from experimental data.

Science. 2009 Apr 3;324(5923):81-5. doi: 10.1126/science.1165893. PMID: 19342586.

[83] Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Claudio P. Santiago,

Soo K. Kim, Joanne T. Kim. Deep symbolic regression: Recovering mathematical

expressions from data via risk-seeking policy gradients, from International Conference on

Learning Representations, 2021, arXiv:1912.04871

[84] Cava-Lab, Harvard Medical School, https://cavalab.org/srbench/

[85] Guillaume Lample & Francois Charton; “Deep Learning for Symbolic Mathematics”,

in International Conference on Learning Representations, 2020

[86] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka; “How Powerful are Graph

Neural Networks?”, International Conference on Learning Representations (ICLR), 2019,

arXiv:1810.00826

[87] Matthias Fey & Jan Eric Lenssen; “Fast Graph Representation Learning with PyTorch

Geometric”, in International Conference on Learning Representations (ICLR), 2019,

arXiv:1903.02428

[88] Thomas N. Kipf, Max Welling; “Semi-Supervised Classification with Graph

Convolutional Networks”, International Conference on Learning Representations, 2017,

arXiv:1609.02907

157

[89] R. Fateman, T. Tokuyasu, B. Berman and N. Mitchell, "Optical character recognition

and parsing of typeset mathematics," Journal of Visual Communication and Image

Representation, vol. 7, no. 1, pp. 2-15, 1996

[90] R. Zanibbi, D. Blostein and J. R. Cordy, "Recognizing mathematical expressions using

tree transformation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

24, no. 11, pp. 1455-1467, 2002

158

Appendix

159

A.3.1 Pseudocode LaTeX Customize Templates

I. Multiple Algorithms

Figure 50: LaTeX Custom Template (1)

II. Single Algorithm

160

Figure 51: LaTeX Custom Template (2)

A.3.2 Example Internal Representations

Formal Representation

𝐍𝐎𝐑: 𝐈𝐍(𝐧𝐳, 𝐥𝐮, 𝐟𝐫, 𝐠𝐢)|𝐃𝐒(𝐧𝐞𝐠𝐚𝐭𝐞𝐬 𝐚𝐧 𝐎𝐑 𝐜𝐥𝐚𝐮𝐬𝐞 𝐨𝐟 𝐢𝐧𝐩𝐮𝐭𝐬)|𝐎𝐔𝐓(𝐝𝐦),

𝐎𝐑: 𝐈𝐍(𝐤𝐦, 𝐣)|𝐃𝐒(𝐚𝐧 𝐎𝐑 𝐜𝐥𝐚𝐮𝐬𝐞 𝐨𝐟 𝐢𝐧𝐩𝐮𝐭𝐬)|𝐎𝐔𝐓(𝐠𝐢)

𝐈𝐍𝐕: 𝐈𝐍(𝐨𝐱)|𝐃𝐒(𝐧𝐞𝐠𝐚𝐭𝐞𝐬 𝐚 𝐬𝐢𝐧𝐠𝐥𝐞 𝐢𝐧𝐩𝐮𝐭)|𝐎𝐔𝐓(𝐤𝐦)

CSV

161

 Graphics

 Pseudocode

162

Figure 52: Example Internal Representations

A.3.3 Data Augmentation Methods

I. Data Augmentation Methods – Composition

Inbound Recipient

163

Composed

Inbound Recipient

 DEFINE (Function) AND

 Input: jo, tx, jr, ot

 Main: sx = jo & jr & ot & tx

 Output: sx

 DEFINE (Function) NOR

 Input: oy, dh

 Main: jr = Nor(oy, dh)

 Output: jr

DEFINE (Function) main()

 1. sx = AND(jo, tx, jr, ot)

 2. jr = NOR(oy, dh)

 DEFINE (Function) OR

 Input: by, ei

 Main: ru = by | ei

 Output: ru

 DEFINE (Function) main()

 1. ru = OR(by, ei)

Composed

164

 DEFINE (Function) AND

 Input: jo, tx, jr, ot

 Main: by = jo & jr & ot & tx

 Output: by

 DEFINE (Function) NOR

 Input: oy, dh

 Main: jr = Nor(oy, dh)

 Output: jr

 DEFINE (Function) OR

 Input: by, ei

 Main: ru = by | ei

 Output: ru

DEFINE (Function) main()

 1. by = AND(jo, tx, jr, ot)

 2. jr = NOR(oy, dh)

 3. ru = OR(by, ei)

Figure 53: Data Augmentation Methods – Composition

II. Data Augmentation Methods – Merging

Inbound Recipient

165

Composed

Inbound Recipient

DEFINE (Function) NOR

Input: gt, jp

Main: nu = Nor(gt, jp)

Output: nu

DEFINE (Function) main()

1. nu = NOR(gt, jp)

DEFINE (Function) AND

Input: jv, ce, ko, d

Main: eu = ce & d & jv & ko

Output: eu

DEFINE (Function) main()

1. eu = AND(jv, ce, ko, d)

166

 Merged

DEFINE (Function) AND

Input: jv, ce, ko, d

Main: eu = ce & d & jv & ko

Output: eu

DEFINE (Function) NOR

Input: gt, jp

Main: nu = Nor(gt, jp)

Output: nu

DEFINE (Function) main()

1. eu = AND(jv, ce, ko, d)

2. nu = NOR(gt, jp)

Figure 54: Data Augmentation Methods – Merging

III. Data Augmentation Methods – Rotation

𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐑𝐨𝐭𝐚𝐭𝐞𝐝

167

Figure 55: Data Augmentation Methods – Rotation

A.3.4 Application on Newtonian Motion

I. GraphViz Example

168

Figure 56: GraphViz Visualization Example

II. SchemDraw

Figure 57: SchemDraw Visualization Example

169

A.3.5 Application on Newtonian Motion

Possitional Embeddings Encoder Decoder

Figure 58: Image Captioning model architecture

A.3.6 List of Composite Elements

BASIC GATES
NOT (1)
AND (2)
OR (3)
NAND (4)
NOR (5)
XOR (6)
XNOR (7)

COMPOSITE ELEMENTS
JK FLIP − FLOP (1)
SR FLIP − FLOP NOR (2)
SR FLIP − FLOP NAND (3)
SR FLIP − FLOP NOT NAND (4)
SR FLIP − FLOP NAND NOT (5)
SR FLIP − FLOP GATED (6)
D − TYPE FLIP − FLOP (7)

170

D − TYPE FLIP − FLOP INV (8)
MASTER − SLAVE FLIP − FLOP (9)
2 − 1 MULTIPLEXER (10)
4 − 1 MULTIPLEXER (11)
HALF − ADDER STD (12)
HALF − ADDER NOR (13)
HALF − ADDER NAND (14)
HALF − ADDER NAND INV (15)
FULL − ADDER STD (16)
FULL − ADDER NOR (17)
FULL − ADDER NAND (18)

Table 16: Composite elements

A.3.7 Block Hierarchy

𝐁𝐥𝐨𝐜𝐤 𝐇𝐢𝐞𝐫𝐚𝐫𝐜𝐡𝐲
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 5
𝐹𝑢𝑙𝑙 − 𝐴𝑑𝑑𝑒𝑟 4
𝐻𝑎𝑙𝑓 − 𝐴𝑑𝑑𝑒𝑟 3
𝐹𝑙𝑖𝑝 − 𝐹𝑙𝑜𝑝 2
𝑋𝑛𝑜𝑟 1
𝑁𝑜𝑟 1
𝑋𝑜𝑟 1
𝑂𝑟 1
𝑁𝑎𝑛𝑑 1
𝐴𝑛𝑑 1
𝑁𝑜𝑡 1

Table 17: Composite Elements

A.3.8 Detailed Grid Partitioning Example

171

Original Image

Image Partitioning

Partition classification

172

Valid partitions

Final partitions

< 𝑠𝑡𝑎𝑟𝑡 >
𝑔 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟 (𝑜 , 𝑑)
 < 𝑒𝑛𝑑 >

< 𝑠𝑡𝑎𝑟𝑡 >
𝑢𝑘𝑛3
= 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑢𝑘𝑛1 , 𝑢𝑘𝑛2)
 < 𝑒𝑛𝑑 >

< 𝑠𝑡𝑎𝑟𝑡 >
 𝑐 = 𝑓𝑢𝑙𝑙 − 𝑎𝑑𝑑𝑒𝑟 (𝑐 , 𝑑)
 < 𝑒𝑛𝑑 >

Partition captioning

Figure 59: Grid partitioning Example

A.3.9 Ensemble Configuration Changes

173

V step H step CHF CVF

10 10 [0.2, 0.3, 0.4, 0.5, 0.6] [0.2, 0.3, 0.4, 0.5, 0.6]

(c.1.1) (c.1.2) (c.1.3) (c.1.4)

Label
unk1 = half_adder (a , b) ; unk2 = full_adder (e , f) ; r = half_adder (unk1 ,

unk2)

Prediction
z = flip_flop (j , l) ; a = nand (a , d) ; r = flip_flop (y , l) ; m = full-adder (a , f

)
Table 18: Ensemble Configuration Changes

A.4.1 Application on Newtonian Motion

Below, we showcase the methodology by applying it on three popular formulas of

the Newtonian Laws of Motion domain: instantaneous velocity, instantaneous acceleration,

and momentum. These three expressions form the level-0 of the graph 𝑮𝒓𝒆𝒔, acting as

building blocks for the construction of the next levels.

The a priori knowledge that we have is that these three expressions, apart from

being syntactically valid, also semantically describe certain motion-related phenomena. To

exhibit the inductive reasoning of the methodology, we reconstruct the level-0 of the 𝑮𝒓𝒆𝒔,

by incorporating the corresponding subset of terminal symbols and production rules.

Level-0: Subjects

1. 𝑚

2. 𝑣

3. 𝑥

174

The binding operators used are multiplication and differentiation through time.

Level-0: Binding operators

1. Multiplication (∗)

2. Differentiation through time (
ௗ

ௗ௧
)

The latter is a unary operator; thus, it can be managed in two ways: either it is

applied on the subjects beforehand to augment the subset, or normally like the rest of the

binding operators. The difference between the two applications is the level of analysis each

byproduct occurs at - e.g., zero level with augmentation, first level with normal application.

It also generates the condition that: ∀𝒇 in 𝒅𝒇/𝒅𝒕, 𝒇 is differentiable per 𝒕, which holds for

every subject in the current setup, therefore we can omit it for simplicity, but it is retained

in the specific example, in order to demonstrate the way indeterminacy checks work.

We also restrict to the analysis of pairs, although the operations used can surpass

the duality and receive multiple arguments. Using the pre-stage augmentation for unary

operators, the byproduct analysis for level-0 displays the following structure:

Level-0: Subjects augmented

𝐑

𝐕𝐚𝐥𝐢𝐝𝐢𝐭𝐲

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐬

𝑚

𝑇𝑟𝑢𝑒

[]

𝑣

𝑇𝑟𝑢𝑒

[]

𝑥

𝑇𝑟𝑢𝑒

[]

𝑑𝑚/𝑑𝑡

𝑇𝑟𝑢𝑒

[𝑑𝑡 ≠ 0]

𝑑𝑣/𝑑𝑡

𝑇𝑟𝑢𝑒

[𝑑𝑡 ≠ 0]

175

𝑑𝑥/𝑑𝑡

𝑇𝑟𝑢𝑒

[𝑑𝑡 ≠ 0]
Table 19: Level-0 Augmented Subjects

Level-0: Analysis of multiplication

R1

R2

Synthesis

Validity

Conditions

𝑚

𝑣

𝑚 ∗ 𝑣

𝑇𝑟𝑢𝑒

[]

𝑚

𝑥

𝑚 ∗ 𝑥

𝑇𝑟𝑢𝑒

[]

𝑚

𝑑𝑚/𝑑𝑡

𝑑𝑚 ∗ 𝑚/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑚

𝑑𝑣/𝑑𝑡

𝑑𝑣 ∗ 𝑚/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑚

𝑑𝑥/𝑑𝑡

𝑑𝑥 ∗ 𝑚/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑣

𝑥

𝑣 ∗ 𝑥

𝑇𝑟𝑢𝑒

[]

𝑣

𝑑𝑚/𝑑𝑡

𝑑𝑚 ∗ 𝑣/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑣

𝑑𝑣/𝑑𝑡

𝑑𝑣 ∗ 𝑣/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑣

𝑑𝑥/𝑑𝑡

𝑑𝑥 ∗ 𝑣/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑥

𝑑𝑚/𝑑𝑡

𝑑𝑚 ∗ 𝑥/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑥

𝑑𝑣/𝑑𝑡

𝑑𝑣 ∗ 𝑥/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑥

𝑑𝑥/𝑑𝑡

𝑑𝑥 ∗ 𝑥/𝑑𝑡

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

[𝑑𝑡 ≠ 0]

𝑑𝑚/𝑑𝑡

𝑑𝑣/𝑑𝑡

𝑑𝑚 ∗ 𝑑𝑣/𝑑𝑡ଶ

𝑇𝑟𝑢𝑒

[]

𝑑𝑚/𝑑𝑡

𝑑𝑥/𝑑𝑡

𝑑𝑚 ∗ 𝑑𝑥/𝑑𝑡ଶ

𝑇𝑟𝑢𝑒

[]

176

𝑑𝑣/𝑑𝑡

𝑑𝑥/𝑑𝑡

𝑑𝑣 ∗ 𝑑𝑥/𝑑𝑡ଶ

𝑇𝑟𝑢𝑒

[]

Table 20: Level-0 analysis of multiplication

The results comprise several outcomes with conditional validity. The conditions

sum up to time difference being other than zero, which in differentiation holds, but we kept

the outcome to showcase the automatically applied division check. The table above shows

that every outcome using multiplication as binding operator is syntactically valid. For the

majority of them, the semantic interpretation remains unknown, but for the sake of the

example, we use our a priori domain knowledge to distill the three prereferred expressions

and construct the 𝑮𝒓𝒆𝒔𝟎
 – to showcase the equivalence between the two unary operators,

we use the application of unary operators as normal binding operator for the graph – ,

Figure 60: Level-1 byproducts

from which we can derive the semantically significant expressions according to our

a priori domain knowledge:

177

Figure 61: Confirmed semantically valid byproducts

Level-1

After showcasing the methodology on the constructing the initial subjects, we

continue with one level higher in the graph’s hierarchy.

Level-1: Subject

1. 𝑣 =
ௗ௫

ௗ௧

2. =
ௗ௩

ௗ௧

3. 𝑝 = 𝑚𝑣

To keep things minimal, we use a subset of the grammar’s production rules

containing the four basic mathematical operations (addition, subtraction, multiplication,

division) as binding operators, to create the graph 𝑮𝒓𝒆𝒔𝟏
. Again, restrict to the analysis of

pairs, although the operations used can surpass the duality and receive multiple arguments.

No unary operator is included; therefore, the subjects are not augmented.

Level-1: Binding operators

1. Addition (+)

2. Subtraction (−)

178

3. Multiplication (∗)

4. Division (/)

The only operation that could arise indeterminable expressions is division, in which

case we perform checks for each generated expression, in order to compute the conditional

relation. We follow the methodology as described in level 0, displaying below some of the

pairs as samples:

(0): 𝑣 =
ௗ௫

ௗ௧
, (1): 𝑎 =

ௗ௩

ௗ௧

 R1 R2 Synthesis Validity Conditions

Addition 𝑣 =
𝑑𝑥

𝑑𝑡
 𝑎 =

𝑑𝑣

𝑑𝑡

𝑐𝑜଴ = 𝑎 + 𝑣

=
𝑑𝑥 + 𝑑𝑣

𝑑𝑡

Conditional [𝑑𝑡 ≠ 0]

Subtraction 𝑣 =
𝑑𝑥

𝑑𝑡
 𝑎 =

𝑑𝑣

𝑑𝑡

𝑐𝑜ଵ = 𝑎 − 𝑣

= −
𝑑𝑣 − 𝑑𝑥

𝑑𝑡

Conditional [𝑑𝑡 ≠ 0]

Multiplication 𝑣 =
𝑑𝑥

𝑑𝑡
 𝑎 =

𝑑𝑣

𝑑𝑡
 𝑐𝑜ଶ = 𝑎 ∗ 𝑣 =

𝑑𝑣 ∗ 𝑑𝑥

𝑑𝑡ଶ
 Conditional [𝑑𝑡 ≠ 0]

Division 𝑣 =
𝑑𝑥

𝑑𝑡
 𝑎 =

𝑑𝑣

𝑑𝑡
 𝑐𝑜ଷ =

𝑣

𝑎
=

𝑑𝑥

𝑑𝑣
 Conditional

[𝑑𝑣 ≠ 0,
𝑎 ≠ 0]

Table 21: Pair synthesis (1)

179

Figure 62: Pair synthesis (1)

(1): 𝑎 =
ௗ௩

ௗ௧
, (2): 𝑝 = 𝑚𝑣

 R1 R2 Synthesis Validity Conditions

Addition 𝑎 =
𝑑𝑣

𝑑𝑡
 𝑝 = 𝑚𝑣

𝑐𝑜ସ = 𝑎 + 𝑝 = 𝑚 ∗ 𝑣

+
𝑑𝑣

𝑑𝑡

Conditional [𝑑𝑡 ≠ 0]

Subtraction 𝑎 =
𝑑𝑣

𝑑𝑡
 𝑝 = 𝑚𝑣

𝑐𝑜ହ = 𝑎 − 𝑝 = −𝑚 ∗ 𝑣

+
𝑑𝑣

𝑑𝑡

Conditional [𝑑𝑡 ≠ 0]

Multiplication 𝑎 =
𝑑𝑣

𝑑𝑡
 𝑝 = 𝑚𝑣

𝑐𝑜଺ = 𝑎 ∗ 𝑝 = 𝑚 ∗ 𝑣

∗
𝑑𝑣

𝑑𝑡

Conditional [𝑑𝑡 ≠ 0]

Division 𝑎 =
𝑑𝑣

𝑑𝑡
 𝑝 = 𝑚𝑣 𝑐𝑜଻ =

𝑎

𝑝
=

𝑑𝑣

𝑚 ∗ 𝑣 ∗ 𝑑𝑡
 Conditional

[𝑑𝑡 ≠ 0,
𝑣 ≠ 0,

𝑚 ≠ 0]
Table 22: Pair synthesis (2)

180

Figure 63: Pair synthesis (2)

The combined 𝐺௥௘௦ is partially depicted below:

Figure 64: Combined G-res

181

A.4.2 Paths to valid expressions for inner and outer vector

product as binding operators.

Figure 65: Synthesis Methodology Example

182

	Deep Understanding of Technical Documents : Automated Generation of Pseudocode from Digital Diagrams & Analysis/Synthesis of Mathematical Formulas
	Repository Citation

	Microsoft Word - the_dissertation_v1

