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ABSTRACT 

Morgan, Justin W., M.S. Department of Psychology, Wright State University, 2022. 

Testing the Lumberjack Analogy: Automation, Situational Awareness, and Mental 

Workload. 

 

This study examines the effects of automation on the human user of that automation. 

Automation has been shown to produce a variety of benefits to employees in terms of 

performance and a reduction of workload, but research in this area indicates that this 

might be at the cost of situational awareness. This loss of situational awareness is thought 

to lead to “out-of-the-loop” performance effects. One way this set of effects has been 

explained is through the “lumberjack” analogy, which suggests these effects are related to 

degree of automation and automation failure. This study recreates the effects of 

automation on mental workload, performance, and situational awareness by altering the 

characteristics of automation in a UAV supervisory control environment; RESCHU was 

chosen because of its complexity and the ability to manipulate levels of control within the 

task. Afterwards, it will be discussed whether the effects align with the predictions of the 

lumberjack analogy. Participants were assigned to one of two automation reliability 

groups, routine or failure, and all participants experienced all three degrees of automation 

– manual/low, medium, and high. Scores collected for mental workload, situational 

awareness, and performance were compared across groups and conditions. Results 

indicated differences in performance for both degree of automation and reliability, but no 
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interaction. There was also a main effect of degree of automation on raw NASA-TLX 

scores, with a few main effects reported for individual subscales. 
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Testing the Lumberjack Analogy: Automation, Situational Awareness, and Mental 

Workload 

Introduction 

 Society has made massive strides in technological advances the past few decades, 

so it is not surprising that more automation is being introduced into the workplace. 

Automation has expanded from more “concrete” mechanical systems to abstract and 

complex work environments that involve human-computer interactions. 

Businesses/organizations may try to improve their functionality by investing in the latest 

technology with the goal of improving productivity, the quality of products or services, 

organization, reduce operational costs, etc. There is no doubt that automation is 

invaluable when tackling these problems, but these new advances do not come without 

their own issues. When integrating these systems, people must consider the limitations of 

technology and the human operator to be effective. To do this, a designer must consider 

the effects (negative and positive) of the automation they are implementing and how this 

will alter the operator’s behavior while performing the task. The current study will 

investigate human-automation teaming to better understand how automation may 

influence humans. 

Automation (IV)  

 Although many systems are automated, not all systems are automated equally. To 

study automation properly, early researchers needed a way to classify automation. One of 

the more well-known classification systems from that time was proposed by Sheridan and 

Verplank (1978). They classified automation from 1 (all human, no automation 
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assistance) to 10 (autonomous automation, with no human). This attempt at classifying 

automation focuses on the “level of authority” that the automation has in completing its 

tasks. This is something that can still be seen in modern classification models of 

automation.  

In fact, one of the most popular classification systems today stems from this 

earlier model. In this newer classification system, degree of automation was defined in 

terms of stages and levels (Wickens et al., 1998; as described in Parasuraman et al., 

2000). According to this model of automation, the degree-of-automation (DOA) is 

affected not only by the level of authority (levels), but also by the type of activity (stages) 

that the automation supports. Stages refers to how the automation can support four stages 

of information processing (sensory processing, perception/working memory, decision 

making, action selection), and these stages are referred to as information acquisition, 

information analysis, decision selection, and action implementation, respectively 

(Wickens et al., 1998). This was a notable improvement from the earlier model (the 

earlier model only focused on the decision-making stage), whereas Wickens and 

colleagues’ model considers how automation supports the full perception-action cycle. 

The addition of stages was the largest change, as the idea of “level of authority” within 

each stage remained the same. Each stage can be rated along the same dimension as the 

original Sheridan and Verplank (1978) model. What makes this model even more robust 

though, is that DOA can increase by increasing the level of a single stage AND/OR by 

increasing the level of a “later stage” of processing–rather than an earlier one (i.e., 

automating decision making to level 5 instead of sensory processing to level 5 would 
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result in a higher DOA). This model not only expands the possible automation paradigms 

used for research but can be used as a tool to help designers implement automation. 

Performance (DV) 

This is not to say that these designers should attempt to maximize automation at 

all four stages. Endsley and Kiris (1995) found that an operator’s situational awareness 

was affected by level of operator control, which was affected by the level of automation 

in the decision stage (at the time of the study this was based on Sheridan & Verplank’s, 

1978, model). While the automation did improve performance, the loss of situational 

awareness was thought to be caused by operator complacency brought on by highly 

automated, reliable systems. Problems that occur during the failure of these systems are 

often referred to as out-of-the-loop performance issues. Rovira et al. (2007) also found 

that unreliable decision selection automation (60% reliability) led to worse performance 

than not having automation at that stage. Wickens et al. (2010) also confirms the 

existence of these out-of-the-loop issues.  

Yet, these performance effects are not always as clear as researchers would like to 

believe. Several studies have failed to report similar effects between DOA and failure 

performance, or even DOA and situational awareness (Lorenz et al., 2002a; Lorenz et al., 

2002b; Kaber & Endsley, 2004). Shaw et al. (2010) used a method of adaptive 

automation to help improve overall performance and response time to abnormal events 

when operators had to retake manual control of the task.  Therefore, perhaps there are 

ways of implementing automation to a degree that may mitigate these types of effects, or 

maybe they are not as robust as earlier research may suggest. In either case, there is a 
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need for more research in this field to determine the kinds of tasks/automation that may 

lead to these out-of-the-loop deficits. 

While the benefits of using automation are obvious, these studies demonstrate that 

automating a new system is something that must be considered with caution. 

Parasuraman et al. (2000) created a guide/model which emphasized the importance of 

understanding what needs to be automated, determining the current and proposed stages 

and levels of automation for the system, re-evaluating your initial assessment, looking at 

risks/costs of automation, etc., to help reduce/avoid the unintended consequences that can 

be brought on by higher levels of automation. Recommendations such as these recognize 

that automation changes human behavior, and that task constraints play a large role in 

how automation should be implemented. Models such as these are incredibly important 

for system designers and should be used to help alleviate potential out-of-the-loop 

performance decrements, while maximizing the benefit to consumers. 

To understand potential automation decrements further, it is important to take a 

deeper look at the constructs that consistently come up in the literature, such as 

situational awareness, mental workload, and performance.  

Situational Awareness (DV) 

Situational awareness (SA) describes someone’s “internal model of the world 

around them at any point in time” (Endsley, 1988). According to Endsley’s model of 

situational awareness, SA can be further divided into three levels: perception, 

comprehension, and projection. Perception deals with the things that an operator might 

notice with their senses (i.e., a sound, light, color, etc.). Comprehension requires 
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integrating these different components/things from the world to deduce a certain state. 

Projection is the ability to determine the proper course of action to follow based on the 

assessment from level two. For an operator to perform a task successfully, they need to 

be able to perceive the appropriate things, integrate them appropriately, and then take the 

appropriate actions.  

This progression is presented as cyclical because an active operator is constantly 

evaluating a scenario to monitor changes. If the automation is performing these functions 

instead, then the operator is not maintaining this cycle and is only passively involved. 

This could lead to a vigilance decrement, as the operator’s job has shifted from active 

control to passive monitoring, and to a loss of operator skill over time (Endsley & Kiris, 

1995; Endsley, 1996). Kaber and Endsley (2004) supported this notion by finding a 

decrease in SA during fully automated conditions. In addition, it has been shown that 

people are better at recalling information that they help generate (Slamecka & Graf, 

1978). Thus, the loss of active participation removes the “generation effect,” which may 

also explain the negative relationship prior research has found between DOA and SA. 

However, Fuchs et al. (2013) showed that their adaptive automation display for UAV 

operators decreased workload while also increasing situational awareness, so, an increase 

in automation does not always mean a break in this cycle.  

From the model proposed by Endsley, SA depends on the operator’s ability to 

recall important information, to integrate it, and then develop a course of action. If the 

automation takes over most of this process, it stands to reason that the operator’s own SA 

would decrease and increase the likelihood of out-of-the-loop performance issues, 
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especially if the automation fails. This does not necessarily mean that all automation will 

decrease SA, or that automation will never increase SA, but that the detriment to SA is 

most likely in systems with high DOA.  

Mental Workload (DV) 

In the same way that increasing DOA is believed to reduce SA, using automation 

to aid in tasking is thought to reduce mental workload (MWL). In fact, MWL is often 

grouped together with SA because they are so closely related (e.g., Vidulich & Tsang, 

2015). MWL refers to the relationship between the resource demands of a task and the 

mental resources available to the operator, and so it is commonly associated with 

attention (Wickens et al., 2013, p. 347-438). This is because the operator is allocating 

these attentional resources to cope with task demands. SA is typically associated with 

memory, as it requires the operator to gather and recall information about the current 

state of the system. On top of these theoretical differences, Endsley (1993) notes that 

while these constructs are related, they are not dependent on each other.  

Once this distinction has been made, it is important to look at the various ways of 

measuring MWL. First, it is important to note that MWL cannot be captured by task 

performance alone (Wickens et al., 2013, pg. 350). For example, a task can be more 

difficult, and so a person may put in more effort (increasing their workload) to 

compensate and maintain their current performance level. In this case, performance 

would not show that the operator has a greater mental workload. Disassociations between 

different measures of MWL have consistently been reported (e.g., Yeh and Wickens, 

1988). This can mean a lack of correlation between MWL self-report scores and 
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neurophysiological indices of MWL, significant findings for one measure but not the 

other, etc. This is not to say that MWL is not useful, but that MWL can be complex, and 

it often requires multiple measures to ensure the entire construct has been captured. Two 

major types of these measures are self-reported (explicit) measures and implicit 

measures.  

One way to capture subjective MWL is with a measure provided at the end of a 

trial, like the NASA-TLX (Hart & Staveland, 1988). The NASA-TLX is a survey 

instrument that is administered post-trial and requires participants to rate six dimensions 

of workload (mental demand, physical demand, temporal demand, performance, effort, 

and frustration) from 0-100 (Appendix B). Since this method relies on self-report, and 

therefore the operator’s awareness of their own MWL, it is considered an explicit 

measure of MWL. In terms of subjective MWL and DOA, Roettger et al. (2009) found an 

“almost linear” relationship between the decrease in subjective MWL as DOA increased. 

Kaber and Endsley (2004), Rovira et al. (2007), and Lin et al. (2019) have found similar 

trends in subjective measures of MWL, but not as strong. Yet, other studies reported null 

findings for subjective MWL and DOA (Endsley & Kiris, 1995; Lorenz et al., 2002a). 

Differences in the findings could stem from differences in the tasks being completed (i.e., 

automation helping with detecting faulty products, vs ai helping with decision making), 

which further emphasizes the importance of considering task constraints. A benefit to 

using a measure like this is that people have a general impression of how easy or hard a 

task is. A major criticism of subjective measures like these is that these measures are 

administered after the task, so participants may not be fully aware of their workload 
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during the entire task. In addition, it cannot capture the progression of MWL throughout 

the task, and so is often seen as a coarse, more fallible measure of workload. 

As with SA and DOA, the relationship between MWL and DOA is not always as 

clear as researchers would like it to be, but the general trend is that increasing DOA tends 

to decrease MWL (Wickens et al., 2010). This does not mean that operators are more 

equipped to handle automation failures. Hancock (1989) found that operators experienced 

greater workload during automation failure than when they were operating manually. 

There is also a chance that employers may see this decrease in operator workload as an 

opportunity to provide workers with additional tasks to complete. In this case, an 

automation failure could result in even greater operator overload, leading to greater 

performance decrements as the operator now has more tasks to manage. 

The Lumberjack Analogy  

When comparing two systems, or two versions of the same system, it’s easy to see 

that they can differ in the amount of automation within them. What might be harder to 

see is how these differences in DOA affect the people operating the system. The studies 

mentioned above, in addition to numerous other studies in the area, led to a meta-analysis 

of studies involving human-automation interaction. This meta-analysis reported that 

higher levels of automation are associated with critical performance deficits during an 

unexpected automation failure (Onnasch et al., 2014). This same article goes on to 

elaborate that these deficits can be predicted by the lumberjack analogy (“the bigger they 

are, the harder they fall”) described in Onnasch et al. (2014). This analogy arose from the 
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results of earlier studies on human-automation interaction and investigations into real-life 

automation failures (many involving aircraft). 

Although real-world automation failures are less common than their experimental 

counterparts, they are very important to consider because many people only see the 

benefits of automation and do not consider the risks involved with making a process more 

automated. In certain high-cost, time-sensitive industries (i.e., aviation or nuclear 

energy), automation failure in a highly automated environment could lead to a 

catastrophic failure, such as a crash or meltdown. Despite these risks, it also does not 

make sense to be so afraid of automation to never enjoy its benefits. In fact, Endsley 

(1996) discusses the possibility of automation actually increasing SA by aiding 

perception and comprehension of incoming stimuli. In these situations, the automation is 

being implemented at a lower stage of processing and keeps the operator in the loop. 

Overall, this set of effects has led to the aforementioned “lumberjack analogy,” as 

discussed by Onnasch et al. (2014; Figure 1). This model predicts that systems with 

higher DOAs, which are functioning properly, should only increase the operator’s routine 

performance. Conversely, systems with higher DOAs may also create larger deficits in 

performance, compared to manual control, primarily when the automation fails (failure 

performance). This DOA model, or “lumberjack analogy,” is aligned with the DOA 

trade-off between MWL and SA that were reported in the Wickens et al. (2010) meta-

analysis. 
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Figure 1  

Lumberjack Analogy Diagram  

 

Note: This figure shows the relationships between degree of automation, mental 

workload, situational awareness and performance as outlined in the text (from Onnasch et 

al., 2014). 

 

As with any model there are skeptics and critics that seek to test its boundaries. 

Jamieson and Skraaning (2019) attempted to do this by expanding the DOA model into a 

complex work environment (compared to more simplistic, controlled lab studies) but was 

unable to replicate its predictions. This is significant because one of Jamieson and 

Skraaning’s reasons for doing this was the lack of complex, real-world work 

environments being used in these studies. In fact, they reported an increase in SA, no 

effect on workload or task performance, and a decrease in out-of-the-loop performance at 

greater DOAs. Wickens et al. (2019) rebuked their findings stating that it was not a 

proper test of the lumberjack analogy.  
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Some of Wickens et al.’s (2019) major points were that their study did not include 

a comparison of routine performance, an actual measure of SA, and that the failure 

performance was based on failure of the underlying system and not the automated 

system. Without a comparison to routine performance, there is no way to determine the 

difference in performance from routine to failure. Similarly, it is inappropriate to 

operationalize SA with a measure of task knowledge and say that the SA is increasing. 

The last point listed is an important distinction, as the lumberjack analogy refers to 

automation failure and not how automation helps manage system failures. Jamieson and 

Skraaning (2020) conceded some of these points and argued others but concluded that 

this DOA model needs additional research before it can be applied to complex work 

settings. The current study addresses the concerns that Wickens et al. had with the 

Jamieson and Skrannings’ study, while also pushing into the more complex work 

environments that Jamieson and Skranning mentioned were lacking in this research area. 

Rationale 

 Although there have been numerous studies looking at the effects of automation 

on workload and situational awareness (see above), the lumberjack analogy is a relatively 

recent model. The effects proposed by this model, although generally supported, have 

had mixed results in the literature and this model has recently been criticized for not 

living up to its predictions in complex environments. If the generalizability of the model 

is in question, it is important to study the model in the context of these more complex 

environments so that it can be applied to real-world problems. Although it can be difficult 

to imitate real-world work environments in a laboratory setting, some tasks are naturally 
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more complex/realistic than others. Given the constraints of the study, using a testbed 

like the Research Environment for the Supervisory Control of Unmanned Aerial Vehicles 

(RESCHU; Donmez et al., 2010), which imitates a display that a UAV operator may be 

using, over the MAT-B (Comstock & Arnegard, 1992), which emulated a small two-

engine aircraft of the 1970s but no longer resemble a real-world display, could serve as a 

closer approximation to a more futuristic, complex work environment.  

The current study aims to target these deficits in the literature by testing the 

predictions of this model using multiple versions of a complex system (each with a 

different DOA; see Methods). Testing the predictions of this model requires this study to 

show that increasing DOA should benefit performance, as automating a task should 

inherently reduce the demands of that task. This in turn would reduce the operator’s 

MWL, while also reducing the operator’s engagement with the system (resulting in a loss 

of SA). Conversely, if the automation does not reduce the operator’s engagement, there is 

a possibility that SA could actually increase. The loss of SA that comes from “over-

automating” a system should lead to greater performance decrements when the 

automation unexpectedly fails (is taken away or suddenly becomes unreliable). The 

hypotheses that were generated from these predictions and deficits are to be tested in the 

following experiments. 
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Hypotheses 

Hypothesis 1a: Participant performance will be highest in the high DOA 

condition, lower in the medium DOA condition, and lowest in the manual/low 

DOA condition, and their performance will be higher in routine conditions than in 

failure conditions. 

Hypothesis 1b: Participant performance will be highest under high DOA, and 

lowest under low DOA for the routine reliability conditions only, but vice versa 

for the failure conditions. 

Hypothesis 2: Participant SA will be lowest at the highest DOA and highest at 

the lowest DOA. 

Hypothesis 3: Participant MWL will be highest under the lowest degree of 

automation and lowest under the highest degree of automation, and the failure 

conditions will be higher in MWL than the routine conditions. 
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Methods 

Participants 

 Participants (n = 28) were recruited from undergraduate psychology courses via 

the SONA research system. Each participant reported their gender (71.4% women, 25% 

men), race (78.6% white, 17.9% black/African American), and age (M = 20.25, SD = 

6.35). Each student was awarded SONA credits for their participation in the study. 

Figure 2 

RESCHU 

\ 

Note: The entire RESCHU task environment. The right side is where UAV paths are set 

to target locations, and the left is where mission details are located and payload targets 

are identified. 

 

Experimental testbed: RESCHU 

 The testbed for this experiment is the Research Environment for the Supervisory 

Control of Unmanned Aerial Vehicles (RESCHU; Donmez et al., 2010; Figure 2). This 
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program is a futuristic example of an interface that simulates a single operator controlling 

multiple unmanned aerial vehicles. Currently, it takes multiple operators to control a 

single UAV, which is not as efficient as a single operator controlling multiple UAVs. 

This type of environment offers greater complexity than simple laboratory experiments 

and should provide a more realistic test of this DOA model. While there are a variety of 

programs that are meant to imitate these types of environments (e.g., ALOA multi-UAS 

research test bed developed by Johnson et al., 2007; as cited by Lin et al., 2019), this is a 

program that is meant to imitate future UAV control and has been shown to be viable in 

past research (e.g. Donmez et al., 2010, Cummings et al., 2019). The purpose of using an 

environment like this is because the complexity of these types of tasks creates a 

demanding environment that is useful for testing these DOA effects (lumberjack 

analogy).  
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Figure 3  

RESCHU Payload Task and Info 

 

Note: The payload/search task is pictured above with the UAV and target description 

listed below. Participants pan through the image on top to locate the specified target. 

 

In this program, the operator is in control of multiple UAVs (6 total) and they 

must set a path for the UAVs to reach “targets” while also avoiding “hazard zones.” Once 

a UAV reaches a target, the operator must complete a search task (Figure 3) within 30 

seconds. A target description (e.g., “yellow train car”) appears in the system log and the 

operator must pan and zoom in an overhead image (e.g., an aerial view of a city) to find 

and then click the target (top of Figure 3). After clicking, the operator receives feedback 

in the system log (success or failure) and then they must reassign the UAV to a new 

target. In addition, the RESCHU interface features a status window for the UAVs which 
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includes their health and another window showing the timelines for the UAVs (bottom of 

Figure 3). 

Measures 

 Performance. Task performance was measured using two primary performance 

metrics, 1) total score (a composite score based on UAV arrivals, UAV damage, and 

success/failure in finding payload targets) and 2) UAV utilization (proportion of time 

UAVs spent traveling to a target or engaged in a payload task). UAV utilization was an 

average of the utilization rates for all six UAVs used during a trial. See Crandall and 

Cummings (2007) and Mancuso et al. (2015) for additional approaches to operationalize 

task performance in supervisory control environments. 

Mental Workload. This construct was measured after each trial with the NASA-

TLX questionnaire (Hart & Staveland, 1988; Appendix B) and UAV utilization 

(Cummings et al., 2019). The NASA-TLX involves two parts. First, there is a pairwise 

comparison of the six subscales (Mental Demand, Physical Demand, Temporal Demand, 

Performance, Frustration, Effort) which is used to create weights for the task in question. 

Once all comparisons are made, each dimension is tallied up to create the weight. Then, 

following each trial, participants rate each subscale from very low (0) to very high (100). 

These post-trial scores on each subscale are multiplied by the corresponding weight, 

combined, and divided by 15 (the number of comparisons) to create the weighted scores. 

Participants completed the pairwise comparisons after the last practice trial, and the 

subsequent subscales were each rated using a sliding bar on a line (slider) after each 

experimental trial.  
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 Situational Awareness. Situational awareness was measured with the situational 

awareness rating technique (SART; Taylor, 1990; Appendix C). There are ten questions 

that are structured similarly (i.e., “How changeable is the situation? Is it very stable and 

straightforward (low) or is the situation highly unstable and likely to change suddenly 

(High)?”). These questions are rated from 1 (low) to 7 (high). This was administered after 

each trial, after the NASA-TLX. The overall score for the self-assessment was computed 

by taking the sum of the items for all three dimensions (Understanding, Demand, and 

Supply) and then using those in the following formula: SA = U - (D - S). 

Procedure 

To examine the effects of Automation Reliability (between) and DOA (within) 

further, each participant was placed into either the routine automation group or the failure 

automation group. We also used three task configurations of varying degrees of 

automation (low, medium, high), but each participant – regardless of group – experienced 

all three of these configurations. In the first system, users searched for targets without any 

assistance (low DOA/manual). In the second, the quarter of the map containing the target 

was shaded light green, but the participant still had to rely on the description to find the 

target (medium DOA; Figure 4 – the yellow box indicates roughly how much of the 

image the participant can see in the window). In the third, the target was surrounded by a 

smaller, green circular region so that participants only needed to locate this circle (high 

DOA; Figure 5). For participants in the routine automation condition, the target was 

always located within the shaded region. In the automation failure conditions, the target 

was in the shaded region 80% of trials. 80% reliability was chosen to make the 
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automation failures more like unexpected failures than a persistent flaw in the automation 

itself. 

Figure 4   

Medium DOA Condition 

 

Note: In the medium DOA condition, participants were told that the target was located 

within the green area. The yellow box is all the image that the participant could see at any 

given time. 

Figure 5  

High DOA Condition  
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Note: In the high DOA condition, participants were told that the target was located within 

the green circle. The yellow box indicates the amount of the image a participant could see 

at any given time.  

In the first part of the session, participants completed demographic information 

(Appendix A) and then went through a PowerPoint slideshow introducing the RESCHU 

system (including a brief tutorial video). Afterwards, they practiced the task for each 

DOA for 5 minutes each (starting with the lowest DOA then moving up). For both 

reliability groups, the automation during training was 100% accurate. This was important 

in establishing the expectation that the automation works properly so that the automation 

failures were true failures and unexpected. At this point, participants completed the 

pairwise comparisons of the NASA-TLX and were offered a chance to take a break 

before beginning the experimental rounds. The order of the experimental conditions was 

randomized for each participant. After every trial each participant answered the NASA-

TLX and SART questionnaire (a total of three time). The entire session took no longer 

than 2 hours. 
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Results 

To test the three hypotheses for the study, the data from 28 participants was 

analyzed using multivariate ANOVAs. These models were created using degree of 

automation (low, medium, and high) and reliability (routine or failure) as the independent 

variables and the measures of performance, situational awareness, and mental workload 

as the dependent variables. 

Performance 

 The first hypothesis was tested by entering the calculated participant performance 

score into the model with degree of automation and reliability condition (routine vs 

failure). Since there are three levels to the repeated measure, the Greenhouse-Geisser 

adjustment was used on the degrees of freedom (Grieve, 1984). Although there were 

several metrics of performance available, the correlation matrix (Table 1) showed that 

many of these were highly correlated with the composite performance score (as many of 

them were included in this score). Average utilization and accuracy were not, so these 

were also explored as potential performance metrics in separate models. The mean 

participant performance scores (Figure 6) were significantly different across DOA, 

F(1.82, 47.36) = 29.71, p < .001, ηp2=.2, and reliability conditions, F(1, 26) = 8.85, p < 

.01, ηp2= .16. There was no significant interaction between DOA and condition, F(1.82, 

47.36) = 2.66, p = 0.09, ηp2=.02. A post-hoc pairwise comparison using the conservative 

Bonferroni correction found that participants in the medium and high DOA conditions 

had significantly higher performance scores than participants in the low DOA condition, 

but there was no significant difference between the medium and high DOA conditions. 
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This supports Hypothesis 1a for the main effects of DOA and reliability on performance 

scores but does not support the interaction between DOA and reliability in Hypothesis 1b. 

 

Figure 6 

Participant Performance Scores by Degree of Automation Across Reliability Groups. 

 

Note: Score is not out of 100 but rather represents the composite performance score 

calculated from correct/incorrect target identification, UAV arrivals, and UAV damage.  
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Table 1  

Correlation Matrix for Performance Metrics 

 

Note: Condition = Reliability (Routine vs Failure); TBP = Time Between Payloads; Util = Average UAV Utilization Rate; 

Trial = Order of trials; Damage Events occur when a UAV travels through a hazard zone  

* p < 0.05 

 

 

 DOA Trial Score Condition Util Errors Correct Arrivals DmgEvents Attempts Accuracy 

Trial 0           

Score 0.38* 0.14          

Condition 0 0 (-0.29)*         

Avg. Utilization -0.04 0 0.1 -0.1        

Errors -0.08 0.02 -0.28* 0.30* 0.25*       

Correct 0.40* 0.16 0.98* -0.33* 0.07 -0.26*      

Arrivals 0.31* 0.15 0.94* -0.27* 0.13 -0.23* 0.94*     

DmgEvents 0.09 0.11 -0.15 -0.23* -0.03 0.08 0.04 -0.003    

Attempts 0.08 -0.06 0.16 -0.05 0.14 -0.01 0.19 0.17 0.13   

Accuracy -0.04 -0.07 0.06 -0.03 0.16 0.16 0.09 0.09 0.14 0.59*  

TBP -0.27* -0.39* -0.57* 0.23* 0.05 0.07 -0.60* -0.58* -0.09 -0.08 -0.03 
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The other metrics of performance for this study were also analyzed with 

ANOVAs using the Greenhouse-Geisser adjustments. Average participant UAV 

utilization (Figure 7) was entered with DOA and reliability, and there were a significant 

main effects for DOA, F(1.94, 50.49) = 7.66, p < .001, ηp2=.09, and reliability condition, 

F(1, 26) = 6.01, p < 0.05, ηp2=.13, but no interaction, F(1.94, 50.49) = 2.68, p = 0.08. A 

post-hoc test using the conservative Bonferroni adjustment found lower UAV utilization 

in manual DOA conditions than in medium DOA conditions, while the failure reliability 

group had the lowest utilization amongst group. Accuracy (Figure 8) produced no 

significant main effects for DOA, F(1.79, 46.42) = 0.06, p = 0.79, reliability, F(1, 26) = 

0.08, p = 0.93, or their interaction, F(1.79, 46.42) = 0.54, p = 0.57. These non-significant 

findings provide no additional support for Hypothesis 1a or 1b. 

 

 

Figure 7 

Average UAV Utilization by Degree of Automation Across Reliability Groups 
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Figure 8 

Participant Accuracy by Degree of Automation Across Reliability Groups 

 

Situational Awareness 

To test Hypothesis 2, another ANOVA was used to examine the difference in 

SART scores using the same method as above. Composite SART scores (Figure 9) 

obtained from the survey following each task were entered into a model with DOA and 

Reliability. There were no main effects for DOA, F(1.99, 51.8) = 0.55, p = .58, 

reliability, F(1, 26) = 0.16, p = .69, or the interaction between the two independent 

variables, F(1.99, 51.8) = 0.11, p = .9. 
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Figure 9 

Participant Situation Assessment Rating Technique (SART) Scores by Degree of 

Automation Across Reliability Groups 

 

 

Mental Workload 

Finally, Hypothesis 3 was tested using the NASA-TLX scores and sub-scores 

obtained from the survey following each task. The initial test of hypothesis 3 was 

conducted using a standard metric of MWL, which is the weighted NASA-TLX scores 

(Figure 10). These were entered into the ANOVA model with DOA and Reliability. 

There were no main effects for DOA, F(1.89, 49.26) = 2.7, p = .08, Reliability, F(1,26) = 

0.02, p = 0.88, or the interaction between the two independent variables, F(1.89, 49.26) = 

0.46, p = 0.62. This provides no support for Hypothesis 3. Nevertheless, some additional 

analyses were conducted, based on past research on the NASA-TLX measure. Some 

researchers (e.g., Moroney, 1992) suggest it is preferable to just use the raw scores, while 

others note potential issues that can arise while using the traditional NASA-TLX weights 

(e.g., Virtanen et al., 2021). Therefore, to examine mental workload further, raw NASA-
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TLX scores were utilized (Figure 11) and a new model was ran. There was a main effect 

for DOA, F(1.62, 42.11) = 7.24, p < 0.01, ηp2=.05, but not for reliability, F(1, 26) = 0.08, 

p = 0.78, ηp2=.00, or the interaction between DOA and reliability, F(1.62, 42.11) = 0.78, 

p = 0.44, ηp2=.01. A post-hoc pairwise comparison using the conservative Bonferroni 

correction found that participants in the low DOA trials reported significantly higher raw 

NASA-TLX scores than the high DOA groups (p < 0.05). When using the raw scores 

instead of the weighted scores, there is partial support for Hypothesis 3. 

Figure 10  

NASA Task Load Index (NASA TLX) Weighted Scores by Degree of Automation 

Across Reliability Groups. 
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Figure 11  

NASA Task Load Index (NASA TLX) Raw Scores by Degree of Automation Across 

Reliability Groups 

 

 

Another way to investigate MWL is to examine the raw scores of the subscales of 

the NASA-TLX (e.g., Galy et al., 2018). To reduce familywise error, a 2 (Reliability) x 3 

(Degree of Automation) x 6 (Subscale) MANOVA was conducted to test for difference in 

reliability groups and DOA conditions across subscale scores. There was a main effect 

for DOA, Pillai’s Trace = 0.52, F(2, 52) = 2.8, p < .01, but not for Reliability, Pillai’s 

Trace = 0.39, F(1, 26) = 2.3, p = .08 or the interaction between DOA and reliability, F(2, 

52) = 0.44, p = 0.43. Individual univariate ANOVAs, with Greenhouse-Giesser 

adjustments, were conducted to examine each of the subscales across DOA conditions 

while any post-hoc analyses included the Bonferroni adjustment. Mental Demand had a 

significant main effect for DOA, F(1.7, 46) = 6.86, p < .01, ηp2=.03,  A post-hoc analysis 

showed that the average mental demand subscale rating was significantly higher in low 

DOA conditions than high DOA conditions. Physical Demand had a significant main 
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effect for DOA, F(1.74, 47.07) = 5.04, p < .05, ηp2=.03,  A post-hoc analysis showed that 

the average physical demand subscale rating was significantly higher in low DOA 

conditions than medium or high DOA conditions, but there was no significant difference 

in medium and high. Temporal Demand did not have a significant main effect for DOA, 

F(1.98, 53.48) = 1.54, p = .22, ηp2=.02. Performance had a significant main effect for 

DOA, F(1.81, 48.88) = 12.2, p < .001, ηp2=.15,  A post-hoc analysis showed that all three 

conditions were significantly different from each other. Effort had a significant main 

effect for DOA, F(1.69, 45.58) = 8.13, p < .01, ηp2=.09,  A post-hoc analysis showed that 

the average effort subscale rating was significantly higher in low DOA conditions than 

medium or high DOA conditions, but there was no significant difference in medium and 

high. Frustration also had a significant main effect for DOA, F(1.71, 46.14) = 9.27, p < 

.001, ηp2=.06,  A post-hoc analysis showed that the average mental demand subscale 

rating was significantly higher in low DOA conditions than medium or high DOA 

conditions, but there was no significant difference in medium and high.   
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Discussion 

 This study examined the effects of characteristics of automation - degree of 

automation (DOA) and reliability – on performance, situational awareness (SA), and 

mental workload (MWL). These effects have been previously captured by the lumberjack 

analogy, which demonstrates not only the benefits of automation but also potential 

dangers of using too much automation (Onnasch et al., 2014). From this analogy, 

increasing automation not only increases task performance, but also reduces mental 

workload. The caveat here is that this comes at a cost of situational awareness. While this 

may not be an issue when the automation is functional, the lumberjack analogy goes on to 

explain that when a highly automated system fails there will be drastic performance 

deficits as users struggle to regain their lost situational awareness. While the lumberjack 

analogy provides a good lens to summarize the set of effects within this body of research, 

the current research sought to better understand the effects of automation on the users of 

automation by assessing the extent to which the lumberjack analogy would also hold in a 

complex, supervisory control environment such as the RESCHU. At the same time, the 

current study employed conditions similar to those used in previous studies of the 

lumberjack analogy. Next, the results of the study will be compared against the 

predictions of the lumberjack analogy itself, and the notable differences will be 

discussed. 

Performance: Hypothesis 1 

Regarding performance, participants earned higher scores in the routine reliability 

condition than in the failure condition and they scored better with assistance from the 

automation (medium and high DOA) than without it (manual). Yet, participants in the 

failure group didn’t experience the effects of DOA any differently than the routine group. 
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These results are not totally in line with the Hypothesis 1 predictions for the lumberjack 

framework. Although both main effects were supported for Hypothesis 1a, the 

lumberjack analogy would predict an interaction between these two factors. For the 

routine automation group, it was predicted that performance would be best in the high 

DOA condition and worst in the low DOA condition, but vice versa for the failure 

automation group. The difference in score between the two reliability groups arguably 

came from the effects of these failures, which led to inaccurate responses, more time 

spent on payloads, and missed points. However, scores from the high DOA condition 

were the highest and the ones from the low DOA condition the lowest, regardless of 

group. Hypothesis 1b predicted that in the failure group, the scores would be the highest 

in the low DOA condition and lowest in the high DOA condition. In other words, having 

unreliable automation assistance was found to be more beneficial than no automation 

assistance at all.  

The composite performance score captured many aspects of the participants’ 

performance, but the lack of a correlation between this score and UAV utilization rate 

and accuracy led to these metrics being analyzed separately. UAV utilization rate showed 

similar significant findings as the overall composite score, but the same cannot be said 

for accuracy. Despite these significant results, these results would not only indicate that 

the lumberjack analogy is not as robust as it might seem, but that the overall risks to 

performance from faulty automation on any DOA are minimal compared to manual 

performance. Although these results are not aligned with studies reporting negative 

effects of unreliable automation (Rovira et al, 2007), they strengthen the findings of other 

studies that failed to find a relationship between failure DOA and performance (e.g., 
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Lorenz et al., 2002a, Lorenz et al., 2002b). These results are very reassuring for users of 

automation as they show that even unreliable automation can help improve performance 

over no automation. 

Situational Awareness: Hypothesis 2 

SART scores did not support the predictions of hypothesis 2 for the lumberjack 

analogy. It was predicted that SA would be lowest when DOA is highest, and highest 

when DOA is lowest. Not only were these scores highly variable, but there was no clear 

distinction in SART scores between reliability groups or DOA conditions. The 

lumberjack analogy would predict that SA should be lower in interfaces with higher 

DOA. The lack of a pattern may indicate several things. First, it is possible, but unlikely, 

that SA is unaffected by changes in DOA and reliability. A second possibility is that the 

measure of SA was not sensitive enough for this task, which might be evidenced by the 

variability in the responses. Thirdly, it is also possible that the manipulations were not 

strong enough to reduce SA enough to produce the deficit in performance that were 

predicted by the lumberjack analogy model. In either case, the results for hypothesis 2 are 

not aligned with the predictions of the lumberjack analogy.  

Although some prior research has failed to find a lack of connection between 

degree of automation and situational awareness (e.g., Fuchs, 2013), there is a lot of 

evidence to support a connection between situational awareness and degree of automation 

(e.g., Kaber & Endsley, 2004). Thus, our finding that SA was not substantially impacted 

by the automation was one of the more surprising findings of the study. It therefore seems 

likely that the lack of significant results stems from certain issues with how SA was 

operationalized, how automation was manipulated, or both. Endsley et al. (1998) 

compares SART to the SAGAT (a more implicit measure of SA) and highlights 
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differences in how they capture SA. The SART measures the participant’s overall 

perception of their own situational awareness after the task, and it is possible these 

participants were unaware of their own SA during the task. In that way, it may not have 

been sensitive enough to capture the changes in SA that might have occurred during 

automation failure. 

However, another possibility is that the automation may have been “adaptive” 

enough to keep participants in-the-loop and preserve SA in the same way the automation 

did in Fuchs’ (2013) study, or perhaps participants had enough time to regain SA after 

experiencing the automation failure. In either case, this could also explain the lack of an 

interaction for hypothesis 1b, but that is much more difficult to prove without testing 

again with modifications to the design. Future studies attempting to capture SA should 

ensure their measures of SA are appropriate for the task context. However, assuming that 

our results were correct, it takes stronger manipulations in automation to bring out 

significant changes in SA and it is extremely important to verify the DOA for the entire 

system and perform manipulation checks while trying to examine changes in SA.  

Mental Workload: Hypothesis 3  

The final hypothesis that was tested was the last component of the lumberjack 

analogy - mental workload. It was predicted that MWL would be lowest in high DOA 

conditions, and highest in low DOA conditions. The weighted scores produced by the 

NASA-TLX were used in the analysis to explore the relationship between MWL, DOA, 

and reliability. Surprisingly, the analysis of these variables revealed that participants had 

similar weighted scores between reliability groups, across all three interfaces. This was 

unexpected because participants were performing better but they did not report a decrease 

in MWL. This is not in line with the lumberjack analogy either, because the lumberjack 
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analogy proposes that increasing the DOA should decrease MWL. Furthermore, it is 

interesting that intermittent automation failures did not result in any notable changes in 

MWL.  

Although the scoring guide for the NASA-TLX outlines creating weighted scores 

for the final product of the NASA-TLX, some researchers believe the weights are 

unnecessary and that researchers can use “raw” scores for analyses (e.g., Moroney, 1992; 

Nygren, 1991). To explore mental workload further Raw NASA-TLX scores were also 

analyzed. It was found that participants had higher raw TLX scores on manual condition 

than the high DOA condition, which supports hypothesis 3. Discrepancies between raw 

and weighted NASA-TLX scores are not uncommon (e.g., Virtanen et al., 2021), which 

was one of the reasons they were also analyzed, and the results of analyzing the raw 

scores did show effects that support the predictions of the lumberjack analogy. 

Another proposed way of examining the NASA-TLX, and thus another way to 

explore mental workload further, is to look at values of the individual subscales, each 

targeting a specific component of workload (e.g., Galy et al., 2018). Perhaps 

unsurprisingly, by adopting this approach, I found that most sub-scales supported the 

significant findings from the raw scores. All the subscales, except temporal demand, had 

significant differences between DOA condition means. Post-hoc tests showed that the 

significant differences were between the manual condition and medium or high 

conditions (except mental demand which was just manual and high, and performance 

which had differences for each pair). The caveat to the scores on this performance 

subscale though, is that participants could see their personal score for each trial in the 

lower left of the window.  
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These analyses further examined the relationship between Mental Workload, 

DOA, and Reliability and the findings from the raw scores and subscales are better 

aligned with hypothesis 3 and the predictions of the lumberjack analogy. The significant 

findings for mental workload, and the lack of significant findings for situational 

awareness, emphasizes that mental workload and situational awareness may not change 

together and that they should both be measured when studying automation. 

 Virtanen et al. (2021) explains that weighted scores should be used whenever it is 

believed that the dimensions for a task are not equally important. That was the belief with 

the RESCHU task, but perhaps the significant differences in raw scores and subscales 

indicate that these dimensions could be equally important in this environment, or that the 

weights actually are unnecessary (Nygren, 1991). If so, then these results are much more 

supportive of the hypothesis 3 than expected, and the analysis of the subscales may be 

more meaningful and reflective of prior research on MWL and automation (e.g., Wickens 

et al., 2010). Conversely, if the weighted scores should be preferred, then these findings 

indicate participants did not report any difference between automation groups or 

conditions which is not in itself a unique finding (e.g., Endsley & Kiris, 1995, Lorenz et 

al., 2002a). Considering the meta-analytical work of Wickens et al. (2010) and support 

for alternate scoring methods for the NASA-TLX, I would say that automation does 

affect mental workload and that it is likely that the weights were unnecessary in this 

context.  

The Lumberjack Analogy 

Overall, the results went mostly against the predictions of the lumberjack analogy 

that were captured by the hypotheses. In fact, the crux of the lumberjack analogy was not 

supported in this context at all as participants did not experience any negative effects 
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from the automation. Instead, it was found that participants only benefited from the 

automation. This is great news for many developers and consumers of automation as it 

indicates that only certain contexts may lead to these catastrophic performance deficits. 

In fact, the current results demonstrate the importance of the exchange/discussion 

between Jamieson and Skraaning and Wickens, as these relationships are much more 

complex than initially portrayed.  

This exchange implies a disconnection between what designers of automation are 

learning from studies on automation. Although warnings such as the lumberjack analogy 

could be useful in many contexts, especially in high-risk contexts like aviation, they 

could be overgeneralized to environments that do not carry the same consequences. For 

example, for our study there were very minimal consequences for automation failure 

besides the inconvenience of manually having to search for the target and potentially 

losing a point. Tatasciore et al. (2020) also argues that the temporal demands of the task 

can moderate the lumberjack analogy. In less time-sensitive situations, the lumberjack 

analogy is less impactful as operators have time to regain control of the situation. The 

lack of significant changes in participant NASA-TLX temporal demand subscale scores 

across conditions and groups may indicate there may have not been enough temporal 

demand during automation failures.  

While it is important to caution developers and users of automation, it is also 

important to understand which contexts may allow for greater automation to maximize 

benefits to consumers. All research in this area should take the utmost care to ensure 

proper operationalization of their variables (manipulations and measures) from their 

corresponding theoretical constructs - as discussed in Wickens et al. (2019).  
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Limitations 

There are several limitations to this research that warrant further investigation. 

First, participants had all their training and the experimental sessions in the same day. 

These participants were inexperienced psychology undergraduates, rather than trained 

UAV operators, who were likely driven to try harder by the novelty of the task and it is 

likely that they were still improving their scores during their experimental session. It is 

possible these participants experienced a loss of engagement after this novelty wore off, 

and their lack of experience may have played a role in some of our findings. Attempts 

were made to minimize these risks such as requiring participants to type a statement 

about “trying their best” and “answering honestly,” going through a PowerPoint training, 

brief tutorial video, and practicing all three conditions before being offered a break. 

 Second, there may not be sufficient power in the manipulations. There were only 

14 participants per reliability group, and any decrements suffered from automation failure 

might have had limited impact (it was only one portion of the overall task; a good tip for 

minimizing risk with automation) on the overall system, especially in the limited time 

they had for each trial. Furthermore, of the three DOA conditions, the highest DOA 

condition may have not been automated enough to produce the benefits/decrements that 

you would expect to see. It would have been ideal if participants were prompted to select 

“yes” or “no” for the target instead of having to locate the identifying circle, but this 

smaller circle still identifies the target for the user which is more than the green rectangle. 

Unfortunately, limitations in the customizability of the testbed made some changes 

impractical to implement. 

 Lastly, no additional, implicit measures for the subjective measures of MWL or 

SA were explored in the current work. MWL was measured using the explicit measure of 
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the NASA-TLX only. UAV utilization could serve as a rough secondary task 

performance metric for MWL, but it is dependent on the same mental resources as the 

primary task, so it is not ideal. The NASA-TLX is not an implicit measure of MWL, such 

as those generated from EEG data. There is a similar issue with the measure of situational 

awareness, SART. This is an explicit measure of situational awareness that is 

administered post-task. Although the SART was selected because it is a valid measure 

and less disruptive to the task (compared to a measure like the SAGAT; Endsley, 1988), 

it may be inferior to a more implicit, invasive measure of SA such as the SAGAT 

(Endsley et al., 1998). This makes it much more likely that something extraneous could 

have affected how the participants responded to these survey items. To reduce chances of 

misunderstandings, instructions were provided on every measure each time they were 

presented, and the researcher was available if the participants needed clarification on 

anything. 

Future Research 

 Future research on automation should focus on using implicit measures to capture 

mental workload and situational awareness and should begin by testing extremes in the 

degree of automation being implemented. This would ensure more real-time/reliable data 

for these variables than the self-reported, end-of-task surveys, and by using extremes it 

should lead to the greatest difference in responses.  

To further explore the lumberjack analogy more tasks/testbeds/experimental 

designs need to be tested. Ideally, future tests will involve complex, real-world 

environments. Jamieson and Skraaning (2019) discuss the inapplicability of the 

lumberjack analogy in real-world environments, and although there were some holes in 

their methodology, the results of this study indicate a need for more clarification on the 
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generalizability of these effects. This includes having multi-stage tasks, multiple tasks, 

longer sessions, trained operators, etc., so that the results can be applied to any work 

context. Most importantly though, there should be a distinction between tasks with severe 

consequences and time constraints, and those without. Furthermore, this suggests the 

need to study the temporal aspects of the lumberjack analogy surroundings these 

automation failures. Automation can be adjusted in many ways and future results need to 

not only focus on extreme changes in automation but the finer levels between those 

extremes. This would allow us to better understand how a variety of work environments 

benefit from various types of automation that would allow us to better fit automation to 

the situation. To Wickens et al (2019) point, it will be nearly impossible to make these 

kinds of decisions though without high-quality measures of the dependent variable and 

true manipulations of the underlying constructs.  

Conclusion 

Overall, the goal of this study was to better understand the interaction between 

humans and automation by further examining the relationship between automation, 

mental workload, situational awareness, and performance, addressing the aptness of the 

lumberjack analogy. The current findings indicate an overwhelmingly positive response 

of people to automation that does not match the “doom and gloom” that can be associated 

with the lumberjack analogy. These results indicate that, at least in this particular task 

environment, the benefits of automation on user performance greatly outweighs the risks 

of the automation. 
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Appendix B: NASA-TLX Pairwise and Post-Task Survey 
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Appendix C: SART and Qualtrics Example 
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