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Abstract 
Feltner, Drew. M.S. Department of Physics, Wright State University, 2022. Establishing a 

Machine Learning Framework for Discovering Novel Phononic Crystal Designs. 

 

A phonon is a discrete unit of vibrational motion that occurs in a crystal lattice. Phonons 

and the frequency at which they propagate play a significant role in the thermal, optical, and 

electronic properties of a material. A phononic material/device is similar to a photonic 

material/device, except that it is fabricated to manipulate certain bands of acoustic waves instead 

of electromagnetic waves. Phononic materials and devices have been studied much less than their 

photonic analogues and as such current materials exhibit control over a smaller range of 

frequencies. This study aims to test the viability of machine learning, specifically neural networks 

in aiding in phononic crystal design. Multiple combinations of training datasets, neural network 

configuration, and data formatting methods are attempted with performance metrics recorded. A 

novel inverse design scheme is proposed that utilizes phonon density of states to perform 

prediction of phononic crystal parameters given a desired band gap and center frequency.  



 iv  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION .......................................................................................................................... 1 

1.1 APPLICATIONS ................................................................................................................................................. 2 

1.2 THE LARGE PNC PARAMETER SPACE ............................................................................................................ 2 

1.3 MACHINE LEARNING APPLIED TO PNC DESIGN ............................................................................................. 4 

1.4 THESIS OVERVIEW .......................................................................................................................................... 4 

CHAPTER 2. BACKGROUND AND THEORY .................................................................................................. 6 

2.1 PHONONS: MONOATOMIC LINEAR CHAIN ....................................................................................................... 6 

2.2 PHONONIC BANDGAPS .................................................................................................................................... 8 

2.3 ELASTIC CONTINUUM THEORY ..................................................................................................................... 10 

2.4 MACHINE LEARNING ...................................................................................................................................... 11 

2.4.1 Neural Networks .................................................................................................................................... 12 

2.4.2 Training and Back-propagation ........................................................................................................... 15 

2.4.3 Other Neural Network Categories ....................................................................................................... 17 

CHAPTER 3. METHODS ................................................................................................................................... 18 

3.1 LIBRARIES AND SOFTWARE USED ................................................................................................................ 18 

3.2 DATA GENERATION ....................................................................................................................................... 19 

3.3 DATA FORMATTING ....................................................................................................................................... 24 

3.4 CHOICES FOR REPRESENTING PHONONICS TRAINING DATA ...................................................................... 25 

3.4.1 Largest Bandgap Approach ............................................................................................................. 26 

3.4.2 Full Band Diagram Approach .......................................................................................................... 27 

3.4.3 Density of States Approach ............................................................................................................. 28 

3.5 NEURAL NETWORK ARCHITECTURES ........................................................................................................... 31 

3.6 NEURAL NETWORK PARAMETER CHOICES .................................................................................................. 31 



 

 v  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

3.7 NEURAL NETWORK TRAINING ....................................................................................................................... 32 

3.8 PERFORMANCE METRICS .............................................................................................................................. 33 

3.8.1 Coefficient of Determination (𝑹𝟐) ................................................................................................... 33 

3.8.2 RMSE .................................................................................................................................................. 34 

3.8.3 Percent Correct ................................................................................................................................. 35 

CHAPTER 4. TRAINING DATASETS DESCRIPTIONS AND ANALYSIS ................................................... 36 

4.1 SI WITH HOLES ............................................................................................................................................. 37 

4.2 SIC WITH HOLES .......................................................................................................................................... 40 

4.3 W WITH HOLES ............................................................................................................................................. 43 

4.4 SI, SIC, W WITH HOLES COMBINED ............................................................................................................ 47 

4.5 SI WITH W PILLARS ...................................................................................................................................... 48 

4.6 SIC WITH W PILLARS ................................................................................................................................... 52 

CHAPTER 5. MACHINE LEARNING STUDIES.............................................................................................. 57 

5.1 RPN RESULTS .............................................................................................................................................. 57 

5.1.1 Largest Bandgap Method ................................................................................................................. 58 

5.1.2 DOS Method ...................................................................................................................................... 62 

5.1.3 Band Structure Method .................................................................................................................... 62 

5.2 DPN RESULTS .............................................................................................................................................. 70 

5.2.1 Largest Bandgap Method ................................................................................................................. 70 

5.2.2 Full Band Structure Method ............................................................................................................. 75 

5.2.3 DOS Method ...................................................................................................................................... 80 

5.2.3.1 Scalar Representation ............................................................................................................................ 80 

5.2.3.2 Binary Representation ............................................................................................................................ 84 

5.2.3.3 Binary Representation Prediction Scheme .......................................................................................... 88 

5.3 TRAINING DATA SPLIT TEST ......................................................................................................................... 96 

5.3.1 Training-Validation Split ................................................................................................................... 97 



 

 vi  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

5.3.2 Training-Test Split ............................................................................................................................. 99 

CHAPTER 6. DISCUSSION AND CONCLUSIONS ...................................................................................... 102 

6.1 FUTURE WORK ............................................................................................................................................ 103 

REFERENCES ................................................................................................................................................ 106 

APPENDIX ....................................................................................................................................................... 109 

A. EXAMPLE CODE FOR TRAINING DPN WITH FULL BAND STRUCTURE DATA ...................................................... 109 

B. TRAINING PARAMETERS USED ........................................................................................................................ 112 



 vii  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 

LIST OF FIGURES 

FIGURE 1: (ABOVE) AN EXAMPLE DIAGRAM OF A SIMPLE PHONONIC CRYSTAL CONSISTING OF A MATERIAL 

EMBEDDED WITH A PERIODIC ARRAY OF CYLINDRICAL PILLARS. (BELOW) THE ASSOCIATED FREQUENCY BAND 

STRUCTURE DIAGRAM. THE DASHED LINES INDICATE THE REGION OF FREQUENCY IN WHICH NO PHONONS 

CAN PROPAGATE. [1] ............................................................................................................................................ 1 

FIGURE 2: EXAMPLE OF AN ULTRAWIDE BANDGAP 3-D PHONONIC CRYSTAL DESIGN. NOTE IN (A) THERE ARE 

MULTIPLE LENGTHS (H, W, LC, ETC.) THAT CAN BE VARIED IN THE DESIGN.  THE HIGH NUMBER OF VARIABLE 

PARAMETERS RESULTS IN A SUBSTANTIALLY LARGE DESIGN SPACE. [2] ............................................................ 3 

FIGURE 3: THE PHYSICS GOVERNING THE MOVEMENT OF ATOMS IN A CRYSTAL LATTICE CAN BE MODELED AS IF THE 

ATOMS WERE ATTACHED TOGETHER WITH SPRINGS. [3] ..................................................................................... 6 

FIGURE 4: PHONON DISPERSION RELATION. [3] ........................................................................................................... 7 

FIGURE 5: AN OPTICAL MODE ARISES IN A DIATOMIC CHAIN OF ATOMS. [3] ................................................................. 7 

FIGURE 6: THE TYPE OF DIAGRAM USED TO VISUALIZE WHAT FREQUENCIES ARE ALLOWED FOR A PARTICULAR 

MATERIAL IS A PHONONIC BAND DIAGRAM. THE X-AXIS VALUE OF A BAND DIAGRAM IS THE VALUE IN K-SPACE, 

AND THE Y-AXIS VALUE IS THE ALLOWED FREQUENCY. [4] .................................................................................. 8 

FIGURE 7: DIAGRAM OF REAL VS RECIPROCAL SPACE LATTICES. [5] ........................................................................... 9 

FIGURE 8: EXAMPLE NEURAL NETWORK ARCHITECTURE COMPOSED OF AN INPUT LAYER, HIDDEN LAYERS, AND AN 

OUTPUT LAYER. [9] ............................................................................................................................................. 13 

FIGURE 9: INPUT AND OUTPUT PARAMETERS FOR A SINGLE HIDDEN LAYER NODE. ................................................... 14 

FIGURE 10: COMMONLY USED ACTIVATION FUNCTIONS. [10] .................................................................................... 15 

FIGURE 11: THE PROCESS OF GRADIENT DESCENT WORKS BY FOLLOWING THE PATH OF THE COST FUNCTION THAT 

LEADS TO ITS MINIMUM VALUES. THE VALUE OF THE COST FUNCTION STARTS HIGH BUT WORKS ITS WAY TO 

LOW VALUES. [11] .............................................................................................................................................. 16 

FIGURE 12: SELECTED POINTS OF HIGH SYMMETRY (BLACK) AND INTERMEDIATE POINTS (HOLLOW) IN RECIPROCAL 

SPACE. (A) IS SHOWS A 2D RECIPROCAL REPRESENTATION WHILE (B) SHOWS THE EQUIVALENT IN 3D. [12] 21 



 

 viii  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 13: EXAMPLE BAND DIAGRAM GENERATED THROUGH DAS’S RBME BAND STRUCTURE GENERATION TOOL.

 ........................................................................................................................................................................... 21 

FIGURE 14: CSV FORMATTED BAND STRUCTURE DATA WHERE EACH COLUMN REPRESENTS A UNIQUE 

ARRAY/EIGENMODE IN THE BAND STRUCTURE. ONE OF THE THREE OUTPUTS OF THE DATA GENERATION 

PACKAGE. ........................................................................................................................................................... 22 

FIGURE 15: CSV FORMATTED BAND GAP DATA WHERE EACH ROW REPRESENTS THE BANDGAP DATA, IF PRESENT 

(NON-ZERO) BETWEEN TWO EIGENMODES. NUMBER OF ROWS IS ALWAYS EQUAL TO NUMBER OF 

EIGENMODES MINUS ONE. ONE OF THE THREE OUTPUTS OF THE DATA GENERATION PACKAGE. .................... 22 

FIGURE 16: JSON FORMATTED DESIGN GEOMETRY DATA. ONE OF THE THREE OUTPUTS OF THE DATA 

GENERATION PACKAGE. ..................................................................................................................................... 23 

FIGURE 17: VISUAL REPRESENTATION OF HOW TRAINING DATA IS FORMATTED BEFORE BEING GIVEN TO A NEURAL 

NETWORK, WHERE EACH ROW REPRESENTS A DIFFERENT PNC DESIGN. THE FIRST 3 NON-INDEX COLUMNS, 

“RADIUS,” “BASEHEIGHT,” AND “PILLARHEIGHT” ARE CONTINUOUS VALUES REPRESENTING PNC GEOMETRY 

WITH UNITS OF 1E-7M (1/10 MICRONS). THE LAST 3 COLUMNS, “SI,” “SIC,” AND “W” ENCODE THE 

SUBSTRATE MATERIAL. THIS FORMAT IS SCALABLE WITH MORE FEATURE COLUMNS IF NEEDED. .................... 24 

FIGURE 18: DPN (DESIGN PREDICTING NETWORK) ARCHITECTURE DIAGRAM FOR BANDGAP, CENTER FREQUENCY 

APPROACH. NUMBER OF HIDDEN LAYERS AND NUMBER OF NODES PER HIDDEN LAYER CAN VARY. OUTPUT 

LAYER IS REPRESENTATIVE OF THE DATASETS CONTAINING CIRCULAR HOLES, AS THERE ARE TWO VARIABLE 

GEOMETRY PARAMETERS IN THOSE DATASETS (SEE CHAPTER 4). .................................................................. 27 

FIGURE 19: DPN (DESIGN PREDICTING NETWORK) ARCHITECTURE DIAGRAM FOR BAND STRUCTURE APPROACH. 

THE INPUT LAYER REPRESENTS THE 16 EIGENMODE ARRAYS WITH 78 SAMPLES PER ARRAY TOTALING IN 

1248 VALUES. NUMBER OF HIDDEN LAYERS AND NUMBER OF NODES PER HIDDEN LAYER CAN VARY. OUTPUT 

LAYER IS REPRESENTATIVE OF THE DATASETS CONTAINING CIRCULAR HOLES, AS THERE ARE TWO VARIABLE 

GEOMETRY PARAMETERS IN THOSE DATASETS (SEE CHAPTER 4). .................................................................. 28 

FIGURE 20: EXAMPLE DENSITY OF STATES DIAGRAM (RIGHT) CALCULATED FROM BAND STRUCTURE (LEFT). PEAKS 

IN THE DOS OCCUR IN THE FREQUENCY RANGES WHERE MULTIPLE EIGENMODES OVERLAP, AND ZEROS 

OCCUR IN THE FREQUENCY RANGES CORRESPONDING TO BANDGAPS. [13] .................................................... 29 



 

 ix  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 21: SCALAR REPRESENTATION (TOP) AND BINARY (BOTTOM) REPRESENTATION OF DENSITY OF STATES. 

DIAGRAMS ARE ALIGNED SUCH THAT BANDGAP REGIONS IN DOS AND CORRESPONDING BAND DIAGRAMS 

ALIGN HORIZONTALLY (CIRCLED IN RED ON DOS DIAGRAMS)........................................................................... 30 

FIGURE 22: TRAINING LOSS PLOT FROM TRAINING A NEURAL NETWORK. .................................................................. 32 

FIGURE 23: EXAMPLES OF HOW CORRELATION COEFFICENT CHANGES WITH DIFFERENT RELATIONSHIPS BETWEEN 

X AND Y-AXIS VARIABLES. [14] ........................................................................................................................... 34 

FIGURE 24: HISTOGRAM OF NUMBER OF BANDGAPS PER DESIGN. ............................................................................ 38 

FIGURE 25: HISTOGRAM OF BANDGAP SIZES (LEFT). HISTOGRAM OF CORRESPONDING BANDGAP CENTER 

FREQUENCIES (LEFT). SCATTERPLOT OF BANDGAP/FREQUENCY CLUSTERS (BOTTOM). ................................. 39 

FIGURE 26: HEATMAPS SHOWING HOLE RADIUS AND BASE HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 40 

FIGURE 27: HISTOGRAM OF NUMBER OF BANDGAPS PER DESIGN. ............................................................................ 41 

FIGURE 28: HISTOGRAM OF BANDGAP SIZES (LEFT). HISTOGRAM OF CORRESPONDING BANDGAP CENTER 

FREQUENCIES. SCATTERPLOT OF BANDGAP/FREQUENCY CLUSTERS (BOTTOM). ............................................ 42 

FIGURE 29: HEATMAPS SHOWING HOLE RADIUS AND BASE HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 43 

FIGURE 30: HISTOGRAM OF NUMBER OF BANDGAPS PER DESIGN. ............................................................................ 45 

FIGURE 31: HISTOGRAM OF BANDGAP SIZES (LEFT). HISTOGRAM OF CORRESPONDING BANDGAP CENTER 

FREQUENCIES. SCATTERPLOT OF BANDGAP/FREQUENCY CLUSTERS (BOTTOM). ............................................ 46 

FIGURE 32: HEATMAPS SHOWING HOLE RADIUS AND BASE HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 47 

FIGURE 33: HISTOGRAM OF NUMBER OF BANDGAPS PER DESIGN. ............................................................................ 49 

FIGURE 34: HISTOGRAM OF BANDGAP SIZES (LEFT). HISTOGRAM OF CORRESPONDING BANDGAP CENTER 

FREQUENCIES (RIGHT). SCATTERPLOT OF BANDGAP/FREQUENCY CLUSTERS (BOTTOM). .............................. 50 

FIGURE 35: HEATMAPS SHOWING HOLE RADIUS AND BASE HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 51 



 

 x  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 36: HEATMAPS SHOWING HOLE RADIUS AND PILLAR HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 51 

FIGURE 37: HEATMAPS SHOWING BASE HEIGHT AND PILLAR HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 52 

FIGURE 38: HISTOGRAM OF NUMBER OF BANDGAPS PER DESIGN (LEFT). ................................................................. 53 

FIGURE 39: HISTOGRAM OF BANDGAP SIZES (LEFT). HISTOGRAM OF CORRESPONDING BANDGAP CENTER 

FREQUENCIES. SCATTERPLOT OF BANDGAP/FREQUENCY CLUSTERS (RIGHT). ................................................ 54 

FIGURE 40: HEATMAPS SHOWING HOLE RADIUS AND BASE HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 55 

FIGURE 41: HEATMAPS SHOWING HOLE RADIUS AND PILLAR HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 55 

FIGURE 42: HEATMAPS SHOWING BASE HEIGHT AND PILLAR HEIGHT AS A FUNCTION OF TWO DIFFERENT 

PARAMETERS: LARGEST BANDGAP PER DESIGN (LEFT) AND NUMBER OF BANDGAPS PER DESIGN (RIGHT). .... 56 

FIGURE 43: RPN RESULTS FOR “SI WITH HOLES” DATASET FORMATTED USING THE LARGEST BANDGAP METHOD. 58 

FIGURE 44: RPN RESULTS FOR “SIC WITH HOLES” DATASET FORMATTED USING THE LARGEST BANDGAP METHOD.

 ........................................................................................................................................................................... 59 

FIGURE 45: RPN RESULTS FOR “W WITH HOLES” DATASET FORMATTED USING THE LARGEST BANDGAP METHOD. 59 

FIGURE 46: RPN RESULTS FOR “SI, SIC, W COMBINED” DATASET FORMATTED USING THE LARGEST BANDGAP 

METHOD. ............................................................................................................................................................. 60 

FIGURE 47: RPN RESULTS FOR “SI WITH W PILLARS” DATASET FORMATTED USING THE LARGEST BANDGAP 

METHOD. ............................................................................................................................................................. 61 

FIGURE 48: RPN RESULTS FOR “SIC WITH W PILLARS” DATASET FORMATTED USING THE LARGEST BANDGAP 

METHOD. ............................................................................................................................................................. 61 

FIGURE 49: PHONONIC BAND STRUCTURE TAKEN FROM THE TRAINING DATA (LEFT/BLUE) AND THE NEURAL 

NETWORK BAND STRUCTURE PREDICTION WHEN GIVEN THE CORRESPONDING UNIT CELL GEOMETRY 

(RIGHT/YELLOW). EACH ARRAY CONTAINS 78 SAMPLES. FREQUENCY VALUES ARE NORMALIZED TO BE 

BETWEEN 0 AND 1 BASED ON THE VALUES FROM ALL DESIGNS IN THE TRAINING DATASET. ............................ 63 



 

 xi  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 50: TRUE (BLUE) AND PREDICTED (YELLOW) BAND STRUCTURE FROM THE PREVIOUS FIGURE OVERLAPPED 

FOR COMPARISON. FOR EACH X-AXIS VALUE, THERE EXISTS A TRUTH AND PREDICTED VALUE. THE Y-AXIS 

DISTANCE BETWEEN THEM IS THE PREDICTION ERROR. .................................................................................... 64 

FIGURE 51: HISTOGRAM OF BAND STRUCTURE PREDICTION ERRORS FOR "SI WITH HOLES" DATASET (LEFT). 

HISTOGRAM OF TRAINING DATASET BAND STRUCTURE FREQUENCY RANGES (RIGHT). ................................... 65 

FIGURE 52: HISTOGRAM OF BAND STRUCTURE PREDICTION ERRORS FOR "W WITH HOLES" DATASET (LEFT). 

HISTOGRAM OF TRAINING DATASET BAND STRUCTURE FREQUENCY RANGES (RIGHT). ................................... 66 

FIGURE 53: HISTOGRAM OF BAND STRUCTURE PREDICTION ERRORS FOR "SIC WITH HOLES" DATASET (LEFT). 

HISTOGRAM OF TRAINING DATASET BAND STRUCTURE FREQUENCY RANGES (RIGHT). ................................... 67 

FIGURE 54: HISTOGRAM OF BAND STRUCTURE PREDICTION ERRORS FOR "SI WITH W PILLARS" DATASET (LEFT). 

HISTOGRAM OF TRAINING DATASET BAND STRUCTURE FREQUENCY RANGES (RIGHT). ................................... 68 

FIGURE 55: HISTOGRAM OF BAND STRUCTURE PREDICTION ERRORS FOR "SIC WITH W PILLARS" DATASET (LEFT). 

HISTOGRAM OF TRAINING DATASET BAND STRUCTURE FREQUENCY RANGES (RIGHT). ................................... 69 

FIGURE 56: DPN RESULTS USING THE “SI WITH HOLES” DATASET AND LARGEST BANDGAP METHOD. .................... 70 

FIGURE 57: DPN RESULTS USING THE “SIC WITH HOLES” DATASET AND LARGEST BANDGAP METHOD. ................. 71 

FIGURE 58: DPN RESULTS USING THE “W WITH HOLES” DATASET AND LARGEST BANDGAP METHOD. .................... 71 

FIGURE 59: DPN RESULTS USING THE “SI, SIC, W COMBINED” DATASET AND LARGEST BANDGAP METHOD. ......... 72 

FIGURE 60: EXAMPLE MATERIAL PREDICTION COLUMNS FROM NEURAL NETWORK OUTPUT. THE COLUMNS HERE 

REPRESENT SI, SIC, AND W RESPECTIVELY. .................................................................................................... 72 

FIGURE 61: DPN RESULTS USING THE “SI WITH W PILLARS” DATASET AND LARGEST BANDGAP METHOD............... 73 

FIGURE 62: DPN RESULTS USING THE “SIC WITH W PILLARS” DATASET AND LARGEST BANDGAP METHOD. ........... 74 

FIGURE 63: DPN RESULTS USING THE “SI WITH HOLES” DATASET AND FULL BAND STRUCTURE METHOD. .............. 76 

FIGURE 64: DPN RESULTS USING THE “SIC WITH HOLES” DATASET AND FULL BAND STRUCTURE METHOD. ........... 76 

FIGURE 65: DPN RESULTS USING THE “W WITH HOLES” DATASET AND FULL BAND STRUCTURE METHOD............... 77 

FIGURE 66: DPN RESULTS USING THE “SI, SIC, W COMBINED” DATASET AND FULL BAND STRUCTURE METHOD. .. 77 

FIGURE 67: DPN RESULTS USING THE “SI WITH W PILLARS” DATASET AND FULL BAND STRUCTURE METHOD. ....... 78 

FIGURE 68: DPN RESULTS USING THE “SIC WITH W PILLARS” DATASET AND FULL BAND STRUCTURE METHOD. .... 79 



 

 xii  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 69: DPN RESULTS USING THE “SI WITH HOLES” DATASET AND SCALAR DOS METHOD. ............................. 80 

FIGURE 70: DPN RESULTS USING THE “SIC WITH HOLES” DATASET AND SCALAR DOS METHOD. ........................... 81 

FIGURE 71: DPN RESULTS USING THE “W WITH HOLES” DATASET AND SCALAR DOS METHOD. ............................. 81 

FIGURE 72: DPN RESULTS USING THE “SI WITH W PILLARS” DATASET AND SCALAR DOS METHOD. ....................... 82 

FIGURE 73: DPN RESULTS USING THE “SIC WITH W PILLARS” DATASET AND SCALAR DOS METHOD. .................... 83 

FIGURE 74: RESULTS FOR BINARY DOS DPN USING SI WITH HOLES DATASET, NOT EXCLUDING ZERO BANDGAP 

DATA IN THE TRAINING SET. ............................................................................................................................... 84 

FIGURE 75: RESULTS FOR BINARY DOS DPN USING SI WITH HOLES DATASET EXCLUDING ZERO BANDGAP DATA IN 

THE TRAINING SET. ............................................................................................................................................. 85 

FIGURE 76: DPN RESULTS USING THE SIC WITH W PILLARS DATASET AND BINARY DOS METHOD. ....................... 86 

FIGURE 77: DPN RESULTS USING THE SIC WITH W PILLARS DATASET AND BINARY DOS METHOD. ....................... 87 

FIGURE 78: FLOWCHART DEMONSTRATING THE BINARY DOS INVERSE DESIGN SCHEME DEVELOPED FOR THIS 

STUDY. ................................................................................................................................................................ 88 

FIGURE 79: GIVEN THE USER WANTS TO FIND A DESIGN WITH A BANDGAP OF 1000 MHZ CENTERED AT 4000 MHZ, 

THE DOS CAN LOOK DIFFERENT DEPENDING ON THE ASSUMED BAND STRUCTURE FREQUENCY RANGE. 

ASSUMING 10,000 MHZ RANGE, AND USING A 10-POINT DOS, EACH BIN IN THE DOS REPRESENTS 1000 

MHZ OF FREQUENCY SPACE. ASSUMING 5,000 MHZ HOWEVER, EACH BIN REPRESENTS 500 MHZ OF 

FREQUENCY SPACE. ........................................................................................................................................... 89 

FIGURE 80: BEST MATCHES FOUND ACCORDING TO THREE CATEGORIES: CLOSEST CENTER FREQUENCY, CLOSEST 

BANDGAP, AND CLOSEST OVERALL. ................................................................................................................... 91 

FIGURE 81: BAND STRUCTURE CORRESPONDING TO `DESIGNINDEX` 1 IN THE PREVIOUS FIGURE. THE RED 

HORIZONTAL LINES CORRESPOND TO BANDGAP REGIONS. THE UPPER TWO RED LINES CONTAIN THE 

“CLOSEST” BANDGAP SEEN IN THE PREVIOUS FIGURE. STRUCTURE WAS GENERATED BY A BAND STRUCTURE 

TRAINED RPN GIVEN GEOMETRY PARAMETERS PREDICTED BY THE DOS DPN. ............................................ 92 

FIGURE 82: BINARY DOS INVERSE DESIGN PERFORMANCE CHARACTERIZATION RESULTS FOR DESIGNS MINIMIZING 

CENTER FREQUENCY ERROR (TOP), DESIGNS MINIMIZING BANDGAP ERROR (MIDDLE), AND DESIGNS 

MINIMIZING BOTH (BOTTOM). .............................................................................................................................. 93 



 

 xiii  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

FIGURE 83: BINARY DOS INVERSE DESIGN PERFORMANCE CHARACTERIZATION RESULTS IN WHICH THE INPUT 

BANDGAP AND CENTER FREQUENCY VALUES ARE ALTERED BY (+/-) 10%. RESULTS SHOWN FOR DESIGNS 

MINIMIZING CENTER FREQUENCY ERROR (TOP), DESIGNS MINIMIZING BANDGAP ERROR (MIDDLE), AND 

DESIGNS MINIMIZING BOTH (BOTTOM)................................................................................................................ 95 

FIGURE 84: RADIUS (LEFT) AND BASE HEIGHT (RIGHT) PREDICTION PERFORMANCE FOR EACH VALUE OF PERCENT 

DATA RESERVED FOR VALIDATION. .................................................................................................................... 98 

FIGURE 85: FINAL LOSS VALUE REACHED AT THE END OF TRAINING AS A FUNCTION OF THE PERCENTAGE OF DATA 

RESERVED FOR VALIDATION............................................................................................................................... 98 

FIGURE 86: NUMBER OF ATTEMPTS TAKEN TO REACH THE THRESHOLD LOSS VALUE OF 0.01 AS A FUNCTION OF 

THE PERCENTAGE OF DATA RESERVED FOR VALIDATION. ................................................................................. 99 

FIGURE 87: RADIUS (LEFT) AND BASE HEIGHT (RIGHT) PREDICTION PERFORMANCE FOR EACH VALUE OF PERCENT 

DATA RESERVED FOR TESTING. ....................................................................................................................... 100 

FIGURE 88: FINAL LOSS VALUE REACHED AT THE END OF TRAINING AS A FUNCTION OF THE PERCENTAGE OF DATA 

RESERVED FOR TESTING. ................................................................................................................................. 100 

FIGURE 89: NUMBER OF ATTEMPTS TAKEN TO REACH THE THRESHOLD LOSS VALUE OF 0.01 AS A FUNCTION OF 

THE PERCENTAGE OF DATA RESERVED FOR VALIDATION. ............................................................................... 101 

 

 



 

 xiii  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

LIST OF TABLES 

TABLE 1: SWEEP PARAMETERS FOR SI WITH HOLES DATASET .................................................................................. 37 

TABLE 2: OTHER PARAMETERS FOR SI WITH HOLES DATASET. .................................................................................. 37 

TABLE 3: SWEEP PARAMETERS FOR SIC WITH HOLES DATASET. .............................................................................. 40 

TABLE 4: OTHER PARAMETERS FOR SIC WITH HOLES DATASET. ............................................................................... 41 

TABLE 5: SWEEP PARAMETERS FOR W WITH HOLES DATASET. ................................................................................. 43 

TABLE 6: OTHER PARAMETERS FOR W WITH HOLES DATASET. ................................................................................. 44 

TABLE 7: SWEEP PARAMETERS FOR SI WITH W PILLARS DATASET. .......................................................................... 48 

TABLE 8: OTHER PARAMETERS FOR SI WITH W PILLARS DATASET. ........................................................................... 48 

TABLE 9: SWEEP PARAMETERS FOR SIC WITH W PILLARS DATASET. ........................................................................ 52 

TABLE 10: OTHER PARAMETERS FOR SIC WITH W PILLARS DATASET. ...................................................................... 52 

 

  



 

 xiv  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

ACKNOWLEDGEMENT 

I would like to thank everyone in the AFRL RXAN phononics group and my committee 

for supporting me throughout this research. More specifically, I’d like to thank my advisor Dr. 

Chandriker Dass (Kavir) for his guidance and making this opportunity possible, my co-advisor Dr. 

Sharma for helping to keep me on track, Dr. Robert Bedford for all the very useful brainstorming 

sessions, and Debanik Das for generating the training data and helping out whenever I had 

questions.  

I would also like to thank all parties involved in my funding throughout this project. This 

includes RXAN for providing funding, SOCHE for employing me, and Booz Allen Hamilton who 

funded my tuition. I’d like to especially thank all my coworkers and management chain at Booz 

Allen Hamilton for being more supportive than I could ever ask for throughout my time in grad 

school. 

 Finally, I’d like to give a huge thank you to my family and friends for all your support. I 

want to thank David Zilz for all his advice and great ideas, Bassirou Seck for advice and defense 

practice, Hannah Benston for helping to keep me sane in our classes over the pandemic, and 

Destiny Rogers for always being there to provide crucial moral support. 

 



 

 1  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

CHAPTER 1. INTRODUCTION 

A phononic crystal (PnC) is a device designed to manipulate phonons (quantum unit of 

acoustic waves) within a material or larger system. These devices are engineered to block or 

amplify propagating phonons within a specific frequency range. Though PnCs can be fabricated 

into a large variety of shapes and sizes, and can be made of many different materials, they typically 

consist of a slab (substrate) of a particular material embedded with periodic defects. The figure 

below shows a diagram of a simple PnC along with the accompanying band structure diagram. 

 

Figure 1: (above) An example diagram of a simple phononic crystal consisting of a material embedded 

with a periodic array of cylindrical pillars. (below) The associated frequency band structure diagram. The 

dashed lines indicate the region of frequency in which no phonons can propagate. [1] 
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1.1 Applications  

As there are many systems in which it is desirable to manipulate the mechanical/acoustic 

waves in the system, PnCs have a wide array of applications. For example, on the larger scale, 

PnCs can be tuned to block resonant vibrations in aircraft, increasing part durability and reliability. 

PnCs can also be used to sound-treat large structures such as concert halls. 

As heat consists of high frequency oscillations, PnCs can be designed to manipulate 

thermal transport within a system. The resulting applications include the ability to achieve more 

efficient cooling, harvesting of thermal energy that would otherwise go to waste, and achieving 

room temperature operating conditions for systems that normally need to be cooled to extremely 

low temperatures. For example, quantum computers currently require operating temperatures on 

the order of 1’s of Kelvin. PnCs could one day allow for the ability to operate quantum computers 

or other quantum technologies with similar restraints at room temperature.   

PnC applications extend to several other areas, such as the medical and biochemical fields. 

PnCs can be used to create biometric sensors tuned to detect molecules that vibrate at specific 

frequencies.  

1.2 The Large PnC Parameter Space  

Phononic crystals are fabricated with specific features in order to target bandgaps of 

specific frequency ranges. The center frequencies and bandgap sizes are determined by multiple 

factors. Some of these include substrate material, density, thickness, and height, among many 

others.  

Along with intrinsic material properties, artificial defects/inclusions are engineered to 

manipulate the phononic band structure. These inclusions are typically periodic and can come in 
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the form of holes or structures protruding from the top of the material. Inclusion designs can range 

from simple structures such as circular holes/pillars to more complex designs such as the one 

shown in the figure below. The number of possible designs is only limited to the geometrical 

constraints of the fabrication process used to make the crystal.  

 

Figure 2: Example of an ultrawide bandgap 3-D phononic crystal design. Note in (a) there are multiple 

lengths (h, w, lc, etc.) that can be varied in the design.  The high number of variable parameters results in 

a substantially large design space. [2] 

Since there are many potential varying parameters when designing a phononic crystal, the 

potential design space can expand rapidly. Consider a design consisting of only 3 design 

parameters (for example, pillar height, pillar radius, and substrate height): if 10 different values 

for each parameter are considered then the size of the design space is 10 x 10 x 10 = 1000 

combinations. Because the number of possible designs is essentially limitless, and number of 

combinations of varying parameters within a particular design is so large, the phononic crystal 

design space is largely under-explored.  
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1.3 Machine Learning Applied to PnC Design  

Machine learning (ML) is a subset of artificial intelligence in which a computer is trained 

to analyze and predict patterns in a dataset. As access and storage capability for large amounts of 

data increases, so does the usefulness of machine learning in a variety of applications.  

As mentioned in the previous section, the phononic crystal design space is large and under 

explored. This is in part because generating band structure information for many PnC designs is a 

very slow process, making it difficult to analyze the large number of configurations in a design 

space in quick succession. 

ML helps speed up the exploration of the PnC design space by providing practically on-

demand PnC parameter predictions. Once training data is generated, and an ML algorithm is 

trained using that data, the algorithm is able to interpolate information for any design located in 

parameter space between any two training data samples, provided the training data was sampled 

sufficiently. 

1.4 Thesis Overview 

Chapter 1 is an introduction to the various topics discussed in the paper. This includes a 

discussion on phononic crystals and their applications. 

Chapter 2 reviews relevant background information. The basic theory behind phonons and 

phononic bandgaps is discussed, followed by an overview of machine learning with a focus on 

neural networks. 
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Chapter 3 discusses the methodology used in performing the neural network experiments. 

This includes the data generation, file input/output, data formatting, and neural network 

training/performance evaluation. 

Chapter 4 contains descriptions of the datasets used as training data for the neural network 

experiments. For each dataset, the range of parameters used to generate the data are given. Along 

with the generation parameters, plots are shown to help visualize the various characteristics of 

each dataset. 

Chapter 5 contains the neural network performance results. Various network 

configurations are attempted and performance metrics (described in Chapter 3) for those 

configurations are plotted. The results are laid out in the chapter in the following branching layout: 

(RPN/DPN/Other) → (Training data formatting method) → (Training dataset). 

Chapter 6 will discuss conclusions and key takeaways from the machine learning 

experiments. There is also a section for future work that contains a number of ways the work done 

in this study could be expanded in the future. 

The purpose of this study is to explore the potential in using machine learning to predict 

phononic band structure behavior of designs whose properties are not readily available. In addition, 

the information in this paper can act as a starting point for others who wish to conduct ML 

experiments using PnC training data. As specific techniques and code are not commonly 

documented in existing PnC ML studies, it can be difficult for others to replicate existing results. 

Because of this, code snippets, along with ML parameters used to achieve results are laid out in 

the Appendix section of this paper. 
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CHAPTER 2. BACKGROUND AND THEORY 

2.1 Phonons: Monoatomic Linear Chain 

A crystal is a highly ordered substance that consists of periodic arrays of atoms arranged 

in a geometric lattice. The atoms within the lattice constantly vibrate. These vibrations can be 

thought of as being mediated by springs connecting the atoms.  

 

Figure 3: The physics governing the movement of atoms in a crystal lattice can be modeled as if the 

atoms were attached together with springs. [3] 

In the case of a one-dimensional lattice, we can express the force on the nth atom as the 

sum of the forces contributed onto it by the adjacent atoms in the lattice: 

𝑀
𝑑2𝑢𝑛

𝑑𝑡2
= 𝐹𝑛  = 𝐶(𝑢𝑛+1 − 𝑢𝑛) + 𝐶(𝑢𝑛−1 − 𝑢𝑛) 

where M is the mass of the atom and C is the spring constant. Using the solution 

𝑢𝑛 = 𝐴𝑒𝑖(𝑞𝑥𝑛−𝜔𝑡) 

where ω and A are the frequency and amplitude of the wave respectively, and q is the 

wavevector (k is also commonly used for wavevector). Inserting this into the previous equation 

leads to: 

𝑀(−𝜔2)𝑒𝑖𝑞𝑛𝑎 = −𝐶[2𝑒𝑖𝑞𝑛𝑎 − 𝑒𝑖𝑞(𝑛+1)𝑎 − 𝑒𝑖𝑞(𝑛−1)𝑎] 

𝑀𝜔2 = 𝐶[2 − 𝑒𝑖𝑞𝑎 − 𝑒−𝑖𝑞𝑎] = 2𝐶(𝑞 − cos(𝑞𝑎)) = 4𝐶 sin2 (
𝑞𝑎

2
) 
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From this the dispersion relation, the relationship between wavevector and vibration 

frequency emerges:  

𝜔 = √(
4𝐶

𝑀
) |sin (

𝑞𝑎

2
)| 

Plotting this relation, it becomes clear that q is periodic every 2pi/a. The region of 

independent q values between -pi/a and pi/a (length of 2pi) is known as the first Brillouin zone. 

 

Figure 4: Phonon dispersion relation. [3] 

Tysymbal [3] explains in a breakdown of this theory that when expanding this concept to 

a diatomic chain (containing two different types of atoms each with different mass), a new mode 

emerges in the dispersion relationship, an optical mode: 

 

Figure 5: An optical mode arises in a diatomic chain of atoms. [3] 
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As the complexity and degrees of freedom available in the unit cell increase, so do the 

number of modes in the dispersion relationship. This forms the basis for the band structure 

diagrams seen throughout this study. For more information and a full derivation of this 

information, see [2]. 

2.2 Phononic Bandgaps 

Figure 6: The type of diagram used to visualize what frequencies are allowed for a particular material is a 

phononic band diagram. The x-axis value of a band diagram is the value in k-space, and the y-axis value is 

the allowed frequency. [4] 

k-space (k is the same as q from the previous section), also known as reciprocal or 

momentum space, is a transformation of a crystal lattice in which each point in the reciprocal 

lattice represents a different plane in the original lattice. The figure below shows an example 

transformation between real and k-space. Since every straight line in which a particle could travel 

through a material can be represented by plane, analyzing the lattice in k-space gives information 

about what particle properties are allowed in the various directions of propagation inside a 
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material.  Since phonon dispersion is periodic in reciprocal space, only a section reciprocal space 

needs to be sampled in order to capture every possible direction in which a phonon can flow in a 

material. As mentioned in the previous section, this area of reciprocal space is known as the first 

Bernoulli zone.   

 

Figure 7: Diagram of real vs reciprocal space lattices. [5] 

If a range of frequency values is not present in any eigenmode for any point in k-space, 

then a phononic bandgap is present within a material. This means that phonons or vibrations at 

that frequency range can propagate in any direction inside the material. This happens due to an 

effect called Bragg scattering, which produces destructively interfering waves within the material 

that cause complete bandgaps across k-space. Figure 6 shows a band structure representing a 

crystal in which no phonons can propagate within the approximately 60 kHz to 75 kHz range. 
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2.3 Elastic Continuum Theory 

Elastic continuum theory (ECT) is the modeling of discrete structures as a continuous 

medium. Though crystals are discrete in nature (made of atoms), the phononic or other properties 

can be approximated through ECT.  

We can write the equation of motion in tensor form under ECT: 

𝜌�̈�𝑖 =  𝜎𝑖𝑗 

where 𝜌 is density, u is the elastic displacement vector, and 𝜎 is stress. We define stress and 

strain (Hooke’s Law) as such: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 

𝑒𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙 𝜎𝑘𝑙  

where 𝐶 is stiffness and S is compliance. Stiffness is defined as the ability of a material to resist 

deformation while compliance is its inverse.  Taking silicon as an example, its cubic arrangement 

allows the stiffness matrix to be reduced to terms, 𝑐11, 𝑐12, and 𝑐44: 

[
 
 
 
 
 
𝑐11 𝑐12 𝑐12 0 0 0
𝑐12 𝑐11 𝑐12 0 0 0
𝑐12 𝑐12 𝑐11 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐44]

 
 
 
 
 

 

A solution of the equation of motion can for a wave moving in the x-axis can be written as: 

𝑢 = 𝐴 exp [𝑖 (𝑘𝑥 −  𝜔𝑡)] 
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where A is amplitude and ω is angular frequency. The angular frequencies for a longitudinal and 

transverse wave are as such: 

 𝜔𝐿
2 = 

𝑐11𝑘2

𝜌
 

 𝜔𝑇
2 = 

𝑐44𝑘2

𝜌
 

ECT is an approximation for large scale effects, and as such does not scale to all situations. 

ECT should be applied for elastic waves of low frequency or events taking place over long time 

scales. For problems relating to small lengths or small time scales, atomistic effects cannot be 

neglected and ECT begins to fail [6]. More information and examples of ECT can be found in [7] 

and [8]. 

2.4 Machine Learning 

As we look to computers to solve increasingly complex problems, the interest in finding 

methods for computers to learn and solve problems on their own has increased too. Machine 

learning (ML) is one answer to this problem. ML is a subset of artificial intelligence in which a 

computer is trained so solve a specific problem on its own. Through a machine learning algorithm, 

a computer is able to generate extremely complex models that would be near-impossible for a 

human to explicitly program. 

ML algorithms typically benefit from having large amounts of data to train on. As the 

computational power of computers grows over time, the ability to quickly generate large datasets 

increases. Easy access to data is one reason that ML algorithms have become popular in the modern 

era.  
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There are many types of ML algorithms, including “random forest,” “support vector 

machines,” and “k-means.” These and other ML algorithm types fall into one of two categories: 

supervised learning (the algorithm is trained with data in which a known answer is given) or 

unsupervised learning (the algorithm finds patterns in the data without being given the answer). 

Though many different types of ML algorithms could be applied to the topic of this study, the 

focus here was on a type of supervised learning known as a neural network. 

2.4.1 Neural Networks  

A neural network is an ML algorithm that mimics the biological methods that brains use to 

learn. Like a brain, it is composed of layers of varying numbers of nodes (analogous to neurons). 

Through a training process, the neural network finds patterns in data, and the weights and biases 

associated with these nodes are manipulated. Through training a neural network, we can arrive at 

complex input/output models which would have been extremely difficult to derive otherwise. 

The figure below shows a diagram of a typical neural network. The architecture consists 

of an input layer, a number of hidden layers, followed by an output layer. Information flows in this 

order through the multiple connected nodes found in each layer. 
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Figure 8: Example neural network architecture composed of an input layer, hidden layers, and an output 

layer. [9] 

 The input and output layers hold the input and output of the system, as the names suggest. 

The input layer contains the values that the user has supplied. For example, one common input to 

a neural network is image data for image classification. In this case, each node in the input layer 

corresponds to the intensity value of one pixel in an image. The number of nodes in the input layer 

is as many as are needed to encompass the amount of possible input values; if an image contains 

256 pixels, then 256 input layer nodes are needed. The output layer would then contain an output 

node corresponding to each of the possible classification decisions. 

The hidden layer nodes take as input values from the previous layer (input layer or other 

hidden layer) and manipulates them through a series of weights, biases, and activation functions. 

The output value of a hidden layer node is as follows: 
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𝜎(∑ 𝑤𝑖𝑎𝑖

𝑛

𝑖=1

+ 𝑏) 

which is a sum of the values from each of the n nodes from the previous layer 𝑎𝑖, multiplied by 

some weight 𝑤𝑖. A bias b is added to the sum before the sum is passed to an activation function 

𝜎. The figure below illustrates an example of a single hidden layer node with three inputs from 

the previous layer in the neural network. 

 

Figure 9: Input and output parameters for a single hidden layer node. 

The main purpose of the activation function is to introduce non-linearity into the model, 

as many problems are complex and require non-linear solutions. Each activation function has 

strengths in different applications. Some activation functions may be a better choice for use in 

classification problems, or problems in which an input is categorized into one of a set of discrete 

options (e.g., deciding if an image is that of a cat or a dog), while some activation functions may 

be a better choice for regression problems, or problems in which a continuous value is desired. 
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(e.g., predicting the value of a stock a week from today). The figure below shows examples of 

commonly used activation functions. 

 

Figure 10: Commonly used activation functions. [10] 

2.4.2 Training and Back-propagation 

The values for the weights and biases the neural network initially uses are picked randomly. 

During the training process, the neural network uses a pre-generated dataset (training data) 

containing correct inputs and outputs to update these values to be more and more optimal for the 

given problem. This is done through a process called back-propagation. 

The neural network’s goal when training is to minimize a cost function which represents 

how well the neural network is performing (i.e., how well the chosen weights and biases work to 

fit the desired solution). One way the cost function is commonly calculated is through the mean 

squared error (MSE) between the output of the neural network and the true values. 

The process in which the neural network minimizes its cost function is called gradient 

descent. The cost function has some global minimum that the neural network attempts to reach by 
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adjusting its weights and biases. Starting at the output layer and working backwards, the neural 

network will calculate the partial derivatives of the cost function with respect to the parameters of 

the previous layer and update the parameters in a way minimizes the cost function. This is repeated 

for each layer. This process is visualized in the figure below using a plotted cost function. 

 

Figure 11: The process of gradient descent works by following the path of the cost function that leads to 

its minimum values. The value of the cost function starts high but works its way to low values. [11] 

 Once back-propagation is complete, the process starts again using new samples from the 

training dataset. If the training process was successful, the neural network will have minimized the 

cost function to some global minimum. Sometimes though, neural networks will get stuck in local 

minima of the cost function (see dark blue areas that aren’t the global minimum in the previous 

figure). There are however a variety of parameters that can be adjusted to help prevent this. 
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2.4.3 Other Neural Network Categories 

There are many types of neural networks, including “recurrent neural networks” (RNN), 

“convolutional neural networks” (CNN), and “generative adversarial networks” (GAN). Each of 

these network types have strengths in particular applications. RNN’s for example are commonly 

used for speech recognition applications. Another interesting application is found in a GAN’s 

ability to produce fake images by having two neural networks compete. See 

https://thesecatsdonotexist.com/ for a gallery of fake images of cats generated by a neural network. 

https://thesecatsdonotexist.com/
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CHAPTER 3. METHODS 

This chapter describes the various methods used for conducting the experiments listed in 

Chapter 5. This includes the software used and a discussion of the various representations used for 

training data formatting. 

As libraries made specifically for processing phononics data using machine learning tools 

aren’t widely available, a custom package was made for this purpose. The package acts as a 

training data formatter and test harness for conducting different types of machine learning 

experiments using the custom phononics data that was generated specifically for this project. 

3.1 Libraries and Software Used 

The ability to use ML to predict novel crystal designs has already been demonstrated in 

AFRL (Air Force Research Laboratories), who funded this study. An ML platform, MANTIS 

(Machine Accelerated Nanoscale Targeted Inhomogenous Structures), had been developed to 

conduct machine learning studies on photonic crystals. The MANTIS package contains examples 

of multiple different neural network types and tutorials. As such, that package was heavily 

referenced when writing neural networks for the phononics studies in this paper. Many of the 

decisions for which libraries/APIs to use were made because MANTIS was already leveraging 

them and expertise from the team that developed it was available. 

The programming language used for the experiments in this study was Python. Python is 

an interpreted language that contains a large set of open-source libraries for a variety of purposes, 

many of them well-suited for scientific or data-analytical studies. Most of the other packages used 

were included in Anaconda, which is a collection containing Python and other commonly used 
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packages. When starting with Python for the first time or trying to recreate the studies done in this 

paper, installing Anaconda is a good starting point.  

Python also has multiple machine learning packages available. The library used for 

constructing neural networks in this study was Keras. Keras is an interface for another Python 

package, TensorFlow, which is a Google-owned machine learning API. The purpose of Keras is 

to create a simple user interface for accessing TensorFlow capabilities. Programming a neural 

network from scratch is an involved process and these libraries abstract much of the low-level 

math/processes while still allowing for enough freedom to create custom neural networks for 

specific applications. 

3.2 Data Generation 

In order to train the neural networks, phononic band structure data needed to be generated. 

This was done using a C++ package built by a Worcester Polytechnic Institute PhD student, 

Debanik Das, collaborating with AFRL. This package is able simulate phononic structures and 

produce band structure information. Given a parameter range and step size, the package can sweep 

over the parameter space and generate band structure information for multiple designs.  

This package has been verified, using COMSOL simulations, to produce accurate results. 

The major achievement demonstrated by this package is that its data generation method has shown 

to produce results as much as twice as fast as COMSOL. This is convenient because generating 

phononics data is generally a slow process. While the training data could have been generated with 

COMSOL to nearly the same results, the software was chosen as a more time-efficient alternative. 

The method used to generate the training data is the reduced Bloch mode expansion. The 

reduced Bloch mode expansion (RBME), proposed by Hussein in [12], is a technique for 
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generating band structures that is computationally less expensive than the normal Bloch mode 

expansion technique.  

Das defines the action integral corresponding to the motion of displacement in a crystal: 

𝐴 =  
1

2
𝑈† [∫[𝑁(𝑟)]𝑇�⃖�  (𝑞)𝐶𝐷   (𝑞)[𝑁(𝑟)]𝑑𝑉 − 𝜔2  ∫ 𝜌(𝑟)[𝑁(𝑟)]𝑇[𝑁(𝑟)]] 𝑈 

where 𝑈 is the Bloch function, 𝜔 is the eigenfrequency, 𝐶 is the stiffness tensor, 𝐷(𝑞) are wave 

vector q-dependent first order differential operators, and 𝑁(𝑟) is the shape function defined in 

[12]. The action function is integrated over the discretized material geometry through finite 

element methods. The discretization of the geometry occurs through a process called meshing, in 

which the unit cell is divided into smaller sub-geometries. In the case of a phononic crystal, defects 

tend to cover large areas of physical space and therefore necessitate the choice of large unit cell. 

Wavevector q is varied over points reciprocal space within the irreducible Bernoulli zone 

and eigenfrequencies are calculated at each. The RBME carefully selects points of high symmetry 

within reciprocal space and intermediate points in between. This process greatly reducing the 

amount of computation compared to the normal Bloch mode expansion. The figure below 

visualizes the points of high symmetry in reciprocal space.  
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Figure 12: Selected points of high symmetry (black) and intermediate points (hollow) in reciprocal space. 

(a) is shows a 2D reciprocal representation while (b) shows the equivalent in 3D. [12] 

The figure below shows an example of a band structure generated through this method 

overlayed with a band structure generated from COMSOL. 

 

Figure 13: Example band diagram generated through Das’s RBME band structure generation tool. 

The program generates three data files for each simulated crystal design: a JSON 

(JavaScript Object Notation) formatted file containing the design/geometry parameters (lengths, 

materials used, etc., a CSV (comma-separated values) formatted file containing a set of arrays 
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representing the phononic band structure, and a CSV formatted file containing bandgap 

information. Examples of each of these files are shown in the figures below. 

 

Figure 14: CSV formatted band structure data where each column represents a unique array/eigenmode in 

the band structure. One of the three outputs of the data generation package. 

 

Figure 15: CSV formatted band gap data where each row represents the bandgap data, if present (non-

zero) between two eigenmodes. Number of rows is always equal to number of eigenmodes minus one. 

One of the three outputs of the data generation package. 



 

 23 
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

 

Figure 16: JSON formatted design geometry data. One of the three outputs of the data generation 

package. 
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Details on the exact training data generated for this study can be found in Chapter 4. This 

includes the exact geometry values that were swept over along with plots showing the band 

structure content in each dataset. 

3.3 Data Formatting 

The training data is first ingested by several python scripts that format the data in a way 

appropriate for neural net training. Each piece of data is encoded as a row in a 2-D array, with each 

column representing a different data parameter. For discrete parameters such as material, a one-

hot encoding structure is used. In this case, each possible value in a particular category is assigned 

a binary digit, with one assigned a ‘1’ and the others assigned ‘0.’ For example, when encoding 

substrate material of type Si into the array with 3 total choices: Si, SiC, and W, three bits are used. 

In this case, the bits corresponding to SiC and W contain 0 and the bit corresponding to Si contains 

1. An example is shown below. 

 

Figure 17: Visual representation of how training data is formatted before being given to a neural network, 

where each row represents a different PnC design. The first 3 non-index columns, “Radius,” 

“BaseHeight,” and “PillarHeight” are continuous values representing PnC geometry with units of 1E-7m 

(1/10 microns). The last 3 columns, “Si,” “SiC,” and “W” encode the substrate material. This format is 

scalable with more feature columns if needed. 
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Then, for each of the three categories of data (geometry, band gap info, band structure 

info), the information from the individual design files is compiled into three files. It was found that 

saving the training data in this format made running later tests faster, as it is quicker to load in the 

training data in this format, which is ready to be used to train the neural network than to have to 

load and reformat the training data. It also removes the need to parse potentially thousands of files, 

a computationally expensive process compared to only needing to access three. 

The data is then split into two batches: the training set and testing set. The training set is 

what the neural net uses to learn and iterate over multiple epochs. The test set is only used after 

the neural net is done training to evaluate its performance and does not influence the training 

process. For these experiments, 10% of the data was randomly held back for testing.  

Once the data is split, all parameters are then scaled between 0 and 1. This is known as 

“min-max scaling” and is done because the ranges and means of different parameters can differ by 

high orders of magnitude. Scaling prevents a single feature from dominating the others during 

training. It is a common misconception that this scaling should happen before the training/testing 

split. The scaling should happen after so that the training set has no influence on the testing set.  

3.4 Choices for Representing Phononics Training Data 

When designing a neural network, it is important to consider how best to represent the 

information the network will train from. There were multiple methods conceived for representing 

the phononic bandgap information each with its own advantages and challenges. 

This section will include discussions on how practical each method is for predicting 

phononics data. Though some of the methods may successfully train the neural network, it is 

important to remember that after the network is trained, the data given by the user will need to be 

sent to the trained network in the same format it was trained in. For example, as will be mentioned 
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in the section on the “full band structure” method, it is impractical for the user to be expected to 

supply a full band structure diagram as input. 

For the photonics problem previously explored by the MANTIS team, reflectance and 

transmission spectra were used to train a neural network. For the phononics problem, there are 

multiple choices: bandgap size with center frequency, band structure diagram, or density of states 

diagram. 

3.4.1 Largest Bandgap Approach  

For this method, each design in the training data is represented with the bandgap size and 

center frequency of its largest bandgap. The choice to use the largest bandgap was arbitrary as the 

smallest or a randomly picked bandgap could have also been used.  

Compared to the other methods described in this section, training on bandgap size and 

center frequency alone is the most favorable approach from an ease-of-use perspective. For an 

application that predicts a crystal design, supplying a desired bandgap and center frequency is 

straightforward and intuitive for the user. Training also takes the least amount of time for this 

approach, as it uses the smallest amount of data (i.e., sets of two floating point numbers).  

The figure below shows the neural network architecture for implementing this method in a 

neural network. The input layer receives the desired bandgap and center frequency, and the output 

layer predicts geometry parameters. 
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Figure 18: DPN (design predicting network) architecture diagram for bandgap, center frequency 

approach. Number of hidden layers and number of nodes per hidden layer can vary. Output layer is 

representative of the datasets containing circular holes, as there are two variable geometry parameters in 

those datasets (See Chapter 4). 

3.4.2 Full Band Diagram Approach  

Another approach is to train the neural network using the entire phononic band structure. 

Training on band diagrams comes with the advantage of having the most amount of data for the 

algorithm to learn from. The biggest issue with this approach comes when attempting to use it to 

predict crystal designs; it is almost completely unviable for the user to supply a novel band 

structure diagram without already having simulated a crystal design.  

When using band structures for training data, the input layer must be formatted in such a 

way that every sample of each eigenmode array can be captured by a single neuron. The figure 
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below shows the DPN architecture for the full band diagram approach. The input layer receives 

the band structure values, flattened to a 1248 sized 1-D array, and the output layer contains 

predictions for two geometry values. 

 

Figure 19: DPN (design predicting network) architecture diagram for band structure approach. The input 

layer represents the 16 eigenmode arrays with 78 samples per array totaling in 1248 values. Number of 

hidden layers and number of nodes per hidden layer can vary. Output layer is representative of the 

datasets containing circular holes, as there are two variable geometry parameters in those datasets (See 

Chapter 4). 

3.4.3 Density of States Approach  

A third approach is to use a density of states (DOS) representation of the phononic band 

structure. This is plotted as a one-dimensional line, where the amplitude is proportional to the 

number of eigenstates present in a particular “slice” of frequency space. If there are no eigenstates 
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in a particular frequency region of the band structure diagram (a bandgap), then the density of 

states will equal zero in those regions. An example phononic band structure diagram and 

equivalent density of states diagram are shown in the figure below. 

 

Figure 20: Example density of states diagram (right) calculated from band structure (left). Peaks in the 

DOS occur in the frequency ranges where multiple eigenmodes overlap, and zeros occur in the frequency 

ranges corresponding to bandgaps. [13] 

The practicality associated with using DOS to represent PnC training data is between that 

of the “largest bandgap” and “full band structure” approaches. DOS is a one-dimensional line, so 

it is easier for the user to supply than a full band structure, but not as easy as supplying a simple 

band gap and center frequency pair. Zeros are used in the regions where the user wants to represent 

a bandgap but figuring out the best way to “fill” the non-bandgap regions requires careful 

consideration. 

To help remedy this, two types of DOS representations are explored: scalar and binary. 

The scalar representation is taken as a histogram over the frequency axis of the corresponding band 

diagram. The resulting DOS array is formed from the bin counts of the histogram. The binary 
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representation is obtained by first finding the scalar DOS, then changing each value greater than 

zero to a one. The advantage of the binary representation is that it is easy for the user to construct. 

I.e., zeroes are placed in the bandgap region while ones are place elsewhere. The figure below 

shows both representations next to the same corresponding band structure diagram. For the ML 

studies conducted in Chapter 5, 100 bins was chosen, but a different number can be chosen. 

 

Figure 21: Scalar representation (top) and binary (bottom) representation of density of states. Diagrams 

are aligned such that bandgap regions in DOS and corresponding band diagrams align horizontally 

(circled in red on DOS diagrams). 
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3.5 Neural Network Architectures 

The main type of architecture explored was a multilayer perceptron, or MLP. This is one 

of, if not the most basic form of neural networks. It consists of only an input layer, densely 

connected (each node is connected to all nodes from the previous layer) hidden layers, and an 

output layer. 

A network can be constructed to predict band structure properties. This will be referred to 

as a response predicting network (RPN), referred to as the “forward” problem. A network that 

predicts crystal geometry from band structure is known as a design predicting network (DPN), 

referred to as the “inverse” problem. The data is separated by input and output, corresponding to 

the type of neural network structure. For an RPN, geometry metadata is the input, and band 

structure information is the output. For a DPN, band structure information is the input, and 

geometry metadata is the output.  

3.6 Neural Network Parameter Choices 

There are many parameters to choose from when creating a neural network. These include 

number of layers, number of nodes per layer, activation functions per layer, the addition of other 

layer types such as “dropout” or “batch normalization” layers, learning rate, optimizer, among 

others. 

There is a common sentiment that it is difficult to know exactly what choice of parameter 

values are best for a specific application, and that one of the best methods is to research and adopt 

the parameter choices others have used for similar problems. Unless unknown to the author, there 

does not appear to be any cataloged parameter choices for training a neural network with phononics 

data. 
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The parameter values used for each experiment are listed in the Appendix section of this 

paper. In general, if a set of parameters resulted in favorable results, or were at least representative 

of the best possible results observed trying multiple different configurations, they were used and 

cataloged in the Appendix. This is not to say that there are not more optimal or less redundant 

choices of parameters that exist. In fact, pursuing optimal tuning parameters is an in-depth and 

time-consuming effort, so it is almost certain that there are better choices for parameter values. 

Though tuning these parameters typically only result in slight optimizations. 

3.7 Neural Network Training 

 

Figure 22: Training loss plot from training a neural network. 

 Neural network training works by minimizing a loss function that is representative of the 

predictive performance of the neural network. Each “epoch,” or generation, the neural network 

adjusts its weights and biases according to the performance achieved in the previous epoch (see 

section 2.4.2). 
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 There are a number of tools that help maximize the output of the training process. One of 

them is known as a callback. Callbacks work by keeping track of the best loss value achieved 

during the training process. In Keras, a parameter known as “patience” can be set that controls the 

number of epochs the neural network will continue to iterate through after the last lowest loss value 

has been achieved. 

 After training, the training and validation loss curves were plotted (see Figure 22). It is 

typical to see a large drop in loss at the start of training, then a slow decay. Figure 22 shows that 

for this example, training become redundant after around the 200th epoch. The final loss value 

generally makes it apparent as to how well the neural network learned during training. 

3.8 Performance Metrics 

When evaluating the performance of any algorithm, it is important to pick and define 

appropriate metrics. The following metrics were used to quantize performance for the tests ran in 

this study. 

3.8.1 Coefficient of Determination (𝑹𝟐)  

The coefficient of determination is a metric used to determine the strength of the 

relationship between two variables. 
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where x represents truth and y represents predictions. This metric is used to evaluate the predicting 

performance of the neural network. The value ranges between 0 and 1 where 1 is a perfect fit and 

0 is no fit. The figure below shows visual representations of data scoring both well and poorly in 

terms of correlation coefficient (R), which coefficient of determination is derived from. 

 

Figure 23: Examples of how correlation coefficent changes with different relationships between x and y-

axis variables. [14] 

3.8.2 RMSE 

RMSE (root mean square error) is used to determine the neural networks’, specifically the 

RPNs’, ability to correctly predict the phononic band structure. RMSE is defined as the following: 
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𝑅𝑀𝑆𝐸 =  
√∑ (

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒊 − 𝑨𝒄𝒕𝒖𝒂𝒍𝒊)
𝟐

𝑵
𝒊=𝟏

𝑵
 

where “Predicted” represents the predicted band structure frequency values and “Actual” 

represents the true frequency values. 

3.8.3 Percent Correct  

When solving a classification problem, “percent correct” is used as a performance metric. 

Percent correct is calculated as the number of “correct” answers divided by the total number of 

decisions made: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
 × 100 

 In the case of the one-hot encoded decisions, which are binary in nature, the parameter 

corresponding to the number the neural net delivers that is closest to ‘1’ is taken as the decision.
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CHAPTER 4. TRAINING DATASETS DESCRIPTIONS AND 

ANALYSIS 

This chapter details the various PnC training datasets used. Training data analyzing scripts 

were made as a part of the phononics ML package developed alongside this study. These scripts 

plot a variety of different parameters for a given dataset, and this chapter lays out those plots for 

each dataset. 

For each dataset, the metadata of each dataset is given. This includes the parameter ranges 

and step size for each sweep, and various plots describing the band structure information. 

Next, a series of plots characterizing the bandgap information for each dataset is given. 

These include analysis of the number of bandgaps per design, the size and center frequencies of 

the bandgaps, and the effect of the crystal geometry on the bandgap characteristics of the design 

regimes. These plots are valuable as they provide context to spread of information used to train a 

neural net and inform the user as to whether a particular dataset is suitable for a given application 

given its bandgap regime. For these plots, frequency and geometry parameters are reported as 

normalized to the lattice constant, ‘a’, which is the size of a unit cell in the crystal. Frequency is 

multiplied by ‘a’ and geometry parameters are divided by ‘a’.  

Initially, a batch of data consisting of information for 1010 designs was created. This 

dataset consisted of square geometry phononic crystals with a circular hole in each unit cell and a 

lattice constant of 1 micron. The radius of the hole was varied from 0.17e-6 m to 0.47e-6 m in 101 

0.03e-6 m increment steps. The height of the host material was varied from 0.2e-6 m to 0.29e-6 m 

in 10 0.01e-6 m steps. 101 x 10 = 1010 hence 1010 designs. This could be seen as a very small 
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amount of data to train a neural net or machine learning algorithm with, but it was quick and 

convenient to generate a smaller amount of data to start testing out the neural net creation. 

Upon loading in this batch of data into Python, it was discovered that for this parameter 

range, only 37 out of 1010 designs (~4%) contain bandgaps. When including these zero-bandgap 

data points, the neural net tended to always report ‘0’ because the large number of zero compared 

to non-zero values skewed the regression. Because of this, a toggleable parameter was 

implemented in the code that lets the user control whether zero-bandgap data points are included 

when training. Unless stated otherwise, ML results obtained using the bandgap/center frequency 

method reported in this paper were obtained without the use of zero-bandgap data points.  

4.1 Si with Holes 

Table 1: Sweep parameters for Si with holes dataset 

Sweep Parameters  

  Min  Max  Step size  # Steps  

Base height (m) 0.20e-6  0.7e-6 0.010e-6 51 

Circle radius (m) 0.17e-6  0.47e-6 0.003e-6 101  

Table 2: Other parameters for Si with holes dataset. 

Other Dataset Parameters 

Number of designs 5151 

Number of designs with bandgaps 442 (8.58%) 

Lattice constant (m) 1.00e-6 

Inclusion arrangement Square 

Inclusion type  Circular holes 
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This dataset is the first in a series of three datasets consisting of a substrate (referred to as 

the “base”) embedded with circular holes. The above table shows that only 8.58% of the designs 

in this dataset contain bandgaps. This is a relatively small portion of the dataset, especially in the 

cases where having large amounts of zero valued bandgaps could skew the neural network 

training. 

Most designs contained only 1 bandgap, but some designs contained up to 5 bandgaps. 

This shows that for methods in which only a single bandgap value is used to train the neural 

network (see largest bandgap method from Chapter 3), not much information is wasted.  

 

 

Figure 24: Histogram of number of bandgaps per design. 

The majority of the sizes of these bandgaps are below the 100 m/s (100 MHz with the 

lattice constant a = 1e-6 m) range, with some as high as 500 m/s. The center frequencies of the 

existing bandgaps mainly fall around 3000 m/s or 3GHz, forming a somewhat Gaussian falloff 

visible in the figure below. 



 

 39  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

 

 

Figure 25: Histogram of bandgap sizes (left). Histogram of corresponding bandgap center frequencies 

(left). Scatterplot of bandgap/frequency clusters (bottom). 

The software package also generates heatmaps that visualize the relationship between the 

crystal geometry parameters and various band structure information. Shown below are the 

relationships between geometry both the largest bandgap size per design and the number of 

bandgaps per design. 
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Figure 26: Heatmaps showing hole radius and base height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

A line spanning approximately 0.25 r/a to 0.45 r/a is visible. This line seems to indicate 

that for one particular base height value, there exists a span of radii in which designs with large 

number of bandgaps and larger than average bandgap sizes exist. This is believed to be an anomaly 

in the data generation process and is not seen in any other dataset.  

4.2 SiC with Holes 

Table 3: Sweep parameters for SiC with holes dataset. 

Sweep Parameters  

  Min  Max  Step size  # Steps  

Base height (m) 0.20e-6  0.7e-6 0.010e-6 51 

Circle radius (m) 0.17e-6  0.47e-6 0.003e-6 101  
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Table 4: Other parameters for SiC with holes dataset. 

Other Dataset Parameters 

Number of designs 5151 

Number of designs with bandgaps 383 (7.44%) 

Lattice constant (m) 1.00e-6 

Inclusion arrangement Square 

Inclusion type Circular holes 

This dataset was intended to be identical to the “Si with holes” dataset in every way except 

that instead of using Si as the base material, SiC (silicon carbide) was used instead. SiC is a cheap 

and easy to work with material in terms of PnC fabrication. 

From the histogram below showing the number of bandgaps per design in the dataset, the 

vast majority of designs with bandgaps contained one bandgap, with some containing two. 

 

Figure 27: Histogram of number of bandgaps per design. 
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The bandgap sizes in this dataset are localized in lower frequencies than the previous Si 

dataset. A large peak of bandgaps can be seen below 50 m/s, with a decaying amount present at 

higher ranges. The center frequencies for this material are localized in two peaks: one 

approximately at 4250 m/s and the other at 5400 m/s. 

 

 

Figure 28: Histogram of bandgap sizes (left). Histogram of corresponding bandgap center frequencies. 

Scatterplot of bandgap/frequency clusters (bottom). 

Looking at the heatmaps for this dataset, the parameter range in which bandgaps exist 

follows roughly the same shape as the Si dataset. Though there is a more chaotic trend overall, 



 

 43  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

with small patches of regions containing bandgaps disconnected from the main zone observed in 

the Si dataset. 

 

Figure 29: Heatmaps showing hole radius and base height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

4.3 W with Holes 

Table 5: Sweep parameters for W with holes dataset. 

Sweep Parameters  

  Min  Max  Step size  # Steps  

Base height (m) 0.20e-6  0.7e-6 0.010e-6 51 

Circle radius (m) 0.17e-6  0.47e-6 0.003e-6 101  
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Table 6: Other parameters for W with holes dataset. 

Other Dataset Parameters 

Number of designs 5151 

Number of designs with bandgaps 721 (14.00%) 

Lattice constant (m) 1.00e-6 

Inclusion arrangement Square 

Inclusion type Circular holes 

Similarly to the SiC with holes dataset, this dataset is was generated with the same 

geometry sweep parameters as the Si with holes dataset, except that W (tungsten) was used as the 

base material. W is another material that has gained interest for use in PnCs. 

The “Other Dataset Parameters” table shows that 14% of the designs in this dataset contain 

bandgaps. This is nearly double the amount found in the other Si and SiC datasets. The number of 

bandgaps per design follows a similar trend to the SiC dataset, with the majority of designs 

containing one bandgap, and a small amount containing two.  
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Figure 30: Histogram of number of bandgaps per design.  

Similarly to the SiC dataset, the bandgap sizes are highly localized to the below 50 m/s 

range. Also similarly, the number of bandgaps of larger widths decrease, though with a sharper 

decline. Center frequencies of these bandgaps are found within two main peaks as well, at 

approximately 1700 m/s and 2000 m/s. 
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Figure 31: Histogram of bandgap sizes (left). Histogram of corresponding bandgap center frequencies. 

Scatterplot of bandgap/frequency clusters (bottom). 

The heatmaps for this dataset follow similar trends to the SiC dataset, except that from the 

“Number of Bandgaps Per Design” heatmap, a new, large cluster containing bandgaps can be seen 

between 0.5 and 0.7 base height. The points at which this cluster approximately intersects with the 

main cluster found in the previous two datasets contain two bandgaps.  
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Figure 32: Heatmaps showing hole radius and base height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

4.4 Si, SiC, W With Holes Combined 

For this dataset, the previous Si, SiC, and W-containing datasets were combined. As such, 

the sweep parameters and parameter ranges were identical to the pure Si, SiC, and W dataset. 

This dataset brought with it the first discrete parameter for the neural network to consider: 

base material. This made it possible to begin experimenting with classification problems i.e., 

identifying the correct material. Ideally, when searching for PnC designs given desired band 

characteristics, it is necessary to query for both continuous (height, radius, etc.) and discrete 

(material, pillar shape, etc.) parameters.  
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4.5 Si With W Pillars 

 Table 7: Sweep parameters for Si with W pillars dataset. 

Table 8: Other parameters for Si with W pillars dataset. 

 

 

 

 
 

 

For this dataset, cylindrical pillars were chosen as the inclusion type. Using pillars in the 

crystal design results in three parameters to sweep over as compared to two in previous datasets: 

base height, pillar height, and pillar radius. The total number of data points is a result of 41 base 

heights x 41 pillar radii x 26 pillar heights = 43706. Because of the extra parameter introduced, 

DPN results for datasets containing pillars will include pillar height prediction performance. Pillar 

radius is treated as the same parameter as the circular hole radius in previous datasets. 

It is notable that introducing pillars as the inclusion geometry leads to a large amount of 

non-zero bandgaps as compared to the datasets with circular holes. This is due to the added 

geometrical complexity of the pillar. 

Sweep Parameters  

  Min  Max  Step size  # Steps  

Base height  0.20e-6  0.70e-6  0.0125e-6  41  

Pillar radius  0.17e-6  0.47e-6  0.0075e-6  41  

Pillar height  0.20e-6  0.70e-6  0.02e-6  26  

Other Dataset Parameters 

Number of designs 43706 

Number of designs with bandgaps 42966 (98.31%) 

Lattice constant (m) 1.00e-6 

Inclusion arrangement Square 

Inclusion type Circular pillars 
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Figure 33: Histogram of number of bandgaps per design. 

This dataset contains by far the largest number of low (sub 20 m/s) bandgap sizes. The 

center frequencies lie mainly in two peaks at around 1600 m/s and 2250 m/s. 
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Figure 34: Histogram of bandgap sizes (left). Histogram of corresponding bandgap center frequencies 

(right). Scatterplot of bandgap/frequency clusters (bottom). 

As a third geometrical parameter was included in this dataset, the generating the heatmaps 

shown in the descriptions of the other dataset requires showing the relationship between each of 

the three parameters, resulting in relations between radius and base height, radius and pillar height, 

and pillar height and base height. The resulting 6 heatmaps are shown below: 
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Figure 35: Heatmaps showing hole radius and base height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

 

Figure 36: Heatmaps showing hole radius and pillar height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 
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Figure 37: Heatmaps showing base height and pillar height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

4.6 SiC With W Pillars 

Table 9: Sweep parameters for SiC with W pillars dataset. 

Table 10: Other parameters for SiC with W pillars dataset. 

Other Dataset Parameters 

Number of designs 43706 

Number of designs with bandgaps 40319 (92.25%) 

Lattice constant (m) 1.00e-6 

Inclusion arrangement Square 

Inclusion type Circular pillars 

Sweep Parameters  

  Min  Max  Step size  # Steps  

Base height  0.20e-6  0.70e-6  0.0125e-6  41  

Pillar radius  0.17e-6  0.47e-6  0.0075e-6  41  

Pillar height  0.20e-6  0.70e-6  0.02e-6  26  
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This dataset’s generation parameters were identical to those of the Si with W pillars dataset, 

but here the base material is chosen to be SiC.  

The number of designs with bandgaps is again found to be much higher than any of the 

datasets containing circular holes, at about 93%. This is a notable difference between this and the 

previous pillar-containing dataset however, which may need to be taken into consideration when 

running tests that are sensitive to the number of designs with zero bandgaps. Of the designs with 

bandgaps, we can see that most contained only one, similar to the datasets with circular holes. 

 

Figure 38: Histogram of number of bandgaps per design (left).  

The bandgap sizes in this dataset are similar to those found in the previous dataset with 

pillars. The center frequencies though are more localized to a single peak close to 2000 m/s. 
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Figure 39: Histogram of bandgap sizes (left). Histogram of corresponding bandgap center frequencies. 

Scatterplot of bandgap/frequency clusters (right). 
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Figure 40: Heatmaps showing hole radius and base height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 

 

Figure 41: Heatmaps showing hole radius and pillar height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 
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Figure 42: Heatmaps showing base height and pillar height as a function of two different parameters: 

largest bandgap per design (left) and number of bandgaps per design (right). 
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CHAPTER 5. MACHINE LEARNING STUDIES 

This chapter contains the results for the various machine learning studies performed. The 

chapter is split into three sections: RPN studies, DPN studies (containing a proposed best inverse 

design solution), and a section exploring the training-testing split. 

The RPN and DPN sections are divided into subsections, each containing results for the 

different methods of formatting the training data (largest bandgap, DOS, full band structure). 

Within each of these sections, the same results are repeated for either all or a subset of the training 

datasets described in the previous chapter. 

 The results in this chapter do not necessarily represent the best possible results obtainable 

as a tuning experiment could offer slight performance optimizations. The neural network 

parameters used for each experiment are recorded in the Appendix section of this paper. 

5.1 RPN Results 

This section contains the performance results acquired from training response predicting 

networks (RPN) with the training data described in the previous chapter, formatted in various 

methods. As the RPN aims to predict the properties of the phononic band behavior given crystal 

geometry parameters, this section catalogues the best prediction results gained for each test. 
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5.1.1 Largest Bandgap Method 

The first attempted machine learning experiment was with the largest bandgap method 

using an RPN. The natural first step was first attempt this with the datasets containing circular 

holes as they hold the smallest number of variable geometry parameters. 

At first, the neural network was showing very low predictive correlation with the test data. 

Almost all the predicted values were zero or close to zero. Since the circular hole datasets contain 

only a small number of designs with bandgaps (see Chapter 4 for details about training datasets), 

most of the output values in the training set were zero for this method. This was influencing the 

neural network to associate almost every design with zero bandgap and center frequency. As 

mentioned in Chapter 4, a parameter was added in the code that controls whether the zero bandgap 

designs are included in the training set. After removing the zero bandgap designs and training, we 

arrive at the results in the figures below: 

Si with Holes 

  

Figure 43: RPN results for “Si with holes” dataset formatted using the largest bandgap method. 
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SiC with Holes 

  

Figure 44: RPN results for “SiC with holes” dataset formatted using the largest bandgap method. 

W with Holes 

  

Figure 45: RPN results for “W with holes” dataset formatted using the largest bandgap method. 

 

 

 



 

 60  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

Si, SiC, W Combined 

  

Figure 46: RPN results for “Si, SiC, W combined” dataset formatted using the largest bandgap method. 

 After removing the zero bandgap designs from the training set, the neural network shows 

strong predictive ability using this method. The neural network was also able to perform well 

when given the combined dataset of all three materials, showing that it can adapt its predictions 

when given the base material type as input. 

 Next, the datasets containing pillars were tested: 
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Si with W Pillars 

  

Figure 47: RPN results for “Si with W pillars” dataset formatted using the largest bandgap method. 

SiC with W Pillars 

  

Figure 48: RPN results for “SiC with W pillars” dataset formatted using the largest bandgap method. 

A slight increase in performance over the circular hole datasets is likely a function of one 

or two factors: first, the pillar datasets have a much higher number of non-zero bandgap datapoints. 

It is possible that having a low number of data points to train on has a larger negative impact on 

this formatting method than others. In section 5.3, a test is specifically performed on the effect 
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lowering the amount of data available to train the neural network, but that test is not performed 

using the largest bandgap method. Second, the pillar datasets include three geometric parameters 

for the neural network to recognize patterns from compared to the two found in the circular hole 

datasets. 

 It is also noteworthy that performance results varied much for the circular hole datasets 

between training “runs,” even when those runs were using the same exact parameters. No formal 

test was done to measure the variance of results between runs, but it was observed that the 

coefficient of determination for the circular holes datasets tended to vary on the magnitude of 0.1 

while the coefficient of determination for the pillar datasets varied on the order of 0.01. 

These results show that the ability to use geometry parameters to predict the largest 

bandgap and center frequency is viable. The necessary level of predictive performance depends on 

the application, but all coefficient of determination values were above 0.90, showing strong 

correlation between predicted and truth. 

5.1.2 DOS Method 

 As the DOS was conceived as a tool for more easily representing the band structure during 

crystal geometry predictions (a DPN focused application), the DOS method was not thoroughly 

tested using an RPN. This capability is programmed into the package used for this study, however, 

and it would be possible to perform this experiment if the interest arises. 

5.1.3 Band Structure Method 

For this test, the ability for a neural network to predict a full band structure was tested. 

First, a neural network is trained using band structure information. Once training is complete, the 
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neural network is shown the geometry parameters of the data that was reserved for testing and a 

band structure diagram is generated. An example of the true band structure compared to the neural 

network’s prediction are shown below. 

  

Figure 49: Phononic band structure taken from the training data (left/blue) and the neural network band 

structure prediction when given the corresponding unit cell geometry (right/yellow). Each array contains 

78 samples. Frequency values are normalized to be between 0 and 1 based on the values from all designs 

in the training dataset. 
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Figure 50: True (blue) and Predicted (yellow) band structure from the previous figure overlapped for 

comparison. For each x-axis value, there exists a truth and predicted value. The y-axis distance between 

them is the prediction error.  

  To quantify performance, each predicted frequency value is compared to the equivalent 

truth value. The metric used is RMSE (defined in section 3.8). The RMSE value is calculated for 

each truth, prediction band structure pair in the testing set, and the resulting RMSE values are 

histogrammed to better understand the spread of errors throughout the test set. 

 Included with the histogram of RMSE values for each experiment is a histogram of the 

frequency range values contained in each band structure of the test set. The reason for this is that 

another rough metric for prediction accuracy can be obtained by comparing the average prediction 

error to the average range of frequency values. I.e., seeing higher frequency prediction error when 

the frequency ranges are higher is preferable to seeing the same high error when the average ranges 

are lower. The figures below show the results of this test for each dataset: 
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Si with Holes 

 

Figure 51: Histogram of band structure prediction errors for "Si with holes" dataset (left). Histogram of 

training dataset band structure frequency ranges (right). 

This test was first done using the “Si with holes” dataset. The mean frequency prediction 

RMSE for was approximately 29.42 MHz, while the mean band structure frequency range for the 

test set was approximately 6347 MHz. Dividing these two means gets us a rough metric for average 

percent prediction error: 

29.42 MHz / 6347 MHz = 4.635e-3 = 0.4635% average error 
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W with Holes 

 

Figure 52: Histogram of band structure prediction errors for "W with holes" dataset (left). Histogram of 

training dataset band structure frequency ranges (right). 

The mean frequency prediction RMSE for “W with holes” was approximately 5.432 MHz, 

while the mean band structure frequency range for the test set was approximately 3439 MHz. 

Dividing these two means gets us a rough metric for average percent prediction error: 

5.432 MHz / 3439 MHz = 1.580e-3 = 0.1580% average error 
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SiC with Holes 

 

Figure 53: Histogram of band structure prediction errors for "SiC with holes" dataset (left). Histogram of 

training dataset band structure frequency ranges (right). 

The mean frequency prediction RMSE for “SiC with holes” was approximately 112.7 

MHz, while the mean band structure frequency range for the test set was approximately 9052 MHz. 

Dividing these two means gets us a rough metric for average percent prediction error: 

112.7 MHz / 9052 MHz = 12.45e-3 = 1.245% average error 
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Si with W Pillars 

 

Figure 54: Histogram of band structure prediction errors for "Si with W pillars" dataset (left). Histogram 

of training dataset band structure frequency ranges (right).  

The mean frequency prediction RMSE for “SiC with holes” was approximately 16.45 

MHz, while the mean band structure frequency range for the test set was approximately 3399 MHz. 

Dividing these two means gets us a rough metric for average percent prediction error: 

16.45 MHz / 3399 MHz = 4.840e-3 = 0.04839% average error 
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SiC with W Pillars 

 

Figure 55: Histogram of band structure prediction errors for "SiC with W pillars" dataset (left). Histogram 

of training dataset band structure frequency ranges (right).  

The mean frequency prediction RMSE for “SiC with holes” was approximately 21.30 

MHz, while the mean band structure frequency range for the test set was approximately 3752 MHz. 

Dividing these two means gets us a rough metric for average percent prediction error: 

21.30 MHz / 3751 MHz = 5.678e-3 = 0.05678% average error 

Overall, the neural networks’ ability to predict band structure given crystal geometry is 

favorable. From the performance results, we can expect an average error close to 1% or less when 

making predictions on individual points in the band structure. It is again important to note, that 

these performance values are not necessarily (and not likely) optimized as finding the optimal 

configuration of neural network tuning parameters is a lengthy process that was not thoroughly 

explored in this paper’s study. The high level of performance of this method is significant as it is 

used in the proposed inverse design solution given in section 5.2.3.2. 
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5.2 DPN Results 

This section contains the prediction results obtained from training neural networks in a 

DPN (design predicting network) configuration. As implied by the word “design” in “design 

predicting network,” these neural networks were tasked with predicting crystal design geometry 

given band structure information. 

5.2.1 Largest Bandgap Method 

Similarly to the RPN results, the largest bandgap method was first checked using the 

DPN. The results from the datasets containing circular holes are first shown in the figures below: 

Si with Holes 

  

Figure 56: DPN results using the “Si with Holes” dataset and largest bandgap method. 
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SiC with Holes 

  

Figure 57: DPN results using the “SiC with Holes” dataset and largest bandgap method. 

W with Holes 

  

Figure 58: DPN results using the “W with Holes” dataset and largest bandgap method.  
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Si, SiC, W Combined 

 

Figure 59: DPN results using the “Si, SiC, W combined” dataset and largest bandgap method. 

Since the dataset used for this test contained multiple material types (Si, W, and SiC), the 

accuracy of material prediction was taken. The figure below shows output of the one-hot encoded 

material columns output from the trained neural network. The value closest to ‘1’ is taken as the 

answer. 

 

Figure 60: Example material prediction columns from neural network output. The columns here represent 

Si, SiC, and W respectively. 
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For this experiment, the neural network predicted the correct material 92.87% of the time. 

From these results we see that for the circular hole datasets, the base height prediction tends 

to be worse than the radius prediction, which could be due to a higher sampling of radius values 

as seen in the sweep parameter tables for these datasets in Chapter 4. 

 Next, the same test is ran using the two datasets containing pillars: 

Si with W Pillars 

 

 

Figure 61: DPN results using the “Si with W pillars” dataset and largest bandgap method. 
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SiC with W Pillars 

 

 

Figure 62: DPN results using the “SiC with W pillars” dataset and largest bandgap method. 

 It can be seen that the unlike the RPN, the DPN performed worse on the pillar containing 

datasets than the circular hole containing datasets. Where the RPN benefitted from having a 3rd 

geometry parameter at the input as extra information to help narrow in on a prediction, the DPN 

has an extra parameter to predict. From these results we can see that, for the largest bandgap 

method, having more information at the input of the neural network is generally helpful and having 

more output parameters to predict generally hurts performance. 
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 From these results, it appears that the largest bandgap may suffice for phononic crystals 

with lower amounts of geometry features but fails as datasets become more complex with added 

variable geometry features (as will likely be the trend in future data generation efforts).  

5.2.2 Full Band Structure Method 

For these tests, the neural network receives band structure diagrams at the input and PnC 

geometry at the output. In this configuration of neural network, the most amount of non-redundant 

band structure information possible is supplied to the neural network (we cannot supply any extra 

information about the phononic band structure than the full band structure diagram itself). It can 

be seen from the performance plots below that this method generally results in a model with high 

predictive accuracy.  

The figures below show the results from training DPN’s with the full band structure 

method. Note that in these scatterplots, a series of small vertical lines are visible. This is because 

of the repetitive nature of the truth values in the testing data. By the nature of sweeping over 

geometry parameters for data generation, multiple different designs are created with the same 

value of a particular geometry parameter, but different values for the rest of the geometry 

parameters. The step size between these sweep parameters is also held constant, hence the even 

spacing between the vertical lines. This trend was not as visible in the DPN largest bandgap method 

results because only the non-zero bandgap designs were used, and only 10% of those remaining 

designs were used to test the neural network. 

First, results were obtained for the three datasets containing circular holes and the 

combination dataset containing all three: 
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Si with Holes 

  

Figure 63: DPN results using the “Si with holes” dataset and full band structure method. 

SiC with Holes 

 

Figure 64: DPN results using the “SiC with holes” dataset and full band structure method. 
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W with Holes 

 

Figure 65: DPN results using the “W with holes” dataset and full band structure method. 

Si, SiC, W Combined 

  

Figure 66: DPN results using the “Si, SiC, W combined” dataset and full band structure method. 

As the combination dataset consists of different base materials, the percentage of correct 

material type predicted was recorded. The percentage correct of predicted material labels was 

100%. 
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 We can see that the neural networks perform well in predicting both radius and base height 

for the datasets containing circular holes. Material prediction for the combined dataset performed 

perfectly. 

 The next series of plots shows results for the datasets containing pillars. As the pillar 

datasets contain a third geometrical parameter, pillar height, the neural network output layer must 

predict three values. 

Si with W Pillars 

 

 

Figure 67: DPN results using the “Si with W pillars” dataset and full band structure method. 
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SiC with W Pillars 

  

 

Figure 68: DPN results using the “SiC with W pillars” dataset and full band structure method. 

Speaking to the overall results for the DPN full band structure method: though it currently 

lacks practicality, it does perform well. Most coefficients of determination were close to 1, 

showing very strong correlation. If, in the future, a method is developed to randomly generate band 

structures around a given bandgap, the full band structure could be revaluated. 
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5.2.3 DOS Method 

For the final set of DPN results, the DOS method was explored. Given the inconsistent 

DPN performance using the largest bandgap method (section 5.2.1) and the lack of practicality in 

using the full band structure method, DOS as an “in-between” method was the logical next-best 

method to study. 

5.2.3.1 Scalar Representation 

As explained Chapter 3, the DOS was generate using two representations: scalar DOS and 

binary DOS. First, the scalar DOS representation is used in tandem with the circular hole datasets: 

Si with Holes 

 

Figure 69: DPN results using the “Si with holes” dataset and scalar DOS method. 
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SiC with Holes 

 

Figure 70: DPN results using the “SiC with holes” dataset and scalar DOS method. 

W with Holes 

 

Figure 71: DPN results using the “W with holes” dataset and scalar DOS method. 
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 Next, the pillar containing datasets are explored using the same method. Again, each set of 

results contains three predicted parameters, as the pillar datasets contain three variable parameters. 

Si with W Pillars 

 

 

Figure 72: DPN results using the “Si with W pillars” dataset and scalar DOS method. 
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SiC with W Pillars 

 

Figure 73: DPN results using the “SiC with W pillars” dataset and scalar DOS method. 

 Unintuitively, the scalar DOS method showed on par, and in some cases better, correlation 

to the full band structure method. According to these results, although the full band structure 

method supplies more information, that extra information is redundant. This shows that the scalar 

DOS method is more practical than the full band structure method in the sense that scalar DOS 

takes less time to process but offers the same predictive performance. It is possible however, that 

this could change when training on more complex training data that contains more geometry 

parameters to predict. 
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5.2.3.2 Binary Representation 

Though the density of states representation has more value than the full band structure 

representation for use in a DPN, the challenge of generating data for the non-bandgap regions is 

still non-trivial. Because of this, another method of representing the DOS was conceived: the 

binary representation. The binary representation of DOS is identical to the scalar representation, 

except that every value in the array that is greater than zero is changed to one. This way, the DOS 

array becomes a square wave, as can be seen in section 3.4.3 

 The circular hole datasets showed results similar to those of the largest bandgap method 

before excluding the zero bandgap results. This is likely due to the nature of the binary DOS. The 

binary DOS will appear as an array of all ones to the neural net. Since most of the designs in this 

dataset do not contain bandgaps, the neural network is unable to draw patterns between the DOS 

and geometry. The figure below shows radius prediction results from leaving the zero bandgap 

designs in the training set: 

 

Figure 74: Results for binary DOS DPN using Si with holes dataset, not excluding zero bandgap data in 

the training set.  
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 Removing the zero bandgap designs then training again, a clear increase in performance 

can be seen: 

 

Figure 75: Results for binary DOS DPN using Si with holes dataset excluding zero bandgap data in the 

training set. 

These results are characteristic of all the circular hole datasets. Next, binary DOS was 

tested using the two pillar-containing datasets. The larger bandgap method has shown to be viable 

for the circular hole datasets, The two sets of figures below show the results.  
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Si with W Pillars 

  

 

Figure 76: DPN results using the SiC with W pillars dataset and binary DOS method. 
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SiC with W Pillars 

 

 

Figure 77: DPN results using the SiC with W pillars dataset and binary DOS method. 

 It can be seen that the binary DOS representation sees a significant hit in performance as 

compared to the scalar representation. This is expected due to the loss in information being fed to 

the neural network. Though worse than the scalar representation in terms of performance, we do 

see a performance increase over the largest bandgap method. Since it is fairly intuitive to use the 

binary representation of DOS (create an array with 0’s in the region of the desired bandgap and 

1’s everywhere else), the next section describes a prediction scheme implemented to use this 

method for crystal inverse design. 
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5.2.3.3 Binary Representation Prediction Scheme 

To use the DOS method to perform inverse crystal design, a prediction scheme using both 

a DPN to make predictions and an RPN to check the predictions was implemented. The scheme is 

summarized in the figure below: 

 

Figure 78: Flowchart demonstrating the binary DOS inverse design scheme developed for this study. 

First, the desired bandgap and center frequency values are obtained from the user. Next, 

the minimum and maximum band structure frequency range values (range = max frequency – min 

frequency) are taken from the training dataset used to make predictions. In section 5.1.3, multiple 

histograms show that the band structure range values vary wildly within the same training dataset. 

This must be considered when deciding where to place the zeroes (bandgap region) in the DOS of 
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state. The figure below visualizes this problem. The figure shows how generating two binary DOS 

each representing the same bandgap size and center frequency can result in different arrays. 

  

Figure 79: Given the user wants to find a design with a bandgap of 1000 MHz centered at 4000 MHz, the 

DOS can look different depending on the assumed band structure frequency range. Assuming 10,000 

MHz range, and using a 10-point DOS, each bin in the DOS represents 1000 MHz of frequency space. 

Assuming 5,000 MHz however, each bin represents 500 MHz of frequency space. 

To mitigate this problem, ‘N’ DOS are generated, each assuming a range value from a list 

spanning N linearly spaced values between the minimum and maximum range of the training 

dataset. N is a parameter specifiable by the user. The N binary DOS arrays are then sent to a binary 

DOS-trained DPN to make geometry value predictions. N sets of geometry predictions are 

generated.  

These geometry predictions are then perturbed to create new geometry sets. The idea is to 

mitigate the variance in the DPN’s predictions (see DPN binary DOS figures) by generating 

multiple geometry sets whose values are slightly altered from the values the DPN initially 

predicted. The perturbations are modeled using the error from the performance scatterplots. For 



 

 90  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

each geometry parameter, the standard deviation of the errors from the test set is used to generate 

a Gaussian distribution. For each perturbed set generated, each geometry parameter predicted by 

the DPN is changed by the amount pulled from that geometry parameter’s generated Gaussian 

error function. 

  These geometry sets are then sent to a full band structure trained RPN which generates a 

band structure for each set of geometry parameters generated by the DPN. As seen in section 5.1.3, 

the band structure trained RPN is shown to predict accurate band structure values reliably. The 

band structures are then parsed for band gaps. These bandgaps are compared back to the original 

bandgap and center frequency value the user input and three potential geometry prediction 

candidates are highlighted: the one that produced the closest center frequency, the one that 

produced the closest bandgap, and the one that was “overall” closest. Overall closest here is 

defined as the set of geometry predictions that minimizes the sum of squared error: 

min [(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐺𝑖 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐵𝐺𝑖)
2 + (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝐹𝑖 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝐹𝑖)

2] 

where BG is bandgap and CF is center frequency. Sum of squared error is used because CF and 

BG are often on different orders of magnitude. Squaring helps to normalize the errors and prevent 

one parameter from dominating the calculation. The following is an example output from the 

scheme. The queried bandgap was 500 MHz and the queried center frequency was 2000 MHz. 
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Figure 80: Best matches found according to three categories: closest center frequency, closest bandgap, 

and closest overall. 

Using the metric defined above, the overall closest here happened to be same that scored 

the highest in center frequency prediction. Another design was found with a slightly closer center 

frequency bandgap, but significantly smaller bandgap size. The rest of the found designs are saved 

in a dataframe and viewable by the user. The band structure diagrams output from the RPN are 

also viewable. The band structure corresponding to the “overall best” result from the previous 

figure is shown in in the figure below. 



 

 92  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

 

Figure 81: Band structure corresponding to `DesignIndex` 1 in the previous figure. The red horizontal 

lines correspond to bandgap regions. The upper two red lines contain the “closest” bandgap seen in the 

previous figure. Structure was generated by a band structure trained RPN given geometry parameters 

predicted by the DOS DPN. 

In order to characterize the performance of this scheme, bandgap/center frequency pairs were 

taken from the testing set and given to the binary DOS inverse design predictor. Specifically, the 

test set was split into two new sets: one that models the error for calculating the perturbations, and 

another whose bandgap/center frequency pairs were used for performance characterization. To 

avoid biasing the outcome, it was important to not use bandgaps from the fraction of the test set 

that was used to generate the Gaussian error functions. In general, any data that effects the 

performance of the system should not also be used to calculate performance. 

Three sets of plots were generated: bandgap and center frequency predictions of designs 

minimizing bandgap error, bandgap and center frequency predictions of designs minimizing center 



 

 93  
 

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited 

frequency error, and finally bandgap and center frequency predictions of the “overall” closest 

(designs attempting to minimize both bandgap and center frequency). 20 binary DOS were 

generated per requested bandgap/center frequency pair, with 50 sets of DPN perturbations each. 

The results are shown in the figure below: 

 

   

  

 

 

 

Figure 82: Binary DOS inverse design performance characterization results for designs minimizing center 

frequency error (top), designs minimizing bandgap error (middle), and designs minimizing both (bottom). 
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 We can see that the designs corresponding to closest bandgap and closest center 

frequency minimize their corresponding parameter extremely accurately, while disregarding 

accuracy of the other parameter. We also see high correlation in both bandgap and center 

frequency predictions for the overall closest designs. From these results it is apparent that the 

binary DOS inverse prediction scheme shows strong predictive correlation both in situations 

where preciseness in one parameter is required without regard for the other parameter and in 

situations where both parameters are required to be as accurate as possible. 

 For the final test of the binary DOS inverse design scheme, the input bandgap and center 

frequency values were altered randomly by either plus or minus (50/50 chance) 10 percent before 

predictions were made. The results are shown in the figure below. 
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Figure 83: Binary DOS inverse design performance characterization results in which the input bandgap 

and center frequency values are altered by (+/-) 10%. Results shown for designs minimizing center 

frequency error (top), designs minimizing bandgap error (middle), and designs minimizing both (bottom). 

 Even though the values are altered slightly from the values known to exist from the testing 

set, the inverse design scheme was still able to find predictions closely matching the desired values. 
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Though these results show the scheme’s robustness to finding geometry for bandgaps outside of 

what we know exists in the testing set, it is important to remember that these results are verified 

by an RPN, not by simulation. As shown in this paper, the RPN is shown to produce accurate band 

structures, but the next step for validation of accurate predictions would be to simulate the neural 

network PnC design predictions using COMSOL and verify that the reported designs actually 

result in the reported bandgap and center frequency values.  

5.3 Training Data Split Test 

When generating data for a neural network, it is desirable to need to generate as little data 

as possible. At a minimum, we want enough samples for the neural network to be able to accurately 

capture the model, but not too much data as to oversample as generating data takes long amounts 

of time. If the design space is oversampled, then the neural network’s usefulness decreases as we 

see less “empty” regions in design space for the neural network to interpolate predictions from. To 

help gain an understanding for how much data we may need to generate for future data generation 

efforts, a tool was developed to plot the effect of changing the training data split ratios. 

When training a neural network, the training data is split into three groups over the course 

of two different splits. During the first split, the “test” set is split from the rest of the training data. 

The test set is used to evaluate neural network performance after training and does not influence 

the training process. The remaining data is split between the “training” and “validation” sets. These 

two sets are the what the neural network uses to reduce its loss function during training. For these 

experiments, the ratios of these three groups were varied and their effects on the training process 

and prediction performance were noted.  
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Since the training process does not always converge to the lowest value (presumably this 

would occur less and less often with more training data) a target of 0.01 MSE was set for the neural 

networks to reach every iteration of split ratio. This value was picked because it was observed that 

performance above this value generally resulted in weak prediction performance. If the final loss 

value during training did not reach this threshold, then the neural network would be retrained until 

the loss value was reached. The number of attempts taken to reach this low loss value at each split 

ratio was recorded and included in the resulting plots. 

Both of the following “split” tests were performed using the Si with holes dataset 

(containing 5151 values) formatted using the full band structure method. 

5.3.1 Training-Validation Split 

For this experiment, the “test” set is fixed to 10% while the ratio of the “training” to 

“validation” sets are varied. The x-axis of the plots below represents the percentage of data 

reserved for the validation set, ranging from 1% to 99%, where 1 – (percent reserved for validation) 

= percent reserved for training. 

The plots below show the coefficient of determination scores after each Monte Carlo 

iteration. The scores remained in the high 90’s until about 95% percent reserved for validation. 

After this point the prediction performance continues to degrade. 

An inverse relationship to the coefficient of determination plots can be seen in “Split 

Percent vs Final Training Loss.” In this plot, the final training loss value was taken for the attempt 

that reached lower than 0.01 loss. The final loss value steadily raises throughout the experiment, 
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until around the same iteration in which the prediction performance starts to degrade. At this point, 

the rate of increase in loss sharply increases. 

 

Figure 84: Radius (left) and base height (right) prediction performance for each value of percent data 

reserved for validation. 

 

Figure 85: Final loss value reached at the end of training as a function of the percentage of data reserved 

for validation. 

 It was observed that the number of attempts needed to reach 0.01 loss was seemingly 

random. Anywhere between 1 to 6 attempts were needed to reach a low loss value. This was 
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unexpected as it was assumed that the neural network would take more attempts on average the 

less data it had access to for training. This shows that the tendency of the neural network to take 

multiple training attempts before a low loss is reached is affected by some factor that remained 

constant in this Monte Carlo experiment. It is likely that the low amount of training data for this 

dataset is a contributing factor. 

 

Figure 86: Number of attempts taken to reach the threshold loss value of 0.01 as a function of the 

percentage of data reserved for validation. 

5.3.2 Training-Test Split 

This experiment was conducted in the same manner as the previous experiment, except 

percent reserved for validation was fixed at 10%, while the amount reserved for test was varied. 

The results in the figures below show very similar patterns as seen in the training-validation split. 
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Figure 87: Radius (left) and base height (right) prediction performance for each value of percent data 

reserved for testing. 

 

Figure 88: Final loss value reached at the end of training as a function of the percentage of data reserved 

for testing. 
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Figure 89: Number of attempts taken to reach the threshold loss value of 0.01 as a function of the 

percentage of data reserved for validation. 

 The tendency of these results to show that the neural network’s performance doesn’t vary 

drastically until extremely low amounts of data are reserved for testing is intuitive in the sense that 

the neural network is modeling physics. Physics problems often tend to scale well in neural 

networks. 
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CHAPTER 6. DISCUSSION AND CONCLUSIONS 

In this study, a number of methods were demonstrated for formatting phononic crystal 

training data. From training neural networks with each of these methods, it is apparent that the 

trade-off between amount of information provided to the neural network is important to consider 

when creating an inverse design network. The lower information “largest bandgap method” is 

beneficial from an ease-of-use perspective as the user needs to supply less data, but the predictive 

performance is less than that of the more information dense, but more difficult to use “full band 

structure method.” 

The binary DOS method seems to be a promising answer for the inverse design problem. 

Section 5.2.3.2 shows that we can achieve decent to good predictive performance with this method, 

even though it offers less information to the neural network than the scalar DOS or full band 

structure methods. When used in tandem with the scheme described in 5.2.3.3., this method can 

be used to find designs that satisfy a bandgap, center frequency query very accurately. Binary DOS 

can be easily generated from a list of desired band gaps and center frequencies, meeting the ease-

of-use requirement for the end user.  

From this study, a software package was created that can serve as a framework for future 

phononic crystal neural network studies. The package currently offers multiple methods/options 

for customizing training data formatting (largest bandgap, full band structure, scalar DOS, binary 

DOS, include/exclude zero-bandgap designs, etc.). The package was built with an object-oriented 

design as such functionality should be easy to expand in the future. 
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A number of intuitions were also gained for successfully training neural networks with 

phononic crystal data. For example, in the formatting methods where multiple zero bandgap 

designs cause redundancies in the training data (largest bandgap, binary DOS) that these data 

points should be removed as they skew the predictive performance towards zero. Another example: 

it was generally found that final training loss needed to reach values around 0.001 or lower for the 

best predictive performance. This can be seen in the section 5.3 training/test split experiments 

where the predictive performance would degrade as the final loss increased past this value. Finally, 

Appendix B stores the neural network architecture parameters used for the experiments in this 

study. Though it was found that the exact parameters used do not have a large impact on the 

training process is will serve as a starting point for future work. 

Finally, the training-test split experiment showed that for the case demonstrated, the 

amount of data necessary to reserve for training can stay low. This could signal that future data 

generation effort could require less data to be generated. This experiment however should be 

expanded to include other training datasets and formatting methods in the future for a more robust 

outlook. 

6.1 Future Work 

The work done in this study can be expanded on moving forward. This section lists some 

of the possible endeavors moving forward: 

Though the scheme proposed in 5.2.3.3 does show promising results, it would be beneficial 

to take several geometry predictions and verify through COMSOL that the predicted designs match 

the desired bandgap and center frequency exactly. Once these results have been verified through 

simulation, fabrication and characterization of real PnCs can further verify the ML results. 
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Improving the scalar DOS method could also be a worthwhile endeavor. The scalar DOS 

method showed strong predictive performance but suffers from the ease-of-use problem. If the 

non-bandgap regions could be modeled successfully using some sort of stochastic process, then 

this method could replace binary DOS in the proposed scheme in 5.2.3.3. The higher amount of 

information offered by the scalar DOS method could be useful if, in future, more complex datasets, 

the scalar DOS method begins to fail. 

Moving forward, it would be useful for the training datasets generated in the future to have 

parameterized geometry values. For example, the shape a hole in a unit cell could be modeled 

using a function in polar coordinates and the coefficients of that function could be ingested by the 

neural network. This would result in a larger number of possible novel crystal designs predictable 

by the neural network, instead of being limited by a single shape per dataset. Training data is the 

limiting factor when using neural networks and should be a careful consideration moving forward. 

As there are many combinations of parameters to choose from when designing a neural 

network (number of layers, number of nodes per layer, optimizer, activation functions, batch size, 

learning rate, etc.) finding the optimal combination of parameters can be challenging and time 

consuming. It could be valuable to conduct more experiments to find the best possible training 

parameters for each of the of the training data formats discussed, especially the largest bandgap 

method which saw worse performance than the other methods. This would likely only result it 

slight performance gains, though. 

Exploring more types of neural networks than MLP could also prove useful. For example, 

working with metasurfaces (both photonic and phononic crystals for example) comes with a 

“many-to-one” challenge. Multiple metasurfaces can results in the same response. This isn’t a 
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problem when creating an RPN but is for the inverse problem/DPN. If the same response can 

correspond to multiple metasurfaces, the neural network can have difficulty converging. One 

solution to this is constructing what is known as a “tandem” neural network. The tandem neural 

net uses a “frozen” instance of a pre-created RPN to assist with DPN training and decision making. 

Exploring tandem neural networks could be worthwhile in the future, but also other types such as 

RNN or GAN could have their uses as well. 

 Another conceivable experiment would be to test interpolation vs extrapolation for these 

tests. Neural networks tend to be better at interpolation than extrapolation, but physics-based 

problems such as this one could show some ability to extrapolate. The neural network could be 

asked to predict values further and further outside the scope of the training data and compared to 

COMSOL simulation to get a measure of how far it can successfully extrapolate. It would also be 

useful to run more tests on the neural network’s ability to interpolate values given less and less 

samples in the training data space. A good starting point would be to extent the test done in 5.3 to 

more of the training data formatting methods. 

Finally, there are many possible improvements that could be made to the software package 

in which the experiments were performed. One potential area of improvement would be Jupyter 

integration. Jupyter notebooks are Python scripts that are modular in nature; they are split into 

subsections that can be ran separately. Jupyter notebooks are especially useful when working with 

neural networks as the code that loads in the training data can be separated into its own block in 

the notebook. When using a normal Python script, the section of code that loads training data must 

be redundantly re-ran every time the neural network is trained. With Jupyter notebooks, the 

training data loading block can then be executed once and then the subsequent sections of code 

can be modified and re-ran without reloading the training data, saving time.
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APPENDIX 

A. Example code for training DPN with full band structure data 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

Created on Thu Feb 17 15:32:15 2022 

 

@author: Drew Feltner 

""" 

import sys 

sys.path.append('../../src') 

import time 

import pickle 

import matplotlib.pyplot as plt 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense, Dropout 

from tensorflow.keras.optimizers import Adam 

 

# Custom imports 

import training_data_formatter_banddiagram as tdfb 

import scale_training_data as sd 

import save_utils 

 

# User input parameters 

test_percentage = 0.2 

calc_dos = False 

num_epochs = 1000 

training_data_dir = '/media/sf_shared/Thesis/save_folder/si_with_holes/' 

 

# Begin tracking script run time 

start_time = time.time() 

 

nn_type = "DPN" 

 

# Load data 

print("Loading training data") 

f = open(training_data_dir + "geometry.npy", 'rb') 

geometry_data = pickle.load(f) 
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f = open(training_data_dir + "banddiagram.npy", 'rb') 

banddiagram_data = pickle.load(f) 

 

# Format and normalize training data between 0 and 1 

x_data, y_data = tdfb.format_training_data(geometry_data, 

                                          banddiagram_data, 

                                          network_type="DPN", 

                                          density_of_states=calc_dos) 

 

# Split data into train/test 

x_train, y_train, x_test, y_test = sd.scale_and_split_data(x_data, y_data, 

test_percentage) 

 

# Save the split training data for later evaluation step 

save_utils.save_split_training_data(training_data_dir, nn_type, x_train, y_train, 

x_test, y_test) 

 

# Create neural net architecture 

n = 1248 # 16 eigenmodes * 78 samples per eigenmode = 1248 nodes 

input_design = Input(shape=n, name="designs") 

 

dense_1 = Dense(n, activation="relu", name="dense_1")(input_design) 

drop_1  = Dropout(0.2)(dense_1) 

dense_2 = Dense(n, activation="relu", name="dense_2")(drop_1) 

drop_2  = Dropout(0.2)(dense_2) 

dense_3 = Dense(n, activation="relu", name="dense_3")(drop_2) 

dense_4 = Dense(n, activation="relu", name="dense_4")(dense_3) 

dense_5 = Dense(n, activation="relu", name="dense_5")(dense_4) 

dense_6 = Dense(n, activation="relu", name="dense_6")(dense_5) 

 

output_ref = Dense(6, activation="relu", name="gap")(dense_6) 

 

dpn = Model(inputs=[input_design], 

            outputs=[output_ref], 

            name="dpn") 

 

dpn.compile(optimizer=Adam(), 

              loss="mean_squared_error", 

              metrics=["accuracy"]) 

 

print(dpn.summary()) 

dpn_path = "../../src/net_designs/DPN" 

 

# Create early stopping checks in case training loss starts to increase 
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checkpoint = ModelCheckpoint(dpn_path, 

                             monitor="val_loss", 

                             verbose=0, 

                             save_best_only=True, 

                             save_weights_only=True, 

                             mode="min", 

                             save_freq='epoch') 

 

early_stop = EarlyStopping(monitor="val_loss", 

                           min_delta=1e-7, 

                           patience=100, 

                           verbose=2, 

                           restore_best_weights=True, 

                           mode="min") 

 

# Train network 

dpn_fit = dpn.fit(x_train, y_train, 

                    batch_size=100, epochs=num_epochs, 

                    validation_split=0.1, shuffle=True,  

                    verbose=1, callbacks=[checkpoint, early_stop]) 

 

# Plot training loss 

dpn_hist = dpn_fit.history 

fig, ax = plt.subplots() 

ax.plot(dpn_hist.get('loss'), label='training', color='blue') 

ax.plot(dpn_hist.get('val_loss'), label='validation', color='green') 

ax.legend(loc='upper right') 

ax.set_xlabel("Epoch") 

ax.set_ylabel("Loss (MSE)") 

ax.set_title("Training Loss") 

plt.show() 

 

# Save DPN weights 

save_utils.save_neural_network(training_data_dir, nn_type, dpn) 

 

end_time = time.time() 

print("Ran in " + str(end_time - start_time) + " seconds") 
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B. Training Parameters Used 

RPN: Largest Bandgap Method 

Layer Index Layer Type Number of Nodes Activation 

Function 

Drop Rate 

0 Input Layer N* n/a n/a 

1 Dense Layer Nx128 Relu n/a 

2 Dropout Layer  n/a n/a 0.1 

3 Dense Layer Nx64 Relu n/a 

4 Dropout Layer n/a n/a 0.1 

5 Dense Layer Nx16 Relu n/a 

6 Dropout Layer n/a n/a 0.1 

7 Dense Layer Nx4 Relu n/a 

8 Dropout Layer n/a n/a 0.1 

9 Output Layer 2  Relu n/a 
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RPN: Full Band Structure Method 

Layer Index Layer Type Number of Nodes Activation 

Function 

Drop Rate 

0 Input Layer N* n/a n/a 

1 Dense Layer Nx2 Relu n/a 

2 Dense Layer Nx4 Relu n/a 

3 Dense Layer Nx8 Relu n/a 

4 Dense Layer Nx8 Relu n/a 

5 Dense Layer Nx16 Relu n/a 

6 Dense Layer Nx32 Relu n/a 

7 Dense Layer Nx64 Relu n/a 

8 Dropout Layer n/a n/a 0.2 

9 Dense Layer Nx128 Relu n/a 

10 Dropout Layer n/a n/a 0.2 

11 Dense Layer Nx256 Relu n/a 

12 Output Layer 1248 Relu n/a 
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DPN: Largest Bandgap Method 

Layer Index Layer Type Number of Nodes Activation Function Drop Rate 

0 Input Layer 2 n/a n/a 

1 Dense Layer 416 Relu n/a 

2 Dropout Layer  n/a n/a 0.1 

3 Dense Layer 320 Relu n/a 

4 Dropout Layer n/a n/a 0.1 

5 Dense Layer 384 Relu n/a 

6 Dropout Layer n/a n/a 0.1 

7 Dense Layer 224 Relu n/a 

8 Dropout Layer n/a n/a 0.1 

9 Dense Layer 448 Relu n/a 

10 Dropout n/a n/a 0.1 

11 Output Layer 2  Sigmoid n/a 
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DPN: DOS Method 

Layer Index Layer Type Number of Nodes Activation Function Drop Rate 

0 Input Layer H** n/a n/a 

1 Dense Layer H Relu n/a 

2 Dropout Layer  n/a n/a 0.2 

3 Dense Layer H Relu n/a 

4 Dropout Layer n/a n/a 0.2 

5 Dense Layer H/2 Relu n/a 

6 Dense Layer H/2 Relu n/a 

7 Output Layer N  Sigmoid n/a 
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DPN: Full Band Structure Method 

Layer Index Layer Type Number of Nodes Activation Function Drop Rate 

0 Input Layer 1248 n/a n/a 

1 Dense Layer 1248 Relu n/a 

2 Dropout Layer  n/a n/a 0.2 

3 Dense Layer 1248 Relu n/a 

4 Dropout Layer n/a n/a 0.2 

5 Dense Layer 1248 Relu n/a 

6 Dense Layer 1248 Relu n/a 

7 Dense Layer 1248 Relu n/a 

8 Dense Layer 1248 Relu n/a 

9 Output Layer N  Sigmoid n/a 
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Training Data Split Test (Training/Validation and Training/Testing) 

Layer Index Layer Type Number of Nodes Activation 

Function 

Drop Rate 

0 Input Layer 1248 N/A N/A 

1 Dropout Layer  N/A N/A 0.2 

2 Dense Layer 1248 Relu N/A 

3 Dropout Layer N/A N/A 0.2 

4 Dense Layer 1248 Relu N/A 

5 Dense Layer 1248 Relu N/A 

6 Dense Layer 1248 Relu N/A 

7 Dense Layer 1248 Relu N/A 

8 Output Layer 6 Relu N/A 

* Number of nodes N in input layer equal to number of relevant input parameters. Number of 

nodes = 2 for individual circular hole training datasets (base height, circle radius), 5 for combined 

circular hole dataset (base height, circle radius, Si, SiC, W), and 3 for datasets with pillars (base 

height, pillar height, pillar radius). 

** Number of nodes H is equal to the number of bins used to calculate DOS. For the studies in this 

paper, the number of bins was chosen to be 100, but the parameter is adjustable. 
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