
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2021

Detecting Server-Side Web Applications with Unrestricted File Detecting Server-Side Web Applications with Unrestricted File

Upload Vulnerabilities Upload Vulnerabilities

Jin Huang
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Huang, Jin, "Detecting Server-Side Web Applications with Unrestricted File Upload Vulnerabilities" (2021).
Browse all Theses and Dissertations. 2618.
https://corescholar.libraries.wright.edu/etd_all/2618

This Dissertation/Thesis is brought to you for free and open access by the Theses and Dissertations at CORE
Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator
of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2618?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Detecting Server-Side Web Applications with
Unrestricted File Upload Vulnerabilities

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

by

Jin Huang
M.S., Wright State University, 2018

M.S., University of Florida, 2014
B.E., Beijing Technology and Business University, 2010

2021
WRIGHT STATE UNIVERSITY

WRIGHT STATE UNIVERSITY
GRADUATE SCHOOL

July 26, 2021

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY
SUPERVISION BY Jin Huang ENTITLED Detecting Server-Side Web Applications with
Unrestricted File Upload Vulnerabilities BE ACCEPTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Junjie Zhang, Ph.D.
Dissertation Director

Yong Pei, Ph.D.
Director, Computer Science and

Engineering Ph.D. Program

Barry Milligan, Ph.D.
Vice Provost for Academic Affairs

Dean of the Graduate School

Committee on
Final Examination

Junjie Zhang, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Michelle Andreen Cheatham, Ph.D.

Phu H. Phung, Ph.D.

ABSTRACT

Huang, Jin. Ph.D., Department of Computer Science and Engineering, Wright State Uni-
versity, 2021. Detecting Server-Side Web Applications with Unrestricted File Upload Vul-
nerabilities

Vulnerable web applications fundamentally undermine website security as they often

expose critical infrastructures and sensitive information behind them to potential risks and

threats. Web applications with unrestricted file upload vulnerabilities allow attackers to

upload a file with malicious code, which can be later executed on the server by attackers to

enable various attacks such as information exfiltration, spamming, phishing, and spreading

malware. This dissertation presents our research in building two novel frameworks to de-

tect server-side applications vulnerable to unrestricted file uploading attacks. We design the

innovative model that holistically characterizes both data and control flows using a graph-

based data structure. Such a model makes effortless critical program analysis mechanisms,

such as static analysis and constraint modeling. We build the interpreter to model a web

program by symbolically interpreting its abstract syntax tree (AST). Our research has led

to three complementary systems that can effectively detect unrestricted file uploading vul-

nerabilities. The first system, namely UChecker, leverages satisfiability modulo theory to

perform detection, whereas the second system, namely UFuzzer, detects such vulnerability

by intelligently synthesizing code snippets and performing fuzzing. We also proposed the

third system to mitigate the challenge of path explosion that the previous two systems suf-

fered and enable a computationally efficient model generation process for large programs.

We have deployed all of our systems, namely UGraph, to scan many server-side applica-

tions. They have identified 49 vulnerable PHP-based web applications that are previously

unknown, including 11 CVEs.

iii

Contents

1 Chapter 1: Introduction 1

2 Chapter 2: Background and Related Work 5
2.1 Background . 5
2.2 Related Work . 7

3 Chapter 3: Heap Graph 10
3.1 Heap Graph Definition . 10
3.2 Operations for Heap Graph . 15
3.3 AST-Based Interpretation . 16
3.4 Assigning Symblic Values . 22

4 Chapter 4: Automatically Detecting PHP-Based Unrestricted File Upload Vul-
nerabilities – UChecker 25
4.1 Motivation . 25
4.2 System Design . 27

4.2.1 Vulnerability-Oriented Locality Analysis 28
4.2.2 Vulnerability Modeling . 30
4.2.3 Z3-Oriented Constraint Translation 32

4.3 Evaluation . 35
4.3.1 Ground-Truth-Available Experiments 35
4.3.2 Identifying New Vulnerable PHP Applications 38
4.3.3 Comparison With Other Detection Solutions 41

4.4 Discussion . 41
4.5 Summary . 42

5 Chapter 5: Lightweight Detection of PHP-Based Unrestricted File Upload Vul-
nerabilities Via Static-Fuzzing Co-Analysis – UFuzzer 44
5.1 Motivation . 44
5.2 System Design . 47

5.2.1 Taint Analysis . 48
5.2.2 Graph Refactoring With Symbolic Values 50

iv

5.2.3 Deriving Executable Expressions for The Reachability Constraint
and The File Name . 53

5.2.4 Generate Fuzzing Templates . 55
5.2.5 Executing a Fuzzing Template . 58
5.2.6 Executing a Fuzzing Template . 59

5.3 Evaluation . 61
5.3.1 Ground-Truth-Available Evaluation 61
5.3.2 Detecting New Vulnerable PHP Applications 65

5.4 Discussion . 71
5.5 Summary . 73

6 Chapter 6: Mining Vulnerabilities in PHP-Based Web Programs Using Graph
Models – UGraph 75
6.1 Motivation . 75
6.2 System Design . 78
6.3 Dependency Graph . 78

6.3.1 Definition . 78
6.3.2 An Example Dependency Graph 80
6.3.3 Graph-Driven Information Flow Analysis 85

6.4 AST-Base Symbolic Interpretation . 86
6.4.1 Interpreter . 87

6.5 Vulnerability Detection . 90
6.5.1 Representing and Analyzing Dependency Graphs Using Cypher

Query Language . 90
6.5.2 Detection Rules . 91

6.6 Evaluation . 94
6.6.1 Performance . 97
6.6.2 New Vulnerable Examples . 97

6.7 Related Work . 99
6.8 Discussion . 100
6.9 Summary . 101

7 Chapter 7: Conclusion 102

Bibliography 104

v

List of Figures

1.1 The architectural Overview of Framework 2

2.1 A typical scenario of unrestricted file upload vulnerability (Reprinted from [22]) 6

3.1 The heap graph for the sample code in Listing 3.2 (Reprinted from [22]) . . 14
3.2 The heap graph for array access statements in Listing 3.3 (Reprinted from [22]) 21
3.3 An example of pre-structured array built for $ FILES in Listing 3.3. s,

stype, stmp, serror, ssize, spath, sname, and sext are symbolic values. (Reprinted
from [22]) . 23

4.1 UChecker Architecture (Reprinted from [22]) 27
4.2 The extended call graph generated from Listing 4.1 (Reprinted from [22]) . 30

5.1 The architectural overview of UFuzzer(Reprinted from [23]) 47
5.2 The heap graph for the sample code in Listing 5.1 (Reprinted from [23]) . . 48
5.3 The sub-tree for the reachability constraint derived from Figure 5.2 (Reprinted

from [23]) . 49
5.4 The sub-tree for the filename derived from Figure 5.2 (Reprinted from [23]) 49
5.5 An example of refactoring an array access node associated with the $ FILES

superglobal variable. The sub-tree rooted in the top array access denotes
$ FILES[“newfile”][“name”]. This array access node will be replaced
by a node that concatenates two symbolic values of the filename and the
extension, respectively. (Reprinted from [23]) 50

5.6 An example of refactoring a fread node with a node of symbolic value
(i.e., sym fread) (Reprinted from [23]) 51

5.7 An example of refactoring a isset node with a node of symbolic value
(i.e., sym isset POST action). (Reprinted from [23]) 52

5.8 An example of type inference. Inferring the type of the symbolic node
using its immediate operator node. (Reprinted from [23]) 53

6.1 The architectural overview of the UGraph 78
6.2 The dependency graph for the sample code in Listing 6.1 82
6.3 The Rules for detecting the unrestricted file upload 92
6.4 Distribution of the Memory Footprint . 95

vi

List of Tables

3.1 Core PHP Syntax Interpreted by UChecker (Reprinted from [22]) 17

4.1 Examples of rules to translate PHP-based constraints into Z3-based con-
straints (Reprinted from [22]) . 34

4.2 Detection Results. UChecker detected 12 out of 13 known vulnerable
scripts at the cost of 2 false positives out of 28 benign samples. It detected
3 unreported vulnerable plugins. (Reprinted from [22]) 36

5.1 Evaluation Results Using Ground-Truth-Available Data (4 and 6 refer to
vulnerable and non-vulnerable, respectively). UFuzzer detects 26 out of 27
known vulnerable scripts with no false positives; it outperforms UChecker,
RIPS, and WAP. (Reprinted from [23]) . 60

5.2 Detecting New Vulnerable Applications. UFuzzer detected 30 vulnerable
PHP applications that have not been previously reported, where 1-21 are
from GitHub and 22-32 are WordPress plugins. Each vulnerability is ver-
ified through either exploiting or thorough code review. The root cause
of each vulnerable sample has also been labeled, where LS for “lacking
sanitization”, MisAPI for “misusing sanitization APIs”, SInS for “sanitiz-
ing incorrect sources”, and SC for “sanitizing at the client”. (Reprinted
from [23]) . 64

6.1 Core PHP Syntax Interpreted by UGraph 87
6.2 Cypher models nodes and edges in a dependency graph 91
6.3 Detection Results. Our system detected 26 out of 27 known vulnerable

scripts. It detected 14 unreported vulnerable plugins. 96

vii

Acknowledgment
I want to express the deepest gratitude to my advisor Dr. Junjie Zhang for the continuous

support of my Ph.D. study and research, for his patience, encouragement, and immense

knowledge. He continually and convincingly conveyed his brilliant idea and design regard-

ing research and scholarship and enthusiasm regarding teaching. Without his guidance and

persistent advice, this dissertation would not have been possible.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Krish-

naprasad Thirunarayan, Dr. Michelle Andreen Cheatham, and Dr. Phu H. Phung, for their

encouragement, insightful comments, and outstanding questions.

In addition, a grateful thank you to Dr. Mateen M. Rizki, who introduced me to “Data

Structure and Algorithms”, and thanks for his patient initiative and guidance. Another

grateful thank you to Dr. Jack S. Jean, who introduced me to the “Computer Organization”,

and whose concise and understandable lectures majority helped me build the fundamentals

knowledge. Also, I thank Dr. Yu Li and Jialun Liu for their cooperation and Chuang Li for

his assistance with my research.

Last but not least, I would like to thank all my family and friends for their love and

support through this challenging period. Without their help, this wouldn’t have been possi-

ble.

viii

Chapter 1: Introduction

Web-based applications have become the de facto standard for delivering many online ser-

vices ranging from content sharing (e.g., blogging) to entertainment and financial services.

However, cyber-attacks have become of a fundamental concern of these applications, re-

sulting in enormous losses. The vast majority of these attacks, if not all, can be attributed

to software vulnerabilities, software flaws that can be exploited by attackers for malicious

intents. Detecting vulnerabilities there becomes a central task.

Among various vulnerabilities, those leading to remote code execution (a.k.a, RCE)

are widely ranked with the highest risk. Specifically, RCE vulnerabilities render attack-

ers the capability to execute programs remotely at the target system. The unrestricted file

upload (UFU) vulnerability is an RCE vulnerability. It allows an attacker to upload an

executable file to the target web server and later execute it. Such vulnerabilities are partic-

ularly significant for server-side scripts (e.g., those with extensions such as ”.php”, ”.exe”,

and ”.js”) that are treated as automatically executable without any file system permissions.

Therefore, the UFU vulnerability has been considered a top web vulnerability by OWASP;

it has also been recognized as one of the most common vulnerability types for WordPress, a

leading PHP-based open-source content management system(CMS). However, it is a chal-

lenging task to detect UFU vulnerabilities. First, the vulnerable implementation is usually

embedded in server-side web applications whose source code is typically large in size and

complicated in logic. Second, developers have extremely high flexibility for software im-

plementation, but the analysts lack an effective, unified program representation to support

1

effective analysis. Third, it takes significant efforts to operate server-side applications,

commonly needing to be distributed running environments supported by various network-

ing and database configurations.

This dissertation focuses on building a framework to detect UFU vulnerabilities by

systematically overcoming these challenges. Figure 1.1 presents the architectural overview

of the framework. Specifically, it consists of four major innovations

Heap Graph

UChecker
(DSN 2019)

UFuzzer
(RAID 2021)

Dependency Graph

UGraphApplications

Models

Figure 1.1: The architectural Overview of Framework

• Model - The Heap Graph [22]: A novel program representation, namely the heap

graph, has been designed to holistically model the control flow and data flow of a

web program using a graph-based data structure.

• Application 1 - UChecker [22]: By traversing the heap graph of a web application,

UChecker models the condition to exploit a UFU vulnerability using symbolic con-

straints then leverages SMT solver to evaluate these constraints.

• Application 2 - UFuzzer [23]: By analyzing the heap graph of a web application,

UFuzzer generates executable code snippet that models the exploitation of the vul-

nerability and execute this code snippet in a local, native run-time environment.

Experimental results using a large number of PHP web applications have demon-

strated the efficiency and effectiveness of the model and these applications. Specifically,

2

they have detected 34 vulnerable PHP-based web applications that are previously unknown,

including 5 CVEs.

One limitation of the Heap Graph, and consequently its applications, is the limited

scalability. Specifically, the model leverages symbolic interpretation, which inherently suf-

fers from the path explosion challenge. Therefore, we mitigate path explosion by designing

a new model, possibly at the cost of lowering its precision. We also propose to build a de-

tection system based on the new model.

• Model - Dependency Graph: A novel program representation, namely the depen-

dency graph, has been designed to model the immediate data and control dependency

among objects. An object refers to the evaluation result of an expression in a pro-

gram.

• Application 3 - UGraph: By querying the dependency pattern of a web applica-

tion, UGraph loads the dependency model to graph-database and detects the UFU

vulnerability leveraging designed queries.

The rest of this dissertation is organized as follows:

• In Chapter 2, we introduce the relative background knowledge and related works.

• In Chapter 3, We start with an introduction to heap graph and illustrate the definition

of all elements defined in heap graph and operations of heap graph when performed

the AST-based symbolic execution.

• In chapter 4, We built an automatic system to detect PHP-based web programs with

unrestricted file upload vulnerabilities named UChecker that interprets abstract syn-

tax trees of PHP source code for symbolic execution, whose performance is improved

by a novel vulnerability-oriented locality analysis algorithm. We model vulnerabil-

ities using constraints and verify them using a satisfiability modulo theories (SMT)

3

solver. Experiments have demonstrated that UChecker detected 3 vulnerable Word-

press Plugins that have not been publicly reported.

• In Chapter 5, We proposed an automatic detection system for PHP-based web pro-

grams that suffered the unrestricted file upload vulnerabilities call it UFuzzer. UFuzzer

models a server-side PHP web application using heap graphs and automatically iden-

tifies sub-graphs that are relevant to a vulnerability. Identified sub-graphs are refac-

tored and eventually converted into executable PHP programs for fuzzing. The eval-

uation results based on real-world PHP applications demonstrated UFuzzer’s high

detection performance. UFuzzer detected 34 unreported vulnerable web applications

and got 5 CVE numbers.

• In Chapter 6, We established an automatic detection system for the PHP-based web

application with unrestricted file upload vulnerabilities. UGraph models a PHP pro-

gram using dependency graphs and leverages the graph database to load all objects

and detects the vulnerability by querying the dependency pattern. UGraph signif-

icantly improved the scalability of the detecting system than the previous two and

detected 14 unreported vulnerable web applications, 6 of which were validated by

the CVE Numbering Authority.

• In Chapter 7, we conclude our work.

4

Chapter 2: Background and Related

Work

2.1 Background

Figure 2.1 presents an example of a server script with an unrestricted file upload vulnerabil-

ity. In this example, the web server responds the client with a webpage for image uploading.

Its sample source code is shown in 1© and its presentation to the client user is presented

in 2©. The client (an attacker), instead of uploading an image, uploads a PHP file named

UnrestrictedFileUpload.php as displayed in 3©, whose source code is also manifested.

The server side program saves the uploaded file (using move uploaded file(esrc, edst)) to

the local directory without validating the extension of the uploaded file (see 4©). Later, the

attacker accesses the uploaded file as presented in 5©. Since this uploaded file has “.php”

as extension, it will be executed by server. Specifically, “PHP executed!” is the execution

result of the uploaded script named UnrestrictedFileUpload.php. One root cause of

this vulnerability is that it does not check the extension of the file to be permanently saved.

Therefore, executables files (i.e., those with “.php” extensions) can be uploaded.

The file uploading function is usually implemented using the “file” input type with a

particular name assigned in the script from server to the client (i.e., “userpic” in this case),

as shown in 1©. When the file is transmitted to the server, the server retrieves client-offered

5

Client
(Attacker)

Server
(Vulnerable)

Unrestricted-File-Upload.php

12

5

3
4

Figure 2.1: A typical scenario of unrestricted file upload vulnerability (Reprinted
from [22])

information such as the original file name and the file type. It also identifies the possible

transmission error and calculates the file size. The server saves this file in the local file sys-

tem using a temporal name. Such information is stored in a built-in superglobal variable,

namely $ FILES, which is automatically enabled when the “file” input type is used. Specif-

ically, $ FILES can be considered as a two-dimensional array (i.e., $ FILES[i][j]), where

both indices are strings. The first index refers to the file name; accessing $ FILES using the

first index returns an array with a pre-structured array. For example, $ FILES[‘userpic’]

returns such array for the file submitted through “userpic”. The second index refers to

properties of this file, such as the original file name, the type information, the temporal file-

name, the error information, and the size of the file, which are indexed by “name”, “type”,

“tmp name”, “error”, or “size”, respectively.

As indicated in 4© of Figure 2.1, $file refers to the pre-structured array for the file

“userpic”. A path is then created to store the file, which is composed of the directory

(i.e., $uploaddir[‘path’]) and the original filename (i.e., basename($file[‘name’])). Specif-

ically, basename($file[‘name’]) returns Unrestricted-File-Upload.php. As indicated

by the function name, “move uploaded file($file[’tmp name’], $uploadfile)” moves the

uploaded PHP script to a directory and name it as Unrestricted-File-Upload.php.

6

Since its extension is “.php”, Unrestricted-File-Upload.php will be executed when

it is requested. Other than move uploaded file(esrc, edst), another function, namely

file put content(edst, esrc), is also commonly used to save an uploaded file.

2.2 Related Work

Detection vulnerability in web applications is a broad area that has fostered a wide range of

active research efforts. We explore related work on static program analysis and detecting

unrestricted file upload vulnerabilities.

Static Program Analysis is a method of detection done by evaluating an application’s

source code before deployment. It has been approved and adopted to detect a variety of vul-

nerabilities by the following efforts [54, 21, 60, 46, 15, 9, 44, 50, 14]. Zheng et. al [54, 21]

and Xie et.al [60] leverage static program analysis to detect PHP web applications that

are vulnerable to SQL injection and XSS attacks. Son et. al [46] proposed a method to

identify PHP web applications with semantic vulnerabilities such as infinite loops and the

missing of authorization checks. Dahse et. al [15] designed a system to detect SQL in-

jections and XSS using data flow analysis. Barth et. al [9] designed a system to detect

XSS attacks by analyzing the structure of the content submitted to the server. These ap-

proaches provide a solid basis for vulnerability detection in web application but do not

consider the unrestricted file upload vulnerability, which is also one of the critical web vul-

nerabilities. Staicu et. al [50] studied Node.js applications vulnerable to injection attacks

that exploit exec or eval APIs. Similar to our framework, this method also interprets the

AST of a web application for analysis. However, it uses template matching rather than

symbolic execution to detect vulnerabilities. In addition, it targets detecting different vul-

nerabilities. Dahse et. al [14] proposed novel block and function summaries to detect

taint-style vulnerabilities. Unfortunately, taint-analysis alone is insufficient to model un-

restricted file uploading vulnerabilities, thereby likely introducing false positives. Samimi

7

et. al [43] designed a system to automatically repair HTML generation errors in PHP ap-

plications. This system also used string constraint solving technique. However, this system

addresses a different problem. Nunes et. al [31] conducted benchmark-based assessments

to compare capabilities of publicly-available static vulnerability detection tools. A few

other methods [55, 8, 33, 19, 26, 7, 53] detect employ fuzzing or penetration testing to

reveal vulnerabilities and failures in server-side web applications. Some of them focus on

generating fuzzing inputs [55, 19, 7]. A few other tools such as JBroFuzz [47], Wapiti [48],

Wfuzz [24], Burp [36], and w3af [52] are also built to fuzzing HTTP request through in-

terception. While these methods have shown great promise in detecting server-side web

vulnerabilities, they focus on conventional ones other than unrestricted file upload vulner-

abilities.

A few existing projects [51, 6, 40, 15, 11] analyzed unrestricted file upload vulnera-

bilities without delivering detection capabilities. RIPS [16, 14] and WAP [28] claim their

capabilities of detecting unrestricted file upload vulnerabilities. RIPS [16, 14] leverages

static taint analysis while WAP[28] combines taint analysis and machine learning. RIPS

and WAP are prone to low detection performance of this specific type of vulnerabilities

since taint-analysis is over-approximate to model the exploitation. In addition, the learning-

based software defect detection commonly suffers from the data sparsity challenge [5],

where program samples with the same type of vulnerabilities usually fall short for both

quantity and diversity.

FUSE [25] leverages an orthogonal strategy, i.e., black-box fuzzing, to detect such

vulnerabilities. It attempts to upload various executable files to a fully operating web ser-

vice and monitor whether the uploading is successful. While FUSE can report concrete

inputs for exploitation, it faces significant practical challenges. First, it mandates operating

web services, which are labor-intensive for deployment and maintenance. Second, web

services commonly offer a large number of access points, whose expected external inputs

experience a high diversity in both structures and formats. It is extremely challenging to

8

extensively address such input diversity without a priori knowledge. In fact, FUSE needs

a manually pre-specified configuration template file that manifests a variety of parameters.

Both challenges fundamentally limit FUSE’s applicability in large-scale analysis. Finally,

FUSE cannot locate statements that cause the vulnerability, offering limited information

for mitigation.

9

Chapter 3: Heap Graph

A PHP-based web application is performed symbolic execution by statically interpreting

its AST(s), ultimately generating graph-based data structures, namely a heap graph and

environments. The heap graph compactly profiles dependency among all possible objects

produced by all execution paths; each environment maps variables to their corresponding

objects in each path and meanwhile keeps track of path constraints.

3.1 Heap Graph Definition

A heap graph is a graph-based IR that models symbolic execution results of a program

along all paths towards a given statement (or the end of the program if the given statement

is not observed in this path). A heap graph has following essential elements:

• Node: A node in a heap graph refers to the evaluation result of an expression, which

could represent a concrete value, a symbolic value, an operator, or a built-in function

(e.g., an API). Since we interpret AST to generate nodes, each node can be precisely

mapped back to the program source code.

• Edge: An edge (u, v) represents the operator-operand relationship when u denotes

an operator; it represents the function-parameter relationship when u refers to a func-

tion.

10

• Environment: An environment is maintained for each execution path. It records the

reachability constraint (named as cur) for its corresponding each execution path to-

wards that given statement; it also maps variables to their corresponding objects in

each path and meanwhile keeps track of path constraints; if a vulnerability-related

API appears in this path, it uses a special variable, namely API , to track the node of

that API.

We define the node and edge in a heap graph asG = {C, S, FUNC, OP, L, T, OC ,

OS, OFUNC , OOP , Edge}:

• C is a set of concrete values.

• S is a set of symbolic values.

• FUNC is a set of all PHP built-in functions.

• OP is a set of all operations (e.g., unary and binary operations such as “+” or “.”).

• L is a set of labels.

• T is a set of types such as boolean, integer, and etc; T also includes an unknown type

⊥ (i.e., ⊥ ∈ T) and an array type (i.e., array ∈ T).

• OC ⊂ C × T × L is a set of objects (i.e., nodes) for concrete values, where each

object in OC is assigned with a type and a unique label.

• OS ⊂ S × T × L is a set of objects (i.e., nodes) for symbolic values, where each

object in OC is assigned with a type and a unique label.

• OFUNC ⊂ Func×T ×L is a set of objects (i.e., nodes) for built-in functions, where

each node is assigned with a type and a unique label. The type indicate the type of

the result returned by the function.

11

• OOP ⊂ Op× T × L is a set of objects (i.e., nodes) for operations, where each node

is assigned with a type and a unique label. The type indicate the type of the result

returned by the operation.

• Edge ⊂ {(l1, l2)|(x, t1, l1) ∈ OFUNC ∪ OOP and (y, t2, l2) ∈ OC ∪ OS ∪ OFUNC ∪

OOP}. Edges are directed and each one connects a node for a built-in function or

an operation with another node with an arbitrary type. If the source node of an edge

is an object of an operand, its destination node is an operator; if the source node of

an edge is for a built-in function, its destination node is a parameter input for this

function.

We define the environment for each path Env = {V ar,Map, cur}, which character-

izes i) the mapping between a variable name and its object and ii) the reachability constraint

for this path. It is worth noting that a program may have multiple paths and each path has its

own environment. We therefore define E = {Env1, . . . , Envi, . . . , Envn} for n execution

paths of a program.

• V ar is a set of variable names.

• Map ⊂ V ar × L. It establishes a mapping between a variable name and an object.

• cur ∈ {l|(x, t, l) ∈ OC ∪OS ∪OFUNC ∪OOP} ∪ {null}. cur represents the reach-

ability constraint. It either points to nothing (e.g., cur = null) or an object. When

cur 6= null, the reachability constraint has to be true to enable the execution of this

path.

In order to illustrate the heap graph and environments, we use an example presented

in Listing 3.2. This program has two variables including $a and $b. $a is initialized with

a concrete, integer value. $b contains value from an external input, thereby being given a

symbolic value. This program has two paths which are governed by the if condition and

result in different values for $a.

12

1 <?php

2 $a = 55;

3 $b =$_GET['number '];

4 if($a + $b > 10)

5 $a = $b - 22;

6 else

7 $a = 88;

8 ?>

Listing 3.1: Sample code with two paths(Reprinted from [22])

1 <?php

2 function is_Vulnerable_0(/*...*/ string $_POST_doadd_symbol)

3 {

4 $exp_reach = ($_POST_doadd_symbol == 'yes' and /*...*/);

5 $funCall = explode('.', $sym_file_name . $sym_file_ext);

6 $exp_filename = wp_upload_dir (). /*...*/ . end($funCall);

7 if ($exp_reach) {

8 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

9 if ($ext == 'php') {

10 return true;

11 }

12 }

13 return false;

14 }

15 ?>

Listing 3.2: Sample code with two paths(Reprinted from [22])

Figure 3.1 presents the heap graph and path environments that interpreter generates

for the example in Listing 3.2. For this specific example, the heap graph G is:

• C = {55, 10, 22, 88}

• S = {s}

• FUNC = Ø

• OP = {+,−, >, NOT}

• L = {1, 2, 3, 4, 5, 6, 7, 8, 9}

13

(55, int, 1)(s, int, 2)

(+, int, 3) (10, int, 4)

(>, boolean, 5)

(22, int, 6)

(-, int, 7)

(NOT, boolean, 8)

(88, int, 9)

cur
$a
$b

cur
$a
$b

Env1 for Path1 Env2 for Path2

Heap Graph G

Figure 3.1: The heap graph for the sample code in Listing 3.2 (Reprinted from [22])

• T = {boolean, int}

• OC = {(55, int, 1), (10, int, 4), (22, int, 6), (88, int, 9)}

• OS = {(s, int, 2)}

• OFUNC = Ø

• OOP = {(+, int, 3), (>, boolean, 5), (−, int, 7), (NOT, boolean, 8)}

• Edge = {(7, 6), (7, 2), (3, 2), (3, 1), (5, 3), (5, 4), (8, 5)}.

To be more specific, we label each object using a distinct integer (i.e., L = {1, 2, 3, 4,

5, 6, 7, 8, 9}). This program has two paths. The completion of two paths will result two

environments E = {Env1, Env2}. For Env1, V ar = {a, b}, Map = {(a, 7).(b, 2)},

cur = 5; for Env2, V ar = {a, b}, Map = {(a, 9).(b, 2)}, cur = 8. For example,

(a, 7) ∈Map of Env1 means that the value of a for the first path is the result of the object

with label 7 (i.e., (−, int, 7)). The reachability constraint for the first path is cur = 5,

pointing to the object of (>, boolean, 5), which has to be satisfied to enable the execution

of this path.

14

As manifested in this example, our design of the heap graph and environments in-

troduces two advantages. First, the tree-like structure of the heap graph enables the s-

expression-based representation of an object value using concrete and/or symbolic values.

For example, by traversing the heap graph in Figure 6.2, the reachability constraint of path

1 (i.e., the node of (>, boolean, 5)) can be expressed using symbolic or constant values in

the form of s-expressions, which is specifically (> (+ s 55) 10). This facilitates the usage

of SMT solvers, such as Z3 [17] and Yices [20], whose rules are expressed in s-expressions.

Second, environments keep track of object labels for variables. Therefore, many objects

can be shared by different environments, thereby reducing the memory consumption.

3.2 Operations for Heap Graph

We next define a set of operations for G, Env, and E .

Find(G, l) returns an object given its label. If there is no object whose label is l, it will

return null.

Create Concrete Obj(x, t) is to create an object of a concrete value, denoted as (x, t, l),

given a concrete value of x and its type t; it returns l. This function will assure that the

assigned label is unique across all objects in G.

Create Symbol Obj(x, t),Create FUNC Obj(x, t), andCreate OP Obj(x, t) are sim-

ilar to Create Concrete Obj(x, t). However, they are used to create objects for a symbol

value, a built-in function, or an operator, respectively. All these functions return the label

of the created object, which is unique across all objects in G.

Add Concrete Obj(G, l) is to add an object of a concrete value whose label is l, denoted

as o = (x, t, l), into heap graph G. Specifically, we will have C = C ∪ {x}, T = T ∪ {t},

L = L ∪ {l}, and OC = OC ∪ {o}.

Add Symbol Obj(G, l), Add FUNC Obj(G, l), and Add OP Object(G, l) are also de-

fined. They are similar to Add Concrete Obj(G, l) but they operate on S andOS , FUNC

15

and OFUNC , and OP and OOP , respectively.

Add Edge(G, e) will add an edge into Edge of G. Specifically, Edge = Edge ∪ {e}.

Get Map(Env, v) where v is a variable name. Get(Env, v) will return the label l of the

object associated with v in Map of Env (i.e., (v, l) ∈Map). If v is not contained in Map,

Get(Env, v) will return null.

Add V ar(Env, v) where v is a variable name. This function will add the variable name v

into the V ar of Env (i.e., V ar = V ar ∪ v).

Add Map(Env, (v, l)) where v is a variable name and l is the label of an object. This

function adds an association between v and l into the Map of Env (i.e., Map = Map ∪

(v, l)).

ER(G,Env, l) where l is the label of an object denoted as o = (x, t, l) (ER stands for

“Extend Reachability”). If cur == null, we will assign l to cur and add o to G (i.e.,

cur = l and Add FUNC Obj(G, l) or Add OP Object(G, l)). Otherwise, if l == null,

this function simply returns cur. If cur = (y, d, r) (i.e., not null), we will create a new

object u = Create OP Obj(AND, Boolean) (i.e., the created object is (AND, boolean, u)).

We then create two edges including e1 = (u, l) and e2 = (u, r) to represent the dependency

between the AND operator (i.e., u) and its operands (i.e., l and r). We next add p and these

two edges into G (i.e., Add OP Object(G, u), Add Edge(G, e1), and Add Edge(G, e2)).

Finally, we update cur = u so it points to the new AND operator node. This function will

return the updated Env.

3.3 AST-Based Interpretation

We next design an interpreter to generate the heap graph (i.e., G) and a set of environ-

ments ((i.e., E = {Env1, . . . , Envi, . . . , Envn})) by traversing ASTs using operations

defined for heap graph and environments. The interpreter processes the root node (i.e., a

file or a function) identified by us. It explores all paths towards the execution of a spe-

16

e ::= (EXPRESSION)
| c (Constant)
| x (Variable)
| op e (Unary Operation)
| e1 op e2 (Binary Operation)
| x[e] (Array Access)
| function(x1, . . . , xn){S} (Func Define)
| f(e1, . . . , en) (Func Call)

S ::= (STATEMENTS)
| S1;S2 (Sequence)
| x := e (Assignment)
| if e then S1 else S2 (Conditional)
| return e (Return)

Table 3.1: Core PHP Syntax Interpreted by UChecker (Reprinted from [22])

cific API. For example, a file upload build-in function (i.e., move uploaded file() or

file put content()).

The interpreter recursively evaluates each node in the AST, where the evaluation func-

tion is denoted as eval(node,G, E). node refers to an AST node, representing either an ex-

pression (e.g., constant, variable, binary operation, and etc) or a statement (e.g., sequence,

assignment, conditional, and etc.); G is the heap graph; E is a set of environments.

The interpreter starts with the initialization of G and E . For heap graph G, FUNC is

initialized with built-in functions of PHP languages or specific platforms (such as WordPress);

T contains primitive data types and the array data type. Other sets of G, including OP , L,

OC , OS , OFUNC , OOP , and Edge are all assigned as Ø. E is initialized with one path

E = {Env}. For Env, both V ar and Map are initialized as Ø; cur = null (i.e., the

reachability constraint is empty).

The interpreter processes core PHP syntax. We use syntax presented in Table 6.1

to illustrate the design of the eval(node,G, E) function. Without the loss of general-

ity, we consider E has n paths upon evaluating an AST node, which is denoted as E =

{Env1, . . . , Envi, . . . , Envn}. If node is an expression or a return statement, eval() will

return a vector of labels, denoted as < l1, . . . , li, . . . , ln >, where li is for the ith envi-

ronment. For statements other than return, eval() modifies G and E but does not return

17

anything. For brevity, we describe the evaluation for a few challenging expressions and

statements including “Variable”, “Binary Operation”, “Assignment”, and “Conditional”.

eval(x, G, E): When interpreter sees a variable x, it queries each Envi in E to retrieve

the label li of the object associated with x (i.e., li = Get Map(Envi, x)). If li 6= null, li

will be returned for Envi. Otherwise, a symbol object (s,⊥, li) will be created and added

into G (i.e., li = Create Symbol Obj(s,⊥) and Add Symbol Obj(li)); an association

between x and this symbol object, (x, li), will then be created and inserted into the Map of

Envi (i.e., Add Map(Envi, (x, li))). Finally, interpreter returns a vector of labels denoted

as < l1, . . . , li, . . . , ln >, where li is for Envi.

eval(e1 op e2, G, E): The interpreter evaluates e1 and e2 using G and E . We denote <

l1, . . . , li, . . . , ln >= eval(e1, G, E) and < r1, . . . , ri, . . . , rn >= eval(e2, G, E).

Then for each path (i.e., Envi), The interpreter creates a new operator object using ki =

Create OP Obj(op, t), where t represents the type of the operation result. Two directed

edges including ei,l = (ki, li) and ei,r = (ki, ri) will be added into G (i.e., Add Edge(ei,l)

and Add Edge(ei,r)). interpreter preserves the order of these two edges for ki so that it can

differentiate between the “left” and “right” operand. Finally, interpreter returns a vector of

labels for newly created operator objects, denoted as < k1, . . . , ki, . . . , kn >, where ki is

for the ith environment Envi.

eval(x[e], G, E): The interpreter first evaluates x to retrieve the label li of the object asso-

ciated with each path (i.e., li = Get Map(Envi, x) for the ith path). If li 6= null, li will be

returned for Envi. Otherwise, if x is a superglobal variable, a symbol object with a specific

name will be created and added into G. For example, if x refers to $ FILES, a symbolic

object ($ FILES, array, li) will be created and added into G. Otherwise, li == null and

x is not a superglobal variable, a symbolic object with a randomly-generated name, i.e.,

(s,⊥, li), will be created and added into G.

eval(x, G, E): When interpreter sees a variable x, it queries each Envi in E to retrieve

the label li of the object associated with x (i.e., li = Get Map(Envi, x)). If li 6= null, li

18

will be returned for Envi. Otherwise, a symbol object (s,⊥, li) will be created and added

into G (i.e., li = Create Symbol Obj(s,⊥) and Add Symbol Obj(li)); an association

between x and this symbol object, (x, li), will then be created and inserted into the Map of

Envi (i.e., Add Map(Envi, (x, li))). Finally, interpreter returns a vector of labels denoted

as < l1, . . . , li, . . . , ln >, where li is for Envi.

eval(e1 op e2, G, E): The interpreter evaluates e1 and e2 using G and E . We denote

< l1, . . . , li, . . . , ln >= eval(e1, G, E) and < r1, . . . , ri, . . . , rn >= eval(e2, G, E).

Then for each path (i.e., Envi), interpreter creates a new operator object using ki =

Create OP Obj(op, t), where t represents the type of the operation result. Two directed

edges including ei,l = (ki, li) and ei,r = (ki, ri) will be added into G (i.e., Add Edge(ei,l)

and Add Edge(ei,r)). The interpreter preserves the order of these two edges for ki so that

it can differentiate between the “left” and “right” operand. Finally, The interpreter returns

a vector of labels for newly created operator objects, denoted as < k1, . . . , ki, . . . , kn >,

where ki is for the ith environment Envi.

eval(x[e], G, E): The interpreter first evaluates x to retrieve the label li of the object asso-

ciated with each path (i.e., li = Get Map(Envi, x) for the ith path). If li 6= null, li will be

returned for Envi. Otherwise, if x is a superglobal variable, a symbol object with a specific

name will be created and added into G. For example, if x refers to $ FILES, a symbolic

object ($ FILES, array, li) will be created and added into G. Otherwise, li == null and

x is not a superglobal variable, a symbolic object with a randomly-generated name, i.e.,

(s,⊥, li), will be created and added into G. Next, the interpreter will evaluate e for n paths

in E , getting a vector of labels denoted as < r1, . . . , ri, . . . , rn >= eval(e, G, E), where

ri is the label of the returned object for the ith path (i.e., Envi).

The interpreter will then create a special operation node, an array access operation de-

noted as array access, for each path (i.e., ki = Create OP Obj(array access,⊥)). The

type is unknown (i.e.,⊥) since it depends on the type of elements in this array. Two directed

edges including ei,l = (ki, li) and ei,r = (ki, ri) will be added into G (i.e., Add Edge(ei,l)

19

and Add Edge(ei,r)). Again, The interpreter will preserve the order of these two edges for

ki so that it can differentiate between the object of the array (i.e., “x”) and that of the index

(i.e., “e”). Finally, The interpreter returns a vector of labels for newly created array access

objects, denoted as < k1, . . . , ki, . . . , kn >, where ki is for the ith environment Envi.

1 <?php

2 $myfile = $_FILES['upload_file '];

3 $name = $myfile['name'];

4 $rnd = $test['123'];

Listing 3.3: Array Access Statements (Reprinted from [22])

Figure 3.2 visualizes the heap graph and the environment for a PHP statement in

Listing 3.3. $myfile refers to $ FILES[’upload file’], where $ FILES is recognized

as a superglobal variable. Therefore, The interpreter creates an object with a special

name of $ FILES, resulting the object ($ FILES, array, 1) as in Figure 3.2. The ob-

ject (“upload file”, string, 2) is created to indicate the index to access an array. Fi-

nally, the object (arrray access, ⊥, 3) is introduced to combine ($ FILES, array, 1)

and (“upload file”, string, 2), as the name and index of an array, respectively. When

$name = $myfile[’name’] is evaluated, $myfile can be retrieved from the environment.

Therefore, (arrray access,⊥, 5) is introduced to combine (arrray access, ⊥, 3) and

(“name”, string, 4). When $rnd = $test[’123’] is evaluated, the variable $test can-

not be found in the environment. $test is also not recognized as a superglobal variable.

Consequently, an object for the symbolic value with the array type, (s$test, array, 6),

is introduced to represent the array. The object for the index, (“123”, string, 7), is

also created. (arrray access, ⊥, 8) is finally created to combine (s$test, array, 6) and

(“123”, string, 7) as array name and index, respectively.

eval(x := e, G, E): The interpreter will first evaluate e and get a vector of returned la-

bels, i.e.,< l1, . . . , li, . . . , ln >= eval(e, G, E). Then for eachEnvi, The interpreter will

20

(array_access, ⟂, 5)

(array_access, ⟂, 3) (“name”, string, 4)

($_FILES, array, 1) (“upload_file”, string, 2)

(array_access, ⟂, 8)

(s$test, array, 6) (“123”, string, 7)

Heap Graph

$myfile

$name

$rnd

Env

Figure 3.2: The heap graph for array access statements in Listing 3.3 (Reprinted from [22])

add an association between x and li into the Map of Envi (i.e., Add Map(Envi, (x, li))).

eval(if e then S1 else S2, G, E): The interpreter will first evaluate e using G and E

for all paths, denoted as < l1, . . . , li, . . . , ln >= eval(e,G, E), where li is for Envi.

Then we will make two copies of E , denoted as ET and EF where ET = EF = E =

{Env1, . . . , Envn}. The interpreter then follows the next three steps.

• We first evaluate the “true” branch. For each path (e.g., Envi) in ET , we extend

its reachability constraint by including this “true” branching condition represent-

ing by li. Specifically, for each Envi in ET , The interpreter calls ER(G, Envi, li).

Following this, The interpreter will extend all environments in ET with their corre-

sponding ‘true” branching conditions, resulting a set of new environments named

E ′T = {ER(Env1, l1), . . . , ER(Envn, ln)}. Then, The interpreter will recursively

call eval(S1, G, E ′T) and result in a set of new environments denoted as E ′′T =

{EnvT,1, . . . , EnvT,u}, where u ≥ n.

• We next evaluate the “false” branch. For each path (e.g., Envi) in EF , we ex-

tend its reachability constraint by including the negate of the “true” branching con-

dition (i.e., li). Towards this end, for each Envi in EF , we first create a “NOT”

operator node using ri = Create OP Obj(NOT, boolean) and add ri into G us-

21

ing Add OP Obj(G, ri), where ri represents the “false” condition. We also cre-

ate an edge between ri and li, denoted as ei = (ri, li) and add it into G using

Add Edge(G, ei). Next, The interpreter calls ER(G, Envi, ri). Following this,

The interpreter will extend all environments in EF with their corresponding ‘false”

branching conditions, resulting a set of new environments named E ′F = {ER(Env1, r1),

. . . , ER(Envn, rn)}. Then, The interpreter will recursively call eval(S2, G, E ′F)

and produce a set of new environments denoted as E ′′F = {EnvF,1, . . . , EnvF,v},

where v ≥ n.

• After both branches are evaluated, The interpreter will join their resulted environment

using E = E ′′T ∪ E ′′F

It is worth noting that the interpreter maintains the mapping between the line number

of each expression or statement, which can be derived from AST, and nodes that are created

due to the evaluation of this expression or statement.

3.4 Assigning Symblic Values

The interpreter introduces symbolic values to the heap graph through three sources in-

cluding i) uninitialized variables, ii) built-in functions, and iii) PHP superglobal variables.

Some variables are uninitialized since The interpreter conducts symbolic execution on a

fraction of PHP programs identified by locality analysis. The interpreter also performs

light-weight type inference to assign a type to a symbolic value based on its associated

operator or built-in function.

The interpreter handles $ FILES as a special case since its structure is known a priori.

Specifically, as discussed in Section 2, $ FILES is a pre-structured array that are indexed

by 5 keys including “name”, “type”, “tmp name”, “error”, and “size”, which represent the

original file name, the type information, the temporal filename, the error information, and

22

“upload_file”	 :	string

key value

Heap Graph

(array_access,	⟂,	5)

(array_access,	⟂,	3)				(name,	string,	4)	

($_FILES,	array,	1) (“upload_file”,	string,	2)

$file

$name

Env

s	:	array

“type”	:	string

“tmp_name”	:	string

“error”	:	string

“size”	:	string

“name”	:	string

s_type :	string

s_tmp :	string

s_error :	string

s_size:	int

:	string

key value

“s_filename”	:	string s_ext :	string

is	the	concatenation	operation

✗

Figure 3.3: An example of pre-structured array built for $ FILES in Listing 3.3. s, stype,
stmp, serror, ssize, spath, sname, and sext are symbolic values. (Reprinted from [22])

23

the size of the file. We therefore build an array with the pre-defined structure, keys, and

symbolic values. In addition, certain values also have pre-defined structures. For example,

the value “name” refers to the concatenation of the file name (say sfilename) and the exten-

sion (say sext), where sfilename and sext are their symbol values. Therefore, the value of

“name” can be represented as a structured symbolic value denoted as (”.”, sfilename, sext),

where “.” is the concatenation operation.

Figure 3.3 presents how $ FILES, i.e., ($ FILES, array, 1) in Figure 3.2, is ex-

tended to a pre-structured array. In this case, it is possible to return a specific symbolic

value for accessing an element in a pre-structured array. Specifically, $name, where $name

= $myfile[’name’], can now directly point to (”.”, sfilename, sext).

24

Chapter 4: Automatically Detecting

PHP-Based Unrestricted File Upload

Vulnerabilities – UChecker

4.1 Motivation

Web applications with unrestricted file upload vulnerabilities will allow attackers to upload

a file with malicious code, which can be executed on the server. File upload vulnerabilities

are taken as top web vulnerabilities by OWASP [13] and has been recognized as one of

most common vulnerability types [41] for WordPress, a leading PHP-based open-source

content management system (CMS) [56]. However, despite active case studies [40, 32], a

systematic detection method is still missing. To this end, we have built a system, namely

UChecker, to detect PHP server-side web applications with unrestricted file upload vul-

nerabilities. UChecker currently focuses on PHP considering its dominating role in im-

plementing server-side web applications. We proposed following design objectives for

UChecker:

• Automated: UChecker will be fully automated, requiring no users’ intervention.

• Effective and Efficient: UChecker can detect vulnerable web applications to achieve

25

high accuracy with reasonable consumption of computational resources.

• Source-Code-Focused: UChecker can offer developers with precise source-code-

level formation of the program such as lines of code that are relevant to the vul-

nerability.

Building UChecker, however, is faced with significant challenges. First, symbolic

execution is computationally expensive and known to suffer from the path explosion chal-

lenge [10]. Web applications, unfortunately, are usually sizable, implying a large num-

ber of execution paths. Second, the PHP programming language has significant semantic

gaps compared to languages used by SMT solvers. For example, PHP is dynamic-typing

while SMT solvers are static-typing. Finally, abstract syntax trees features complex tree

structures and a variety of source-code-level operations, making it impossible to applying

symbolic execution methods designed for IRs such as SSA and its variants.

In order to systematically address these challenges, we have made the following con-

tributions:

• We have designed a novel algorithm to drastically reduce the workload of symbolic

execution using vulnerability-oriented locality analysis.

• We have designed an interpreter to perform context-sensitive symbolic execution us-

ing AST, modeling vulnerabilities using PHP-based operations, functions, and sym-

bolic values in the form of s-expressions.

• We have designed a set of rules to translates PHP-based vulnerability models into

SMT constraints by mitigating semantic gaps between PHP and the SMT language.

• We have implemented UChecker and evaluated it using 13 vulnerable and 28 non-

vulnerable real-world PHP applications. UChecker has detected 12 out of 13 vulner-

able applications at the cost of introducing 2 false positives out of 28 benign samples.

26

(1) Parser (2) Locality Analysis
(3) AST-Oriented

Symbolic
Execution

DNS StreamsDNS StreamsDNS Streams
PHP Source

Code
DNS Streams

DNS Streams
DNS Streams

Abstract Syntax Trees
DNS Streams

Relevant ASTs

(4) Vulnerability
Modeling

DNS Streams
DNS Streams

DNS Streams
Heap Graph and

Environments
DNS Streams

DNS Streams
DNS Streams

PHP-Based
Constraints

(5) Z3-Oriented
Translator

DNS Streams
DNS Streams

DNS Streams
Z3-Based

Constraints

(6) Z3 Solver
Vulnerable

Non-Vulnerable

Figure 4.1: UChecker Architecture (Reprinted from [22])

• UChecker has also detected 3 potentially-exploitable WordPress plugins, which, to

the best of our knowledge, have not been previously reported.

4.2 System Design

Figure 4.1 presents the architectural overview of UChecker, which has 6 major phases.

• Parsing: The input of UChecker is a set of PHP files for a web application, where

UChecker parses them to generate AST(s).

• Vuln-Oriented Locality Analysis: UChecker identifies a small fraction of code, in

the form of AST(s), which is relevant to the vulnerability, aiming at reducing the

workload of symbolic execution. (see Sec. 4.2.1)

• AST-Based Symbolic Execution: UChecker next performs symbolic execution on a

small fraction of AST using a novel, compact data structure named heap graph. (see

Chapter. 3)

• Vulnerability Modeling: Using heap graph, UChecker models vulnerabilities using

two constraints including a reachability constraint and an extension constraint. While

the first constraint concerns whether a file uploading operation (i.e., move uploaded file()

or file put content()) is reachable, the second one models the extension of a file

to upload (e.g., a “.php” file). These constraints are s-expressions using PHP-based

operators and functions. (see Sec. 4.2.2)

27

• Z3-Oriented Translation: UChecker translates PHP-based constraints into Z3-based

constraints [17] guided by a set of novel translation rules. These rules aim to mitigate

the semantic gap between PHP and Z3. (see Sec. 4.2.3)

• SMT-Based Verification: UChecker evaluates the satisfiability of Z3-based con-

straints using the Z3 SMT solver.

4.2.1 Vulnerability-Oriented Locality Analysis

It is challenging to perform whole-program symbolic execution considering the large num-

ber of external inputs and large program sizes, which are typical for web applications. To

address this challenge, we propose to identify a fraction of code that is highly likely to be

relevant to file upload and conduct symbolic analysis only for it.

Our locality analysis is driven by the observation that file upload is usually one of

many functions of a web application. Therefore, the objective of locality analysis is to iden-

tify modules, functions, and files that are likely used for file upload. As discussed in Chap-

ter 2, file upload usually retrieves file information from $ FILES and save it to local file

system using built-in functions such as move uploaded file() and file put content().

Hence, the access to $ FILES and the invocation of move uploaded file() together imply

the boundary of the program relevant to file upload.

Our locality analysis algorithm accordingly has two steps. First, we build a set of

call graphs, which slightly extend the original definition of call graphs [30]. Specifically,

each node in the graph can represent a function, a PHP file, a read access to $ FILES,

the invocation of move uploaded file() (or file put content()). A directed edge (say

e = (a, b)) between two nodes represents one of the following four scenarios.

• Both a and b are PHP files and a refers b using “include” or “require”.

• a is a PHP file, b is function, and a calls b in its body.

28

• Both a and b are functions, where a calls b.

• a is a PHP file or a function, b is $ FILE, and a accesses b in its body (or its parameter

input if a is a function).

It is worth noting that we will not build edges for recursive calls. As a result, each call

graph is connected but acyclic, thereby forming a tree.

Second, if a call graph contains both the $ FILES node, say node1, and the

move uploaded file() (or file put content()), say node2, we will identify the node

that serves as the lowest common ancestor between these node1 and node2. We will only

perform symbolic analysis for the code in the body of this lowest common ancestor, which

is either a PHP file or a function.

1 <?php

2 function getFileName($file){

3 return $_FILES[$file]['name'];

4 }

5

6 function handle_uploader($file , $savePath){

7 $path_array = wp_upload_dir ();

8 $pathAndName = $path_array['path'] . "/" . $savePath;

9 if (! move_uploaded_file($_FILES[$file]['tmp_name '],

10 $pathAndName)) {

11 return false;

12 }

13 return true;

14 }

15

16 if (! handle_uploader("upload_file",

17 getFileName("upload_file"))) {

18 echo "File Uploaded failure!";

19 }

20 ?>

Listing 4.1: An example PHP file named “example1.php”(Reprinted from [22])

An example PHP file namely “example1.php” is presented in Listing 4.1. It invokes

handle uploader(), which next invokes getFileName($file) in its parameter. There-

29

example1.php

handle_uploader()getFileName()

$_FILES move_uploaded_file()wp_upload_dir()

Figure 4.2: The extended call graph generated from Listing 4.1 (Reprinted from [22])

fore, “example1.php” calls two functions including getFileName($file) and

handle uploader($file, $savePath), where getFileName() accesses $ FILES and

handle uploader() calls move uploaded file(). UChecker will construct an extended

call graph for example1.php as illustrated in Figure 4.2. The node “example1.php” is the

lowest common ancestor for the “$ FILES” node and the “move uploaded file()” node.

Therefore, UChecker will perform symbolic analysis for the body of example1.php (i.e.,

starting from line 14 in List 4.1). Other scripts, if they do not contain such lowest common

ancestors, will not be analyzed.

4.2.2 Vulnerability Modeling

Once our interpreter encounters a sensitive file writing operation (i.e., move uploaded file

(esrc, edst) or file put content(edst, esrc)), it will generate Z3 constraints to model con-

ditions to exploit a vulnerability. esrc and edst indicate the source and destination files,

respectively. We will use move uploaded file(esrc, edst) to illustrate our design, which is

also applicable to file put content($dst, $src). Specifically, move uploaded file

(esrc, edst) can be exploited when the following three conditions are simultaneously satis-

fied for at least one path. In other words, if no path can satisfy all these three conditions,

this program is free from this vulnerability.

30

• Constraint-1: The content of the file to be created (i.e., esrc) is tainted by $ FILES.

• Constraint-2: The name of the file to be created (i.e., edst) has “php” or “php5” as

the file extension, making it executable. We use “php” in the following sections to

simplify the illustration.

• Constraint-3: move uploaded file(esrc, edst) is reachable (i.e., the reachability con-

straint of this path can be satisfied).

In order to verify constraint-1, we can first evaluate esrc using G and E to obtain

objects for all paths, denoted as < ls,1, . . . , ls,i, . . . , ls,n >= eval(esrc, G, E), where ls,i

is the label of the object for esrc of the ith path. Then esrc is tainted by $ FILES (i.e.,

constraint-1 is satisfied) if there exists a path in G from the objected referred by ls,i to

$ FILES.

Constraint-2 and constraint-3 will be formally verified using SMT. We evaluate edst

using G and E to obtain labels for resulted objects, denoted as < ld,1, . . . , ld,i, . . . , ld,n >=

eval(edst, G, E), where ld,i is the label of the object for edst of the ith path. In addition, the

reachability constraint has already been represented by cur for each path Envi (denoted as

curi). By traversing G starting from ld,i and curi, we can generate 2 s-expressions for edst

and the reachability constraint, respectively. For the s-expression of edst, we will evaluate

whether it is possible to find assignments for symbolic values so that it ends up with the

string “.php”; for that of the reachability constraint, we will evaluate the feasibility to find

assignments for symbolic values to make it as true. We leverage Z3 with string exten-

sions [62] to verify the last two constraints.

1 <?php

2 $path_array = wp_upload_dir ();

3 $filename = $_FILES['upload_file ']['name'];

31

4 $pathAndName = $path_array['path'] . "/" . $filename;

5 if(strlen($filename) > 5){

6 move_uploaded_file($_FILES["upload_file"]['tmp_name '],

7 $pathAndName);

8 }

9 ?>

Listing 4.2: An example PHP file with unrestricted file upload vulnerability (Reprinted
from [22])

Listing 4.2 presents a vulnerable example. wp upload dir() returns a symbolic value

denoted as sdir, to which the variable $path array maps. Since FILES is modeled as a

pre-structured array (see Section 3.4), $ FILES[’upload file’][’tmp name’] returns (i.e.,

(“.”, sname, sext)), which is the concatenation of two symbolic values for the name and the

extension of a file, respectively. Since $path array itself maps to an undefined symbolic

value sdir, $path array[’path’] returns a symbolic value denoted as spath. $pathAndName

maps to the concatenation of $path array[’path’], “/”, and FILES[’upload file’][’tmp name’],

which is (“.”, spath, (“.”, “/”, (“.”, sname, sext))).

For constraint-1, esrc is $ FILES[’upload file’][’tmp name’], which is directly tainted

by $ FILES. Therefore, constraint-1 is satisfied. For constraint-2 and constraint-3, we can

use the heap graph to derive the s-expression of edst, denoted as sedst, and that for the

reachability, denoted as sereachability, which are listed as follows:

• sedst = (“.”, spath, (“.”, “/”, (“.”, sname, sext))), where “.” is the concatenation

operator in PHP.

• sereachability = (>, (strlen, (“.”, sname, sext)), 5), where “>” and “strlen” are

operators in PHP.

4.2.3 Z3-Oriented Constraint Translation

Despite the fact that both sedst and sereachability are in s-expressions, their semantics, how-

ever, are based on PHP rather than Z3, forming a semantic gap. We design a transla-

32

tion function, namely trl(), to recursively translate PHP-based s-expressions into Z3-based

ones. With the application of trl(), two constraints can be expressed as below, where

“str.suffixof” is Z3’s operator for suffix checking.

• Constraint-2: (str.suffixof ".php" trl(sedst))

• Constraint-3: trl(sereachability)

trl() implements a set of translation rules, where the core translation rules are pre-

sented in Table 4.1. These translation rules focus on solving four problems including i)

different operation names, ii) order of parameters and missing parameters, iii) dynamic

typing of PHP, and iv) missing operations in Z3. One example is the logical “And” operator

in PHP, which works for different types such as string, integer, and boolean. However, the

“and” operator in Z3 can only handle boolean variables. Therefore, we translate the “And”

operation in PHP into a set of “and” operations depending on the type of the variable.

It is worth noting that exceptions might be observed when translating s-expressions in

PHP. On the one hand, the type matching might not be satisfied. On the other hand, internal

structures of certain expected inputs are invisible to UChecker. In this case, trl() returns a

symbolic value with the expected type of the operator. For example, if “/” in an expression

cannot be determined in e, trl((“basename”, e : string)) will return a new symbol value

with the string type.

Using these translation rules, UChecker translates constraints-2 and constraint-3 in

PHP for the example in Listing 4.2 into those in Z3 as listed below:

• Constraint-2: (str.suffixof ".php" (str.++ spath (str.++ ‘‘/" (str.++,

sname, sext))))

• Constraint-3: (> (str.len (str.++ sname sext)) 5)

33

Operation PHP Z3
Constant c trl(c : t) c
Symbolc s trl(s : t) s (a symbol value in Z3 with type t)
String concat trl((“.”, e1 : t1, e2 : t2)) (str.++ trl(e1 : t1) trl(e2 : t2))

where t1 = t2 = string
String replace trl(“str replace”, e1 : t1, e2 : t2, e3 : t3)) (str.replace trl(e3 : t3) trl(e1 : t1) trl(e2 : t2)),

where t1 = t2 = t3 = string
String to int trl((′′intval”, e : t)) (str.to.int trl(e : t))

where t = string
Index of string trl((“strpos”, e1 : t1, e2 : t2)) (str.indexof trl(e1 : t1) trl(e2 : t2))

where t1 = t2 = string
String length trl(“strlen”, e : t) (str.len trl(e : t)) where t = string

(not trl(e : t)) if e:boolean
Logical Not trl(“!”, e : t) (not (= trl(e : int) 0) if e:int

(= (str.len trl(e : string)) 0) if e:string
(and trl(e1 : t1) trl(e2 : t2)) if t1 = t2 = boolean
(and (not (= trl(e1 : t1) 0)) trl(e2 : t2))
if t1 = int and t2 = boolean

Logical AND trl(“And”, e1 : t1, e2 : t2) (and (> (str.len trl(e1 : t1)) 0) trl(e2 : t2))
if t1 = string and t2 = boolean
(and (> (str.len trl(e1 : t1)) 0) (not (= trl(e2 : t2) 0)))
if t1 = string and t2 = int
(= trl(e1 : t1) trl(e2 : t2)) if t1 = t2 = boolean.
(= trl(e1 : t1) trl(e2 : t2)) if t1 = t2 = integer.
(= trl(e1 : t1) trl(e2 : t2)) if t1 = t2 = string.
(= trl(e1 : t1) (¿ trl(e2 : t2) 0))

Logical Equal trl(“ == ”, e1 : t1, e2 : t2) if t1 = boolean and t2 = integer.
(= trl(e1 : t1) (> (str.len trl(e2 : t2)) 0))
if t1 = boolean and t2 = string.
(= trl(e1 : t1) (str.to.int trl(e2 : t2)))
if t1 = integer and t2 = string.
(or trl(“ = ”, needle, e1 : t1), . . . , trl(“ = ”, needle, en : tn)

Array Check trl((“in array”, needle, haystack : array)) if haystack is recognized as {e1 : t1, . . . , en : tn};
a symbol value in Z3 with the type of string otherwise.

Substring trl((“substr”, str : t1, start : t2)) (str.substr trl(str), trl(start), (str.len trl(str)))
where t1 = t2 = string

Substring trl((“substr”, str : t1, start : t2, len : t3)) (str.substr trl(str), trl(start), trl(len))
where t1 = t2 = string and t3 = int

Tail Element trl((“end”, haystack : array)) trl(en : tn) if haystack is recognized as {e1 : t1, . . . , en : tn};
a symbol value in Z3 with the type of string otherwise.

File Name trl((“basename”, e : string)) the filename if e can be recognized as an absolute file path;
a symbol value in Z3 with the type of string otherwise.

Table 4.1: Examples of rules to translate PHP-based constraints into Z3-based con-
straints (Reprinted from [22])

34

4.3 Evaluation

We have implemented UChecker with approximately 30K LoC in PHP. UChecker leverages

PHP-Parser [35] to parse source code for AST generation and Z3 [62] as the SMT solver.

UChecker is deployed on a Windows-10 workstation with Intel i7-5500U CPU and 16GB

of memory. PHP 7 is used as the runtime environment.

4.3.1 Ground-Truth-Available Experiments

We have collected totally 13 publicly-reported vulnerable PHP applications. The vulner-

able samples include 11 WordPress plugins [57], a Joomla extension (i.e., Joomla-Bible-

study 9.1.1 [39]), and a Drupal module (i.e., Avatar Uploader 6.x-1.2 [38]). We have man-

ually identified 28 vulnerability-free WordPress plugins that supports file upload. We have

manually audited or tested the code to assure they are free from unrestricted file upload vul-

nerabilities. It is practically challenging to collect source code of publicly-available, real-

world vulnerable applications; identifying and verifying vulnerability-free applications are

also highly labor-intensive considering the diversity of plugins, their highly-customized in-

terfaces, and a large number of functions. This dataset represents our current best-effort

practices. The second and third columns of the top 13 rows in Table 6.3 present the names

and LoC of all 13 vulnerable applications. For brevity, we only present 2 out of 28 non-

vulnerable samples. Again, it is worth noting that all 28 non-vulnerable plugins we used

for false-positive evaluation support file uploading.

Performance: UChecker starts with locality analysis to reduce lines of code for symbolic

execution. The third column of Table 6.3 presents LoC of each application and the fourth

column shows the percentage of LoC that are actually symbolically executed. Experiments

have shown that the locality analysis drastically reduced the LoC, ranging from 67% (see

Avatar Uploader) to 99.7% (see WP Marketplace). For example, “WP Market place” has

35

Sy
st

em
L

oC
%

of
L

oC
A

na
ly

ze
d

Pa
th

s
O

bj
ec

ts
O

bj
ec

ts
/P

at
h

M
em

or
y(

M
B

)
Ti

m
e(

s)
D

et
ec

tio
n

Known
Vulnerable

A
db

lo
ck

B
lo

ck
er

0.
0.

1
48

4
13

.0
2

7
15

8
23

4.
9

0.
50

Y
es

W
P

M
ar

ke
tp

la
ce

2.
4.

1
10

85
0

0.
29

2
55

28
4.

7
2.

60
Y

es
Fo

xy
pr

es
s

0.
4.

1.
1-

0.
4.

2.
1

15
81

5
0.

60
65

16
71

26
5.

2
2.

98
Y

es
E

st
at

ik
2.

2.
5

99
13

1.
78

12
26

9
22

5.
2

1.
72

Y
es

U
pl

oa
di

fy
1.

0.
0

80
35

.0
0

2
35

18
4.

7
0.

31
Y

es
M

ai
lC

W
P

1.
10

0
28

47
0.

98
8

16
1

20
4.

7
5.

80
Y

es
W

oo
C

om
m

er
ce

C
at

al
og

E
nq

ui
ry

3.
0.

1
35

65
3.

25
34

37
3

11
5.

1
0.

96
Y

es
N

-M
ed

ia
W

eb
si

te
C

on
ta

ct
10

99
9.

46
12

6
16

79
13

5.
2

1.
23

Y
es

Fo
rm

w
ith

Fi
le

U
pl

oa
de

r1
.3

.4
Si

m
pl

e
A

d
M

an
ag

er
2.

5.
94

43
40

7.
70

14
76

13
62

8
9

9.
3

5.
35

Y
es

w
p-

Po
w

er
pl

ay
ga

lle
ry

3.
3

27
57

3.
77

12
24

16
13

8
13

6.
6

2.
78

Y
es

Jo
om

la
-B

ib
le

-s
tu

dy
9.

1.
1

94
65

9
0.

25
16

23
6

15
5.

6
13

.7
2

Y
es

A
va

ta
rU

pl
oa

de
r6

.x
-1

.2
45

8
32

.5
3

92
16

62
60

0
7

62
.9

52
.7

4
Y

es
C

im
y

U
se

rE
xt

ra
Fi

el
ds

2.
3.

8
94

32
2.

07
24

88
32

27
80

06
7

11
N

o

False
Positives

E
ve

nt
R

eg
is

tr
at

io
n

Pr
o

C
al

en
da

r1
.0

.2
16

77
1

0.
20

3
79

26
4.

8
0.

25
Y

es
Tu

m
ul

tH
yp

e
A

ni
m

at
io

ns
1.

7.
1

11
91

4
0.

19
4

66
16

5
0.

23
6

Y
es

New
Vuln

Fi
le

Pr
ov

id
er

1.
2.

3
13

8
52

.1
7

33
47

4
14

5.
2

0.
40

Y
es

W
oo

C
om

m
er

ce
C

us
to

m
Pr

ofi
le

Pi
ct

ur
e

1.
0

98
3

2.
65

2
45

23
4.

8
0.

28
Y

es
W

P
D

em
o

B
ud

dy
1.

0.
2

21
96

1.
32

2
85

42
.5

4.
83

0.
27

7
Y

es

Ta
bl

e
4.

2:
D

et
ec

tio
n

R
es

ul
ts

.
U

C
he

ck
er

de
te

ct
ed

12
ou

to
f1

3
kn

ow
n

vu
ln

er
ab

le
sc

ri
pt

s
at

th
e

co
st

of
2

fa
ls

e
po

si
tiv

es
ou

to
f2

8
be

ni
gn

sa
m

pl
es

.I
td

et
ec

te
d

3
un

re
po

rt
ed

vu
ln

er
ab

le
pl

ug
in

s.
(R

ep
ri

nt
ed

fr
om

[2
2]

)

36

10,850 LoC while only 32 LoC are symbolically executed.

UChecker then performs AST-based symbolic execution for the selected fraction of

code. The fifth column of Table 6.3 shows the number of paths generated by symbolic exe-

cution. Despite the small LoC for symbolic execution, certain applications still yield a large

number of paths. For example, the analysis of WP-Powerplaygallery, Simple Ad Manager,

and Avatar Uploader leads to 1,224, 1,476, and 9,216 paths, respectively. UChecker also

generates a considerably large number of objects in the heap graph. However, thanks to

the design of heap graph that enables the sharing of objects across different environments,

the average number of objects for each path is small for the vast majority of evaluated

applications. Specifically, except “Cimy User Extra Fields”, each path has less than 100

objects on average. Such design also results in the small memory footprint of UChecker,

where all applications result in less than 65 MB of maximal memory consumption (see

the “memory” column in Table 6.3). The analysis of each application is completed within

60 seconds as shown in the “Time” column. All these measures imply that UChecker can

operate efficiently in a typical runtime environment.

Detection Results: UChecker has detected 12 out of 13 vulnerable applications as shown

in the last column of Table 6.3. It introduced one false negative (i.e., “Cimy User Extra

Fields”). A large number of branches in the “Cimy” plugin resulted in a massive number

of paths and objects (i.e., around 248K paths and 278K objects) during the symbolic ex-

ecution, which eventually exceeded the memory capacity. UChecker has caused 2 false

positives out of 28 vulnerability-free applications.

False Positive Analysis: Two false positives are Event Registration Pro Calendar

1.0.2 and Tumult Hype Animations 1.7.1. Both plugins indeed allow the upload of

PHP scripts. However, accessing both plugins requires admin privilege. Since an adminis-

trator has the highest privilege of a system and she can upload arbitrary files anyway, it is

acceptable for an admin script to allow the upload of arbitrary files including PHP scripts.

We therefore label these two detected plugins as false positives. Listing 4.3 presents the

37

WordPress built-in function add action(‘‘admin menu’’, func name), which is used

by both scripts to make the file-upload function (specified by func name) only accessible

to admins through “admin menu’.

1 <php?

2 add_action("admin_menu", 'hypeanimations_panel_upload ');

3 //make hypeanimations_panel_upload func accessible through admin_menu

4 function hypeanimations_panel_upload () {

5 //code that allows the upload of arbitrary files

6 }

7 ?>

Listing 4.3: add action("admin menu", ’func’) makes func only accessible to the
administrator in the plugin Event Registration Pro Calendar 1.0.2 (Reprinted
from [22])

While UChecker successfully models and identifies the upload of PHP scripts, it, un-

fortunately, does not currently model “add action()” to consider whether a script is running

under admin’s privilege. However, we believe such false positives are acceptable since such

alerts are helpful to encourage developers to specify and reassure types of uploaded files

(even for the administrator).

4.3.2 Identifying New Vulnerable PHP Applications

We have employed UChecker to detect new vulnerable PHP applications by scanning

WordPress plugins. WordPress features a large repository of PHP-based, open-source

plugins that are contributed from a variety of sources. We have crawled and tested 9,160

WordPress plugins in a reverse chronological order (starting from 4/22/2018) based on

their last updated time. We have detected 3 vulnerable plugins including “File Provider

1.2.3”, “WooCommerce Custom Profile Picture 1.0”, and “WP Demo Buddy 1.0.2”. To the

best of our knowledge, these 3 vulnerable plugins have not been previously reported. The

detection measures for these 3 plugins are presented in the bottom 3 rows in Table 6.3.

38

WooCommerce is a WordPress eCommerce plugin, which by itself supports third-party

plugins to extend its functionality. WooCommerce Custom Profile Picture 1.0 [?]

is one of such plugins to enable users to upload pictures to their WooCommerce profiles.

As indicated by its design objective, WooCommerce Custom Profile Picture should

only accept files that are images such as .jpg, .gif, and .png. The locality analysis of

UChecker identifies that it is only necessary to perform symbolic execution for the function

“wc cus upload picture()”. It further successfully identified these vulnerability and pre-

cisely located it in the source code, which is presented in Listing 4.4. This plugin directly

uses the original filename (i.e., $profilepicture[‘name’]) as the name of the destination file;

and then it copies the uploaded file (i.e., $profilepicture[‘tmp name’]) to the destination

file. Therefore, any registered user can submit a PHP script through this uploading inter-

face and execute it.

1 <?php

2 if($_FILES['profile_pic ']){

3 $picture_id = wc_cus_upload_picture($_FILES['profile_pic ']);

4 }

5 function wc_cus_upload_picture($foto) {

6 $profilepicture = $foto;

7 $wordpress_upload_dir = wp_upload_dir ();

8 $new_file_path = $wordpress_upload_dir['path'] . '/' .

9 $profilepicture['name'];

10 //...

11 if(move_uploaded_file($profilepicture['tmp_name '],

12 $new_file_path)) {

13 //...

14 }

15 }

16 ?>

Listing 4.4: Vulnerable Code of WooCommerce 1.0 Custom Profile Picture (Reprinted
from [22])

File Provider 1.2.3 [18] is a free WordPress plugin used for website users to upload,

search, and share files. Uploaded files are stored in a local folder and the administra-

39

tor has the option to enable end users to access files in this folder. The locality analysis

of UChecker effectively identifies the function upload file() for symbolic execution,

which accounts for a small percentage (i.e., 2.65%) of all code for File Provider 1.2.3

UChecker has successfully detected this vulnerability and located it in source code as pre-

sented in Listing 4.5. Specifically, $nome final, which is actually the original filename

“$nome final=$ FILES[‘userFile’][‘name’]”, is used as the destination filename without

sanity check. Since this plugin does not validate the type of an uploaded file, a user can

upload a PHP script and then trigger its execution by accessing it.

1 <?php

2 function upload_file (){

3 $folderId = sanitize_text_field($_POST['folderId ']);

4 $folderPath = get_file_path($folderId); // User declared ...

method: get the upload path

5 $nome_final = $_FILES['userFile ']['name'];

6 if (! move_uploaded_file($_FILES['userFile ']['tmp_name '],

7 $folderPath . '/' . $nome_final)) {

8 echo '<div class="error ">...</div >';

9 }

10 }

Listing 4.5: Vulnerable Code of File Provider 1.2.3 (Reprinted from [22])

WP Demo Buddy 1.0.2 [1] is used to create demo instances, whose relevant source code

is displayed in Listing 4.6. Although it rejects any uploaded file whose extension is not

“zip”, it deliberately adds “.php” priori to writing this “.zip” file into server. Therefore, an

attacker can simply upload a PHP script with “.zip” extension (e.g.,, “exploit.zip”), which

will be eventually written to the server as “exploit.zip.php”.

1 <?php

2 function file_Upload($type)

3 {

4 global $wpdb;

5 $upload_dir = get_option('wp_demo_buddy_upload_dir ');

6 $ext = pathinfo($_FILES[$type]['name'], PATHINFO_EXTENSION);

40

7 if ($ext !== 'zip') return;

8 $info = pathinfo($_FILES[$type]['name']);

9 $newname = time() . rand() . '_' . $info['basename '] . '.php';

10 $target = $upload_dir . $newname;

11 move_uploaded_file($_FILES[$type]['tmp_name '], $target);

12 $ret = array($newname , $info['basename ']);

13 return $ret;

14 }

Listing 4.6: Vulnerable Code of WP Demo Buddy 1.0.2 (Reprinted from [22])

4.3.3 Comparison With Other Detection Solutions

We have experimented with two publicly available PHP vulnerability scanners including

RIPS [16, 14] and WAP [28], where both of them offer options to detect unrestricted file

uploading vulnerabilities. Specifically, RIPS detects sensitive sinks as potential vulnerable

functions if they are tainted by untrusted inputs. While taint analysis concerns the source

of the uploaded file, it does not model the name or the extension of this file, thereby being

likely to introduce false positives. WAP integrates taint analysis and machine learning for

detection without particularly modeling the uploaded file. By scanning 28 vulnerability-

free samples, 13 known vulnerable scripts, and 3 newly detected vulnerable plugins, RIPS

detected 15 out of 16 vulnerable samples (missing “the WooCommerce Custom Profile”)

with a high false positive rate of 27/28. WAP led to a detection rate of 4/16 with a false pos-

itive rate of 1/28. We acknowledge that UChecker currently only focuses on unrestricted

file uploading vulnerability while RIPS and WAP offer options to cover more types. Nev-

ertheless, these systems can complement each other in practical usage.

4.4 Discussion

The current implementation of UChecker has a few limitations. First, UChecker now fo-

cuses on vulnerabilities that allow the uploading of PHP files (i.e., those with “.php” and

41

“.php5”). However, variant vulnerabilities may allow files with other potential harmful ex-

tensions such as “.asa” and “.swf”. UChecker can easily cover these variants by verifying

more extensions. Second, as demonstrated in Section 4.3.1, false positives are mainly at-

tributed to the fact that UChecker does not model WordPress’s built-in function namely

add action(‘‘admin menu’’, func name). However, this does not represent a design

flaw. In fact, modeling a platform-dependent function is constrained by the awareness of

this function. Nevertheless, this indeed might be a practical challenge if the variety and dy-

namics of built-in functions are high. Third, UChecker’s interpreter does not cover all lan-

guage features of PHP. For example, UChecker does not precisely model loops, which may

lead to false negatives and false positives. Nevertheless, performing effective symbolic ex-

ecution for loops is an intrinsic challenge of static program analysis, which is not a specific

flaw of our design. In addition, PHP is a dynamic language. Although UChecker’s trans-

lation rules partially address challenges introduced by PHP’s dynamic types, it does not

tackle executable content that is generated by a PHP script at runtime. As a consequence,

scripts analyzed by UChecker might be incomplete, leading to detection inaccuracy. A

potential solution is to integrate dynamic analysis to access all executables produced at

runtime. Finally, UChecker does not model PHP regular expression matching operations

considering their high complexity. A potential solution is to leverage Z3’s built-in regular-

expression-enabled solver. Unfortunately, such solver may not sufficiently cover all cases

that can be expressed by PHP regular expressions. Another potential solution is to inte-

grate dynamic analysis into the interpretation process, assigning concrete values to certain

symbols.

4.5 Summary

We have built UChecker to automatically detect PHP-based web programs with unrestricted

file upload vulnerabilities. UChecker interprets abstract syntax trees of PHP source code

42

for symbolic execution, whose performance is improved by a novel vulnerability-oriented

locality analysis algorithm. We model vulnerabilities using constraints and verify them

using an SMT solver. Experiments have demonstrated that UChecker detected 3 vulnerable

web applications that have not been publicly reported.

43

Chapter 5: Lightweight Detection of

PHP-Based Unrestricted File Upload

Vulnerabilities Via Static-Fuzzing

Co-Analysis – UFuzzer

5.1 Motivation

In chapter 4, we have demonstrated the promising detection performance of UChecker, but

its applicability heavily depends on the PHP-to-solver constraint translation. Such transla-

tion is guided by manually-engineered rules, which faces significant practical challenges.

On the one hand, the variety, complexity, and flexibility of PHP APIs are overwhelmingly

larger than those of solver APIs. On the other hand, PHP is a dynamic typing language

whereas solver languages are usually static. One salient example is that the regex solver

is incomplete [27], which limits UChecker’s capabilities to model and solve sophisticated

PHP-based regex operations.

In this work, we proposed a novel, fully-automated vulnerability detection system,

namely UFuzzer, with following design objectives:

44

• Effective and Efficient: UFuzzer should achieve high detection accuracies with low

performance overhead.

• Minimal Dependency: UFuzzer can be sufficiently supported by a local, native PHP

runtime environment.

• Operating-Free: UFuzzer does not need an operating web service to perform detec-

tion.

• Traceable: UFuzzer can precisely identify statements that introduce such vulnerabil-

ities at the source-code level.

UFuzzer with these design objectives, once built, can systematically address the chal-

lenges faced by existing detection systems. Particularly, it avoids the semantic gaps be-

tween PHP and solver languages that are inherent to UChecker. It also eliminates FUSE’s

dependency on operating web services.

We build UFuzzer by integrating static program analysis and fuzzing. Specifically,

UFuzzer leverages static program analysis to identify those statements that are relevant

to the unrestricted file upload vulnerability. Then it refactors these identified statements

to make them independent to operating web services. UFuzzer next generates executable

code templates from these selected, refactored statements. It finally “fuzzes” each template

to perform detection. Our work makes the following contributions.

• We have designed a novel method to detect server-side scripts with unrestricted file

upload vulnerabilities through static-fuzzing co-analysis.

• We have built a system, namely UFuzzer1, to implement this method for PHP-based

server-side web programs.

• We have evaluated UFuzzer using real-world, ground-truth-available data. The eval-

uation results have demonstrated UFuzzer outperforms existing methods in either
1We plan to release the code of UFuzzer once the paper is accepted by this conference.

45

detection accuracies, or system performance, or both.

• We have employed UFuzzer to detect 31 new vulnerable PHP applications by scan-

ning a large corpus of real-world server-side PHP applications.

Listing 5.1 shows a code snippet that introduces the unrestricted file upload vulnera-

bility, and we will use it to illustrate our system. In this snippet, the server receives a file

from a remote client through the $ FILES superglobal variable, which is actually a two-

dimension array (i.e., $ FILES[i][j]). The first index refers to the label of the uploaded file

(i.e., $ FILES[‘newfile’]). Accessing $ FILES using the first index returns a pre-defined

one-dimensional array, which are indexed by “name”, “type”, “tmp name”, “error”, and

“size”. Figure 5.2 presents the heap graph for the vulnerable code snippet in Listing 5.1

towards the end of this program.

1 <?php

2 $dir = "../wp-content/plugins/upload/";

3 if(isset($_POST['action '])){

4 $localDir = $dir . time();

5 $fName = preg_replace("/\s/", "",

6 $_FILES['newfile ']['name']);

7 if(is_writable(localDir)){

8 $fName = $localDir . "_" . $fName;

9 $tmpFile = $_FILES['newfile ']['tmp_name '];

10 move_uploaded_file($tmpFile , $fName);

11

12 }

13 }

14 //...

15 ?>

Listing 5.1: A code snippet for unrestricted file upload vulnerability (Reprinted from [23])

The remaining of this chapter is organized as follows. We presents the system design

in Section 5.2 . Section 5.3.1 illustrates evaluation results and Section 5.3.2 presents the

detection of new vulnerable programs. Section 5.4 elaborates the limitation and potential

46

move_upload_file

src dstcur

API

Step 1

Step 2

Step 3 Step 4

⁃ Step 3: Taint analysis
⁃ Step 4: Refactor the graph with symbol values
⁃ Step 5: Derive the expression for the reachability constraint

(say, R) and its depending symbolic values (say, r1, r2, …, rN)
⁃ Step 6: Derive the expression for the name of the stored file

(say, D) and its depending symbolic values (say, d1, d2, ….dM)

Server-Side PHP
Applications

is_vulnerable(r1,.., rN, d1, …, dM){
 if(R && endsWith(D, “.php”))
 return true;
 return false;
}

Step 1: AST-based
Symbolic

Interpretation
Heap Graphs Step 2: Identify Paths/Envs with

File Uploading APIs

is R tainted by
$_FILES[*][‘name’]

is_vulnerable(d1,…dM){
 if(endsWith(D, “.php”))
 return true;
 return false;
}

Yes No

Figure 5.1: The architectural overview of UFuzzer(Reprinted from [23])

solutions of the current design. Section 5.5 concludes.

5.2 System Design

Figure 5.1 presents the architectural overview of UFuzzer. UFuzzer first scans each pro-

gram of a PHP server-side web application and identifies whether it contains any file up-

loading API (i.e., move uploaded file() and file put content()). If so, UFuzzer will

leverage the inter-procedural, context-aware symbolic interpreter in [22] to generate a heap

graph for this program towards each identified file uploading API or the end of the program

(i.e., Step 1 in Figure 5.1). Next, for each environment in a heap graph, we will preserve

it if its API 6= null (i.e., an execution path that contains a file uploading API), which is

illustrated as Step 2 in Figure 5.1.

For each preserved environment, UFuzzer will first evaluate whether the source file of

a file uploading API is derived from an untrustworthy source via taint analysis. It will next

refactor the graph with symbolic values, which are used to model superglobal variables,

initialized variables, and certain built-in APIs. UFuzzer will then traverse the heap graph

to yield executable expressions that characterize the exploit conditions, including i) the

47

reachability constraint and ii) the name of the file to be permanently stored. These activities

are illustrated as Step 3, 4, 5, and 6 in Figure 5.1.

UFuzzer will next generate executable code templates for fuzzing. Towards this end,

UFuzzer will evaluate whether the reachability constraint is tainted by the name of the

uploaded file (i.e., $ FILES[*][‘name’]) to reduce the space of variables for fuzzing. Fi-

nally, UFuzzer will execute each template in a local PHP environment after binding its free

variables with mutated values.

(array_access, 14) (array_access, 22)

("name", string, 13) ("tmp_name", string, 21)

(preg_replace(), string, 15)

("", string, 9)("/\s/", string, 8)

("../wp-content...", string, 1)

(time(), string, 6)

(concat, string, 7)

(concat, string, 20)

(move_upload_file(), null, 23)

src

dst

array idxarrayidx

replacement

pattern subject

right

right
left

(is_writeable(), Boolean, 16) (isset(), Boolean, 5)

(array_access, 12)

Env1 for Path1 Env2 for Path2

$dir

$localDir

$fName

$tmpFile

$dir

$localDir

Env3 for Path3

API cur

(!, Boolean, 24)

$dir

cur

(!, Boolean, 26)

Heap Graph

(concat, string, 19)

("_", string, 18)

left right

left

(AND, Boolean, 17)

(AND, Boolean, 25)

("newfile", string, 10)

idx

($_FILES, array, 11)

array

cur

(concate, string, 7)

("../wp-content...", string, 1)To the node of

To the node of

(array_access, 4)

("action", string, 2)

idx

($_POST, array, 3)

array

Figure 5.2: The heap graph for the sample code in Listing 5.1 (Reprinted from [23])

5.2.1 Taint Analysis

Each edge in a heap graph represents an immediate data dependency between two objects

in this graph. Therefore, all edges collectively characterize global data flows among all

objects along an execution path. Taint analysis can therefore be performed using heap

graphs: given two objects (say α and β) in a heap graph (say G), α is tainted by β (i.e.,

there exists an explicit data flow from β to α) if and only if β is reachable from α in G.

48

(AND, Boolean, 17)

(is_wrieable, Boolean, 16)

(sym_isset_POST_action, Boolean, 30))

(concate, string, 7)

(time(), string, 6)("../wp-content...", string, 1)

Left Right

Figure 5.3: The sub-tree for the reachability constraint derived from Figure 5.2 (Reprinted
from [23])

(concat, string, 20)

(preg_replace(), string, 15)(concat, string, 19)

(concat, string, 7) ("_", string, 18)

(".../wp-content...", string, 1)

(time, string, 6)

Left Right

Left Right

Left Right

("/\s/", string, 8) ("", string, 9)

pattern replacement

(concat, string, 29)

subject

(sym_FILES_name, stirng, 27) (sym_FILES_ext, stirng, 27)

Left Right

Figure 5.4: The sub-tree for the filename derived from Figure 5.2 (Reprinted from [23])

The “src” edge originated from a move uploaded file() node points to the source

of the file to be permanently saved. Such file is untrustworthy if it is from external inputs.

Currently, external inputs are mainly modeled as global variables in UFuzzer. Therefore,

our objective is to verify if the move uploaded file() node is tainted by a node of a

global variable through its “src” edge. This could be effectively fulfilled by UFuzzer. For

example, the node of the FILES global variable (i.e., the node ($ FILES, array, 11)) is

reachable from the move uploaded file() node (i.e., node 19) in Figure 5.2 through its

“src” edge, indicating that the source file of the move uploaded file() API is tainted by

external inputs.

49

(array_access)

(array_access)

($_FILES) (“newfile”)

(“name”)

$_FILES[“newfile”][“name”]

refactoring

(array_access) (“name”)

($_FILES) (“newfile”)

sym_FILES_name.sym_FILES_ext

(sym_FILES_name)
(sym_FILES_ext)

(concat)

array idx

array idx array idx

Figure 5.5: An example of refactoring an array access node associated with the
$ FILES superglobal variable. The sub-tree rooted in the top array access denotes
$ FILES[“newfile”][“name”]. This array access node will be replaced by a node that con-
catenates two symbolic values of the filename and the extension, respectively. (Reprinted
from [23])

5.2.2 Graph Refactoring With Symbolic Values

We fuzz three data sources including i) uninitialized variables, ii) superglobal variables,

and iii) certain built-in APIs. UFuzzer will refactor heap graphs by replacing their corre-

sponding nodes with nodes of symbolic values.

Unintialized Variables: Our symbolic interpreter performs vulnerability-oriented locality

analysis [22] to identify a sub-AST for symbolic interpretation, aiming at mitigating the

path explosion challenge. Therefore, it is possible to encounter uninitialized variables in

the sub-AST. For an uninitialized variable, we first create a node of a symbolic value and

next establish an association between this variable and this node.

Superglobal Variables: Superglobal variables are used by external users to offer informa-

tion to a web service. Therefore, we create a node of symbolic value when interpreting a

superglobal variable, whose type is considered as “string”.

It is worth noting that UFuzzer handles $ FILES as a special case since its structure is

50

refactoring

(“temp.txt”)

(fopen)

(“r”)

(fread)

(10)

(sym_fread)

(sym_fopen)
(10)

(“temp.txt”) (“r”)

handle len

name mode

Figure 5.6: An example of refactoring a fread node with a node of symbolic value (i.e.,
sym fread) (Reprinted from [23])

known a priori. Specifically, $ FILES is a pre-structured array that are indexed by 5 keys

including “name”, “type”, “tmp name”, “error”, and “size”, which represent the original

file name, the type information, the temporal filename, the error information, and the size

of the file. We therefore traverse a heap graph and identify all array access nodes where

each such node satisfies two conditions: i) its “array” edge points to another array access

whose “array” edge connects a node of the $ FILES global variable; ii) its “index” edge

points to one of keys (with the string type) including “name”, “type”, “tmp name”, “error”,

and “size”. The first condition indicates this is the access to the 2nd dimension of $ FILES

superglobal variable and the second condition illustrates the specific key used for accessing

second dimension of $ FILES. We will replace this array access using a symbolic-value-

based node in the heap graph. If this symbolic-value-based node corresponds to the “size”

or “error” index, its type will be “int”; otherwise, it will be “string”.

Figure 5.5 presents an example, where the type and label for each node is omitted

for briefness. Specifically, the node (array access) satisfies both conditions, indicating

that this node and its underlying sub-tree together represents $ FILES[“newfile”][“name”].

UFuzzer therefore replaces this node using the concatenation of two symbolic nodes, namely

sym FILES name and sym FILES ext. Here, sym FILES name represents the file

name and sym FILES ext refers to the extension.

51

(isset)

(array_access)

($_POST) (“action”)

$_POST[“action”]

refactoring

sym_isset_POST_action

(sym_isset_POST_action)

(array_access)

($_POST) (“action”)

array idx

Figure 5.7: An example of refactoring a isset node with a node of symbolic value (i.e.,
sym isset POST action). (Reprinted from [23])

Operation and Validation APIs: Some APIs in the server-side web program can only

function in a properly-configured run-time environment, making automatically analysis

extremely challenging. These APIs are often used for operations of networking, databases,

and file accessing, which can only function in a properly-configured run-time environment.

We name such APIs as operation APIs. UFuzzer will traverse a heap graph and identify

every node if it corresponds to any API that is used for networking, databases, and file op-

erations. For an identified node, UFuzzer replaces this node using a node of the symbolic

value, whose type will be simultaneously derived based on the API. Figure 5.6 shows an

example, where the node of fopen and that of fread have been replaced using two sym-

bolic nodes including sym fopen and sym fread, respectively. We respectively assign the

pointer type and the string type to these two nodes based on the definition of these APIs.

We also symbolize PHP validation functions (e.g., those with “is ” as prefixes) to im-

prove the efficiency of the fuzzing. Examples of such functions include isset(),

is writable(), and is string(). For example, these functions are widely used by PHP

programs, which only outputs TRUE or FALSE but have infinite input spaces. We therefore

symbolize these functions regardless of their arguments. For example, any node of isset()

in the heap graph will be replaced using a symbol node with boolean type. Figure 5.7

presents an example. The node of isset(), which is corresponding to the expression of

52

(!, boolean, 2)

(sym_a, ?, 3)

type inference

(!, boolean, 2)

(sym_a, boolean, 3)

Figure 5.8: An example of type inference. Inferring the type of the symbolic node using its
immediate operator node. (Reprinted from [23])

isset($ POST[‘action’]), will be replaced by a symbol node of sym isset POST action.

Lightweight Type Inference: The type information is assigned when a symbolic node

for either a superglobal variable or a selected APIs is created. However, it is uncertain

for those nodes created for uninitialized variables. To address this challenge, we perform

lightweight type inference. Specifically, we identify the operator node or an API node that

immediately depends on this node (i.e., has an edge to this node). We next use the expected

operand/argument types to infer the type of this node. Figure 5.8 presents an example,

where we assign “boolean” to a symbolic node of an uninitialized variable since it serves

as the operand for the “negate” operator.

5.2.3 Deriving Executable Expressions for The Reachability Constraint

and The File Name

For each preserved environment after heap graph refactoring, UFuzzer will generate ex-

pressions of constraints for both the reachability and the filename, and next integrate them

into a function with fuzzing variables as function arguments.

The cur variable in an environment is bounded to the node of that represents the reach-

ability constraint and we name this node as vreach. The API variable in an environment

is bounded to the node of a file uploading API. The “dst” edge from this API node points

53

to the node that represents the name of the file to be permanently saved and we name this

node as vfilename. For each preserved environment, we can traverse the heap graph from

vreach and vfilename to generate sub-trees of all relevant nodes. Figures 5.3 and 5.4 present

sub-trees for vreach and vfilename derived from Figure 5.2, respectively.

The core function is to generate executable expressions by traversing these two sub-

trees. As illustrated in Algorithm 1, we have designed an algorithm to evaluate each sub-

tree (starting from its root node) and leverage an existing parser (i.e., PHP-Parser [35]) to

build an AST, which will be finally converted into PHP code through the pretty printing

function of this parser.

Algorithm 1 Generating AST from A Sub-Tree in Heap Graph (Reprinted from [23])
1: function eval(v)
2: switch v.getType() do
3: case scalar
4: val← v.getV alue()
5: type← v.getType()
6: return new Scalar (val, type)

7: case symbol
8: val← v.getV alue()
9: type← v.getType()

10: return new var (val, type)

11: ...
12: case binaryOP
13: eleft← eval(v.getLeft())
14: eright← eval(v.getRight())
15: op← v.getOperator()
16: return new BinaryOp(op, eleft, eright)

17: case func
18: name← v.getName()
19: < arg1, . . . , argn >← v.getArgs()
20: arg list← [] . [] : empty list
21: for i = 1...n do

arg list.add(eval(args[i]))
22: end for
23: return new FuncCall (name, arg list)

24: ...
25: end function

54

It is worth noting that our algorithm needs to recursively interpret all types of nodes

in a heap graph. But for briefness, Algorithm 1 only presents the interpretation of nodes

for constants, symbolic values, binary operators, and function calls. The interpretation will

return an AST built through PHP-parser’s APIs (i.e., ”new Object (...)”).

scalar: If eval() sees a scalar node it will return a scalar AST node, i.e., ”new Scalar (val, type),

where val and type represent its value and type respectively.

symbol: When eval() sees a symbol node sym, it returns a variable AST node, i.e.,

”(new var (val, type))”, where val and type represent the value and the type of this

symbolic node, respectively.

binaryOP : Upon visiting a node for a binary operator, eval() will first recursively interpret

its left and right child nodes and derive two AST nodes, denoted as eleft and eright, respec-

tively. Each of these two AST nodes could be the root of another AST tree. Finally,eval()

will return an AST node, i.e., ”new BinaryOp(op, eleft, eright)”.

func: When processing a node for function all, eval() will first derive the name of the

function call and all nodes of its arguments. This algorithm will then retrieve the AST node

for each argument through recursive evaluation (i.e., eval(args[i])). Finally, it will return

a function call AST node, i.e., new FuncCall (name, arg list).

5.2.4 Generate Fuzzing Templates

By leveraging the expression generation algorithm in Algorithm 1, we can generate exe-

cutable code templates, namely fuzzing templates, as presented in Algorithm 2. Arguments

r1, . . . , rN represent all symbolic nodes in the sub-tree rooted in vreach (i.e., the sub-tree

for the reachability constraint); arguments d1, . . . , dM refer to all symbolic nodes in the

sub-tree rooted in vfilename. The prettyprint() function outputs a decompiled version of

the AST in a format that is a legal PHP program for execution in a standard PHP running

environment.

55

Algorithm 2 Fuzzing Template With Reachability (Reprinted from [23])
1: function IS VULNERABLE(r1, . . . , rN , d1, . . . , dM)
2: expreach← prettyprint(eval(vreach))
3: expfilename← prettyprint(eval(vfilename))
4: if expreach then
5: ext← get extension(expfilename)
6: if ext == “php′′ then
7: return TRUE
8: end if
9: end if

10: return FALSE
11: end function

Algorithm 3 Fuzzing Template Without Reachability (Reprinted from [23])
1: function IS VULNERABLE(d1, . . . , dM)
2: expfilename← prettyprint(eval(vfilename))
3: ext← get extension(expfilename)
4: if ext == “php′′ then
5: return TRUE
6: end if
7: return FALSE
8: end function

It will drastically increase fuzzing efficiency if we can reduce the number of variables

to be mutated. Towards this end, we develop following rules:

We assess whether the reachability constraint is tainted by $ FILES[*][‘name’], the

name of the uploaded file, where “*” here refers to an arbitrary string. If not, it indicates that

the reachability constraint does not verify the name of the uploaded file, implying no saniti-

zation checks are enforced for the name of the uploaded file. Therefore, we only use fuzzing

to evaluate the name of the file to be saved, thereby using the fuzzing template generated

by Algorithm 3. if the reachability constraint is indeed tainted by $ FILES[*][‘name’], we

will perform fuzzing to jointly evaluate the reachability constraint and the name of the file

to be saved, thereby using the template generated by Algorithm 2.

Listing 5.2 and Listing 5.3 present two fuzzing templates for Listing 5.1, which are

generated by Algorithm 2 and Algorithm 3, respectively. In these two fuzzing templates,

$sym file name, $sym file ext, $sym isset POST action, and $sym is writable are vari-

56

ables to be mutated, where the first two have the type of strings and the last two are boolean.

The pathinfo function used in fuzzing templates is a PHP built-in API for returning the ex-

tension of a file name with parameter PATHINFO EXTENSION. The “in array($ext, array(‘php′)”

is to check whether the extension is ‘php’, which can be easily extended to include addi-

tional sensitive extensions (e.g., ‘jsp’).

1 <?php

2 function is_vulnerable($sym_file_name ,

3 $sym_file_ext ,

4 $sym_isset_POST_action ,

5 $sym_is_writable)

6 {

7 $exp_reach = $sym_isset_POST_action and

8 $sym_is_writable;

9 $exp_fileName = "../wp-content/plugins/upload/" .

10 time() . "_" .

11 preg_replace("/\s/", "",

12 $sym_file_name .

13 $sym_file_ext);

14 if($exp_reach){

15 $ext = pathinfo($exp_fileName ,

16 PATHINFO_EXTENSION);

17 if(in_array($ext , array('php'))){

18 return TRUE;

19 }

20 }

21 return FALSE;

22 }

23 ?>

Listing 5.2: The Fuzzing Template With Reachability Evaluated for Listing 5.1 (Reprinted
from [23])

1 <?php

2 function is_vulnerable($sym_file_name ,

3 $sym_file_ext)

4 {

5 $exp_fileName = "../wp-content/plugins/upload/" .

6 time() . "_" .

57

7 preg_replace("/\s/", "",

8 $sym_file_name .

9 $sym_file_ext);

10

11 $ext = pathinfo($exp_fileName ,PATHINFO_EXTENSION);

12 if(in_array($ext , array('php'))){

13 return TRUE;

14 }

15 return FALSE;

16 }

17 ?>

Listing 5.3: The Fuzzing Template Without Reachability Evaluated for Listing 5.1
(Reprinted from [23])

Since the reachability constraint of Listing 5.1 is not tainted by the name of the up-

loaded file (i.e., $ FILES[*][‘name’]), the fuzzing template in Listing 5.3 will be used for

fuzzing. As shown by this example, it drastically reduces the fuzzing space by eliminat-

ing two free variables to use the fuzzing template in in Listing 5.3 compared to that in

Listing 5.2 without undermining the detection accuracy.

5.2.5 Executing a Fuzzing Template

We then execute each fuzzing template to assess whether its corresponding PHP script is

vulnerable. It starts with assigning values to arguments in the fuzzing template (i.e., in the

is vulnerable() function), following rules below:

• $sym file ext: if this argument refers to the extension of the name for the origi-

nal uploaded file, we build a set of sensitive extensions such as “.php”, “.gif.php”,

“.mp3.php”, “.zip.php”, “pdf.php”, and “.jpg.php”.

• $sym file name or an argument with the string type: if this argument represents

the extension-removed name of the uploaded file or its type is string, we leverage

a PHP Fuzzer [34] as a drop-in fuzzer to mutate string values for $sym file name.

We use different mutators in PHP Fuzzer [34] such as EraseBytes, InsertByte,

58

ChangeByte, ChangeBit, and ChangeASCIIInt. For each mutator, we iterate for 50

times with a length between 5 and 70.

• An argument with the boolean type (e.g., $sym is *): We enumerate both True and

False values to this argument if it is a boolean type.

• An argument with the number type: We enumerate values in [−20, 20] for an argu-

ment if it has the number type (e.g., integer, float, and double).

We execute each fuzzing template by iterating over arguments’ different values. If

any execution returns True, we will cease the iteration and report that the PHP script is

vulnerable. If no template returns True after all mutated values are exhausted, UFuzzer will

stop and report this web application as non-vulnerable. We admit that the selection of these

fuzzing parameters in UFuzzer, similar to that in other fuzzers, are empirical rather than

provable. Nevertheless, they are highly configurable to support practical deployment.

5.2.6 Executing a Fuzzing Template

We then execute each fuzzing template to assess whether its corresponding PHP script is

vulnerable. It starts with assigning values to arguments in the fuzzing template (i.e., in the

is vulnerable() function), following rules below:

• $sym file ext: if this argument refers to the extension of the name for the origi-

nal uploaded file, we build a set of sensitive extensions such as “.php”, “.gif.php”,

“.mp3.php”, “.zip.php”, “pdf.php”, and “.jpg.php”.

• $sym file name or an argument with the string type: if this argument represents

the extension-removed name of the uploaded file or its type is string, we leverage

a PHP Fuzzer [34] as a drop-in fuzzer to mutate string values for $sym file name.

We use different mutators in PHP Fuzzer [34] such as EraseBytes, InsertByte,

59

Sy
st

em
L

oC
s

Fu
zz

in
g

Te
m

pl
at

es
D

et
ec

te
d

by
U

Fu
zz

er
D

et
ec

te
d

U
C

he
ck

er
D

et
ec

te
d

by
R

IP
S

D
et

ec
te

d
by

W
A

P
D

et
ec

te
d

by
FU

SE

K
no

w
n

V
ul

ne
ra

bl
e

A
db

lo
ck

B
lo

ck
er

0.
0.

1
36

9
2

4
(0

.2
6s

)
4

(0
.5

0s
)

4
(0

.0
1s

)
6

(0
.5

8s
)

6
(1

.5
3h

)
A

ud
io

R
ec

or
d

1.
0

34
2

1
4

(0
.2

9s
)

4
(0

.5
3s

)
4

(0
.0

1s
)

6
(0

.3
9s

)
6

(1
.2

8h
)

B
ag

ga
ge

fr
ei

gh
tS

hi
pp

in
g

0.
1.

0
55

81
1

4
(0

.7
8s

)
4

(1
.1

2s
)

4
(0

.1
0s

)
4

(1
.0

0s
)

4
(1

.3
8h

)
E

st
at

ik
2.

2.
5

98
23

3
4

(0
.8

9s
)

4
(1

.7
2s

)
4

(0
.3

1s
)

6
(1

.0
0s

)
6

(2
.1

7h
)

Fi
le

Pr
ov

id
er

1.
2.

3
98

3
1

4
(0

.2
4s

)
4

(0
.4

0s
)

4
(0

.0
2s

)
6

(0
.6

5s
)

6
(1

.8
5h

)
Fi

na
le

-W
oo

C
om

m
er

ce
...

Ti
m

er
2.

8.
0

28
64

3
6

4
(4

.9
1s

)
4

(5
.0

1s
)

4
(0

.4
2s

)
6

(1
.0

0s
)

4
(0

.3
3h

)
N

-M
ed

ia
W

eb
si

te
...

U
pl

oa
de

r1
.3

.4
18

57
14

4
(0

.2
6s

)
4

(1
.2

3s
)

4
(0

.0
6s

)
6

(0
.6

24
s)

4
(1

.3
8h

)
Im

ag
e

G
al

le
ry

w
ith

Sl
id

es
ho

w
1.

5.
2

56
9

2
4

(0
.3

4s
)

4
(0

.3
5s

)
4

(0
.0

4s
)

4
(0

.9
4s

)
6

(4
.3

5h
)

O
pe

n
Fl

as
h

C
ha

rt
C

or
e

0.
4

23
37

2
4

(0
.3

5s
)

4
(0

.7
0s

)
4

(0
.1

0s
)

4
(0

.9
4s

)
6

(1
.8

0h
)

PD
W

M
ed

ia
Fi

le
B

ro
w

se
r1

.1
20

66
4

1
4

(3
.5

9s
)

6
(4

.0
1s

)
4

(3
.6

8s
)

4
(1

.0
0s

)
6

(3
.0

3h
)

Ip
B

lo
ck

er
L

ite
10

.2
55

74
1

4
(1

.4
6s

)
4

(0
.9

9s
)

4
(0

.0
5s

)
6

(0
.7

3s
)

6
(1

.5
3h

)
U

pl
oa

di
fy

1.
0.

0
28

5
1

4
(0

.2
0s

)
4

(0
.3

1s
)

4
(0

.0
1s

)
4

(0
.5

3s
)

6
(1

.4
3h

)
W

oo
C

om
m

er
ce

C
us

to
m

Pr
ofi

le
Pi

ct
ur

e
1.

0
13

8
16

4
(0

.1
5s

)
4

(0
.2

8s
)

6
(0

.0
1s

)
6

(0
.4

4s
)

6
(1

.5
5h

)
W

oo
C

om
m

er
ce

C
at

al
og

E
nq

ui
ry

3.
0.

1
35

60
8

4
(0

.6
7s

)
4

(1
.2

1s
)

4
(0

.0
9s

)
6

(1
.0

0s
)

4
(0

.3
3h

)
W

oo
C

om
m

er
ce

C
he

ck
ou

tM
an

ag
er

4.
2.

5
14

94
2

8
4

(1
.7

0s
)

4
(0

.9
6s

)
4

(0
.7

0s
)

6
(1

.0
0s

)
4

(0
.3

3h
)

W
P

M
ar

ke
tp

la
ce

2.
4.

1
13

95
6

1
4

(2
.6

s)
4

(2
.6

0s
)

4
(0

.3
2s

)
6

(1
.0

0s
)

4
(0

.3
3h

)
w

p-
Po

w
er

pl
ay

ga
lle

ry
3.

3
27

52
41

6
4

(1
.3

3s
)

4
(2

.7
8s

)
4

(0
.0

7s
)

6
(0

.8
6s

)
4

(2
.2

1h
)

W
P

Se
o

Sp
y

3.
1

34
31

2
4

(0
.5

0s
)

4
(0

.5
7s

)
4

(0
.0

7s
)

4
(1

.0
0s

)
4

(0
.8

1h
)

W
P

D
em

o
B

ud
dy

1.
0.

2
22

08
8

4
(0

.3
4s

)
4

(0
.2

8s
)

4
(0

.0
6s

)
6

(1
.0

0s
)

6
(2

.9
5h

)
A

va
ta

rU
pl

oa
de

r6
.x

-1
.2

49
5

1
4

(0
.2

2s
)

4
(5

2.
74

s)
4

(0
.0

1s
)

6
(0

.5
4s

)
N

/A
Fo

xy
pr

es
s

0.
4.

1.
1-

0.
4.

2.
1

13
35

8
64

4
(1

.7
9s

)
4

(2
.9

8s
)

4
(0

.3
0s

)
4

(2
.0

0s
)

N
/A

A
ss

et
M

an
ag

er
0.

2
37

84
1

4
(0

.2
2s

)
4

(0
.8

1s
)

4
(0

.0
4s

)
6

(0
.8

7s
)

N
/A

Si
m

pl
e

A
d

M
an

ag
er

2.
5.

94
19

37
4

4
(1

.2
4s

)
4

(5
.3

5s
)

4
(0

.3
3s

)
4

(1
.0

0s
)

N
/A

Sp
am

Ta
sk

1.
3.

6
34

34
2

4
(0

.6
1s

)
4

(0
.6

1s
)

4
(0

.1
5s

)
4

(1
.0

0s
)

N
/A

M
ai

lC
W

P
1.

10
0

43
19

1
1

4
(5

.0
1s

)
4

(5
.8

0s
)

4
(1

.2
6s

)
4

(2
.0

0s
)

N
/A

Jo
om

la
-B

ib
le

-s
tu

dy
9.

1.
1

87
62

6
16

4
(1

3.
70

s)
4

(1
3.

72
s)

4
(1

.3
1s

)
4

(1
.0

0s
)

N
/A

C
im

y
U

se
rE

xt
ra

Fi
el

ds
2.

3.
8

10
00

00
+

6
(N

/A
)

6
(N

/A
)

4
(0

.9
7s

)
6

(1
.0

0s
)

4
(5

.5
0h

)

N
on

-
V

ul
ne

ra
bl

e

Fu
lls

cr
ee

n
ba

ck
gr

ou
nd

sl
id

er
1.

1
83

24
2

6
(7

.0
9s

)
6

(0
.9

1s
)

4
(0

.0
1s

)
6

(0
.6

2s
)

6
(1

.8
0h

)
Ti

ny
PN

G
fo

rW
or

dP
re

ss
0.

2
25

6
8

6
(6

.1
7s

)
6

(0
.3

3s
)

6
(0

.0
1s

)
6

(0
.6

4s
)

6
(1

.8
0h

)
M

ob
ile

A
pp

W
id

ge
t1

.2
28

73
3

6
(9

.9
5s

)
6

(0
.9

1s
)

4
(0

.0
7s

)
6

(1
.0

0s
)

6
(1

.8
1h

)
B

ac
ku

pG
ua

rd
1.

1.
46

10
50

9
6

6
(1

4.
07

s)
6

(3
.0

1s
)

4
(7

.7
9s

)
6

(1
.0

0s
)

6
(4

.2
8h

)
W

oo
C

om
m

er
ce

C
at

al
og

E
nq

ui
ry

3.
1.

0
35

45
2

6
(6

.8
8s

)
6

(1
.0

9s
)

4
(0

.0
9s

)
6

(1
.0

0s
)

6
(1

.4
3h

)
Te

le
gr

am
-c

ha
t3

.0
.4

26
65

4
6

(5
.7

6s
)

6
(0

.6
7s

)
4

(0
.0

6s
)

6
(0

.8
8s

)
6

(1
.8

3h
)

Ju
st

a
si

m
pl

e
po

pu
p

2.
0.

1
94

8
4

6
(8

.3
6s

)
6

(0
.3

8s
)

4
(0

.0
2s

)
6

(0
.4

8s
)

6
(1

.6
1h

)
B

oo
st

er
fo

rW
oo

C
om

m
er

ce
2.

8.
2

47
68

9
40

6
(1

90
.8

1s
)

6
(2

5.
81

s)
4

(3
9.

46
s)

6
(1

4.
00

s)
6

(1
.4

1h
)

M
or

bi
ts

SM
S

1.
0

71
78

7
1

6
(1

75
.3

1s
)

6
(2

7.
00

s)
4

(1
1.

84
s)

6
(2

.0
0s

)
6

(1
.8

1h
)

E
ve

nt
er

0.
1.

0
37

7
2

6
(1

.7
0s

)
6

(2
.0

1s
)

4
(0

.0
2s

)
4

(0
.7

0s
)

6
(1

.6
8h

)
C

us
to

m
iz

e
R

an
do

m
A

va
ta

r1
.0

.0
12

54
2

6
(7

.7
3s

)
6

(0
.9

4s
)

4
(0

.0
2s

)
4

(0
.7

0s
)

6
(1

.7
3h

)
In

te
lli

W
id

ge
tC

us
to

m
Po

st
Ty

pe
s

1.
1.

1
90

3
2

6
(5

.7
9s

)
6

(0
.4

0s
)

4
(0

.0
2s

)
6

(0
.4

7s
)

6
(1

.6
1h

)
PH

P
E

ve
nt

C
al

en
da

r1
.5

10
73

0
1

6
(1

1.
95

s)
6

(1
.4

1s
)

4
(1

.3
4s

)
6

(1
.0

0s
)

N
/A

R
es

ul
ts

D
et

ec
tio

n
R

at
e

26
/2

7
25

/2
7

26
/2

7
10

/2
7

9/
27

Fa
ls

e
Po

si
tiv

e
R

at
e

0/
32

0/
32

12
/3

2
2/

32
0/

32

Ta
bl

e
5.

1:
E

va
lu

at
io

n
R

es
ul

ts
U

si
ng

G
ro

un
d-

Tr
ut

h-
A

va
ila

bl
e

D
at

a
(4

an
d

6
re

fe
r

to
vu

ln
er

ab
le

an
d

no
n-

vu
ln

er
ab

le
,

re
sp

ec
tiv

el
y)

.
U

F
uz

ze
r

de
te

ct
s

26
ou

to
f

27
kn

ow
n

vu
ln

er
ab

le
sc

ri
pt

s
w

ith
no

fa
ls

e
po

si
tiv

es
;

it
ou

tp
er

fo
rm

s
U

C
he

ck
er

,R
IP

S,
an

d
W

A
P

.(
R

ep
ri

nt
ed

fr
om

[2
3]

)

60

ChangeByte, ChangeBit, and ChangeASCIIInt. For each mutator, we iterate for 50

times with a length between 5 and 70.

• An argument with the boolean type (e.g., $sym is *): We enumerate both True and

False values to this argument if it is a boolean type.

• An argument with the number type: We enumerate values in [−20, 20] for an argu-

ment if it has the number type (e.g., integer, float, and double).

We execute each fuzzing template by iterating over arguments’ different values. If

any execution returns True, we will cease the iteration and report that the PHP script is

vulnerable. If no template returns True after all mutated values are exhausted, UFuzzer will

stop and report this web application as non-vulnerable. We admit that the selection of these

fuzzing parameters in UFuzzer, similar to that in other fuzzers, are empirical rather than

provable. Nevertheless, they are highly configurable to support practical deployment.

5.3 Evaluation

5.3.1 Ground-Truth-Available Evaluation

We have implemented UFuzzer with approximately 28K LoC, which reuses the AST-based

symbolic interpreter in [22] with minor improvements. We leveraged PHP-Parser [35] for

AST construction and pretty printing. UFuzzer is deployed on an Ubuntu 18.04 LTS 64-

bits operating system with AMD Fx-8350 CPU, 16 GB of memory, and PHP 7.4. As our

data contains a large set of real-world, open-source plugins collected from WordPress, we

install WordPress libraries in our running environment.

Data: We have collected totally 27 publicly-reported vulnerable PHP applications. This 27

samples consists of 13 known samples used in [22], 3 new vulnerable applications detected

by UChecker [22], and 11 more vulnerable samples we have recently collected.

61

We have identified totally 32 vulnerability-free server-side PHP applications that sup-

port file upload capabilities. It is worth noting that it is a labor-intensive process to col-

lect publicly-available, real-world samples and verify whether they are vulnerable. Such

challenge is mainly attributed to the diversity of server-side applications, their highly-

customized interfaces, and the high complexity.

Tools for Comparison: We have compared UFuzzer with UChecker [22], RIPS [16, 14],

WAP [28] and FUSE [25]. We have deployed them in the same running environment of

UFuzzer.

Evaluation Results: Table 6.3 presents the detection results and the running time for

UFuzzer, UChecker, RIPS, WAP, and FUSE. The second and third columns in Table 6.3

present the names and lines of code (LoC) for each sample, respectively. The fourth column

presents the number of fuzzing templates generated by UFuzzer. The remaining columns

demonstrate the detection result and the running time for each program, where 4 and 6

stand for “detected” and “undetected”, respectively. The last two rows of Table 6.3 sum-

marize the detection rates and the false positive rates.

UFuzzer is both effective and efficient on the ground-truth available dataset. It detects

26 vulnerable samples out of 27 without incurring any false positive. The running time is

mostly within one second for vulnerable cases and within one minute for non-vulnerable

ones. UFuzzer fails to detect Cimy User Extra Fields 2.3.8 since its underlying symbolic

interpreter crashes due to path explosion.

Compared with UChecker, UFuzzer accomplishes a comparable detection rate (i.e.,

26/27 of UFuzzer v.s. 25/27 of UChecker, with 0 false positive for both). Although

UFuzzer outperforms UChecker by detecting only one more vulnerable sample (i.e., PDW

Media File Browser 1.1), this single sample alone is significant to demonstrate how

UFuzzer addresses the intrinsic limitation faced by UChecker. Specifically, this vulnera-

ble application employs a regular expression operation as presented in Listing 5.4, which

is challenging to be effectively modeled and solved by satisfiability solvers (and hence

62

UChecker). In contrast, UFuzzer can easily execute such operation in a native PHP run-

time environment.

1 <php?

2 $valid_chars_regex = '.A-Z0 -9_ !@#$%ˆ&() +={}\[\]\ ' ,¬`-';
3 $file_name = preg_replace('/[ˆ'.$valid_chars_regex.']|\.+$/i', "", ...

basename($_FILES[$upload_name]['name']));

4 /*...*/

5 if (!@move_uploaded_file(

6 $_FILES[$upload_name]["tmp_name"],

7 $save_path . $file_name)) {

8 /*...*/}

9 ?>

Listing 5.4: UChecker fails to correctly model the regex operation in the PDW Media File
Browser plugin (Reprinted from [23])

Although both RIPS and WAP accomplish comparable efficiency with UFuzzer, they

have lower detection performances. Specifically, RIPS suffers from a high false positive

rate of 12/32. WAP demonstrates a low detection rate of 10/27.

FUSE has accomplished a lower detection rate of 9/27 and the same false positive

rate of 0/32. In addition, FUSE requires significantly longer time for detection, typically

around a few hours. It is also worthy noting that it has taken an excessive amount of manual

efforts to make each PHP application fully operable, which is unfortunately required by

FUSE. When an application fails to function, FUSE will miss the opportunity to perform

detection. Samples annotated with “N/A” in Table 6.3 represent such cases. Despite our

best efforts, these samples failed to operate in our evaluation environment, mainly because

of missed files or unknown configuration problems. Such evaluation results imply that

FUSE has limited applicability for large-scale vulnerability scanning.

63

N
o.

A
pp

lic
at

io
n

D
.b

y
U

Fu
zz

er
V

ul
nS

rc
Fi

le
:L

in
e

N
o.

D
.b

y
U

C
he

ck
er

V
er

ifi
ca

tio
n

M
et

ho
d

R
oo

tC
au

se
A

dm
R

eq
?

1
B

as
ic

-L
ar

av
el

-C
M

S
-P

H
P

Fr
am

ew
or

k
Fo

rW
eb

A
rt

is
an

s
4

up
lo

ad
er

.p
hp

:3
1

4
C

od
e

R
ev

ie
w

L
S

N
o

2
B

lo
gg

er
C

M
S

-E
as

ie
st

St
at

ic
B

lo
g

G
en

er
at

or
4

Im
ag

e.
ph

p:
77

6
C

od
e

R
ev

ie
w

SI
nS

N
o

3
L

ap
in

C
M

S
-S

lim
3

R
A

D
Sk

el
et

on
4

up
lo

ad
.p

hp
:3

6
6

C
od

e
R

ev
ie

w
SI

nS
N

o
4

L
ea

rn
in

gp
hp

-C
M

S
4

up
lo

ad
.p

hp
:4

1
4

C
od

e
R

ev
ie

w
L

S
N

o
5

M
in

i
C

M
S

-P
H

P
B

as
ed

M
in

iB
lo

g
4

za
m

ie
sc

-p
os

t.p
hp

:4
0

4
E

xp
lo

iti
ng

SI
nS

N
o

6
la

ra
ve

lC
M

S
-P

H
P

Fr
am

ew
or

k
Fo

rW
eb

A
rt

is
an

s
4

Pr
ofi

le
C

on
tr

ol
le

r.p
hp

:2
9

4
C

od
e

R
ev

ie
w

SI
nS

N
o

7
W

ik
iD

oc
s

-D
at

ab
as

el
es

s
M

ar
kd

ow
n

W
ik

iE
ng

in
e

4
su

bm
it.

ph
p:

26
4

6
C

od
e

R
ev

ie
w

SI
nS

N
o

8
B

uf
fa

lo
-W

eb
pa

ge
-C

M
S

4
ac

tio
nP

ro
du

ct
oC

tr
l.p

hp
:8

1
6

C
od

e
R

ev
ie

w
SI

nS
N

o
9

L
C

M
S

-C
ol

le
ge

W
eb

si
te

w
ith

C
M

S
4

st
ud

en
t

av
at

ar
.p

hp
:1

3
4

C
od

e
R

ev
ie

w
L

S
N

o
10

Pa
le

tte
-P

H
P

B
as

ed
Si

te
B

ui
ld

er
4

up
lo

ad
.p

hp
:2

7
6

C
od

e
R

ev
ie

w
L

S
N

o
11

Pr
og

re
ss

B
us

in
es

s
-C

M
S

fo
rC

om
pa

ny
Pr

ofi
le

W
eb

4
ad

di
ng

ne
w

s.
ph

p:
12

4
E

xp
lo

iti
ng

L
S

N
o

12
pu

bl
is

he
r.m

od
-F

la
tC

or
e

C
M

S
M

od
ul

e
4

up
lo

ad
.p

hp
:2

9
6

C
od

e
R

ev
ie

w
SI

nS
N

o
13

U
se

r-
M

an
ag

em
en

t-
PH

P-
M

Y
SQ

L
4

ed
it-

us
er

.p
hp

:3
2

4
E

xp
lo

iti
ng

SC
N

o
14

M
ic

ro
C

M
S1

-C
M

S
B

as
ed

O
n

M
od

el
-V

ie
w

-C
on

tr
ol

le
r

4
up

lo
ad

s.
ph

p:
31

6
C

od
e

R
ev

ie
w

L
S

N
o

15
B

lo
gS

to
p

-S
im

pl
e

C
on

te
nt

M
an

ag
em

en
tS

ys
te

m
4

ad
m

in
ed

it
po

st
.p

hp
:2

2
6

E
xp

lo
iti

ng
L

S
Y

es
16

C
M

S-
B

lo
gg

in
g-

Sy
st

em
-B

lo
g

M
ad

e
w

ith
PH

P
an

d
M

yS
Q

L
4

ad
d

po
st

.p
hp

:1
5

4
C

od
e

R
ev

ie
w

L
S

Y
es

17
C

m
sp

hp
-S

im
pl

e
PH

P
ba

se
d

C
M

S
Sy

st
em

4
ad

d
po

st
.p

hp
:2

1
4

C
od

e
R

ev
ie

w
L

S
Y

es
18

C
M

SP
or

tf
ol

io
-P

H
P

ba
se

d
Po

rt
fo

lio
Te

m
pl

at
e

4
fu

nc
.p

hp
:4

64
6

C
od

e
R

ev
ie

w
SI

nS
Y

es
19

C
M

SP
ro

je
ct

PH
P

4
ad

d
po

st
.p

hp
:1

6
4

C
od

e
R

ev
ie

w
L

S
Y

es
20

C
M

Ss
ite

-S
im

pl
e

C
M

S
Si

te
4

pr
ofi

le
.p

hp
:2

7
6

E
xp

lo
iti

ng
L

S
Y

es
21

C
m

sV
1

-C
M

S
B

as
ed

on
PH

P
4

ad
d

us
er

.p
hp

:2
1

4
C

od
e

R
ev

ie
w

L
S

Y
es

22
N

5
U

pl
oa

d
Fo

rm
1.

0
4

n5
up

lo
ad

fo
rm

.p
hp

:1
56

6
E

xp
lo

iti
ng

L
S

N
o

23
Te

st
im

on
ia

ls
K

in
g

L
ig

ht
0.

1
4

te
st

im
on

ia
l-

ki
ng

-f
or

m
.p

hp
:3

8
6

E
xp

lo
iti

ng
M

is
A

PI
N

o
24

W
P-

C
ur

ri
cu

lo
V

ita
e

Fr
ee

6.
1

4
en

vi
ar

C
ad

as
tr

o.
ph

p:
86

6
E

xp
lo

iti
ng

L
S

N
o

25
E

as
y

Fo
rm

B
ui

ld
er

1.
0

4
ne

w
Fo

rm
.p

hp
:4

9
4

E
xp

lo
iti

ng
L

S
N

o
26

im
ag

em
en

ts
1.

2.
5

4
im

ag
em

en
ts

.p
hp

:1
27

4
E

xp
lo

iti
ng

SI
nS

N
o

27
E

ve
nt

B
an

ne
r1

.3
4

ad
m

in
ev

en
ts

.p
hp

:2
9

6
E

xp
lo

iti
ng

L
S

Y
es

28
Q

ui
ck

Im
ag

e
Tr

an
sf

or
m

1.
0.

1
4

fil
e-

up
lo

ad
.p

hp
:7

9
6

E
xp

lo
iti

ng
SC

Y
es

29
C

ol
le

ge
Pu

bl
is

he
rI

m
po

rt
0.

1
4

co
lle

ge
-p

ub
lis

he
r-

im
po

rt
.p

hp
:1

44
6

E
xp

lo
iti

ng
L

S
Y

es
30

B
SK

Fi
le

s
M

an
ag

er
1.

0.
0

4
bs

k-
fil

es
-m

an
ag

er
.p

hp
:2

69
6

E
xp

lo
iti

ng
M

is
A

PI
Y

es
31

B
an

ne
rC

yc
le

r1
.4

4
ad

m
in

.p
hp

:1
67

6
E

xp
lo

iti
ng

L
S

Y
es

32
G

al
le

ri
o

1.
0.

1
6

ga
lle

ri
o.

ph
p:

61
0

4
E

xp
lo

iti
ng

L
S

Y
es

Ta
bl

e
5.

2:
D

et
ec

tin
g

N
ew

V
ul

ne
ra

bl
e

A
pp

lic
at

io
ns

.
U

F
uz

ze
r

de
te

ct
ed

30
vu

ln
er

ab
le

PH
P

ap
pl

ic
at

io
ns

th
at

ha
ve

no
t

be
en

pr
ev

io
us

ly
re

po
rt

ed
,

w
he

re
1-

21
ar

e
fr

om
G

itH
ub

an
d

22
-3

2
ar

e
Wo

rd
Pr

es
s

pl
ug

in
s.

E
ac

h
vu

ln
er

ab
ili

ty
is

ve
ri

fie
d

th
ro

ug
h

ei
th

er
ex

pl
oi

tin
g

or
th

or
ou

gh
co

de
re

vi
ew

.T
he

ro
ot

ca
us

e
of

ea
ch

vu
ln

er
ab

le
sa

m
pl

e
ha

s
al

so
be

en
la

be
le

d,
w

he
re

L
S

fo
r“

la
ck

in
g

sa
ni

tiz
at

io
n”

,M
is

A
PI

fo
r

“m
is

us
in

g
sa

ni
tiz

at
io

n
A

PI
s”

,S
In

S
fo

r“
sa

ni
tiz

in
g

in
co

rr
ec

ts
ou

rc
es

”,
an

d
SC

fo
r“

sa
ni

tiz
in

g
at

th
e

cl
ie

nt
”.

(R
ep

ri
nt

ed
fr

om
[2

3]
)

64

5.3.2 Detecting New Vulnerable PHP Applications

We have used UFuzzer to detect PHP applications with unrestricted file upload vulnera-

bilities. We leverage two repositories, including WordPress plugins and GitHub, which

both offer a large number of PHP-based, open-source applications. We collected 9,157

WordPress plugins in a reverse chronological order (starting from 4/22/2018) based on

their last updated time. We also retrieved source code of top 900 highly rated (i.e., “start”-

ed) PHP content management systems (CMS) from GitHub (on 07/01/2020). Since UChecker

achieved comparable detection performance on the ground-truth-available data, we also use

it to scan all these applications.

Table 5.2 presents the detection results. UFuzzer and UChecker together detect to-

tally 32 vulnerable applications. The first 21 are from GitHub and the remaining 11 are

WordPress plugins. We have confirmed all of them allow the uploading of PHP files

through i) actual exploiting or ii) code review. The “verification method” column in the

table presents how each application is verified. Specifically, 16 out of 32 applications can

be installed and we have successfully exploited their file uploading vulnerabilities. The

remaining 16 applications fail to operate mainly due to the lack of configuration files (e.g.,

required database configuration files are missing). We therefore manually review their

source code thoroughly. All of these 32 vulnerable applications have not been previously

reported to the best of our knowledge.

Among these 32 vulnerable applications, UFuzzer detects 31 whereas UChecker only

detects 15. UFuzzer also effectively identify the source of each vulnerable application,

i.e., the file name and the line no. of the vulnerable statement (see the 4th column of Ta-

ble 5.2). Manual analysis of UChecker’s false negatives reveals that some of their APIs

are not currently covered in its PHP-to-Z3 translation rules. Comparatively, UFuzzer exe-

cutes these PHP APIs in native PHP runtime environment. UFuzzer misses one vulnerable

sample since UFuzzer was not successful in mutating inputs that satisfy their reachability

65

conditions. For example, the fuzzing template of Gallerio 1.0.1 has the reachability

condition of $reach reach = ($sym Isset POST doadd and $ POST doadd symbol ==

‘yes’ and $sym file name . $sym file ext != ‘’) and the string mutator fails to

generate ‘yes’ for the free variable $ POST doadd symbol.

Among these 32 vulnerable applications, our manual investigation reveals that 13 sam-

ples need administration privilege for successful exploitation. While these 13 applications

expose less risks since they require attackers to gain higher privileges, they may still lead to

unintended behaviors that could be potentially misused. We agree with FUSE [25] that ma-

ture web services should limit the uploading capability even for administrators through web

interfaces while use other channels such as SFTP or SCP for script uploading. Therefore,

using the same criteria in [25], we identify these 12 samples as potentially exploitable.

We attribute root causes of these 32 new vulnerable applications into four categories

including lacking sanitization (LS), misusing sanitization APIs (MisAPI), sanitizing incor-

rect sources (SInS), and sanitizing at the client (SC). To further illustrate each root cause,

we present a few representative cases below.

Lacking Sanitization: Basic Laravel CMS is a content management system (CMS) based

on the Laravel framework. Its vulnerable code is presented in Listing 5.5, which does not

check the extension of the uploaded file. Although the developer attempts to randomize

the name of the saved file, the random number is derived from a very narrow range and

therefore highly predictable. Listing 5.6 shows the fuzzing template that successfully de-

tects this vulnerability. This template evaluates both the reachability condition and the file

extension.

1 <?php

2 if ($_FILES['file']['name']) {

3 if (! $_FILES['file']['error ']) {

4 $name = md5(rand (100, 200));

5 $ext = explode('.', $_FILES['file']['name']);

6 $filename = $name . '.' . $ext [1];

66

7 $destination = '/public/images/' . $filename;

8 $location = $_FILES["file"]["tmp_name"];

9 move_uploaded_file($location , $destination);

10 //...

11 } else{

12 //...

13 }

14 }

15 ?>

Listing 5.5: Vulnerable Code of Basic Laravel CMS (Reprinted from [23])

1 function is_Vulnerable_0(string $sym_file_name ,

2 string $sym_file_ext ,

3 int $_FILES_file_error_symbol){

4 $exp_reach = ($sym_file_name . $sym_file_ext and

5 !$_FILES_file_error_symbol);

6 $funCall = explode('.', $sym_file_name . $sym_file_ext);

7 $exp_filename = '/public/images/' . (md5(rand (100, 200)) .

8 '.' . $funCall [1]);

9 if ($exp_reach) {

10 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

11 if (in_array($ext , array('php'))) {

12 return true;

13 }

14 }

15 }

Listing 5.6: A Fuzzing Template for Basic Laravel CMS (Reprinted from [23])

Misusing Sanitization APIs: Testimonial King Light 0.1 [18] is a WordPress plugin.

This plugin intends to support the upload of images such as “.jpg”, “.png”, and “.gif”. List-

ing 5.7 presents the vulnerable code snippet. We suspect this vulnerability is rooted in the

mis-interpretation of the “sanitize file name()”, a WordPress built-in API. This func-

tion is for removing special illegal characters rather than guaranteing to return a filename

that is allowed to be uploaded [59]. Therefore, a file with the executable “.php” extension

can still be uploaded. The fuzzing template that successfully revealed this vulnerability

was presented in Listing 5.8; it only concerns the name of the file to be saved since the

67

reachability constraint is not tainted by the name of the uploaded file.

1 function gmctk_testimonial_form (){

2 //...

3 $hasError = false;

4 if (isset($_POST['title ']) && trim($_POST['title ']) === '')

5 $hasError = true;

6 if (isset($_POST['description ']) && trim($_POST['description ']) ...

=== '')

7 $hasError = true;

8 if (! $hasError) {

9 if (isset($_FILES['userpic '])) {

10 $uploadfile = wp_upload_dir () . sanitize_file_name(

11 $_FILES['userpic ']['name']));

12 move_uploaded_file(

13 $_FILES['userpic ']['tmp_name '], $uploadfile);//...

14 }

15 }//...

16 }

Listing 5.7: Vulnerable Code in Testimonial King Light 0.1 (Reprinted from [23])

1 function is_vulnerable($sym_file_name , $sym_file_ext)

2 {

3 $funCall_0 = wp_upload_dir ();

4 $exp_fileName = $funCall_0['path'] . '/' .

5 basename(sanitize_file_name($sym_file_name

6 . $sym_file_ext));

7 $ext = pathinfo($exp_fileName , PATHINFO_EXTENSION);

8 if (in_array($ext , array('php'))) {

9 return TRUE;

10 }

11 return FALSE;

12 }

Listing 5.8: A Fuzzing Template for Testimonial King Light 0.1 (Reprinted from [23])

Sanitizing Incorrect Sources: Imagements 1.2.5 [58] is a WordPress plugin that sup-

ports a visitor to leave an image-based comment in users’ blogs. Listing 5.9 presents

the vulnerable code snippet. The function ”add action()” is a WordPress built-in API to

68

bind a function (“imagments formverwerking()” in this case) with an action(i.e. “com-

ment post” in this case). The “imagments formverwerking()” function intends to per-

manently store an uploaded file in the server. The developer seems aware of this type

of vulnerabilities and use a filter (see the “add filter()” function) to abort any uploading

action if it submits a non-image file. Unfortunately, the added filter is flawed. It in-

vestigates $ FILES[‘image’][‘type’], which is the type of the file derived from client’s

request. Since an attacker have full control of client-side software (e.g., the browser),

she can upload a PHP executable script and meanwhile instrument the browser to change

$ FILES[‘image’][‘type’] to “image/png”, successfully bypassing this filter. The fuzzing

template that successfully reveals this vulnerability was illustrated in Listing 5.10.

1 add_action('comment_post ', 'imagements_formverwerking ');

2 add_filter('preprocess_comment ', 'imagements_verify_post_data ');

3 function imagements_formverwerking (){

4 if(isset($_POST['checkbox '])){

5 $name = $_FILES['image ']['name'];

6 //...

7 move_uploaded_file($_FILES["image"]["tmp_name"],

8 PATH . '/images/' . $name);

9 }

10 }

11 function imagements_verify_post_data($commentdata){

12 if(isset($_POST['checkbox '])) {

13 if($_FILES['image ']['name'] != null) {

14 if($_FILES["file"]["error"] > 0) {

15 //...

16 } else {

17 if(!($_FILES['image ']['type'] == 'image/x-png'||

18 $_FILES['image ']['type'] == 'image/pjpeg '||

19 $_FILES['image ']['type'] == 'image/jpeg' ||

20 $_FILES['image ']['type'] == 'image/jpg' ||

21 $_FILES['image ']['type'] == 'image/png')) {

22 wp_die('this file is no image ...');

23 }

24 }

25 }

26 //...

69

27 }

28 }

Listing 5.9: Vulnerable Code in Imagements 1.2.5 (Reprinted from [23])

1 function is_Vulnerable(string $sym_const_PATH ,

2 string $sym_file_name ,

3 string $sym_file_ext){

4 $exp_filename = $sym_const_PATH . '/images/' .

5 ($sym_file_name . $sym_file_ext);

6 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

7 if (in_array($ext , array('php'))) {

8 return true;

9 }

10 return false;

11 }

Listing 5.10: A Fuzzing Template for Imagements 1.2.5 (Reprinted from [23])

Sanitizing at the Client: User-Management-PHP-MYSQL [37] is an open-source web-

application collected from GitHub. Listing 5.11 presents the client-side HTML page and

the server-side PHP script to process the file submission request. The developer seems

aware of this vulnerability and implemented the validation function at the client using

JavaScript (i.e., by only allowing files with “jpg” or “jpeg” extensions). Unfortunately,

since an attacker has full control of her browser, she can either disable this validation func-

tion or manipulate the file name carried by the POST request. Listing 5.12 presents the

fuzzing template that reveals this vulnerability.

1 <?php

2 if(isset($_POST['submit '])){

3 $file = $_FILES['image ']['name'];

4 $final_file = str_replace(' ', '-', strtolower($file));

5 if (move_uploaded_file($_FILES['image ']['tmp_name '],

6 "images/" . $final_file)) {

7 //...

8 }

9 }

70

10 ?>

11 <!doctype html >

12 <html lang="en" class="no-js">

13 <!--...-->

14 function validate () {

15 var extensions = new Array("jpg", "jpeg");

16 var final_ext = // Get the file extensions by JavaScript

17 // return true if the final_ext is in extensions

18 // return false otherwise

19 }

20 <form method="post" <!--...--> onSubmit="return validate ();">

21 <!--...-->

22 <button <!--...--> type="submit">Register </button >

23 </form >

24 <!--...-->

25 </html >

Listing 5.11: Vulnerable Code in User-Management-PHP-MYSQL (Reprinted from [23])

1 function is_Vulnerable_0(string $sym_file_name , string $sym_file_ext){

2 $exp_filename = '../ images/' . str_replace(' ', '-', ...

strtolower($sym_file_name . $sym_file_ext));

3 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

4 if (in_array($ext , array('php'))) {

5 return true;

6 }

7 return false;

8 }

Listing 5.12: A Fuzzing Template for User-Management-PHP-MYSQL (Reprinted
from [23])

5.4 Discussion

Incomplete Runtime Modeling: UFuzzer currently does not model system configuration

information. For example, it ignores .htaccess or php.ini, which may have already

disabled file uploading for the entire system. Nevertheless, we believe the detected vulner-

ability in the web application, which could be disabled at runtime through system configu-

71

ration, is highly informative.

Incomplete Interpretation of OOP and Loops: The current implementation of UFuzzer does

not interpret all PHP grammars. Although it interprets essential OOP grammars including

class declaration, object initialization, and the invocation of member functions, UFuzzer does

not handle other OOP features such as inheritance, function overriding, and deserialization.

Since UFuzzer directly interprets AST, it takes little efforts to represent a loop statement

in a heap graph. However, significant challenges arise when one intends to execute a loop-

included fuzzing template with mutated inputs. Specifically, it would be difficult to identify

reasonable variable values to exercise a generated loop effectively and efficiently. There-

fore, we skip the process of loops in the current implementation.

The practical impact of such incomplete interpretation is however alleviated by the

“locality analysis” of UFuzzer’s interpreter, which inherits from UChecker. Specifically,

we first use “locality analysis” to identify statements that are likely to be relevant to the

vulnerability and then only symbolically interprets these identified statements. These iden-

tified statements, which usually represent a very small portion of the entire program, rarely

contain advanced OOP features and loops in our evaluated and scanned cases. This sug-

gests a limited impact of our current implementation.

Nevertheless, extending UFuzzer’s interpretation capability could enhance its detec-

tion capabilities. For example, we can track the relationship of classes when they are

declared to interpret OOP polymorphism features. We can execute a loop-included fuzzing

template through massive parallelization. Such solutions fall into our future work, and our

plan to open UFuzzer’s code will also facilitate community’s efforts towards this direction.

Specific to PHP: UFuzzer is specific to the “.php” extension. We are aware that files

with other extensions such as “.asa” and “.swf” are also potential harmful. Nevertheless,

UFuzzer can be easily extended to cover additional file extensions. Meanwhile, UFuzzer’s

design is applicable to web services written in other languages.

Focusing on the File Extension: UFuzzer investigates whether an uploaded file could have

72

the “.php” extension, which represent an immediate, arguably the most significant and

common exploitation of the studied vulnerability. It might also be risky if one can submit

a file of executable content without executable extension to a web system. However, it

requires additional exploitations to actually execute the file (e.g., altering file names via

other interfaces). Nevertheless, we acknowledge that it will enhance UFuzzer by analyzing

the executable content in an uploaded file.

Reusable Inputs: UFuzzer “fuzzes” a fuzzing template that approximates the original code

rather than original code itself. Therefore, an input that successfully “exploits” the fuzzing

template is unlikely to be directly reused to reproduce the exploitation in the operating web

system corresponding to this fuzzing template. This is indeed different from conventional

fuzzers. Nevertheless, such difference represents UFuzzer’s design that trades precision for

efficiency rather than a flaw.

False Negatives: UFuzzer introduces one false negative in detecting new vulnerable appli-

cations. This is mainly because the mutation process is unguided and therefore it cannot

guarantee the generation of values that provably satisfy certain conditions in the fuzzing

template. One potential solution is to integrate UFuzzer and UChecker, where we can infer

values for applicable variables using a solver and mutate values for the remaining. This

falls into our future work.

5.5 Summary

We have built UFuzzer to automatically detect PHP-based web programs with unrestricted

file upload vulnerabilities.

UFuzzer models a server-side PHP web application using heap graphs and automat-

ically identifies sub-graphs that are relevant to a vulnerability. Identified sub-graphs are

refactored and eventually converted into executable PHP programs for fuzzing. The evalu-

ation results based on real-world PHP applications demonstrated UFuzzer’s high detection

73

performance. It also detects 31 new vulnerable services that have not been publicly re-

ported.

74

Chapter 6: Mining Vulnerabilities in

PHP-Based Web Programs Using Graph

Models – UGraph

6.1 Motivation

Vulnerable web servers fundamentally undermine Internet security as they often expose

critical infrastructures and sensitive information behind them to potential risks. Unfor-

tunately, the development of vulnerability detection systems significantly lags behind the

reveal of web vulnerabilities. Such gap can be attributed to facts. First, modern server-

side web programs commonly experience a high level of syntactical variances. Second,

typical program representations such as abstract syntax tree (AST) and the intermediate

representation (IR) are compiler-oriented, lacking sufficient information to support essen-

tial security-oriented analysis such as information flow analysis and static taint analysis.

As a result, vulnerability detection systems are usually forced to address these challenges

as part of their design, introducing huge but unwanted efforts.

This chapter presents our solution towards enabling the rapid development of server-

side vulnerability detection systems by designing a new framework. The core of this frame-

work is a novel program model, namely dependency graphs, with the following design

75

objectives:

• Security-Oriented: it characterizes information flow (i.e., both explicit and implicit

data flows) in a studied program that is essential for security analysis of a program.

• Intuitive: It facilitates efficient and intuitive implementation of security applications.

• Resilient to Syntax Variances: it focuses on program semantics and abstracts away

program syntax.

• Scalable: it enables a computationally-efficient model generation process for large

programs.

We therefore design our model in the form of a graph to characterize immediate data

and control dependency among all objects generated by the program under analysis. As

a consequence, information flow between an arbitrary pair of objects can be verified by

analyzing the graph. Since graph-based operations are natively supported by of-the-shelf

graph databases, the information flow analysis can then be translated into efficient and

intuitive graph queries. A dependency graph is generated by symbolically interpreting a

server-side web program with flow- and context-sensitivity, where the path sensitivity is

traded for scalability to avoid path explosion.

In order to illustrate dependency graph and demonstrate its usage in security analysis

of server-side web programs, we have built a system, namely UGraph to detect the PHP-

based program vulnerability. UGraph generates dependency graphs by directly interpreting

the ASTs of web programs, which makes it possible to precisely map the model back to

the source code, greatly facilitating further exploration, debugging, and patching if needed.

UGraph implements one security applications to detect unrestricted file upload vulnerabil-

ities. UGraph currently focuses on web programs written in PHP, one of the most popular

programming languages for server-side web development; it also leverages the neo4j [29]

graph database to support the storage and analysis of generated models. By integrating

76

heap graphs and off-the-shelf graph databases, UGraph illustrates security applications for

server-side web programs can be effectively, efficiently, and intuitively developed.

We have applied UGraph to scan 15,154 real-world PHP-based web applications.

UGraph has successfully detected totally 14 vulnerable applications that have not been

previously reported. We have also received 6 CVE confirmations. To summarize, we have

made the following contributions:

• We have designed a novel, graph-based program model, namely dependency graph,

to enable efficient and intuitive information flow analysis for server-side web pro-

grams.

• We have designed an interpreter to generate a dependency graph of a PHP-based web

program by performing flow- and context-sensitive symbolic interpretation directly

using the AST of this program.

• We have built a security applications to detect the vulnerability of unrestricted file

upload in web application

• We have employed our solutions to detect 16 vulnerable services with 3 CVE con-

firmed.

The remains of this chapter will present the design, generation, and applications of

this novel model in the context of the UGraph system. Specifically, it presents the sys-

tem overview in Section 6.2, the definition of the dependency graph in Section 6.3, its

generation using AST-based symbolic interpretation in Section 6.4, security applications

(in Section 6.5), and the detection results in Section 6.6. We also discussed the related

work in Section 6.7 as will as possible limitations and solutions in Section 6.8. Section 6.9

summarize the system.

77

Parser
AST-Based
Symbolic

InterpretationDNS Streams
DNS Streams

DNS Streams
PHP Source Code
of An Application

DNS Streams
DNS Streams

DNS Streams
Abstract

Syntax Trees
Graph-Based

Security
Analysis

Dependency
Graph

DNS Streams
DNS Streams

DNS Streams
Vulnerabilities

and Risks

Figure 6.1: The architectural overview of the UGraph

6.2 System Design

Figure 6.1 presents the architectural overview of UGraph, which has 3 major phases.

• Parsing: The input of UGraph is a set of PHP files for a web application and our

UGraph parses them to generate AST(s).

• AST-Based Symbolic Interpretation: UGraph next symbolically interprets AST(s)

to produce the dependency graph.

• Security Analysis: UGraph stores the dependency graph into a graph database and

leverages its interfaces to build security applications.

We leverage PHP-Parser [35], a popular PHP parser, to parse all source code files of

a server-side application and generate a collection of abstract syntax trees. Our symbolic

interpreter needs to address the path explosion challenge that is inherent to symbolic execu-

tion. We employed employs neo4j [29], a graph database, to store generated dependency

graphs. Our security applications can then be implemented as neo4j declarative queries.

6.3 Dependency Graph

6.3.1 Definition

A dependency graph aims at modeling immediate data and control dependency among ob-

jects, where an object refers to the evaluation result of an expression in a program. Specifi-

78

cally, we define a dependency graph asG = {C, S,NV ar, NFunc, FUNC,OP,AUX,L,OC , OS,

OFUNC , OOP , OAUX , Edge, EnvV ar, EnvFunc}:

• C is a set of concrete values.

• S is a set of symbolic values.

• NV ar is a set of variable names.

• NFunc is a set of names of PHP built-in functions augmented by indexes.

• FUNC is a set of all PHP built-in functions.

• OP is a set of all PHP operators (e.g., unary and binary operators such as “+”, “-”,

and “.”).

• AUX is a set of operators introduced for graph building. AUX = {comb, array access},

where comb aggregates values through different paths and array access indicates

the access of an array.

• I is a set of IDs for nodes in this graph.

• L is a set of labels for edged in this graph, where L contains “data”, “ctrl”, and

annotations of arguments and operands.

• OC ⊂ I ×C is a set of objects (i.e., nodes) for concrete values, where each object in

OC is assigned with a unique id.

• OS ⊂ I ×S is a set of objects (i.e., nodes) for symbolic values, where each object in

OC is assigned with a unique id.

• OFUNC ⊂ I×Func is a set of objects (i.e., nodes) for built-in functions, where each

node is assigned with a unique id.

79

• OOP ⊂ I × OP is a set of objects (i.e., nodes) for operations, where each node is

assigned a unique id.

• OAUX ⊂ I×AUX is a set of objects (i.e., nodes) for the newly introduced operators,

where each node is assigned with a unique id.

• Edge ⊂ {(id1, id2, l)|(id1, x) ∈ OFUNC ∪ OOP ∪ OAUX and (id2, y) ∈ OC ∪ OS ∪

OFUNC ∪ OOP ∪ OAUX and l ∈ L}. Edges are directed and each one connects a

node for a PHP built-in function, a PHP operator, and a AUX node with another node

with an arbitrary type. If the source node of an edge is an object of an operator, its

destination node is an operand; if the source node of an edge is for a built-in function,

its destination node is an argument for this function.

• EnvV ar ⊂ NV ar×I . It establishes a mapping between a variable name and an object.

• EnvFunc ⊂ NFunc × I . It establishes a mapping between an augmented function

name and an object.

6.3.2 An Example Dependency Graph

In order to illustrate the heap graph and environments, we use an example presented in List-

ing 6.1. This program has four variables including $a, $b, $c, and $d. Both $a and $b are

initialized with values from external inputs. The variable $c is bound to one of three pos-

sible values, depending on the evaluation result of two expressions including “(abs($a))

> 222” and “$b > 333”. The variable $d is derived from $c. The “abs($a)” function

invocation will always be reachable. Comparatively, the reachability of “pow($b, 2)”

also depends on the evaluation of these two expressions including “abs($a) > 22” and

“$b > 333”. Similarly, the reachability of “round(99)” depends on the evaluation of the

expression of “abs($a)> 22”.

80

1 <?php

2 $a = $_GET['A'];

3 $b = $_GET['B'];

4 if(abs($a) > 222) {

5 if($b > 333) {

6 $c = pow($b, 2);

7 }

8 else {

9 $c = 555;

10 }

11 }

12 else {

13 $c = round (99)

14 }

15 $d = $c + 666;

16 echo $d;

17 ?>

Listing 6.1: Sample code with data and control dependency

Figure 6.2 presents the dependency graph for the example in Listing 6.1, which is

shown as follows with Edge omitted for brevity:

• C = {2, 99, 222, 333, 555, 666, ”A”, ”B”}

• S = {sym GET}

• NV ar = {$a, $b, $c, $d}

• NFunc = {abs1, pow1, round1, echo1}

• FUNC = {abs, pow, round, echo}

• OP = {+,−, >}

• AUX = {comb, array access}

• I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}

• L = {array, index, ctrl, data, arg, left, right}

81

(2, "A") (1, sym_GET)

(3, array_access)

(4, "B")

(5, array_access)

array

array

Idx

idx

(7, abs)

arg

(6, True)

ctrl

(8, 222)

(9, >)

left right

(10, 333)

(11, >)

left right

(15, 555)

(16, comb)(19, round)

arg

ctrl

(20, comb)

data

(22, +)

(21, 666)

right

(23, echo)

arg

Dependence Graph G

$a

$b

$c

$d

EnvVar
EnvFunc

abs_1

pow_1

round_1

echo_1

(14, pow)

(12, AND)

left
right

arg

ctrl

ctrl datadata

(13, 2)

arg

(17, 99)

data

ctrl

left

(18, AND)

right
left

ctrl

Figure 6.2: The dependency graph for the sample code in Listing 6.1

• OC = {(2, ”A”), (4, ”B”), (8, 222), (10, 333), (14, 2), (15, 555), (17, 99), (21, 666)}

• OS = {(1, sym GET)}

• OFUNC = {(7, abs), (13, pow), (19, round), (23, echo)}

• OOP = {(9, >), (11, >), (22,+)}

• OAUX = {(3, array access), (5, array access), (16, comb), (20, comb)}

• EnvV ar = {($ GET, 1), ($a, 3), ($b, 5), ($c, 20), ($d, 22)}

• EnvFunc = {(abs 1, 7), (pow 1, 13), (round 1, 19), (echo 1, 23)}

82

In this dependency graph, we use distinct integers as node IDs (i.e., integers in the set

of I). Each superglobal variable is pre-assigned with a symbolic value. In this particular

example, a node of (1, sym GET) is created to represent the symbolic value of $ GET.

$ GET[‘A’] is to access an array named “$ GET” using the index named ‘A‘. We

therefore create an “array accsss” node, i.e., (3, array access), to indicate the array access.

The edge (3, 1, array) means that this array access using the node with ID of “1” as the

array; The edge (3, 2, index) means that this array access using the node with ID of “2” as

the index. Since $ GET[‘A’] is then assigned to the variable $a, we create an association

of ($a, 3) in EnvV ar to indicate that $a is bound to the object with the ID of “3”. Following

the same procedure, we create two nodes with IDs of “4”, “5”, two edges of (5,1, array)

and (5,4, index), and an association of ($b, 5).

The value of a variable could depend on the execution path of this program. We there-

fore introduce a node, namely “comb”, to summarize all possible values of a variable (i.e.,

to characterize its data flows) and all conditions that decide the selection of these values

(i.e., to characterize its control flows). Each “comb” node has two outgoing edges: the

“data” and “ctrl”, which indicate the immediate data and control dependencies, respec-

tively.

The variable $c is such a variable. Depending on the evaluation results of two condi-

tions, i.e., abs($a) > 222 and $b > 333, the value of $c could be pow($b, 2), 555, or

round(99). Therefore, we introduce a “comb” node, i.e., (20, comb) to model $c’s control

and data dependencies in outer if-else. Specifically, the “ctrl” edge from (20, comb) indi-

cates the control dependency; it points to the node (i.e., (9, ¿)) whose derived expression

governs the outer if-else. There are two outgoing “data” edges from the (20, comb) node,

indicating $c’s value could come from two branches. . The first edge (i.e., (20, 19, data))

refers to $c’s possible value from the “false” branch (i.e., from line 12 to 14), which is

round(99). The second edge (i.e., (20, 16, data)) refers to $c’s possible value from the

“true” branch, which is another “comb” node (i.e., (16, comb)). The node of (16, comb)

83

aggregates both the condition and $c’s possible values from the inner if-else. Specifically,

the “ctrl” edge (i.e., (16, 11, ctrl)) indicates that the condition for the inner if-else could

be derived from the node (11, >). The first “data” edge (i.e., (16, 14, data)) points to

$c’s value derived from the “true” branch of the inner loop (i.e., pow($b, 2)); the second

“data” edge (i.e., (16, 15, data)) points to $c’s value derived from the “true” branch of the

inner loop (i.e., 555).

The variable $d is bound with the evaluation result of $c + 666. We therefore create

the node (22, +) for this “+” operator. Since $c is bound to the “comb” node of (20,

comb), we introduce an edge of (22, 20, left) to indicate the left operand of (22, +);

similarly, we create a constant node of (21, 666) and an edge (22, 21, right) to

indicate the its right operand.

In addition, we have i) created an environment, namely EnvFunc track the invocation

of each built-in API and ii) augmented the node for an API invocation to track its reachabil-

ity condition(s). Once the invocation of an API is evaluated, a new variable, whose name

is a combination of the API name and a unique integer, will be added into EnvFunc. An

association will then be created between this newly created variable and the node corre-

sponding to the invocation of this API. There are four API invocations in Listing 6.1, i.e.,

abs(), pow(), round(), and echo. Our dependency graph will hence have four variables

in EnvFunc, i.e., abs 1, pow 1, round 1, and echo 1. Each of these variables points to the

evaluation result of its corresponding API. For example, pow 1 points to the node of (14,

pow), which represents the evaluation result of the expression, pow($b, 2) in line 6. Since

pow($b, 2) has two arguments including $b and 2, (14, pow) has two outgoing “arg”

edges points to $b’s evaluation result (i.e., (5, array access)) and a node of a constant (i.e.,

(13, 2)), respectively. It is worth noting that pow($b, 2)’s reachability is governed by two

conditions including abs($a) > 222 and $b > 333. Therefore, the node of (14, pow) is

augmented by a “ctrl” edge; this edge points to the “AND”-based joint of expressions that

govern its reachability. Specifically, the node of (12, AND) joins these two conditions, i.e.,

84

(9, >) and (11, >), respectively.

6.3.3 Graph-Driven Information Flow Analysis

Information flow analysis [42], including both explicit and implicit flow analysis, is es-

sential for language-based security analysis. Explicit flows generally refer to data flows

(e.g., as a results of assignments and data copy) whereas implicit flows represent flows

due to conditional statements. Flow graphs profoundly facilitates information flow anal-

ysis by translating it into intuitive graph analysis, which can further takes advantage of

graph-oriented parallelized platforms for both interactivity and scalability. In this section,

we will describe how explicit and implicit data flow analysis could be performed using a

flow graph.

We consider two arbitrary nodes, namely p and q, in a flow graph G.

• There is an information flow from p to q if there exists a path from q to p.

• There is an explicit data flow from p to q if there exists at least one path from q to p

that does not have any “ctrl” edge.

• There is an implicit data flow from p to q if there exists at least one path from q to p

that has at least one “ctrl” edge.

For example, there is one explicit data flow from (1, sym GET) to the node (22,+)

(i.e., $d’s value) since there exists a path 22 → 20 → 16 → 14 → 5 → 1 where none of

edges is labeled as “ctrl”. This path essentially models that $d’s value can be originally

coming from the superglobal variable of $ GET (see line 3, 6, and 15 in Listing 6.1).

On the other hand, there are two implicit data flows from (1, sym GET) to (22,+)

since there exist two paths that involve at least one “ctrl” edge. The first path is 22 →

20→ 9→ 7→ 3→ 1, where the edge (20, 9, ctrl) is labeled as “ctrl”; the second path is

22→ 20→ 16→ 11→ 5→ 1, where the edge (16, 11, ctrl) is labeled as “ctrl”.

85

Following the same graph-based analysis, we can easily conclude that the invocation

of the pow API in line 6 has an explicit data flow from the invocation of the echo API in

line 16 since there exists a path from (23, echo) to (14, pow), i.e., 23 → 22 → 16 → 14,

which does not involve any “ctrl” edge. Comparatively, there is an implicit data flow from

the invocation of the abs API in line 4 to that of the echo API in line 16 since there exists

a path from (23, echo) to (7, abs), which has an “ctrl” edge (i.e., (20, 9 ctrl)).

6.4 AST-Base Symbolic Interpretation

We next design an interpreter to generate a dependency graph (i.e., G) by traversing AST

of an server-side PHP application. We first define a set of operations for a dependency

graph. Next, we will design an interpreter to build a dependency graph using defined graph

operations.

We define a set of graph operations for a dependency graph G.

Init(G) will initialize a dependency graph G. G will be preloaded with all superglobal

variables in its V ar. For each superglobal variable, we create a symbolic object and create

an association between this superglobal variable and this created object.

Find(G, id) returns an object given its id. If there is no object whose label is id, it will

return null.

Create Concrete Obj(G, x) is to create an object of a given concrete value x, where the

created object is denoted as (id, x); it returns the id of this object (i.e., id). This function

will assure that the assigned label is unique across all objects in G. It will meanwhile add

this object intoG. Specifically, we will haveC =C∪{x}, I = I∪{id}, andOC = OC∪{o}.

Create Symbol Obj(G, x), Create FUNC Obj(G, x), Create OP Obj(G, x), and

Create AUX Obj(G, x) are similar to Create Concrete Obj(G, x). They are used to

create objects for a symbol value, a built-in function, an operator, and an AUX operator,

respectively. Each of these functions returns the id of the created object, which is unique

86

e ::= (EXPRESSION)
| c (Constant)
| x (Variable)
| x.f (Obj Attribute Access)
| op e (Unary Operation)
| e1 op e2 (Binary Operation)
| x[e] (Array Access)
| function(x1, . . . , xn){S} (Func Define)
| f(e1, . . . , en) (Func Call)
| x.f(e1, . . . , en) (Obj Func Call)
| new f(e1, . . . , en) (NEW)

S ::= (STATEMENTS)
| S1;S2 (Sequence)
| x := e (Assignment)
| if e then S1 else S2 (Conditional)
| while e do S (While)
| return e (Return)

Table 6.1: Core PHP Syntax Interpreted by UGraph

across all objects in G.

Add Edge(G, e) will add an edge into Edge of G. Specifically, Edge = Edge ∪ {e}.

Add V ar(G, (v, id)) where v is a variable name and id is the id of an object. This func-

tion adds an association between v and id into Env (i.e., Env = Env ∪ (v, id)). It will

meanwhile add v into V ar, i.e., V ar = V ar ∪ v.

Get V ar(G, v), where v is a variable name, will return id if (v, id) ∈ Env; it will return

null otherwise.

Get OR Add V ar(G, v), where v is a variable name, will return id if (v, id) ∈ Env. If v is

not contained inEnv, a symbol object (id, s) will be created using id = Create Symbol Obj(s);

an association between x and this symbol object, (x, id) will be added into Env using

Add V ar(G, (x, id)); finally, it returns the id id.

Enum V ar(G), returns all variables in the Env of the graph G.

6.4.1 Interpreter

The core of our interpreter is an evaluation function denoted as “eval(node,G)”, where

“node” refers to an AST node and G is the dependency graph. An AST node represents

either an expression (e.g., a constant, a variable, a binary operation, and a function invoca-

87

tion) or a statement (e.g., a sequence, an assignment, and a conditional branch). Starting

from the root node of an AST, UGraph recursively interprets each AST node and build the

dependency graph accordingly.

UGraph processes core PHP syntax. We use syntax presented in Table 6.1 to illus-

trate the design of the eval(node,G) function. For brevity, we describe the evaluation for

a few challenging expressions and statements including “Variable”, “Binary Operation”,

“Assignment”, “Conditional”, and “Function Invocation”.

eval(x, G): When UGraph sees a variable x, it queries the EnvV ar, attempting to retrieve

the id of the object associated with x in EnvV ar, using id = Get OR Add V ar(G, x).

This will introduce a symbolic object if x cannot be found in EnvV ar.

eval(el op er, G): UGraph evaluates el and er using G individually. Specifically, we

denote idl = eval(el, G) and idr = eval(er, G). Next, UGraph creates a new oper-

ator object using idop = Create OP Obj(G, op). Two directed edges including el =

(idop, idl, left) and er = (idop, idr, right) will be added into G (i.e., Add Edge(G, el)

and Add Edge(G, er)). Edge types of “left” and “right” indicate el and er point to this

operator’s left and right operands, respectively. Finally, UGraph returns the id of the oper-

ator node, i.e., idop.

eval(x[e], G): UGraph first evaluates x to retrieve the id idarr of the object associated

with x using idarr = Get OR Add V ar(G, x). Next, UGraph will evaluate e to derive

the id ididx of the evaluation result using ididx = eval(e,G). UGraph will then create

an “array access” node using idarr acc = Create AUX Obj(G, array access). Two

directed edges including el = (idarr acc, idarr, array) and er = (idarr acc, ididx, index)

will be added into G using Add Edge(G, el) and Add Edge(G, er). The type of array for

el indicates that this edge points to the node for the array; the type of index for er means

this edge points to the node used as the index.

eval(x := e, G): UGraph will first evaluate e and get an id denoted as id using id =

eval(e,G). Then it will add an association between x and id into the EnvV ar using

88

Add V ar(G, (x, id)).

eval(f(e1, . . . , ej, . . . , em), G: When a function is called, UGraph will first evaluate its

arguments (i.e, e1, . . . , ej, . . . , em) in G and retrieve their corresponding ids (i.e., id1 =

eval(e1, G), . . . , idj = eval(ej, G), . . . , idm = eval(em, G)) for each path. Specifically,

for each input ej , UGraph will evaluate it to obtain < l1j , . . . , l
i
j, . . . , l

n
j >= eval(ej, G, E),

where lij is the evaluation result of ej for Envi.

eval(if e then S1 else S2, G): UGraph will first evaluate e using G, obtaining the id of

the evaluation result as c = eval(e,G). Then we will make two shallow copies of G,

denoted as GT and GF where GT = GF = G. the system then follows three steps.

First, UGraph will evaluate the “true” branch using GT , denoted as eval(S1, GT).

Since such evaluation will introduce changes to GT , we name the updated graph after

this evaluation as G′
T . Meanwhile, we evaluate the “false” branch using eval(S2, GF) to

derive a new graph named G′
F .

Second, UGraph will integrate G′
T and G′

F . It will create a new graph G′, which

inherit all objects, edges among objects, superglobal variables in their environments, and

associations between super-global variables and their associated objects. For each vari-

able v in V = Enum V ar(G′
T) ∪ Enum V ar(G′

F) (i.e., v ∈ V), we retrieve its IDs in

G′
T and G′

F , respectively. Specifically, we denote idv,T = Get V ar(G′
T , v) and idv,F =

Get V ar(G′
F , v).

• If idv,T = idv,F , which means neither S1 nor S2 changes v’s value, we will add an

association between v and idv,T into G′ using Add V ar(G′, (v, idv,T)).

• If idv,T 6= idv,F , which means either or both of S1 and S2 changes v’s value, we will

integrate all possible values for v and their dependency on the condition e. Specifi-

cally, we create a new node using idcomb = Create AUX Obj(G′, comb). We next

create three edges including eT = (idcomb, idv,T , data), eF = (idcomb, idv,F , data),

and ectrl = (idcomb, c, ctrl) and add them into G′, where c = eval(e,G). We will

then add an association between v and idcomb intoG′ usingAdd V ar(G′, (v, idcomb)).

89

Third, it will use the new graph G′ for the subsequent evaluation (i.e., G = G′) after

all variables in V = Enum V ar(G′
T) ∪ Enum V ar(G′

F) is investigated by following the

second step.

6.5 Vulnerability Detection

Once a dependency graph is built, we can analyze this graph for vulnerability detection.

Each dependency graph, in fact, is a property graph [29], where each node can be repre-

sented by an ID and its attribute (i.e., (id, attr)) and each edge can be represented by a

pair of node IDS and an attribute (i.e., (idi, idj, attr)). This makes it possible to leverage

graph-enabled databases such as for algorithm design and implementation, boosting the

efficiency and extensibility.

In our current implementation, we use Cypher, the graph query language of Neo4j [29],

to create deductive database to store dependency graphs and devise detection algorithms as

declarative queries.

6.5.1 Representing and Analyzing Dependency Graphs Using Cypher

Query Language

Cypher is the graph query language of Neo4j. The property graph model of Cypher is

composed of nodes and edges. Table 6.2 presents the elements we have defined to represent

the model of dependency graph. The node of dependency graph depicted in Cypher a

surround with parentheses (). The node can be given a variable like (var) and also be

reference the node with relative properties as (var{attr : Px}) by using curly braces that

attribute the node with the property of Px. Cypher represents the edge of the dependency

graph using an arrow −− > or < −− between two nodes, and any properties relating to

the edge can be placed in a pair of square brackets to describe the relationship of these two

90

Node (), (var), (var{attr : Px})
Edge ()−− > (), (var1) < −− (var2), (var1)− [{attr : Py}]− > (var2)

Table 6.2: Cypher models nodes and edges in a dependency graph

nodes such as (var1)− [{attr : Py}]− > (var2) as presented in Table 6.2.

We design detection algorithms using the patterns of the Cypher. A pattern is com-

prised of node and relationship elements and can express complex or straightforward traver-

sals and paths.

(M{attr : P1})− [{attr : Pe}]− > (Root) < −[{attr : Pe}]− (N{attr : P2})

(M{attr : P1}), (N{attr : P2}), and (Root) are three nodes in the dependency graph;

the arrow (M{attr : P1})− [{attr : Pe}]− > (Root) describes an edge that connects node

(M) and node (Root) with the property Pe. The above pattern means that node root is the

sink of two nodes (M) and node (N) with the edge attribute Pe

6.5.2 Detection Rules

By leveraging the Cypher query, we enable to detect the vulnerability of unrestricted file

upload in the graph database, Neo4j. Figure 6.3 illustrates the detecting rules for the

vulnerability of unrestricted file upload.

• Rule 1: The control flow of the move uploaded file() was tainted by $ FILES[‘ ∗

’][‘name’].

• Rule 2: The date flow of the move uploaded file() was tainted by $ FILES[‘ ∗

’][‘name’].

• Rule 3: Checking the extension of the uploaded file by sanitize APIs.

91

Control Flow Tainted
by _FILES['*']['name']

Yes

No

Use specific
APIs* to Check the

Extension

Yes

No

Data Flow Tainted by
_FILES['*']['name']Yes No

Benign BenignVulnerable

Figure 6.3: The Rules for detecting the unrestricted file upload

When the Rule 1 is satisfied, we need to check Rule 3 next. But if Rule 1 does not

meet, we will direct to Rule 2. Once the Rule 2 is satisfied, it means the file upload API

(e.g. move uploaded file()) uploads a file without check the extension of the file. It is a

vulnerable operation.

Listing 6.2 presents the query for searching the superglobal expression $ FILEs[‘ ∗

’][‘name’] in Neo4j. Because the expression is a array access expression, we use the query

language to depict the structure of the array dimension fetch in PHP language. Listing

6.3 declares the query for searching the $ FILEs[‘ ∗ ’][‘name’] in the control flow of

the function move uploaded file(). First, we get the control flow branch of the function

move uploaded file() in line 1, and find the root of the $ FILES[‘ ∗ ’][‘name’]. After

that, we query these two node in the build-in API gds.alpha.dfs.stream() that defined by

Cypher. It will preforms the deep first search in the graph. After the DFS searching, we

build the path and return all nodes by the queries from line 7 to 9.

1 MATCH (q{name:'_FILES '}) <--(p{name:`array '}) <--(o{name:'array_access '})

92

2 <--(root{name:'array_access '}) -->(target{name:'name'})

3 RETURN root.id

Listing 6.2: Query for superglobal variable FIELS

Listing 6.4 introduces the query for searching the $ FILEs[‘ ∗ ’][‘name’] in the data

flow of the function move uploaded file(). Different from the searching in control flow,

the query change the type of the edge or relationship of the function node from ’ctrl’ to

’arg’ that means searching only perform on the argument branch of the function node.

1 MATCH ({name:'move_uploaded_file '}) -[{type:'ctrl'}]->(root)

2 MATCH ({name:'_FILES '}) <--({name:'array '}) <--({name:'array_access '})

3 <-[*..2]-(t{name:'array_access '}) -->({name:'name'})

4 WITH id(root) AS start , [id(t)] AS targets , t AS taint_node

5 CALL gds.alpha.dfs.stream('myGraph ',

6 {startNode:start , targetNodes:targets })

7 YIELD path

8 UNWIND [n IN nodes(path) WHERE n.id = taint_node.id | n] as res

9 RETURN res

Listing 6.3: Searching the superglobal variable FIELS in contral flow of
move uploaed file()

1 MATCH ({name:'move_uploaded_file '}) -[{type:'arg'}]->(root)

2 MATCH ({name:'_FILES '}) <--({name:'array '}) <--({name:'array_access '})

3 <-[*..2]-(t{name:'array_access '}) -->({name:'name'})

4 WITH id(root) AS start , [id(t)] AS targets , t AS taint_node

5 CALL gds.alpha.dfs.stream('myGraph ',

6 {startNode:start , targetNodes:targets })

7 YIELD path

8 UNWIND [n IN nodes(path) WHERE n.id = taint_node.id | n] as res

9 RETURN res

Listing 6.4: Searching globalvariable FIELS in data flow of move uploaed file()

Listing 6.5 presents the query for searching the sanitizaiton APIs in the control flow

of the function move uploaded file().

93

1 MATCH ({name:'move_uploaded_file '}) -[{type:'ctrl'}]->(root)

2 MATCH ({name:'_FILES '}) <--({name:'array '}) <--({name:'array_access '})

3 <-[*..2]-(t{name:'array_access '}) -->({name:'name'})

4 WITH id(root) AS start , [id(t)] AS targets , t AS taint_node

5 CALL gds.alpha.dfs.stream('myGraph ',

6 {startNode:start , targetNodes:targets })

7 YIELD path

8 UNWIND [n IN nodes(path) WHERE n.name IN ['pathinfo ', 'explode '] AND

9 (n) -[*]->(target) | n] as sanitizationAPIs

10 RETURN sanitizationAPIs

Listing 6.5: Searching sanitization APIs in control flow of move uploaed file()

6.6 Evaluation

We have employed UGraph to detect vulnerable PHP applications by scanning WordPress

plugins. WordPress features a large repository of PHP-based, open-source plugins that are

contributed from a variety of sources. We have crawled and tested 15,154 WordPress plu-

gins in a reverse chronological order (starting from 4/22/2018) based on their last updated

time.

The detection results are summarized in Table 6.3. We manually verified each applica-

tion that is identified as vulnerable by UGraph and searched it in the vulnerablity database

of WordPress plugins [45]. The column of detection Table 6.3 indicates whether a detec-

tion result is a vulnerability that has been reported (i.e., “known”), or a vulnerability that

has not been previously reported to the best of our knowledge (i.e., “new”). As shown in

the detection results, The system has successfully detected a large number of vulnerable

real-world web applications, including 14 new ones.

Compared with UFuzzer, UGraph addresses the intrinsic restriction faced by UFuzzer.

UFuzzer was not successful in mutating the free variable input of the vulnerable applica-

tion Gallerio 1.0, which needed the string ‘yes’ to satisfy their reachability conditions. In

contrast, our novel system performs the tainted analysis for the control flow restriction that

94

bypasses the free variable matching successfully.

We have experimented with two publicly available PHP vulnerability scanners includ-

ing RIPS [16, 14] and WAP [28], where both of them offer options to detect unrestricted file

uploading vulnerabilities. We used both of them to scan 86 WordPress plugins. We have

manually verified the detection results. Specifically, RIPS reported totally 43 vulnerable

samples while 12 of them are false positives; WAP reported totally 13 vulnerable samples

while 2 of them are false positives.

4 16 64 256 1024
Number of Branches Statement Analyzed (Log2)

0

25

50

75

100

125

150

175

M
em

or
y

Fo
ot

pr
in

t o
f t

he
 G

ra
ph

 (M
B)

Figure 6.4: Distribution of the Memory Footprint

95

Sy
st

em
L

oa
di

ng
(s

)
Q

ue
ry

(s
)

N
ew

Sy
st

em
U

Fu
zz

er
U

C
he

ck
er

R
IP

S
W

A
P

D
et

ec
tio

n
ad

s-
ez

25
.4

0.
11

4
6

6
6

6
N

ew
cl

as
sy

fr
ie

ds
39

.8
0.

57
4

(C
V

E
-2

02
1-

24
25

2)
6

6
4

4
N

ew
co

lle
ge

-p
ub

lis
he

r-
im

po
rt

3.
88

0.
33

4
(C

V
E

-2
02

1-
24

25
3)

4
6

4
6

N
ew

em
ai

l-
ar

til
le

ry
15

.3
0.

1
4

(C
V

E
-2

02
1-

24
49

0)
4

4
4

6
N

ew
fil

ev
ie

w
er

1.
5

0.
08

4
(C

V
E

-2
02

1-
24

49
1)

.
4

6
4

6
N

ew
fo

rm
i-

fo
rm

-b
ui

ld
er

3.
66

0.
3

4
4

4
4

4
N

ew
go

og
le

-a
na

ly
tic

s-
cl

ie
nt

1.
72

0.
09

4
4

6
4

4
N

ew
im

ag
e-

tw
in

ni
ng

1.
7

0.
1

4
4

6
4

6
N

ew
ad

ve
rt

-m
an

ag
er

-p
lu

gi
n

0.
31

0.
06

4
4

4
4

4
N

ew
ra

d-
dr

op
bo

x-
up

lo
ad

er
1.

56
0.

34
4

4
6

4
6

N
ew

ra
d-

te
xt

-h
ig

hl
ig

ht
er

1.
5

0.
09

4
4

6
4

6
N

ew
sc

ro
ll-

ba
ne

r
0.

87
0.

09
4

(C
V

E
-2

02
1-

24
64

2)
6

6
4

6
N

ew
si

m
pl

e-
sc

ho
ol

s-
st

af
f-

di
re

ct
or

y
42

.7
5

0.
13

4
(C

V
E

-2
02

1-
24

66
3)

4
6

4
6

N
ew

da
ily

-d
iff

er
en

t-
co

rn
er

-b
an

d
0.

67
0.

3
4

4
6

4
6

N
ew

Te
st

im
on

ia
ls

K
in

g
L

ig
ht

0.
1

6.
55

0.
39

4
4

6
6

6
K

no
w

n
W

P-
C

ur
ri

cu
lo

V
ita

e
Fr

ee
6.

1
19

.6
3

0.
3

4
4

(C
V

E
-2

02
1-

24
22

2)
6

6
6

K
no

w
n

E
as

y
Fo

rm
B

ui
ld

er
1.

0
1.

68
0.

25
4

4
(C

V
E

-2
02

1-
24

22
4)

4
6

6
K

no
w

n
im

ag
em

en
ts

1.
2.

5
0.

59
0.

08
4

4
(C

V
E

-2
02

1-
24

23
6)

4
6

6
K

no
w

n
E

ve
nt

B
an

ne
r1

.3
2.

3
0.

16
4

4
(C

V
E

-2
02

1-
24

25
1)

6
4

6
K

no
w

n
Q

ui
ck

Im
ag

e
Tr

an
sf

or
m

1.
0.

1
0.

67
0.

09
4

4
6

6
6

K
no

w
n

B
SK

Fi
le

s
M

an
ag

er
1.

0.
0

0.
8

0.
33

4
4

6
6

6
K

no
w

n
G

al
le

ri
o

1.
0.

1
14

.6
7

2.
28

4
6

4
6

6
K

no
w

n
B

an
ne

rC
yc

le
r1

.4
1.

91
0.

09
4

4
6

4
6

K
no

w
n

N
5

U
pl

oa
d

Fo
rm

1.
0

6
4

(C
V

S-
20

21
-2

42
23

)
6

6
6

K
no

w
n

Ta
bl

e
6.

3:
D

et
ec

tio
n

R
es

ul
ts

.O
ur

sy
st

em
de

te
ct

ed
26

ou
to

f2
7

kn
ow

n
vu

ln
er

ab
le

sc
ri

pt
s.

It
de

te
ct

ed
14

un
re

po
rt

ed
vu

ln
er

ab
le

pl
ug

in
s.

96

6.6.1 Performance

Figure 6.4 presents the distribution of the peak memory consumption for each application.

These measures demonstrated UGraph’s great performance. Specifically, although the gen-

erated dependency graphs are considerably large, the vast majority of analyses (i.e., more

than 89%) are done within 30 second and all applications resulted in less than 100 MB of

maximal memory consumption as presented in Table 6.3.

6.6.2 New Vulnerable Examples

Classyfrieds is a WordPress plugin that provides a classifieds system for its user and allows

users having admin privilege account to upload image file such as .gif, .jpeg, .jpg, or .png.

As presented in listing 6.6 The developer seems aware of the file type sanitization and

add a filter to abort any uploading action if it submits a non-image file. However, the

added filter to only investigates the type of the uploaded file, $ FILES[′foto′][′type′],

which is the type of the file derived from the client’s request. Because an attacker have

complete control the browser, she can upload a executable PHP script and instruct the

browser to change the $ FILES[′foto′][′type′] to ’image/gif’, successfully bypassing the

filter. UGraph successfully queries the control flow of the moveuploadedf ile() without

being tainted by $ FILES[′∗′][′name′], and the $ FILES[′∗′][′name′] tainted the data

flow.

1 <?php

2 if ($_FILES['foto']['error '] == "0") {

3 if (($_FILES['foto']['size'] < 2000000) &&

4 ($_FILES['foto']['type'] == 'image/gif' ||

5 $_FILES['foto']['type'] == 'image/jpeg' ||

6 $_FILES['foto']['type'] == 'image/jpg' ||

7 $_FILES['foto']['type'] == 'image/png')

8) {

9 move_uploaded_file($_FILES["foto"]["tmp_name"],

97

10 "/classyfrieds/" . /*...*/ .

11 str_replace(" ", "-", $_FILES["foto"]["name"]));

12

13 } else {

14 $error .= $cfl[nopic];

15 }

16 }

Listing 6.6: Vulnerable Code in Classyfrieds

Ads EZ Lite is a plugin in WordPress. It provides a personal and powerful Ad server for

the user and supports the simplest possible way to serve the ads to multiple web pages.

The plugin intends to support an interface to receive the uploading images and tries to

validate the uploading files but a misused API ”getimagesize()” rooted the vulnerability

of arbitrary file upload as presented in Listing 6.7. This API have cautioned by the PHP

official manual [2] that it only can be used for obtaining the information of an image file

rather than checking whether a given file is a valid image or not. a ”.php” file can be

uploaded without any restriction. UGraph detected this vulnerable program successfully.

1 <?php

2 $ds = DIRECTORY_SEPARATOR;

3 $targetPath = dirname(dirname(__DIR__)) . $ds . "banners" . $ds;

4 if (!empty($_FILES)) {

5 $tempFile = $_FILES['file']['tmp_name '];

6 if (getimagesize($tempFile) === false) {

7 http_response_code (400);

8 $error = "{$_FILES['file ']['name ']}: Not allowed.";

9 die($error);

10 }

11 $targetFile = $targetPath . $_FILES['file']['name'];

12 if (!@move_uploaded_file($tempFile , $targetFile)) {

13 http_response_code (400);

14 die(/*...*/);

15 }

16 }

Listing 6.7: Vulnerable Code in Classyfrieds

98

6.7 Related Work

Static program analysis has been widely used to detect variety of vulnerabilities in server-

side web programs [54, 21, 60, 46, 15, 9, 44, 50, 14]. These methods uses various strategies

such as signature matching, symbolic execution, and taint analysis.

For example, Staicu et. al [50] leverages pre-defined templates to detect Node.js ap-

plications vulnerable to injection attacks that exploit exec or eval APIs. However, such

method requires templates to be predefined at the AST level, thereby limiting its adaption

to variant and new vulnerabilities.

A few methods [44] including ours [22] take advantage of symbolic execution, where

they first model conditions to exploit vulnerabilities as symbolic constraints and evaluate

these constraints using automated solvers [17]. These methods tend to be sound. However,

they cannot always use SMT solvers to model web programming languages since web

programming languages are usually dynamic typing and SMT solver languages are static.

Therefore, certain programs cannot be completely modeled, introducing false negatives. In

addition, symbolic execution is computationally expensive, inherently suffering from path

explosion.

Other systems mainly leverage taint analysis, same to our system, detecting vulnera-

bilities through tracing how untrusted data influences sensitive APIs. For example, Dahse

et. al [15] designed a system to detect SQL injections and XSS using data flow analysis.

Barth et. al [9] designed a system to detect XSS attacks by analyzing the structure of

the content submitted to the server. Unfortunately, none of these methods intends to deliver

an intuitive, reusable language model that can be efficiently used to build new applications.

Dahse et. al [14] proposed block and function summaries to detect taint-style vul-

nerabilities. This work is closest to ours. However, their work drastically differs from

UGraph in multiple perspectives. First, their method processes SSA-based IR, thereby

causing information loss fo the source code. In contrast, UGraph performs analysis di-

99

rectly on program AST, enabling one-to-one mapping between the source code and the

graph model. Second, their method leverages compositional strategy to perform whole pro-

gram analysis, where function summaries are individually generated and later integrated for

taint analysis. Comparatively, UGraph directly performs context-sensitive, whole program

analysis, which is more precise. Finally, our model is graph-based, enabling more intuitive

and efficient analyses by translating them into graph operations.

6.8 Discussion

Although UGraph is currently implemented to analyze server-side web programs written

in PHP, it can be easily extended to support other programming languages. One will only

need to extend the interpreter to process AST with new syntax. The Neo4j query can be

readily reused by changing names of APIs and super global variables.

The current implementation of UGraph has a few limitations. First, UGraph lever-

ages a misuse-based detection paradigm and it needs rules to perform detection. Nev-

ertheless, it generates intuitive graph-based program models that are further represented

by graph database models. As a consequence, detection rules could be implemented as

Cypher queries with extremely low cost. In addition, our proposed graph models show

great promise to support statistical analysis, which falls into our future works. Second,

UGraph ’s interpreter does not cover all language features of PHP. For example, it does

not precisely model loops. As a consequence, scripts analyzed by our system might be

incomplete, leading to detection inaccuracy. A potential solution is to integrate dynamic

analysis to access all executables produced at runtime.

Finally, loading the dependency graph to Neo4j account for the vast majority of the

analysis time. Its performance can be further improved using potential solutions such as

Neo4j causal cluster with Apache Spark.

100

6.9 Summary

We have built a novel system to automatically detect vulnerable PHP-based web programs.

it generates graph models by interpreting abstract syntax trees of PHP source code. These

graph models are further represented in the graph database, Neo4j. Vulnerability detection

algorithms have been developed as declarative rules that lead to provable accuracy. Ex-

periments have demonstrated that our system detected 14 vulnerable web applications that

have not been publicly reported and received 6 CVEs.

101

Chapter 7: Conclusion

In this dissertation, we present two graph-based models for PHP programming language

and implement three systems, i)UChecker, ii)UFuzzer, and iii) a novel system discussed in

chapter 6, to detect unrestricted file upload vulnerability in PHP-based web applications by

using three complementary methods. Our first graph-based model is heap graph that is a

intermediate representation (IR) of PHP programs that models symbolic execution results

of a program along all paths towards a given statement. On the basis of the heap graph,

we implement our first detection system, namely UChecker, to automatically detect PHP-

based web programs with unrestricted file upload vulnerabilities. By leveraging the SMT

solver, UChecker verifies the model of vulnerability constraints and detects three vulnera-

ble web applications that didn’t have been reported. But the gap between the PHP-based

statement and SMT solver is the barrier for the batch analysis. To bridge this gap, we

integrate the static analysis with fuzzing as a static-fuzzing co-analysis in our second sys-

tem, namely UFuzzer, to detect the unrestricted file upload vulnerabilities. UFuzzer detects

31 new vulnerable services that have not been publicly reported and contributes 5 CVEs.

Although we have demonstrated the effectiveness of the heap graph, the path explosion

is the most significant challenge that limited the scalability of our detection system. Our

second graph-based model mitigates this challenge by using a novel model. We name it

dependency graph. Taking advantage of this model, we established the third vulnerability

detection system. In this system, we use an industry-level graph database, Neo4j, to rep-

resent the objects of the dependency graph and query the PHP program’s pattern by using

102

Cypher query language. The system detected 14 vulnerable unreported web applications

and contributed 6 CVEs. In summary, each of these systems has its pros and cons and

leverages altered methods to complement the detection of the unrestricted file uploaded

vulnerabilities on PHP-based server-side web applications.

103

Bibliography

[1] Wp demo buddy 1.0.2. https://wordpress.org/plugins/wp-demo-buddy. [On-

line; accessed 05-Dec-2018].

[2] getimagesize. https://www.php.net/manual/en/function.getimagesize.php,

accessed on July 17, 2021.

[3] DSN 2019. The 49th ieee/ifip international conference on dependable systems and

networks, 2019.

[4] RAID 2021. The 24th international symposium on research in attacks, intrusions and

defenses, 2021.

[5] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey

of machine learning for big code and naturalness. ACM Comput. Surv., 51(4), July

2018.

[6] Oxana Andreeva, Sergey Gordeychik, Gleb Gritsai, Olga Kochetova, Evgeniya Pot-

seluevskaya, Sergey I Sidorov, and Alexander A Timorin. Industrial control systems

vulnerabilities statistics. Kaspersky Lab, Report, 2016.

[7] I. Andrianto, M. M. I. Liem, and Y. D. W. Asnar. Web application fuzz testing. In

2017 International Conference on Data and Software Engineering (ICoDSE), pages

1–6, 2017.

104

https://wordpress.org/plugins/wp-demo-buddy
https://www.php.net/manual/en/function.getimagesize.php

[8] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and

Michael D Ernst. Finding bugs in dynamic web applications. In Proceedings of

the 2008 international symposium on Software testing and analysis, pages 261–272.

ACM, 2008.

[9] A. Barth, J. Caballero, and D. Song. Secure content sniffing for web browsers, or how

to stop papers from reviewing themselves. In 2009 30th IEEE Symposium on Security

and Privacy, pages 360–371, May 2009.

[10] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three

decades later. Communications of the ACM, 56(2):82–90, 2013.

[11] Davide Canali and Davide Balzarotti. Behind the scenes of online attacks: an analysis

of exploitation behaviors on the web. In 20th Annual Network & Distributed System

Security Symposium (NDSS 2013), pages n–a, 2013.

[12] CISOMAG. 76% security professionals face cybersecurity skills shortage: Reporte.

[13] Wikipedia contributors. Unrestricted file upload, 2018. [Online; accessed 22-July-

2018].

[14] Johannes Dahse and Thorsten Holz. Simulation of built-in php features for precise

static code analysis. In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[15] Johannes Dahse and Thorsten Holz. Static detection of second-order vulnerabilities

in web applications. In USENIX Security Symposium, pages 989–1003, 2014.

[16] Johannes Dahse and Jörg Schwenk. Rips-a static source code analyser for vulnera-

bilities in php scripts. In Seminar Work (Seminer Çalismasi). Horst Görtz Institute

Ruhr-University Bochum, 2010.

105

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340. Springer, 2008.

[18] dimdavid. File provider 1.2.3, 2017. [Online; accessed 30-July-2018].

[19] F. Duchene, R. Groz, S. Rawat, and J. Richier. Xss vulnerability detection using

model inference assisted evolutionary fuzzing. In 2012 IEEE Fifth International Con-

ference on Software Testing, Verification and Validation, pages 815–817, 2012.

[20] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at

http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006.

[21] Wassermann Gary and Zhendong Su. Static detection of cross-site scripting vulnera-

bilities. In 2008 ACM/IEEE 30th International Conference on Software Engineering,

pages 171–180. IEEE, 2008.

[22] J. Huang, Y. Li, J. Zhang, and R. Dai. Uchecker: Automatically detecting php-based

unrestricted file upload vulnerabilities. In 2019 49th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 581–592, 2019.

[23] J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai. Ufuzzer: Lightweight detection of

php-based unrestricted file upload vulnerabilities via static-fuzzing co-analysis. In

2021 24th International Symposium on Research in Attacks, Intrusions and Defenses

(RAID), 2021.

[24] 2014) Kali.org.(February 18. Wfuzz package description. http://tools.kali.org/web-

applications/wfuzz.

[25] Taekjin Lee, Seongil Wi, Suyoung Lee, and Sooel Son. Fuse: Finding file upload bugs

via penetration testing. In 2020 Network and Distributed System Security Symposium.

Network & Distributed System Security Symposium, 2020.

106

[26] L. Li, Q. Dong, D. Liu, and L. Zhu. The application of fuzzing in web software secu-

rity vulnerabilities test. In 2013 International Conference on Information Technology

and Applications, pages 130–133, 2013.

[27] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. A

dpll (t) theory solver for a theory of strings and regular expressions. In International

Conference on Computer Aided Verification, pages 646–662. Springer, 2014.

[28] Ibéria Medeiros, Nuno Neves, and Miguel Correia. Detecting and removing web

application vulnerabilities with static analysis and data mining. IEEE Transactions

on Reliability, 65(1):54–69, 2016.

[29] Justin J Miller. Graph database applications and concepts with neo4j. In Proceedings

of the Southern Association for Information Systems Conference, Atlanta, GA, USA,

volume 2324, 2013.

[30] Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan. An empirical

study of static call graph extractors. ACM Transactions on Software Engineering and

Methodology (TOSEM), 7(2):158–191, 1998.

[31] Paulo Nunes, Ibéria Medeiros, José C Fonseca, Nuno Neves, Miguel Correia, and

Marco Vieira. Benchmarking static analysis tools for web security. IEEE Transactions

on Reliability, 67(3):1159–1175, 2018.

[32] Patrick. Unrestricted file upload (rce), 2018. [Online; accessed 22-July-2018].

[33] Andrey Petukhov and Dmitry Kozlov. Detecting security vulnerabilities in web ap-

plications using dynamic analysis with penetration testing. Computing Systems Lab,

Department of Computer Science, Moscow State University, pages 1–120, 2008.

[34] Nikita Popov. Php fuzzer. URl: https://github.com/nikic/PHP-Fuzzer (visited on

2020-12-09).

107

[35] Nikita Popov. Php parser. URl: https://github. com/nikic/PHP-Parser (visited on

2014-03-28), 2014.

[36] PortSwigger.(n.d). Burp suite. http://portswigger.net/burp/, accessed on April 15,

2020.

[37] Ajay Randhawa. User-management-php-mysql, 2018.

[38] CVE Report. Unrestricted file upload vulnerability in the avatar uploader module

before 6.x-1.3, 2018. [Online; accessed 30-July-2018].

[39] CVE Report. Unrestricted file upload vulnerability in the joomla content editor, 2018.

[Online; accessed 30-July-2018].

[40] Imam Riadi and Eddy Irawan Aristianto. An analysis of vulnerability web against at-

tack unrestricted image file upload. Computer Engineering and Applications Journal,

5(1):19–28, 2016.

[41] Darius S. How to protect site from malware upload by file upload form.

https://blog.threatpress.com/protect-site-malware-upload/, 2018.

[42] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.

IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[43] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie

Hendren. Automated repair of html generation errors in php applications using string

constraint solving. In 2012 34th International Conference on Software Engineering

(ICSE), pages 277–287. IEEE, 2012.

[44] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and

Dawn Song. A symbolic execution framework for javascript. In Security and Privacy

(SP), 2010 IEEE Symposium on, pages 513–528. IEEE, 2010.

108

[45] WordPress Security Scanner. Wordpress vulnerability database.

[46] Sooel Son and Vitaly Shmatikov. Saferphp: Finding semantic vulnerabilities in php

applications. In Proceedings of the ACM SIGPLAN 6th Workshop on Programming

Languages and Analysis for Security, PLAS ’11, pages 8:1–8:13, New York, NY,

USA, 2011. ACM.

[47] Sourceforge.(n.d). Jbrofuzz. https://sourceforge.net/projects/jbrofuzz/, accessed on

April 15, 2020.

[48] Sourceforge.(n.d). Wapiti. https://wapiti.sourceforge.io/, accessed on April 15, 2020.

[49] Beth Stackpole. Covid-19 attacks continue and new threats on the rise.

[50] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. Synode: Under-

standing and automatically preventing injection attacks on node. js. In Network and

Distributed System Security (NDSS), 2018.

[51] Nasir Uddin and Mohammad Jabr. File upload security and validation in context of

software as a service cloud model. In IT Convergence and Security (ICITCS), 2016

6th International Conference on, pages 1–5. IEEE, 2016.

[52] w3af. (n.d.). w3af - open source web application security scanner. http://w3af.org/,

accessed on April 15, 2020.

[53] Liu Qiang Wang Chunlei, Liu Li. Automatic fuzz testing of web service vulnerability.

IET Conference Proceedings, pages 1.035–1.035(1), January 2014.

[54] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications

for injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages 32–41. ACM,

2007.

109

[55] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura,

and Zhendong Su. Dynamic test input generation for web applications. In Proceed-

ings of the 2008 international symposium on Software testing and analysis, pages

249–260. ACM, 2008.

[56] Brad Williams, David Damstra, and Hal Stern. Professional WordPress: design and

development. John Wiley & Sons, 2015.

[57] Brad Williams, Ozh Richard, and Justin Tadlock. Professional WordPress Plugin

Development. Wrox Press Ltd., 2011.

[58] williewonka. Imagements, 2012.

[59] WordPress.org. sanitize file name. URl:https://developer.wordpress.org/

reference/functions/, accessed on April 15, 2020.

[60] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting

languages. In USENIX Security Symposium, volume 15, pages 179–192, 2006.

[61] Yunhui Zheng and Xiangyu Zhang. Path sensitive static analysis of web applications

for remote code execution vulnerability detection. In Software Engineering (ICSE),

2013 35th International Conference on, pages 652–661. IEEE, 2013.

[62] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: a z3-based string solver

for web application analysis. In Proceedings of the 2013 9th Joint Meeting on Foun-

dations of Software Engineering, pages 114–124. ACM, 2013.

110

URl: https://developer.wordpress.org/reference/functions/
URl: https://developer.wordpress.org/reference/functions/

	Detecting Server-Side Web Applications with Unrestricted File Upload Vulnerabilities
	Repository Citation

	Abstract
	Chapter 1: Introduction
	Chapter 2: Background and Related Work
	Background
	Related Work

	Chapter 3: Heap Graph
	Heap Graph Definition
	Operations for Heap Graph
	AST-Based Interpretation
	Assigning Symblic Values

	Chapter 4: Automatically Detecting PHP-Based Unrestricted File Upload Vulnerabilities – UChecker
	Motivation
	System Design
	Vulnerability-Oriented Locality Analysis
	Vulnerability Modeling
	Z3-Oriented Constraint Translation

	Evaluation
	Ground-Truth-Available Experiments
	Identifying New Vulnerable PHP Applications
	Comparison With Other Detection Solutions

	Discussion
	Summary

	Chapter 5: Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis – UFuzzer
	Motivation
	System Design
	Taint Analysis
	Graph Refactoring With Symbolic Values
	Deriving Executable Expressions for The Reachability Constraint and The File Name
	Generate Fuzzing Templates
	Executing a Fuzzing Template
	Executing a Fuzzing Template

	Evaluation
	Ground-Truth-Available Evaluation
	Detecting New Vulnerable PHP Applications

	Discussion
	Summary

	Chapter 6: Mining Vulnerabilities in PHP-Based Web Programs Using Graph Models – UGraph
	Motivation
	System Design
	Dependency Graph
	Definition
	An Example Dependency Graph
	Graph-Driven Information Flow Analysis

	AST-Base Symbolic Interpretation
	Interpreter

	Vulnerability Detection
	Representing and Analyzing Dependency Graphs Using Cypher Query Language
	Detection Rules

	Evaluation
	Performance
	New Vulnerable Examples

	Related Work
	Discussion
	Summary

	Chapter 7: Conclusion
	Bibliography

