
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

Automatically Generating Searchable Fingerprints For WordPress Automatically Generating Searchable Fingerprints For WordPress

Plugins Using Static Program Analysis Plugins Using Static Program Analysis

Chuang Li
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Li, Chuang, "Automatically Generating Searchable Fingerprints For WordPress Plugins Using Static
Program Analysis" (2022). Browse all Theses and Dissertations. 2605.
https://corescholar.libraries.wright.edu/etd_all/2605

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2605?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

AUTOMATICALLY GENERATING
SEARCHABLE FINGERPRINTS FOR

WORDPRESS PLUGINS USING STATIC
PROGRAM ANALYSIS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

by

CHUANG LI
B.E., Xi’an University, China, 2018

2022
Wright State University

Wright State University
 GRADUATE SCHOOL

April 27, 2022

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Chuang Li ENTITLED Automatically Generating Searchable Fingerprints for
WordPress Plugins Using Static Program Analysis BE ACCEPTED IN PARTIAL FUL-
FILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.

Junjie Zhang, Ph.D.
Thesis Director

Michael Raymer, Ph.D.
Chair, Department of Computer

Science and Engineering

Committee on Final Examination:

Junjie Zhang, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Bin Wang, Ph.D.

Barry Milliagan, Ph.D.
Vice Provost for Academic Affairs
Dean of the Graduate School

ABSTRACT

Li, Chuang. M.S., Department of Computer Science, Wright State University, 2022. Automatically
Generating Searchable Fingerprints For WordPress Plugins Using Static Program Analysis.

This thesis introduces a novel method to automatically generate fingerprints for Word-

Press plugins. Our method performs static program analysis using Abstract Syntax Trees

(ASTs) of WordPress plugins. The generated fingerprints can be used for identifying these

plugins using search engines, which have support critical applications such as proactively

identifying web servers with vulnerable WordPress plugins. We have used our method to

generate fingerprints for over 10,000 WordPress plugins and analyze the resulted finger-

prints. Our fingerprints have also revealed 453 websites that are potentially vulnerable.

We have also compared fingerprints for vulnerable plugins and those for vulnerability-free

plugins.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 Load Plugins in WordPress . 2
1.2.2 Hooks in WordPress . 3
1.2.3 Action Hooks . 4
1.2.4 Abstract Syntax Tree . 6

1.3 Goals and Challenges . 6
1.4 Organization . 7

2 Related Work 8
2.1 Creating Semantic Fingerprints for Web Documents 8
2.2 Patcher . 9
2.3 Anomaly Detection Using Negative Security Model 9

3 Design 10
3.1 System Structure . 10
3.2 Detailed AST Analysis . 11
3.3 Generate Fingerprints with Regular Expression 15
3.4 Fingerprints Types . 16

4 Experiments 17
4.1 Dataset . 17
4.2 Evaluating The Similarity of Generated Fingerprints 17
4.3 Applications of Fingerprints . 19
4.4 Result Verification . 21
4.5 Vulnerable Plugin Example . 23
4.6 Searching Vulnerable Plugins . 24

4.6.1 Upload . 24
4.6.2 Cross-Site Scripting . 24
4.6.3 SQL Injection . 25
4.6.4 Bypass . 26

iv

4.7 Result Analysis . 27

5 Discussion 29

6 Conclusion 31

Bibliography 32

v

List of Figures

1.1 The Loading Process of WordPress Plugins 3
1.2 How Customized Functions Makes Changes to Page Content via Hooks . . 4

3.1 Architecture of System . 10
3.2 Save User-defined Functions as Key-value Pairs 11
3.3 Save Functions That Are Called by Default Hooks 12
3.4 Save Functions That Are Called by Default Hooks 13
3.5 AST Analysis-3 . 14
3.6 Sample of Regular Expression Match . 15

4.1 CDF of Fingerprints Percentage . 18
4.2 Fingerprints for ”whats-new-popup-generator” 19
4.3 A Screenshot of Using NerdyData . 20
4.4 A Screenshot of Searched Website . 22
4.5 CDF of Fingerprints Numbers in Regular Plugins 27
4.6 CDF of Fingerprints Numbers in Vulnerable Plugins 27

vi

List of Tables

4.1 Result for “what-new-popup-generator” from NerdyData, Date 03/09/2022 20
4.2 Result for Plugin “wp-curriculo-vitae” from NerdyData 4/09/2022 23
4.3 Result for Vulnerable Plugins (upload) from NerdyData Date 03/09/2022 . 24
4.4 Result for Vulnerable Plugins (Cross-Site Scripting) from NerdyData Date

03/09/2022 . 25
4.5 Result for Vulnerable Plugins (SQL injection) from NerdyData Date 03/09/2022 25
4.6 Result for Vulnerable Plugins (Bypass) from NerdyData Date 04/11/2022 . 26
4.7 Fingerprints Numbers Comparison . 28

5.1 Vulnerable Plugins Evaluation Results . 29

vii

Listings

4.1 Partial HTML of a Sample Web . 19
4.2 Partial Source Code from ”what-new-popup-generator” 21

viii

Acknowledgment
I want to take this chance to express my sincere appreciation to my advisor, Dr. Junjie

Zhang. The completion of this thesis and my dissertation would not have been possi-

ble without his support and nurturing. His extensive knowledge and insight have been

invaluably helpful in my study. I would like to thank my colleague Dr. Jin Huang,

who has extended a great amount of assistance in my work. I would also like to thank

Dr.Krishnaprasad Thirunarayan and Dr. Bin Wang for taking their time to evaluate my

work. I am very thankful to my family for always supporting me in my long-term educa-

tion career.

ix

Introduction

We propose a system to generate fingerprints for WordPress plugins that can be used

as searchable keys to finding what websites have installed the respective plugin (s). Our

system makes use of syntax analysis, to analyze functions that generate the front-end con-

tent including HTML tags, themes, and JavaScript from the source code, then abstract the

outcomes with regular expressions to generate fingerprints for every scanned plugin. We

later use these fingerprints to search through web crawlers and find involved websites, es-

pecially vulnerable webs. Then we verify the correctness of those results and analyze the

distribution and pattern of our fingerprints in vulnerable plugins compare to regular plugins.

1.1 Motivation

WordPress is one of the most common and popular content management system (CMS)

tools in the world, used by more than 40 percent of the top 10 million websites as of May

2021 [1]. What makes WordPress so popular is the ease with which users can do customiza-

tion and extension through WordPress plugins [2]. However, such popularity has also made

it a significant target for web attackers, a single vulnerable WordPress plugin could lead to

a variety of attacks and unexpected losses to web owners. Besides, the WordPress plugin

itself may expose the information of the current plugin to the external world. That informa-

tion, including HTML tags of the plugin, the current version of the plugin and JavaScript,

and the full path of the plugin on the server, could potentially be collected by attackers and

lead to other more severe problems once there are vulnerabilities exposed in those plugins.

1

It is, therefore, necessary to check WordPress plugins and see what information will be

exposed, then use that information to find what websites have installed vulnerable plugins.

However, manually extracting the random front-end content from webs could be tough,

especially when handling large search works. For this purpose, we have built a system, that

can automatically scan plugins and produce easily searchable fingerprints for them.

1.2 Background

Before illustrating the detailed design of the system, we would like to discuss how

plugins work on WordPress websites and what factors are important for analyzing the front-

end behavior of plugins.

1.2.1 Load Plugins in WordPress

Briefly speaking, a plugin is an application programming interface (API), WordPress

features various APIs for use. Every API supports users to interact with WordPress in

different ways [2]. One of the very commonly used APIs is the plugin. The plugin provides

a set of hooks, that enable functions to access different sections of WordPress. Hooks are

special functions in WordPress, that allow users to execute their customized functions of a

plugin at some very points during the loading of the website. For instance, a developer can

write a function to display a welcome message after a user logs into the website, then use

hooks to attach that function to the web.

2

Figure 1.1: The Loading Process of WordPress Plugins

Figure 1.1 presents a brief loading process of WordPress website. When visiting a

WordPress website, after the web URL is called, some core functions in ‘wp-config.php’

are loaded, then it will go through the current plugin folder to load all active plugins.

After that, WordPress will start loading themes, in the process of loading themes, a variety

of customized functions from the active plugins will be called through hooks to do their

corresponding works to the front-end page. For example, display some customized themes

or enqueue scripts to the page content.

1.2.2 Hooks in WordPress

When loading a WordPress page, before HTML is returned to the client, WordPress

goes through some code that determines what the client-side needs to see. During this

process, hooks are executed. The plugin adds required callback functions for every hook in

a queue, based on the order of their priority. When a hook gets triggered, it calls all callback

functions that are attached to that hook. Then all the resulting HTML and CSS make up

what is ultimately returned to the browser and seen by the users. From the perspective of

3

the WordPress front-end page, three hooks are virtually required in any theme because most

plugins use them. [3] Although two of those hooks, ’wp head()’ and ’wp footer()’, look

like function calls, buried underneath the function are hooks. ‘wp head()’ and ‘wp footer’

are very popular for developers who want to add some customized themes to the head or the

foot on their page. The third one is ‘comment form’, positioned in the WordPress comment

form and commonly used when developers need to customize the comment section.

1.2.3 Action Hooks

These three hooks: ‘wp head()’ ,‘wp footer()’ and ‘comment form’, are loaded by de-

fault when a WordPress page runs. Besides, these hooks need further action hooks to call

functions with them to customize the page. As shown in Figure 1.2, the underline in red

marks the front-end default hooks, and the underline in black marks action hooks that con-

nect the customized functions with the front-end default hooks. Next, we introduce three

action hooks that are significant to us in analyzing the front-end behavior of WordPress

plugins.

Figure 1.2: How Customized Functions Makes Changes to Page Content via Hooks

4

• ’add action’: Many hooks are called by the ‘add action()’ function, in the most basic

case, ‘add action()’ takes two arguments. The first argument is the hook name, for

example, ‘wp head’. The second argument is the callback function that passes to

the first hook, for example, ‘my function’, is a string that presents the name of the

function. Mostly, the second argument is a customized function written by users in a

plugin [4].

• ’add shortcode’: Shortcodes in WordPress are added by inserting a tag in brackets to

the content editor. For example, a ‘display’ shortcode in WordPress is written like:

[display]. When the content of the post is parsed, shortcodes are extracted and related

functions are triggered in their place [3]. Similar to ‘add action()’, ‘add shortcode()’

also takes two arguments, the first argument refers to the shortcode tag and the sec-

ond argument refers to the customized callback function. Continue with the [dis-

play] example, in the source code, it will be written as ’add shortcode (‘display’,

‘function display’)’, where ‘function display’ is the name of the callback function.

• ’wp enqueue scripts’: WordPress supports developers to add style sheets and JavaScript

files dynamically by using a simple function hook—’wp enqueue scripts()’ [3].

‘wp enqueue scripts()’ takes multiple parameters, including the name of the script,

the full URL of the script, script dependencies, and the current version information.

Among those parameters, the most significant two are the script name and script full

URL, because they will display the current JavaSript version to the browser which

also includes the full path of the plugin in the URL.

Therefore, by analyzing the customized functions that are called back through these

action hooks, we will be able to determine what information a plugin will display to the

client-side.

5

1.2.4 Abstract Syntax Tree

We have designed the system to perform static analysis by leveraging an abstract syn-

tax tree (AST) derived from WordPress plugins. The source code of plugins will be parsed

into ASTs through PHP Parser, a library that takes PHP source code and analyzes the code

with a lexical analyzer, then generate its corresponding syntax tree. [5]

1.3 Goals and Challenges

There are three general goals that we wish to accomplish with our system. First, the

system needs to produce fingerprints automatically without extra manual costs. Besides, the

system is expected to be highly scalable considering the increasing growth number of new

WordPress plugins and potential vulnerabilities. Last, the fingerprints, generated by the

system, are supposed to be able to precisely identify the respective plugin. Consequently,

as discussed above, there are three main challenges in building this system, automation,

scalability, and effectiveness. To overcome these challenges, we have made the following

contributions:

• We designed the system to analyze the Abstract syntax tree of the plugins, the tree

structure allows us to create a recursive analysis technique that readily overcomes

the constraints of dealing with program scope diversity and variable repetition in all

potential conditional outcomes.

• By recursively analyzing the AST, if further new plugins need to be analyzed, we just

simply add new conditions to the core function without making any other changes,

hence keeping the scalability of the system.

• For every set of fingerprints generated by our system, we compared the Intersection

over Union for every two sets of them and proved their effectiveness.

6

1.4 Organization

We have described the motivation, background, and goals in this thesis. In Chapter

2, we will discuss other similar works which are related to this thesis and how our system

differs from them. Then in chapter 3, we introduce the detailed design of the system and

the approaches we have used to overcome the challenges in building the system. Chapter 4

introduces the experiments we have accomplished with the generated fingerprints. Chapter

5 discusses the weakness of our current system and potential approaches to solve them, and

finally, Chapter 6 concludes the overall thesis.

7

Related Work

According to Daniel et al., [6], the sensitivity of security scanner plugins in WordPress

to vulnerabilities in vulnerable plugins varies significantly, some plugins that are developed

as security scanners performed even more expressive than others in the reporting detected

vulnerable plugins. Although the WordPress core is considered relatively secure, a large

number of WordPress plugins are not safe. Besides, none of the security scanner plugins

tested in the study were able to appropriately address those vulnerabilities. Given the re-

porting result of the paper, WordPress is not only the most famous CMS in the world but

also possibly most attacked CMS tool.

On the other hand, several studies have also focused on scanning web applications.

Next, we will discuss some of the existed approaches as well as the difference between our

system and these tools.

2.1 Creating Semantic Fingerprints for Web Documents

Katrin et al. [7] introduced an approach to generate semantic fingerprints for web

documents. Their system generates semantic fingerprints by retrieving the web content in

the DOM tree. The system detects all nouns from the content using NLP methods and

discovers the stems of these words in the content, computes the term frequency tf, and

stores the distinct noun stems in a set K = k1,..., kn along with their computed tf value. The

list of terms, referred to as keywords, will be used as input for the algorithm later, then it

generates a semantic fingerprint. The fingerprint in this paper is represented as a graph that

8

illustrates the concepts and the relations of the respective resource.

2.2 Patcher

Patcher [8] is a web service platform that assists users in detecting and patching poten-

tial vulnerabilities. The tool takes two inputs, web application source code and attack pat-

terns that describe malicious strings for certain vulnerabilities. It uses static string analysis

and integrates the service front end with a 3D program visualization interface so that users

can access and examine the analyzed results as well as how vulnerabilities are patched.

However, Compared to our system, the way that Pacther detects vulnerabilities for webs is

relatively harder in use where it requires providing the malicious strings for every certain

vulnerability.

2.3 Anomaly Detection Using Negative Security Model

Auxilia et al.[9] proposed a negative security model based on web application misuse,

it supports a Web Application Firewall(WAF) engine that ensures vital protection through

different web architectures and allows HTTP traffic monitoring without modifications to

the current infrastructure. Unfortunately, although it could detect all kinds of common

attacks as an anomaly detection system, simultaneously, it will cause a high false-positive

rate.

9

Design

In this chapter, we introduce the design of our system and the approaches we have

used to accomplish our goals.

3.1 System Structure

Figure 3.1: Architecture of System

Figure 3.1 shows a general overview of our system, which illustrates 5 major steps.

• Parse Source Code with PHP-Parser: The original input of the system is a set of PHP

applications (WordPress plugins), the first step of our analysis is to parse the PHP

applications and then construct the Abstract Syntax Trees (ASTs) by PHP Parser.

• AST analysis-1: In the AST analysis-1, the system traverses the whole AST to get

all user-defined functions from the plugin, then saves them.

• AST analysis-2: In this phase, the system gets the action hooks, extracts the name of

the callback functions, and saves it.

10

• AST analysis-3: In the AST analysis-3, the system analyzes the results from the

previous two steps, gets ASTs of the custom functions that will be triggered through

the front-end action hooks, then save all these contents to an array.

• Generating Fingerprints with Regular Expression: In the last phase, our system han-

dles the unprocessed contents that are generated from the previous step with Perl-

Compatible Regular Expressions (PCRE) of PHP, then generate the searchable fin-

gerprints that can be easily used later.

3.2 Detailed AST Analysis

Figure 3.2: Save User-defined Functions as Key-value Pairs

As illustrated in the previous section, the system implements three times AST analy-

sis to get the expecting result. Figure 3.2 shows a brief process of AST analysis-1, after

11

getting AST (s) from PHP Parser, the system calls its main function ’eval node’ to start

the AST analysis. In the main function, the system recursively evaluates every node of

the AST by a switch statement, every case represents a node of the tree, if the current

node does not have any expected information, the system will call itself to evaluate the

next node, until there is no more next node, it will just return. When a node meets the

expected conditions, the system will then save it and return. All user-defined functions are

under node ’PhpParser\Node\Stmt\Function ’, its sub-node ’PhpParser\Node\Identifier’

has all the user-defined function names and ’[stmts]’ contains all the corresponding func-

tion statements. Then the system saves the user-defined function names as keys and their

corresponding statements as values into an array as key-value pairs.

Figure 3.3: Save Functions That Are Called by Default Hooks

In the phase of AST analysis-2, the system traverses the tree to check all the action

12

hooks. Figure 3.3 presents a simple example of saving expected function names from AST.

At the syntax level, action hooks are function calls, hence they are all represented under

the node of “Node\FuncCall”. The system checks the names of those function calls, if any

of them match with the three action hooks that we have discussed previously (‘add action’,

‘add shortcode’, ‘wp enqueue script’), the system continues to check whether their first

argument matches with the WordPress default theme hooks (‘wp head’, ‘wp footer’, ’com-

ment form’). If both conditions are satisfied, the second argument should be the name of a

callback function, the system saves them in an array for the next phase.

Figure 3.4: Save Functions That Are Called by Default Hooks

After the previous two phases, the system now has the key-value pair of user-defined

functions, as well as the name of functions that are called back by WordPress front-end de-

fault hooks. As shown in Figure 3.4, the system uses those called function names to traverse

the user-defined function key-value pairs, if a name matches a key, we pass the correspond-

ing value (statements) to the AST analysis-3 by calling the function ’eval func()’.

13

Figure 3.5: AST Analysis-3

In the AST analysis-3, the system will simply check if there are function calls that

will output any information to the front-end of the client-side, for example, HTML code,

JavaScript, and plain text.

As the example presented in Figure 3.5. ’PhpParser\Node\Stmt\Echo ’ presents the

function call ’Echo’ in AST, ’Echo’ does nothing but prints some contents. Similar to

’Echo’, ’Print’ is another function call that prints certain contents when executed, presented

as ’PhpParser\Node\Expr\Print ’ . Hence under these two conditions of the AST, the

system extracts those contents that will be output to the page for later to finally generate

fingerprints.

14

3.3 Generate Fingerprints with Regular Expression

Figure 3.6: Sample of Regular Expression Match

As shown in phase (5 of Figure 3.6, the system finally accomplishes regular expres-

sion to produce the fingerprints. The outcomes we have got from phase (4 are unprocessed

contents, they are either arbitrary plain texts or HTML tags, and they may contain unex-

pected information hence not easy to use. Consequently, the system simplifies the result by

using PHP PCRE functions. As shown in Figure 3.6, phase (1 is the original outcome from

AST analysis-3, we only extract the class names and IDs from phase (1 with regular ex-

pression, the result are shown in (2 of Figure 3.6. As we discussed in chapter 1, considering

the effectiveness of the system, the fingerprints should not contain duplicates, therefore, the

system next checks and removes all duplicates from the fingerprints and finally produce the

result as shown in (3.

15

3.4 Fingerprints Types

There are two general types of fingerprints, one of them are as presented in phase

(3 Figure 3.6, they are mainly from the branch of two action hooks, ‘add action’ and

‘add shortcode’. Another type of fingerprint is ‘wp enqueue scripts’, it contains nothing

but a single line of URL. For example, one WordPress plugin named ‘imagements’ uses

‘wp enqueue scripts’ to leverage some JavaScript to the page, which will result in a line of

code to the browser as:

<script src=”http://mywordpress/wp-content/plugins/imagements/js/form tag.js”.>

Since it is required to use a unique name for every plugin in WordPress, the URL in the

code above is sufficient to precisely identify the plugin ‘imagements’, and the system just

simply saves its name as a fingerprint. It seems unnecessary in the ’wp enqueue script’

branch since what the system has produced is just the plugin name, one could have simply

copied the plugin name for use rather than analyzing it. However, it is still very mean-

ingful because analyzing it significantly lowers the false negatives in detecting vulnerable

websites, especially when handling a large amount of searching work.

16

Experiments

In this chapter, we will discuss some experimental results that we have accomplished

with our system.

4.1 Dataset

To prove the functionality of our system, we have downloaded 45725 plugins from

WordPress’s official site and generated fingerprints for 10053 plugins with our system.

The current generating rate reached approximately 22 percent. As we discussed in chapter

3, this rate could be further improved by simply adding more filtering conditions to the

system. Besides, the 10053 sets of fingerprints are relatively sufficient for the current ex-

periments. On the other hand, we have collected 40 vulnerable plugins with verified CVEs

and generated the respective fingerprints for each of them, we will discuss the details of the

analysis in the following sections.

4.2 Evaluating The Similarity of Generated Fingerprints

It could be possible that the fingerprints are duplicated within two different plugins

and therefore not accurate to identify each of them. Consequently, we did a similarity

comparison by using the intersection of two sets of fingerprints divided by their union to

present their similarity. Figure 4.1 shows the distribution of similarities for 10053 analyzed

WordPress plugins, X-axis represents the similarity percentage and Y-axis represents their

17

probability, among more than 4.9 million times of comparisons, only 2470 times are 100

percent duplicated, the majority of similarity comparisons are lower than 5 percent. Hence

proved the accuracy and effectiveness of the fingerprints.

Figure 4.1: CDF of Fingerprints Percentage

18

4.3 Applications of Fingerprints

We have proved the fingerprints are in good effectiveness for identifying their plugins,

Now we introduce the experiments we have finished with fingerprints. First, we illustrate

an example of one set of fingerprints.

Figure 4.2: Fingerprints for ”whats-new-popup-generator”

Listing 4.1: Partial HTML of a Sample Web

1 <div class="popup_contents-overlay"></div>

2 <div class="popup_information_whats"></div><!-- information -->

3 <div class="popup_information_whats">

4 <div class="popup_information_close"><p><a ...

href="javascript:void(0);">Close</p></div>

5 <div class="popup_information_word">

6 <div class="popup_information_line">

7 ...

8 <div class="popup_info_whats_line"></div></div>

9 </div>

10 </div>

As shown above, Figure 4.2 is the fingerprints set of a plugin named “whats-new-

popup-generator”, we used those fingerprints as the keyword to search in the web crawler

to get the corresponding result. When we got the result from the data crawler, we visit the

listing webs and analyze their source code. Listing 4.1 is the front-end source code we have

19

copied from one of the webs we have got.

The data crawler we have used in searching has large WordPress websites source

code database and supports direct source code search, namely NerdyData. As presented in

Figure 4.3, we put all the tags of the signature using logic AND, hence we will get webs

with all those fingerprints in their front-end source code. The result for “whats-new-popup-

generator” is shown in Table 4.1.

Figure 4.3: A Screenshot of Using NerdyData

In Table 4.1, page rank represents the popularity of the websites based on the domain’s

backlinks, in verifying the results, we first verify if the websites are WordPress websites or

not, if it is, we continue to compare if the plugin’s interface is matched or there are some

functions in the client-side source code that are matched with in the plugin, then we mark

the result as verified.

Table 4.1: Result for “what-new-popup-generator” from NerdyData, Date 03/09/2022

Rank Domain WordPress page Prove of evidence

1 najapan.org yes Plugin functions matched

2 yozhizumikaihatsu.com yes Plugin functions matched

20

4.4 Result Verification

In the previous example of ”what-new-popup-generator”, we have found two websites

that have installed the tested plugin. However, further evidence is needed to prove the

result. As discussed in the previous section, we searched on the web crawler with the

fingerprints, if there are other functions that are matched to the plugin, then we can prove

the correctness of the result..

Listing 4.2: Partial Source Code from ”what-new-popup-generator”

1 <script type="text/javascript">

2 jQuery(function($){

3 $('.popup_contents-overlay').css('background-color', '

4 <?php echo ...

esc_js(get_option('popup_plugin_value_whatscolor')); ?>');

5 });

6 </script>

7 <script type="text/javascript">

8 jQuery(function($){

9 $('.popup_information_box').click(function(){

10 $('.popup_contents-overlay, ...

.popup_information_whats').fadeIn();

11 });

12 $('.popup_contents-overlay,.popup_information_close').click(function()

13 {

14 $('.popup_contents-overlay, .popup_information_whats').fadeOut();

15 });

16 });

17 </script>

Listing 4.2 shows a part of the source code from the tested plugin, and Figure 4.4 is a

screenshot from one of the websites we have got by the previous search in the data crawler.

21

We can see that the website has the same function as the tested plugin, hence proving the

correctness of our results.

Figure 4.4: A Screenshot of Searched Website

22

4.5 Vulnerable Plugin Example

Table 4.2 presents the result for a vulnerable plugin named “wp-curriculo-vitae” [10].

Although the plugin has already been reported as vulnerable, there are 11 websites verified

by us that still have it installed, which could be a significant risk for those web owners.

Table 4.2: Result for Plugin “wp-curriculo-vitae” from NerdyData 4/09/2022

Rank Domain WordPress page Prove of evidence

1 http://www.williamluis.com.br/ yes Plugin functions matched

2 http://www.idbr.org.br/ yes Not verified

3 https://facol.br/ yes Plugin functions matched

4 http://www.scale.com.br/ yes Plugin functions matched

5 https://gutemberg.com.br/ yes Plugin functions matched

6 https://www.brmfundicoes.com.br/ yes Plugin functions matched

7 http://ebrasilenergia.com.br/ yes Plugin functions matched

8 http://www.barradecomercio.org/ yes Plugin functions matched

9 http://www.korum.com.br/ yes Plugin functions matched

10 https://rimarcontabilidade.com.br/ yes Plugin functions matched

11 https://instaloengenharia.com.br/ no Not verified

12 https://indiceconsultoria.com.br/ yes Not Verified

13 https://inwall.com.br/ yes Plugin functions matched

14 https://sienaffari.it/ yes Plugin functions matched

N/A http://sindcomcf.com.br/ yes Not verified

23

4.6 Searching Vulnerable Plugins

WordPress records all the reported vulnerable plugins on its official security website

wpscan.com [11], including some common and popular vulnerabilities, cross-site scripting,

SQL injection, and upload. Therefore, we have collected 100 vulnerable plugins with

different types of security risks from wpscan.com, then generated 35 sets of fingerprints

that are ready to use on the data crawler. With those fingerprints, we explored that various

websites have still been running different kinds of vulnerable plugins, the details will be

illustrated in the following subsections.

4.6.1 Upload

As presented in Table 4.3. As the date of March 9th 2022, There are 42 websites we

have explored with fingerprints and 34 of them have been verified that vulnerable plugins

with upload issues are installed on their server. [12] [13] [10] [14] [15] [16] [17] [18].

Table 4.3: Result for Vulnerable Plugins (upload) from NerdyData Date 03/09/2022

Application Version Explored Websites Verified Websites Reference

gallerio v1.2 No known fix 5 1 N/A

scroll-baner v1.0 No known fix 3 2 CVE-2021-24642

simple-schools-staff-directory v1.1 No known fix 4 4 CVE-2021-2466

wp-curriculo-vitae v6.3 No known fix 17 15 CVE-2021-24222

imagements v1.2.5 No known fix 2 2 CVE-2021-24236

art-picture-gallery v1.2.9 No known fix 4 4 CVE-2018-9206

baggage-freight v0.1.0 No known fix 1 1 CWE-434

automatic-grid-image-listing v1.0 No known fix 1 1 CVE-2021-25119

wbcom-designs-buddypress-search v1.2 No known fix 1 1 CWE-862

sermon-browser v0.45.22 No known fix 4 3 CWE-434

4.6.2 Cross-Site Scripting

As shown in Table 4.4, there are 134 websites we have explored from the data crawler

and 123 Websites are at risk of Cross-Site Scripting issues with 10 vulnerable plugins. [19]

24

[20] [21] [22] [23] [24] [25] [26] [27] [28].

Table 4.4: Result for Vulnerable Plugins (Cross-Site Scripting) from NerdyData Date
03/09/2022

Application Version Explored Websites Verified Websites Reference

4k-icon-fonts-for-visual-composer v1.21 No known fix 3 3 CVE-2021-24435

crazy-bone v0.6.0 No known fix 5 4 CVE-2022-0385

youtube-feeder v2.0.1 No known fix 25 24 CVE-2021-34633

sola-newsletters v4.0.2 No known fix 53 50 CVE-2021-34634

cleeng v2.3.2 No known fix 1 1 CVE-2013-1808

comment-attachment v1.0 No known fix 1 1 CVE-2013-6010

contact-form-generator v2.1.86 No known fix 15 12 CVE-2015-6965

my-chatbot v1.1 No known fix 26 23 CWE-79

light-messages v1.0 No known fix 2 2 CVE-2021-24535

social-tape v1.0 No known fix 3 3 CVE-2021-24411

4.6.3 SQL Injection

There are 73 websites we have explored through the data crawler and 64 Websites are

at the risk of SQL injection issues with 10 vulnerable plugins, shown in Table 4.5. [29]

[30] [31] [32] [33] [34] [35] [31] [36] [37].

Table 4.5: Result for Vulnerable Plugins (SQL injection) from NerdyData Date 03/09/2022

Application Version Explored Websites Verified Websites Reference

wpcalc v2.1 No known fix 10 10 CVE-2021-25054

chameleon-css v1.2 No known fix 11 10 CVE-2021-24626

game-server-status v1.0 No known fix 1 1 CVE-2021-24662

wp-display-users v2.0.0 No known fix 4 4 CVE-2021-24400

dbox-slider-lite v1.2.2 No known fix 25 22 CVE-2018-5374

wp-email-users v1.7.6 No known fix 3 3 CVE-2021-24959

mwp-forms v3.1.3 No known fix 2 2 CVE-2021-24628

g-auto-hyperlink v1.0.1 No known fix 7 7 CVE-2021-24627

author-chat Fixed in v2.0.0 3 1 CWE-89

wicked-folders Fixed in v2.8.10 7 6 CVE-2021-24919

25

4.6.4 Bypass

Among the total number of 259 explored websites, 222 webs have been verified that

installed plugins with bypass vulnerability. The details are presented in Table 4.6. [38] [16]

[39] [40]

Table 4.6: Result for Vulnerable Plugins (Bypass) from NerdyData Date 04/11/2022

Application Version Explored Websites Verified Websites Reference

woo-nmi-three-step v1.6.11 No known fix 10 10 CWE-352

123contactform-for-wordpress v1.5.6 No known fix 10 8 CWE-434

spam-free-wordpress v1.9.2 No known fix 50 47 CWE-287

rw-divi-unite-gallery v1.0.0 No known fix 3 3 CWE-287

opal-estate v1.6.11 No known fix 37 36 CWE-352

rays-grid v1.2.2 No known fix 68 50 CWE-352

wp-symposium v12.7.7 No known fix 19 19 CWE-287

mac-dock-gallery v3.1 No known fix 6 4 CWE-287

sell-media Fixed in v2.5.7.3 28 19 CWE-352

simple-student-result Fixed in v1.6.4 28 26 CVE-2017-14766

26

4.7 Result Analysis

After the previous experiments, we collected 40 vulnerable plugins and found 446

websites that have installed and activated those vulnerable plugins. Next, we move forward

to analyze the numbers of fingerprints in vulnerable plugins compared to all plugins.

Figure 4.5 and Figure 4.6 present the CDF of fingerprints numbers in all plugins and

vulnerable plugins. From the tables we can see that there is no significant difference in

comparing the fingerprints numbers between two sets of plugins.

Figure 4.5: CDF of Fingerprints Numbers in Regular Plugins

Figure 4.6: CDF of Fingerprints Numbers in Vulnerable Plugins

27

However, as shown in Table 4.7, both average and median fingerprints numbers in all

plugins are greater than in vulnerable plugins, illustrating that vulnerable plugins tend to

have fewer numbers of fingerprints based on our current experiments.

Table 4.7: Fingerprints Numbers Comparison

Vulnerable plugins All plugins

Average of fingerprints numbers 5.17 11.35

Median of fingerprints numbers 1 4

28

Discussion

Given that our system can successfully generate fingerprints for WordPress plugins

and we have explored various websites with the generated fingerprints. However, in the

experiment of searching vulnerable websites, there are also considerable numbers of web-

sites that either failed for verification or had wrong results. According to Table 5.1, among

the total number of 508 explored websites, 445 of them are verified that have installed

vulnerable plugins, 63 of them are failed for verification and hence false positives. The

overall false-positive rate (FPR) is 12.4 %, this number is relatively high due to the large

random content of websites, some code matches the fingerprints but not actually installed

the plugins.

Table 5.1: Vulnerable Plugins Evaluation Results

Explored webs True Positive False Positive

Upload 42 34 8
Cross-Site Scripting 134 123 11
SQL injection 73 66 7
Bypass 259 222 37

With the current experiments, we have two challenges left for the potential exten-

sion of our future work. First, we need to improve the generating rate for overall plugins.

Among the total number of 45725 plugins, we currently have generated 10053 plugins with

fingerprints. As we discussed in the previous chapter, the generating rate could be further

improved by adding more conditions in the AST analysis. However, this would be tough

when some complex conditions need to be satisfied with syntax analysis. We believe this

29

problem could be solved by leveraging semantic analysis in AST. Besides, plugins with

a large number of fingerprints are not easy for searching, in those fingerprints, many of

them are relatively too common and not suitable as searchable keys. This problem could

be solved by improving our regular expression matching. we can filter some of the very

common fingerprints, for example, ’a’, ’form’, ’here’, ’table’ etc.

30

Conclusion

We have discussed our system: Fingerprints Generator in this thesis, We illustrated

the design of the system by extending AST analysis. Then we have proved that the system

performs properly with effectiveness and scalability. Besides, we have analyzed over 48000

WordPress plugins and generated fingerprints for over 10000 plugins. We also explored and

verified 446 websites that have installed vulnerable plugins. Then we have discussed the

current weakness of the system and possible ways to overcome it. We believe there could

be more significant results to be produced by extending our work in the future.

31

Bibliography

[1] Web Technology Surveys. https://w3techs.com/.

[2] Williams Brad. Professional WordPress Plugin Development. Wrox, second edition,

2020.

[3] Onishi Adam. Pro WordPress Theme Development. Apress, first edition, 2013.

[4] Brazell Aaron. WordPress Bible. Wiley, second edition, 2011.

[5] Sikora Martin. PHP Reactive Programming. Packt, first edition, 2017.

[6] Daniel T. Murphy, Minhaz F. Zibran, and Farjana Z. Eishita. Plugins to detect vulner-

able plugins: An empirical assessment of the security scanner plugins for wordpress.

pages 39–44, 2021.

[7] Katrin Krieger, Jens Schneider, Christian Nywelt, and Dietmar Rösner. Creating se-

mantic fingerprints for web documents. 2015.

[8] Fang Yu and Yi-Yang. Tung. Patcher: An Online Service for Detecting, Viewing and

Patching Web Application Vulnerabilities. pages 4878–4886, 2014.

[9] Auxilia. D and Tamilselvan.D. Anomaly detection using negative security model in

web application. pages 4878–4886, 2010.

32

[10] CVE-2021-24222. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24222.

[11] WPScan. https://wpscan.com/plugins.

[12] CVE-2021-24642. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24642.

[13] CVE-2021-2466. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2466.

[14] CVE-2021-24236. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24236.

[15] CVE-2018-9206. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9206.

[16] CWE-434. https://cwe.mitre.org/data/definitions/434.html.

[17] CVE-2021-25119. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

25119.

[18] CWE-862. https://cwe.mitre.org/data/definitions/862.html.

[19] CVE-2021-24435. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24435.

[20] CVE-2022-0385. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0385.

[21] CVE-2021-34633. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

34633.

[22] CVE-2021-34634. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

34634.

[23] CVE-2013-1808. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1808.

[24] CVE-2013-6010. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6010.

33

[25] CVE-2015-6965. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6965.

[26] CWE-79. https://cwe.mitre.org/data/definitions/79.html.

[27] CVE-2021-24535. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24535.

[28] CVE-2021-24411. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24411.

[29] CVE-2021-25054. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

25054.

[30] CVE-2021-24626. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24626.

[31] CVE-2021-24627. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24627.

[32] CVE-2021-24400. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24400.

[33] CVE-2018-5374. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5374.

[34] CVE-2021-24959. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24959.

[35] CVE-2021-24628. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24628.

[36] CWE-89. https://cwe.mitre.org/data/definitions/89.html.

[37] CVE-2021-24919. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-

24919.

34

[38] CWE-352. https://cwe.mitre.org/data/definitions/352.html.

[39] CWE-287. https://cwe.mitre.org/data/definitions/287.html.

[40] CVE-2017-14766. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-

14766.

35

	Automatically Generating Searchable Fingerprints For WordPress Plugins Using Static Program Analysis
	Repository Citation

	Abstract
	Introduction
	Motivation
	Background
	Load Plugins in WordPress
	Hooks in WordPress
	Action Hooks
	Abstract Syntax Tree

	Goals and Challenges
	Organization

	Related Work
	Creating Semantic Fingerprints for Web Documents
	Patcher
	Anomaly Detection Using Negative Security Model

	Design
	System Structure
	Detailed AST Analysis
	Generate Fingerprints with Regular Expression
	Fingerprints Types

	Experiments
	Dataset
	Evaluating The Similarity of Generated Fingerprints
	Applications of Fingerprints
	Result Verification
	Vulnerable Plugin Example
	Searching Vulnerable Plugins
	Upload
	Cross-Site Scripting
	SQL Injection
	Bypass

	Result Analysis

	Discussion
	Conclusion
	Bibliography

