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ABSTRACT

Brown, Kyle A. Ph.D., Department of Computer Science and Engineering, Wright State University,
2022. Topological Hierarchies and Decompositions: from Clustering to Persistence.

Hierarchical clustering is a class of algorithms commonly used in exploratory data anal-

ysis (EDA) and supervised learning. However, they suffer from some drawbacks, including

the difficulty of interpreting the resulting dendrogram, arbitrariness in the choice of cut to

obtain a flat clustering, and the lack of an obvious way of comparing individual clusters.

In this disseration, we develop the notion of a topological hierarchy on recursively-defined

subsets of a metric space. We look to the field of topological data analysis (TDA) for the

mathematical background to associate topological structures such as simplicial complexes

and maps of covers to clusters in a hierarchy.

Our main results include the definition of a novel hierarchical algorithm for construct-

ing a topological hierarchy, and an implementation of the MAPPER algorithm and our

topological hierarchies in pure Python code as well as a web app dashboard for exploratory

data analysis. We show that the algorithm scales well to high-dimensional data due to the

use of dimensionality reduction in most TDA methods, and analyze the worst-case time

complexity of MAPPER and our hierarchical decomposition algorithm. Finally, we give a

use case for exploratory data analysis with our techniques.
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Clustering is a common task in data analysis where one seeks to partition a collection

of points into a set of disjoint groups [62]. The grouping is done based on some notion

of similarity or distance between points. The resulting clustering partitions the points by

placing each one into exactly one cluster. There are many existing approaches to cluster-

ing: k-means, single-linkage, complete-linkage, average-linkage, spectral clustering, and

density-based approaches such as DBSCAN to name a few. Hierarchical clustering is a

particular class of clustering techniques, which produces a hierarchy of clusterings rang-

ing from one where all points are in one group to another where each point is its own

group [52]. This hierarchy can be represented as a dendrogram, which is a tree where the

nodes at each level represent a clustering and the branches describe the merging or splitting

of clusters. Traditional hierarchical clusterings produce a binary tree as they either merge

or split clusters.

Despite its applications to data analysis, clustering has some limitations. The output

of a non-hierarchical clustering is a collection of groups of points with no further infor-

mation. In particular, the shapes of the clusters and their relationships are left opaque.

These algorithms may also depend on threshold parameters which are chosen arbitrarily or

based on an informal heuristic. Clustering can also lack robustness with respect to noise or

changes in the data. With hierarchical clustering, one has a notion of relationships between

clusters at different levels of the dendrogram as they merge or split. However, what is still

lacking is a way to look into the features within the clusters and relate them to each other.

Therefore, I will look to topological data analysis (TDA) as a way to (i) identify the shape

of the data and its clusters, and (ii) provide more robustness with respect to noise and the

choice of parameters.

Topological data analysis is a growing field which applies techniques from topology, a

branch of mathematics, to the analysis of point-cloud data [11]. There are many techniques

in TDA, but they tend to share some features; they provide qualitative information about

the data, they are less dependent on a metric or the coordinate system of the data, and
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they give summaries of different aspects of the data. Much of TDA focuses on persistent

homology, which is an algebraic technique for identifying topological features of shapes

and functions [26]. It works for incomplete or noisy point-cloud data as well, as it picks out

features which persist across several summaries of the data as a parameter is varied. This

lends it a robustness absent from other approaches, as its emphasis on qualitative features

allows it to ignore small continuous variations introduced by noise. Traditionally, persistent

homology is done on a filtration of simplicial complexes constructed via either the Vietoris-

Rips or Čech complexes. The MAPPER algorithm produces a simplicial complex summary

of point-cloud data viewed through the lens of a continuous function [84]. For some recent

overviews of TDA, see [16] and [97].

In this dissertation, I introduce formally the concept of a topological hierarchy and

describe basic notions of persistence on a topological hierarchy. A topological hierarchy

can be considered a hierarchical structure, or tree, where each node represents a subset of

some topological space, being a subspace of its parent. This tree is a kind of dendrogram,

with branches representing further partitioning of a topological space into subspaces. I

include further information about each space at the node, namely a cover of the space

and an associated simplicial complex. For each node in the topological hierarchy, there

is a relationship from the associated cover and simplicial complex to those of its parent.

Furthermore, I show how one can define persistent homology on topological hierarchies,

which allows one to relate topological features in the subspace to features in the parent

spaces. To showcase the power of topological hierarchies for exploratory data analysis

(EDA), I apply them and the topological hierarchical decomposition (TDA) algorithm to

the FICO dataset of home equity line of credit (HELOC) loan applications [33] to provide

insights onto the financial reasons an applicant was not able to pay back their loan. This

shows how THDs can be considered an explainable AI approach, by providing reasoning

for why a black box algorithm predicted that applicants would not be able to pay back their

loans.
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1.1 Outline of the Dissertation

The rest of the dissertation is structured as follows. Chapter 2 reviews existing literature

on TDA, hierarchical clustering, and applications of TDA. Section 2.1 reviews the papers

and articles that define the mathematical background and algorithms of TDA, namely those

that cover MAPPER (Subsection 2.1.1), persistent homology (Subsection 2.1.2), barcodes

and persistence diagrams (Subsection 2.1.2), zigzag persistence (Subsection 2.1.3), and

multiscale MAPPER (Subsection 2.1.4). Section 2.2 reviews a few papers describing hi-

erarchical and density-based clustering, as well as the dendrogram formalism. Section 2.3

describes various applications of TDA within multiple fields.

Chapter 3 provides the necessary mathematical background, focusing on point-set

topology and homology. Section 3.1 covers point-set topology: topological spaces, closed

sets, neighborhoods, and separability. Subsection 3.1.1 describes continuous maps and

homeomorphisms, and Subsection 3.1.2 open covers and compactness. Subsection 3.1.3

covers the definition of a topological basis, and Subsection 3.1.4 connectedness and paths.

Finally, Subsection 3.1.5 introduces metric spaces. Section 3.2 introduces a mathemati-

cal description of clustering. Section 3.3 covers some basic topological structures used

in TDA: pullback covers, simplicial complexes, nerves, and MAPPER. Section 3.4 de-

scribes homology and persistence; Subsection 3.4.1 reviews definitions from algebra used

in defining homology. Subsection 3.4.2 defines simplicial homology on abstract simpli-

cial complexes. Finally, Subsection 3.4.4 describes zigzag persistence, a generalization of

persistent homology.

The core of the dissertation is in Chapter 4, which introduces Topological Hierarchies

and examines their mathematical and algorithmic properties. Section 4.1 discusses pre-

liminary material used in the definition of hierarchies, namely subspace topologies, maps

of covers, and nerve-like maps. The definition of a topological hierarchy is given in Sec-

tion 4.2, along with examples. Subsection 4.2.1 describes how to compute a topological

hierarchy on an existing indexed hierarchy with a tower of covers. Subsection 4.2.2 in-

4



troduces the topological hierarchical decomposition algorithm. Three methods of defining

persistence on a topological hierarchy are given in Section 4.3. Section 4.4 looks at evaluat-

ing topological hierarchies as a clustering, and compares THD to hierarchical clustering on

the HELOC dataset. Section 4.5 looks at the algorithmic aspects of topological hierarchies,

including potential optimizations and runtime performance. Finally, Subsection 4.5.1 ex-

amines the computational complexity of MAPPER, clustering, and THDs. It also includes

remarks on the space complexity of those algorithms.

Chapter 5 describes a Python library implementing MAPPER and the THD algorithm,

and a dashboard web application that uses this library. Section 5.1 exhibits the results of

experiments to evaluate the empirical runtime performance of the Python library. Sec-

tion 5.2 describes the interface of the dashboard., and Section 5.3 compares the results of

the dashboard on the FICO dataset with a previous study on the same dataset using the

Ayasdi Platform. Chapter 6 describes an application of topological hierarchies and THD

to a real world dataset, namely the HELOC FICO loan applicant dataset. Subsection 6.1.1

gives needed financial glossary to understand the dataset. Subsection 6.1.2 describes the

FICO dataset and Subsection 6.1.3 covers the results of THD applied to the FICO dataset.

Finally, Subsection 6.1.3 compares the methodology to supervised learning models.
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Literature Review
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This section surveys the academic literature related to the topic of the dissertation by

focusing on three themes: topological structures, hierarchies, and applications of topolog-

ical data analysis. The topological structures of concern are constructions of simplicial

complexes from a topological space, simplicial homology, and persistent homology. Hi-

erarchical structures are related to clusterings, especially hierarchical clustering, which

produces a binary tree structure known as a dendrogram. The topological constructions

covered are either directly related to the topic of the dissertation, or provide useful back-

ground for it. Hierarchical structures that arise from clustering lead to evaluation metrics

that can be applied to topological hierarchies to measure their usefulness in partitioning a

space. Finally, applications of topological data analysis show how the abstract definitions

lead to useful approaches in making sense of data. Each paper discussed is given a recap,

followed by a discussion of how it relates to the topic of the dissertation.

2.1 Topological Structures

This section covers literature on TDA and related topics. Many papers build on the original

article by Edelsbrunner et al. that introduces persistent homology [28], and the article by

Zomorodian and Carlsson that extends this definition [101]. This is the setting in which

the well-known barcode and persistence diagram representations are defined. Zigzag per-

sistence can be seen as a further generalization of persistent homology to sequences with

inclusions going in either direction. Multiscale MAPPER is a synthesis of the original

MAPPER construction and persistent homology, providing an environment in which the

persistence of MAPPER and related structures such as Čech filtrations can be studied.

For more information on TDA, there are several surveys on the subject in the liter-

ature. Carlsson’s 2009 paper [11] on the subject can be seen as an introduction to the

subject, although it predates much of the important developments in the subject through-

out the decade following it. Zomorodian’s survey from 2012 covers simplicial complexes,

7



combinatorial constructions of complexes such as Čech complexes, topological invariants,

simplicial homology, filtrations, persistent homology, zigzag persistence, reductions, and

simplicial sets among other topics [100]. Munch in 2017 gives an overview of persistent

homology and MAPPER [66]. Wasserman in 2018 covers density-based clustering, mode

clustering, Morse theory, manifold learning, persistent homology, and applications [97].

2.1.1 MAPPER

The MAPPER algorithm is introduced by Singh et al. in [84]. The approach is motivated

by the nerve of an open cover, which constructs a simplicial complex from the cover. In

particular, the MAPPER construct is defined as the nerve of a pullback cover under some

continuous mapping. There is a short discussion of multiresolution structure, and how a

sequence of maps of covers leading to a sequence of simplicial maps is preserved under the

pullback operation. The authors give a few specific examples of the MAPPER construction

for simple spaces. The core content of the paper concerns a statistical implementation of

MAPPER on point cloud data via the usage of single-linkage clustering. The authors define

a heuristic to obtain a flat clustering, choosing a number of clusters corresponding to the

first empty bin of the histogram of edge lengths, where the edge length is computed from

the dendrogram. Applying their MAPPER algorithm to a point cloud on a unit sphere, they

obtain the correct Betti numbers for the unit sphere using the homology detection software

PLEX [82].

Next, Singh et al. discuss some interesting filter functions: kernel density estimates,

eccentricity, and graph Laplacians, and give some applications of MAPPER. The first ap-

plication is to the Miller-Reaven diabetes study, where they obtain a simplicial complex

with flares corresponding to those in the 3-dimensional projection computed by the orig-

inal authors. The next one shows that it is possible to reconstruct some aspects of the

topology of the torus with MAPPER. The third application is to models from a 3D shape

database, using MAPPER to simplify the shapes and then comparing the simplified shapes

8



to the original shapes and to each other.

The MAPPER algorithm is of central importance to this dissertation. Although topo-

logical hierarchies are general enough to cover other constructions such as the Vietoris-

Rips complex, the dissertation focuses on the use of MAPPER for building hierarchies.

The complexity analysis of THD is given in terms of MAPPER in Section 4.5.1. Sec-

tion 5 concerns a Python library that implements MAPPER and topological hierarchical

decomposition using this implementation of MAPPER. Therefore, an understanding of the

MAPPER algorithm is crucial in the sequel.

2.1.2 Persistent Homology

This subsection covers the papers that introduce persistent homology and related notions

such as barcodes. For more information on persistent homology, there have been several

surveys done on the subject. The first by Edelsbrunner and Harer in 2008 covers Morse

functions, tame functions, Smith normal form, bottleneck distance, and homlogical con-

structions that are related to persistent homology [26]. Another survey by Edelsbrunner

and Morozov describes persistence diagrams, bottleneck distance, algorithms, and applica-

tions of persistent homology [29]. A more recent survey (2016) by Kerber covers quivers,

barcodes, zigzag persistence, multidimensional persistence, and statistical topological data

analysis [53]. Ferri gives a quick introduction to persistence followed by a discussion of

applications [32]. Further applications of persistence and TDA are discussed in Section 2.3.

Persistent homology first arose in the problem of topological simplification in com-

puter graphics and geometric modeling. Edelsbrunner et al. introduce persistence via filtra-

tions in [28]. They construct simplicial complexes via the alpha complex structure, based

on Voronoi regions of the union of a finite number of open balls. A filtration is a growing

sequence of complexes, each which is a subcomplex of the next. The authors construct

these by growing the spheres and studying the dual complex (Delaunay triangulation) of

the Voronoi diagrams. They describe an algorithm for incrementally computing the Betti

9



numbers of such a filtration, which proceeds by identifying when a k-cycle is created or

destroyed and incrementing or decrementing βk correspondingly.

Edelsbrunner et al. define persistence in terms of the cycle and boundary groups and

define the pth persistent Betti numbers. They give an abstract algorithm for computing

persistence by keeping track of the birth and death of k-cycles along a consistent basis

across homology groups. They introduce a visualization involving intervals and triangles

which is related to the later barcode and persistence diagram descriptions of persistence.

Finally, they apply persistence to the problem of topological simplification and conclude

with experimental results.

Zomorodian and Carlsson extend the definition of persistence to arbitrary d-dimensional

filtered complexes [101]. They introduce the notion of a persistence module, which arises

from the homology of a sequence of filtered complexes. Unlike Edelsbrunner et al., they

investigate persistence modules over an arbitrary ring R in the abstract. They show that for

F a field, a graded F [t]-module can be associated to the direct sum of a set of P-intervals

(i.e. the birth and death times) via a bijection. They describe an algorithm for computing

persistent homology over a field. This algorithm constructs the decomposition into sums of

intervals directly without the need to compute the persistence module first. They also intro-

duce algorithms for persistent homology when the coefficients are in a ring. They show that

when the ring is a principal ideal domain, the persistent homology groups are computable

in the same time as homology groups. Zomorodian and Carlsson look at persistent homol-

ogy on the Klein bottle, and show the issues encountered when using Z2 as coefficients.

Finally, they examine the application of their methods to higher-dimensional datasets, such

as electric field values in 4-dimensional spacetime and the flow of air currents around a jet

for varying velocities, using 1-cycles to identify vortices.

Persistent homology is used in the discussion of persistence on topological hierarchies

in Section 4.3. Two of the notions of persistence described there can be described with

persistent homology: the “group-to-root” persistence of a path in a hierarchy and the global
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persistence of the hierarchy. Outside of this, persistent homology is not discussed, but

it is a very important technique in TDA and could be an interesting direction for future

investigation of topological hierarchies. In particular, two possible directions are other

definitions of persistence on a hierarchy, and using persistent homology to compare and/or

evaluate hierarchies.

Barcodes and Persistence Diagrams

Barcodes are introduced by Carlsson et al. in [14]. Much of the paper concerns construc-

tions on differential manifolds which are out of the scope of this dissertation. Barcodes are

defined as a finite multiset of intervals that are bounded below. These intervals describe the

birth and death of topological features in a filtration. They define a pseudo-metric on the

set of barcodes as the minimum distance between two barcodes over all possible match-

ings between them, and discuss algorithms for computing the optimal matching for this

pseudo-metric. They discuss how to compare topological objects using barcodes, which

can provide a measure of topological features that is robust to noise.

The diagrams of [28] are studied further by Cohen-Steiner et al. in [18]. They consider

real-valued functions on a topological space which have a finite number of homological

critical values, which are values at which the homology of inverse images of the half-

open interval (−∞, a] changes. A persistence diagram is defined as ordered pairs of these

homological critical values counted with multiplicity. This is related to Morse theory: if a

function is a Morse function on a smooth manifold, then its homological critical values are

its classical critical values.

Cohen-Steiner et al. investigate the stability of persistence diagrams under the Haus-

dorff distance and the bottleneck distance. They state and prove their main theorem: that

the bottleneck distance of persistence diagrams is bounded by the Hausdorff distance of the

functions they represent. They cover these applications: estimating the homology groups

of a metric space from an incomplete sample and comparing shapes via the persistence
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diagram as a stable signature. They show how their stability theorem leads to stability re-

sults specific to these cases, guaranteeing e.g. for a given sampling of a metric space with

conditions on the distances the correctness of the reconstructed homology groups.

While barcodes and persistence diagrams are not used directly in the dissertation,

they are important tools for the visualization and comparison of persistence modules. They

relate intuitively to the formation and dissolution of topological features throughout a fil-

tration, and also appear notably in the stability theorems for persistent homology, which

are stated in terms of the bottleneck distance. In any future investigations of topological

hierarchies, it would be worthwhile to investigate whether such stability results are enjoyed

by any kind of topological hierarchy.

2.1.3 Zigzag Persistence

Zigzag persistence is first introduced by Carlsson and de Silva in [12]. They give needed

background and persistence and consider situations where zigzag diagrams may arise in

practice. The first situation is the relationships among the densest p% of a point-cloud

measured according to different parameter values. The second example is topological boot-

strapping, taking samples of a space and combining them to reconstruct topological features

of the whole space. The third example is witness complexes for different combinations of

landmark subsets, which yields a witness bicomplex zigzag structure. The properties of

zigzag diagrams will entail properties that are comparable to those of persistence modules

and diagrams.

Then they introduce zigzag modules proper, which are defined as sequences of vector

spaces with linear maps between them going in either direction, unlike a persistence module

where the maps all go one direction. To study decompositions of zigzag diagrams, Carlsson

and de Silva define submodules and direct sums of zigzag diagrams, and state the result

that every zigzag module has a Remak decomposition in terms of indecomposable zigzag

modules, although this decomposition may not be unique, but it is unique up to a reordering
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of the summands. They then introduce interval τ -modules, as zigzag modules with specific

birth and death times whose vector spaces are all 0 or the field the vector spaces are over.

They show that these intervals are indecomposable, and that any zigzag module can be

written as a direct sum of intervals. The zigzag persistence of a zigzag module is defined

to be the multiset of intervals containing the birth and death times from the decomposition

of the module into interval τ -modules.

Next, Carlsson and de Silva study zigzag modules as filtrations. They define the right-

filtration on a zigzag module, and show that the right filtration of an interval τ -module has

a nice form in terms of the zero vector space and field K. They study the decomposition of

right filtrations of vector spaces independently of zigzag persistence, and obtain an equiv-

alent decomposition theorem into a direct sum of intervals. They describe algorithms for

determining the indecomposable factors of a τ -module. They give an abstract algorithm for

arbitrary vector spaces, and a concrete one where bases have been chosen and matrices are

used to describe the transformations. They go on to describe further algebraic techniques

in the context of zigzag persistence and modules.

The most useful application of zigzag persistence in this dissertation is in the defini-

tion of ancestor modules in Section 4.3. Unlike the other definitions of persistence on a

hierarchy which are over a single branch or the entire hierarchy, these involve two branches

of the hierarchy. This could provide useful topological information about features that are

shared between the two branches, as well as features that are unique to each branch. Fur-

thermore, it may be worthwhile to try and extend the definition of zigzag persistence to be

able to cover three or more branches of a hierarchy at once, or even the whole hierarchy.

This could provide a “local view” of the entire hierarchy at once, as opposed to the global

view obtained by taking the disjoint sum of each level of the hierarchy.
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2.1.4 Multiscale MAPPER

Dey, Memoli, and Wang introduce multi-scale MAPPER, which extends the MAPPER con-

struction of [84] to a tower of covers and allows the recovery of persistent homology from

it [24]. They begin by reviewing facts about topological spaces and simplicial complexes,

including the important notion of a simplicial map between simplicial complexes. They

relate the MAPPER construction to merge trees and Reeb graphs, which are viewed as

special cases of the construction. Next, they cover maps of covers, and relate them to sim-

plicial maps through the nerve construction, as well as showing that the induced simplicial

maps by the nerve are contiguous.

Next, they introduce the core concept behind multiscale MAPPER: towers, which

are sequences of objects indexed by a resolution with maps that allow passing from one

resolution to another. Dey et al. describe a tower of covers as a special case of a tower

where the objects are finite open covers and the maps are maps of covers. Similarly, they

define a tower of simplicial complexes with simplicial maps between them. They then

define the multiscale MAPPER as the tower of simplicial complexes obtained by applying

the nerve of the pullback operation to a tower of covers. Passing to homology, they show

that the resulting tower of vector spaces is a persistent module and that the techniques of

persistent homology can be applied to it.

Dey et al. investigate the stability of multiscale MAPPER. They introduce notions of

interleaving for towers of covers and simplicial complexes which mirror that of [15] and

use these to prove the stability of multiscale MAPPER in the bottleneck distance of [18].

They show that if two towers of covers are η-interleaved, then the corresponding multiscale

MAPPERs are η-interleaved and the bottleneck distance of their persistence diagrams is at

most η. They then prove a stability theorem for multiscale MAPPER under perturbation of

(filter) functions, assuming the towers of covers are of a special class satisfying nice proper-

ties and the filter space is a compact connected metric space. Combining these two results,

they prove a stability result for multiscale MAPPER in the general case, a simultaneous
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change in the tower of covers and filter function.

They turn to the computation of multiscale MAPPER from a piecewise-linear func-

tion defined on the vertices of a simplicial complex (and interpolated from these values for

higher-order simplices). Dey et al. show that if the function satisfies a minimum diameter

assumption, it is possible to compute MAPPER and multiscale MAPPER from just the 1-

skeleton of the simplicial complex. They give a definition of isomorphism for multiscale

MAPPERS and show that under the minimum diameter assumption on the filter function,

the multiscale MAPPER resulting from the filter function on the whole complex is iso-

morphic to the one resulting from the function restricted to the vertices of the complex.

They conclude the section by extending this result to real-valued functions on triangulable

topological spaces which are approximated by piecewise-linear functions on a simplicial

complex.

Dey et al. extend the discussion of the previous paragraph to functions mapping to an

arbitrary compact metric space. They define a combinatorial version of mapper where the

connected components in the pullback only consist of vertices in the underlying simplicial

complex. They show that the multiscale MAPPER obtained combinatorially interleaves

in a weak sense with the full multiscale MAPPER, and therefore the bottleneck distance

between their persistence diagrams is bounded. They describe how the pullback can be

used to induce a pseudo-metric, and how it relates to Čech filtrations in particular, in that

there is an interleaving of multiscale MAPPER with the Čech filtration.

Multiscale MAPPER is considered here as a structure which can be compared to topo-

logical hierarchies. Namely, a multiscale MAPPER can be considered as a kind of hierar-

chy where every group is the same, and there is therefore no splitting. This leads to nice

properties that the authors exploit to define persistence and prove a stability result for mul-

tiscale MAPPER. Allowing splitting and for some groups to be subsets of others leads to

hierarchies, and the same nice properties no longer hold. Finally, some of the definitions

used in the paper on multiscale MAPPER, namely towers of covers, are useful in the dis-
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cussion of topological hierarchies. Many of the ideas behind topological hierarchies are

motivated by the constructions used to define multiscale MAPPER.

2.2 Hierarchical Structures

The result of hierarchical clustering algorithms is a dendrogram in which branches repre-

sent splits of the data into smaller subsets until each cluster has only one point [80]. Much

of the work in this area has been towards finding the optimal point to cut the dendrogram,

to obtain the best possible flat clustering. However, the dendrogram can be a useful object

on its own, which served to motivate the definition of a topological hierarchy and the THD

algorithm. A topological hierarchy is not necessarily produced by a clustering algorithm;

rather, I define it by extra structure on top of an existing hierarchy. My approach also em-

beds extra topological information at each node, relating the children to their parents in

a way that enables the computation of topological features via persistence and qualitative

comparisons between groups in the hierarchy.

Hartigan investigates the consistency of single-linkage clustering with respect to high-

density clusters [46]. Given a probability density p on a metric space with points x and

some threshold c ≥ 0, the high-density clusters are maximal connected sets of the form

{x|p(x) ≥ c}. These are also called population clusters or level sets. Hartigan points out

that the collection of level sets over all levels c has a tree structure – this is the cluster tree.

He goes on to prove that single-linkage clustering is fully consistent in one-dimension, but

in two or more dimensions is only fractionally consistent. A weaker but more intuitive

conclusion is that if two level sets are separated by a valley of low enough probability,

then they will be asymptotically separated into distinct clusters by single-linkage. Note

that the cluster tree is not easily computable in practice, as it requires information about a

probability distribution that one only has a finite sample of. In comparison, a topological

hierarchy is computable for any finite metric space, but doesn’t represent the same kind
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of structure a cluster tree does, i.e. there is no assumption that an underlying probability

density even exists, let alone what form it may take.

Stuetzle describes an algorithm for estimating the cluster tree of a density from a sam-

ple [87]. To do so, he first considers nearest neighbor distance estimation, for which the

set of level sets has a nice form as the union of open balls centered at the observations. He

cites the result that by breaking the longest edge of the minimum spanning tree (MST) re-

cursively, one obtains the dendrogram of single-linkage clustering [39], and concludes that

the nearest neighbor density estimate and single-linkage clustering are isomorphic. He de-

scribes his approach in terms of runt pruning as described by Hartigan and Mohanty [47],

based on the runt size of a dendrogram node, which is the lesser of the number of leaves of

the two subtrees under the node. Runt pruning only considers splitting a high-density clus-

ter into two connected components if the runt size of the corresponding dendrogram node

is larger than some threshold. Stuetzle describes an algorithm for runt pruning and then

goes on to give results comparing runt pruning-based clustering with other approaches on

generated and real-world data. While his approach improves on single-linkage clustering,

runt pruning is still in the realm of hierachical and density-based clustering. Therefore, it

has the benefits of being able to analyze its properties, while lacking the extra structure

topological hierarchies add that contain information about relationships within a cluster.

Topological hierarchies have many features that are not shared with cluster trees and

dendrograms. Their method of construction does not rely entirely on the metric structure of

the points, but rather the topological structure as viewed through the simplicial complexes

constructed on each group. In the case of a MAPPER-based topological hierarchy, the

filter function can significantly impact how the data is formed into a simplicial complex,

producing structures much different than the density-based cluster tree. Cluster trees and

dendrograms are binary trees, while topological hierarchies are not required to be binary.
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2.3 Applications of TDA

This section describes studies which apply TDA to real-world data or a standard machine

learning or data analysis dataset, rather than developing new topological methods. The em-

phasis is on applications of MAPPER and similar simplicial complex constructions such

as Vietoris-Rips complexes, as well as persistent homology. Each application described in

detail is of a distinct field, such as bioinformatics, aviation, or finance. This is not a com-

prehensive review; there are several articles applying TDA which are not described in detail

here. These include applications to biology [89, 63], chemical engineering [86], computer

vision [9], cosmology [99, 49], epidemiology [88, 60, 17], finance [43, 38], manufactur-

ing [44], neuroscience [85, 79, 96], ransomware detection [2], quantum chemistry [71], and

social networks [4], among others.

Nielson et al. use TDA to identify interactions between preclinical spinal cord injury

(SCI) and traumatic brain injury (TBI) in datasets from the Visualized Syndromic Informa-

tion and Outcomes for Neurotrauma-SCI (VISION-SCI) repository [69]. They use MAP-

PER to visualize the data, with the Pearson correlation as the metric and three principal

components of the singular value decomposition as the filter. They map behavioral out-

comes onto the topological networks, showing that forelimb outcomes were most sensitive

to cervical SCI. TDA reveals an interaction between SCI and concurrent TBI that depends

on the anatomical location of brain lesions. They identify “potential detrimental conse-

quences of [methylprednisolone] treatment on tissue pathology in cervical SCI, and to a

lesser extent in thoracic SCI.” This study shows the power of MAPPER in reducing a very

high dimensional dataset into a lower-dimensional representation (the “syndromic space”

that Nielson et al. describe), and how the resulting network structure encodes complex

interrelations between the features of the original dataset.

Cole and Shiu propose the use of persistent homology for studying the landscape of

string vacua in the various superstring theories of theoretical physics [19]. By using per-

sistence to characterize the distribution of vacua, they hope to understand how the vacua
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relate to low-energy physics. They choose persistent homology over black-box approaches

like neural networks due to its interpretibility. They consider type IIB string theory on

Calabi-Yau orientifolds in the presence of background fluxes, and study the distribution of

stabilized axiodilaton and complex structure moduli vacuum expectation values using per-

sistent homology. Viewing the distribution of string vacua as a kind of point-cloud dataset,

they apply persistent homology to it to find its topological features. They identify many 1-

cycles in the persistent homology of vacua, corresponding to long-lived voids in the vacua.

Using persistence pairing, they were able to reconstruct the presence of isolated vacua in-

side some of these voids in the rigid Calabi-Yau construction, something not possible with

traditional persistence where these isolated vacua would be treated as noise and not dis-

tinguished from the hole. This shows that TDA can have applications to even the most

theoretical fields of physics, where there are no examples of “real-world” data.

Li et al. consider the application of TDA to aviation datasets [59]. They introduce per-

sistent homology using examples of a simplicial complex built from aviation data. Next,

they review existing applications of TDA to aviation in the literature. Their own case study

is on the nerve topology of airport configurations. They view the surface of an airport as a

network structure where ramps and runways serve as sources and sinks of aircraft, which

travel along taxiways and inactive runways. A failing of this graph-based representation

is that it only captures pairwise relationships. They look at the five busiest airports in the

USA, obtaining the runway configurations from the Aviation System Performance Metrics

(ASPM) database maintained by the US Federal Aviation Administration. They infer the

active taxiway configurations from air traffic control audio, since these aren’t included in

the ASPM database. They construct a nerve complex by viewing the taxiways as “cov-

ers” that contain a runway or terminal when the taxiway intersects or meets them. Thus,

the vertices of the complex are the runways and terminals of the airport. They note that

maximal simplexes are lost when going from a high-capacity scenario to a low-capacity

scenario, indicating a significant change in the airport’s topology. They suggest that the
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maximal simplex could be used as a measure of the airport’s connectivity, to get a feel for

how reachable the various assets of the airport are.

Gidea and Katz explore the daily returns of four major US stock indices during the

technology crash of 2000 and the financial crisis of 2007 to 2009 [37]. They look at the

stock data as a time series under a sliding window, treating the data for each window as a

point-cloud to which TDA can be applied. For each point-cloud, they compute the Vietoris-

Rips filtration, and from that the persistence landscape and the Lp norms of the landscape

for loops. They identify that the variance and spectral density of the Lp norms of the

combined time series are substantially increasing before the crashes. They conclude that

this represents an increased persistence of loops as the market transitions from the ordinary

state to a “heated” state. They suggest that this measure could be used as an early warning

signal preceding a future market crash.

Asaad and Jassim apply persistent homology to the forensic detection of image tam-

pering [6]. They use the local binary pattern (LBP) of Ojala et al. [70] to represent the

local texture of a grayscale image. Uniform LBP pixels at different thresholds are used

to build Vietoris-Rips complexes. They investigate the sensitivity of the VR complexes to

morphing in passport photos, under the assumption that morphing will produce topologi-

cally inequivalent complexes which therefore have different topological invariants. For the

splicing morphing scheme, their method correctly classified 98% of 100 images randomly

selectec from the Utrecht face database. The combined morphing scheme was correctly

classified 99% of the time, while the complete morphing scheme is only classified cor-

rectly 60% of the time.

Topological hierarchies provide new opportunities for applying TDA to real-world

problems. For bioinformatics data, a THD can be viewed as an extension of MAPPER that

provides views of the syndromic space at various resolutions and on meaningful subsets

of the data decomposed by MAPPER. It could potentially identify smaller subgroups of

meaningful outcomes by looking at the groups near the leaf nodes. For the application to
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aviation considered by Li et al., THD could potentially identify sub-topologies of an airport

by decomposing a point-cloud representation of the airport into a hierarchical structure.

This could be useful for studying the ability of the airport to continue operation when some

parts of it are non-functional due to weather, construction, or accident. For analysis of stock

returns as a time series, THD could be used to identify periods of time preceding a crash

which exhibit unusual structure and are thus decomposed into subgroups in the hierarchy

whose features are statistically significantly different than the rest of the data. For detecting

image tampering, THD has the potential to not only identify tampered images through the

same techniques of persistence, it could also find which regions of the image are the most

distorted from the original.
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This chapter will give an introduction to the needed topological and mathematical

background for the rest of the dissertation, as well as related concepts that are useful in

applications. For more information on introductory topology, consult a standard textbook

such as [67] for general topology, and [48] for algebraic topology. There are also a num-

ber of surveys of topological data analysis and monographs on applied or computational

topology; see any of [11, 16, 66, 73, 97, 100, 27].

IfA is a set, we use 2A = {B|B ⊆ A} to denote the power set rather than P(A) which

is often used in mathematical writings.

3.1 Basic Topology

The starting point in the study of topology is the definition of a topological space. This gen-

eralizes notion of nearness, openness, and closedness encountered in real analysis, complex

analysis, and the study of Euclidean spaces Rn. A topology can be thought of as providing

a definition of qualitative nearness through its open sets. A metric structure, which provides

a quantitative distance, is a stronger structure than a topology, as will be seen later.

Definition 1. Given a set X , a topology on X is a collection T of subsets of X satisfying

the following axioms:

1. The set X itself is in T ; Symbolically, X ∈ T .

2. The empty set ∅ is in T ; That is, ∅ ∈ T .

3. For any indexing set A such that for all α ∈ A, there is an element Oα ∈ T , the

union
⋃
α∈AOα ∈ T . That is, T is closed under arbitrary union.

4. For any two O1, O2 ∈ T , the intersection O1 ∩O2 is in T . That is, T is closed under

finite intersection.
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The sets O in the topology T are called open sets, and this name was chosen because

they generalize the properties of open sets in Rn. Recall that a subset U of Rn is open if

for every point x in U there is an open ball around x which is contained in U . Intuitively,

U is open if there is enough wiggle room around each of its points so that small enough

translations can not leave U . Finally, given a set X and a topology T on X , the pair (X, T )

is called a topological space.

Example 1. Here are some of the standard examples of topological spaces:

1. An arbitrary set X with T = {X, ∅} as a topology. This is known as the trivial

topology since it doesn’t contain much, if any, information about the structure of the

set.

2. An arbitrary set X with the topology T = 2X of all subsets of X . This is called the

discrete topology on X . Like the trivial topology, it is not too useful in practice since

any subset of X will be open.

3. The set X = {a, b, c} with the collection of subsets T = {X, ∅, {a}, {b, c}} as

the topology. There are many other ways to define a topology on a set of three

elements, 29 in total [54]. While topologies on a finite set can be useful to understand

definitions and find counterexamples, through the rest of the dissertation it is assumed

that the underlying topologies are on infinite sets, usually subsets of Rn. This leads

to notions of convergence that are closer to the intuitive ones from calculus.

4. The set of real numbers R is a topological space with the following standard topol-

ogy: a set O ⊆ R is considered open if for any point p ∈ O there exists an ε > 0

such that the interval Bε(p) = (p − ε, p + ε) is contained in O: Bε(p) ⊆ O. This is
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equivalent to saying that an open set is made up of a (possible infinite) union of open

intervals, since we can just choose one such interval for each point in the set.

5. The previous discussion extends to Rn as follows: a set O ⊆ Rn is considered open

if for any point p ∈ O there exists n numbers εi > 0 such that the Cartesian product

(p− ε1, p+ ε1)× (p− εn, p+ εn) is contained in O. Equivalently, an open set in Rn

can be made up of unions of Cartesian products of n open intervals.

6. The complex numbers C also form a topological space. Instead of open intervals, we

work with open balls of the form Br(z0) = {z ∈ C||z − z0| < r}. A set O ⊆ C is

open if for any point p ∈ O there exists a number ε > 0 such that Bε(p) ⊆ O. This

definition can be extended to give the standard topology on Cn.

A topological space gives us the open sets, from which we can construct various other

sets. The first will be the closed sets, which are simply the complements of open sets.

Definition 2. Given a topological space (X, T ), a subset C ⊆ X is said to be closed if

X\C is open, that is, if X\C ∈ T .

For example, in R, the complement of an open interval I is the union of two closed

intervals, and a general closed set can be written as the (possibly infinite) intersection of

a collection of closed intervals, just how an open set can be written as the union of open

intervals. The intuition one should have for a closed set is that it contains its own boundary,

i.e. points for which any neighborhood (see the next paragraph) will contain points both

inside and outside of the set. However, this shouldn’t be taken too far – the interval [0,∞)

is closed in R (its complement is (−∞, 0)) but is unbounded on one side. So only the

boundary points that are inside the set R are included in a closed set.
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Figure 3.1: A neighborhood N of a point p which contains an open set O containing p.

Often times we want to consider a set that “surrounds” a point but may not necessarily

be open. This leads to a simple generalization of an open set.

Definition 3. A neighborhood of a point x ∈ X is a set N ⊆ X such that x ∈ U ⊆ N

for some open set U . That is, a neighborhood of a point is a set that contains an open set

containing the point.

Neighborhoods are used instead of open sets because in practice what matters isn’t that

the point is in some specific open set, but merely that there is “wiggle room” around the

point, which doesn’t require that the set we’re talking about is open, only that it has some

open subset containing the point. Equivalently, one can consider a point in its neighborhood

to be an “interior point”, i.e. one that is not on the boundary of the set.

A very important property that a topological space can have is the ability to “separate”

points by open sets or neighborhoods. All but the most pathological spaces will have

this property. Two distinct points x, y ∈ X in a topological space can be separated by

neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that

U ∩ V = ∅. This leads to the following definition.

Definition 4. A topological space is a Hausdorff space if every pair of distinct points in it

26



Figure 3.2: Two points p1 and p2 separated by neighborhoods N1 and N2 such that N1 ∩
N2 = ∅.

can be separated by neighborhoods.

For example, R with the usual topology is Hausdorff since we can choose disjoint

open intervals around a pair of arbitrary real numbers. Every topological space discussed

in this dissertation is assumed to be Hausdorff to avoid pathological cases. In particular,

every metric space is a Hausdorff space, and the subspace (see below) of a Hausdorff

space is also Hausdorff. In a Hausdorff space, a sequence of points has a unique limit if it

converges to any limit at all.

We now consider how to construct new topological spaces from existing ones. Since

topological spaces are sets, we can take unions, intersections, Cartesian products, and look

at subsets. All that is left is to define a topology on these constructs from the existing

topologies on the sets they are built off of. Let us look at cartesian products first. This leads

to the notion of a product topology:

Definition 5. Let X and Y be topological spaces. The product topology on the Cartesian

product X × Y has as open sets A×B where A is open in X and B is open in Y .

This extends to the product topology of a finite number of sets in a natural way. There

are more subtleties when an infinite Cartesian product is taken, but this will not need to be

considered in this dissertation.

Example 2. We can form the product topology of any number of the spaces from Exam-

ple 1. In particular, we have the product topologies on Rn and Cn given by the product of n
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copies of R or C respectively. While not immediately obvious, these are equivalent to the

topologies on them described in terms of open balls.

Next, let us consider an arbitrary subset of a topological space. In order to construct

a topology on it, we can consider intersections of the subset with the open sets of the

full space. This leads to the definition of a subspace topology, an extremely important

construction in this dissertation.

Definition 6. Let (X, T ) be a topological space, and S ⊂ X . Then the subspace topology

of S is defined as

U = {T ∩ S|T ∈ T }.

The open sets of U are just the intersection of open sets in T with the subset S. This defines

a new topological space (S,U).

The subspace topology is the core construction used in defining topological hierar-

chies. A hierarchy defines a tree structure of subsets, and as long as we have a topology

on the largest set, we can endow each of the subsets with the subspace topology. This is

related to the fact that if A ⊂ B ⊂ T , then the subspace topology on B generates the sub-

space topology on A, and this is the same as the subspace topology on A generated by T .

This applies to subsets at any (finite) level, which defines a kind of consistency of subspace

topologies on a hierarchical structure.

Now, let us consider definitions that cover the notions of limits and convergence (of

a sequence) in a topological space. A limit point is a generalization of the area around the

limit of a sequence in Rn, where you will always have points that are not in the sequence.

An isolated point is a single point in a set that isn’t “connected” to any other points of

the set. And the limit of a sequence is a straightforward generalization of the limit of a

sequence in Rn, using the language of neighborhoods to avoid talking about distances.
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Figure 3.3: The boundary ∂U and interior Int U of a set U . The closure Ū is the union of
the boundary and interior. The original set U would include the interior and possibly parts
of or the entire boundary.

Definition 7. Let S be a subset of a topological space X . A point x ∈ X is a limit point

of S if every neighborhood of x contains at least one point of S distinct from x. A point

y ∈ S is an isolated point of S if there exists a neighborhood of y that does not contain any

other points of S. A point x ∈ X is a limit of a sequence (xn)n∈N if for every neighborhood

V of x, there exists a N ∈ N such that for all n ≥ N , the point xn ∈ V .

Finally, there are sets that can be defined from subsets of a topological space based on

their limit points. The closure of a set can be viewed as adding the boundary of the set to it,

to form a closed set. In particular, the boundary of a closed set is the same set. The interior

of a set removes the boundary, and the interior of an open set is the same open set. The

boundary is the closure of a set minus its interior, i.e. only the “closed” part of the closure.

This leads to the following definitions.

Definition 8. Let S ⊆ X be some subset of a topological space. The closure of S, denoted

S̄, is the set S together with all of its limit points. The interior of S is the union of all
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open sets contained in S, denoted IntS. The boundary of S is the closure with the interior

removed, that is, ∂S = S̄ − IntS. Points in the boundary have the property that any

neighborhood of them will contain points outside of S.

3.1.1 Continuous Maps

Given two topological spaces (X, T ) and (Y,U), a function f : X → Y is often called

a mapping of topological spaces, or simply a map. We are most interested in continuous

maps, which are distinguished by the fact that they preserve certain properties of topologi-

cal spaces. To define this, we first need to review the definitions of continuity from calculus

and real analysis.

Definition 9. Let f : A → R be a real-valued function, where A ⊆ R. The function f is

said to be continuous at a point c ∈ A if

lim
x→c

f(x) = f(c)

More formally, f is continuous at c if for all ε > 0 there exists a δ > 0 such that for all

x ∈ A with |x− c| < δ, we have that |f(x)− f(c)| < ε.

This more rigorous definition will become important for topology because it involves

open sets; the set of values

{x ∈ A
∣∣|x− c| < δ}

is exactly the open interval (c − δ, c + δ) restricted to A, and similarly we have an open

interval (f(c) − ε, f(c) + ε). Then the ε − δ definition of continuity is essentially saying

that for any open interval around f(c), there is an open interval around c which is mapped

to the first open interval. This leads to the general definition of continuity for topological
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spaces.

Definition 10. Given two topological spaces (X, T ) and (Y,U), a function f : X → Y

is said to be continuous if for a subset O ⊆ Y which is open (O ∈ U), the inverse image

f−1(O) is open (f−1(O) ∈ T ). If f is a bijection, it has an inverse g : Y → X such that

f ◦ g = idY and g ◦ f = idX . If g also happens to be continuous, then f is said to be a

homeomorphism and the spaces X and Y are said to be homeomorphic.

In topology, homeomorphic spaces are considered to be identical. For example, all

circles and ellipses are homeomorphic to the unit circle, so by studying the unit circle we

can determine the topological properties of every circle and ellipse. Note that the geomet-

ric properties of an ellipse are very different than those of a circle. We call something a

topological property if it is preserved by homeomorphisms. For example, compactness,

and being a Hausdorff space are topological properties.

3.1.2 Open Covers and Compactness

Often when looking at the global structure of a topological space, we wish to be able to find

an open set for each point in the space. This leads to a family of open sets which “cover”

the space in the sense that each point in the space falls in one or more of a sets.

Definition 11. Let (X, T ) be a topological space. Given a subset A ⊆ X , an open cover

of A is a family of sets U = {Uα}α∈J such that each Uα is open (in T ), and

A ⊆
⋃
α∈J

Uα

That is, each point x of A is contained in at least one Uα. Given an open cover U =
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Figure 3.4: Illustration of an open cover on a subspace (the orange ellipse). The open sets
of the cover are the intersections of the dashed ellipses with the orange-filled subspace.

{Uα}α∈J , if there exists a finite set V = {U1, . . . , Un} where each Ui is in U , then V is said

to be a finite subcover of U .

An illustration of an open cover is given in Figure 3.4. This shows how an open cover

of a parent space can be restricted to an open cover on the subspace topology. So far, there

are no restrictions on the number of open sets in the cover. In particular, there could be

an infinite number of open sets in the cover, even an uncountable infinite number. A nice

property to avoid this would be the ability to replace any open cover with a finite one. This

leads to the notion of compactness.

Definition 12. A topological space X is said to be compact if every open cover of X has a

finite sub-cover.

Compactness is a notoriously opaque notion; see [77] for more motivation and a dis-

cussion of a related property, sequential compactness. In Rn, a set is compact if and only

if it is closed and bounded, a fact known as the Heine-Borel Theorem. This does not hold

for general topological spaces where one does not have a definition of boundedness, but
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compactness can be viewed as a generalization of these properties.

3.1.3 Topological Bases

Similar to the motivation for an open cover, we may want to associate a set with each point

in a topological space. Furthermore, in the intersection between two such sets, we wish

to always be able to find another set containing a point in the intersection that “fits” in the

intersection. These sets will form a basis for the topology.

Definition 13. Given a set X , a basis of a topology on X is a collection B of subsets of X

such that

1. For all x ∈ X , There exists a B ∈ B such that x ∈ B. That is, B covers X .

2. For any B1, B2 ∈ B, if there is an x ∈ X such that x ∈ B1 ∩ B2, then there exists a

B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Note that a basis in topology is different from a basis in linear algebra, but the idea

behind the definition is similar. However, a topological basis isn’t immediately related to a

notion of “dimension” like a basis for a vector space is. A topological basis can be viewed

as the smallest number of sets needed to generate a topology in the following sense.

Given a set X and a basis B, the topology generated by B consists of all possible

unions and finite intersections of elements in B. For example, the set of open intervals is a

basis on R and the topology generated by this basis is just the standard topology on R.

3.1.4 Connectedness and Paths

Recall that an isolated point in a subset of a topological space is one that is not “connected”

to the rest of the subset in the sense that there is a neighborhood of the isolated point

that doesn’t contain any other points in the subset. Is it possible for entire subsets of a
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topological space to be isolated instead of a single point? The answer is yes, and the

following definition describes this situation.

Definition 14. A topological space X is said to be connected if it can not be written as the

union of two disjoint non-empty open sets. This can be extended to subsets of X , where

a subset S ⊆ X is connected if it is a connected space under the subspace topology. A

connected component of a topological space is an open subset which is connected. The set

of connected components of X form a partition of the space.

In applications, it is desirable to have a stronger notion of connectedness. It may be

difficult to find the exact forms the disjoin sets of a non-connected space takes. Instead,

we consider “travelling” through the space on a curve. If we can continuously go from one

point to another in a space, we can be sure that the points are connected. This leads to the

definition of path-connectedness.

Definition 15. Given a topological space X , a path in X from a point x ∈ X to y ∈ X

is a continuous function γ : [0, 1] → X where [0, 1] is the unit closed interval in R and

γ(0) = x and γ(1) = y.

The topology we use on [0, 1] is the subspace topology induced by the standard topol-

ogy on R. If γ is injective, i.e. for all x, y ∈ [0, 1] γ(x) = γ(y) implies x = y, we say the

path γ is simple. Intuitively, this is a path which does not cross itself. Now we can define

what it means for two points to be path-connected.

Definition 16. Two points in X are path-connected if there exists a path between them.

The entire space is path-connected if every pair of points is path-connected. Similarly to

connectedness, a subset of a topological space is path-connected if it is under the subspace

topology.
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Given a point x, the path-component of the space containing x consists of all the points

that are path-connected with x. Every path-connected set is connected, but the converse

does not hold. Hereafter, it is assumed that when “connected” is used, “path-connected” is

meant.

3.1.5 Metric Spaces

Figure 3.5: An illustration of the triangle inequality in a metric space.

An example of a large family of topological spaces is that of a metric space. Infor-

mally, a metric space is a set of points and a way of computing the distance between two

points. This distance should satisfy the expected properties of distance, based on our ex-

perience with real numbers and Euclidean spaces. In particular, it should be non-negative,

and only equal to zero when computing the distance between a point and itself.

Definition 17. A metric space (X, d) is a set X along with a function d : X → R such that

1. d(x, y) = 0 if and only if x = y all x, y ∈ X

2. d(x, y) = d(y, x) for all x, y ∈ X
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3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

The last axiom is often called the triangle inequality because of its geometric inter-

pretation in R2, as illustrated by Figure 3.5. From these three axioms, it can be shown that

d(x, y) ≥ 0 for all x, y ∈ X , so the metric has the desired non-negativity as well.

Example 3. Here are the standard examples of metric spaces.

1. The real numbers R with distance given by d(x, y) = |x−y|. This is the prototypical

example where the triangle inequality is first encountered.

2. Generalizing this, Rn with Euclidean distance given by d(x, y) = (
∑

i(xi − yi)2)
1/2.

3. For any p > 0 the space Rn is a metric space with distance given by d(x, y) =

(
∑

i |xi − yi|p)
1/p. The previous example is the case p = 2.

4. Complex numbers C with distance given by d(z, w) = |z − w| where |z| =
√
zz̄,

where z̄ is the complex conjugate.

5. The surface of a sphere, with the distance between two points being given by the arc

length of a great circle connecting them.

Given that the most well-known metric spaces Rn are also topological spaces, is it

possible to make any metric space into a topological space? The answer is yes. There is

a standard way of constructing a topology on a metric space (X, d). For any ε > 0 and

x0 ∈ X , define the open ball of radius ε centered at x0 to be

Bε(x0) = {x ∈ X|d(x, x0) < ε}

Then the set

B = {Bε(x)|∀x ∈ X and ε > 0}
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forms a basis for a topology on X . The resulting topology is called the standard or induced

topology on X .

3.2 Clustering

In order to describe the computational aspects of MAPPER more formally, it is useful

to have a definition of a clustering. I follow [8], which views clustering as a family of

partitions that are equivalent up to labeling. Assume a set of s labels, usually the numbers

1, . . . , s, and an assignment of a label to each point in a metric space defines a clustering.

However, since the labels are arbitrary, we allow permutations of them to define the same

clustering.

Definition 18 (Clustering). Let (X, d) be a metric space, s a positive integer, and F (X, s)

the set of all functions f : X → {1, . . . , s}. For any f, g ∈ F (X, s), we say that f and g

are equivalent and write f ∼ g if there is a permutation π of {1, . . . , s} such that f = π ◦g.

The equivalence class of functions f ∈ F (X, s) is denoted [f ], i.e.

[f ] = {g ∈ F (X, s)|f ∼ g}

The set of all clusterings on X , denoted F , is the quotient:

F = F (X, s)/ ∼ = {[f ]|f ∈ F (X, s)}

This definition means possible clusterings are to be considered equivalent if they pro-

duce the same clusters but label them differently, so that the clusterings are related by a

permutation of the labels. Given a clustering function f : X → {1, . . . , s}, we denote the
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ith cluster Ci(f), and it is given by

Ci(f) = f−1(i) = {x ∈ X|f(x) = i}

for 1 ≤ i ≤ s.

We are particularly concerned with hierarchical clustering algorithms, which are typ-

ically done in an agglomerative approach, where one starts with each point as a separate

cluster, and iteratively merges clusters to form a hierarchy of clusters with the entire point

set as the root [52, 68]. This gives a tree structure known as a dendrogram, which can

be viewed as a family of functions f∗ such that fd is the clustering function obtained by

cutting the tree at some distance d, producing what is known as a flat clustering where the

leaf nodes of the cut dendrogram correspond to the clusters produced by fd.

Given the current set of clusters, hierarchical clustering schemes differ in how they

determine which two clusters to merge at a given step. In general, some distance is com-

puted for each pair of clusters based on the metric, and the two clusters with the lowest

distance between them are merged. This distance between clusters is known as the linkage

criterion. Let A and B be two clusters, then the following linkage criteria are the most

commonly used to assign a distance between them:

• (single linkage) d(A,B) = min {d(a, b)|a ∈ A, b ∈ B}

• (complete linkage) d(A,B) = max {d(a, b)|a ∈ A, b ∈ B}

• (unweighted average linkage) d(A,B) = 1
|A|·|B|

∑
a∈A

∑
b∈B d(a, b)

For a given pair of clusters A and B, the single linkage distance will be the smallest,

the complete linkage distance the largest, and the unweighted average linkage distance will

fall in between them. There are other linkage criteria, but many of them rely on having

a Euclidean metric, or are variations of average linkage. For a discussion of evaluating

clusterings, see Section 4.4.

38



3.3 Topological Structures

The MAPPER construction of [84] is motivated by the notion of a pullback cover, which

allows one to “pull back” an open cover in a space mapped to from another space to obtain

an open cover of path-connected sets in the parent space. For some pathological functions,

it is possible that the inverse image of a set in a cover is split into infinitely many connected

components. We restrict ourselves to well-behaved functions that do not do this.

Definition 19 (Well-behaved function). Let X be a metric space, Z a topological space,

and f : X → Z a continuous map. We say that f is well-behaved if for any path-connected

open set U in Z, the pre-image f−1(U) has finitely many path-connected components in

X .

Using well-behaved functions guarantees that the complexes produced by MAPPER

are always finite as long as we start with a finite cover, since MAPPER will at most split a

finite number of open sets a finite number of times.

If we have an open coverW = {Wi}ti=1 on Z and a continuous, well-behaved function

f : X → Z, can we obtain a cover on X? The answer is yes, since each of the pre-images

f−1(Wi) will be open in X as f is continuous, and each x ∈ X is mapped to some z ∈ Z

so taken as a whole {f−1(Wi)}ti=1 will cover X . However, the pre-images may not all be

path-connected, as a connected set in Z may be “split” under the inverse image f−1 into

many components inX . The pullback cover is a construction which recovers an open cover

of path-connected components from these inverse images.

Definition 20 (Pullback Cover). Let X be a metric space, Z a topological space, f : X →

Z a well-behaved continuous map, andW = {Wi}ti=1 a finite open cover on Z where each

Wi is path-connected. Use Ui = f−1(Wi) to represent the inverse images of the Wi for
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i = 1, . . . , t. Now, split each of the Ui into its path-connected components, so we have

Ui = V i
1 ∪ · · · ∪ V i

si

for i = 1, . . . , t where si is the number of path-connected components of Ui.

The pullback cover ofW under f is the collection of these V i
j :

f ∗(W) = {V i
j |i = 1, . . . , t and j = 1, . . . , si}

To build up to the idea of a simplicial complex, I start by defining the standard sim-

plices in Rn+1. A simplex can be thought of as a generalization of a triangle or tetrahedron

to arbitrary dimensions. Since I am only concerned with topological properties of com-

plexes, I can choose a particularly simple coordinization to describe simplices.

Definition 21. For a non-negative integer n the standard n-simplex is a subset ∆n of Rn+1

given by

∆n =

{
(x0, x1, . . . , xn) ∈ Rn+1

∣∣∣∣∣
n∑
i=0

xi = 1 and xi ≥ 0 for all i = 0, . . . , n

}

So the standard 0-simplex is a point, the standard 1-simplex a line, the standard 2-

simplex a triangle, and so on. An arbitrary simplex is generated by a continuous deforma-

tion of a standard simplex. Note that any n-simplex will contain n+ 1 (n− 1)-simplices as

subsets (when n > 0); these are the faces of the simplex. A geometric simplicial complexes

is made up of the union of simplices of any dimension. An abstract simplicial complex is

obtained by “forgetting” the geometric structure of a simplicial complex, focusing entirely

on the combinatorial aspects of simplices as sets of points.
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Definition 22 (Abstract simplicial complex). Given a finite set V , an abstract simplicial

complex Σ is a collection of subsets of V with the following property: whenever σ ∈ Σ and

τ ⊂ σ, then τ ∈ Σ. The elements of Σ are called its faces or simplices and V is called the

vertex set and its elements vertices. If a simplex σ ∈ Σ has k+ 1 vertices (i.e. |σ| = k+ 1),

we say that σ is a k-simplex.

An abstract simplicial complex can be viewed as an undirected graph with higher-

order ”edges” in the following sense: the nodes of the graph are the elements of V , edges

are pairs {v, v′}, and so on. The fact that any edge in a graph must have its endpoints also

in the graph is generalized by the property of an abstract simplicial complex. From here

on out I will only be using abstract simplicial complexes, so I will call them simplicial

complexes for brevity as there is no possibility of confusion.

The main examples of simplicial complexes I will discuss are the nerve and Vietoris-

Rips constructions. The nerve construction builds an (abstract) simplicial complex from

an open cover. It can be considered to give a representation of the cover, showing how

the elements of the cover overlap. Given a subset of a topological space (possibly the

entire space) and an open cover of that subset, the nerve can describe certain topological

properties of the space.

Definition 23 (Nerve). Let X be a topological space and U = {Ui}ti=1 a finite cover of X .

The nerve of U is a simplicial complex, denoted N (U), constructed as follows: the vertex

set is the collection of indices {1, . . . , t} and a set of indices {v0, v1, . . . , vk} is a k-simplex

if

Uv0 ∩ Uv1 ∩ · · · ∩ Uvk 6= ∅

That is, the simplices are the indices of collections of open sets which all overlap. It is

easy to see that this is a simplicial complex, as if some collection of open sets all have a non-
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empty intersection, then any subset of that collection will also have non-empty intersection.

The 0-simplices are identified with the open sets in the cover, with higher-order simplices

being generated by the overlaps of open sets of that order.

Before I define MAPPER, I give an example of a nerve that is commonly used in

TDA, and an example of a construction which doesn’t use the nerve known as the Vietoris-

Rips complex, or VR complex for short. The properties of the VR complex shared with

the nerve complex will motivate a generalization of the nerve operation used for defining

topological hierarchies.

Example 4. Given a finite metric space X = (x1, . . . , xn) and some ε > 0, the Čech

complex Čε(X) is a simplicial complex defined as follows: we define an open cover Uε =

{Ui}ni=1 on X by taking the open ball of radius ε around each xi ∈ X , so that we have

Ui = Bε(xi) for i = 1, . . . , n. The Čech complex is simply the nerve of this cover:

Čε(X) = N (Uε).

Note that the Čech complex will have as many vertices as there are points in the

metric space. This means that it can become complicated quickly if points are added to the

space, as the number of possible intersections between the open balls grows as
(
n
k+1

)
for

checking the existence of k-simplices. This motivates the Vietoris-Rips complex, which

greatly reduces the number of intersections which need to be checked.

Example 5. Let (X, d) be a finite metric space and ε > 0. The Vietoris-Rips complex (VR

complex) of X with diameter ε is the simplicial complex VRε(X) whose vertex set is X ,

and where a subset {x0, . . . , xp} of X spans a p-simplex if and only if d(xi, xj) < ε for all

0 ≤ i, j ≤ p. We can describe this using the open cover:

Uε = {Uε(x) = Bε/2(x)|x ∈ X}
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Then a subset {x0, . . . , xp} of X spans a p-simplex if and only if Uε(xi) ∩ Uε(xj) 6= ∅ for

all 0 ≤ i, j ≤ p. This cover is the same as the one used in the construction of the Čech

complex, except with radius ε/2. Furthermore, we have the inclusion relations:

Čε/2(X) ⊆ VRε(X) ⊆ Č2ε(X)

I am now ready to introduce the MAPPER construction, first defined in [84], which

has motivated much of my work in TDA and lead to the concept of topological hierarchies.

MAPPER approaches the combinatorial problem raised by the Čech complex construction

by making use of a continuous function to map an original topological space to a new one,

usually of lower dimension.

Definition 24 (MAPPER). Let X be a metric space, Z a topological space, f : X → Z a

continuous well-behaved map, and U = {Ui}ti=1 a finite open cover of Z. The MAPPER

of f is defined as the nerve of the pullback cover of U under f :

M(U , f) = N (f ∗(U)) (3.1)

f is called the filter or lens function. Elements of U are known as bins. When computing

MAPPER, Z is chosen to be of lower-dimension than X .

One can view MAPPER as an extension of clustering where instead of clustering on

the entire metric space, one clusters separately on each set of an open cover of the space.

This leads to a definition which extends Definition 18.

Definition 25 (MAPPER Function). Let X be a metric space with an open cover U =

{Ui}ti=1. Given clusterings fi ∈ Fi = F(Ui, s), the MAPPER function f assigns to each
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x ∈ X the set of cluster labels assigned to it by each of the fi, so that we have

f(x) = {fi(x)|i = 1, . . . , t and x ∈ Ui} (3.2)

The MAPPER function can be used to build the simplicial complex of MAPPER by

looking at overlap between the sets it gives for a fixed cluster. For example, if Ui has

cluster labels ci1, c
i
2, . . . , c

i
si

, then for i 6= j there will be an edge between cia and cjb if and

only if there exists x ∈ X such that {cia, c
j
b} ⊆ f(x), i.e. both clusters are in the MAPPER

function for some point x, which indicates that the clusters overlap.

3.4 Homology and Persistence

I give here a quick overview of simplicial homology, then move on to persistence. For more

details on simplicial homology and persistence, see [26, 29, 101]. Simplicial homology

constructs modules on a simplicial complex which capture certain features of the complex.

The dimensions of these modules describe the number of these features. I will always use

scalars from a field F , so the modules will always be vector spaces.

3.4.1 Algebra

Here I recall the algebraic background needed to describe homology groups. These con-

cepts are covered in much more detail in any book on abstract algebra, such as [75, 34, 40].

Definition 26 (Group). A group (G, ·) is a set G together with a binary operation · : G ×

G→ G such that

• The binary operation is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ G,

• There is a unit element e ∈ G, such that e · a = a · e = a for all a ∈ G,
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• Every element a ∈ G has an inverse a−1 ∈ G such that a · a−1 = a−1 · a = e.

If the following property also holds, the group is called Abelian:

• The binary operation is commutative: a · b = b · a for all a, b ∈ G.

The operation in an Abelian group is often called addition and denoted +, e.g. a+b = b+a,

even when the underlying set is not a set of numbers. In a general group (Abelian or not),

this operation is often called multiplication and written without the dot: a · b = ab.

I am mainly interested in the definition of a group so that I can define rings and fields.

Members of a ring or field will be the coefficients of chain complexes, which are then used

to build up the homology groups from which persistent homology is constructed.

Definition 27 (Ring and Field). A ring (R,+, ·) is a set R together with two binary opera-

tions + : R×R→ R and · : R→ R, such that

• (R,+) is an Abelian group,

• · is commutative: ab = ba for all a, b ∈ R,

• · is associative: a(bc) = (ab)c for all a, b, c ∈ R,

• · distributes over +: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R,

• and there is a unit element 1 ∈ R for · such that 1a = a1 = a for all a ∈ R.

In a ring we denote by 0 the unit for the addition operation + and −a for the inverse of

a ∈ R under +. If, in addition we have the existence of inverses for multiplication, i.e. for

all a ∈ R there is an a−1 ∈ R such that aa−1 = a−1a = 1, we call the ring a field instead.
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Note that in the literature rings are not always required to have a unit or even be

commutative. I will only consider commutative rings with unit so that they are included in

the properties here. The last definition needed is a vector space; while I could work with

modules, for the purposes of this dissertation I only need coefficients in a field, so vector

spaces will suffice.

Definition 28 (Vector Space). Let F be a field. A vector space V over F is a set V of

elements called vectors which satisfy:

• V is an Abelian group with operation +,

• there is an operation · : F× V → V such that λ · v ∈ V for all λ ∈ F and v ∈ V ,

• this operation distributes with vector addition: λ1(v1 + v2) = λ1v1 + λ2v2 and (λ1 +

λ2)v1 = λ1v1 + λ2v1 for all λ1, λ2 ∈ F and v1, v2 ∈ F.

The elements of V are called vectors and the elements of F scalars.

Let us recall the notions of linear independence, dimension, and bases in a vector

space as well.

Definition 29. Let V be a vector space over a field F. A subset {v1, . . . , vn} ⊆ V of vectors

is said to be linearly independent if the equation

a1v1 + . . . anvn = 0,

where a1, . . . , an ∈ F are scalars, is only satisfied when a1 = a2 = · · · = an = 0.

The subset is linearly dependent if there exist scalars a1, . . . , an, not all zero, such that
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a1v1 + · · · + anvn = 0. Equivalently, they are linearly dependent if one of the vectors can

be written as a linear combination of the others.

A set B of linearly independent vectors in V is said to be a basis of V if every vector

in V can be written as a linear combination of vectors in B. The dimension of V is the

cardinality of B, denoted dimV = |B|. It can be proven that every basis of a given vector

space V has the same cardinality, so the dimension of a vector space is independent of a

chosen basis. Furthermore, a basis is the largest set of linearly independent vectors that

can be constructed. Adding any non-zero vector to a basis will lead to a set of linearly

dependent vectors.

Next, I need a way to construct a vector space from an arbitrary set and a given field.

This can be done by declaring the elements of the set to be vectors and writing an arbitrary

vector as a linear combination of the elements from the set, each element multiplied by a

scalar from the field. This leads to the idea of a formal sum.

Definition 30 (Formal sum). Let S be a non-empty set of finite cardinality and F a field.

By a formal sum, I mean an expression of the form

a1s1 + a2s2 + · · ·+ ansn,

where a1, . . . , an ∈ F and s1, . . . , sn ∈ S. This is to be treated as just a sequence of

symbols, along with a few natural rules:

as1 + as2 = a(s1 + s2)
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and

a1s+ a2s = (a1 + a2)s.

This will give us a vector space if we add a zero vector, known as the vector space freely

generated by S.

3.4.2 Simplicial Homology

With the notion of a formal sum, I can construct a vector space over a simplicial complex.

This sounds like an odd thing to do, but it will allow for the study the topological proper-

ties of a simplicial complex using the powerful methods of algebra. Starting with formal

sums of p-complexes, I will build up to a vector space whose dimensionality provides in-

formation about the connected components, holes, and higher dimensional analogues of a

complex.

Definition 31 (Chains). Let K be a simplicial complex and F a field. A p-chain cp of

simplices in K over F is a formal sum:

cp =
n∑
i=0

αiσi

where αi ∈ F and σi is a p-simplex in K for all i = 0, . . . , n. The set of p-chains forms

a vector space Cp(K). The dimension of this vector space is exactly the number of p-

simplices in the complex.

The important thing about a simplicial complex is that each p-simplex (for p > 0) will

also contain its faces. These faces are p − 1-simplices. In the algebraic construction of

p-chains, this means there should be a way to go from a p-chain to a p − 1-chain. This is
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Figure 3.6: An example of the boundary operator. The simplex (ABC) on the left has the
boundary AB +BC + CA shown on the right.

the idea of the boundary of a chain.

Definition 32. Given a simplicial complex K and the vector space Cp(K), the boundary

∂p(σ) of a p-simplex σ to be the alternating sum of the (p − 1)-simplices comprising its

faces. Then the boundary of the p-chain cp is given by:

∂p(cp) =
n∑
i=0

αi∂(σi).

The boundary operator in action is illustrated on a 2-simplex in Figure 3.6. This

shows how the intuitive idea of a boundary is captured by the boundary operator; viewed

as topological spaces, the triangle ABC is bounded by the three edges AB, BC, and CA.

The boundary operator is a linear transformation ∂p : Cp(K)→ Cp−1(K) and satisfies

the property ∂p−1 ◦ ∂p = 0, as can be proved by looking at its action on a single p-simplex.

For example, given a triangle, taking its boundary twice will give a sum of points, which all

cancel out due to the negative signs introduced by the alternating sums. The images of ∂p+1

then have the important property that they vanish under the boundary operation. However,

it may be possible to have p-chains which vanish under the boundary which aren’t the
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Figure 3.7: An example of a cycle. The chainAB+BC+CA vanishes under the boundary
operator, since the boundary ends up being A−B +B − C + C − A = 0.

image of some (p+ 1)-chain. This motivates the following definition.

Definition 33 (Cycle, Boundary, Homology group). A p-chain c is called a cycle if ∂p(c) =

0. The kernel of the boundary operator,

Zp(K) := {c ∈ Cp(K)|∂p(c) = 0},

is the subspace of Cp(K) consisting of the cycles.

A p-chain c is called a boundary if there exists a (p+ 1)-chain c′ ∈ Cp+1(K) such that

c = ∂p+1c
′. The image of the boundary operator,

Bp(K) := {∂p+1(c)|c ∈ Cp+1(K)},

is the subspace of Cp(K) consisting of the boundaries.

The image of ∂p+1, Bp(K) = {∂p+1(cp+1)|cp+1 ∈ Cp+1(K)} is a subspace of Cp(K)
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whose elements are called boundaries. Furthermore, every boundary is a cycle, as ∂p−1 ◦

∂p = 0, so that Bp(K) is a subspace of Zp(K).

A cycle is shown in Figure 3.7. Note that this cycle is not a boundary, since there is

no 2-simplex (ABC) that the cycle could be the boundary of.

A boundary isn’t particularly interesting in a simplicial complex, as one can expect

to find one for any p-simplex when p > 0. However, a cycle that isn’t a boundary is

interesting. For example, consider three edges that each share a point, such as in Figure 3.7.

This makes up an un-filled triangle, and can be considered as a 2-dimensional “hole” in the

space represented by the complex. Therefore, I want a construction that takes this into

account. This leads to the definition of a homology group.

Definition 34. The p-th homology group Hp(K) for non-negative integers p is the quotient

vector space:

Hp(K) = Zp(K)/Bp(K).

It consists of equivalence classes of cycles, where the equivalence relation is defined as

follows: two cycles c, c′ ∈ Zp(K) are considered equivalent if there exists a boundary

b ∈ Bp(K) such that c = c′ + b. Then these two are the same equivalence class: [c] = [c′].

Note that the equivalence class of the zero vector

The dimension of Hp(K) (viewed as a vector space) is called the p-th Betti number

βp = dimHp(K).

The first few Betti numbers have simple interpretations; β0 is the number of connected

components in the simplicial complex K. β1 is the number of “loops,” or unfilled closed

paths up to the equivalence defined by B1(K). Furthermore, elements in a basis for Hp(K)

correspond directly to the features counted by the Betti numbers.
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3.4.3 Persistent Homology

Persistent homology tracks the features in the homology groups Hp(K) across linear trans-

formations. The basic structure is that of a persistence module. This is a more general

algebraic structure which arises when studying the homology of spaces connected by maps.

Definition 35 (Persistence Module). Given a field F , a persistence module V is a sequence

of vector spaces Vi over F connected by linear maps fi:

V1
f1−→ V2

f2−→ . . .
fi−1−−→ Vi

fi−→ . . .

In practice, I use finite persistence modules which are sequences V1 → · · · → Vn. Given

such a persistence module, for 1 ≤ i < j the (i, j)-th persistent homology, denoted V i→j ,

is the image of the compound transformation f i→j : Vi → Vj given by f i→j = fj ◦ fj−1 ◦

· · · ◦ fi+1 ◦ fi. For our purposes, all vector spaces in a persistence module are assumed to

be finite-dimensional.

A persistence module arises naturally when one has a sequence of simplicial com-

plexes Ki related by inclusion, known as a filtration:

K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ . . .

Applying the homology functor H∗ to the complexes for a given p gives a persistence

module:

Hp(K0)→ Hp(K1)→ · · · → Hp(Ki)→ . . .

with the linear transformations being induced on the chain complexes by the inclusion

relations between the simplicial complexes. More generally, one can define a persistence
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module on a sequence of simplicial complexes related by simplicial maps.

Figure 3.8: An example of a simplicial map with a vertex collapse and embeddings.

Definition 36 (Simplicial map). Let K and L be simplicial complexes with respective

vertex sets VK and VL. A simplicial map φ from K to L is a mapping of the vertex sets

φ : VK → VL such that for all simplices σ ∈ K, we have that the image φ(σ) ∈ L.

An example of a simplicial map is given in Figure 3.8. Vertices with the same label are

mapped to each other, except for 1 and 3 which are merged to {1, 3} in a vertex collapse.

This collapses the edge {1, 3} to a single point and turns the 2-simplex {1, 2, 3} into the

1-simplex {2, {1, 3}}. There are also simplices added in the codomain, which illustrate the

embedding aspect of a simplicial map.

If one starts with a sequence K1
φ1−→ K2

φ2−→ . . .
φn−1−−−→ Kn of simplicial complexes

Ki with simplicial maps φi : Ki → Ki+1, when homology is computed each simplicial

map becomes a linear transformation Hp(φi) : Hp(K) → Hp(L), yielding a persistence

module.

Proposition 1. Any finite persistence module V with coefficients in a field F can be decom-

posed uniquely up to ordering as a direct sum:

V =
m⊕
s=1

I(bs, ds)
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where the interval persistence modules I(bs, ds) have as spaces:

Ii =


F, if bs ≤ i ≤ ds

0, otherwise

and homomorphisms are the identity between copies of F and 0 otherwise [14]. The bs

are called the birth times and the ds the death times. Direct sums of persistence modules

are defined in the obvious way - we take the direct sums of corresponding pairs of vector

spaces in the modules, and the sums of the corresponding linear transformations.

Proof. Given in [20].

Using this decomposition, one can produce a representation of the persistence module

as a barcode [36]. This will be a set of line segments in the plane, where the horizontal

axis is the index of the persistence module. The vertical axis is an arbitrary ordering of

the interval modules in the decomposition. If one has an interval I(bs, ds), then there is a

horizontal line from bs to ds on the plot. An equivalent representation is that of a persistence

diagram. This is a plot in the (x, y)-plane where one plots a point at each birth-death

pair (bs, ds). All points will be at or above the line y = x as ds ≥ bs. One can define a

distance metric on persistence diagrams and use this to prove a stability result for persistent

homology; see [18].

Now consider a sequence of simplicial complexes K1 → K2 → · · · → Kn related

by simplicial maps. Applying homology yields persistence modules Hp(K1) → · · · →

Hp(Kn) for all non-negative integers p. If we decompose these persistence modules, the

intervals I(b, d) have the following interpretation: each interval represents a generator of the

homology group (equivalence class of cycles modulo boundaries) which is born at time b in

the group Hp(Kb) and is mapped to 0 (“dies”) by the homomorphism going from Hp(Kd).
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For p = 0, the intervals represent connected components of the simplicial complexes,

which die as they are merged by the addition of 1-simplices connecting them. For p = 1,

the intervals are unfilled loops, which are born as new cycles form from the addition of

edges and die as these cycles are filled by 2-simplices.

3.4.4 Zigzag Persistence

Zigzag modules generalize the persistence module of Definition 35 to allow the maps to

go in either direction. They are defined in [12] and an algorithm for computing zigzag

persistence for real-valued functions is given in [13].

Definition 37 (Zigzag module). A zigzag module is a sequence V of vector spaces

(V1, . . . , Vn) which form a diagram:

V1
p1←→ V2

p2←→ . . .
pn−1←−→ Vn

where each
pi←→ represents either a linear map Vi

fi−→ Vi+1 going forward or a map Vi
gi←− Vi+1

going backward. The sequence of symbols f or g is called the type of V, and the length of

a type τ is the length of the zigzag diagram, i.e. the number of vector spaces. A persistence

module is a zigzag module of type ff . . . f , i.e. with only forward maps. A zigzag module

V of type τ will also be referred to as a τ -module.

Two zigzag modules V and W of the same type τ can be composed into the direct sum

V ⊕W, which is a zigzag module with vector spaces Vi ⊕Wi and forward and backward

maps fi ⊕ hi and gi ⊕ ki, where forward maps in W are written hi and backward maps ki.

A submodule W of a τ -module V is a τ -module such that each spaceWi is a subspace of Vi

and fi(Wi) is a subspace of Wi+1 or gi(Wi+1) a subspace of Wi for all 1 ≤ i ≤ n. A zigzag
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module is decomposable if it can be written as the direct sum of nonzero submodules, and

indecomposable otherwise.

The features in a zigzag module are represented by indecomposable interval submod-

ules, whose respective endpoints are the birth and death times of the feature. By decompos-

ing a zigzag module into interval submodules, one can produce a summary of the module

as a persistence diagram or barcode. This generalizes the results from the original theory

of persistent homology, although the construction is more complex.

Definition 38 (Interval τ -module). Let τ be a type of length n, F a field, and b, d integers

such that 1 ≤ b ≤ d ≤ n. The interval τ -module with birth time b and death time d, written

Iτ (b, d), has as spaces:

Ii =


F, if b ≤ i ≤ d,

0, otherwise

Its maps are identity maps between adjacent copies of F , and the zero map otherwise. The

type is usually implicit, so the interval module will be written I(b, d).

Proposition 2. Every τ -module can be written as a direct sum of interval submodules.

Equivalently, the indecomposable τ -modules are exactly the interval modules Iτ (b, d),

where 1 ≤ b ≤ d ≤ n.

Proof. See [12].

This means that any τ -module can be described uniquely up to isomorphism by the

unordered list of the birth and death times of the interval submodules in its decomposition.
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Topological Hierarchies
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This chapter introduces the principal contributions of the dissertation. I introduce gen-

eralizations of maps of covers to allow the maps to be between a subspace and its super-

space. Nerve-like maps allow one to describe constructs such as the nerve and Vietoris-Rips

complex using the same language. Finally, these are used to introduce the main definition,

that of an (abstract) topological hierarchy. I give examples of topological hierarchies, and

introduce the related notion of an indexed hierarchy, where each group is associated with a

real resolution or scale parameter.

Next, I describe how to build a topological hierarchy algorithmically. Based on the

notion of a tower from the Multiscale MAPPER construction, I describe how to build a

topological hierarchy based on decomposing a space into connected components through

simplicial complexes from MAPPER, leading to the topological hierarchical decomposi-

tion algorithm. The mathematical study of topological hierarchies concludes with a short

discussion on how to apply persistent homology to them.

Finally, I compare topological hierarchies and THD in particular to hierarchical clus-

tering. I describe how to cut a topological hierarchy based on a distance measure to obtain a

flat clustering. Using adjust Rand scores and adjust mutual information metrics, I compare

the results of THD with hierarchical clustering on the HELOC dataset, showing that they

perform comparably over a range of distances.

I conclude the chapter with a theoretical time complexity analysis of MAPPER and

THD. I find a worst case O(n2) complexity for MAPPER and O(n3) for THD, where n

is the number of points in the data to decompose. There is also a short discussion on

potential optimizations when computing THDs, and a discussion on space complexity when

computing THDs.
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4.1 Preliminaries

The notion of a topological hierarchy is motivated by the construction known as the sub-

space topology. This is used when one has a subset of a topological space and wish to

induce a topology on it. With the subspace topology, one can relate structure on the sub-

space back to the parent.

Definition 39 (Subspace topology). Let X be a topological space and A ⊆ X a subset of

it. A can be made into a topological space by defining a topology on it as follows: a subset

O of A is said to be open if O = U ∩A for some open set U in X . That is, the topology T

is precisely the open sets of X restricted to A:

T = {U ∩ A|U ⊂ X and U is open in X}

The topology T is said to be the subspace topology of A and A as subspace of X .

It is important to note that if one has the relations B ⊆ A ⊆ X , one can continue

to define the subspace topology on B. This will be the same topology whether one uses

the subspace topology defined on A or the original topology on X when constructing the

subspace topology on B. Therefore, one can start with an original topological space X and

iteratively decompose it into subsets, each time using the subspace topology.

I require further structure on X and its subspace A in order to be able to define persis-

tence. The first step is to describe how one can induce a cover on A given one on X . The

cover on A will have nice properties relating it to the one on X .

Definition 40 (Induced open covers). Let X be a topological space, A a subset of X en-

dowed with the subspace topology, and U = {Ui}ti=1 an open cover of X . The open cover
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of A induced by U , denoted U|A, has as its members:

Vi = Ui ∩ A

for i = 1, . . . , t. It is clear that this is indeed an open cover of A as each element of U|A is

open by the definition of subspace topology, and the union of all the elements is exactly A

since U covers X . Furthermore, we have Vi ⊆ Ui for all i = 1, . . . , t.

For example, the induced open cover on Figure 3.4 can be obtained by taking the

intersection of the open sets with the orange-filled subspace.

The notion of a map of covers is used to define a multiresolution structure for MAP-

PER (see [84, 24]) and motivates one of our constructions used to describe persistence from

a subspace to a parent. The relationship described by this map of covers passes over to one

when the nerve is applied, giving what is known as a simplicial map. Once one has simpli-

cial maps, there is a known way to compute persistence by the methods of [23]. However,

I must modify the definition slightly.

(a) The two sets are not merged under ξ.
ξ(1) 6= ξ(2).

(b) The two sets are merged under ξ.
ξ(1) = ξ(2).

Figure 4.1: Examples of simple maps of covers ξ : U → V . Sets in U are outlined with
dashed lines, and sets in V with solid lines.

If one has a topological space X with a subspace A and an open cover U on X , the
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relationship between U|A and U is almost that of a map of covers, where the map ξ between

the index sets is the identity, as Ui ∩ A ⊆ Ui for all i. However, the covers are not strictly

on the same space, since A may be a strict subset of X . Therefore, I extend the definition

of map of covers so that the space U covers in the definition is allowed to be a subspace of

X .

Definition 41 (Map of covers). Let X be a topological space, Y a subspace of X (possibly

X itself), U = {Uα}α∈A an open cover of Y , and V = {Vβ}β∈B an open cover ofX . A map

of covers is a function ξ : A→ B such that for all α ∈ A we have Uα ⊆ Vξ(α). Sometimes

I will stretch the use of notation and write ξ(Uα) for Vξ(α), i.e. I will also let ξ represent the

mapping U → V . Note that this reduces to the normal definition of map of covers when

Y = X .

Example maps of covers are shown in Figure 4.1. It is possible to have two distinct

sets in U mapped to the same set in V and this is shown. If the nerve operator is applied,

this leads to a vertex collapse. A situation where distinct sets in U which do not intersect

are mapped to distinct sets in V which do intersect is also shown. Under the nerve, this

leads to two vertices with no connection using U and an edge between the vertices with V .

Finally, I want a mapping between simplicial complexes with properties that will allow

us to obtain a persistence module when passing to homology. Traditional persistence uses

a filtration, which is a growing sequence of simplicial complexes each a subset of the next

one. A more general notion is that of a simplicial map, described in Definition 36, includes

filtrations as a special case but also allows vertex collapses where a pair {u, v} of distinct

vertices are mapped to the same vertex φ(u) = φ(v) under the map φ.

As I will show, the nerve serves to induce a simplicial map from maps of covers. How-

ever, there are constructions such as the Vietoris-Rips complex that are not nerves which

also can yield simplicial maps. This motivates the next few definitions, which capture the

properties that allow these operators to induce simplicial maps. The cover map concept
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generalizes the associating of open sets with 0-simplices in the nerve, to allow for multiple

open sets being mapped to the same 0-simplex.

Definition 42 (Cover map and embedding). Let X be a topological space, U a finite open

cover of X , and K a finite simplicial complex. A cover map is a surjective mapping Φ :

U → V (K) such that any pair U,U ′ ∈ U satisfies U ∩U ′ 6= ∅ if and only if {Φ(U),Φ(U ′)}

is a simplex in K. A cover map is a cover embedding if it is a bijection.

For any cover map Φ : U → V (K), I define a pseudoinverse Φ∗ : V (K) → U as a

selection for each v ∈ V (K) some U ∈ U so that Φ(U) = v, yielding Φ∗(v) = U . This is

possible since Φ is surjective, so there will always be at least one U to choose from for any

given v; The composition Φ ◦ Φ∗ is the identity function on V (K). The pseudoinverse is

an actual inverse for cover embeddings since there is only one choice of U for each v.

A cover map describes a function that take sets in open covers to vertices in a sim-

plicial complex. Two open sets that have a common intersection are either mapped to the

same vertex or have vertices sharing an edge in the complex. Both the nerve and Vietoris-

Rips constructions define cover embeddings, as open sets correspond directly to vertices

for both constructions. Furthermore, any two open sets are joined by an edge if and only if

they have a common intersection in both constructions.

Note that the psuedoinverse is not necessarily unique - if one has Φ(U1) = v = Φ(U2),

then the choice of Φ∗(v) as either U1 or U2 is arbitrary. In order to ensure there’s a unique

inverse, I need to redefine the open cover so that the cover map on it becomes injective.

This motivates the following definition.

Definition 43 (Φ-reduced cover). Let X be a topological space, U an open cover on X , K

a finite simplicial complex, and Φ a cover map from U to K. For each v ∈ V (K), define
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the open set

Uv =
⋃

U∈Φ−1(v)

U

Then the Φ-reduced open cover UΦ is given by UΦ = {Uv}v∈V (K). Furthermore, I define

Φ̄ : UΦ → V (K) by Φ̄(Uv) = v.

It is clear that Φ̄ is injective. It is also surjective, a property inherited from Φ. There-

fore it is bijective, making it a cover embedding from UΦ onto V (K). If one defines

i : U → UΦ by

i(U) =
⋃

V ∈Φ−1(Φ(U))

V,

then one can write Φ = Φ̄ ◦ i. A choice of pseudoinverse Φ∗ amounts to choosing a right

inverse for i, i.e. choosing an open set U ′ in U for each open set Uv in UΦ, Φ(U ′) = v. Note

that i is a map of covers as well.

Definition 44 (Nerve-like map). Given a topological space X , a nerve-like map is an oper-

ation F that (i) Assigns to an open cover U ofX or any subspace ofX a simplicial complex

F (U) with a corresponding cover map ΦU and a pseudoinverse Φ∗U chosen for each U . (ii)

Satisfies the following property: given a map of covers ξ : U → V between covers on X

and its subspaces, the map ΦV ◦ ξ ◦ Φ∗U from V (F (U)) to V (F (V)) is a simplicial map.

Remark 1. I note that a nerve-like map is a functor when its cover maps are injective,

i.e. cover embeddings. Any cover map takes the identity map of covers to the identity

simplicial map, since ΦU ◦ id ◦ Φ∗U = ΦU ◦ Φ∗U = id. However, the condition F (ξ′ ◦ ξ) =

F (ξ′) ◦ F (ξ) only holds when the cover maps are injective as it requires Φ∗U ◦ ΦU = id,

which is equivalent to the statement that ΦU is injective.

When a nerve-like map is a functor, I will call it a simplicial functor. The domain
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category has as objects pairs (X,U) where X is a topological space and U a cover of X .

Morphisms are maps of covers U → V from an open cover U on a subspace of a space that

is covered by V . The codomain category Csim has as objects simplicial complexes and

morphisms simplicial maps [31].

Hereafter, I assume that either any cover map I discuss is a cover embedding, or that

the open cover is replaced with the Φ-reduced open cover, so that a cover embedding can

be obtained from any nerve-like map up to redefinition of the open cover under a map of

covers.

Proposition 3. The nerve and Vietoris-Rips constructions are nerve-like maps with cover

embeddings.

Proof. This proof is for the nerve; the Vietoris-Rips construction is nearly the same. Let

X be a topological space with cover V , Y a subspace of X with cover U , and ξ : U → V

a map of covers. Let K = N (U) and L = N (V) be the nerves. The nerve defines a cover

embedding - the 0-simplices correspond exactly to the open sets, and by definition of the

nerve {i, j} is a 1-simplex iff Ui ∩ Uj 6= ∅. This implies that Φ∗U = Φ−1
U for the nerve as

well.

Now suppose that {v0, v1, . . . , vp} is a p-simplex in N (U) and let Ui = Φ−1
U (vi) for

0 ≤ i ≤ p. Then
⋂

0≤i≤p Ui 6= ∅ by definition of the nerve. Since Ui ⊆ ξ(Ui) for all i,

one has
⋂

0≤i≤p Vi 6= ∅ where Vi = (ξ ◦ Φ−1
U )(vi). This implies that ΦV({V0, . . . , Vp}) is

a k-simplex in N (V), for some 0 ≤ k ≤ p. Therefore, the composition ΦV ◦ ξ ◦ Φ−1
U is

simplicial, showing that the nerve is a nerve-like map.
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4.2 Definition

I now have the preliminaries to define a topological hierarchy. This will be a recursive

partitioning of a topological space, where for each partitioning one has maps of covers

going from the partitions to the space that was partitioned. Intuitively, one can think of it as

a hierarchical clustering with topological information associated to each cluster. However,

the splits need not always be binary for a topological hierarchy.

Definition 45 (Topological hierarchy). Given a topological space X , a topological hierar-

chy is a tuple (X , p, c,U∗, ξ∗, F ) defining a tree structure on X , where:

• X is a collection of subsets of X , each with the subspace topology.

• p : X → X is a function giving for each Y ∈ X its parent p(Y ). I define p(X) = X ,

so that we have Y ⊆ p(Y ) for any Y ∈ X .

• c : X → 2X is a function giving for each Y ∈ X its children c(Y ) so that for all

Y ∈ X either c(Y ) = ∅ or
⋃
Z∈c(Y ) Z = Y . Also, for any Z,W ∈ c(Y ) then Z = W

or Z ∩W = ∅. That is, either Y is partitioned by its children or it has no children.

• U∗ assigns to each Y ∈ X an open cover UY of Y .

• ξ∗ assigns to all Y ∈ X a map of covers ξY : UY → Up(Y ). ξX is the identity map.

• A nerve-like map F which yields simplicial maps φY = ΦUp(Y )
◦ ξY ◦ Φ∗UY from the

maps of covers ξY for all Y ∈ X .

There is some further terminology I will use throughout the rest of this chapter. The

members of X are called the nodes or groups of the topological hierarchy. For any Y ∈ X ,
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(a) A topological space X and subspaces rep-
resented as a hierarchy. There is an open
cover consisting of four overlapping sets on the
spaces.

(b) The simplicial complexes KY = N (UY )
and KX = N (UX) and the induced simplicial
map KY → KX .

Figure 4.2: An illustration of Example 6. On the left, the spaces and a hierarchical repre-
sentation are shown. On the right, the simplicial complexes for Y and X are shown with
arrows indicating the induced simplicial map.

I say that Y is a leaf node if it has no children (c(Y ) = ∅). Otherwise, I say there is a split

at the node Y . Sometimes I will only want to talk about the hierarchy (X , p, c) as well.

Example 6. For an example of how to make an existing hierarchical structure into a topo-

logical hierarchy, suppose we have a metric space X with an open cover U . If one runs a

hierarchical clustering algorithm on X , the result is a set of clusters X with parent/children

functions p and c. For the open covers U∗, choose the induced covers (Definition 40) U|Y

for each Y ∈ X . The maps of covers φY are defined by the inclusion of the sets of U|Y in

the sets of U|p(Y ). Take the nerve N to be the nerve-like map, which induces the simplicial

maps.

This example is illustrated in Figure 4.2. In Figure 4.2a, the parent space X and

subspaces Y , Z, W , and W ′ are shown on the left with dashed lines representing the

boundaries of open sets in the open cover U of X . In order to get interesting simplicial

complexes, I assume the open sets overlap some along these boundaries. On the right of the

subfigure is the hierarchical representation of this structure as a tree. The right subfigure,

Figure 4.2b, shows the simplicial complexes KX = N (U) and KY = N (UY ) and the

induced simplicial map φY : KY → KX . The subspace Y is split into two overlapping
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components by the open cover, so KY consists of two nodes with an edge between them.

The parent space X is split into four overlapping components (I assume there’s a common

intersection between all four), and so KX has four nodes with a 3-simplex (tetrahedron)

and all of its faces. The simplicial map φY : KY → KX embeds the nodes and edge of KY

into one of the edges of KX .

In order to discuss topological hierarchies with Čech and Vietoris-Rips complexes,

I define a hierarchy with a positive real number associated to each node that either only

increases or only decreases as one goes up the hierarchy. These parameters will be the radii

of the open balls used in the construction of the simplicial complexes.

Definition 46 (Indexed hierarchy). Given a set X , an indexed hierarchy is a hierarchy

(X , p, c) with some real number εY > 0 for each Y ∈ X satisfying exactly one of the

following:

• For all Y ∈ Y , εY ≤ εp(Y ), or

• For all Y ∈ Y , εY ≥ εp(Y ) for all Y ∈ Y .

The first case will be called an increasing indexed hierarchy (viewed as going from

child to parent) and the second case a decreasing indexed hierarchy.

Example 7. Suppose one starts with an increasing indexed hierarchy (X , p, c, ε∗). For each

group Y ∈ X , assign an open cover UY whose open sets are of the form:

Uy = BεY (y)

for each y ∈ Y . We have a map of covers, as Y ⊆ p(Y ) and εY ≤ εp(Y ) means that

BεY (y) ⊆ Bεp(Y )
(y) for each y ∈ Y . For the nerve-like map, one can either use the nerve
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(a) The point-cloud data with open balls indi-
cated for a specific value of ε.

(b) The Vietoris-Rips complex corresponding
to the situation in Figure 4.3a. This produces
two child groups, corresponding to the two con-
nected components of the complex.

(c) The hierarchy resulting from the process.
The complex shown in Figure 4.3a corresponds
to the group A,B,C in the tree.

Figure 4.3: An example of building an indexed topological hierarchy with Vietoris-Rips
complexes, following Example 7.

itself, in which case we get Čech complexes, or the operation used to construct Vietoris-

Rips complexes. Unlike Example 6, we did not start with a cover on X and instead used

the indexing to define one.

A specific case of this construction is shown in Figure 4.3. We start with three points

A,B,C ∈ R2, and a value of ε that produces open balls as shown in Figure 4.3a. Using

Vietoris-Rips as the nerve-like map produces the hierarchy of Figure 4.3c.
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4.2.1 Computing a Topological Hierarchy

The overall goal of this section is to enable the computation of topological hierarchies

from a point-cloud dataset using MAPPER. This leads to an algorithm I call topological

hierarchical decomposition (THD). To do this we need a way to relate the pullback covers

for each MAPPER by maps of covers, which will yield simplicial maps when the nerve is

applied. One such construction is a tower, which I define specifically for open covers. This

parametrizes the covers of Z by some scale parameter ε such that there are maps of covers

from the covers with smaller ε to covers with larger ε. For example, if one uses overlapping

intervals of the same size, the length of the intervals could be used as ε so long as they

remain centered on the same points for each ε. Another example could start with several

intervals and gradually merge them, and have ε be related to the reciprocal of the number

of intervals.

Definition 47 (Tower of covers). A tower of covers of a topological space Z with minimum

resolution r ∈ R is a collection U = {Uε}ε≥r of open covers Uε of Z with maps of covers

uε,ε′ : Uε → Uε′ such that uε,ε is the identity function and uε,ε′′ = uε′,ε′′ ◦ uε,ε′ for all

r ≤ ε ≤ ε′ ≤ ε′′.

If we have a tower of covers U on Z and a continuous well-behaved map f : X →

Z, then when we take the pullback covers f ∗(Uε) we obtain maps of covers f ∗(uε,ε′) :

f ∗(Uε)→ f ∗(Uε′) for all r ≤ ε ≤ ε′. It can be shown that the resulting collection f ∗(U) =

{f ∗(Uε)|ε ≥ r} is a tower of covers; see [24] for the necessary properties of pullbacks. Let

us verify that the properties of a tower hold for our extended definition of maps of covers

for the subspace-induced covers.

Proposition 4. If we have a tower of covers U of a topological space X with minimum

resolution r ∈ R and subspaces Z ⊆ Y ⊆ X , then for all r ≤ ε ≤ ε′ ≤ ε′′ we have that

1. uε,ε′ can be made into a map of covers of the subspace-induced covers Uε|Z → Uε′|Y .
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2. If we have the restricted maps of covers uε,ε′ : Uε|Z → Uε′|Y , uε′,ε′′ : Uε′|Y → Uε′′ , and

uε,ε′′ : Uε|Z → Uε′′ , then the property of a tower still holds, so that uε,ε′′ = uε′,ε′′ ◦uε,ε′ .

Proof. Suppose that Uε is indexed by some set I , so that Uε = {Uε,i}i∈I . For the first

statement, I define u to be the function Uε|Z → Uε|Y given by

u(Uε,i ∩ Z) = Uε′,uε,ε′ (i) ∩ Y

for all i ∈ I , where Uε′,uε,ε′ (i) is the open set that uε,ε′ maps Uε,i to. In order to reduce the

number of subscripts, I will also refer to uε,ε′ as u from now on. We have that:

Uε,i ∩ Z ⊆ Uε′,u(i) ∩ Z ⊆ Uε′,u(i) ∩ Y = u(Uε,i ∩ Z)

with the first inclusion holding because the unrestricted u is a map of covers, and the second

because Z is a subspace of Y . Therefore, the restricted u is a map of covers.

Now let u = uε,ε′ , u′ = uε′,ε′′ , and u′′ = uε,ε′′ . For their restrictions, we have:

[u′ ◦ u] (Uε,i ∩ Z) = u′
[
Uε′,u(i) ∩ Y

]
= Uε′′,(u′◦u)(i) ∩X

= Uε′′,u′′(i) ∩X

= u′′(Uε,i ∩ Z)

for all i ∈ I; the third equality holds because u′′ = u′ ◦ u for the unrestricted maps of

covers. Thus, the second property is satisfied.

This shows we can use a tower of covers with subspaces and still retain their proper-
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ties. Note that we can restrict the same map of covers uε,ε′ in different ways, as long as the

domain cover is restricted to a subspace of the range. I will use this to define a topolog-

ical hierarchy from an indexed hierarchy using MAPPER-like constructions on towers of

covers.

Example 8. Let X be a topological space, U a tower of covers on X with minimum res-

olution r, and an increasing indexed hierarchy (X , p, c, ε∗) on X , I construct a topological

hierarchy as follows:

• For each group Y ∈ X , I assign the open cover UY = UεY |Y . The tower of covers

gives us a map of covers uY = uεY ,εp(Y )
: UY → Up(Y ) restricted to the subspace-

induced covers.

• For the nerve-like map, we use the nerve itself. Thus, for each group Y ∈ X , we have

a simplicial complex N (UY ), with a simplicial map induced by the map of covers

uεY ,εp(Y )
from the tower of covers, restricted to the subspace-induced covers.

For the specific case of MAPPER, the tower of covers U can come from the pullback of a

tower of covers in the filter space Z under the continuous map f : X → Z.

4.2.2 Topological Hierarchical Decomposition

I now present an algorithm which produces a topological hierarchy by decomposing a space

using the 1-skeletons of simplicial complexes, known as topological hierarchical decom-

position (THD). The essential feature of THD is that for each group Y in the resulting

topological hierarchy, the children of Y are in a one-to-one correspondence with the con-

nected components of the one-skeleton of the group’s simplicial complex F (UY ). First, I

need a way to associate vertices in a simplicial complex with points in a topological space.
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In order to state its properties, I make use of definitions from graph theory to talk of the

connected components of a simplicial complex.

Definition 48 (Path in a simplicial complex). Let K be a simplicial complex with vertex

set V (K). A path in K is a sequence of vertices (v1, . . . , vm) such that {vi, vi+1} is a 1-

simplex of K for all 1 ≤ i < m. Two vertices v, v′ ∈ V (K) are connected if there is a

path (v1, . . . , vm) in K such that v1 = v and vm = v′. If v and v′ are connected, I will

write v ↔ v′. It is clear that↔ is an equivalence relation on V (K). I define the connected

components of K to be the equivalence classes

[v] = {v′ ∈ V (K)|v ↔ v′}

of connected vertices in K and the set of components to be the quotient:

C(K) = K/↔= {[v]|v ∈ V (K)}

Furthermore, we have for each connected component [v] a subcomplex of K that consists

of the vertices in [v] and all their cofaces:

K[v] = {σ ∈ K|σ ⊆ [v]}

Note that in simplicial homology, elements of a basis of H0(K) correspond to its

connected components, so that we have β0 = dimH0(K) = |C(K)|. In order to more

easily refer to the connected components themselves, I choose to use notation and concepts

from graph theory over homology for defining THDs.
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Definition 49 (Vertex membership function). Let X be a topological space, Y a subset of

X (possibly X itself), and K a simplicial complex. A vertex membership function for Y is

a mapping µ : V (K)→ 2Y from the vertex set of the complex K to subsets of Y such that

• For any pair of vertices u, v ∈ V (K), if µ(u) ∩ µ(v) 6= ∅, then u↔ v.

• For any point y ∈ Y , there exists a vertex u ∈ V (K) such that y ∈ µ(u).

The first property says that if u and v are not connected, then their membership sets µ(u)

and µ(v) share no points. The second property guarantees that each point in y is represented

by at least one vertex in K, and is equivalent to requiring that
⋃
u∈V (K) µ(u) = Y .

The points y ∈ µ(u) are said to be the members of the vertex u.

Example 9. Let X be a topological space, U a finite open cover of X , F a nerve-like map,

and K = F (U). If Y is a subset of X , define µ : V (K)→ 2Y by

µ(v) = Y ∩
⋃

U∈Φ−1(v)

U

for all v ∈ V (K), where Φ : U → V (K) is the associated cover map. Suppose that

u, v ∈ K and µ(u) ∩ µ(v) 6= ∅. Then:

 ⋃
U∈Φ−1(u)

U

 ∩
 ⋃
V ∈Φ−1(v)

V

 6= ∅
so for some U ′ ∈ Φ−1(u) and V ′ ∈ Φ−1(v) we have U ′ ∩ V ′ 6= ∅. Therefore, {u, v} spans

a 1-simplex, so u and v are connected. This makes µ a vertex membership function. I will

call µ the canonical (vertex) membership function of the nerve-like map F for the open

cover U , and will indicate it by µU for the open cover U .
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Proposition 5. Let X be a topological space, Y a subset of X , K a finite simplicial com-

plex, and µ : V (K) → 2Y a vertex membership function. Then µ can be used to form a

partition of Y with sets Yu =
⋃
u′∈[u] µ(u′).

Proof. Let u, v ∈ V (K) be any pair of vertices. If they are connected, u↔ v and [u] = [v],

so Yu = Yv. Now, assume u and v are not connected.

Since C(K) is a partition of V (K), [u] ∩ [v] = ∅ so we will have that u′ and v′ are

not connected for all u′ ∈ [u] and v′ ∈ [v]. Furthermore, [u] and [v] will both be finite sets

since I assumed that K was finite. We have that:

Yu ∩ Yv =

 ⋃
u′∈[u]

µ(u′)

 ∩
 ⋃
v′∈[v]

µ(v′)


=
⋃
v′∈[v]

 ⋃
u′∈[u]

µ(u′)

 ∩ µ(v′)

=
⋃
v′∈[v]

⋃
u′∈[u]

(µ(u′) ∩ µ(v′))

=
⋃
v′∈[v]

⋃
u′∈[u]

∅ = ∅

(4.1)

where I used the distributive property of union and intersection for the second and third

equalities, and the first property of Definition 49 for non-connected vertices for the final

equalities. Therefore, either Yu = Yv or Yu ∩ Yv = ∅. Finally, by the second property of

Definition 49, the union of all the Yu is exactly Y . This shows that {Yu|u ∈ V (K)} is a

partition of Y .

I now have the material to define a topological hierarchical decomposition, which will

have membership functions on the associated simplicial complexes for each group, which

determine the children of that group based on the connected components of the complexes.
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Algorithm 1 Algorithm to decompose a topological space with a tower of covers, produc-
ing an increasing indexed topological hierarchy

Input
X A topological space
F A nerve-like map
r The minimum resolution r ∈ R

5: U A tower of covers on X
ε0 The largest (initial) resolution to start with. ε0 ≥ r
δ Amount to decrease resolution by if a split is not observed. δ > 0

function SUBSPACETHD(X,F,U, r, ε0, δ) . Build a hierarchy recursively
UX ← Uε0|X . Cover induced by subspace at current resolution

10: K ← F (UX) . Simplicial complex for this group
node← new node((X,K, ε0))
C ← C(K) . connected components
if |C| = 1 then . No split observed - change scale

if ε0 − δ ≥ r then
15: child← SUBSPACETHD(X,F,U, r, ε0 − δ, δ)

return add child(node, child)
else

return node . Stop decomposing if resolution would be below r
end if

20: else . Split observed - run SUBSPACETHD on children
for L in C do

Y ←
⋃
u∈L µUX (u) . Points in component

child← SUBSPACETHD(Y, F,U, r, ε0, δ)
node← add child(node, child)

25: end for
return node

end if
end function

Definition 50 (Topological hierarchical decomposition). A topological hierarchical de-

composition (THD) is a topological hierarchy (X , p, c,U∗, ξ∗, F ) such that for each group

Y ∈ X , there is a vertex membership function µY : F (UY ) → 2Y . Moreover, for all

Y ∈ X , I require that either Y has no children (c(Y ) = ∅), or that the children of Y are

exactly the partitions Yu produced by µY according to Proposition 5.

This definition leads to an algorithm, listed in Algorithm 1, for constructing a THD
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given a topological space X , a tower of covers U on X , and a nerve-like map F . There are

a few additional parameters that are needed. Since I start from the parent groupX and wish

to decompose downwards, we need a starting resolution ε0 for the tower of covers. This

will be the largest resolution used, as it will only ever decrease or be unchanged for children

groups. I only change the resolution if no split is observed, i.e. the simplicial complex for

the group has one connected component. In that case, I decrease the resolution by δ. If this

would result in a resolution less than r, I stop decomposition on that group.

Proposition 6. Algorithm 1 produces a THD on an increasing indexed hierarchy.

Proof. To show we have a topological hierarchy, we only need to show we have maps of

covers and an increasing index as the other properties are clear. Let Z be a group in the

hierarchy produced by the algorithm, and Y = p(Z) its parent. If Z results from a split

in Y , then εY = εZ (so εZ ≤ εY ) and the open cover UZ = UY |Z where UY = UεY |Y ,

with the map of covers being given by simple inclusion. Otherwise, there was no split, and

εZ = εY − δ and εZ ≥ r. Since δ > 0, we have εZ < εY . This shows we have an indexed

hierarchy. For the covers, we have UY = UεY |Y and UZ = UεZ |Z . By Proposition 4, there is

a map of covers from UεZ |Z to UεY |Y since Z ⊆ Y and εY > εZ . Therefore, we always have

a map of covers from a child group’s cover to its parent’s cover, and we have an indexed

topological hierarchy.

The property of a THD remains to be shown. Let Y be any group. If there is no split

then |c(Y )| = 1 and the only child of Y is Y itself, which is the set Yu in the partition

where u is any vertex in K = F (UεY |Y ) since there is only one connected component. If

there is a split, line 22 of the algorithm implies that the children form a partition of Y by

Proposition 5, as they are exactly the sets Yu in that proposition.
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4.3 Persistence

I now proceed to look at a few different ways in which persistent homology can be defined

for topological hierarchies. Since the focus of the rest of this chapter is on relating topo-

logical hierarchies to clustering, this section will be brief and only describe the kinds of

persistence that could be extracted from a hierarchy. The first approach recovers a persis-

tence module by starting from any group in a topological hierarchy and tracing its parents

back to the root node. The next one defines a zigzag module for any two groups in a topo-

logical hierarchy by going up the hierarchy to their shared ancestor. The third approach

uses the coproduct of simplicial complexes to produce different global views of a space at

each level of depth in a topological hierarchy.

Let Y be any group in a topological hierarchy X with covers U∗ and nerve-like

map F , and set Y1 = Y . Define inductively Yi+1 = p(Yi). This produces a sequence

Y = Y1, . . . , Yi, . . . , Ym = X , where X is the root node of the hierarchy. The associated

simplicial complexes Ki = F (UYi) form a sequence of complexes joined by simplicial

maps. Applying homology with Z2 coefficients results in a sequence:

Hp(K1)→ Hp(K2)→ · · · → Hp(Km)

of vector spaces Hp(Ki) connected by linear transformations. This describe a persistence

module on the diagram of simplicial complexes. One can interpret the persistent features of

this module as those that are present at different scales of looking at the space; a persistent

feature is one that is present at a ”zoomed-in” level on a subspace, and remains as points

are added back into the space. For example, a feature in H1 would be a hole surrounded by

connected points. If this feature persists, it means that it is not filled in as points are added

back into the space. Similarly, features in H0 are connected components of the space. A

persistent feature here would be such a component that is not joined with another as points

are added back in. One can also look at it the other direction and ask which features present
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in X persist when points are removed.

Definition 51 (Ancestor diagram). Let

X1
f1−→ . . .

fs−2−−→ Xs−1
fs−1−−→ Xs

gs←− Xs+1
gs+1←−− . . .

gm−1←−−− Xm

be a diagram of sets Xi with maps fi : Xi → Xi+1 for 1 ≤ i < s and maps gi : Xi+1 → Xi

for s ≤ i < m. This diagram is an ancestor diagram. When the sets are vector spaces and

the maps linear transformations, the sequence is called an ancestor module.

Note that an ancestor module is a zigzag module of length m of type ff . . . fgg . . . g,

where there are s− 1 forward maps fi and m− s backward maps gi. Now assume we have

a topological hierarchy X and consider any two groups Y and Y ′. Let Z be the common

ancestor of Y and Y ′, so that we obtain a sequence Y = Y1, Y2, . . . , Ys = Z, . . . , Ym = Y ′,

where s ≤ m, Yi+1 = p(Yi) for i < s, and Yi = p(Yi+1) for i >= s. Applying homology

to the associated simplicial complexes Ki = F (UYi) gives a sequence

H(K1)→ · · · → H(Ks)← · · · ← H(Km) (4.2)

of vector spaces with linear transformations between them which is an ancestor module.

Since this is a zigzag module, the methods of [13] and [12] can be used to compute persis-

tence on it.

The previous notions of persistence on a topological hierarchy all look at local features

by comparing subsets of a parent space. The traditional definition of persistent homology

looks at homology across different complexes defined on the same space, which identifies

global features. Using the notion of a disjoint union, we can recover global persistence from

a topological hierarchy. I first define a coproduct for simplicial complexes and simplicial

maps, then use that to describe persistence across a topological hierarchy.
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Definition 52 (Coproduct of simplicial complexes). LetK andK ′ be simplicial complexes.

The disjoint union or coproduct of K and K ′ is a simplicial complex K tK ′ defined by:

• The vertex set of K tK ′ is {(v, 0)|v ∈ V (K)} ∪ {(v, 1)|v ∈ V (K ′)}

• If {v0, v1, . . . , vk} ∈ K spans a k-simplex in K, then {(v0, 0), (v1, 0), . . . , (vk, 0)}

is a k-simplex in K t K ′. Similarly, if {v′0, v′1, . . . , v′k} ∈ K ′ spans a k-simplex in

K ′, then {(v′0, 1), (v′1, 1), . . . , (v′k, 1)} is a k-simplex in K tK ′. These are the only

simplices in the disjoin union of K and K ′.

One can view K tK ′ as relabeling the vertices of K and K ′ so the vertex sets are disjoint,

then taking the union of the two complexes. This is distinct from the normal sense of

union, where if the vertex sets are overlapping, could lead to parts of the two complexes

merging. One should note that there are inclusion simplicial maps iK : K → K tK ′ and

iK′ : K ′ → K tK ′ defined on the vertices by iK(v) = (v, 0) and iK′(v′) = (v′, 1).

Given simplicial complexes K,K ′, and L, let φ : K → L and φ′ : K ′ → L be

simplicial maps. I can define a simplicial map φ t φ′ : K t K ′ → L by its action on

vertices:

(φ t φ′)((v, i)) =


φ(v), if i = 0

φ′(v), if i = 1

That this defines a simplicial map is easily seen; it is equivalent to identifying a simplex

σ from K t K ′ as either being from K or K ′ then applying φ or φ′ respectively. Finally,

if we have simplicial maps φ : K → L and φ : K ′ → L′, I can define a simplicial map

φtφ′ : KtK ′ → LtL′ as follows: I take the insertions i : L→ LtL′ and i′ : L′ → LtL′

and note that we have two simplicial maps i ◦ φ : K → L t L′ and i′ ◦ φ′ : K ′ → L t L′.

Then the desired simplicial map is just the coproduct of these, (i ◦ φ) t (i′ ◦ φ′).
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I will use the notion of coproduct of simplicial complexes and simplicial maps to

define global persistent homology on a topological hierarchy; each level of the hierarchy

will be associated with a single homology group.

Definition 53 (d-level sets). LetX be a topological hierarchy with a maximum depth (num-

ber of edges from the root X to the farthest leaf node) of D and let 0 ≤ d ≤ D. By X(d) I

mean the collection of groups at that level, whereX(0) = {X}. Note that
⋃
Y ∈X(d) Y = X .

I call X(d) the d-level sets. Each X(d) represents a partition of X , where the larger d is

the finer-grained the partition is.

Associated with each depth 0 ≤ d ≤ D I will define a simplicial complexK(d), given

by the disjoint union of the associated complexes for each group at that depth:

K(d) =
∐

Y ∈X(d)

F (UY )

For 0 < d ≤ D I will have simplicial maps ψd : K(d)→ K(d− 1) given by the coproduct

of the individual maps iY ◦ φY : F (UY ) → K(d − 1), where iY is the inclusion Up(Y ) →

K(d− 1):

ψd =
∐

Y ∈X(d)

(iY ◦ φY )

From the previous definition we have a sequence of simplicial maps:

K(D)
ψD−−→ K(D − 1)

ψD−1−−−→ . . .
ψ2−→ K(1)

ψ1−→ K(0)

Passing to homology gives a persistence module:

Hk(K(D))→ Hk(K(D − 1))→ · · · → Hk(K(1))→ Hk(K(0))
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for each non-negative integer k. Since the union of groups at each depth in the hierarchy is

X , each simplicial complex K(d) covers the entire space X . A feature in this persistence

module is one represented in the original space X that persists at higher levels of decom-

position - i.e., the feature exists starting from K(0) down to some deep K(d). This notion

of persistence is closest to the original interpretation of persistent homology: a feature is

persistent if it is present when viewing the space at different scales.

4.4 Clustering and Evaluation

In order to evaluate a topological hierarchy as a clustering, it is necessary to obtain a flat

clustering from one. Unlike hierarchical clustering, where the dendrogram is a binary tree

and for a given parent cluster, there is only a single distance between the two children

clusters A and B, a node in a topological hierarchy can have multiple children. If Y ∈ X

is a group in a topological hierarchy, then there will be |c(Y )| (|c(Y )| − 1) /2 distances

among its children groups. These must be combined into a single distance in some way

to allow treating the hierarchy as a dendrogram which can then be cut to obtain a flat

clustering.

For computing the distance between two children groups A,B ∈ c(Y ), I can use the

same linkage criteria as hierarchical clustering. Then, to combine these distances to obtain

a single distance for Y , I identify three possible criteria:

• (minimum) d(Y ) = min{d(A,B)|A,B ∈ c(Y ), A 6= B}

• (average) d(Y ) = 1
|c(Y )|(|c(Y )|−1)

∑
A∈c(Y )

∑
B∈c(Y ) d(A,B)

• (maximum) d(Y ) = max{d(A,B)|A,B ∈ c(Y ), A 6= B}

Using this approach, we can assign a distance to every group in the topological hier-

archy; leaf nodes are assigned a distance of zero. By choosing a threshold distance t, we

can cut the hierarchy, removing all groups Y with distance d(Y ) < t. The leaf nodes of
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the resulting tree are then the partitions of the flat cluster. This gives a family of clustering

functions ft : X → F (X, s(t)) where the number of clusters s is now a function of the

distance threshold t.

I conclude with a discussion of measures for evaluating a topological hierarchy as a

clustering. I will focus on supervised information-theoretic measures that compare a given

clustering to a true clustering or set of labels; see [94] for a deeper discussion. The first

measure is the Rand index (RI), typically used in a normalized form called the Adjusted

Rand index (ARI) [51]. Let X be a point-set of N points, and U = {U1, . . . , Ur} and

V = {V1, . . . , Vs} be two partitions of X . Construct a matrix (nij) ∈ Nr×s known as a

contingency table, where nij is the number of points in X that are present in both Ui and

Vj , i.e. nij = |Ui ∩ Vj|. Furthermore, consider the
(
N
2

)
possible pairs of points in X and

how they are distributed in U and V , constructing the following four statistics:

• N00: The count of pairs that are in different clusters in both U and V

• N10: The count of pairs that are in the same cluster in U but different clusters in V

• N01: The count of pairs that are in different clusters in U but the same cluster in V

• N11: The count of pairs that are in the same cluster in both U and V

Then the Rand index is RI(U, V ) = (N00 +N11)/
(
N
2

)
, and the Adjusted Rand index is

2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

The ARI takes on values in the range [0, 1], with higher values indicating greater similarity

of the partitions. In our case, one partition is the clustering I compute, and the other is the

true partition of the data or some other set of ground-truth labels, so ARI values close to 1

indicate better performance.

The other similarity measure I consider is mutual information. Given clusterings U
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and V as described above, their mutual information is given by

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui||Vj|

In order to adjust for chance, there is a family of adjusted mutual information (AMI)

scores given by

AMI(U, V ) =
MI(U, V )− E [MI(U, V )]

avg(H(U), H(V ))− E [MI(U, V )]

where avg is one of the following functions: maximum, minimum, geometric mean, or

arithmetic mean and

H(U) =

|U |∑
i=1

|Ui|
N

log
|Ui|
N

is the entropy.

To apply these measures to a topological hierarchy X built on some point-set X , I

assume that there is some true clustering ofX , which I will denote U . Then, for a choice of

criterion for combining child group distances and a given cut of the hierarchy at a distance

t we obtain a flat clustering V [t] of X from the hierarchy. In order to compare this to a

hierarchical clustering approach, one can cut the dendrogram and the topological hierarchy

at several distance 0 ≤ t ≤ tmax with the max distance decided by X and the metric on

it. Assume we’re using AMI as the clustering score. Then for each value of t, there is a

score AMI(U, V [t]) for the topological hierarchy and a score AMI(U,W [t]) for the hierar-

chical clustering. A simple way to compare the results would be to compare the maximum

scores for each. Alternatively, one could compare the value
∫ tmax

0
AMI(U, V [t])dt to the

equivalent one for the hierarchical clustering, similar to the concept of area under the curve

(AUC) for evaluating supervised learning algorithms.

As an example of these metrics on real-world data, I used the FICO Explainable Ma-
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Figure 4.4: Distance vs. number of clusters on the FICO dataset.

chine Learning Challenge dataset1. To evaluate topological hierarchies qualitatively, I pro-

duced plots of distance vs. score for AMI and adjusted Rand score. I did minimal pre-

processing to the data, replacing categorical values with numeric ones and removing the

target RiskPerformance field and external risk estimate. Then I scaled the data so each

column had a standard normal distribution. All experiments used a Euclidean metric. Fig-

ure 4.4 shows the number of obtained clusters versus the distance the dendrograms are cut

at. The legend “topo” refers to the topological hierarchy and “clustering” to the dendro-

gram produced by hierarchical clustering. Complete and average linkage refer to the usual

hierarchical clustering approaches. “Complete” in the context of a topological hierarchy

refers to the maximum criterion used to assign a single distance to a group with more than

two children. A characteristic of the topological hierarchy is maintaining a nearly constant

number of clusters over a range of distances.

Plots of AMI scores and adjusted Rand scores are given in Figure 4.5. Higher values

of the scores represent better clusterings in terms of the clusters tending to contain points

of one label. The optimal distances to cut the dendrograms or hierarchies to obtain a flat

clustering are those which provide the maximal AMI or Rand score. Complete and average

linkage clustering have similar results, with complete linkage having slightly better scores.

Single linkage is excluded from the plots to avoid clutter, since it had the worst performance

1Available at https://community.fico.com/s/explainable-machine-learning-challenge.
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(a) Comparison of Adjusted Mutual Informa-
tion (AMI) scores.

(b) Comparison of Adjusted Rand scores.

Figure 4.5: Comparison of clustering scores on the FICO dataset. The lines labeled “topo”
are those for the topological hierarchies.

of the hierarchical clustering techniques.

These results show that topological hierarchies can be competitive with hierarchical

clustering when evaluated as a clustering algorithm. Traditional clustering proves better in

terms of having the best score at a single distance, but topological hierarchies show their

best scores for a range of distances. Note that unlike with hierarchical clustering, there is no

significant difference between the average and complete criteria for topological hierarchies

at lower distances, and at higher distances the differences are only in a “jump” where the

bulk of clusters are included in the resulting flat clustering.

4.5 Analysis and Optimization

This section describes the computational aspects of topological hierarchies, and how they

work on a finite point cloud set S = {x1, . . . , xn} rather than an arbitrary space X . There

are some optimizations given which apply in certain situations, such as using a specific

open cover or using MAPPER. Then, I analyze the time complexity of the MAPPER algo-

rithm and use the results to come up with worst-case estimates for building a topological

hierarchy with MAPPER.
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First, I cover some potential optimizations in the pipeline of simplicial constructions

and hierarchies.

• Tracking membership in open covers. This applies when constructing an increas-

ing hierarchy (with either MAPPER or Rips-like constructions) using the simplicial

complexes to partition the topological space and its subspaces. From the largest res-

olution ε0, determine the membership of points xi in the open sets of the cover Uε0 .

When a split occurs, since the same open cover is used over a smaller domain, one

only needs to remove the points not in each new group from this list of memberships.

However, in the case of a resolution decrease, the entire membership may need to

be recomputed as new open sets can emerge from splitting a larger open set in the

higher resolution cover.

• Tracking membership with common covers. A common class of open covers are open

balls under a metric d, usually the Euclidean metric or some form of p-norm based

metric. This includes generalized intervals, which are open balls under the p = ∞

metric (maximum metric). I assume that the centers of the open balls are fixed, and

the resolution is identified with the radii of the balls. To track membership in the

open covers as the resolution is varied, one only needs to precompute the distances

of each point xi from the centers of each open ball. Then, checking membership is

as simple as checking if the distance is greater than the resolution.

• Precomputing Distance Matrices. Most clustering algorithms are designed to use a

distance metric to determine nearness of points. When building a topological hierar-

chy based on a clustering or using MAPPER, the distance between the same pair of

points may be needed several times. Therefore, it makes sense to precompute these

distances and store them in a distance matrix. If the dataset is too large to do so, one

can still precompute distances for groups in the hierarchy below a certain size, as

these distances can be reused when constructing children groups. Rather than using
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the full |X| × |X| symmetric distance matrix, a condensed vector representation of(|X|
2

)
entries can be used, as is done in the SciPy library [95]. Either representation

results in a O(n2) memory usage, which can become large for larger datasets.

• MAPPER Recomputation. If MAPPER is used as the nerve-like map in the topologi-

cal hierarchy, one can optimize the recomputation of the pullback covers for children

groups. One only needs to check which open sets in the filter space have points

removed, and re-run clustering on the inverse images of those sets, rather than clus-

tering on all the inverse images. If only a few points are removed or a large number

of points are removed from one bin in the filter space, this can greatly improve the

efficiency.

• Precomputing Filter values. Similar to the distance matrices, filter values can be pre-

computed for some or all points in the setX . Since the filter is a function f : X → Z,

storing filter values is only an O(n) memory cost, as opposed to the O(n2) cost for

storing distance matrices. However, since the filter values are not used in the cluster-

ing steps of MAPPER, caching them will not provide as much of an improvement to

performance.

4.5.1 Complexity of the THD Algorithm

This section describes the time complexity of the THD algorithm in terms of its sub-

algorithms, particularly MAPPER.

MAPPER

First, we must consider the time complexity of MAPPER. I break it into three steps: the

filter, the clustering, and the construction of the simplicial complex. I will assume we are

working with a d-dimensional dataset of n rows, with a filter function f : Rd → Rd′ that

reduces the dimensionality to d′. Furthermore, I denote the number of open sets in the
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cover of Rd′ by k. In general I assume d′ < d << n, i.e. the dimensionality is always

much lower than the number of points.

The time complexity of the filter will depend on the details of the function one uses

for it. The simplest filters, such as the identity, or taking one or more components of each

point, will be O(1). Dimensionality reduction and manifold learning algorithms will tend

to be O(n log n) to O(n2), as the following non-exhaustive list describes:

• PCA. Many algorithms for computing principal components exist. Matrix-based

methods are the oldest, with SVD or Householder-QR techniques having a complex-

ity of O(nd2 + d3) and the power method O(nd2 + d′d2) [72]. Iterative approaches

such as expectation maximization (EM) are of the order O(d′dn), but depend on

other parameters such as a learning rate [78].

• Multi-dimensional Scaling (MDS) [55, 57, 90]. Classical MDS is O(n3) due to the

eigenvalue calculation. As with PCA, faster iterative approaches are known, with

time complexities varying from O(n
√
n) to O(n2).

• t-SNE [93]. Its complexity is originally O(n2), not considering the dimensionality of

the data. A variant of the Barnes-Hut algorithm and the dual-tree algorithm improves

this to O(n log n) [91, 92].

• UMAP [65]. The nearest neighbor search phase determines the worst-case time com-

plexity, which is O(dn2). Empirical analysis by the original author hints that the

complexity scales like O(dn1.14), and could be treated as O(n log n) for practical

purposes [64].

Hereafter, O(F (n, d, d′)) indicates the time complexity of an arbitrary filter. I will

consider O(dn2) as the ”worst case” and O(dn log n) as the ”best case” for the choice of

filter.

After the filter step, we must approximate the pullback cover by repeated application

of a clustering algorithm. The first step is to identify membership of points in open sets in
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the filter space. This will be O(knd′) in general, as for each open set, we must iterate over

the points and determine if they are in the set or not based on the individual components,

assuming a generalized interval or d′-ball is used for the open sets. Then, we cluster the

points in the inverse image of each open set, which will be O(kC(n, d)) where C(n, d) is

the worst-case time complexity of the clustering algorithm used.

• Hierachical Clustering. Sequential, agglomerative, hierarchical nonoverlapping (SAHN)

clustering methods require at worst O(n3) time, with a heap-based optimization giv-

ing O(n2 log n) time [21]. For single-linkage and complete-linkage, the SLINK and

CLINK algorithms give O(n2) performance [83, 22].

• DBSCAN [30]. The worst case time complexity of DBSCAN is O(n2) [3], and an

improved version of the algorithm boastsO(n log n) performance [41]. If inaccuracy

is allowed, it is possible to reduce this to O(n), and a hash table based algorithm

exists with this complexity [35, 98].

• OPTICS [5, 81]. In its base form, OPTICS would be O(n2). A tree-based index

structure allows for O(n log n) performance. If objects are arranged in a grid, this

knowledge can be used for O(n) performance, but this is not a common property of

point-cloud datasets.

The final step is constructing the simplicial complex. This is determined by the degree

of simplices desired in the final MAPPER complex; in general, one must compare at least(
k
s+1

)
= O(ks+1) clusters for overlap to build a simplicial complex with s-simplices. For

building a THD, only 1-simplices are required, so the dependence on k is quadratic. There

is also a dependence on the size of clusters, as one needs to check each pair of points

between two clusters to determine overlap. For the 1-simplex case, this is O(n2k2) in the

worst case, but it will be much better in general as clusters will only contain a very small

subset of the dataset.
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The total time complexity of MAPPER is the sum of that of the three steps:

O
(
F (n, d, d′) + kC(n, d) + n2k2

)

In the worst case but assuming the optimized versions of the algorithms discussed above

are used, this is O (dn2 + kn2 + n2k2). This is quadratic in the dataset size, quadratic in

the number of sets in the cover, and linear in the data dimension. The absolutely best case

requires specific algorithms: iterative PCA as filter and pDBSCAN as clustering. In this

case, the time complexity is O(d′dn + kdn log n + n2k2). Despite the simplicial complex

term being quadratic, it is the least significant term for smaller datasets and lower numbers

of open sets, as the filter and clustering algorithms will have a lot of overhead. This term

would only become important as the dataset reaches very large sizes, on the order of 105 or

so.

THD

There will be two factors that contribute the most to the time complexity of the entire THD

algorithm: the number of times MAPPER is run, and the size of the groups each MAPPER

is run on. The group threshold, which will end recursive application of MAPPER to child

groups below a certain size, controls both; larger thresholds will reduce the number of

MAPPER runs, and the minimum size of a group MAPPER will be run on is bounded by

the threshold. The following assumptions are made for the time complexity analysis of

THD:

1. The group threshold is 1, so that every leaf node in the resulting tree will be a group

with one point, on which MAPPER is not run.

2. A split is observed for every group with more than one point.

There are two edge cases of interest; in the first, every group is split into two children,
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one with one point, and the other with the remaining points. This results in a tree with

n−1 total MAPPER groups, and n non-MAPPER groups, each branching from a MAPPER

group; the final MAPPER group has two points and two children of one point, unlike the

others. If we ignore the dependence of MAPPER’s time complexity on dimensionality and

number of sets in the cover, we can denote it M(n) and then the total time complexity to

build this THD is

n−1∑
i=1

kM(n) ≈ k

n∑
i=2

i2 = k

(
n3

3
+
n2

2
+
n

6
− 1

)
= O(kn3)

The next edge case is when there is an even split at each group; I will assume a binary

split for simplicity. Then the first group of n points is split into two groups of n/2 points

each, and so on, until all that remains are n leaf nodes of 1 point on which MAPPER is not

run. At each depth t of the tree, there will be approximately 2t groups of n
2t

points each.

The max depth is around D = blog2 nc. Then the total time to build this tree is

k
D∑
t=0

2tM
( n

2t

)
≈ k

D∑
t=0

n2

2t
= kn2(2n− 1) = O(kn3)

Finally, consider the impact the optimizations described at the start of the section

have on the time complexity. Precomputing filter values means that they only contribute

a single F (n, d, d′) time to the THD, and this filter term does not come into play past the

first MAPPER computation. Similarly, precomputing distance matrices means that the full

clustering time C(n, d) only applies once, but further runs of the clustering algorithm will

be at least linear, since the clustering must still be done. Therefore, there is a clustering

step that is at least linear in the number of points of a group for each MAPPER.

Remarks on Space Complexity

• Original Data. The dataset takes O(nd) storage in an uncompressed form.

91



• Filter Values. These will be O(nd′), always smaller than the original dataset. These

are the most efficient to precompute, as they are only linear in the number of rows.

• Distances. The full distance matrix is O(n2) storage. Since it’s symmetric, a re-

duced form can be used which is still O(n2) but stores less than half the number of

values as the full matrix. The quadratic dependence means that for larger datasets

precomputing all of the distances is not feasible.

• Simplicial Complexes. When every open set in the cover has at least one point inside,

the simplicial complex will need at least O(k) storage, as each open set in the cover

will correspond to one or more 0-simplices. 1-simplices will add at most O(k2)

storage on top of this for a fully connected complex.

• Topological Hierarchy. A full hierarchy without a group threshold will require at

least O(n) storage for the leaf nodes. This is not an issue in practice as thresholds

are used, and the size of the tree can be kept manageable.
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Implementation of a Python library and

Dashboard Application for Data

Analysis with Topological Hierarchies
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This section describes a Python library and application that implements MAPPER and

the THD algorithm described in Section 4. Python 3 was used, with the majority of testing

done on Python 3.7.2. NumPy provides the base multi-dimensional array structure used to

hold data in memory [45]. The clustering step of the MAPPER implementation makes use

of the hierarchical clustering techniques implemented by SciPy [95]. These were preferred

over the scikit-learn implementations for their efficiency. The API is flexible enough to

support custom clustering functions, as long as a method for determining the number of

clusters automatically exists for the algorithm.

Several filter functions are supported. Simple ones such as the identity filter, single or

multiple components of the original data, and eccentricity are built-in. Any Python class

implementing the scikit-learn [74] API for dimensionality reduction can be used as a filter.

The SciPy implementation of PCA is also supported as a filter, once again preferred over

scikit-learn for its efficiency. Some other common filters that use the scikit-learn API and

are thus automatically compatible are t-SNE [61] and UMAP [65].

The implementation of MAPPER supports simplices of arbitrary order. Simplicial

complexes are implemented as simplex trees, a trie which stores and retrieves a simplicial

complex efficiently [10]. Of interest is the time complexity of common operations for con-

structing MAPPER and THDs; to add a 1-simplex and its subfaces (the two vertices) takes

O(Dm), where Dm is the maximum number of operations to perform a search in a dictio-

nary whose size is at most the highest degree of a node in the simplicial complex. In the

worst case Dm will be O(log n), with the maximal degree O(n). Since inserting a simplex

is the main operation needed to build a complex for MAPPER, this shows the efficiency of

using simplex trees for constructing and storing complexes in the THD algorithm.
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(a) Runtimes with PCA as filter function. (b) Runtimes with UMAP as filter function.

Figure 5.1: Plot comparing runtime of unoptimized and optimized THD implementations
with varying dataset size.

5.1 Performance Tests

All tests were run on a PC with Windows 10, a 3.5 GHz AMD Ryzen 3 2200G CPU, and

16 GB of RAM. To get an accurate estimate of the time taken to run tasks, each one was

run several times, taking the mean runtime, and a 99% confidence interval of the times

was computed. Tests were done with an unoptimized THD, which doesn’t precompute

anything, and an optimized THD, which precomputes filter values and distance matrices,

passing these to the algorithms which need them. Two filter functions were considered:

PCA, which is very efficient to compute, and UMAP, which has significant overhead. For

the experiments with UMAP, it was not possible to run the THD several times due to the

time it took, so the figures only show values for one THD run and no confidence intervals.

The first performance test was to determine how THD scales with the number of points

(rows, features) in the dataset. I used 100-dimensional data drawn from a uniform distri-

bution in [0, 1), with generated datasets having anywhere from 1 to 6000 rows. The filter

function is two-component PCA, clustering is single-linkage, and the open covers all have

15 sets. A plot showing the average runtime of THD against the number of rows is given

in Figure 5.1a. This figure shows the time complexity to be empirically polynomial in

the dataset size, matching the discussion of Section 4.5.1. Surprisingly, the optimized ap-
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(a) Runtimes with PCA as filter function. (b) Runtimes with UMAP as filter function.

Figure 5.2: Plot comparing runtime of unoptimized and optimized THD implementations
with varying dataset dimension.

proach is slower than the naive unoptimized one. This is due to efficiency of computing the

PCA filter, as well as how the clusterings are handled in the MAPPER steps. Clustering

is always done on the pre-image of some subset of the filter space, so as long as there are

multiple open sets, each clustering will always be on a proper subset of the data, and all

the distances will not be needed at once. Therefore, computing all these distances ahead of

time actually adds more overhead than time is saved by precomputing the distances.

Now consider the performance of the THD algorithm with UMAP as the filter, with

results given in Figure 5.1b, where smaller dataset sizes are used due to the time taken to

run the experiments. Note that the unoptimized times are now almost 100 times as large,

showing the greater overhead of UMAP. Precomputing the filter values provides a huge

boost to performance then, allowing the optimized approach to perform nearly as well as

with PCA – there is still the overhead of the single run of UMAP versus the single run of

PCA, but once that’s computed, the time to run the THD algorithm will be comparable.

Therefore, for ”slow” filters such as UMAP and tSNE, it is more efficient to precompute

filter values, while for ”fast” filters such as PCA and the identity, it is more efficient to not

precompute them.

The second test looked at datasets of increasing dimension, from 30 features to 100.
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(a) No smoothing applied, showing average in-
crease in runtime.

(b) Runtimes smoothed with convolution by a
small window, compared with a linear regres-
sion fit.

Figure 5.3: Runtime of the unoptimized approach for varying dataset dimension at higher
dimensions.

The dataset size was fixed at 1000 rows for all dimensions, and a PCA filter with 2 com-

ponents was used. The results are shown in Figure 5.2a. Both approaches show extreme

variations over the dataset sizes, making interpreting the results difficult. The unoptimized

approach appears to have a slight increase in average runtime. This is the linear dependence

found in the analysis in Section 4.5.1. Note that the average runtimes in this experiment

are all quite small, less than a second, while for the previous one they ranged from a sec-

ond to 7 seconds. This shows the impact dimensionality has on runtime is small compared

to the number of points. With UMAP as a filter, similar results are obtained to the first

experiment, where the optimized approach is now much more efficient. Notice that the

unoptimized approach behaves as with PCA, showing no obvious dependence on dimen-

sionality.

In order to identify the linear relation between dataset dimension and runtime, it was

necessary to look at datasets with dimension higher than 100. The plots for the unopti-

mized approach with up to 800 columns are shown in Figure 5.3. The unsmoothed plot in

Figure 5.3a shows a trend in increasing runtime, but it is hard to identify its linearity. When

smoothed by convolution with a small window (with a width of around 15), the trend be-
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(a) Plot comparing runtime of unoptimized and
optimized THD implementations with varying
number of open sets.

(b) Plot comparing runtime of unoptimized and
optimized THD implementations with varying
number of open sets when the filter is UMAP.

Figure 5.4: Plot comparing runtime of unoptimized and optimized THD implementations
with varying open cover size.

comes more evident. This is shown, along with a linear regression fit, in Figure 5.3b. The

theoretical prediction of a linear dependence of runtime on dataset dimension is shown

empirically.

The final test looked at the impact varying the number of open sets in the cover had on

the runtime. Recall that this determined the number of clusterings needed for each MAP-

PER run, and also appeared as a quadratic term for building the 1-skeleton of the simplicial

complex. In this test, datasets of 1000 rows and 100 dimensions were generated, and covers

with 2 to 31 open sets were used. The results are in Figure 5.4a. For a very low number

of open sets, around 2 to 10, the runtime actually decreases as the number of open sets

increases. This is due to open sets being larger when there are less of them, so they each

contain a large number of points. Therefore, each clustering on average is done on larger

subsets of the data, and this ends up dominating the total runtime. When there are more

open sets so that each one contains fewer points, the individual clusterings end up con-

tributing less to the time, and instead the total number of clusterings ends up dominating.

The optimized approach is actually faster here, as for large clusterings, precomputing the

distances is more efficient than computing them as needed while doing the clustering.
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For larger numbers of open sets, I recover the polynomial time shown in Section 4.5.1.

In this case, the time is dominated by the combinatorial aspects of the algorithm – the

number of clusterings run is important, even while an individual clustering contributes

little to the time. Also, having a large number of open sets means needing to check a larger

number of possible overlaps when building the simplicial complex. Finally, note that the

optimized and unoptimized approaches have little difference in runtime. As with the other

two experiments, I obtain a massive gain in performance in using the optimized approach

with the UMAP filter.

In conclusion, the number of rows in the data have the largest impact on the runtime,

and the empirical results in Figure 5.1a support the polynomial time predicted by the theo-

retical analysis of MAPPER and THD in Section 4.5.1. The impact of the number of open

sets on the runtime is multifaceted, but two regimes can be identified in Figure 5.4a; the

first is for few open sets, where the time to run the clustering dominates, and the second

is for many open sets, where the quadratic time due to the combinatorics of testing clus-

ter overlap dominates. Therefore, having more open sets can make individual clusterings

faster, at the cost of needing to run the clustering algorithm more times. MAPPER and

THD scale linearly with the number of dimensions or columns in the data, as can be seen

in Figure 5.2, which matches the O(d) complexity of MAPPER. Finally, I observe that for

simple filter functions that are quick to compute, such as PCA, the unoptimized approach

to computing a THD is more efficient.

5.2 Dashboard

This section describes the implementation and features of an interactive web application

dashboard for running MAPPER and the THD algorithm for the purpose of exploratory

data analysis. The dashboard uses the Plotly Dash library [76, 50], which runs as an HTTP

server using the Flask library. It is accessed through a web browser as a ReactJS app that
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Figure 5.5: The main part of the THD Dashboard. The currently selected simplicial com-
plex (one-skeleton) is shown on the right, while the upload and mapper settings are on the
left third of the screen.

communicates with the server. This makes it possible to run the backend on a machine

with more RAM and computational power than the machine that accesses the dashboard

via HTTP.

The main section of the THD Dashboard is shown in Figure 5.5. There are several

areas of the dashboard visible in the screenshot. The menu at the very top contains links

to all the separate pages of the dashboard. On the upper left is where the user can upload

a dataset, with options for loading depending on the presence of a header or index column.

Below that, the user can choose which columns to remove when loading the dataset from a

dropdown. Beneath that is a list of columns loaded, and the user can choose which ones to

use in the THD. Below that is a section for MAPPER-specific settings. The user can select

various data normalizations such as min-max, mean scaling, and others from a dropdown.

For the filter function, they can choose between PCA, tSNE, UMAP, and an eccentricity

filter. Below that are the settings for the clustering algorithm. The user can choose the type

of hierarchical clustering: single-linkage, complete-linkage, or average-linkage, as well as

the metric to use for the clustering and the filter (for filters that require a metric).
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Figure 5.6: The group comparison settings and scatter plots. Two groups (clusters) in the
THD can be selected and compared, and the scatter plots show the different distributions
of selected features between the two groups.

Figure 5.6 shows the part of the dashboard that allows comparing two groups, as

well as scatter plots for immediate comparison of two features in the two selected groups.

The user can see the names of the groups by clicking on them in the THD view, and use

this to determine which groups they wish to compare. Once two groups are selected, the

scatter plots will be populated. The axes of the scatterplots can be selected and they will

be updated in real-time when different features or groups are selected. The left scatterplot

corresponds to the group chosen in the dropdown on the left side, and the right scatterplot

to the other group. The user may also click on the “Compare” button to run a detailed group

comparison.

When a group comparison is run, the results will open in a new browser tab or window.

Figure 5.7 shows how these results will appear. The top half of the results in the screenshot

are summary statistics for each group. The number of rows (points or items) in the group

are shown above a table giving summary statistics. For each feature in the dataset, the mean,

median, quantile statistics, inter-quartile range (IQR), minimum, and maximum values are

listed for both groups. The bottom half of the screenshot shows the results of running a

Kolmogorov-Smirnov test (KS test) between the two groups. The results can be ordered
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Figure 5.7: The group comparison results. Summary statistics of the two groups are shown,
along with Kolmogorov-Smirnoff test results.

Figure 5.8: The group comparison box and whisker plots. This allows a quick comparison
in the distribution of a single feature between the two groups.

by the KS statistic value, listing the most statistically significant features distinguishing the

two groups first. The p-value and means of the feature in both groups are included in the

KS test table as well.

Figure 5.8 shows the box-and-whisker plots on the group comparison page. The user

may select a single feature from the dataset, and a box-and-whisker plot for the feature in

both groups is generated. This allows for qualitatively determining features that distinguish

the two groups, as well as being useful for identifying outliers in either group.
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Figure 5.9: THD Tree for the first experiment, colored by RiskPerformance, with Red =
Good and Blue = Bad.

5.3 Comparison of Results with Proprietary TDA Tools

In this section, I present a comparison of results obtained from applying the dashboard

to the HELOC dataset described in Chapter 6. I used the same methodology which is

described in more detail in that chapter: build a THD on the dataset, and for each group

look at the most statistically significant features in that group which distinguish the group

from the rest of the data. Using this information, I can then build an explanation for why

the applicants in the group were or were not able to pay back their loan. The features are

compared with the results in Section 6.1.3 obtained from the Ayasdi Platform [7].

For the first experiment, the dashboard settings are as follows. The data is prepro-

cessed by subtracting off the median and dividing by the IQR. The filter function is UMAP

with 2 components, using a cosine metric. For clustering, I used average linkage also with a

cosine metric. The open cover in the filter space has 50 sets with 75% overlap, and the THD

settings are to contract by 20% when no split is observed and to prune groups with less than

200 members. The resulting THD tree is given in Figure 5.9, colored by RiskPerformance.
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(a) Number of revolving trades with balance. (b) Percentage installment trades.

Figure 5.10: Box and whisker plots of NumRevolvingTradesWBalance and PercentInstall-
Trades for the first split.

I observe that the group on the right to split off first has on average worse RiskPerformance

than the rest of the data, while the lowest level groups on the left have good RiskPerfor-

mance. My goal is to explain this based on statistically significant features distinguishing

the groups, and compare the results with the analysis in Chapter 6 to attempt to replicate

some of the results of our study which used proprietary TDA tools.

Next, I analyzed the first split (from the top of the tree) to identify statistically signifi-

cant features between the two resulting groups. The group on the left has 9,281 points and

the one on the right has 582 rows, with respective distributions of good RiskPerformance of

49.29% and 27.49%. The statistically significant features based on a Kolmogorov-Smirnoff

test are the number of revolving trades with balance, percentage installment trades, num-

ber of satisfactory trades, and percentage of trades with balance among others. Box and

whisker plots of two of these features are given in Figure 5.10. Based on these features, I

conclude that the smaller group that split off (the one on the right) consists of individuals

without credit cards who have a high proportion of installment trades, and more trades with

outstanding balances. For example, these may be individuals with many installment loans

they are unable to pay back.

Finally, I compared these results with the ones obtained using the proprietary Ayasdi
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Figure 5.11: Similarities between the first split observed in the experiment with the dash-
board and a group obtained by THD with the Ayasdi Platform.

Platform TDA software, described in Chapter 6. The goal was not to exactly replicate the

results, but to see if I obtained similar explanations or even groups that have the same kind

of characteristics, to see if my implementation of MAPPER and THD “decomposes” data in

the same way. Similar features between the group I analyzed in the previous paragraphs and

a group from the Ayasdi Platform-based analysis are shown in Figure 5.11. Most interesting

is that the group obtained with the dashboard has many more points, while retaining a

similar distribution of feature values. Based on this, I conclude that my MAPPER and THD

implementation is able to decompose data in a way that segments it based on interesting,

statistically meaningful features in a way that is similar to that of proprietary tools.
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Applications of Topological Hierarchies

to Data Science
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6.1 HELOC Applicant Risk Evaluation

Because of heavy regulations in the financial services industry, there are stringent require-

ments for financial decisions made by algorithm to be explainable. In particular, it is im-

portant for credit institutions to be able to explain their decisions to creditors. This presents

a challenge to the adoption of artificial intelligence techniques in the industry, as many AI

algorithms act as “black boxes” which are difficult for a human to interpret or to explain

why the algorithm made a certain decision [58, 25]. Unfortunately, the most powerful ma-

chine learning techniques such as deep neural networks are not inherently explainable. The

goal of explainable AI (XAI) is to remedy this issue by one of two broad approaches: the

first takes existing (unexplainable) algorithms to them explainable; the second develops

new, powerful explainable techniques from scratch. We choose the latter approach.

We apply THD to an anonymized dataset of home equity line of credit (HELOC) loan

applications made available by FICO [33] and illustrate how it provides insight, based on

groups with distinct distributions of data features, into why applicants may be unable to

pay back a loan within 90 days, making them risky to loan to. The goal is not to provide

an exhaustive explanation for every individual from the dataset. Instead, we will provide

illustrative explanations extracted from two THDs and describe how they could be used in

an explainable AI approach. Examples include use by a lending institution to explain to a

potential creditor why they are denied or granted a home equity line of credit, or to explain

a decision made by a black-box supervised machine learning algorithm, simply based on

records of past loan performances rather than by training a transparent supervised learning

algorithm that requires a historical account of whether customers’ past loans were approved

or denied.
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6.1.1 Glossary of Financial Terminology

This section serves to give definitions for the financial terminology used in the HELOC

Dataset.

amortizing loan A loan where the borrower pays a fixed monthly payment of principal

and interest to pay off a debt over time.

delinquency A payment received some period of time past its due date. Usually measured

in multiples of 30 days.

home equity The difference between the current market value of a home and its purchase

price.

home equity line of credit (HELOC) A line of credit typically offered by a bank as a

percentage of home equity. That is, it is a line of credit which uses home equity as

collateral. Unlike a mortgage, a HELOC is a revolving trade instead of being paid

back in installments.

inquiry A line of information that captures when a lending institution has pulled a con-

sumer’s credit bureau report in order to make a credit decision.

line of credit An agreement between a financial institution and a creditor that establishes

the maximum amount of a loan that the creditor can borrow. This is a type of revolv-

ing trade.

revolving trade Any type of credit that a creditor can use multiple times. Example include

credit cards and equity lines. Contrast with an amortizing loan, which is a one-time

transfer of funds that is repaid in installments.

trade In the context of HELOC, short for trade line.

trade line A credit agreement between the consumer and a lending institution (e.g. bank),

represented by a separate ”line” of information.
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6.1.2 Dataset Description

This study uses of the FICO Explainable Machine Learning dataset (hereafter the HELOC

dataset) made available by FICO [33]. The dataset consists of anonymized home equity

line-of-credit (HELOC) loan applications made by homeowners requesting a loan in the

range of $5,000 to $150,000. The target (label) feature is called RiskPerformance, and is

a categorical value of either ”Bad” if the consumer was more than 90 days past the due

date on a payment in the 24 months after their credit account was opened, and ”Good”

otherwise. The dataset contains 5,000 ”Good” individuals and 5,459 ”Bad” individuals for

a total of 10,459 samples, giving a distribution of 48% ”Good” individuals and 52% ”Bad”

individuals.

The following list explains the interpretations of individual features in the dataset:

AverageMInFile The average number of months the individual appears in the file.

ExternalRiskEstimate A consolidated risk estimate from other credit bureaus. Higher

values indicate less risk.

MaxDelq2PublicRecLast12M The maximum period of delinquency or presence of ”Deroga-

tory” item in public records for the last 12 months.

MSinceOldestTrade The number of months since the oldest trade opened by the individ-

ual.

MSinceMostRecentDelq The number of months since most recent delinquency by the

individual.

MSinceMostRecentTradeOpen The number of months since the most recent trade opened

by the individual.

NumBank2NatlTradesWHighUtilization The number of credit cards owned by the in-

dividual on a consumer credit bureau report carrying a balance that is at 75% of its

limit or higher.
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NumSatisfactoryTrades The number of credit agreements involving the individual on a

consumer credit bureau report with on-time payments (satisfactory payments).

NumTrades60Ever2DerogPubRec The number of trade lines on a credit bureau report

that record a payment received 60 days past its due date, added to the number of

items considered ”Derogatory” in all Public Records available for the consumer.

NumTrades90Ever2DerogPubRec The number of trade lines on a credit bureau report

that record a payment received 90 days past its due date, added to the number of

items considered ”Derogatory” in all Public Records available for the consumer.

PercentTradesNeverDelq The percentage of trades which were never delinquent, i.e. loans

which were paid back on time.

RiskPerformance Whether the individual paid back the HELOC as negotiated within 12-

36 months of the loan.

6.1.3 Results

We did not seek to predict RiskPerformance, but merely explain its value given the other

features in an unsupervised way using a THD. To establish the difference between groups,

we did a statistical comparison between them using KS-score for continuous variables and

a hypergeometric distribution for categorical ones. By doing this for several splits in the

THD, we can then track the path of an individual throughout the THD, using the ”choice”

of which branch to follow at each split to ”tell a story” about why this person was or was

not able to pay back a loan on time. From these branches we were able to extract illustrative

explanations for whether individuals in a group were 90 or more days delinquent 24 months

after taking out a loan.

Two THDs were computed from the entire dataset, using all features but RiskPerfor-

mance and ExternalRiskEstimate. We excluded the ExternalRiskEstimate because it was

110



Figure 6.1: THD tree for VNE metric, NHL as filter with networks for selected groups
shown

obtained from an outside source and may not be as useful in an explanation. For our initial

resolution we always used 1, which gives a topological network with one node containing

the entire dataset. This resolution is increased until the first split occurs, and then THD

is ran recursively on each branch until no connected components with a number of points

above the threshold remain. The gain (overlap parameter) was 2.7 for all THDs, and re-

mains fixed throughout the whole process. The split threshold was set to 20 points, i.e. a

connected component with 20 data points (not just nodes) would be considered a split.

We used the variance-normalized Euclidean distance as the metric for both THDs, and

for filters we built one THD with a neighborhood lens (NHL), which is analogous to the

first two components of t -SNE [61], and the other with the first two multi-dimensional

scaling (MDS) [55, 56] coordinates. The Ayasdi Platform [7] was used to build the topo-

logical networks in the THD with MAPPER. The portion of the THD tree for the NHL filter

showing splits is given in Figure 6.1. Topological networks for selected nodes are shown

as well, colored by RiskPerformance where red means more ”Good” individuals and blue

more ”Bad” individuals. The tree for the MDS filter, not shown, exhibits different behavior
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Figure 6.2: Summary of significant features at high-level splits in the THD tree with VNE
metric, NHL as filter

in splitting, where there are a lot of small splits until the last few large splits are reached.

In the NHL filter THD, there is a significant split early on which is not observed with the

MDS filter. In both THDs, there seems to be a large split at the end, with two large groups

that are able to be further decomposed.

A simplified view of the NHL THD, showing the early splits, is given in Figure 6.2.

Note that the implementation of THD using Ayasdi platform will discord smaller connected

components from the topological network that fall beneath a group threshold, so that the

total number of points in the children of a group may be less than the number of points in

the parent. The root node gives the number of points and RiskPerformance distribution for

the entire dataset. At each split, a summary of the most important features distinguishing

this group from other groups in the split is given. Finally, the number of points and the dis-

tribution of RiskPerformance values in the group is given. This diagram could be extended

to include all splits in a THD, and then used to explain an individual’s performance based

on their path through the THD. For example, we observe that individuals falling in Split
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1.1.2 could be turned down for a loan as the group has 88.5% of its members unable to

pay back on time. Further investigation reveals that most individuals in the group exhibit

high credit card utilization, suggesting an explanation for these individuals. We summarize

other explanations are extracted from Figure 6.2:

• (a) Individuals in Split 1.1.2 were unable to pay a loan due to high credit card utiliza-

tion leading them unable to pay back on time.

• (b) Individuals in Split 1.1.3 were unable to pay a loan due to a past history of delin-

quency, despite low credit card utilization.

• (c) Individuals in Split 1.1.1.2 were unable to pay a loan due to having few trades,

meaning they have less of a credit history, but also history of delinquency on past

trades. This can make such users riskier to lend to.

• (d) Individuals in Split 1.2.1.2 paid their loan, even though they have a short history

and few trades, but have a very low rate of delinquency.

We extracted explanations in a similar way from the MDS THD as well. Here the

group names such as ”Split 1.2” refer to groups in the MDS THD (not shown), and not in

the NHL THD:

• (e) Individuals in Split 2 would be denied a loan due to having a large number of

loans with balance, and a high number of inquiries.

• (f) Individuals in Split 1.2 would be denied a loan due to a history of delinquency

over 120 days and a large number of trades with balance.

• (g) Individuals in Split 1.1.1.1.2 would be denied a loan due to a history of delin-

quency and a high number of revolving trades with balance. This is in spite of the

fact that these individuals have a better external risk estimate than individuals in their

sister group of the split.
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Note in explanation (d) how the THD is able to identify fine grained groups of cus-

tomers who could be seen as good loan customers, even though they have a shallow credit

history. The THD is further able to find a set of customers likely to be poor loan customers

by explanation (b), even though they have relatively low credit utilization. These customers

may be counterintuitive in nature, in the sense that their features intuitively suggest that the

customer should (not) be granted credit.

Predicting the group of a split where a new applicant would fall within the THD would

thus provide both a decision and reason for granting or denying the applicant even when

applicant features take on surprising or contradictory values, and the explanation can be

presented at a finer or coarser grain depending on the split depth an analyst chooses to

select an explanation from. Specifically, the denial of a loan can be explained by an ap-

plicant that falls into a group with a high percentage (greater than the global average of

52%) of ”Bad” RiskPerformance values, where membership in a group is defined by a

distribution of feature values that distinguish the group from others at a split in the THD.

These explanations are only based on the features of the applicant, and have nothing to do

with the past loaning behavior of the organization. Note that using different settings for

the THD will result in different explanations, although there are some similarities such as

a history of delinquency and a large number of loans with balance correlating with ”Bad”

RiskPerformance, and hence these individuals would be denied a loan.

It is also instructive to look at individual topological networks where a split occurs.

An example for the first split in the NHL THD is given in Figure 6.3. The connected com-

ponent at the top of the network corresponds to the smaller group labeled ”Split 1.2” in

Figure 6.2. The further split in this group can already be seen, as there is a vertex in the

upper component that can be removed to split it into two more components. ”Split 1.2.1,”

which has few credit cards with high utilization, can be seen as the right component of

this upper network, based on the coloring in Figure 6.3b. The topological networks can

be used for an even more granular explanation, as we can consider the nodes an individual
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belongs to in the network as containing similar individuals. We can also look at the imme-

diate neighbors of these nodes to get a very local group of individuals similar to the one

under consideration. This ability to go from a high-level, group-based representation, to

individual topological networks, and then to just points from a group of related nodes in a

network is a novel and useful feature of THD.

Comparison to transparent supervised models

It should be noted that Figure 6.2 does not appear all that different from a decision tree.

Each split in the THD is based on a set of feature properties that differentiate one group

from another, which is not unlike a decision tree that makes classification decisions by

learning a hierarchy of heuristics to bin data. Moreover, decision trees are inherently trans-

parent in the sence that each path down a tree from root to leaf describes a series of condi-

tions explaining why data is classified.

The key difference between using splits of a THD to provide explanations rather than

a decision tree is that THD is an entirely unsupervised technique; in constructing a THD

the target feature RiskPerformance is never used. A decision tree, in contrast, is a super-

vised approach where the target feature is used directly during learning. When this training

data is collected based on credit award decisions made by an organization from the past,

the decision tree essentially learns a model describing how and why a firm awards credit to

applicants. The learned model thus incorporates any potentially historical biases or priori-

ties of the organization the training data is from. In taking an unsupervised approach, the

THD becomes decoupled from the organization or institution who issues credit: splits in

a THD are based on distinguishing features between sets of past applications conditioned

on whether they successfully paid their loan. Thus, the THD can lead to automatic loan

decisions based solely on the merits of the applicant, instead of a combination of applicant

merit and historical firm behavior. Moreover, a THD is theoretically grounded by exploit-

ing the shape and structure of the underlying manifold of data about applicants, which is
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more likely to have a shape and structure characteristics across applicants for all forms of

credit besides HELOC. Insights from a THD are thus more likely to be transferable across

domains (e.g., to support decisions for other lines of credit besides HELOC), compared to

decision tree heuristics that are (over)fitted to a single, specific dataset.

We further note that the THD requires no a priori information about the meaning

or importance of each feature. Since these explanations are independent of any machine

learning model used in classification, they could thus be used to supplement and explain

decisions made by the algorithm. For example, a linear regression may give larger magni-

tude to weights that were found to correlate with RiskPerformance in THD groups, such

as percentage of trades never delinquent and number of trades with balance. Finally, these

explanations could also be used to understand a misclassification made by a classifier. The

classifier may be weighting the wrong features, i.e. features that correlate with RiskPerfor-

mance in a different THD group than the one the point being classified belongs to. Another

possibility is that the data point being classified is an outlier - it is in a THD group but

has unusual features for that group. THD provides a framework for identifying such points

automatically.
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(a) RiskPerformance
(blue=bad, red=good)

(b) credit cards with high utilization
(blue=less, red=more)

(c) revolving trades with balance
(blue=less, red=more)

(d) percentage installment trades
(blue=0%, red=100%)

Figure 6.3: Topological Network for the first split in the NHL THD, colored by different
features
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Conclusion
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In this dissertation, I introduced topological hierarchies, the THD algorithm, and

looked at applications of them. I began by reviewing the literature, summarizing the rele-

vant papers on TDA that cover MAPPER, persistent homology and persistence diagrams,

zigzag persistence, and multiscale MAPPER, as well as reviewing articles on hierarchical

clustering and describing applications of TDA to various fields. Next, I gave a detailed

introduction to the mathematical background underpinning TDA, MAPPER, and persistent

homology. This set the stage for my main contributions in Chapter 4, which introduces

topological hierarchies, indexed hierarchies, and the topological hierarchical decomposi-

tion algorithm.

I defined a topological hierarchy as a mathematical tree structure, with an associated

topological space and simplicial complex at each node, and maps of covers inducing a

simplicial map between each child and parent node via a nerve-like map. In an indexed

hierarchy, there is a parameter encoding scale or resolution which increases or decreases

with depth in the tree. Based on the concept of connected components from graph theory, I

described how to partition a topological space based on the simplicial complex asscoiated

with it. By recursively applying this process, one arrives at the topological hierarchical

decomposition described in Algorithm 1. Then I defined three ways of computing persistent

homology on topological hierarchies: a child-to-ancestor approach, a global approach that

creates a single persistence module by taking the disjoint union of simplicial complexes at

each level in the hierarchy, and a child-to-child approach that compares two arbitrary nodes

through their common ancestor using zigzag persistence.

The last section of Chapter 4 compares topological hierarchies to hierarchical clus-

tering using existing metrics to measure the quality of a clustering. The Rand index and

mutual information are chosen as good metrics to evaluate a clustering in a supervised man-

ner (i.e. comparing the clustering with some pre-existing labels). Looking at the results of

hierarchical clustering and THD on the FICO dataset, I observe similar performance in

terms of the two metrics. Finally, I finish the chapter by looking at the performance of
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MAPPER and THD, including a time complexity analysis, potential optimizations to the

algorithm, and a short discussion of the space complexity of the algorithm. I show that in

general MAPPER will be O(n2) and THD will have a worst case of O(n3), where n is the

number of rows or points in the data. A rough analysis of space complexity indicates that

if entire distance matrices are computed, this will be an O(n2) storage cost, more than any

other part of the algorithm outside of filter functions that may use more storage temporarily.

Chapter 5 describes the practical side of THD, introducing an implementation of

MAPPER and THD in Python 3 and a dashboard-styled web application for interactive

data analysis using them. I give the results of several performance tests using the Python

implementation, using a PCA and UMAP filter, and exhibit how well it handles data of

various sizes, dimensionality, and how it scales with increasing number of sets in the open

cover. These results are compared with the theoretical analysis of the preceding chapter,

and I recover the predicted O(n2) complexity in the number of rows and open sets, and

the O(n) complexity in the number of dimensions. The results also show that it may not

be worth precomputing distances and filter values for simple filters such as PCA, while for

heavier filters like UMAP and tSNE it provides a huge improvement in performance at the

cost of a larger storage overhead.

The next third of Chapter 5 introduced the dashboard web application, which is built

on the Python Plotly Dash library. After describing the implementation environment, I run

through its features and how they access the MAPPER and THD functionality of the Python

library. The final third of the chapter covers the reproduction of the results of Chapter 6

using the dashboard, namely the analysis of the FICO dataset.

Finally, Chapter 6 introduced the application of THD to the FICO HELOC dataset.

After describing needed financial terminology and describing the dataset, I presented the

results of an exploratory analysis of the dataset using THD, with the goal of explaining

the performance of individuals and groups of individuals in whether they were able to

pay back a HELOC loan within the designated time. Examining the splits in a THD, we
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identify statistically significant features in the parent and children groups that explain why

the split occurred and why the members of each group, on average, were or were not able to

pay back their HELOC loans. We compared this unsupervised, semi-qualitative approach

to quantitative supervised models, and explain how it could potentially reduce bias in an

automated system for determining whether to approve a loan applicant.

There are some cases in which TDA and THD in particular may not be applicable, or

may have diminished results. In particular, clustering and other metric-based algorithms

may not handle categorical or discrete data with few possible values well. One solution

would be to use metrics designed for such data, but it is often the case that a dataset has

both continuous and discrete or categorical fields. Traditional clustering algorithms assume

that all columns use the same distance metric, but it may be possible to extend them to allow

for multiple metrics, for example by summing together the independent distances for each

subset of columns under the same metric. However, filter functions that use dimensionality

reduction rely on a single metric, and it’s not clear how techniques such as t-SNE or UMAP

could be generalized. A temporary solution may be to apply the dimensionality reduction

independently to each subset of columns under a same metric, and then concatenate these

results.

Extremely large datasets are also not suited for THD, due to the O(n3) time complex-

ity and prohibitive memory requirements to store distance matrices. While the memory

usage could be reduced through optimization, the time complexity is due to the many calls

to clustering or dimensionality reduction algorithms needed in THD, and these are not so

easily reduced. A final situation where THD may not be immediately applicable is to su-

pervised learning tasks. Building a topological hierarchy is fundamentally an unsupervised

process, and it is not straightforward to incorporate supervision into it.
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7.1 Future Work

This section discusses future avenues of research for topological hierarchies and THD

which seem promising. One could look into the usage of other clustering algorithms within

the implementation of MAPPER, especially density based clustering algorithms such as

DBSCAN. This would allow MAPPER to scale to larger datasets, as DBSCAN lacks the

O(n2) memory usage of hierarchical clustering algorithms when they compute distance

matrices. It would be useful to understand how these improvements on space-complexity

would propagate to the space complexity of THD, as well as whether density-based clus-

tering provides better topological hierarchies under a suitable metric such as a clustering

score like AMI.

A promising application of THD and MAPPER is to high-dimensional datasets with

a small number of points. Due to the linear time dependence on the number of dimensions

the algorithms will scale well to these kinds of datasets. An example of the kind of data that

would fit these criteria is satellite imagery and photographs. Image data is well suited to

THD since it typically takes only continuous values, or discrete values with a large number

of them. Natural language processing (NLP) applications can generate high-dimensional

data as well, such as vector space models where each row is a document and the columns

are words in the vocabulary.

As mentioned previously, THD is an entirely unsupervised algorithm. However, it

may be possible to use a model produced by THD to make predictions in a supervised

manner. The obvious approach is to predict where new data would fall in the hierarchy,

including its position in the simplicial complexes of the groups it appears in. The neigh-

boring points in the lowest simplicial complex it appears in could then be used to make a

prediction, for example by a majority vote of their values for the label to predict. For re-

gression tasks, a mean or median could be taken instead. Such a prediction could be made

for each group the point is predicted in, and either the lowest group taken or the predictions

combined in some manner. Another way of including supervision into THD would be sim-
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ply to use the label or target feature as one of the columns in building the THD. However,

in this approach it is not as obvious how to make predictions on new data.

Finally, it remains to be seen how easily THDs can be used to produce explainable

models. Explainable artifical intelligence (XAI) is not a rigorously defined term, but is

used to refer to models which can explain their decisions in a way easily understood by hu-

mans without sacrificing accuracy [42]. In practice, XAI refers to the growing initiative to

produce such models [1]. While the analysis of the HELOC dataset in Section 6.1.3 shows

the potential of THD to produce low-level explanations, it remains to be seen whether it

can be used to build high-level, qualitative explanations of the type sought by XAI. In a

topological hierarchy it is possible to examine indiviudal groups through the associated

simplicial complexes, identifying relations between individual points through them. This

could be extended into something like a decision tree or other easily understood classifier,

to produce an explanatory model for why a given point was placed within a certain node in

a simplicial complex associated to some group.
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